Liver fibrosis is the common response to chronic liver injury, ultimately leading to cirrhosis and its complications, portal hypertension, liver failure, and hepatocellular carcinoma. Efficient and well-tolerated antifibrotic drugs are currently lacking, and current treatment of hepatic fibrosis is limited to withdrawal of the noxious agent. Efforts over the past decade have mainly focused on fibrogenic cells generating the scarring response, although promising data on inhibition of parenchymal injury and/or reduction of liver inflammation have also been obtained. A large number of approaches have been validated in culture studies and in animal models, and several clinical trials are underway or anticipated for a growing number of molecules. This review highlights recent advances in the molecular mechanisms of liver fibrosis and discusses mechanistically based strategies that have recently emerged.