Pierścień noetherowski
Pierścień noetherowski – pierścień, w którym każdy ciąg wstępujący (w sensie inkluzji) jego ideałów stabilizuje się, tzn. istnieje dla którego mówi się też wtedy, że w pierścień spełnia warunek rosnących łańcuchów (ACC) dla ideałów; pojęcie nosi nazwisko Emmy Noether.
Równoważnie pierścień jest noetherowski wtedy i tylko wtedy, gdy każdy ideał właściwy jest skończenie generowany, tzn. dla każdego ideału istnieją takie elementy dla których
Można też powiedzieć, że pierścień jest noetherowski wtedy i tylko wtedy, gdy każdy ideał tego pierścienia można przedstawić w postaci skończonej sumy ideałów głównych pierścienia
Prawdziwe jest również twierdzenie Hilberta o bazie: jeżeli pierścień jest noetherowski, to jego pierścień wielomianów również jest noetherowski.
Przykłady
[edytuj | edytuj kod]- Każde ciało jest pierścieniem noetherowskim.
- Pierścień liczb całkowitych jest pierścieniem noetherowskim (co więcej: każdy ideał tego pierścienia jest ideałem głównym).
Zobacz też
[edytuj | edytuj kod]Linki zewnętrzne
[edytuj | edytuj kod]- Noetherian ring (ang.), Encyclopedia of Mathematics, encyclopediaofmath.org [dostęp 2024-04-05].