ZA200406712B - Catalyst composition comprising molecular sieves, their preparation and use in conversion processes - Google Patents
Catalyst composition comprising molecular sieves, their preparation and use in conversion processes Download PDFInfo
- Publication number
- ZA200406712B ZA200406712B ZA200406712A ZA200406712A ZA200406712B ZA 200406712 B ZA200406712 B ZA 200406712B ZA 200406712 A ZA200406712 A ZA 200406712A ZA 200406712 A ZA200406712 A ZA 200406712A ZA 200406712 B ZA200406712 B ZA 200406712B
- Authority
- ZA
- South Africa
- Prior art keywords
- catalyst composition
- metal oxide
- molecular sieve
- oxide
- group
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims description 113
- 239000002808 molecular sieve Substances 0.000 title claims description 104
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims description 102
- 239000003054 catalyst Substances 0.000 title claims description 98
- 238000000034 method Methods 0.000 title claims description 77
- 230000008569 process Effects 0.000 title description 44
- 238000006243 chemical reaction Methods 0.000 title description 34
- 238000002360 preparation method Methods 0.000 title description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 99
- 150000004706 metal oxides Chemical class 0.000 claims description 97
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 77
- 239000011230 binding agent Substances 0.000 claims description 40
- 239000000395 magnesium oxide Substances 0.000 claims description 37
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 37
- 239000011159 matrix material Substances 0.000 claims description 37
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 36
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 16
- 239000001569 carbon dioxide Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 230000000737 periodic effect Effects 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 9
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 239000012018 catalyst precursor Substances 0.000 claims description 5
- 239000004927 clay Substances 0.000 claims description 5
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical group O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 4
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 claims description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 96
- 150000001336 alkenes Chemical class 0.000 description 34
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 229930195733 hydrocarbon Natural products 0.000 description 16
- 150000002430 hydrocarbons Chemical class 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 13
- 239000005977 Ethylene Substances 0.000 description 13
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 13
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 13
- 239000004215 Carbon black (E152) Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 230000008929 regeneration Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000012702 metal oxide precursor Substances 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- -1 titanium metal oxide Chemical class 0.000 description 8
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000010457 zeolite Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000001354 calcination Methods 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000001307 helium Substances 0.000 description 6
- 229910052734 helium Inorganic materials 0.000 description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 6
- 239000008240 homogeneous mixture Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 235000012211 aluminium silicate Nutrition 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910019440 Mg(OH) Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 2
- 239000011363 dried mixture Substances 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 229910052622 kaolinite Inorganic materials 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000006069 physical mixture Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000004230 steam cracking Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical class O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 238000012565 NMR experiment Methods 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- YCLAMANSVUJYPT-UHFFFAOYSA-L aluminum chloride hydroxide hydrate Chemical compound O.[OH-].[Al+3].[Cl-] YCLAMANSVUJYPT-UHFFFAOYSA-L 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- GXUARMXARIJAFV-UHFFFAOYSA-L barium oxalate Chemical compound [Ba+2].[O-]C(=O)C([O-])=O GXUARMXARIJAFV-UHFFFAOYSA-L 0.000 description 1
- 229940094800 barium oxalate Drugs 0.000 description 1
- 229910001680 bayerite Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 229910001648 diaspore Inorganic materials 0.000 description 1
- 229910001649 dickite Inorganic materials 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052675 erionite Inorganic materials 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- UHNWOJJPXCYKCG-UHFFFAOYSA-L magnesium oxalate Chemical compound [Mg+2].[O-]C(=O)C([O-])=O UHNWOJJPXCYKCG-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- BKBMACKZOSMMGT-UHFFFAOYSA-N methanol;toluene Chemical compound OC.CC1=CC=CC=C1 BKBMACKZOSMMGT-UHFFFAOYSA-N 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 150000003956 methylamines Chemical class 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001682 nordstrandite Inorganic materials 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000000279 solid-state nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010555 transalkylation reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Description
MOLECULAR SIEVE COMPOSITIONS, CATALYST THEREOF,
THEIR MAKING AND USE IN CONVERSION PROCESSES
[0001] The present invention relates to molecular sieve compositions and catalysts containing the same, to the synthesis of such compositions and catalysts and to the use of such compositions and catalysts in conversion processes to produce olefin(s).
[0002] Olefins are traditionally produced from petroleum feedstocks by catalytic or steam cracking processes. These cracking processes, especially steam cracking, produce light olefin(s), such as ethylene and/or propylene, from a variety of hydrocarbon feedstocks. Ethylene and propylene are important commodity petrochemicals useful in a variety of processes for making plastics and other chemical compounds. :
[0003] The petrochemical industry has known for some time that oxygenates, especially alcohols, are convertible into light olefin(s). The preferred alcohol for light olefin production is methanol and the preferred process for converting a methanol-containing feedstock into light olefin(s), primarily ethylene and/or propylene, involves contacting the feedstock with a molecular sieve catalyst composition.
[0004] There are many different types of molecular sieve known to convert oxygenate containing feedstocks into one or more olefin(s). For example, U.S.
Patent No. 5,367,100 describes the use of the zeolite, ZSM-5, to convert methanol into olefin(s); U.S. Patent No. 4,062,905 discusses the conversion of methanol and other oxygenates to ethylene and propylene using crystalline aluminosilicate zeolites, for example Zeolite T, ZKS5, erionite and chabazite; U.S. Patent No. 4,079,095 describes the use of ZSM-34 to convert methanol to hydrocarbon products such as ethylene and propylene; and U.S. Patent No. 4,310,440 describes producing light olefin(s) from an alcohol using a crystalline aluminophosphate, often designated AIPO,.
[0005] Some of the most useful molecular sieves for converting methanol to olefin(s) are silicoaluminophosphate (SAPO) molecular sieves. i Silicoaluminophosphate molecular sieves contain a three-dimensional microporous crystalline framework structure of [SiO], [AlO,] and [PO,] comer sharing tetrahedral units. Synthesis of a SAPO molecular sieve, its formulation into a catalyst, and its use in converting a feedstock into olefin(s), particularly where the feedstock is methanol, are disclosed in U.S. Patent Nos. 4,499,327, 4,677,242, 4,677,243, 4,873,390, 5,095,163, 5,714,662 and 6,166,282, all of which are herein fully incorporated by reference.
[0006] When used in the conversion of methanol to olefins, most molecular sieves, including SAPO molecular sieves, undergo rapid coking and hence require frequent regeneration, typically involving exposure of the catalyst to high temperatures and steaming environments. As a result, current methanol conversion catalysts tend to have a limited useful lifetime and hence there is a need to provide a molecular sieve catalyst composition which exhibits an enhanced lifetime particularly when used in the conversion of methanol to olefins.
[0007] U.S. Patent No. 4,465,889 describes a catalyst composition comprising a silicalite molecular sieve impregnated with a thorium, zirconium, or a titanium metal oxide for use in converting methanol, dimethyl ether, or a mixture thereof into a hydrocarbon product rich in iso-C, compounds.
[0008] U.S. Patent No. 6,180,828 discusses the use of a modified molecular sieve to produce methylamines from methanol and ammonia, where for example, a silicoaluminophosphate molecular sieve is combined with one or more modifiers, such as a zirconium oxide, a titanium oxide, a yttrium oxide, montmorillonite or kaolinite.
[0009] U.S. Patent No. 5,417,949 relates to a process for converting noxious } nitrogen oxides in an oxygen containing effluent into nitrogen and water using a molecular sieve and a metal oxide binder, where the preferred binder is titania and the molecular sieve is an aluminosilicate.
[0010] EP-A-312981 discloses a process for cracking vanadium-containing ) hydrocarbon feed streams using a catalyst composition comprising a physical mixture of a zeolite embedded in an inorganic refractory matrix material and at least one oxide of beryllium, magnesium, calcium, strontium, barium or lanthanum, preferably magnesium oxide, on a silica-containing support material.
[0011] Kang and Inui, Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalysis Letters 53, pages 171-176 (1998) disclose that the shape selectivity can be enhanced and the coke formation mitigated in the conversion of methanol to ethylene over Ni-SAPO-34 by milling the catalyst with MgO, CaO,
BaO or Cs,O on microspherical non-porous silica, with BaO being most preferred.
[0012] International Publication No. WO 98/29370 discloses the conversion of oxygenates to olefins over a small pore non-zeolitic molecular sieve containing a metal selected from the group consisting of a lanthanide, an actinide, scandium, yttrium, a Group 4 metal, a Group 5 metal or combinations thereof.
[0013] In one aspect, the invention resides in a catalyst composition comprising: : (a) a metal oxide which has a surface area greater than 20 m*/g, which has been calcined at temperature greater than 200°C, and which, when saturated with acetone and contacted with said acetone for 1 hour at 25°C, converts more than 80% of the acetone; (b) a binder; (©) a matrix material; and (d) a molecular sieve having an average pore size less than 5A.
[0014] The molecular sieve conveniently comprises a framework including ’ at least [AlO,] and [PO,] tetrahedral units and more particularly a framework including at least [SiO,], [AlO,] and [PO,] tetrahedral units, such as a silicoaluminophosphate.
[0015] In one embodiment, the metal oxide includes magnesium oxide.
[0016] In another aspect, the invention resides in a catalyst composition : comprising a molecular sieve and at least one oxide of a metal selected from
Group 2 of the Periodic Table of Elements, wherein said metal oxide has an uptake of carbon dioxide at 100°C of at least 0.03 mg/m? of the metal oxide.
[0017] Conveniently, the catalyst composition also comprises at least one oxide of a metal selected from Group 3 of the Periodic Table of Elements, such as yttrium oxide, lanthanum oxide, scandium oxide and mixtures thereof.
[0018] In another aspect, the invention resides in a method for making a catalyst composition, the method comprising physically mixing first particles comprising a molecular sieve with second particles comprising at least one oxide of a metal selected from Group 2 of the Periodic Table of Elements, wherein said metal oxide has an uptake of carbon dioxide at 100°C of at least 0.03 mg/m? of the metal oxide.
[0019] In another aspect, the invention resides in a method for making a catalyst composition, the method comprising combining a silicoaluminophosphate molecular sieve, a binder, a matrix material, and at least one metal oxide that, when saturated with acetone and contacted with said acetone for 1 hour at 25°C, converts more than 25 % of the acetone.
[0020] In yet another aspect, the invention resides in a method of making a catalyst composition, the method comprising (a) combining a molecular sieve, a binder and a matrix material to produce a catalyst precursor; and (b) adding to the catalyst precursor a metal oxide that has been calcined to a temperature in the range of from 200°C to 700°C.
[0021] In one embodiment, the metal oxide is magnesium oxide and is physically mixed with a molecular sieve synthesized from a reaction mixture : comprising at least one templating agent and at least two of a silicon source, a phosphorous source and an aluminum source.
[0022] In a further aspect, the invention resides in a process for converting a feedstock into one or more olefin(s) in the presence of a molecular sieve catalyst composition comprising a molecular sieve, a binder, a matrix material and an ) active metal oxide that, when saturated with acetone and contacted with said acetone for 1 hour at 25°C, converts more than 80% of the acetone.
[0023] In yet a further aspect, the invention resides in a process for producing one or more olefin(s), the process comprising contacting a feedstock comprising at least one oxygenate with a catalyst composition comprising a small pore molecular sieve, a binder, a matrix material, a magnesium oxide that has been calcined in the temperature range of from 200°C to 600°C, and a Group 3 metal oxide.
[0024] The invention relates to a catalyst composition, its synthesis and its use in the conversion of hydrocarbon feedstocks, particularly oxygenated feedstocks, into olefin(s). It has been found that combining a molecular sieve with a particular metal oxide results in a catalyst composition with a longer catalyst lifetime when used in the conversion of feedstocks, such as oxygenates, more particularly methanol, into olefin(s). In addition, the resultant catalyst composition tends to be more propylene selective and to yield lower amounts of unwanted ethane and propane. The preferred metal oxide is an oxide of a Group 2 metal having an uptake of carbon dioxide at 100°C of at least 0.03 mg/m? of the metal oxide and/or a metal oxide that is capable of converting greater than 80% of acetone at room temperature. In one embodiment, the metal oxide is magnesium oxide which has a surface area greater than 20 m%g and which has been calcined at temperature greater than 200°C. This unexpected result is further enhanced when an oxide of a Group 3 metal (for example scandium, lanthanum, or yttrium) from the Periodic Table of Elements using the IUPAC format described in the
CRC Handbook of Chemistry and Physics, 78th Edition, CRC Press, Boca Raton, ’ Florida (1997) is combined with the magnesium oxide.
Molecular Sieves
[0025] Molecular sieves have been classified by the Structure Commission . of the International Zeolite Association according to the rules of the TUPAC
Commission on Zeolite Nomenclature. According to this classification, framework-type zeolite and zeolite-type molecular sieves, for which a structure has been established, are assigned a three letter code and are described in the Atlas of Zeolite Framework Types, 5th edition, Elsevier, London, England (2001), which is herein fully incorporated by reference.
[0026] Non-limiting examples of preferred molecular sieves, particularly for use in converting an oxygenate containing feedstock into olefin(s), include framework types AEL, AFY, AFI, BEA, CHA, EDI, FAU, FER, GIS, LTA, LTL,
MER, MFI, MOR, MTT, MWW, TAM and TON. In one preferred embodiment, the molecular sieve employed in the catalyst composition of the invention has an
AEI topology or a CHA topology, or a combination thereof, most preferably a
CHA topology.
[0027] Crystalline molecular sieve materials have a 3-dimensional, four- connected framework structure of corner-sharing [TO,] tetrahedra, where T is any : tetrahedrally coordinated cation, such as [SiO,], [AlO,] and/or [PO,] tetrahedral units. The molecular sieves useful herein conveniently comprise a framework including [AlO,] and [PO,] tetrahedral units, i.e., an aluminophosphate (AIPO) molecular sieve, or [SiO,], [AlO,] and [PO,] ] tetrahedral units, i.e., a silicoaluminophosphate (SAPO) molecular sieve. Most preferably, the molecular sieves useful herein is a silicoaluminophosphate (SAPO) molecular sieve or a substituted, preferably a metal substituted, SAPO molecular sieve. Examples of suitable metal substituents are an alkali metal of Group 1 of the Periodic Table of
Elements, an alkaline earth metal of Group 2 of the Periodic Table of Elements, a rare earth metal of Group 3 of the Periodic Table of Elements, including the
Lanthanides: lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, erbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium; and scandium or yttrium, a transition metal of Groups 4 to 12 of the
Periodic Table of Elements, or mixtures of any of these metal species. ) [0028] Preferably, the molecular sieve used herein has a pore systenm defined by an 8-membered ring of [TO,] tetrahedra and has an average pore size less than 5A, such as in the range of from 3A to 5A, for example from 3A to 4.54, and particularly from 3.54 to 4.2A.
[0029] Non-limiting examples of SAPO and AIPO molecular sieves useful herein include one or a combination of SAPO-5, SAPO-8, SAPO-11, SAPO-16,
SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36,
SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44 (U.S. Patent No. 6,162,415),
SAPO-47, SAPO-56, AIPO-5, AIPO-11, AIPO-18, AIPO-31, AIPO-34, AIPO-36,
AIPO-37, AIPO-46, and metal containing molecular sieves thereof. Of these, particularly useful molecular sieves are one or a combination of SAPO-18, SAPO- 34, SAPO-35, SAPO-44, SAPO-56, AIPO-18 and AIPO-34 and metal containing derivatives thereof, such as one or a combination of SAPO-18, SAPO-34, AIPO- 34 and AIPO-18, and metal containing derivatives thereof, and especially one or a combination of SAPO-34 and AIPO-18, and metal containing derivatives thereof.
[0030] In an embodiment, the molecular sieve is an intergrowth material having two or more distinct crystalline phases within one molecular sieve composition. In particular, intergrowth molecular sieves are described in the U.S.
Patent Application Publication No. 2002-0165089 and International Publication
No. WO 98/15496 published April 16, 1998, both of which are herein fully incorporated by reference. For example, SAPO-18, AIPO-18 and RUW-18 have an AEI framework-type, and SAPO-34 has a CHA framework-type. Thus the molecular sieve used herein may comprise at least one intergrowth phase of AEI and CHA framework-types, especially where the ratio of CHA framework-type to
AEI framework-type, as determined by the DIFFaX method disclosed in U.S.
Patent Application Publication No. 2002-0165089, is greater than 1:1.
[0031] Preferably, where the molecular sieve is a silicoaluminophosphate, the molecular sieve has a Si/Al ratio less than or equal to 0.65, such as from 0.65 , to 0.10, preferably from 0.40 to 0.10, more preferably from 0.32 to 0.10, and most preferably from 0.32 to 0.15.
[0032] In one particular embodiment, the molecular sieve is SAPO-18,
SAPO-34, or an intergrowth thereof in which the framework of the molecular sieves consists essentially of [SiO,], [AlO,] and [PO,] tetrahedral units and hence is free of additional framework elements, such as nickel.
Metal Oxides
[0033] The metal oxides of the invention are those metal oxides, different from typical binders and/or matrix materials, that, when used in combination with a molecular sieve, provide benefits in catalytic conversion processes. In : particular, the metal oxides useful herein are oxides that, when saturated with acetone and allowed to stand in contact with the acetone for 1 hour at room temperature (about 25°C), convert greater than 80% of the acetone, for example greater than 85%, such as greater than 90%, and in some cases greater than 95%.
There are a variety of methods for determining the conversion of acetone, and one such method is the use of *C solid state NMR. In this method, the metal oxide is first dehydrated under vacuum while being heated by the use of a stepwise temperature program. Typically, the highest temperature used in the dehydration procedure is 400°C. The metal oxide is then saturated with acetone-2-"C at room temperature (ca. 25°C) by the use of conventional vacuum line technique. The metal oxide with adsorbed acetone-2-'°C is transferred into a 7-mm NMR rotor without any contact with air or moisture. Quantitative “C solid state NMR spectra with Magic Angle Spinning are acquired to determine the conversion of acetone after the sample has been kept at 25°C for 1 hour.
[0034] Suitable metal oxides are oxides of Group 2 metals, either alone or in combination with Group 3 metal oxides, which have an uptake of carbon dioxide at 100°C of at least 0.03 mg/ m® of the metal oxide, such as at least 0.35mg/m’ of the metal oxide. Although the upper limit on the carbon dioxide uptake of the . metal oxide is not critical, in general the metal oxides useful herein will have a carbon dioxide at 100°C of less than 10 mg/m? of the metal oxide, such as less than 5 mg/m? of the metal oxide.
[0035] In order to determine the carbon dioxide uptake of a metal oxide, the following procedure is adopted using a Mettler TGA/SDTA 851 thermogravimetric analysis system under ambient pressure. A sample of the metal oxide is sample is dehydrated in flowing air to about 500°C for one hour. The temperature of the sample is then reduced in flowing helium to 100°C. After the sample has equilibrated at the desired adsorption temperature in flowing helium, the sample is subjected to 20 separate pulses (about 12 seconds/pulse) of a : gaseous mixture comprising 10-weight % carbon dioxide with the remainder being helium. After each pulse of the adsorbing gas the metal oxide sample is flushed with flowing helium for 3 minutes. The increase in weight of the sample in terms of mg/mg adsorbent based on the adsorbent weight after treatment at 500°C is the amount of adsorbed carbon dioxide. The surface area of the sample is measured in accordance with the method of Brunauer, Emmett, and Teller (BET) published as
ASTM D 3663 to provide the carbon dioxide uptake in terms of mg carbon dioxide/m? of the metal oxide.
[0036] The most preferred Group 2 metal oxide is a magnesium oxide (MgO). Suitable Group 3 metal oxides include yttrium oxide, lanthanum oxide, scandium oxide and mixtures thereof.
[0037] In one embodiment, the active metal oxide, preferably the MgO, even more preferably the combination of the MgO and a Group 3 metal oxide, has a surface area as measured in accordance with the method of Brunauer, Emmett, : and Teller (BET) published as ASTM D 3663 of greater than 20 m?/g, such as greater than 50 m’/g, for example greater than 80 m?/g, and even greater than 200 mYg. Suitable metal oxides are those metal oxides that have a surface area greater than 20 m?/g, that have been calcined to greater than 200°C, and are capable of converting greater than 25%, such as greater than 50%, for example greater than , 80% of acetone at room temperature.
[0038] In another embodiment, the metal oxide, preferably the magnesium oxide, even more preferably the MgO and a Group 3 metal oxide, is calcined at a temperature in the range of from 200 °C to 700°C, such as from about 250°C to 650°C, for example in the range of from 300°C to 600°C, and typically from 350°C to 550°C.
[0039] In one embodiment, the magnesium metal oxide has a surface area of about 250 m*/g, and/or the magnesium oxide is calcined to about 550 °C. [00401 The active metal oxides can be prepared using a variety of methods.
The active metal oxides can be made from active metal oxide precursors, such as metal salts, preferably Group 2 or Group 3 metal salt precursors. Other suitable sources of the Group 2 metal oxide include compounds that form these metal oxides during calcination, such as oxychlorides and nitrates. A further suitable source of the Group 2 or Group 3 metal oxides include salts containing the cation " of the Group 2 or Group 3 metals, such as halides, nitrates, and acetates.
Alkoxides are also sources of the Group 2 or Group 3 metal oxides.
[0041] In one method, the active metal oxide is prepared by the thermal decomposition of metal-containing compounds, such as magnesium oxalate and barium oxalate, at high temperatures, such as 600°C, in flowing air. Thus prepared metal oxides usually have low BET surface area, e.g., less than 30 m%/g.
[0042] In another method, the active metal oxide is prepared by the hydrolysis of metal-containing compounds followed by dehydration and calcination. For example, MgO is hydroxylated by mixing the oxide with deionized water, forming a white slurry. The slurry is slowly heated to dryness on : a heating plate to form white powder. The white powder is further dried in a vacuum oven at 100°C for at least 4 hrs, such as for 12 hrs. The dried white powder is then calcined in air at a temperature of at least 400°C, such as at least
500°C, and typically at least 550°C. Thus-prepared active metal oxides generally have higher BET surface area (between 30 to 300 m?/g) than that prepared by , thermal decomposition of the active metal oxide precursors.
[0043] In yet another method, the active metal oxide is prepared by the so- called aerogel method (Koper, O. B., Lagadic, I., Volodin, A. and Klabunde, K. J.
Chem. Mater. 1997, 9, 2468-2480). In this method, Mg powder is reacted under nitrogen purge with anhydrous methanol to form Mg(OCH,), solution in methanol. The resultant Mg(OCH,), solution is added to toluene. Water is then added dropwise to the Mg(OH), solution in methanol-toluene under vigorous stirring. The resultant colloidial suspension of Mg(OH), is placed in an autoclave, pressurized to 100 psig (690 kPag) with dry nitrogen, and heated slowly to a final pressure of about 1000 psig (6895 kPag). The supercritical solvent is vented to produce a fine white powder of Mg(OH),. Nanocrystalline MgO is obtained by heating the fine white powder at 400 °C under vacuum. Such prepared active metal oxides have the highest BET surface area, generally greater than 300 m’/g.
[0044] Various methods exist for making mixed metal oxides from Group 2 and Group 3 metal oxide precursors, e.g., wet impregnation, incipient wetness and co-precipitation.
[0045] In one embodiment, mixed metal oxides are prepared by impregnating a Group 3 metal oxide precursor onto a Group 2 metal oxide. Ina typical preparation, a Group 3 metal oxide precursor such as La(acetylacetonate), is dissolved in an organic solvent such as toluene. The amount of solvent used is enough to fill the mesoporous and macroporous volume of the Group 2 metal oxide. The Group 3 metal oxide precursor solution is added dropwise to the
Group 2 metal oxide. The wet mixture is dried in a vacuum oven for 1 to 12 hours to remove the solvent. The resulting solid mixture is then calcined at a temperature, e.g., 400°C, high enough to decompose the Group 3 metal oxide precursor into an oxide.
[0046] In another embodiment, a mixed oxide is prepared by the incipient wetness technique. Typically, a Group 3 metal oxide precursor such as lanthanum acetate is dissolved in deionized water. The solution is added dropwise to a Group 2 metal oxide. The mixture is dried in a vacuum oven at 50°C for 1 to 12 hours.
The dried mixture is broken up and calcined at 550 °C in air for 3 hours.
[0047] In yet another embodiment, a mixed metal oxide is prepared by co- precipitation. An aqueous solution comprising Group 2 and Group 3 metal oxide precursors is subject to conditions sufficient to cause precipitation of a hydrated precursor of the solid oxide materials, such as by the addition of sodium hydroxide or ammonium hydroxide. The temperature at which the liquid medium is maintained during the co-precipitation is typically from 20°C to 100°C. The resulting gel is then hydrothermally treated at temperatures between 50 and 100 °C for several days. The hydrothermal treatment typically takes place at greater . than atmospheric pressure.
[0048] The resulting material is then recovered, for example by filtration or centrifugation, and washed and dried. The resulting material is then calcined at a temperature of greater than 200°C, preferably greater than 300°C, and more preferably greater 400°C, and most preferably greater than 450°C.
Molecular Sieve Composition
[0049] The catalyst composition of the invention includes any one of the molecular sieves previously described and one or more active metal oxides described above, optionally together with a binder and/or matrix material different from the active metal oxide(s). Typically, the weight ratio of the active metal oxide(s) to the molecular sieve in the catalyst composition is in the range of from 1 weight percent to 800 weight percent, such as from 5 weight percent to 200 weight percent, particularly from 10 weight percent to 100 weight percent.
[0050] There are many different binders that are useful in forming catalyst compositions. Non-limiting examples of binders that are useful alone or in combination include various types of hydrated alumina, silicas, and/or other inorganic oxide sols. One preferred alumina containing sol is aluminum chlorhydrol. The inorganic oxide sol acts like glue binding the synthesized molecular sieves and other materials such as the matrix together, particularly after thermal treatment. Upon heating, the inorganic oxide sol, preferably having a low viscosity, is converted into an inorganic oxide binder component. For example, an alumina sol will convert to an aluminum oxide binder following heat treatment.
[0051] Aluminum chlorhydrol, a hydroxylated aluminum based sol containing a chloride counter ion, has the general formula of
Al,0,(OH),CLex(H,0) wherein m is 1 to 20, nis 1 to 8,0is5t0o40,pis2to 15, and x is 0 to 30. In one embodiment, the binder is Al;;0,(OH),,Cl,»12(H,0) as is described in G.M. Wolterman, et al., Stud. Surf. Sci. and Catal., 76, pages 105- 144 (1993), which is herein incorporated by reference. In another embodiment, one or more binders are combined with one or more other non-limiting examples of alumina materials such as aluminum oxyhydroxide, y-alumina, boehmite, diaspore, and transitional aluminas such as a-alumina, B-alumina, y-alumina, d- alumina, e-alumina, k-alumina, and p-alumina, aluminum trihydroxide, such as gibbsite, bayerite, nordstrandite, doyelite, and mixtures thereof.
[0052] In another embodiment, the binder is an alumina sol, predominantly comprising aluminum oxide, optionally including some silicon. In yet another embodiment, the binder is peptized alumina made by treating an alumina hydrate, such as pseudobohemite, with an acid, preferably an acid that does not contain a halogen, to prepare a sol or aluminum ion solution. Non-limiting examples of commercially available colloidal alumina sols include Nalco 8676 available from
Nalco Chemical Co., Naperville, Illinois, and Nyacol AL20DW available from
Nyacol Nano Technologies, Inc., Ashland, Massachussetts.
[0053] Where the catalyst composition contains a matrix material, this is preferably different from the active metal oxide and any binder. Matrix materials are typically effective in reducing overall catalyst cost, acting as thermal sinks to assist in shielding heat from the catalyst composition for example during : regeneration, densifying the catalyst composition, and increasing catalyst strength such as crush strength and attrition resistance.
[0054] Non-limiting examples of matrix materials include one or more non- active metal oxides including beryllia, quartz, silica or sols, and mixtures thereof, for example silica-magnesia, silica-zirconia, silica-titania, silica-alumina and silica-alumina-thoria. In an embodiment, matrix materials are natural clays such as those from the families of montmorillonite and kaolin. These natural clays include subbentonites and those kaolins known as, for example, Dixie, McNamee,
Georgia and Florida clays. Non-limiting examples of other matrix materials include haloysite, kaolinite, dickite, nacrite, or anauxite. The matrix material, such as a clay, may be subjected to well known modification processes such as calcination and/or acid treatment and/or chemical treatment.
[0055] In a preferred embodiment, the matrix material is a clay or a clay- type composition, particularly a clay or clay-type composition having a low iron or titania content, and most preferably the matrix material is kaolin. Kaolin has ‘been found to form a pumpable, high solids content slurry, to have a low fresh surface area, and to pack together easily due to its platelet structure. A preferred average particle size of the matrix material, most preferably kaolin, is from about 0.1 um to about 0.6 pm with a Dy, particle size distribution of less than about 1 pm.
[0056] Where the catalyst composition contains a binder or matrix material, the catalyst composition typically contains from 1% to 80%, such as from 5% to 60%, and particularly from 5% to 50%, by weight of the molecular sieve based on the total weight of the catalyst composition.
[0057] Where the catalyst composition contains a binder and a matrix material, the weight ratio of the binder to the matrix material is typically from 1:15 to 1:5, such as from 1:10 to 1:4, and particularly from 1:6 to 1:5. The amount of binder is typically from 2% by weight to 30% by weight, such as from
5% by weight to 20% by weight, and particularly from 7% by weight to 15% by weight, based.on the total weight of the binder, the molecular sieve and matrix material. It has been found that a higher sieve content and lower matrix content increases the molecular sieve catalyst composition performance, whereas a lower sieve content and higher matrix content improves the attrition resistance of the composition.
[0058] The catalyst composition typically has a density in the range of from 0.5 g/cc to 5 g/cc, such as from from 0.6 g/cc to 5 g/cc, for example from 0.7 g/cc to 4 g/cc, particularly in the range of from 0.8 g/cc to 3 g/cc.
Method of Making The Catalyst Composition
[0059] In making the catalyst composition, the molecular sieve is first formed and is then physically mixed with the Group 2 metal oxide described above, or with a mixture of Group 2 and Group 3 metal oxides, preferably in a substantially dry, dried, or calcined state. Most preferably the molecular sieve and active metal oxides are physically mixed in their calcined state. Without being bound by any particular theory, it is believed that intimate mixing of the molecular sieve and one or more active metal oxides improves conversion processes using the molecular sieve composition and catalyst composition of the invention.
Intimate mixing can be achieved by any method known in the art, such as mixing with a mixer muller, drum mixer, ribbon/paddle blender, kneader, or the like.
Chemical reaction between the molecular sieve and the metal oxide(s) is unnecessary and, in general, is not preferred.
[0060] Where the catalyst composition contains a matrix and/or binder, the molecular sieve is conveniently initially formulated into a catalyst precursor with the matrix and/or binder and the active metal oxide is then combined with the formulated precursor. The active metal oxide can be added as unsupported particles or can be added in combination with a support, such as a binder or matrix material. The resultant catalyst composition can then be formed into useful shaped and sized particles by well-known techniques such as spray drying, pelletizing, extrusion, and the like.
[0061] In one embodiment, the molecular sieve composition and the matrix material, optionally with a binder, are combined with a liquid to form a slurry and then mixed to produce a substantially homogeneous mixture containing the molecular sieve composition. Non-limiting examples of suitable liquids include water, alcohol, ketones, aldehydes, and/or esters. The most preferred liquid is water. The slurry of the molecular sieve composition, binder and matrix material is then fed to a forming unit, such as spray drier, that forms the catalyst composition into the required shape, for example microspheres.
[0062] Once the molecular sieve catalyst composition is formed in a substantially dry or dried state, to further harden and/or activate the formed catalyst composition, a heat treatment such as calcination, at an elevated temperature is usually performed. Typical calcination temperatures are in the range from 400°C to 1,000°C, such as from 500°C to 800°C, for example from 550°C to 700°C. Typical calcination environments are air (which may include a : small amount of water vapor), nitrogen, helium, flue gas (combustion product lean in oxygen), or any combination thereof.
[0063] In a preferred embodiment, the catalyst composition is heated in nitrogen at a temperature of from 600°C to 700°C. Heating is carried out for a period of time typically from 30 minutes to 15 hours, such as from 1 hour to 10 hours, for example from 1 hour to 5 hours, and particularly from 2 hours to 4 hours.
Process For Using the Molecular Sieve Catalyst Compositions
[0064] The catalyst compositions described above are useful in a variety of processes including cracking, of for example a naphtha feed to light olefin(s) (U.S.
Patent No. 6,300,537) or higher molecular weight (MW) hydrocarbons to lower
MW hydrocarbons; hydrocracking, of for example heavy petroleum and/or cyclic feedstock; isomerization, of for example aromatics such as xylene; polymerization, of for example one or more olefin(s) to produce a polymer product; reforming; hydrogenation; dehydrogenation; dewaxing, of for example hydrocarbons to remove straight chain paraffins; absorption, of for example alkyl aromatic compounds for separating out isomers thereof; alkylation, of for example aromatic hydrocarbons such as benzene and alkyl benzene, optionally with propylene to produce cumene or with long chain olefins; transalkylation, of for example a combination of aromatic and polyalkylaromatic hydrocarbons; dealkylation; hydrodecylization; disproportionation, of for example toluene to make benzene and paraxylene; oligomerization, of for example straight and branched chain olefin(s); and dehydrocyclization.
[0065] Preferred processes include processes for converting naphthato highly aromatic mixtures; converting light olefin(s) to gasoline, distillates and lubricants; converting oxygenates to olefin(s); converting light paraffins to olefins and/or aromatics; and converting unsaturated hydrocarbons (ethylene and/or acetylene) to aldehydes for conversion into alcohols, acids and esters.
[0066] The most preferred process of the invention is the conversion of a feedstock to one or more olefin(s). Typically, the feedstock contains one or more aliphatic-containing compounds, and preferably one or more oxygenates, such that the aliphatic moiety contains from 1 to about 50 carbon atoms, preferably from 1 to 20 carbon atoms, more preferably from 1 to 10 carbon atoms, and most preferably from 1 to 4 carbon atoms.
[0067] Non-limiting examples of suitable aliphatic-containing compounds include alcohols such as methanol and ethanol, alkyl mercaptans such as methyl mercaptan and ethyl mercaptan, alkyl sulfides such as methyl sulfide, alkylamines such as methylamine, alkyl ethers such as dimethyl ether, diethyl ether and methylethyl ether, alkyl halides such as methyl chloride and ethyl chloride, alkyl ketones such as dimethyl ketone, formaldehydes, and various acids such as acetic acid. Preferably, the feedstock comprises methanol, ethanol, dimethyl ether,
diethyl ether or a combination thereof, more preferably methanol and/or dimethyl ether, and most preferably methanol.
[0068] Using the various feedstocks discussed above, particularly a feedstock containing an oxygenate, such as an alcohol, the catalyst composition of the invention is effective to convert the feedstock primarily into one or more olefin(s). The olefin(s) produced typically have from 2 to 30 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 4 carbons atoms, and most preferably are ethylene and/or propylene.
[0069] Typically, the catalyst composition of the invention is effective to convert a feedstock containing one or more oxygenates into a product containing greater than 50 weight percent, typically greater than 60 weight percent, such as greater than 70 weight percent, and preferably greater than 80 weight percent of olefin(s) based on the total weight of hydrocarbon in the product. Moreover, the amount of ethylene and/or propylene produced based on the total weight of hydrocarbon in the product is typically greater than 40 weight percent, for example greater than 50 weight percent, preferably greater than 65 weight percent, and more preferably greater than 78 weight percent. Typically, the amount ethylene produced in weight percent based on the total weight of hydrocarbon product produced, is greater than 20 weight percent, such as greater than 30 weight percent, for example greater than 40 weight percent. In addition, the amount of propylene produced in weight percent based on the total weight of ~ hydrocarbon product produced is greater than 20 weight percent, such as greater than 25 weight percent, for example greater than 30 weight percent, and preferably greater than 35 weight percent. ) [0070] Using the catalyst composition of the invention for the conversion of a feedstock comprising methanol and dimethylether to ethylene and propylene, it is found that the production of ethane and propane is reduced by greater than 10%, such as greater than 20%, for example greater than 30%, and particularly in the range of from 30% to 40% compared to a similar catalyst composition at the same conversion conditions but without the active metal oxide components).
[0071] In addition to the oxygenate component, such as methanol, the feedstock may contain one or more diluents, which are generally non-reactive to the feedstock or molecular sieve catalyst composition and are typically used to reduce the concentration of the feedstock. Non-limiting examples of diluents include helium, argon, nitrogen, carbon monoxide, carbon dioxide, water, essentially non-reactive paraffins (especially alkanes such as methane, ethane, and propane), essentially non-reactive aromatic compounds, and mixtures thereof.
The most preferred diluents are water and nitrogen, with water being particularly preferred.
[0072] The present process can be conducted over a wide range of temperatures, such as in the range of from 200°C to 1000°C, for example from 250°C to 800°C, including from 250°C to 750 °C, conveniently from 300°C to 650°C, preferably from 350°C to 600°C and more preferably from 350°C to 550°C.
[0073] Similarly, the present process can be conducted over a wide range of pressures including autogenous.pressure. Typically the partial pressure of the feedstock exclusive of any diluent therein employed in the process is in the range of from 0.1 kPaa to 5 MPaa, preferably from 5 kPaa to 1 MPaa, and more preferably from 20 kPaa to 500 kPaa.
[0074] The weight hourly space velocity (WHSV), defined as the total weight of feedstock excluding any diluents per hour per weight of molecular sieve in the catalyst composition, can range from 1 hr! to 5000 hr’, preferably from 2 hr! to 3000 hr, more preferably from 5 hr” to 1500 hr", and most preferably from : 10 hr to 1000 hr”. In one embodiment, the WHSV is at least 20 hr and, where the feedstock contains methanol and/or dimethyl ether, is in the range of from 20 hr to 300 hr.
[0075] The process of the invention is conveniently conducted as a fixed bed process, or more typically as a fluidized bed process (including a turbulent bed process), such as a continuous fluidized bed process, and particularly a continuous high velocity fluidized bed process.
[0076] In one practical embodiment, the process is conducted as a fluidized bed process utilizing a reactor system, a regeneration system and a recovery system. In such a process, fresh feedstock, optionally with one or more diluent(s), is fed together with the molecular sieve catalyst composition into one or more riser reactor(s) in the reactor system. The feedstock is converted in the riser reactor(s) into a gaseous effluent that enters a disengaging vessel in the reactor system along with the coked catalyst composition. The coked catalyst composition is separated from the gaseous effluent within the disengaging vessel, typically with the aid of cyclones, and is then fed to a stripping zone, typically in a lower portion of the disengaging vessel. In the stripping zone the coked catalyst composition is contacted with a gas, such steam, methane, carbon dioxide, carbon monoxide, hydrogen, and/or an inert gas such as argon, preferably steam, to recover adsorbed hydrocarbons from the coked catalyst composition that is then introduced into the regeneration system.
[0077] In the regeneration system the coked catalyst composition is contacted with a regeneration medium, preferably a gas containing oxygen, under regeneration conditions capable of burning coke from the coked catalyst composition, preferably to a level less than 0.5 weight percent based on the total weight of the coked molecular sieve catalyst composition entering the regeneration system. For example, the regeneration conditions may include temperature in the range of from 450°C to 750°C, and preferably from 550°C to 700°C.
[0078] The regenerated catalyst composition withdrawn from the regeneration system is combined with fresh molecular sieve catalyst composition and/or re-circulated molecular sieve catalyst composition and/or feedstock and/or fresh gas or liquids, and returned to the riser reactor(s).
[0079] The gaseous effluent is withdrawn from the disengaging system and is passed through a recovery system for separating and purifying the light olefin(s), particularly ethylene and propylene, in the gaseous effluent.
[0080] In one practical embodiment, the process of the invention forms part of an integrated process for producing light olefin(s) from a hydrocarbon feedstock, particularly methane and/or ethane. The first step in the process is passing the gaseous feedstock, preferably in combination with a water stream, to a syngas production zone to produce a synthesis gas stream, typically comprising carbon dioxide, carbon monoxide and hydrogen. The synthesis gas stream is then converted to an oxygenate containing stream generally by contacting with a heterogeneous catalyst, typically a copper based catalyst, at temperature in the range of from 150°C to 450°C and a pressure in the range of from 5 MPa to 10
MPa. After purification, the oxygenate containing stream can be used as a feedstock in a process as described above for producing light olefin(s), such as ethylene and/or propylene. Non-limiting examples of this integrated process are described in EP-B-0 933 345, which is herein fully incorporated by reference.
[0081] In another more fully integrated process, optionally combined with the integrated processes described above, the olefin(s) produced are directed to one or more polymerization processes for producing various polyolefins.
[0082] In order to provide a better understanding of the present invention including representative advantages thereof, the following examples are offered.
Example A - Preparation of a Molecular Sieve
[0083] A silicoaluminophosphate molecular sieve, SAPO-34, designated as
MSA, was crystallized in the presence of tetraethyl ammonium hydroxide (R1) and dipropylamine (R2) as the organic structure directing agents or templating agents. A mixture of the following mole ratio composition:
0.2 SiO, / Al,0,/P,05/0.9R1/1.5R2/50 H,0. was prepared by initially mixing an amount of Condea Pural SB with deionised water, to form a slurry. To this slurry was added an amount of phosphoric acid (85%). These additions were made with stirring to form a homogeneous mixture.
To this homogeneous mixture Ludox AS40 (40% of SiO2) was added, followed by the addition of R1 with mixing to form a homogeneous mixture. To this homogeneous mixture R2 was added. This homogeneous mixture was then crystallized with agitation in a stainless steel autoclave by heating to 170°C for 40 hours. This provided a slurry of the crystalline molecular sieve. The crystals were then separated from the mother liquor by filtration. The molecular sieve crystals were then mixed with a binder and matrix material and formed into particles by spray drying.
Example B - Conversion Process
[0084] All catalytic or conversion data presented were obtained using a microflow reactor consisting of a stainless steel reactor (1/4 inch (0.64 cm) outer diameter) located in a furnace to which vaporized methanol is fed. The methanol conversion reactions were preformed at 475°C, 25 psig (172 kPag) and 100
WHSYV (with respect to the amount of SAPO-34). The typical charge of formulated SAPO 34 described in Example A was 95 mg and the reactor bed was diluted with 1 gram of quartz sand to minimize the reaction exotherm in the reactor. In particular, for the catalyst composition of the invention, the molecular sieve and metal oxide, a physical mixture of the MSA molecular sieve of Example
A and the active metal oxide was used.
[0085] The effluent from the reactor was collected in a 15-sample loop
Valco valve. The collected samples were analyzed by on-line gas chromatography (Hewlett Packard 6890) equipped with a flame ionization detector. The chromatographic column used was a Q-column. The response factors used are listed in the following Table 1.
Table 1
CHR) 1.103 [1.000] 1.070 [1.003 {1.052{ 3.035 | 2.639 | 0.993 0.999 1.006) 1.000
[0086] The terms " C,'s, Cs+, etc.” refer to the number of carbons in the hydrocarbon. Note that the selectivity designated as "C;+'s" consist of the sum of
CJ's, C¢'s and C,'s. The weighed averages (selectivity) were calculated based on the following formula, x,*y, + (X-X)*(¥, + yo)/2+ (X5-X)*(y, + ¥3)/2 + ..., where x, and y, are yield and g methanol fed/g molecular sieve, respectively. Lifetime of catalysts (g methanol/g molecular sieve) reported is methanol that was cumulatively converted. Note that both the lifetime and WHSV were reported based on the weight of the SAPO-34 sieve. Methanol converted at less than 10 weight percent conversions was not counted in the calculations. Dimethyl ether was not counted as product, instead it was treated as unreacted methanol in calculating selectivity and conversions.
Example 1 - Control Experiment
[0087] In this Example 1, the catalyst composition consisted of a molecular sieve, designated as MSA as described in Example A. The catalyst was diluted with quartz to form the reactor bed. The results of this experiment in the reactor and conditions discussed above in Example B are shown in Table 2.
Table 2 37.65 029 [39.80 13.04 7745] 16.34
Example 2 - Preparation of MgO and Acetone Conversion Measurement
[0088] The MgO was prepared as follows. 5.0 g of MgO (98%, ACS reagent grade from Aldrich) was mixed with 150 ml of deionized water to form a white slurry. The white slurry was slowly heated to dryness on a heating plate.
The dried cake was broken into pieces and was ground to a fine powder. The powder was further dried in an oven at 120°C for 12 hrs. The white powder was then calcined at 550°C in air for 3 hrs. Thus the prepared active metal oxide,
MgO, has a relatively high surface area (BET area of about 250 m’/g). The MgO powders were sieved to get particles of various sizes. Particle sizes between 75 to 150 micron were used in a conversion process as described in Example B.
[0089] 0.25 g of this prepared MgO was loaded into a glass tube, and the tube was connected to a vacuum line via a 9-mm O-ring joint. The MgO was then heated to 450°C and kept at 450°C for 2 hrs under vacuum to remove water from the oxide. After cooling down to room temperature, 25°C, the MgO was saturated with acetone-2-">C. The MgO with adsorbed acetone-2-">C was then loaded into a 7-mm NMR rotor without any contact with air or moisture. The sample was allowed to stay at room temperature (about 25 °C) for 1 hour prior to NMR measurement of acetone conversion. *C NMR experiments were performed on a 200 MHz solid state NMR spectrometer with Magic Angle Spinning. Cross polarization spectra were acquired using 1-s pulse delay, 2-ms contact time and 2000 scans. Quantitative single pulse spectra were acquired using 15-s pulse delay and 400 or more scans. The test was repeated and results of the °C NMR revealed that, on average, after 1 hour more than 80% of acetone had been consumed.
Example 3 - Molecular Sieve and MgO
[0090] In this Example 3, the molecular sieve catalyst composition consisted of 33.6 wt% of MSA, 50.4 wi% of binder and 16 wt% MgO as described in
Example 2 above. The catalyst composition was well mixed, and then diluted with quartz to form the reactor bed. The results of this experiment in the reactor and conditions discussed above in Example B are shown in Table 3. The data in
Table 2 and Table 3 illustrate that by constituting 16 wt% of the catalyst composition loading with the MgO, the lifetime of the SAPO-34 molecular sieve has increased to 31.66 g/g molecular sieve from 16.34 g/g molecular sieve, an increase of 94%.
Table 3
Example 4 - Mixing MgO with a Group 3 Metal Oxide (5 wt% La,0,)
[0091] The loading of a Group 3 metal oxide where the metal is La onto the high surface area MgO was achieved via incipient wetness. 0.2261 g of
Lanthanum acetate was dissolved in ca. 1.9 ml of deionized water. The solution was added drop-wise to 2.0146 g of MgO. The mixture was dried in a vacuum oven at 50 °C for 1 hr. The dried mixture was broken up and calcined at 550 °C in air for 3 hrs. The wt% of La,0; is about 5 %. The metal oxides powders were sieved to get particles of various sizes. Particle sizes between 75 to 150 micron were used in a conversion process.
Example 5 - Molecular Sieve and a Mixed Metal Oxide: La,0y (5 wt%)/MgO
[0092] In this Example 5, the catalyst composition consisted of 33.6 wt% of
MSA, 50.4 wt% of binder and 16 wt% of MgO containing 5 weight percent of a ) Group 3 metal oxide wherein the metal is La, as described in Example 4 above.
The catalyst composition was well mixed, and then diluted with quartz to form the reactor bed. The results of this experiment in the reactor and conditions discussed above in Example B are shown in Table 4. The data in Table 2 and Table 4 illustrate that by constituting 16 wt% of the catalyst composition load with MgO containing 5 weight percent La,0,, the lifetime of the SAPO-34 molecular sieve has increased more than 300% from 16.34 g/g sieve to 65.90 g/g sieve.
Table 4 a. the lowest conversion measured was 30.69 wt% with a lifetime of 57.57 g methanol/g sieve at that conversion. The reported lifetime (65.90 g methanol/g sieve) was estimated by extrapolating the conversion from 30.69 wt% to 10 wt%.
Comparative Example 6 - Molecular Sieve and BaO
[0093] In this Comparative Example 6, 28.8 wt% MSA, 43.2 wt% binder and 28 wt% of barium acetate were well mixed, and then diluted with quartz to form the reactor bed. The reactor was heated to 550°C and kept at 550°C for 90 min in a stream of a mixture of 20 ml/min of oxygen and 50 ml/min of He.
Barium acetate was decomposed into barium oxide under these conditions. The molecular catalyst composition consisted of 32 wt% of MSA, 48 wt% of binder and 20 wt% of BaO. The reactor temperature was then lowered to 475°C, and the catalyst composition was tested in a conversion process under the conditions of
Example B above. Results of the conversion process are shown in Table 5. The data in Table 2 and Table 5 illustrate that by constituting 20 wt% of the catalyst composition load with BaO, the lifetime of the SAPO-34 molecular sieve has increased 43%.
Claims (19)
1. A catalyst composition comprising: (a) a metal oxide which has a surface area greater than 20 m*/g, which has been calcined at temperature greater than 200°C, and which, when saturated with acetone and contacted with said acetone for 1 hour at 25°C, converts more than 80% of the acetone; (b) a binder; (©) a matrix material; and (d) a molecular sieve having an average pore size less than SA.
2. The catalyst composition of claim 1 wherein the surface area of said metal oxide is greater than 70 m*/g.
3. The catalyst composition of claim 1 or claim 2 wherein said metal oxide is selected from Group 2 of the Periodic Table of Elements.
4. The catalyst composition of claim 3 further comprising a Group 3 metal oxide.
5. A catalyst composition comprising a molecular sieve and at least one oxide of a metal selected from Group 2 of the Periodic Table of Elements, wherein said metal oxide has an uptake of carbon dioxide at 100°C of at ) least 0.03 mg/m’ of the metal oxide.
6. The catalyst composition of claim 5 wherein said metal oxide, when saturated with acetone and contacted with said acetone for 1 hour at 25°C, converts more than 80% of the acetone.
7. The catalyst composition of claim 5 or claim 6 and also including at least one of a binder and a matrix material different from said metal oxide.
8. The catalyst composition of any preceding claim and including a binder which includes an alumina sol and a matrix material which includes a clay.
9. The catalyst composition of any one of claims 5 to 8 and further comprising a Group 3 metal oxide.
10. The catalyst composition of claim 4 or claim 9 wherein the Group 3 metal oxide is selected from yttrium oxide, lanthanum oxide, scandium oxide and mixtures thereof.
11. The catalyst composition of any preceding claim wherein said metal oxide comprises a magnesium oxide.
12. The catalyst composition of any preceding claim wherein the molecular sieve comprises a silicoaluminophosphate and/or an aluminophosphate.
13. A method of making a catalyst composition, the method comprising (a) combining a silicoaluminophosphate molecular sieve and/or an aluminophosphate molecular sieve, a binder and a matrix material to produce a catalyst precursor; and (b) adding to the catalyst precursor at least one metal oxide that has been calcined to a temperature in the range of from 200°C to 700°C.
14. A method of making a catalyst composition, the method comprising combining a silicoaluminophosphate molecular sieve and/or an aluminophosphate molecular sieve, a binder, a matrix material, and at least one metal oxide that, when saturated with acetone and contacted with said acetone for 1 hour at 25°C, converts more than 25% of the acetone.
15. The method of claim 13 or claim 14 wherein said at least one metal oxide comprises a magnesium oxide.
16. A method for making a catalyst composition, the method comprising physically mixing first particles comprising a molecular sieve with second particles comprising at least one oxide of a metal selected from Group 2 of the Periodic Table of Elements, wherein said metal oxide has an uptake of carbon dioxide at 100°C of at least 0.03 mg/m? of the metal oxide.
17. The method of claim 16 wherein at least one said first and said second particles also include at least one of a binder and a matrix material.
18. The method of claim 16 or claim 17 wherein said first particles comprise a silicoaluminophosphate molecular sieve, a binder including an alumina sol and a matrix material including a clay.
19. The method of any one claims 15 to 18 wherein said at least one metal oxide further comprises at least one oxide of a metal selected from Group 3 of the Periodic Table of Elements.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36096302P | 2002-02-28 | 2002-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
ZA200406712B true ZA200406712B (en) | 2006-05-31 |
Family
ID=37970011
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200405973A ZA200405973B (en) | 2002-02-28 | 2004-07-27 | Molecular sieve compositions, catalyst thereof, their making and use in conversion processes. |
ZA200406608A ZA200406608B (en) | 2002-02-28 | 2004-08-19 | Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes |
ZA200406712A ZA200406712B (en) | 2002-02-28 | 2004-08-24 | Catalyst composition comprising molecular sieves, their preparation and use in conversion processes |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200405973A ZA200405973B (en) | 2002-02-28 | 2004-07-27 | Molecular sieve compositions, catalyst thereof, their making and use in conversion processes. |
ZA200406608A ZA200406608B (en) | 2002-02-28 | 2004-08-19 | Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101113124A (en) |
ZA (3) | ZA200405973B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109939723B (en) * | 2018-01-26 | 2021-06-01 | 中国科学院大连化学物理研究所 | Catalyst and method for preparing ethylene by directly converting synthesis gas |
-
2003
- 2003-02-10 CN CNA2007101374007A patent/CN101113124A/en active Pending
-
2004
- 2004-07-27 ZA ZA200405973A patent/ZA200405973B/en unknown
- 2004-08-19 ZA ZA200406608A patent/ZA200406608B/en unknown
- 2004-08-24 ZA ZA200406712A patent/ZA200406712B/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN101113124A (en) | 2008-01-30 |
ZA200406608B (en) | 2009-07-29 |
ZA200405973B (en) | 2006-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003225560B2 (en) | Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes | |
US7411106B2 (en) | Molecular sieve compositions, catalyst thereof, their making and use in conversion processes | |
US6844291B2 (en) | Molecular sieve compositions, catalyst thereof, their making and use in conversion processes | |
US6995111B2 (en) | Molecular sieve compositions, catalysts thereof, their making and use in conversion processes | |
US7166757B2 (en) | Conversion of oxygenates to olefins | |
WO2005025743A1 (en) | Low metal content catalyst compositions and processes for making and using same | |
US6951830B2 (en) | Molecular sieve catalyst compositions, their production and use in conversion processes | |
WO2003084660A2 (en) | Organometallic treated molecular sieves and the use thereof for the conversion of oxygenates to olefins | |
US7199278B2 (en) | Conversion of oxygenates to olefins | |
US7319178B2 (en) | Molecular sieve compositions, catalysts thereof, their making and use in conversion processes | |
US7199277B2 (en) | Pretreating a catalyst containing molecular sieve and active metal oxide | |
US7307196B2 (en) | Molecular sieve compositions, catalyst thereof, their making and use in conversion processes | |
ZA200406712B (en) | Catalyst composition comprising molecular sieves, their preparation and use in conversion processes | |
US7186875B2 (en) | Conversion of oxygenates to olefins |