Nothing Special   »   [go: up one dir, main page]

login
A003761
Number of spanning trees in D_4 X P_n.
1
3, 270, 20160, 1477980, 108097935, 7903526400, 577834413429, 42245731959480, 3088601154192960, 225808743709815750, 16508958287605688193, 1206975861055570636800, 88242438021480689844999, 6451436286916714206370530, 471666820375043557337304000
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008. [From Paul Raff, Mar 06 2009]
P. Raff, Analysis of the Number of Spanning Trees of D_4 x P_n. Contains sequence, recurrence, generating function, and more. [From Paul Raff, Mar 06 2009]
Index entries for linear recurrences with constant coefficients, signature (90,-1313,5850,-9828,5850,-1313,90,-1).
FORMULA
a(1) = 3,
a(2) = 270,
a(3) = 20160,
a(4) = 1477980,
a(5) = 108097935,
a(6) = 7903526400,
a(7) = 577834413429,
a(8) = 42245731959480 and
a(n) = 90*a(n-1) - 1313*a(n-2) + 5850*a(n-3) - 9828*a(n-4) + 5850*a(n-5) - 1313*a(n-6) + 90*a(n-7) - a(n-8).
G.f.: 3*x*(x^6 -67*x^4 +180*x^3 -67*x^2 +1) / (x^8 -90*x^7 +1313*x^6 -5850*x^5 +9828*x^4 -5850*x^3 +1313*x^2 -90*x +1). - Paul Raff, Mar 06 2009
a(n) = 3*A006238(n)*A001109(n). [R. Guy, seqfan list, Mar 28 2009] - R. J. Mathar, Jun 03 2009
MATHEMATICA
CoefficientList[Series[3 (x^6 - 67 x^4 + 180 x^3 - 67 x^2 + 1)/(x^8 - 90 x^7 + 1313 x^6 - 5850 x^5 + 9828 x^4 - 5850 x^3 + 1313 x^2 - 90 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 03 2015 *)
PROG
(Magma) I:=[3, 270, 20160, 1477980, 108097935, 7903526400, 577834413429, 42245731959480]; [n le 8 select I[n] else 90*Self(n-1)-1313*Self(n-2)+5850*Self(n-3)-9828*Self(n-4)+5850*Self(n-5)-1313*Self(n-6)+90*Self(n-7)-Self(n-8): n in [1..20]]; // Vincenzo Librandi, Aug 03 2015
CROSSREFS
Sequence in context: A319587 A058451 A230373 * A216471 A223037 A171358
KEYWORD
nonn,easy
EXTENSIONS
Recurrence from Faase's web page added by N. J. A. Sloane, Feb 03 2009
More terms from Sean A. Irvine, Aug 02 2015
STATUS
approved