OFFSET
0,4
COMMENTS
a(n) is the number of pseudotrees on n nodes. - Eric W. Weisstein, Jun 11 2012
Also unlabeled connected graphs covering n vertices with at most n edges. For this definition we have a(1) = 0 and possibly a(0) = 0. - Gus Wiseman, Feb 20 2024
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Washington Bomfim, Table of n, a(n) for n = 0..500
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
Eric Weisstein's World of Mathematics, Pseudotree
Wikipedia, Pseudoforest
EXAMPLE
From Gus Wiseman, Feb 20 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 8 graphs:
{} . {12} {12,13} {12,13,14} {12,13,14,15}
{12,13,23} {12,13,24} {12,13,14,25}
{12,13,14,23} {12,13,24,35}
{12,13,24,34} {12,13,14,15,23}
{12,13,14,23,25}
{12,13,14,23,45}
{12,13,14,25,35}
{12,13,24,35,45}
(End)
MATHEMATICA
Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}];
a[0] = 0;
b = Drop[Flatten[
sol = SolveAlways[
0 == Series[
t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
x]; Table[a[n], {n, 0, nn}] /. sol], 1];
r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
Drop[Table[
CoefficientList[
Series[CycleIndex[DihedralGroup[n], s] /.
Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
nn}] // Total, 1];
d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[
Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
PROG
(PARI) \\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008
STATUS
approved