Physics">
Nothing Special   »   [go: up one dir, main page]

Lista 4 Fund Eletro

Fazer download em pdf ou txt
Fazer download em pdf ou txt
Você está na página 1de 8

LISTA DE EXERCÍCIOS DE FUNDAMENTOS DE ELETROMAGNATISMO

LEI DE AMPERE

7.1) Utilizando a Lei de Ampère, calcule o campo magnético fora e no interior de um toróide
circular ideal composto de N espiras e conduzindo uma corrente elétrica I(Fig. 1). (sugestão:
acomplanhe a segunda parte da seção 29-5 no livro do Halliday – Fundamentos de Física,
vol. 3, 8ed)

FIG. 1.

7.2) Os fios que formam as semicircunferências indicadas na Fig. 2 possuem raios a e b.


Determine o nódulo, a direção e o sentido do campo magnético resultante produzido pelas
correntes dos fios no ponto P .

FIG. 2.

7.3) Um cabo coaxial é composto por um condutor sólido de raio a, suportado por discos
isolantes no centro de um tupo condutor com raio interno b e externo c, Fig. 3. O condutor
central e o tubo conduzem correntes com o mesmo módulo I, mas com sentidos contrários. As

1
correntes são distribuídas uniformemente ao longo da seção reta de cada condutor. Deduza
uma expressão para o módulo do campo magnético nos pontos (a) no interior do condutor
sólido central (r < a); (b) no exterior do condutor sólido central (a < r < b); (c) no exterior
do tubo (r > c).

FIG. 3.

7.4) Utilizando a Lei de Ampère, calcule o campo magnético fora e no interior de um


solenoide ideal composto de n espriras por comprimento e conduzindo uma corrente elétrica
I. (sugestão: acompanhe a seção 29-5 no livro do Halliday – Fundamentos de Física, vol. 3,
8ed)

7.5) Condutores retilíneos longos, com seções retas quadradas, que em conjunto conduzem
uma corrente total I, são colocado um ao lado do outro, formando uma placa fina de largura
total L, Fig. 4. Os condutores se distribuem sobre o plano xy paralelamente ao eixo y.
(a) Determine o módulo, a direção, e sentido do campo magnético a uma distância a ≪ L
abaixo do plano da corrente próximo ao seu centro. (b) Encontre o módulo, a direção, e o
sentido do campo magnético a uma distância a ≪ L acima do plano da corrente próximo ao
seu centro.

FIG. 4.

7.6) Na Fig. 5, o fio se prolonga indefinidamente nas regiões em que ele é inclinado. Calcule
o campo magnético no ponto P , usando k para designar a direção que sai do papel.

2
FIG. 5.

3
INDUÇÃO ELETROMAGNÉTICA & EQUAÇÕES DE MAXWELL

8.1) A Fig. 6 mostra uma barra metálica de resistência desprezível, em uma forma de U,
posicionada na vertical, à qual se prende uma barra horizontal de resistência elétrica R.
Os anéis que prendem a barra horizontal à barra em formato de U permitem que a barra
horizontal deslize sem atrito na vertical. A massa m do conjunto barra horizontal e anéis
vale m. Um campo magnético uniforme e horizontal B cobre toda a região do sistema.
Sabendo que o sistema está sob ação da força da gravidade responda: (a) Qual é o sentido
da corrente induzida? (b) Qual é a força magnética sobre a barra quando ela se move com
velocidade v? (c) Escreva a equação de movimento da barra. (d) Mostre que a velocidade
terminal da barra é v = mgR/(lB)2 . (e)Mostre que, após atingir a velocidade terminal, a
energia dissipada na barra por efeito Joule é igual à taxa que a barra perde energia potencial
gravitacional.

FIG. 6.

8.2) Um fino condutor maciço com raio a é suportado por discos isolantes na região central
de um tubo delgado de material condutor e raio b, formando um cabo coaxial (Fig. 7). Os
condutores interno e externo conduzem correntes de mesmo módulo I e sentidos opostos.
(a) Aplique a lei de ampere para determinar o campo magnético em qualquer ponto entre
os condutores (a < r < b). (b) Mostre que a indutância L de um segmento do cabo coaxial
de comprimento l é dada por:
µo
L = l 2π ln( ab )

4
FIG. 7.

8.3) Uma barra condutora de comprimento l está orientada em direção perpendicular a um


fio longo no qual corre uma corrente I. A extremidade da barra mais próxima ao fio está
à uma distância d do fio, e move se com velocidade v paralela ao fio (Fig. 8). Mostre que
entre as extremidades da barra há uma tensão elétrica dada por:
µo Iv
V = 2π
ln( d+l
d
)

FIG. 8.

8.4) A espira da Fig. 9 possui área interna A e é girada em torno do eixo y com velocidade
angular ω. Sabendo que há um campo magnético uniforme e de módulo B na direção x, e
que a resistência da espira é R, mostre que a corrente induzida na espira vale:
BAω
I= R
sin(ωt)
8.5) Uma espira retangular com largura L e um fio deslizante com massa m estão repre-
sentados na Fig. 10. Um campo magnético uniforme B está orientado perpendicularmente
ao plano da espira, no sentido para dentro do plano da figura. O fio deslizante recebe uma
velocidade vo inicial, e em seguida é liberado. Não há atrito entre o fio deslizante e a espira,
e a resistência elétrica da espira é desprezível em comparação com a resistência R do fio.
(a) Obtenha um expressão para F , o módulo da força exercida sobre o fio enquanto ele se

5
FIG. 9.

move a uma velocidade de módulo v. (b) Mostre que a distância x que o fio percorre antes
de atingir o repouso é x = mvo R/L2 B 2 .

FIG. 10.

8.6) A corrente no fio longo e retilíneo AB indicado na Fig. 11 tem um sentido de baixo para
cima e está aumentando a uma taxa constante di/dt. (a) No instante em que a corrente é
i, quais são o módulo, direção e sentido do campo magnético B a uma distância r à direita
do fio? (b) Qual é o fluxo magnético dΦB através da faixa estreita e sombreada apresentada
na Fig. 11? (c) Qual é o fluxo total ΦB na espira? (d) Qual é a f em induzida na espira?

FIG. 11.

EQUAÇÕES DE MAXWELL

6
8.7) O capacitor de placas circulares visto na Fig. 12 está sendo carregado com uma corrente
I. A figura mostra também três círculos de raio r maior que o das placas. Mostre que em
qualquer dos círculos o campo magnético vale:
µo I
B= 2πr

FIG. 12.

8.8) Calcule o campo magnético em um ponto entre as placas do capacitor mostrado na


Fig. 12. Considere que as placas são circulares, de raio a e que a distância entre as placas é
muito menor que o raio.

8.9) Escreva todas as equações de Maxwell, ilustrando suas aplicações e descrevendo seus
significados.

7
Respostas
µ0 N I
7.1) 2πr
ϕ̂ dentro; 0 fora.
(
µ0 I b−a
)
7.2) 4 ab
perpendicular à folha para fora da página.
µ0 Ir
7.3) (a) 2πa 2.

7.3) (b) µ2πr0I


.
7.3) (c) 0.
7.4) µ0 nI no interior, 0 fora.
µ0 I
7.5) (a) 2L
i.
7.5) (b) − µ2L 0I
i.
µ0 I sin θ
7.6) 2πa

8.1) (a) Horário.


B 2 l2 v
8.1) (b) R
.
8.1) (c) my ′′ = −mg + B 2 l2 ′
R
y.
µ0 I
8.2) (a) 2πr
ϕ̂.
B 2 L2 v
8.5) (a) R
.
µ0 i
8.6) (a) 2πr
, apontando para dentro do papel.
µ0 iL
8.6) (b) 2πr
dr
µO iL
( )
8.6) (c) 2π
ln ab .
µO L
( ) di
8.6) (d) 2π
ln ab dt , no sentido anti-horário.
µ0 Ir
8.8) 2πa2

Você também pode gostar