Deprecated: Function get_magic_quotes_gpc() is deprecated in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 99

Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 619

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1169

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176

Warning: Cannot modify header information - headers already sent by (output started at /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php:99) in /hermes/walnacweb04/walnacweb04ab/b2791/pow.jasaeld/htdocs/De1337/nothing/index.php on line 1176
Machine Intelligence
Nothing Special   »   [go: up one dir, main page]

Machine Intelligence

Google is at the forefront of innovation in Machine Intelligence, with active research exploring virtually all aspects of machine learning, including deep learning and more classical algorithms. Exploring theory as well as application, much of our work on language, speech, translation, visual processing, ranking and prediction relies on Machine Intelligence. In all of those tasks and many others, we gather large volumes of direct or indirect evidence of relationships of interest, applying learning algorithms to understand and generalize.

Machine Intelligence at Google raises deep scientific and engineering challenges, allowing us to contribute to the broader academic research community through technical talks and publications in major conferences and journals. Contrary to much of current theory and practice, the statistics of the data we observe shifts rapidly, the features of interest change as well, and the volume of data often requires enormous computation capacity. When learning systems are placed at the core of interactive services in a fast changing and sometimes adversarial environment, combinations of techniques including deep learning and statistical models need to be combined with ideas from control and game theory.

Recent Publications

InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
Jing Jin
Xiuxiu Yuan
Jun Jiang
Jingtao Zhou
Yiyi Huang
Zheng Xu
Kristen Wright
Jason Mayes
Mark Sherwood
Johnny Lee
Alex Olwal
Ram Iyengar
Na Li
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
Preview abstract Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas. View details
Artificial Intelligence in Healthcare: A Perspective from Google
Lily Peng
Lisa Lehmann
Artificial Intelligence in Healthcare, Elsevier (2024)
Preview abstract Artificial Intelligence (AI) holds the promise of transforming healthcare by improving patient outcomes, increasing accessibility and efficiency, and decreasing the cost of care. Realizing this vision of a healthier world for everyone everywhere requires partnerships and trust between healthcare systems, clinicians, payers, technology companies, pharmaceutical companies, and governments to drive innovations in machine learning and artificial intelligence to patients. Google is one example of a technology company that is partnering with healthcare systems, clinicians, and researchers to develop technology solutions that will directly improve the lives of patients. In this chapter we share landmark trials of the use of AI in healthcare. We also describe the application of our novel system of organizing information to unify data in electronic health records (EHRs) and bring an integrated view of patient records to clinicians. We discuss our consumer focused innovation in dermatology to help guide search journeys for personalized information about skin conditions. Finally, we share a perspective on how to embed ethics and a concern for all patients into the development of AI. View details
Preview abstract Predictive uncertainty-a model's self awareness regarding its accuracy on an input-is key for both building robust models via training interventions and for test-time applications such as selective classification. We propose a novel instance-conditioned reweighting approach that captures predictive uncertainty using an auxiliary network and unifies these train- and test-time applications. The auxiliary network is trained using a meta-objective in a bilevel optimization framework. A key contribution of our proposal is the meta-objective of minimizing the dropout variance, an approximation of Bayesian Predictive uncertainty. We show in controlled experiments that we effectively capture the diverse specific notions of uncertainty through this meta-objective, while previous approaches only capture certain aspects. These results translate to significant gains in real-world settings-selective classification, label noise, domain adaptation, calibration-and across datasets-Imagenet, Cifar100, diabetic retinopathy, Camelyon, WILDs, Imagenet-C,-A,-R, Clothing1M, etc. For Diabetic Retinopathy, we see upto 3.4%/3.3% accuracy and AUC gains over SOTA in selective classification. We also improve upon large-scale pretrained models such as PLEX. View details
Preview abstract We propose a neural network model that can separate target speech sources from interfering sources at different angular regions using two microphones. The model is trained with simulated room impulse responses (RIRs) using omni-directional microphones without needing to collect real RIRs. By relying on specific angular regions and multiple room simulations, the model utilizes consistent time difference of arrival (TDOA) cues, or what we call delay contrast, to separate target and interference sources while remaining robust in various reverberation environments. We demonstrate the model is not only generalizable to a commercially available device with a slightly different microphone geometry, but also outperforms our previous work which uses one additional microphone on the same device. The model runs in real-time on-device and is suitable for low-latency streaming applications such as telephony and video conferencing. View details
Locality-Aware Graph Rewiring in GNNs
Federico Barbero
Ameya Velingker
Amin Saberi
Michael Bronstein
Francesco Di Giovanni
ICLR 2024
Preview abstract Graph Neural Networks (GNNs) are popular models for machine learning on graphs that typically follow the message-passing paradigm, whereby the feature of a node is updated recursively upon aggregating information over its neighbors. While exchanging messages over the input graph endows GNNs with a strong inductive bias, it can also make GNNs susceptible to \emph{over-squashing}, thereby preventing them from capturing long-range interactions in the given graph. To rectify this issue, {\em graph rewiring} techniques have been proposed as a means of improving information flow by altering the graph connectivity. In this work, we identify three desiderata for graph-rewiring: (i) reduce over-squashing, (ii) respect the locality of the graph, and (iii) preserve the sparsity of the graph. We highlight fundamental trade-offs that occur between {\em spatial} and {\em spectral} rewiring techniques; while the former often satisfy (i) and (ii) but not (iii), the latter generally satisfy (i) and (iii) at the expense of (ii). We propose a novel rewiring framework that satisfies all of (i)--(iii) through a locality-aware sequence of rewiring operations. We then discuss a specific instance of such rewiring framework and validate its effectiveness on several real-world benchmarks, showing that it either matches or significantly outperforms existing rewiring approaches. View details
Preview abstract Specialized Large multi-modal models (LMMs) have exhibited remarkable performance across numerous tasks, however, generalist LMMs suffer from performance degradation when training with a large collection of tasks. Recent research suggests Mixture of Experts (MoE) Models help instruction tuning, however, for LMMs of parameter size around O(50-100B), the prohibitive cost of replicating and storing the expert models severely limits the number of experts we can use. We propose Omni-SMoLA that softly mixes many multimodal low rank experts to large models without introducing significant new parameter count compared to conventional MoE models. The core idea is that the large model provides a foundational backbone and different lightweight experts learn specialized knowledge residually. Extensive experiments demonstrate that the SMoLA approach helps improve the generalist performance across a broad range of visual question answering and captioning tasks, achieving a new state-of-the-art generalist performance that matches or outperforms single specialized LMM baselines. View details