Bacteria frequently attach to medical devices such as intravascular catheters by forming sessile multicellular communities known as biofilms, which can be the source of persistent infections that are recalcitrant to systemic antibiotic therapy. As a result of this persistence, a number of technologies have been developed to prevent catheter-associated biofilm formation. Whereas the most straightforward approaches focus on impregnating catheter material with classical antimicrobial agents, these approaches are not universally effective, thereby underscoring the need for more potent and more sophisticated approaches to the prevention of catheter-related biofilm infections.