Nothing Special   »   [go: up one dir, main page]

Historical development, impact mechanism and future trends of nitrogen footprint in Wuxi City, China

Sci Total Environ. 2024 Jul 15:934:173240. doi: 10.1016/j.scitotenv.2024.173240. Epub 2024 May 13.

Abstract

Human activities have changed the biogeochemical cycle of nitrogen, leading to a large amount of reactive nitrogen (Nr) into the environment, aggravating a series of environmental problems, affecting human and ecosystem health. Cities are the core areas driving nitrogen cycling in terrestrial ecosystems, however, there are numerous influencing factors and their contributions are unclear. The nitrogen footprint is an important index to understand the impact of human activities on the environment, however, the calculation of urban nitrogen footprint needs a simplified and accurate system method. Here we use a nitrogen footprint calculation model at the urban system level based on system nitrogen balance, and a multi-factor extended STIRPAT (stochastic impact by regression on population, affluence, and technology) model suitable for analyzing the impact mechanism of nitrogen footprint to estimate nitrogen footprint of Wuxi City during 1990-2050. We find that: (1) from 1990 to 2020, the total nitrogen footprint of Wuxi City was in an increasing trend, but the per capita nitrogen footprint was in a decreasing trend. The per capita nitrogen footprint of 22.36 kg capita-1 in 2020 was at a lower level globally. (2) Nr discharge from fossil fuel combustion and Haber-Bosch nitrogen fixation accounted for the main proportion of nitrogen footprint. (3) Dietary choice (Ad), GDP per capita (Ag), urbanization rate (Au), population (P), and fossil energy productivity (Te) were the key factors contributing to the increase of the nitrogen footprint, which resulted in an annual increase of 1.39 %. While nitrogen footprint productivity (Tn), nitrogen use efficiency in crop farming (Tc), and nitrogen use efficiency in animal breeding (Ta) were the key inhibit factors that inhibit the increase of nitrogen footprint, and these factors slow down the annual growth rate of nitrogen footprint by 0.39 %. (4) The continuous growth of nitrogen footprint in the baseline and population growth scenarios will bring more environmental problems and greater environmental governance pressure to Wuxi City, while the sustainable scenario that includes comprehensive means such as economic adaptation and technological improvement is more in line with the requirements of high-quality development in China. Several mitigation measures are then proposed by considering Wuxi's realities from both key impact factors and potential for nitrogen footprint reduction in different scenarios, which can provide valuable policy insights to other cities, especially lakeside cities to mitigate nitrogen footprint.

Keywords: Driving factors; Nitrogen footprint; Scenario analysis; Wuxi City.