Półprosta
Wygląd
Półprosta – figura geometryczna składająca się z punktów prostej leżących po jednej stronie pewnego punktu tej prostej[1]. Punkt ten jest nazywany początkiem półprostej[a]. Bardzo często do tak określonej półprostej dołącza się początek półprostej – mówimy wówczas o półprostej domkniętej (z początkiem)[2]. W przeciwnym wypadku mówimy o półprostej otwartej (bez początku).
Półprostą o początku w punkcie i przechodzącą przez punkt oznaczamy jako półprostą
Niekiedy półprostą nazywa się promieniem[3]. Często wygodnie jest oznaczać przez promień otwarty wychodzący z punktu i nieprzechodzący przez punkt [4]. Inaczej mówiąc, promień składa się z tych punktów prostej które leżą po przeciwnej stronie punktu niż punkt
Inne definicje półprostej
[edytuj | edytuj kod]- Półprostą (domkniętą) o początku w punkcie można też zdefiniować jako maksymalny podzbiór prostej przechodzącej przez punkt taki że punkt należy do tego podzbioru, ale nie leży on między żadnymi dwoma innymi punktami tego podzbioru.
- Półprostą (domkniętą) można również zdefiniować jako sumę mnogościową wszystkich odcinków o końcu w punkcie zawierających punkt [5].
Własności
[edytuj | edytuj kod]- Zbiór rzędnych punktów danej półprostej jest albo zbiorem jednopunktowym (gdy półprosta jest zawarta w prostej prostopadłej do osi rzędnych), albo przedziałem nieskończonym. To samo można powiedzieć o zbiorze odciętych punktów półprostej[b].
- Dla każdych dwóch różnych punktów i półproste i są rozłączne. Suma mnogościowa tych promieni i odcinka jest równa prostej
- Na zbiorze półprostych (promieni) zawartych w danej prostej można określić relację równoważności Promienie i są w niej równoważne, jeśli jeden z nich jest zawarty w drugim:
- Relacja ta ma dwie klasy równoważności nazywane kierunkami promieni na tej prostej.
Zobacz też
[edytuj | edytuj kod]Uwagi
[edytuj | edytuj kod]- ↑ Dwa punkty i prostej leżą po jednej stronie punktu leżącego na tej prostej, jeśli punkt nie leży między tymi punktami, to znaczy nie zachodzi relacja z geometrii uporządkowania.
- ↑ Własność nieprawdziwa w geometrii hiperbolicznej. W niej rzut półprostej może być odcinkiem.
Przypisy
[edytuj | edytuj kod]- ↑ półprosta, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-01] .
- ↑ Borsuk Karol, Szmielew Wanda: Podstawy geometrii. Warszawa: PWN, 1970, s. 39.
- ↑ H.S.M. Coxeter: Wstęp do geometrii dawnej i nowej. Warszawa: PWN, 1967, s. 196.
- ↑ Coxeter, op. cit., s. 196.
- ↑ А.Д. Александров: Основания геометрии. Москва: Наука, 1987, s. 61.
Bibliografia
[edytuj | edytuj kod]- Borsuk Karol, Szmielew Wanda: Podstawy geometrii. Warszawa: PWN, 1970.
- H.S.M. Coxeter: Wstęp do geometrii dawnej i nowej. Warszawa: PWN, 1967.
- Ryszard Doman: Wykłady z geometrii elementarnej. Poznań: Wydawnictwo Naukowe UAM, 1998.
- А.Д. Александров: Основания геометрии. Москва: Наука, 1987.