Overview
My work uses translational neuroscience approaches, such as cerebrospinal fluid molecular assays, sleep EEG, cognitive testing, and delirium assessment to identify mechanisms of delirium. Delirium is a syndrome of disrupted attention and consciousness that occurs in ~20% of the >19 million older surgery patients and ~50% of the >5 million intensive care unit (ICU) patients in the United States every year. Delirium is also associated with increased risk for Alzheimer’s disease and related dementias (ADRD), yet there are no FDA-approved drugs to prevent it, due to a major gap in our understanding of its underlying mechanisms. Our current work aims to discover potential mechanisms of delirium that could be targeted in future studies. We have recently found that increased blood-brain barrier dysfunction is associated with postoperative delirium, but it is unknown what inflammatory mediators actually cross the disrupted blood-brain barrier to drive delirium. Using mass spectrometry proteomics, we are examining the relationship of proteins and inflammatory markers found in the cerebrospinal fluid 24-hours following surgery with postoperative delirium. We are also interested in strategies that potentially protect the blood-brain barrier following surgery. Since sleep disruptions can cause blood-brain barrier dysfunction, we are conducting a study to determine the efficacy of suvorexant to improve postoperative sleep and reduce delirium severity in older surgical patients. Finally, we are working to extend these investigations to ICU patients, who are often more severely affected by delirium and more frequently develop long-term sequelae such as post-ICU long-term cognitive impairment (that is similar in magnitude to Alzheimer’s disease and related dementias).