# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a003761
Showing 1-1 of 1
%I A003761 #39 Aug 23 2023 09:37:24
%S A003761 3,270,20160,1477980,108097935,7903526400,577834413429,42245731959480,
%T A003761 3088601154192960,225808743709815750,16508958287605688193,
%U A003761 1206975861055570636800,88242438021480689844999,6451436286916714206370530,471666820375043557337304000
%N A003761 Number of spanning trees in D_4 X P_n.
%D A003761 F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
%H A003761 Sean A. Irvine, Table of n, a(n) for n = 1..100
%H A003761 F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
%H A003761 F. Faase, Counting Hamiltonian cycles in product graphs
%H A003761 F. Faase, Results from the counting program
%H A003761 P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008. [From _Paul Raff_, Mar 06 2009]
%H A003761 P. Raff, Analysis of the Number of Spanning Trees of D_4 x P_n. Contains sequence, recurrence, generating function, and more. [From _Paul Raff_, Mar 06 2009]
%H A003761 Index entries for sequences related to trees
%H A003761 Index entries for linear recurrences with constant coefficients, signature (90,-1313,5850,-9828,5850,-1313,90,-1).
%F A003761 a(1) = 3,
%F A003761 a(2) = 270,
%F A003761 a(3) = 20160,
%F A003761 a(4) = 1477980,
%F A003761 a(5) = 108097935,
%F A003761 a(6) = 7903526400,
%F A003761 a(7) = 577834413429,
%F A003761 a(8) = 42245731959480 and
%F A003761 a(n) = 90*a(n-1) - 1313*a(n-2) + 5850*a(n-3) - 9828*a(n-4) + 5850*a(n-5) - 1313*a(n-6) + 90*a(n-7) - a(n-8).
%F A003761 G.f.: 3*x*(x^6 -67*x^4 +180*x^3 -67*x^2 +1) / (x^8 -90*x^7 +1313*x^6 -5850*x^5 +9828*x^4 -5850*x^3 +1313*x^2 -90*x +1). - _Paul Raff_, Mar 06 2009
%F A003761 a(n) = 3*A006238(n)*A001109(n). [R. Guy, seqfan list, Mar 28 2009] - _R. J. Mathar_, Jun 03 2009
%t A003761 CoefficientList[Series[3 (x^6 - 67 x^4 + 180 x^3 - 67 x^2 + 1)/(x^8 - 90 x^7 + 1313 x^6 - 5850 x^5 + 9828 x^4 - 5850 x^3 + 1313 x^2 - 90 x + 1), {x, 0, 33}], x] (* _Vincenzo Librandi_, Aug 03 2015 *)
%o A003761 (Magma) I:=[3,270,20160,1477980,108097935,7903526400, 577834413429,42245731959480]; [n le 8 select I[n] else 90*Self(n-1)-1313*Self(n-2)+5850*Self(n-3)-9828*Self(n-4)+5850*Self(n-5)-1313*Self(n-6)+90*Self(n-7)-Self(n-8): n in [1..20]]; // _Vincenzo Librandi_, Aug 03 2015
%K A003761 nonn,easy
%O A003761 1,1
%A A003761 _Frans J. Faase_
%E A003761 Recurrence from Faase's web page added by _N. J. A. Sloane_, Feb 03 2009
%E A003761 More terms from _Sean A. Irvine_, Aug 02 2015
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE