Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005703
Number of n-node connected graphs with at most one cycle.
(Formerly M1151)
29
1, 1, 1, 2, 4, 8, 19, 44, 112, 287, 763, 2041, 5577, 15300, 42419, 118122, 330785, 929469, 2621272, 7411706, 21010378, 59682057, 169859257, 484234165, 1382567947, 3952860475, 11315775161, 32430737380, 93044797486, 267211342954, 768096496093, 2209772802169
OFFSET
0,4
COMMENTS
a(n) is the number of pseudotrees on n nodes. - Eric W. Weisstein, Jun 11 2012
Also unlabeled connected graphs covering n vertices with at most n edges. For this definition we have a(1) = 0 and possibly a(0) = 0. - Gus Wiseman, Feb 20 2024
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
Eric Weisstein's World of Mathematics, Pseudotree
Wikipedia, Pseudoforest
FORMULA
a(n) = A000055(n) + A001429(n).
EXAMPLE
From Gus Wiseman, Feb 20 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 8 graphs:
{} . {12} {12,13} {12,13,14} {12,13,14,15}
{12,13,23} {12,13,24} {12,13,14,25}
{12,13,14,23} {12,13,24,35}
{12,13,24,34} {12,13,14,15,23}
{12,13,14,23,25}
{12,13,14,23,45}
{12,13,14,25,35}
{12,13,24,35,45}
(End)
MATHEMATICA
Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}];
a[0] = 0;
b = Drop[Flatten[
sol = SolveAlways[
0 == Series[
t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
x]; Table[a[n], {n, 0, nn}] /. sol], 1];
r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
Drop[Table[
CoefficientList[
Series[CycleIndex[DihedralGroup[n], s] /.
Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
nn}] // Total, 1];
d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[
Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
PROG
(PARI) \\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021
CROSSREFS
Cf. A000055, A000081, A001429 (labeled A057500), A134964 (number of pseudoforests, labeled A133686).
The labeled version is A129271.
The connected complement is A140636, labeled A140638.
Non-connected: A368834 (labeled A367869) or A370316 (labeled A369191).
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A062734 counts connected graphs by number of edges.
Sequence in context: A037444 A151526 A099526 * A172383 A003081 A100133
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008
STATUS
approved