Nothing Special   »   [go: up one dir, main page]

WO2025018332A1 - 5-aminolevulinic acid-producing bacterium, method for producing same, and method for producing 5-aminolevulinic acid using same - Google Patents

5-aminolevulinic acid-producing bacterium, method for producing same, and method for producing 5-aminolevulinic acid using same Download PDF

Info

Publication number
WO2025018332A1
WO2025018332A1 PCT/JP2024/025461 JP2024025461W WO2025018332A1 WO 2025018332 A1 WO2025018332 A1 WO 2025018332A1 JP 2024025461 W JP2024025461 W JP 2024025461W WO 2025018332 A1 WO2025018332 A1 WO 2025018332A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
hemt
aminolevulinic acid
producing
gene
Prior art date
Application number
PCT/JP2024/025461
Other languages
French (fr)
Japanese (ja)
Inventor
拓真 小島
Original Assignee
Kiyan Pharma株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiyan Pharma株式会社 filed Critical Kiyan Pharma株式会社
Publication of WO2025018332A1 publication Critical patent/WO2025018332A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds

Definitions

  • the present invention relates to the creation of a self-cloning strain of ⁇ -proteobacteria using a self-cloning technique, and a method for producing 5-aminolevulinic acid using the created strain.
  • 5-aminolevulinic acid is a compound that is widely present in the biosphere as a metabolic intermediate in the pigment biosynthesis pathway that synthesizes tetrapyrrole compounds (vitamin B12, heme, chlorophyll, etc.) and plays an important role in living organisms.
  • 5-aminolevulinic acid is also a natural compound that exhibits excellent effects as a herbicide, insecticide, plant growth regulator, and plant photosynthesis enhancer (Patent Documents 1 and 2).
  • 5-aminolevulinic acid is used as a raw material for pharmaceuticals, supplements, cosmetics, feed, fertilizer, and more, and supports people's lives in various ways.
  • 5-aminolevulinic acid is biosynthesized in vivo from glycine and succinyl CoA by 5-aminolevulinic acid synthase, or from glutamic acid via glutamyl tRNA (Patent Document 3).
  • Non-Patent Documents 1 and 2 A method using photosynthetic bacteria of the genus Rhodobacter is also known, and it has been reported that this method produces a larger amount of 5-aminolevulinic acid than the method using the above-mentioned microorganisms (Patent Document 5, etc.). Furthermore, a method has been carried out in which bacteria of the genus Rhodobacter are mutagenized, a strain with high 5-aminolevulinic acid productivity is selected, and the selected strain is subjected to repeated mutagen treatment and selection to obtain a mutant strain with higher 5-aminolevulinic acid production, which is then used (Non-Patent Documents 1 and 2).
  • microbial strains have been selected or created using recombinant gene technology.
  • a 5-aminolevulinic acid synthase gene derived from photosynthetic bacteria is introduced into Escherichia coli to create a transformant (Non-Patent Document 3, Patent Document 6), and a 5-aminolevulinic acid synthase gene derived from photosynthetic bacteria is introduced into photosynthetic bacteria to create a transformant (Patent Document 7), etc. are known.
  • the present invention aims to avoid or alleviate this problem.
  • the inventors of this case therefore attempted to create a strain with high 5-aminolevulinic acid productivity that is suitable from the standpoint of safety for industrial production of 5-aminolevulinic acid by using a technique that, although it is a recombinant gene technique, does not leave foreign genes in the final strain produced, particularly a self-cloning technique.
  • a technique that, although it is a recombinant gene technique, does not leave foreign genes in the final strain produced, particularly a self-cloning technique.
  • promoter promoter, etc.
  • LAS gene 5-aminolevulinic acid synthase gene
  • the present invention provides the following [1] to [20].
  • a photosynthetic bacterial strain belonging to the class ⁇ -proteobacteria which has an expression control region including a ribosomal RNA operon promoter (PrrnB) upstream of a gene (hemT) encoding 5-aminolevulinic acid synthase HemT, wherein the expression control region is derived from the same species of photosynthetic bacteria as the strain and induces expression of hemT, and the induction results in increased productivity of 5-aminolevulinic acid compared to a wild-type strain.
  • PrrnB ribosomal RNA operon promoter
  • hemT gene encoding 5-aminolevulinic acid synthase HemT
  • hemT contains any one of the following base sequences: (i) the base sequence of SEQ ID NO: 1; (ii) a base sequence encoding a protein having the amino acid sequence of SEQ ID NO: 2; (iii) a base sequence which has a sequence identity of 90% or more with the base sequence of (i) or (ii) above and encodes a protein having 5-aminolevulinic acid synthase activity, and (iv) a base sequence in which 1 to 120 bases have been deleted, substituted, added or inserted relative to the base sequence of (i) or (ii) above and which encodes a protein having 5-aminolevulinic acid synthase activity.
  • PrrnB contains any one of the following base sequences: (i) the base sequence of SEQ ID NO: 3; (ii) the base sequence of SEQ ID NO: 4; (iii) the base sequence of SEQ ID NO:5; (iv) a functional fragment of PrrnB, comprising a base sequence having a 5'-end at any one of positions 1 to 158 of SEQ ID NO: 5 and a 3'-end at any one of positions 188 to 195 of SEQ ID NO: 5, and having an activity of inducing the expression of hemT; (v) a base sequence having 90% or more sequence identity with the base sequence of SEQ ID NO: 4 or 5 and having hemT expression-inducing activity, and (vi) a base sequence in which 1 to 19 bases have been deleted, substituted, or added to the base sequence of SEQ ID NO: 4 or 5 and having hemT expression-inducing activity.
  • [11] A method for producing 5-aminolevulinic acid, comprising culturing any one of the strains according to [1] to [10] in a medium, producing and accumulating 5-aminolevulinic acid in the strain and the medium, and collecting 5-aminolevulinic acid from the culture.
  • the culture is carried out under microaerobic or anaerobic conditions under oxygen restriction.
  • the method according to [10] or [11] wherein the culture is carried out under aerobic conditions.
  • [15] A method for producing a photosynthetic bacterial strain belonging to the class ⁇ -proteobacteria, which has an expression control region including a ribosomal RNA operon promoter (PrrnB) upstream of a gene (hemT) encoding 5-aminolevulinic acid synthase HemT, wherein the expression control region is derived from the same species of photosynthetic bacteria as the strain and induces expression of hemT, such induction resulting in increased productivity of 5-aminolevulinic acid compared to a wild-type strain, the method for producing the strain comprising the step of functionally linking PrrnB to hemT.
  • a method for producing a photosynthetic bacterium strain with high productivity of 5-aminolevulinic acid comprising the step of inserting, into a wild-type strain of the photosynthetic bacterium, an expression control region containing a ribosomal RNA operon promoter (PrrnB) derived from the same species upstream of a gene (hemT) encoding 5-aminolevulinic acid synthase HemT in the genome of the wild-type strain by homologous recombination technology, wherein the inserted PrrnB induces expression of hemT, and the induction results in increased productivity of 5-aminolevulinic acid compared to the wild-type strain, and the photosynthetic bacterium is a species belonging to the class ⁇ -proteobacteria.
  • PrrnB ribosomal RNA operon promoter
  • the present invention provides a method for producing a photosynthetic bacterial strain by using a self-cloning technique, in which the expression of HemT, a 5-aminolevulinic acid synthase, is induced by a homologous or endogenous ribosomal RNA operon promoter (PrrnB), thereby increasing the productivity of 5-aminolevulinic acid without using a heterologous gene, and the produced strain is substantially free of heterologous nucleic acid sequences.
  • the strain of the present invention produced by the self-cloning technique is unlikely to cause unexpected side effects due to genetic recombination, and is therefore a boon for industries requiring high safety for products, such as the pharmaceutical, food and beverage industries, as well as for consumers.
  • the European Regulation on the Protection of Human Health and the Environment stipulates that self-cloning used for genetic recombination of non-pathogenic microorganisms should be exempt from regulatory oversight.
  • the strain of the present invention has an advantage over drug-induced mutants and transformants into which foreign genes have been introduced in terms of regulatory treatment, and is advantageous in the industrial production of 5-aminolevulinic acid.
  • FIG. 1 shows a procedure for inserting the rrnB promoter (PrrnB) or rsp_7571 promoter (Prsp_7571) derived from the photosynthetic bacterium Rhodobacter sphaeroides 2.4.1 strain upstream of the hemA gene in the genome of the same strain by homologous recombination.
  • Up gene upstream of the hemA locus
  • hemA are arranged on both sides of the promoter as homologous regions adjacent to PrrnB or Prsp_7571.
  • a gentamicin resistance gene Gm r
  • sacB levansucrase gene
  • the genomic gene configuration around the ALAS gene (hemA or hemT) in the strain constructed by inserting a promoter by the self-cloning technique is shown.
  • A shows the gene configuration of the region of chromosome 1 where the hemA gene is present in the genome of R. sphaeroides.
  • B shows the genes of the region of chromosome 2 where the hemT gene is present in the genome of R. sphaeroides.
  • the white arrow indicates the coding sequence of the gene, and the black arrow indicates the transcription start point and transcription direction.
  • the thick black line indicates the inserted promoter sequence (PrrnB or Prsp_7571).
  • WT indicates a rifampicin-resistant strain derived from R.
  • sphaeroides strain 2.4.1 wild strain.
  • BA indicates a strain in which PrrnB is inserted upstream of hemA.
  • BAT indicates a strain in which PrrnB is inserted upstream of hemA and upstream of hemT.
  • 7A indicates a strain in which Prsp_7571 is inserted upstream of hemA.
  • 7AT indicates a strain in which Prsp_7571 was inserted upstream of hemA and upstream of hemT
  • BT indicates a strain in which PrrnB was inserted upstream of hemT
  • 7T indicates a strain in which Prsp_7571 was inserted upstream of hemT.
  • the results of quantification by RT-PCR of the expression level of the ALAS gene (hemA or hemT) in strains constructed by inserting a promoter using the self-cloning technique are shown.
  • the upper row shows the expression level of the hemA gene as a relative value to the expression level of the WT strain under aerobic conditions, which is set to 1.
  • the lower row shows the expression level of the hemT gene as a relative value to the expression level of the WT strain under aerobic conditions, which is set to 1.
  • the white bars show the results when the strains were cultured under aerobic conditions, and the gray bars show the results when the strains were cultured under microaerobic conditions.
  • the names of the WT and the six strains created by the self-cloning technique are the same as in Figure 2.
  • the figure shows the time course of 5-aminolevulinic acid productivity in the strain constructed by inserting a promoter using the self-cloning technique.
  • the vertical axis shows the 5-aminolevulinic acid (ALA) concentration (mM), and the horizontal axis shows the culture time (h).
  • the names of the WT and the six strains constructed by the self-cloning technique are the same as those in Figure 2.
  • the photosynthetic bacterial strain according to one embodiment of the present invention is a photosynthetic bacterial strain belonging to the ⁇ -proteobacteria class in which an expression control region including a ribosomal RNA operon promoter (PrrnB) is located upstream of the gene (hemT) that encodes the 5-aminolevulinic acid synthase HemT, and the expression control region is derived from the same species of photosynthetic bacteria as the strain and induces the expression of hemT, which leads to increased productivity of 5-aminolevulinic acid compared to the wild-type strain.
  • PrrnB ribosomal RNA operon promoter
  • Photosynthetic bacteria are bacteria that belong to the ⁇ -proteobacteria class in biological classification.
  • Photosynthetic bacteria may be any bacteria that grow by photosynthetic inorganic or organic nutrition using light energy.
  • Examples of photosynthetic bacteria include bacteria belonging to the genera Rhodobacter, Rhodospirillum, Rhodopseudomonas, Chromatium, Ectothiorhodospira, Chlorobium, Prosthecochloris, Chloroflexus, Chloronema, and Helicobacterium, with bacteria belonging to the genus Rhodobacter being preferred.
  • Rhodobacter Bacteria belonging to the genus Rhodobacter include bacteria belonging to Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodobacter sulfidophillus, Rhodobacter adriaticus, Rhodobacter veldkampii, etc., with preferred examples being bacteria belonging to Rhodobacter sphaeroides.
  • Rhodobacter sphaeroides and Rhodobacter veldkampii two bacteria belonging to the genus Rhodobacter, are now classified as Cereibacter sphaeroides and Phaeovulum veldkampii, respectively.
  • Rhodobacter sphaeroides and Rhodobacter veldkampii two bacteria belonging to the genus Rhodobacter, are now classified as Cereibacter sphaeroides and Phaeovulum veldkampii, respectively.
  • these species remain classified in the order Rhodobacter, and are still widely recognized as species of the genus Rhodobacter.
  • Cereibacter sphaeroides and Phaeovulum veldkampii are treated as synonyms with Rhodobacter sphaeroides and Rhodobacter veldkampii, respectively, and as bacterial species belonging to the genus Rhodobacter.
  • ALAS 5-aminolevulinic acid synthase
  • Rhodobacter genus and Rhodobacter sphaeroides are substantially identical or highly similar to each other, it is believed that the same effects can be obtained in the present invention regardless of the ALAS gene derived from any bacterium, as long as it has an ALAS gene that is homologous in sequence and/or function.
  • ALAS include HemA and HemT of Rhodobacter sphaeroides.
  • HemA and HemT have in common the fact that they catalyze the reaction that produces 5-aminolevulinic acid from succinyl-CoA, but each is under different expression control.
  • the hemA gene that codes for the former is located on the first chromosome and is induced to be expressed under anaerobic conditions, whereas the hemT gene that codes for the latter is located on the second chromosome and has been reported to be a silent gene in the 2.4.1 strain of Rhodobacter sphaeroides.
  • the strain of the present invention is a photosynthetic bacterium strain that has a gene (hemT) encoding HemT under the control of PrrnB and expresses ALAS, and is highly productive of 5-aminolevulinic acid.
  • the hemT gene is preferably a gene derived from the same species as the photosynthetic bacterium or an endogenous gene.
  • the hemT gene may be of any sequence as long as it is derived from the genome of the photosynthetic bacteria and encodes a polypeptide having 5-aminolevulinic acid synthase activity, and examples of such hemT genes include the following: hemT genes derived from the genome of Rhodobacter sphaeroides strains 2.4.1, H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, ATH 2.4.9 (ATCC 17029), IFO 12203, CH10, or KD131.
  • the strain of the present invention is a strain of Rhodobacter sphaeroides, which is the same species as the biological species from which the hemT gene is derived.
  • the strain of the present invention only needs to be the same species as the biological species from which the hemT gene is derived, and does not necessarily need to be the same strain as the strain from which the hemT gene is derived.
  • a specific example of a hemT gene is a nucleic acid containing a nucleotide sequence encoding a protein having the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2.
  • the nucleotide sequence of SEQ ID NO: 1 corresponds to the full length of the coding region of the hemT gene contained in the genome of Rhodobacter sphaeroides strain 2.4.1
  • SEQ ID NO: 2 corresponds to the amino acid sequence encoded by the hemT gene.
  • nucleotide sequences which have 90% or more (preferably 92% or more, more preferably 95% or more, even more preferably 98% or more, and most preferably 99% or more) sequence identity with a nucleotide sequence encoding a protein having the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2 and which encode a protein having 5-aminolevulinic acid synthase activity, and nucleotide sequences which have 1 to 120 (preferably 1 to 60, more preferably 1 to 40, even more preferably 1 to 20, and most preferably 1 to 10) bases deleted, substituted, added, or inserted from a nucleotide sequence encoding a protein having the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2 and which encode a protein having 5-aminolevulinic acid synthase activity.
  • PrrnB derived from the genome of the same species that is introduced into the photosynthetic bacterial strain of the present invention by homologous recombination technology to induce expression of the hemT gene.
  • PrrnB is a nucleic acid derived from the ribosomal RNA operon promoter (PrrnB) in the genome of the photosynthetic bacteria, and an expression control region containing said PrrnB is used in the present invention.
  • the expression control region containing the rrnB promoter may be of any sequence as long as it has the activity of inducing expression of the hemT gene under its control in the strain of the present invention, and examples include expression control regions containing PrrnB in the genomes of the following strains: That is, the expression control region contains PrrnB derived from the genome of any of the following strains: Rhodobacter sphaeroides strains 2.4.1, H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, ATH 2.4.3 (ATCC17025), ATH 2.4.9 (ATCC 17029), IFO 12203, CH10, KD131, or HJ.
  • PrrnB is a nucleic acid containing the base sequence of SEQ ID NO: 4 or 5.
  • the base sequence of SEQ ID NO: 4 or 5 corresponds to the rrnB promoter region having a length of 58 or 195 bases contained in the genome of the 2.4.1 strain of Rhodobacter sphaeroides, or a nucleic acid containing the same.
  • a base sequence having a sequence identity of 90% or more preferably 94% or more, more preferably 96% or more, even more preferably 98% or more, and most preferably 99% or more
  • a base sequence in which 1 to 19 bases preferably 1 to 15, more preferably 1 to 10, even more preferably 1 to 5, and most preferably 1 to 3 have been deleted, substituted, added, or inserted from the base sequence of SEQ ID NO: 4 or 5, and having hemT expression-inducing activity
  • rrnB rrnB promoter
  • PrrnB contains a 6-base sequence (TTGCGC) in the -35 region recognized by transcription factors and a 6-base sequence (TAGAAA) in the -10 region recognized by RNA polymerase, and a 29-base sequence (TTGCGCCCGGGGCCGTCTGCTCCTAGAAA; SEQ ID NO: 3) containing both sequences, or a 58-base sequence (TACGGAGCCCAAAAAATCCGCTTGCGCCCGGGGCCGTCTGCTCCTAGAAACCGCTTCA; SEQ ID NO: 4) containing both sequences is considered to be the minimum unit or promoter region that functions as a functional fragment of the rrnB promoter, and is a suitable functional fragment of PrrnB.
  • the base sequence of SEQ ID NO: 3 or 4 corresponds to the base sequence of positions 159 to 187 or positions 138 to 195 of the base sequence of SEQ ID NO: 5. Therefore, a nucleic acid having a 5'-end at any position from 1 to 158 of SEQ ID NO: 5 and a 3'-end at any position from 188 to 195, which includes the entire base sequence of SEQ ID NO: 3 or 4 and corresponds to a partial sequence of the base sequence of SEQ ID NO: 5, or a nucleic acid having a 5'-end at any position from 1 to 137 of SEQ ID NO: 3 and a 3'-end at position 194 or 195, is also preferably used in the present invention as a functional fragment or promoter region of PrrnB of the present invention.
  • the expression-inducing activity of hemT literally means an activity to induce the expression of hemT, and although it is not necessarily limited to this, it means, for example, an activity to induce expression of hemT 5-fold, 10-fold, 20-fold or 30-fold, and particularly preferably 40-fold or more, compared to the expression of hemT in a wild-type or standard strain; and from another perspective, it means an activity that is equal to or greater than the expression-inducing activity of hemT by a nucleic acid having the base sequence of any one of SEQ ID NOs: 3, 4 or 5.
  • the insertion position is not necessarily limited as long as PrrnB or a functional fragment thereof functions as a promoter and induces transcription of the hemT gene located downstream thereof.
  • the insertion position is the coding region of the hemT gene, the transcription start site, or upstream of the ribosome binding sequence.
  • An example of the insertion position is a position upstream of the coding region of the hemT gene, and within 10,000 bases upstream of the start codon of the hemT gene, preferably within 1,000 bases, more preferably within 100 bases, and even more preferably adjacent to the transcription start site of the hemT gene.
  • the inserted sequence containing the promoter region of PrrnB or its functional fragment may also contain other appropriate components such as a transcription initiation site (adenine base), a ribosome binding sequence, or other genes.
  • the photosynthetic bacterial strain according to one embodiment of the present invention is produced by a self-cloning technique and is substantially free of nucleic acid sequences derived from heterologous organisms, such as foreign genes.
  • self-cloning organisms of the same species are used as the source of transforming DNA and the host for transformation.
  • an insertion sequence containing PrrnB or a functional fragment thereof derived from a certain type of photosynthetic bacteria is used as the source and inserted into the host genome of the same type of photosynthetic bacteria.
  • This insertion functionally links PrrnB or a functional fragment thereof derived from the same type of photosynthetic bacteria to the hemT gene, and expression of hemT is induced in the self-cloning strain by the expression-inducing activity of the rrnB promoter.
  • the genome of the strain of the present invention produced by the self-cloning technique is completely free or substantially free of nucleic acid derived from organisms of a species different from the host photosynthetic bacteria.
  • substantially free means that only heterologous nucleic acid or artificial sequence nucleic acid with a very short sequence length of about 1 to 30 bases (preferably 20 bases or less, more preferably 10 bases or less, and even more preferably 6 bases or less) is allowed to exist, such as a polylinker used to facilitate in vitro cloning.
  • heterologous nucleic acids such as heterologous antibiotic resistance genes, that are used as selection markers.
  • Self-cloning is a technique well known to those skilled in the art (see Akada et al. (1999) J. Biosci. Bioeng., vol. 87, pp. 43-48, JP 2003-144164 A, etc.), and can be carried out appropriately by those skilled in the art by combining and applying general molecular biology experimental techniques.
  • One embodiment of the present invention is a method for producing a photosynthetic bacterial strain with high productivity of 5-aminolevulinic acid.
  • the method includes a step of inserting an expression control region including a ribosomal RNA operon promoter (PrrnB) into a wild-type strain of photosynthetic bacteria upstream of a gene (hemT) encoding HemT, a 5-aminolevulinic acid synthase, in the genome of the wild-type strain by homologous recombination, where the inserted PrrnB induces expression of hemT, and the induction results in increased productivity of 5-aminolevulinic acid compared to the wild-type strain, and the photosynthetic bacteria is a species of bacteria belonging to the class ⁇ -Proteobacteria.
  • PrrnB ribosomal RNA operon promoter
  • One embodiment of the method for producing a photosynthetic bacterium strain with high productivity of 5-aminolevulinic acid of the present invention is a method using a plasmid vector for homologous recombination.
  • the plasmid vector includes an expression control region containing PrrnB, and homologous regions consisting of sequences homologous to the upstream and downstream regions of the genome adjacent to the target region of homologous recombination are arranged on both sides of the expression control region containing PrrnB.
  • the homologous region may have any sequence length as long as it can efficiently induce homologous recombination in a target site-specific manner, for example, a sequence length of 20 bases or more, 100 bases or more, 500 bases or more, or 1,000 bases or more.
  • the portion located outside the homologous region from the expression control region containing PrrnB is not inserted into the host by homologous recombination, so it may contain a nucleic acid heterologous to the genome of the host.
  • the heterologous nucleic acid include a positive selection marker (antibiotic resistance gene such as Gm R ) and a negative selection marker (sacB, etc.).
  • Another embodiment of the present invention is a method for producing 5-aminolevulinic acid, characterized in that a strain of the photosynthetic bacteria of the present invention is cultured in a medium, 5-aminolevulinic acid is produced and accumulated in the strain and the medium, and 5-aminolevulinic acid is collected from the culture.
  • Cultivating photosynthetic bacteria for the purpose of producing 5-aminolevulinic acid and collecting the product 5-aminolevulinic acid are both well-known techniques, and a person skilled in the art can appropriately carry them out by referring to known literature.
  • the medium may be a solid medium or a liquid medium, and the medium components may be any as long as they contain a substrate (glycine, etc.) related to the production of 5-aminolevulinic acid and are suitable for the growth of photosynthetic bacteria.
  • a medium containing a plant protein hydrolysate in addition to ordinary nutritional components such as yeast extract can also be used.
  • a preferred example of the method for producing 5-aminolevulinic acid of the present invention is a method using a liquid medium and performing shaking culture.
  • the oxygen conditions in the culture may be aerobic, microaerobic (oxygen-limited), or anaerobic as long as 5-aminolevulinic acid can be produced, but microaerobic conditions are preferred. This is because oxygen inhibits pigment synthesis in photosynthetic bacteria, particularly purple nonsulfur bacteria, and 5-aminolevulinic acid synthase is said to be inactivated by oxygen. Microaerobic conditions can be achieved by artificially suppressing oxygen supply, but they can also be achieved naturally during continuous shaking culture in an environment with insufficient ventilation. If light irradiation is not performed during culture, the photosynthetic bacteria will be placed in a heterotrophic environment and will require oxygen for growth, so anaerobic conditions are not suitable. In order to increase the productivity of 5-aminolevulinic acid, the various environmental conditions related to the culture of the strain, such as medium components, oxygen supply conditions, and light irradiation amount, including combinations thereof, can be appropriately adjusted.
  • the culture temperature and the pH of the medium may be any temperature and pH as long as the photosynthetic bacterial strain of the present invention grows and produces 5-aminolevulinic acid.
  • the culture temperature is preferably 10 to 40°C, particularly 20 to 35°C
  • the pH of the medium is preferably 3 to 9, particularly 6 to 8. If the pH changes during the production of 5-aminolevulinic acid, it is preferable to adjust the pH using an alkaline solution such as sodium hydroxide, ammonia, or potassium hydroxide, or an acid such as hydrochloric acid, sulfuric acid, or phosphoric acid.
  • the 5-aminolevulinic acid produced by the photosynthetic bacterial strain of the present invention through cultivation can be purified by standard methods. For example, it can be separated and purified as necessary by standard methods such as ion exchange, chromatography, and extraction.
  • strains, media, culture, plasmids, and primers Rhodobacter sphaeroides strains were grown aerobically in PYS medium (0.3% Bacto peptone, 0.3% Bacto yeast extract, 2 mM CaCl2, and 2 mM MgSO4 ) as the growth medium in a shaker at 30°C.
  • E. coli strains were grown at 37°C in Luria-Bertani medium (1% Bacto tryptone, 0.5% Bacto yeast extract, 0.5% NaCl) as the growth medium.
  • the strains, plasmids and primers used in the following examples are shown below.
  • pZJD29A Prsp_7571 hemA Sequence to insert Prsp_7571 upstream of the hemA coding sequence on pZJD29A.
  • the normalized ⁇ Ct was calculated using the rpoZ gene encoding the ⁇ subunit of RNA polymerase as an endogenous control for each cell.
  • the ⁇ Ct of each sample was calculated using the ⁇ Ct of WT cultured under aerobic conditions as a calibrator.
  • rpoZqRT-F SEQ ID NO: 30; Gomelsky et al., Microbiology (2003) vol. 149, pp. 377-388.
  • rpoZqRT-R SEQ ID NO: 31; Gomelsky et al., Microbiology (2003) vol. 149, pp. 377-388.
  • hemTqRT-F SEQ ID NO: 32; newly designed in this application hemTqRT-R; SEQ ID NO: 33; newly designed in this application hemAqRT-F; SEQ ID NO: 34; newly designed in this application hemAqRT-F; SEQ ID NO: 35; newly designed in this application
  • ALAS activity in crude cell extracts was measured according to the method of Yubisui et al. (Arch. Biochem. Biophys., (1972), 150, 77-85.).
  • the culture medium was centrifuged at 8,000 ⁇ g for 5 min at 4°C, and the resulting cell pellet was suspended in ice-cold 50 mM Tris-HCl buffer (pH 7.5).
  • the cell suspension was sonicated and centrifuged at 10,000 ⁇ g for 5 min at 4°C, and the protein concentration of the resulting supernatant was measured by Bradford protein assay.
  • Enzyme solution (95% cell homogenate supernatant, 20 mM Tris-HCl (pH 7.5), 0.35 mM pyridoxal phosphate) and substrate solution (0.5 M glycine, 1 mM succinyl CoA) were incubated at 37°C for 5 min.
  • the enzyme reaction was started by adding 25% of the substrate solution to the enzyme solution. After 5 minutes, the reaction was stopped by adding 10% trichloroacetic acid in an amount of 30% by volume relative to the reaction solution and cooling on ice.
  • the concentration of 5-aminolevulinic acid in each reaction solution was measured according to the method of Mauzerall et al. (J. Biol. Chem., (1956), 219, 435.).
  • 5-aminolevulinic acid in each sample was boiled in 2 M acetate buffer (pH 4.6) at 100°C for 15 minutes and reacted with 1% acetylacetone. 175% volume of modified Ehrlich reagent (20 g/L p-dimethylaminobenzaldehyde, 12% perchloric acid, 60% glacial acetic acid) was added to the reaction solution, and the pyrrole compound formed was colorimetrically quantified by measuring the absorbance at 553 nm.
  • modified Ehrlich reagent (20 g/L p-dimethylaminobenzaldehyde, 12% perchloric acid, 60% glacial acetic acid
  • Each strain was cultured in 120 mL of GGY2 medium (50 mM glucose, 3.8 g/L sodium L-glutamate monohydrate, 2.0 g/L Bacto yeast extract, 1.13 g/L NaH2PO4 ⁇ 12H2O, 1.07 g / L NaH2PO4 ⁇ 2H2O , 0.8 g/L ( NH4 )2HPO4, 0.2 g / L MgSO4 ⁇ 7H2O , 53 mg/L CaCl2 ⁇ 2H2O , 1.2 mg /L MnSO4, 1.0 mg/L nicotinic acid , 1.0 mg/ L thiamine hydrochloride, and 0.01 mg /L biotin) in a 300 mL baffled Erlenmeyer flask, and incubated at 30°C for 170 min.
  • GGY2 medium 50 mM glucose, 3.8 g/L sodium L-glutamate monohydrate, 2.0 g/L Bacto yeast extract, 1.
  • the strains were cultured in a dark, aerobic condition at 150 rpm for 48 h with shaking. Each culture was centrifuged at 5,000 ⁇ g for 5 min. A cell pellet (1.0 g wet weight) was suspended in 20 ml of fresh GGY2 medium containing substrate (60 mM glycine) and metabolic inhibitor (30 mM levulinic acid) and cultured in a test tube at 30°C with shaking at 150 rpm in the dark. Each strain was cultured in three independent test tubes. After 0, 12, 18, 24, 36, 42, and 48 h of culture, the 5-aminolevulinic acid concentration in each culture supernatant was measured as described above (detection of ALAS activity).
  • Example 1 Construction of a self-cloning strain in which the rrnB or rsp_7571 promoter is inserted upstream of the hemA or hemT gene of Rhodobacter sphaeroides (FIGS. 1 and 2) (1)
  • a suicide vector pZJD29A PrrnB hemA was constructed in order to insert the rrnB promoter upstream of the transcription start site of hemA.
  • a 600 bp DNA fragment upstream and downstream from the transcription start site of hemA and the rrnB promoter were PCR amplified and inserted into pZJD29A.
  • pZJD29A PrrnB hemT was also constructed.
  • Rhodobacter sphaeroides were conjugated to Rhodobacter sphaeroides using E. coli, and a single recombinant in which the plasmid was homologously recombined on the genome was obtained using the antibiotic resistance gene on the plasmid as a marker.
  • These strains were selected on sucrose plates to obtain a double recombinant in which the sequence derived from the plasmid was removed from the genome by homologous recombination. The genome of the obtained strain was confirmed to confirm that the promoter was inserted.
  • a Rhodobacter sphaeroides strain in which the rrnB promoter was inserted upstream of hemA, hemT, or both hemA and hemT was constructed.
  • the 195 bp upstream of the transcription start site of rrnB was inserted upstream of the transcription start sites of hemA, hemT, or both hemA and hemT (Fig. 2).
  • the strain in which PrrnB was inserted only in hemA was named BA
  • the strain in which PrrnB was inserted only in hemT was named BT
  • the strain in which PrrnB was inserted in both hemA and hemT was named BAT.
  • the transcription initiation sites of rrnB, hemA, and hemT were determined by reference to Dryden et al. (J. Bacteriol., (1993), 175, 6392-6402.) and Neidle et al. (J.
  • the rrnB promoter (PrrnB) is known as a constitutive promoter that exhibits the highest transcription activity among the promoters of ribosomal RNA operons (rrnA, rrnB, rrnC).
  • sphaeroides strains containing the rsp_7571 promoter were constructed. More specifically, 498 bp upstream of the initiation codon of rsp_7571 was inserted upstream of the initiation codon of hemA and/or hemT (Fig. 2). The strain in which Prsp_7571 was inserted only into hemA was designated 7A, the strain in which Prsp_7571 was inserted only into hemT was designated 7T, and the strain in which Prsp_7571 was inserted into both hemA and hemT was designated 7AT.
  • the promoter of rsp_7571 (Prsp_7571) is known to be a highly active constitutive promoter in Rhodobacter sphaeroides strain 2.4.1.
  • Example 3 Fermentative Production of 5-aminolevulinic Acid The productivity of 5-aminolevulinic acid of the constructed strains was evaluated using a medium supplemented with glycine, which is a substrate of 5-aminolevulinic acid, and levulinic acid, which is a metabolic inhibitor of 5-aminolevulinic acid. After the cells were transferred to the production medium, the amount of 5-aminolevulinic acid accumulated increased (around 20 hours) and decreased (after 20 hours) in the BT and WT cultures (Fig. 4). In particular, the maximum concentration of 5-aminolevulinic acid in the BT culture was 9.2 mM, about 12-fold higher than that of the WT (0.78 mM). In the cultures of the other strains, BA, and BAT, 5-aminolevulinic acid accumulated at a lower level than that of the WT (Fig. 4).

Landscapes

  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of: producing a 5-aminolevulinic acid high-producing strain, which is a strain suitable with respect to safety in the industrial production of 5-aminolevulinic acid, by utilizing a technology that is a recombinant DNA technology but does not leave a foreign gene in a finally produced strain, particularly a self-cloning technology; and producing 5-aminolevulinic acid using the produced strain. The problem is solved by producing a strain of a photosynthetic bacterium, and culturing the produced strain, the strain belonging to the class α-Proteobacteria and having, upstream of a gene (hemT) encoding HemT that is a 5-aminolevulinic acid synthesis enzyme, an expression regulation region including an rrnB promoter, wherein the expression regulation region is originated from a photosynthetic bacterium that is the same type of the strain and is capable of inducing the expression of hemT, and the induction causes the increase in 5-aminolevulinic acid productivity compared with a wild-type strain thereof.

Description

5-アミノレブリン酸生産菌、その作製方法及びそれを用いた5-アミノレブリン酸の製造方法5-aminolevulinic acid producing bacteria, method for producing same and method for producing 5-aminolevulinic acid using same

 本発明は、セルフクローニング技術を用いたα-プロテオバクテリアのセルフクローニング株の作出、および、作出した株を用いた5-アミノレブリン酸の生産方法に関する。 The present invention relates to the creation of a self-cloning strain of α-proteobacteria using a self-cloning technique, and a method for producing 5-aminolevulinic acid using the created strain.

 5-アミノレブリン酸(ALA)は、テトラピロール化合物(ビタミンB12、ヘム、クロロフィルなど)を生合成する色素生合成経路の代謝中間体として広く生物圈に存在し、生体内で重要な役割を果たしている化合物である。また、5-アミノレブリン酸は、除草剤、殺虫剤、植物成長調節剤、植物の光合成増強剤として優れた効果を示す天然化合物である(特許文献1、2)。さらに、5-アミノレブリン酸は、医薬品、サプリメント、化粧品、飼料、肥料などの原料として使用され、広く人々の生活を様々な面から支えている。 5-aminolevulinic acid (ALA) is a compound that is widely present in the biosphere as a metabolic intermediate in the pigment biosynthesis pathway that synthesizes tetrapyrrole compounds (vitamin B12, heme, chlorophyll, etc.) and plays an important role in living organisms. 5-aminolevulinic acid is also a natural compound that exhibits excellent effects as a herbicide, insecticide, plant growth regulator, and plant photosynthesis enhancer (Patent Documents 1 and 2). Furthermore, 5-aminolevulinic acid is used as a raw material for pharmaceuticals, supplements, cosmetics, feed, fertilizer, and more, and supports people's lives in various ways.

 5-アミノレブリン酸は、生体内で、グリシンとスクシニルCoAから5-アミノレブリン酸合成酵素によって、もしくはグルタミン酸からグルタミルtRNAを経て生合成されることが知られている(特許文献3)。 It is known that 5-aminolevulinic acid is biosynthesized in vivo from glycine and succinyl CoA by 5-aminolevulinic acid synthase, or from glutamic acid via glutamyl tRNA (Patent Document 3).

 5-アミノレブリン酸の有用性は広く知られているが、実際にそれを利用する場合のひとつの問題は、生産コストが高いことである。かねてより化学合成法が検討されてきたが、未だ十分満足できる方法が開発されていない。 The usefulness of 5-aminolevulinic acid is widely known, but one problem with its practical use is the high production costs. Chemical synthesis methods have been considered for some time, but no fully satisfactory method has yet been developed.

 一方、微生物を用いた5-アミノレブリン酸の製造方法も検討されてきた。例えばプロピオニバクテリウム(Propionibacterium)属、メタノバクテリウム(Methanobacterium)属又はメタノサルチナ(Methanosarcina)属等を用いる方法(特許文献4)が提案されている。しかしながら、発酵による5-アミノレブリン酸の生産では生産量が不十分であり、工業的には満足できるものではなかった。 Meanwhile, methods for producing 5-aminolevulinic acid using microorganisms have also been investigated. For example, a method using the genera Propionibacterium, Methanobacterium, or Methanosarcina has been proposed (Patent Document 4). However, the production of 5-aminolevulinic acid by fermentation was insufficient in terms of production volume, and was not industrially satisfactory.

 また、光合成細菌であるロドバクター(Rhodobacter)属の細菌を用いる方法も知られており、当該方法は上記の微生物を用いる方法に比べ生産量が多いことが報告されている(特許文献5等)。さらに、ロドバクター(Rhodobacter)属の細菌を変異原処理し、5-アミノレブリン酸高生産性の菌株を選抜し、選抜された株に対してさらに変異原処理と選抜を繰り返し行うことによって、5-アミノレブリン酸がより高い変異株を取得し、これを利用する方法も行われてきた(非特許文献1、2)。  A method using photosynthetic bacteria of the genus Rhodobacter is also known, and it has been reported that this method produces a larger amount of 5-aminolevulinic acid than the method using the above-mentioned microorganisms (Patent Document 5, etc.). Furthermore, a method has been carried out in which bacteria of the genus Rhodobacter are mutagenized, a strain with high 5-aminolevulinic acid productivity is selected, and the selected strain is subjected to repeated mutagen treatment and selection to obtain a mutant strain with higher 5-aminolevulinic acid production, which is then used (Non-Patent Documents 1 and 2).

 5-アミノレブリン酸を微生物に高生産させるための別のアプローチとして、遺伝子組換え技術による微生物株の選抜又は作製が行われてきた。一例として、光合成細菌に由来する5-アミノレブリン酸合成酵素遺伝子を大腸菌に導入して形質転換体を作製すること(非特許文献3、特許文献6)や、光合成細菌に由来する5-アミノレブリン酸合成酵素遺伝子を光合成細菌に導入して形質転換体を作製すること(特許文献7)等が知られている。 As another approach to enabling microorganisms to produce high levels of 5-aminolevulinic acid, microbial strains have been selected or created using recombinant gene technology. For example, a 5-aminolevulinic acid synthase gene derived from photosynthetic bacteria is introduced into Escherichia coli to create a transformant (Non-Patent Document 3, Patent Document 6), and a 5-aminolevulinic acid synthase gene derived from photosynthetic bacteria is introduced into photosynthetic bacteria to create a transformant (Patent Document 7), etc. are known.

 生産にかかるコストや生産性といった観点から、5-アミノレブリン酸の工業的な生産に向けて、従来は、主として(1)薬剤誘発突然変異又は(2)遺伝子組換え技術による5-アミノレブリン酸高生産性株の選択又は作製が行われてきた。しかしながら、(1)の場合、所望の高生産性株を取得するまでに複数回の変異導入及び選択を繰り返す必要があり、さらに安全性を担保するために選択した株の性状及び変異遺伝子の丁寧な解析が必要とされる。また、(2)についても、多くの場合、形質転換体が外来遺伝子を含む等の理由から、安全性を担保するために作製した株についての網羅的な性状の解析が必要と考えられている。それゆえ、いずれの場合も、工業的な生産を実現するためには相当の手間及び時間を要しており、しかもしばしば困難性を伴うものであった。 In terms of production costs and productivity, in the past, the selection or creation of strains with high 5-aminolevulinic acid production has been carried out mainly by (1) drug-induced mutation or (2) recombinant gene technology in order to industrially produce 5-aminolevulinic acid. However, in the case of (1), it is necessary to repeat the introduction of mutations and selection multiple times before obtaining the desired highly productive strain, and further, careful analysis of the properties of the selected strain and the mutated genes is required to ensure safety. In addition, in the case of (2), it is considered necessary to comprehensively analyze the properties of the strains created to ensure safety, because in many cases, the transformants contain foreign genes. Therefore, in either case, it has taken a considerable amount of time and effort to achieve industrial production, and it has often been accompanied by difficulties.

特開昭61-502814号公報Japanese Unexamined Patent Publication No. 61-502814 特開平2-138201号公報Japanese Unexamined Patent Publication No. 2-138201 特開2013-208074号公報JP 2013-208074 A 特開平5-184376号公報Japanese Patent Application Publication No. 5-184376 特開平5-184376号公報Japanese Patent Application Publication No. 5-184376 特開2005-333907号公報JP 2005-333907 A 特開平9-173071号公報Japanese Patent Application Publication No. 9-173071

Nishikawa, S., et al. (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions., J. Biosci. Bioeng., vol. 87, pp. 798-804.Nishikawa, S., et al. (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions., J. Biosci. Bioeng., vol. 87, pp. 798-804. Kamiyama et al. (2000) Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. -Monograph-, 生物工学会誌., vol. 78, no. 2, pp. 48-55.Kamiyama et al. (2000) Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. -Monograph-, Journal of the Japan of Biological Technology, vol. 78, no. 2, pp. 48-55. Xie, L. et al., (2003) Appl. Microbiol. Biotechnol., vol. 63, pp. 267-273.Xie, L. et al., (2003) Appl. Microbiol. Biotechnol., vol. 63, pp. 267-273.

 5-アミノレブリン酸の工業的な生産のために薬剤誘発突然変異株や外来遺伝子を導入した形質転換体を利用する場合、前記のとおり、安全性を担保するために相当の手間やコストがかかり、かつ、しばしば困難性を伴うという問題がある。本発明は、この問題を回避ないし軽減することを目的とする。 When using drug-induced mutant strains or transformants with foreign genes introduced for the industrial production of 5-aminolevulinic acid, as mentioned above, there is a problem that considerable effort and cost are required to ensure safety, and that difficulties are often involved. The present invention aims to avoid or alleviate this problem.

 そこで、本件の発明者らは、遺伝子組換え技術ではあるものの、最終的に作製された株に外来遺伝子を残さない技術、特にセルフクローニング技術を利用することにより、5-アミノレブリン酸高生産性の菌株であって、5-アミノレブリン酸の工業的な生産において安全性の観点から好適な菌株の作製を試みた。その結果、予想外にも、共に同種のゲノムに由来するものである特定の発現制御領域(プロモーター等)と5-アミノレブリン酸合成酵素遺伝子(ALAS遺伝子)とを組合せることにより、上記の問題を解決しうることを見出し、本発明を完成させた。 The inventors of this case therefore attempted to create a strain with high 5-aminolevulinic acid productivity that is suitable from the standpoint of safety for industrial production of 5-aminolevulinic acid by using a technique that, although it is a recombinant gene technique, does not leave foreign genes in the final strain produced, particularly a self-cloning technique. As a result, they unexpectedly discovered that the above problems could be solved by combining a specific expression control region (promoter, etc.) and the 5-aminolevulinic acid synthase gene (ALAS gene), both of which are derived from the same genome, and thus completed the present invention.

 本発明は、いくつかの側面において、下記の[1]~[20]を提供する。 In some aspects, the present invention provides the following [1] to [20].

[1]5-アミノレブリン酸合成酵素であるHemTをコードする遺伝子(hemT)の上流に、リボソームRNAオペロンプロモーター(PrrnB)を含む発現制御領域を有するα-プロテオバクテリア網に属する光合成細菌の菌株であって、当該発現制御領域は該菌株と同種の光合成細菌に由来するものであり、かつ、hemTの発現を誘導するものであり、当該誘導が野生株と比して5-アミノレブリン酸の生産性の増大をもたらすものである、光合成細菌の菌株。
[2]PrrnBを含む発現制御領域が相同組換え技術により挿入されたものであり、異種由来の外来遺伝子配列を実質的に有しないものである、前記[1]の菌株。
[3]α-プロテオバクテリア網に属する光合成細菌がロドバクター(Rhodobacter)属、ロドスピリルム(Rhodospirillum)属、ロドシュードモナス(Rhodopseudomonas)属、クロマティウム(Chromatium)属、エクトチオロドスピラ(Ectothiorhodospira)属、クロロビウム(Chlorobium)属、プロステコクロリス(Prosthecochloris)属、クロロフレクサス(Chloroflexus)属、クロロネマ(Chloronema)属、又はヘリコバクテリウム(Helicobacterium)属の細菌である、前記[1]または[2]の菌株。
[4]α-プロテオバクテリア網に属する光合成細菌がロドバクター(Rhodobacter)属の細菌である、前記[1]~[3]のいずれか1の菌株。
[5]ロドバクター(Rhodobacter)属の細菌の種がロドバクター・スフェロイデス(Rhodobacter sphaeroides)、ロドバクター・カプスラタス(Rhodobacter capsulatus)、ロドバクター・スルフィドフィラス(Rhodobacter sulfidophillus)、ロドバクター・アドリアティカス(Rhodobacter adriaticus)、又はロドバクター・ベルドカンピー(Rhodobacter veldkampii)である、前記[4]の菌株。
[6]hemTが以下のいずれかの塩基配列を含有するものである、前記[1]~[5]のいずれか1の菌株:
(i)配列番号1の塩基配列、
(ii)配列番号2のアミノ酸配列を有するタンパク質をコードする塩基配列、
(iii)上記(i)又は(ii)の塩基配列と90%以上の配列同一性を有し、かつ、5-アミノレブリン酸合成酵素活性を有するタンパク質をコードする塩基配列、及び
(iv)上記(i)又は(ii)の塩基配列に対して1~120個の塩基が欠失、置換、付加もしくは挿入された塩基配列であって、かつ、5-アミノレブリン酸合成酵素活性を有するタンパク質をコードする塩基配列。
[7]hemTがRhodobacter sphaeroidesの2.4.1株、H2株、DSM158株、MBTLJ-20株、MBTLJ-13株、MBTLJ-8株、AB24株、AB25株、AB27株、AB29株、ATH 2.4.9(ATCC 17029)株、IFO 12203株、CH10株又はKD131株のいずれかのゲノムに由来するものであり、かつ、光合成細菌の種がRhodobacter sphaeroidesである、前記[1]~[5]のいずれか1の菌株。
[8]PrrnBが以下のいずれかの塩基配列を含有するものである、前記[1]~[7]のいずれか1の菌株:
(i)配列番号3の塩基配列、
(ii)配列番号4の塩基配列、
(iii)配列番号5の塩基配列、
(iv)配列番号5の1位~158位のいずれかの位置に5’末端を有し、188位~195位のいずれかの位置を3’末端とする塩基配列からなる、PrrnBの機能的断片であって、hemTの発現誘導活性を有する塩基配列、
(v)配列番号4又は5の塩基配列と90%以上の配列同一性を有し、かつ、hemTの発現誘導活性を有する塩基配列、及び
(vi)配列番号4又は5の塩基配列に対して1~19個の塩基が欠失、置換、もしくは付加された塩基配列であって、かつ、hemTの発現誘導活性を有する塩基配列。
[9]PrrnBがRhodobacter sphaeroidesの2.4.1株、H2株、DSM158株、MBTLJ-20株、MBTLJ-13株、MBTLJ-8株、AB24株、AB25株、AB27株、AB29株、ATH 2.4.3 (ATCC17025)株、ATH 2.4.9(ATCC 17029)株、IFO 12203株、CH10株、KD131株、又はHJ株のいずれかのゲノムに由来するものであり、光合成細菌の種がRhodobacter sphaeroidesである、前記[1]~[7]のいずれか1の菌株。
[10]挿入されたPrrnBの位置は、hemT遺伝子のコード領域上流であって、かつ、hemT遺伝子の開始コドンから上流10,000塩基以内、好ましくは1,000塩基以内、より好ましくは100塩基以内、さらに好ましくはhemT遺伝子の転写開始位置に隣接した位置である、前記[1]~「9]のいずれか1の菌株。
[1] A photosynthetic bacterial strain belonging to the class α-proteobacteria, which has an expression control region including a ribosomal RNA operon promoter (PrrnB) upstream of a gene (hemT) encoding 5-aminolevulinic acid synthase HemT, wherein the expression control region is derived from the same species of photosynthetic bacteria as the strain and induces expression of hemT, and the induction results in increased productivity of 5-aminolevulinic acid compared to a wild-type strain.
[2] The strain according to [1] above, into which an expression control region containing PrrnB has been inserted by homologous recombination technology and which is substantially free of foreign gene sequences derived from heterologous species.
[3] The strain according to [1] or [2] above, wherein the photosynthetic bacterium belonging to the class α-proteobacteria is a bacterium of the genus Rhodobacter, Rhodospirillum, Rhodopseudomonas, Chromatium, Ectothiorhodospira, Chlorobium, Prosthecochloris, Chloroflexus, Chloronema, or Helicobacterium.
[4] The strain according to any one of [1] to [3] above, wherein the photosynthetic bacterium belonging to the α-proteobacteria class is a bacterium of the genus Rhodobacter.
[5] The strain according to [4] above, wherein the species of the bacterium of the genus Rhodobacter is Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodobacter sulfidophillus, Rhodobacter adriaticus, or Rhodobacter veldkampii.
[6] The strain according to any one of [1] to [5] above, wherein hemT contains any one of the following base sequences:
(i) the base sequence of SEQ ID NO: 1;
(ii) a base sequence encoding a protein having the amino acid sequence of SEQ ID NO: 2;
(iii) a base sequence which has a sequence identity of 90% or more with the base sequence of (i) or (ii) above and encodes a protein having 5-aminolevulinic acid synthase activity, and (iv) a base sequence in which 1 to 120 bases have been deleted, substituted, added or inserted relative to the base sequence of (i) or (ii) above and which encodes a protein having 5-aminolevulinic acid synthase activity.
[7] The strain according to any one of [1] to [5] above, wherein hemT is derived from the genome of any of Rhodobacter sphaeroides strains 2.4.1, H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, ATH 2.4.9 (ATCC 17029), IFO 12203, CH10, or KD131, and the photosynthetic bacterial species is Rhodobacter sphaeroides.
[8] The strain according to any one of [1] to [7] above, wherein PrrnB contains any one of the following base sequences:
(i) the base sequence of SEQ ID NO: 3;
(ii) the base sequence of SEQ ID NO: 4;
(iii) the base sequence of SEQ ID NO:5;
(iv) a functional fragment of PrrnB, comprising a base sequence having a 5'-end at any one of positions 1 to 158 of SEQ ID NO: 5 and a 3'-end at any one of positions 188 to 195 of SEQ ID NO: 5, and having an activity of inducing the expression of hemT;
(v) a base sequence having 90% or more sequence identity with the base sequence of SEQ ID NO: 4 or 5 and having hemT expression-inducing activity, and (vi) a base sequence in which 1 to 19 bases have been deleted, substituted, or added to the base sequence of SEQ ID NO: 4 or 5 and having hemT expression-inducing activity.
[9] The strain according to any one of [1] to [7] above, wherein PrrnB is derived from the genome of any of Rhodobacter sphaeroides strains 2.4.1, H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, ATH 2.4.3 (ATCC17025), ATH 2.4.9 (ATCC 17029), IFO 12203, CH10, KD131, or HJ, and the photosynthetic bacterial species is Rhodobacter sphaeroides.
[10] The strain according to any one of [1] to [9] above, wherein the inserted PrrnB is located upstream of the coding region of the hemT gene and within 10,000 bases upstream of the start codon of the hemT gene, preferably within 1,000 bases, more preferably within 100 bases, and even more preferably adjacent to the transcription start site of the hemT gene.

[11]前記[1]~[10]のいずれか1の菌株を培地中で培養し、菌株及び培地中に5-アミノレブリン酸を生成、蓄積させ、培養物から5-アミノレブリン酸を採取することを特徴とする、5-アミノレブリン酸の製造方法。
[12]培地が液体培地であり、培養が振盪培養により行われる、前記[11]の製造方法。
[13]培養が酸素制限下の微好気条件、又は嫌気条件下で行われる、前記[10]又は[11]の製造方法。
[14]培養が好気条件下で行われる、前記[10]又は[11]の製造方法。
[11] A method for producing 5-aminolevulinic acid, comprising culturing any one of the strains according to [1] to [10] in a medium, producing and accumulating 5-aminolevulinic acid in the strain and the medium, and collecting 5-aminolevulinic acid from the culture.
[12] The method according to [11] above, wherein the medium is a liquid medium and the culture is performed by shaking culture.
[13] The method according to [10] or [11], wherein the culture is carried out under microaerobic or anaerobic conditions under oxygen restriction.
[14] The method according to [10] or [11], wherein the culture is carried out under aerobic conditions.

[15]5-アミノレブリン酸合成酵素であるHemTをコードする遺伝子(hemT)の上流に、リボソームRNAオペロンプロモーター(PrrnB)を含む発現制御領域を有するα-プロテオバクテリア網に属する光合成細菌の菌株であって、当該発現制御領域は該菌株と同種の光合成細菌に由来するものであり、かつ、hemTの発現を誘導するものであり、当該誘導が野生株と比して5-アミノレブリン酸の生産性の増大をもたらすものである、光合成細菌の菌株を作製する方法であって、PrrnBをhemTと機能的に結合させる工程を含むことを特徴とする、該菌株の作製方法。
[16]前記[1]~[10]のいずれか1の菌株を作製する方法であって、PrrnBをhemTと機能的に結合させる工程を含むことを特徴とする、該菌株の作製方法。
[15] A method for producing a photosynthetic bacterial strain belonging to the class α-proteobacteria, which has an expression control region including a ribosomal RNA operon promoter (PrrnB) upstream of a gene (hemT) encoding 5-aminolevulinic acid synthase HemT, wherein the expression control region is derived from the same species of photosynthetic bacteria as the strain and induces expression of hemT, such induction resulting in increased productivity of 5-aminolevulinic acid compared to a wild-type strain, the method for producing the strain comprising the step of functionally linking PrrnB to hemT.
[16] A method for producing any one of the strains according to [1] to [10] above, comprising a step of functionally binding PrrnB to hemT.

[17]5-アミノレブリン酸の高生産性の光合成細菌の菌株を作製する方法であって、前記光合成細菌の野生株に対して、当該野生株のゲノムにおける5-アミノレブリン酸合成酵素であるHemTをコードする遺伝子(hemT)の上流に、同種由来のリボソームRNAオペロンプロモーター(PrrnB)を含む発現制御領域を、相同組換え技術により挿入する工程を含むものであり、ここで、挿入されるPrrnBはhemTの発現を誘導するものであり、当該誘導が野生株と比して5-アミノレブリン酸の生産性の増大をもたらすものであり、光合成細菌はα-プロテオバクテリア網に属する種の細菌である、方法。
[18]前記[17]の方法であって、相同組換えのためのプラスミドベクターを用いる方法であり、当該プラスミドベクターはPrrnBを含む発現制御領域を含み、かつ、相同組換えの標的領域に隣接したゲノムの上流域及び下流域のそれぞれと相同な配列からなる相同領域がPrrnBを含む発現制御領域を挟んだ両側に配置されたものである、方法。
[19]相同領域の配列は、20塩基以上、100塩基以上、500塩基以上、又は1,000塩基以上の塩基配列である、前記[17]又は[18]に記載の方法。
[20]プラスミドベクター中の、2つの相同領域に挟まれた、PrrnBを含む発現制御領域を含む領域は、α-プロテオバクテリア網に属する光合成細菌の種に対して異種である生物種に由来する外来遺伝子を実質的に含まないものである、前記[17]~[19]のいずれか1に記載の方法。
[17] A method for producing a photosynthetic bacterium strain with high productivity of 5-aminolevulinic acid, comprising the step of inserting, into a wild-type strain of the photosynthetic bacterium, an expression control region containing a ribosomal RNA operon promoter (PrrnB) derived from the same species upstream of a gene (hemT) encoding 5-aminolevulinic acid synthase HemT in the genome of the wild-type strain by homologous recombination technology, wherein the inserted PrrnB induces expression of hemT, and the induction results in increased productivity of 5-aminolevulinic acid compared to the wild-type strain, and the photosynthetic bacterium is a species belonging to the class α-proteobacteria.
[18] The method of [17] above, which uses a plasmid vector for homologous recombination, wherein the plasmid vector contains an expression control region containing PrrnB, and homologous regions consisting of sequences homologous to the upstream and downstream regions of the genome adjacent to the target region of homologous recombination are arranged on both sides of the expression control region containing PrrnB.
[19] The method according to [17] or [18], wherein the sequence of the homologous region is a base sequence of 20 bases or more, 100 bases or more, 500 bases or more, or 1,000 bases or more.
[20] The method according to any one of [17] to [19] above, wherein the region in the plasmid vector containing an expression control region including PrrnB, which is sandwiched between two homologous regions, is substantially free of foreign genes derived from a biological species that is heterologous to a species of photosynthetic bacteria belonging to the class α-proteobacteria.

 本発明は、セルフクローニング技術により光合成細菌の菌株を作出することで、5-アミノレブリン酸合成酵素であるHemTの発現が、同種由来又は内生のリボソームRNAオペロンプロモーター(PrrnB)によって誘導されるので、異種遺伝子を用いることなく、5-アミノレブリン酸の生産性を高めることができ、ここで、作出された菌株は異種由来の核酸配列を実質的に有しない。
 セルフクローニング技術で作出された本発明の菌株は、遺伝子組換えに起因する予期せぬ副作用が起こりにくいため、製薬業界、食品業界や飲料業界など、生産物に対して高い安全性が求められる業界にとっても、消費者にとっても福音となる。例えば、人間の健康と環境の保護に関する欧州規制(欧州共同体委員会総局 XI、1992 年)では、非病原性微生物の遺伝子組み換えに使用されるセルフクローニングは規制の監視から免除されるべきであると規定されているように、本発明の菌株は、規制上の取り扱いにおいて、薬剤誘発突然変異株や外来遺伝子を導入した形質転換体よりも優位性があり、5-アミノレブリン酸の工業的な生産において有利である。
The present invention provides a method for producing a photosynthetic bacterial strain by using a self-cloning technique, in which the expression of HemT, a 5-aminolevulinic acid synthase, is induced by a homologous or endogenous ribosomal RNA operon promoter (PrrnB), thereby increasing the productivity of 5-aminolevulinic acid without using a heterologous gene, and the produced strain is substantially free of heterologous nucleic acid sequences.
The strain of the present invention produced by the self-cloning technique is unlikely to cause unexpected side effects due to genetic recombination, and is therefore a boon for industries requiring high safety for products, such as the pharmaceutical, food and beverage industries, as well as for consumers. For example, the European Regulation on the Protection of Human Health and the Environment (Directorate-General XI, Commission of the European Communities, 1992) stipulates that self-cloning used for genetic recombination of non-pathogenic microorganisms should be exempt from regulatory oversight. Thus, the strain of the present invention has an advantage over drug-induced mutants and transformants into which foreign genes have been introduced in terms of regulatory treatment, and is advantageous in the industrial production of 5-aminolevulinic acid.

セルフクローニング技術により光合成細菌のプロモーター挿入株を作製する手順を模式的に示したものである。より具体的には、図1は、光合成細菌ロドバクター・スフェロイデス2.4.1株由来のrrnBプロモーター(PrrnB)又はrsp_7571プロモーター(Prsp_7571)を、同株のゲノムのhemA遺伝子の上流に、相同組換えにより挿入する手順を示す。相同組換えに用いるベクターにおいて、PrrnB又はPrsp_7571に隣接して、相同性領域としてUp(hemA遺伝子座上流のゲノム配列)及びhemAがプロモーターを挟んで両側に配置される。相同性領域の外側には、ポジティブセレクションマーカーとしてゲンタマイシン耐性遺伝子(Gmr)、ネガティブセレクションマーカーとしてレバンスクラーゼ遺伝子(sacB)が配置されている。最終的に作製された、hemA遺伝子の上流にPrrnBが挿入された菌株をBA株、Prsp_7571が挿入された菌株を7A株と称する。This is a schematic diagram of a procedure for preparing a promoter-inserted strain of photosynthetic bacteria by self-cloning technology. More specifically, FIG. 1 shows a procedure for inserting the rrnB promoter (PrrnB) or rsp_7571 promoter (Prsp_7571) derived from the photosynthetic bacterium Rhodobacter sphaeroides 2.4.1 strain upstream of the hemA gene in the genome of the same strain by homologous recombination. In the vector used for homologous recombination, Up (genomic sequence upstream of the hemA locus) and hemA are arranged on both sides of the promoter as homologous regions adjacent to PrrnB or Prsp_7571. Outside the homologous region, a gentamicin resistance gene (Gm r ) is arranged as a positive selection marker, and a levansucrase gene (sacB) is arranged as a negative selection marker. The finally prepared strain in which PrrnB is inserted upstream of the hemA gene is called the BA strain, and the strain in which Prsp_7571 is inserted is called the 7A strain. セルフクローニング技術によりプロモーターを挿入して構築した菌株における、ALAS遺伝子(hemA又はhemT)周辺のゲノム遺伝子構成を示す。(A)は、ロドバクター・スフェロイデスのゲノムにおいてhemA遺伝子が存在する第1染色体の領域の遺伝子構成を示す。(B)は、ロドバクター・スフェロイデスのゲノムにおいてhemT遺伝子が存在する第2染色体の領域の遺伝子を示す。図中、白矢印は遺伝子のコード配列を示し、黒矢印は転写開始点及び転写方向を示す。太い黒線は、挿入されたプロモーター配列(PrrnB又はPrsp_7571)を示す。WTは、ロドバクター・スフェロイデス2.4.1株(野生株)に由来するリファンピシン耐性株を示す。BAはPrrnBがhemA上流に挿入された株を示す。BATはPrrnBがhemA上流、及びhemT上流にそれぞれ挿入された株を示す。7AはPrsp_7571がhemA上流に挿入された株を示す。7ATはPrsp_7571がhemA上流、及びhemT上流にそれぞれ挿入された株を示す。BTはPrrnBがhemT上流に挿入された株を示す。7TはPrsp_7571hemT上流に挿入された株を示す。The genomic gene configuration around the ALAS gene (hemA or hemT) in the strain constructed by inserting a promoter by the self-cloning technique is shown. (A) shows the gene configuration of the region of chromosome 1 where the hemA gene is present in the genome of R. sphaeroides. (B) shows the genes of the region of chromosome 2 where the hemT gene is present in the genome of R. sphaeroides. In the figure, the white arrow indicates the coding sequence of the gene, and the black arrow indicates the transcription start point and transcription direction. The thick black line indicates the inserted promoter sequence (PrrnB or Prsp_7571). WT indicates a rifampicin-resistant strain derived from R. sphaeroides strain 2.4.1 (wild strain). BA indicates a strain in which PrrnB is inserted upstream of hemA. BAT indicates a strain in which PrrnB is inserted upstream of hemA and upstream of hemT. 7A indicates a strain in which Prsp_7571 is inserted upstream of hemA. 7AT indicates a strain in which Prsp_7571 was inserted upstream of hemA and upstream of hemT, BT indicates a strain in which PrrnB was inserted upstream of hemT, and 7T indicates a strain in which Prsp_7571 was inserted upstream of hemT. セルフクローニング技術によりプロモーターを挿入して構築した菌株における、ALAS遺伝子(hemA又はhemT)の発現量をRT-PCR法により定量した結果を示す。上段はhemA遺伝子の発現レベルを、好気条件下のWT株における発現量を1とした相対値として示す。また、下段は、hemT遺伝子の発現レベルを、好気条件下のWT株における発現量を1とした相対値として示す。白色のバーは好気条件下で菌株を培養した場合の結果を、灰色のバーは微好気条件下で菌株を培養した場合の結果を、それぞれ示す。WT及びセルフクローニング技術により作製した6種の菌株の呼称は、図2と同じである。The results of quantification by RT-PCR of the expression level of the ALAS gene (hemA or hemT) in strains constructed by inserting a promoter using the self-cloning technique are shown. The upper row shows the expression level of the hemA gene as a relative value to the expression level of the WT strain under aerobic conditions, which is set to 1. The lower row shows the expression level of the hemT gene as a relative value to the expression level of the WT strain under aerobic conditions, which is set to 1. The white bars show the results when the strains were cultured under aerobic conditions, and the gray bars show the results when the strains were cultured under microaerobic conditions. The names of the WT and the six strains created by the self-cloning technique are the same as in Figure 2. セルフクローニング技術によりプロモーターを挿入して構築した菌株における、5-アミノレブリン酸生産性の経時的な変化を示す。縦軸は5-アミノレブリン酸(ALA)濃度(mM)を、横軸は培養時間(h)を、それぞれ示す。WT及びセルフクローニング技術により作製した6種の菌株の呼称は、図2と同じである。The figure shows the time course of 5-aminolevulinic acid productivity in the strain constructed by inserting a promoter using the self-cloning technique. The vertical axis shows the 5-aminolevulinic acid (ALA) concentration (mM), and the horizontal axis shows the culture time (h). The names of the WT and the six strains constructed by the self-cloning technique are the same as those in Figure 2.

 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Below, several embodiments of the present invention are described in detail. However, the present invention is not limited to the following embodiments.

 本発明の一実施形態に係る光合成細菌の菌株は、5-アミノレブリン酸合成酵素であるHemTをコードする遺伝子(hemT)の上流に、リボソームRNAオペロンプロモーター(PrrnB)を含む発現制御領域が配置されたα-プロテオバクテリア網に属する光合成細菌の菌株であって、当該発現制御領域は該菌株と同種の光合成細菌に由来するものであり、かつ、hemTの発現を誘導するものであり、当該誘導が野生株と比して5-アミノレブリン酸の生産性の増大をもたらすものである。 The photosynthetic bacterial strain according to one embodiment of the present invention is a photosynthetic bacterial strain belonging to the α-proteobacteria class in which an expression control region including a ribosomal RNA operon promoter (PrrnB) is located upstream of the gene (hemT) that encodes the 5-aminolevulinic acid synthase HemT, and the expression control region is derived from the same species of photosynthetic bacteria as the strain and induces the expression of hemT, which leads to increased productivity of 5-aminolevulinic acid compared to the wild-type strain.

 まず、光合成細菌について説明する。光合成細菌は、生物分類上、α-プロテオバクテリア網に属する細菌である。光合成細菌としては、光エネルギーを用いて光合成無機栄養または光合成有機栄養によって生育する細菌であれば、いずれの細菌であってもよい。例えば、ロドバクター(Rhodobacter)属、ロドスピリルム(Rhodospirillum)属、ロドシュードモナス(Rhodopseudomonas)属、クロマティウム(Chromatium)属、エクトチオロドスピラ(Ectothiorhodospira)属、クロロビウム(Chlorobium)属、プロステコクロリス(Prosthecochloris)属、クロロフレクサス(Chloroflexus)属、クロロネマ(Chloronema)属、およびヘリコバクテリウム(Helicobacterium)属に属する細菌が挙げられるが、好ましくは、ロドバクター属に属する細菌が挙げられる。 First, photosynthetic bacteria will be described. Photosynthetic bacteria are bacteria that belong to the α-proteobacteria class in biological classification. Photosynthetic bacteria may be any bacteria that grow by photosynthetic inorganic or organic nutrition using light energy. Examples of photosynthetic bacteria include bacteria belonging to the genera Rhodobacter, Rhodospirillum, Rhodopseudomonas, Chromatium, Ectothiorhodospira, Chlorobium, Prosthecochloris, Chloroflexus, Chloronema, and Helicobacterium, with bacteria belonging to the genus Rhodobacter being preferred.

 ロドバクター属に属する細菌としては、ロドバクター・スフェロイデス(Rhodobacter sphaeroides)、ロドバクター・カプスラタス(Rhodobacter capsulatus)、ロドバクター・スルフィドフィラス(Rhodobacter sulfidophillus)、ロドバクター・アドリアティカス(Rhodobacter adriaticus)、ロドバクター・ベルドカンピー(Rhodobacter veldkampii)等に属する細菌があげられるが、好ましくはロドバクター・スフェロイデスに属する細菌が挙げられる。 Bacteria belonging to the genus Rhodobacter include bacteria belonging to Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodobacter sulfidophillus, Rhodobacter adriaticus, Rhodobacter veldkampii, etc., with preferred examples being bacteria belonging to Rhodobacter sphaeroides.

 光合成細菌の分類体系は現在もなお流動的であり、逐次分割・再編が行われている。ロドバクター属においては、近年、一部の種がCereibacter、Fuscovulum、及びPhaeovulumの3つの新属に移行されたため、前記のロドバクター属に属する細菌のうち、ロドバクター・スフェロイデス(Rhodobacter sphaeroides)、及び、ロドバクター・ベルドカンピー(Rhodobacter veldkampii)は、それぞれ、Cereibacter sphaeroides、Phaeovulum veldkampiiと分類されるようになっている。しかしながら、これらの種は、ロドバクター(Rhodobacter)目に分類されることについては変更がなく、現在においてもRhodobacter属の種として広く認識されていることから、本明細書では、Cereibacter sphaeroides、及びPhaeovulum veldkampiiは、それぞれロドバクター・スフェロイデス(Rhodobacter sphaeroides)、及び、ロドバクター・ベルドカンピー(Rhodobacter veldkampii)と同義であり、かつ、ロドバクター属に属する細菌の種として扱うものとする。 The classification system of photosynthetic bacteria is still in flux, with successive divisions and reorganizations taking place. In recent years, some species of the genus Rhodobacter have been transferred to three new genera: Cereibacter, Fuscovulum, and Phaeovulum. As a result, Rhodobacter sphaeroides and Rhodobacter veldkampii, two bacteria belonging to the genus Rhodobacter, are now classified as Cereibacter sphaeroides and Phaeovulum veldkampii, respectively. However, these species remain classified in the order Rhodobacter, and are still widely recognized as species of the genus Rhodobacter. Therefore, in this specification, Cereibacter sphaeroides and Phaeovulum veldkampii are treated as synonyms with Rhodobacter sphaeroides and Rhodobacter veldkampii, respectively, and as bacterial species belonging to the genus Rhodobacter.

 次に、5-アミノレブリン酸合成酵素(ALAS)について説明する。5-アミノレブリン酸の生合成経路としては、C4経路とC5経路の2つが知られているが、光合成細菌が有するALAS(EC 2.3.1.37)はこれらのうちC4経路(Shemin経路とも言う)において、グリシンおよびスクシニル-CoAから5-アミノレブリン酸を生成する反応を触媒する酵素活性を有するものである。光合成細菌、ロドバクター属又はロドバクター・スフェロイデスであれば、基本的な遺伝子構成は実質的に同一、あるいは互いに高度に類似しているので、配列上及び/又は機能的に相同なALAS遺伝子を有していれば、何れの細菌に由来するALAS遺伝子を用いても本発明において同様の効果を得ることが可能と考えられる。 Next, 5-aminolevulinic acid synthase (ALAS) will be described. There are two known pathways for the biosynthesis of 5-aminolevulinic acid, the C4 pathway and the C5 pathway. ALAS (EC 2.3.1.37) possessed by photosynthetic bacteria has the enzyme activity to catalyze the reaction of producing 5-aminolevulinic acid from glycine and succinyl-CoA in the C4 pathway (also called the Shemin pathway). Since the basic gene structures of photosynthetic bacteria, Rhodobacter genus and Rhodobacter sphaeroides are substantially identical or highly similar to each other, it is believed that the same effects can be obtained in the present invention regardless of the ALAS gene derived from any bacterium, as long as it has an ALAS gene that is homologous in sequence and/or function.

 ALASの具体的な例として、ロドバクター・スフェロイデス(Rhodobacter sphaeroides)のHemA及びHemTを挙げることができる。HemAとHemTは、スクシニル-CoAから5-アミノレブリン酸を生成する反応を触媒する点において共通しているが、それぞれが異なる発現制御を受けている。前者をコードするhemA遺伝子が第一染色体に座乗しており、嫌気条件下で発現誘導されるものであるのに対し、後者をコードするhemT遺伝子は第二染色体上に座乗しており、ロドバクター・スフェロイデスの2.4.1株ではサイレント遺伝子であると報告されたものである。そして、後段の実施例において詳述するとおり、これらの遺伝子の発現制御領域を、相同組換え技術により他の遺伝子の発現制御領域に置き換えたセルフクローニング株を作出して試験したところ、rrnBプロモーター(PrrnB)をhemT遺伝子の上流に配置した場合に5-アミノレブリン酸の高生産性が認められたのに対し、hemA遺伝子の上流に配置した場合には5-アミノレブリン酸の生産性向上が認められなかった。それゆえ、本発明の菌株は、PrrnBの制御下にHemTをコードする遺伝子(hemT)が配置されALASを発現する5-アミノレブリン酸の高生産性の光合成細菌の菌株である。ここで、hemT遺伝子は、好ましくは、当該光合成細菌の同種由来遺伝子又は内生遺伝子としてのhemT遺伝子である。 Specific examples of ALAS include HemA and HemT of Rhodobacter sphaeroides. HemA and HemT have in common the fact that they catalyze the reaction that produces 5-aminolevulinic acid from succinyl-CoA, but each is under different expression control. The hemA gene that codes for the former is located on the first chromosome and is induced to be expressed under anaerobic conditions, whereas the hemT gene that codes for the latter is located on the second chromosome and has been reported to be a silent gene in the 2.4.1 strain of Rhodobacter sphaeroides. As described in detail in the examples below, self-cloning strains in which the expression control regions of these genes were replaced with those of other genes by homologous recombination technology were produced and tested. When the rrnB promoter (PrrnB) was placed upstream of the hemT gene, high productivity of 5-aminolevulinic acid was observed, whereas when it was placed upstream of the hemA gene, no improvement in productivity of 5-aminolevulinic acid was observed. Therefore, the strain of the present invention is a photosynthetic bacterium strain that has a gene (hemT) encoding HemT under the control of PrrnB and expresses ALAS, and is highly productive of 5-aminolevulinic acid. Here, the hemT gene is preferably a gene derived from the same species as the photosynthetic bacterium or an endogenous gene.

 次に、本発明の光合成細菌の菌株において、相同組換え技術により導入された同種のゲノム由来のrrnBプロモーター(PrrnB)で発現誘導されるhemT遺伝子について説明する。hemT遺伝子は、光合成細菌のゲノムに由来し、5-アミノレブリン酸合成酵素活性を有するポリペプチドをコードする限り、どのような配列のものであっても良いが、例えば、以下のhemT遺伝子を挙げることができる。すなわち、Rhodobacter sphaeroidesの2.4.1株、H2株、DSM158株、MBTLJ-20株、MBTLJ-13株、MBTLJ-8株、AB24株、AB25株、AB27株、AB29株、ATH 2.4.9(ATCC 17029)株、IFO 12203株、CH10株又はKD131株のいずれかのゲノムに由来するhemT遺伝子である。これらのhemT遺伝子を発現誘導する場合、セルフクローニング技術が利用されるため、本発明の菌株は、hemT遺伝子が由来する生物種と同種であるRhodobacter sphaeroidesの菌株となる。ここで、本発明の菌株は、hemT遺伝子が由来する生物種と同種であればよく、hemT遺伝子が由来する菌株と同一菌株であることは必ずしも要しない。 Next, we will explain the hemT gene, whose expression is induced by the rrnB promoter (PrrnB) derived from the genome of the same species and introduced by homologous recombination technology in the photosynthetic bacterial strain of the present invention. The hemT gene may be of any sequence as long as it is derived from the genome of the photosynthetic bacteria and encodes a polypeptide having 5-aminolevulinic acid synthase activity, and examples of such hemT genes include the following: hemT genes derived from the genome of Rhodobacter sphaeroides strains 2.4.1, H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, ATH 2.4.9 (ATCC 17029), IFO 12203, CH10, or KD131. When inducing the expression of these hemT genes, self-cloning technology is used, and therefore the strain of the present invention is a strain of Rhodobacter sphaeroides, which is the same species as the biological species from which the hemT gene is derived. Here, the strain of the present invention only needs to be the same species as the biological species from which the hemT gene is derived, and does not necessarily need to be the same strain as the strain from which the hemT gene is derived.

 hemT遺伝子の具体的な例の一つは、配列番号1の塩基配列又は配列番号2のアミノ酸配列を有するタンパク質をコードする塩基配列を含む核酸である。ここで、配列番号1の塩基配列は、Rhodobacter sphaeroidesの2.4.1株のゲノムに含まれる、hemT遺伝子のコード領域全長に該当し、配列番号2はhemT遺伝子によってコードされるアミノ酸配列に該当する。また、配列番号1の塩基配列又は配列番号2のアミノ酸配列を有するタンパク質をコードする塩基配列と90%以上(好ましくは92%以上、より好ましくは95%以上、さらに好ましくは98%以上、最も好ましくは99%以上)の配列同一性を有し、かつ、5-アミノレブリン酸合成酵素活性を有するタンパク質をコードする塩基配列や、配列番号1の塩基配列又は配列番号2のアミノ酸配列を有するタンパク質をコードする塩基配列に対して1~120個(好ましくは1~60個、より好ましくは1~40個、さらに好ましくは1~20個、最も好ましくは1~10個)の塩基が欠失、置換、付加もしくは挿入された塩基配列であって、かつ、5-アミノレブリン酸合成酵素活性を有するタンパク質をコードする塩基配列もまた、本発明において好適に用いられる。なお、配列番号1の塩基配列に対してBLAST検索を行った場合、Rhodobacter sphaeroidesのH2株、DSM158株、MBTLJ-20株、MBTLJ-13株、MBTLJ-8株、AB24株、AB25株、AB27株、AB29株、CH10株及びKD131株のいずれかのゲノムに由来するhemT遺伝子は、いずれも、91%以上の配列同一性を示す。 A specific example of a hemT gene is a nucleic acid containing a nucleotide sequence encoding a protein having the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2. Here, the nucleotide sequence of SEQ ID NO: 1 corresponds to the full length of the coding region of the hemT gene contained in the genome of Rhodobacter sphaeroides strain 2.4.1, and SEQ ID NO: 2 corresponds to the amino acid sequence encoded by the hemT gene. Also suitable for use in the present invention are nucleotide sequences which have 90% or more (preferably 92% or more, more preferably 95% or more, even more preferably 98% or more, and most preferably 99% or more) sequence identity with a nucleotide sequence encoding a protein having the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2 and which encode a protein having 5-aminolevulinic acid synthase activity, and nucleotide sequences which have 1 to 120 (preferably 1 to 60, more preferably 1 to 40, even more preferably 1 to 20, and most preferably 1 to 10) bases deleted, substituted, added, or inserted from a nucleotide sequence encoding a protein having the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2 and which encode a protein having 5-aminolevulinic acid synthase activity. When a BLAST search was performed on the base sequence of SEQ ID NO:1, the hemT genes derived from the genomes of the H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, CH10, and KD131 strains of Rhodobacter sphaeroides all showed sequence identity of 91% or more.

 次に、本発明の光合成細菌の菌株において、hemT遺伝子を発現誘導するために、相同組換え技術により当該菌株に導入される同種のゲノム由来のPrrnBについて説明する。PrrnBは、光合成細菌のゲノムのリボソームRNAオペロンプロモーター(PrrnB)に由来する核酸であり、当該PrrnBを含む発現制御領域が本発明で使用される。rrnBプロモーターを含む発現制御領域は、本発明の菌株において制御下のhemT遺伝子の発現を誘導する活性を有する限り、どのような配列のものであっても良いが、例えば、以下の株のゲノム中のPrrnBを含む発現制御領域を挙げることができる。すなわち、Rhodobacter sphaeroidesの2.4.1株、H2株、DSM158株、MBTLJ-20株、MBTLJ-13株、MBTLJ-8株、AB24株、AB25株、AB27株、AB29株、ATH 2.4.3 (ATCC17025)株、ATH 2.4.9(ATCC 17029)株、IFO 12203株、CH10株、KD131株又はHJ株のいずれかのゲノムに由来するPrrnBを含む発現制御領域である。 Next, we will explain PrrnB derived from the genome of the same species that is introduced into the photosynthetic bacterial strain of the present invention by homologous recombination technology to induce expression of the hemT gene. PrrnB is a nucleic acid derived from the ribosomal RNA operon promoter (PrrnB) in the genome of the photosynthetic bacteria, and an expression control region containing said PrrnB is used in the present invention. The expression control region containing the rrnB promoter may be of any sequence as long as it has the activity of inducing expression of the hemT gene under its control in the strain of the present invention, and examples include expression control regions containing PrrnB in the genomes of the following strains: That is, the expression control region contains PrrnB derived from the genome of any of the following strains: Rhodobacter sphaeroides strains 2.4.1, H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, ATH 2.4.3 (ATCC17025), ATH 2.4.9 (ATCC 17029), IFO 12203, CH10, KD131, or HJ.

 PrrnBの具体的な例の一つは、配列番号4又は5の塩基配列を含む核酸である。ここで、配列番号4又は5の塩基配列は、Rhodobacter sphaeroidesの2.4.1株のゲノムに含まれる、58塩基長又は195塩基長を持つrrnBプロモーター領域又はこれを含有する核酸に該当する。また、配列番号4又は5の塩基配列と90%以上(好ましくは94%以上、より好ましくは96%以上、さらに好ましくは98%以上、最も好ましくは99%以上)の配列同一性を有し、かつ、hemTの発現誘導活性を有する塩基配列や、配列番号4又は5の塩基配列に対して1~19個(好ましくは1~15個、より好ましくは1~10個、さらに好ましくは1~5個、最も好ましくは1~3個)の塩基が欠失、置換、付加もしくは挿入された塩基配列であって、かつ、hemTの発現誘導活性を有する塩基配列もまた、本発明において好適に用いられる。なお、配列番号4又は5の塩基配列に対してBLAST検索を行った場合、Rhodobacter sphaeroidesのH2株、DSM158株、MBTLJ-20株、MBTLJ-13株、MBTLJ-8株、AB24株、AB25株、AB27株、AB29株、CH10株、KD131株及びHJ株のいずれかのゲノムに由来するPrrnBは、いずれも、96%又は94%以上の配列同一性を示す。 A specific example of PrrnB is a nucleic acid containing the base sequence of SEQ ID NO: 4 or 5. Here, the base sequence of SEQ ID NO: 4 or 5 corresponds to the rrnB promoter region having a length of 58 or 195 bases contained in the genome of the 2.4.1 strain of Rhodobacter sphaeroides, or a nucleic acid containing the same. In addition, a base sequence having a sequence identity of 90% or more (preferably 94% or more, more preferably 96% or more, even more preferably 98% or more, and most preferably 99% or more) with the base sequence of SEQ ID NO: 4 or 5 and having hemT expression-inducing activity, or a base sequence in which 1 to 19 bases (preferably 1 to 15, more preferably 1 to 10, even more preferably 1 to 5, and most preferably 1 to 3) have been deleted, substituted, added, or inserted from the base sequence of SEQ ID NO: 4 or 5, and having hemT expression-inducing activity, are also preferably used in the present invention. When a BLAST search is performed on the base sequence of SEQ ID NO: 4 or 5, PrrnB derived from the genome of any of the Rhodobacter sphaeroides strains H2, DSM158, MBTLJ-20, MBTLJ-13, MBTLJ-8, AB24, AB25, AB27, AB29, CH10, KD131, and HJ strains all show a sequence identity of 96% or 94% or more.

 rrnBプロモーター(PrrnB)の機能的断片もまた、hemTの発現誘導活性を有する限り、本発明において用いられる。Henry et al.(Proc. Natl. Acad. Sci. USA, (2020) vol. 117, pp. 29658-29668)によれば、PrrnB内には、転写因子が認識する-35領域の6塩基長の配列(TTGCGC)、及び、RNAポリメラーゼが認識する-10領域の6塩基長の配列(TAGAAA)が存在しており、両配列を含む29塩基長の塩基配列(TTGCGCCCGGGGCCGTCTGCTCCTAGAAA;配列番号3)、又は両配列を含む58塩基長の塩基配列(TACGGAGCCCAAAAAATCCGCTTGCGCCCGGGGCCGTCTGCTCCTAGAAACCGCTTCA;配列番号4)がrrnBプロモーターの機能的断片として機能する最小単位又はプロモーター領域であると考えられ、好適なPrrnBの機能的断片である。ここで、配列番号3又は4の塩基配列は、配列番号5の塩基配列の159位~187位又は138位~195位の塩基配列に該当する。よって、配列番号3又は4の塩基配列の全体を含み、かつ、配列番号5の塩基配列の部分配列に該当する、配列番号5の1位~158位のいずれかの位置に5’末端を有し、188位~195位のいずれかを3’末端とする塩基配列、又は、配列番号3の1位~137位のいずれかの位置に5’末端を有し、194位又は195位を3’末端とする塩基配列からなる核酸もまた、本発明のPrrnBの機能的断片又はプロモーター領域として本発明において好適に用いられる。なお、配列番号4及び配列番号5の塩基配列のそれぞれにおいて、3’末端に存在するアデニン残基は、転写開始点となる。
 なお、本発明において、hemTの発現誘導活性とは、文字通りhemTの発現を誘導する活性であり、必ずしも限定されないが、例えば、野生株もしくは標準株におけるhemTの発現の5倍、10倍、20倍又は30倍、特に好ましくは40倍以上の発現を誘導する活性を意味し、また、別の観点では、配列番号3、4又は5の何れかの塩基配列を有する核酸によるhemTの発現誘導活性と同等以上の活性を意味する。
Functional fragments of the rrnB promoter (PrrnB) are also used in the present invention as long as they have the activity of inducing the expression of hemT. According to Henry et al. (Proc. Natl. Acad. Sci. USA, (2020) vol. 117, pp. 29658-29668), PrrnB contains a 6-base sequence (TTGCGC) in the -35 region recognized by transcription factors and a 6-base sequence (TAGAAA) in the -10 region recognized by RNA polymerase, and a 29-base sequence (TTGCGCCCGGGGCCGTCTGCTCCTAGAAA; SEQ ID NO: 3) containing both sequences, or a 58-base sequence (TACGGAGCCCAAAAAATCCGCTTGCGCCCGGGGCCGTCTGCTCCTAGAAACCGCTTCA; SEQ ID NO: 4) containing both sequences is considered to be the minimum unit or promoter region that functions as a functional fragment of the rrnB promoter, and is a suitable functional fragment of PrrnB. Here, the base sequence of SEQ ID NO: 3 or 4 corresponds to the base sequence of positions 159 to 187 or positions 138 to 195 of the base sequence of SEQ ID NO: 5. Therefore, a nucleic acid having a 5'-end at any position from 1 to 158 of SEQ ID NO: 5 and a 3'-end at any position from 188 to 195, which includes the entire base sequence of SEQ ID NO: 3 or 4 and corresponds to a partial sequence of the base sequence of SEQ ID NO: 5, or a nucleic acid having a 5'-end at any position from 1 to 137 of SEQ ID NO: 3 and a 3'-end at position 194 or 195, is also preferably used in the present invention as a functional fragment or promoter region of PrrnB of the present invention. In addition, in each of the base sequences of SEQ ID NO: 4 and SEQ ID NO: 5, the adenine residue at the 3'-end serves as the transcription initiation site.
In the present invention, the expression-inducing activity of hemT literally means an activity to induce the expression of hemT, and although it is not necessarily limited to this, it means, for example, an activity to induce expression of hemT 5-fold, 10-fold, 20-fold or 30-fold, and particularly preferably 40-fold or more, compared to the expression of hemT in a wild-type or standard strain; and from another perspective, it means an activity that is equal to or greater than the expression-inducing activity of hemT by a nucleic acid having the base sequence of any one of SEQ ID NOs: 3, 4 or 5.

 次に、rrnBプロモーター(PrrnB)又はその機能的断片の挿入位置について説明する。
挿入位置は、PrrnB又はその機能的断片がプロモーターとして機能し、その下流に位置するhemT遺伝子の転写を誘導する位置であれば、その挿入位置は必ずしも限定されない。通常、hemT遺伝子のコード領域、転写開始点、又はリボソーム結合配列の上流が挿入位置とされる。挿入位置の例は、hemT遺伝子のコード領域上流であって、かつ、hemT遺伝子の開始コドンから上流10,000塩基以内、好ましくは1,000塩基以内、より好ましくは100塩基以内、さらに好ましくはhemT遺伝子の転写開始位置に隣接した位置である。
ただし、hemT遺伝子の発現誘導が目的とされる以上、挿入されたPrrnB又はその機能的断片とhemT遺伝子の開始コドンとの間に転写終結配列が存在しないことが求められるため、仮にそれが存在する場合は当該転写終結配列が除去されるような配列修飾が行われる。なお、PrrnBまたはその機能的断片であるプロモーター領域を含む挿入配列には、他に、転写開始点(アデニン塩基)、リボソーム結合配列又は他の遺伝子等を適宜含むこともできる。
Next, the insertion site of the rrnB promoter (PrrnB) or a functional fragment thereof will be described.
The insertion position is not necessarily limited as long as PrrnB or a functional fragment thereof functions as a promoter and induces transcription of the hemT gene located downstream thereof. Usually, the insertion position is the coding region of the hemT gene, the transcription start site, or upstream of the ribosome binding sequence. An example of the insertion position is a position upstream of the coding region of the hemT gene, and within 10,000 bases upstream of the start codon of the hemT gene, preferably within 1,000 bases, more preferably within 100 bases, and even more preferably adjacent to the transcription start site of the hemT gene.
However, since the purpose is to induce expression of the hemT gene, it is required that there is no transcription termination sequence between the inserted PrrnB or its functional fragment and the start codon of the hemT gene, and if such a sequence exists, the sequence is modified to remove the transcription termination sequence. The inserted sequence containing the promoter region of PrrnB or its functional fragment may also contain other appropriate components such as a transcription initiation site (adenine base), a ribosome binding sequence, or other genes.

 本発明の一実施形態に係る光合成細菌の菌株は、セルフクローニング技術によって作出されたものであり、外来遺伝子など、異種生物由来の核酸配列を実質的に含まない。セルフクローニングでは、同じ種の生物が形質転換DNAのソースと形質転換の宿主として使用される。よって、本発明では、ある種の光合成細菌に由来するPrrnBまたはその機能的断片を含む挿入配列がソースとなり、同種の光合成細菌の宿主ゲノムに挿入される。当該挿入により、同じ種の光合成細菌に由来するPrrnB又はその機能的断片とhemT遺伝子とが機能的に連結され、セルフクローニング株においてrrnBプロモーターの発現誘導活性によりhemTが発現誘導される。セルフクローニング技術により作出した本発明の菌株のゲノムは、宿主とした光合成細菌とは異なる種の生物に由来する核酸を全く含まないか、実質的に含まないものであるが、ここで実質的に含まないとは、in vitro クローニングを容易にするために使用されるポリリンカーなど、1~30塩基程度(好ましくは20塩基以内、より好ましくは10塩基以内、さらに好ましくは6塩基以内)のごく短い配列長の異種由来核酸又は人工配列核酸に限り、その存在を許容するものである。ここで、セレクションマーカーに利用される異種由来の抗生物質耐性遺伝子などの異種由来核酸を包含させることは意図していない。 The photosynthetic bacterial strain according to one embodiment of the present invention is produced by a self-cloning technique and is substantially free of nucleic acid sequences derived from heterologous organisms, such as foreign genes. In self-cloning, organisms of the same species are used as the source of transforming DNA and the host for transformation. Thus, in the present invention, an insertion sequence containing PrrnB or a functional fragment thereof derived from a certain type of photosynthetic bacteria is used as the source and inserted into the host genome of the same type of photosynthetic bacteria. This insertion functionally links PrrnB or a functional fragment thereof derived from the same type of photosynthetic bacteria to the hemT gene, and expression of hemT is induced in the self-cloning strain by the expression-inducing activity of the rrnB promoter. The genome of the strain of the present invention produced by the self-cloning technique is completely free or substantially free of nucleic acid derived from organisms of a species different from the host photosynthetic bacteria. Here, "substantially free" means that only heterologous nucleic acid or artificial sequence nucleic acid with a very short sequence length of about 1 to 30 bases (preferably 20 bases or less, more preferably 10 bases or less, and even more preferably 6 bases or less) is allowed to exist, such as a polylinker used to facilitate in vitro cloning. Here, it is not intended to include heterologous nucleic acids, such as heterologous antibiotic resistance genes, that are used as selection markers.

 セルフクローニングは、当業者に周知の技術(要すれば、Akada et al., (1999) J. Biosci. Bioeng., vol. 87, pp. 43-48、特開2003-144164号公報等を参照)であり、一般的な分子生物学的実験技術を組み合わせて適用することにより、当業者であれば適宜実施することができる。 Self-cloning is a technique well known to those skilled in the art (see Akada et al. (1999) J. Biosci. Bioeng., vol. 87, pp. 43-48, JP 2003-144164 A, etc.), and can be carried out appropriately by those skilled in the art by combining and applying general molecular biology experimental techniques.

 本発明の一実施態様は、5-アミノレブリン酸の高生産性の光合成細菌の菌株を作製する方法である。当該方法は、光合成細菌の野生株に対して、当該野生株のゲノムにおける5-アミノレブリン酸合成酵素であるHemTをコードする遺伝子(hemT)の上流に、リボソームRNAオペロンプロモーター(PrrnB)を含む発現制御領域を、相同組換え技術により挿入する工程を含むものであり、ここで、挿入されるPrrnBはhemTの発現を誘導するものであり、当該誘導が野生株と比して5-アミノレブリン酸の生産性の増大をもたらすものであり、光合成細菌はα-プロテオバクテア網に属する種の細菌である、方法である。 One embodiment of the present invention is a method for producing a photosynthetic bacterial strain with high productivity of 5-aminolevulinic acid. The method includes a step of inserting an expression control region including a ribosomal RNA operon promoter (PrrnB) into a wild-type strain of photosynthetic bacteria upstream of a gene (hemT) encoding HemT, a 5-aminolevulinic acid synthase, in the genome of the wild-type strain by homologous recombination, where the inserted PrrnB induces expression of hemT, and the induction results in increased productivity of 5-aminolevulinic acid compared to the wild-type strain, and the photosynthetic bacteria is a species of bacteria belonging to the class α-Proteobacteria.

 本発明の5-アミノレブリン酸の高生産性の光合成細菌の菌株を作製する方法の一態様は、相同組換えのためのプラスミドベクターを用いる方法である。ここで、当該プラスミドベクターは、PrrnBを含む発現制御領域を含み、かつ、相同組換えの標的領域に隣接したゲノムの上流域及び下流域のそれぞれと相同な配列からなる相同領域が前記PrrnBを含む発現制御領域を挟んで両側に配置されたものである。前記相同領域は、相同組換え(ホモロガスリコンビネーション)を効率的かつ標的部位特異的に惹起できる限り、任意の配列長であって良いが、例えば20塩基以上、100塩基以上、500塩基以上、又は1,000塩基以上の配列長のものである。PrrnBを含む発現制御領域から見て、前記相同領域より外側に位置する部分は、相同組換えによって宿主に挿入されることはないので、宿主のゲノムに対して異種の核酸を含んでいても良い。当該異種の核酸の例は、ポジティブセレクションマーカー(GmR等の抗生物質耐性遺伝子)やネガティブセレクションマーカー(sacB等)である。 One embodiment of the method for producing a photosynthetic bacterium strain with high productivity of 5-aminolevulinic acid of the present invention is a method using a plasmid vector for homologous recombination. Here, the plasmid vector includes an expression control region containing PrrnB, and homologous regions consisting of sequences homologous to the upstream and downstream regions of the genome adjacent to the target region of homologous recombination are arranged on both sides of the expression control region containing PrrnB. The homologous region may have any sequence length as long as it can efficiently induce homologous recombination in a target site-specific manner, for example, a sequence length of 20 bases or more, 100 bases or more, 500 bases or more, or 1,000 bases or more. The portion located outside the homologous region from the expression control region containing PrrnB is not inserted into the host by homologous recombination, so it may contain a nucleic acid heterologous to the genome of the host. Examples of the heterologous nucleic acid include a positive selection marker (antibiotic resistance gene such as Gm R ) and a negative selection marker (sacB, etc.).

 本発明の別の実施態様は、本発明の光合成細菌の菌株を培地中で培養し、菌株及び培地中に5-アミノレブリン酸を生成、蓄積させ、培養物から5-アミノレブリン酸を採取することを特徴とする、5-アミノレブリン酸の製造方法である。5-アミノレブリン酸の生産を目的とした光合成細菌を培養や生産物である5-アミノレブリン酸を採取は、いずれも周知技術であり、当業者であれば公知文献を参照するなどして適宜実施することができる。5-アミノレブリン酸の生産ができる限り、培地は固体培地であっても液体培地であってもよく、また、培地成分も5-アミノレブリン酸生産に係る基質(グリシン等)を含み、かつ光合成細菌の生育に好適なものである限り、任意のものであって良い。特許文献3に記載されるように、酵母エキス等の通常の栄養成分に加えて植物蛋白質加水分解物を含有する培地を使用することもできる。本発明の5-アミノレブリン酸の製造方法の好ましい一例は、液体培地を使用し、かつ、振盪培養を行う方法である。培養における酸素条件は、5-アミノレブリン酸の生産ができる限り、好気条件、微好気条件(酸素制限条件)、嫌気条件のいずれであっても良いが、好ましくは微好気条件である。酸素は光合成細菌、特に紅色非硫黄細菌の色素合成を阻害し、更に5-アミノレブリン酸合成酵素も酸素によって不活性化されるといわれているためである。微好気条件は酸素供給を人為的に抑制することによって実現できるが、換気が十分でない環境下で継続的に振盪培養を実施する中で自ずと実現させることもできる。なお、培養において光照射を行わない場合、光合成細菌は従属栄養条件の環境に置かれることになり、その生育には酸素が必要となるので、嫌気条件は適しない。5-アミノレブリン酸の生産性を高めるために、培地成分、酸素供給状況、及び光照射量といった菌株の培養に係る環境の諸条件は、その組み合わせも含め、適宜調整することができる。 Another embodiment of the present invention is a method for producing 5-aminolevulinic acid, characterized in that a strain of the photosynthetic bacteria of the present invention is cultured in a medium, 5-aminolevulinic acid is produced and accumulated in the strain and the medium, and 5-aminolevulinic acid is collected from the culture. Cultivating photosynthetic bacteria for the purpose of producing 5-aminolevulinic acid and collecting the product 5-aminolevulinic acid are both well-known techniques, and a person skilled in the art can appropriately carry them out by referring to known literature. As long as 5-aminolevulinic acid can be produced, the medium may be a solid medium or a liquid medium, and the medium components may be any as long as they contain a substrate (glycine, etc.) related to the production of 5-aminolevulinic acid and are suitable for the growth of photosynthetic bacteria. As described in Patent Document 3, a medium containing a plant protein hydrolysate in addition to ordinary nutritional components such as yeast extract can also be used. A preferred example of the method for producing 5-aminolevulinic acid of the present invention is a method using a liquid medium and performing shaking culture. The oxygen conditions in the culture may be aerobic, microaerobic (oxygen-limited), or anaerobic as long as 5-aminolevulinic acid can be produced, but microaerobic conditions are preferred. This is because oxygen inhibits pigment synthesis in photosynthetic bacteria, particularly purple nonsulfur bacteria, and 5-aminolevulinic acid synthase is said to be inactivated by oxygen. Microaerobic conditions can be achieved by artificially suppressing oxygen supply, but they can also be achieved naturally during continuous shaking culture in an environment with insufficient ventilation. If light irradiation is not performed during culture, the photosynthetic bacteria will be placed in a heterotrophic environment and will require oxygen for growth, so anaerobic conditions are not suitable. In order to increase the productivity of 5-aminolevulinic acid, the various environmental conditions related to the culture of the strain, such as medium components, oxygen supply conditions, and light irradiation amount, including combinations thereof, can be appropriately adjusted.

 培養温度や培地のpHは、本発明の光合成細菌の菌株が生育し、5-アミノレブリン酸を生産する限りどのような温度やpHであっても良いが、例えば、培養温度は、10~40℃、特に20~35℃が好ましく、培地のpHは3~9が好ましく、特に6~8が好ましい。なお、5-アミノレブリン酸の生産時にpHが変化する場合には、水酸化ナトリウム、アンモニア、水酸化カリウム等のアルカリ溶液や塩酸、硫酸、燐酸等の酸を用いてpHを調整することが好ましい。 The culture temperature and the pH of the medium may be any temperature and pH as long as the photosynthetic bacterial strain of the present invention grows and produces 5-aminolevulinic acid. For example, the culture temperature is preferably 10 to 40°C, particularly 20 to 35°C, and the pH of the medium is preferably 3 to 9, particularly 6 to 8. If the pH changes during the production of 5-aminolevulinic acid, it is preferable to adjust the pH using an alkaline solution such as sodium hydroxide, ammonia, or potassium hydroxide, or an acid such as hydrochloric acid, sulfuric acid, or phosphoric acid.

 培養を通じて本発明の光合成細菌の菌株により生産された5-アミノレブリン酸は、常法により精製することができる。例えば、イオン交換法、クロマト法、抽出法等の常法によって必要に応じて分離・精製することができる。 The 5-aminolevulinic acid produced by the photosynthetic bacterial strain of the present invention through cultivation can be purified by standard methods. For example, it can be separated and purified as necessary by standard methods such as ion exchange, chromatography, and extraction.

 実施例を挙げて以下に本発明を詳細に説明するが、これらは単に例示の目的で掲げられるものであって、本発明はこれら実施例に限定されるものではない。 The present invention will be described in detail below with reference to examples, but these are presented for illustrative purposes only and the present invention is not limited to these examples.

<材料と方法>
1.菌株、培地、培養、プラスミド、及びプライマー
 ロドバクター・スフェロイデス(Rhodobacter sphaeroides)の菌株は、PYS培地(0.3%バクトペプトン、0.3%バクトイーストエキストラクト、2mM CaCl2 および2mM MgSO4)を増殖培地として用い、30℃のシェーカーで好気的に増殖させた。大腸菌は、ルリア・ベルタニ培地(1%バクトトリプトン、0.5%バクトイーストエキストラクト、0.5%NaCl)を増殖培地として37℃で増殖させた。
 以下の実施例で使用した菌株、プラスミド及びプライマーを以下に示す。
Materials and Methods
1. Strains, media, culture, plasmids, and primers Rhodobacter sphaeroides strains were grown aerobically in PYS medium (0.3% Bacto peptone, 0.3% Bacto yeast extract, 2 mM CaCl2, and 2 mM MgSO4 ) as the growth medium in a shaker at 30°C. E. coli strains were grown at 37°C in Luria-Bertani medium (1% Bacto tryptone, 0.5% Bacto yeast extract, 0.5% NaCl) as the growth medium.
The strains, plasmids and primers used in the following examples are shown below.

 大腸菌
JM109; Yanisch-Perron et al., Gene (1985) vol. 33, pp. 103-119.
JM109 λ pir; JM109 lysogenized with λ pir bacteriophage; Penfold and Pemberton, Gene (1992) vol. 118, pp. 145-146.
S17-1; F-, thi, pro, hsdR, [RP4-2 Tc::Mu Km::Tn7 (Tp Sm)]; Simon et al., Bio/Technology (1983) vol. 1, pp. 784-791.
S17-1; S17-1 lysogenized with λ pir bacteriophage; De Lorenzo, et al., J. Bacteriol. (1990) vol. 172, pp. 6568-6572.
E. coli
JM109; Yanisch-Perron et al., Gene (1985) vol. 33, pp. 103-119.
JM109 λ pir; JM109 lysogenized with λ pir bacteriophage; Penfold and Pemberton, Gene (1992) vol. 118, pp. 145-146.
S17-1; F-, thi, pro, hsdR, [RP4-2 Tc::Mu Km::Tn7 (Tp Sm)]; Simon et al., Bio/Technology (1983) vol. 1, pp. 784-791.
S17-1; S17-1 lysogenized with λ pir bacteriophage; De Lorenzo, et al., J. Bacteriol. (1990) vol. 172, pp. 6568-6572.

 光合成細菌Rhodobacter sphaeroides
2.4.1; 野生株; Sistrom, J. Gen. Microbiol., (1960) vol. 22, pp. 778-785.
WT; 2.4.1株由来のリファンピシン耐性株
BA; The rrnB promoter was inserted upstream of the hemA transcription start siteBT; The rrnB promoter was inserted upstream of the hemT transcription start siteBAT; The rrnB promoter was inserted upstream of both the hemA and hemT transcription start sites
7A; The rsp_7571 promoter was inserted upstream of the hemA start codon
7T; The rsp_7571 promoter was inserted upstream of the hemT start codon
7AT; The rsp_7571 promoter was inserted upstream of both the hemA start codon and hemT start codon
 なお、WT, BA, BT, BAT, 7A, 7T, 及び7ATの各株は、本発明において新たに作製されたものである。
Photosynthetic bacterium Rhodobacter sphaeroides
2.4.1; Wild strain; Sistrom, J. Gen. Microbiol., (1960) vol. 22, pp. 778-785.
WT; rifampicin-resistant strain derived from strain 2.4.1
BA; The rrnB promoter was inserted upstream of the hemA transcription start siteBT; The rrnB promoter was inserted upstream of the hemT transcription start siteBAT; The rrnB promoter was inserted upstream of both the hemA and hemT transcription start sites
7A inserted; The rsp_7571 promoter was upstream of the hemA start codon
7T; The rsp_7571 promoter was upstream of the hemT start codon
7AT inserted; The rsp_7571 promoter was upstream of both the hemA start codon and hemT start codon
The WT, BA, BT, BAT, 7A, 7T, and 7AT strains were newly constructed in the present invention.

 プラスミド
pZJD29A; Suicide vector, sacB, Gmr; Swem et al., EMBO J. (2003) vol. 22, pp. 4699-4708.
pZJD29A PrrnB hemA; Sequence to insert PrrnB upstream of the hemA transcription start site on pZJD29A.
pZJD29A PrrnB hemT; Sequence to insert PrrnB upstream of the hemT transcription start site on pZJD29A.
pZJD29A Prsp_7571 hemA; Sequence to insert Prsp_7571 upstream of the hemA coding sequence on pZJD29A.
pZJD29A Prsp_7571 hemT; Sequence to insert Prsp_7571 upstream of the hemT coding sequence on pZJD29A
Plasmids
pZJD29A; Suicide vector, sacB, Gm r ; Swem et al., EMBO J. (2003) vol. 22, pp. 4699-4708.
pZJD29A PrrnB hemA; Sequence to insert PrrnB upstream of the hemA transcription start site on pZJD29A.
pZJD29A PrrnB hemT; Sequence to insert PrrnB upstream of the hemT transcription start site on pZJD29A.
pZJD29A Prsp_7571 hemA; Sequence to insert Prsp_7571 upstream of the hemA coding sequence on pZJD29A.
pZJD29A Prsp_7571 hemT; Sequence to insert Prsp_7571 upstream of the hemT coding sequence on pZJD29A

 プライマー(クローニング用)
MCShemAUP-F; 配列番号6upstream of hemA transcription start site
PrrnBhemAUP-R; 配列番号7; upstream of hemA transcription start site
PrrnBhemADW-F; 配列番号8; downstream of hemA transcription start site
MCShemADW-R; 配列番号9; downstream of hemA transcription start site
hemAUPPrrnB-F; 配列番号10 Promotor of rrnB
hemADWPrrnB-R; 配列番号11; Promotor of rrnB
MCShemTUP-F; 配列番号12; upstream of hemT transcription start site
PrrnBhemTUP-R; 配列番号13; upstream of hemT transcription start site
PrrnBhemTDW-F; 配列番号14; downstream of hemT transcription start site
MCShemTDW-R; 配列番号15; downstream of hemT transcription start site
hemTUPPrrnB-F; 配列番号16; Promotor of rrnB
hemTDWPrrnB-R; 配列番号17; Promotor of rrnB
MCShemAUP-F2; 配列番号18; upstream of hemA start codon
P7571hemAUP-R; 配列番号19; upstream of hemA start codon
P7571hemADW-F; 配列番号20; downstream of hemA start codon
MCShemADW-R2; 配列番号21; downstream of hemA start codon
hemAUPP7571-F; 配列番号22; Promotor of rsp_7571
hemADWP7571-R; 配列番号23; Promotor of rsp_7571
MCShemTUP-F2; 配列番号24; upstream of hemT start codon
P7571hemTDW-F; 配列番号25; upstream of hemT start codon
P7571hemTUP-R; 配列番号26; downstream of hemT start codon
MCShemTDW-R2; 配列番号27; downstream of hemT start codon
hemTUPP7571-F; 配列番号28; Promotor of rsp_7571
hemTDWP7571-R; 配列番号29; Promotor of rsp_7571
Primers (for cloning)
MCShemAUP-F; sequence number 6 upstream of hemA transcription start site
PrrnBhemAUP-R; SEQ ID NO: 7; upstream of hemA transcription start site
PrrnBhemADW-F; SEQ ID NO:8; downstream of hemA transcription start site
MCShemADW-R; SEQ ID NO:9; downstream of hemA transcription start site
hemAUPPrrnB-F; SEQ ID NO: 10 Promoter of rrnB
hemADWPrrnB-R; SEQ ID NO:11; Promotor of rrnB
MCShemTUP-F; SEQ ID NO:12; upstream of hemT transcription start site
PrrnBhemTUP-R; SEQ ID NO: 13; upstream of hemT transcription start site
PrrnBhemTDW-F; SEQ ID NO:14; downstream of hemT transcription start site
MCShemTDW-R; SEQ ID NO: 15; downstream of hemT transcription start site
hemTUPPrrnB-F; SEQ ID NO: 16; Promoter of rrnB
hemTDWPrrnB-R; SEQ ID NO: 17; Promotor of rrnB
MCShemAUP-F2; SEQ ID NO:18; upstream of hemA start codon
P7571hemAUP-R; SEQ ID NO:19; upstream of hemA start codon
P7571hemADW-F; SEQ ID NO:20; downstream of hemA start codon
MCShemADW-R2; SEQ ID NO:21; downstream of hemA start codon
hemAUPP7571-F; SEQ ID NO:22; Promotor of rsp_7571
hemADWP7571-R; SEQ ID NO:23; Promotor of rsp_7571
MCShemTUP-F2; SEQ ID NO:24; upstream of hemT start codon
P7571hemTDW-F; SEQ ID NO:25; upstream of hemT start codon
P7571hemTUP-R; SEQ ID NO:26; downstream of hemT start codon
MCShemTDW-R2; SEQ ID NO:27; downstream of hemT start codon
hemTUPP7571-F; SEQ ID NO:28; Promotor of rsp_7571
hemTDWP7571-R; SEQ ID NO:29; Promotor of rsp_7571

2.定量的リアルタイムPCR
 RNAはRNeasy Mini Kit (QIAGEN) を用いて対数増殖細胞から抽出した。cDNAはPrimeScript RT reagent Kit (TaKaRa bio) を用いて逆転写することによりRNAから合成した。cDNAは、TB Green Premix Ex Taq II(TaKaRa bio)を用いて、Thermal Cycler Dice Real Time System III(TaKaRa bio)を用いたリアルタイムPCRにより定量した。各cDNAサンプルはテクニカルレプリケートとして3回定量した。増幅に使用したプライマー配列を以下に示す。各サンプルのサイクル閾値(Ct)値は、2nd Derivative Maximum法により算出した。正規化ΔCtは、各細胞の内因性コントロールとしてRNAポリメラーゼのωサブユニットをコードするrpoZ遺伝子を用いて計算した。各サンプルのΔΔCtは、好気的条件下で培養したWTのΔCtをキャリブレーターとして算出した。
2. Quantitative real-time PCR
RNA was extracted from logarithmically growing cells using RNeasy Mini Kit (QIAGEN). cDNA was synthesized from RNA by reverse transcription using PrimeScript RT reagent Kit (TaKaRa bio). cDNA was quantified by real-time PCR using TB Green Premix Ex Taq II (TaKaRa bio) with Thermal Cycler Dice Real Time System III (TaKaRa bio). Each cDNA sample was quantified three times as technical replicates. The primer sequences used for amplification are shown below. The cycle threshold (Ct) value of each sample was calculated by the 2nd derivative maximum method. The normalized ΔCt was calculated using the rpoZ gene encoding the ω subunit of RNA polymerase as an endogenous control for each cell. The ΔΔCt of each sample was calculated using the ΔCt of WT cultured under aerobic conditions as a calibrator.

 定量的リアルタイムPCRに用いたプライマーを以下に示す。
rpoZqRT-F; 配列番号30; Gomelsky et al., Microbiology (2003) vol. 149, pp. 377-388.
rpoZqRT-R; 配列番号31; Gomelsky et al., Microbiology (2003) vol. 149, pp. 377-388.
hemTqRT-F; 配列番号32; 本出願で新たに設計
hemTqRT-R; 配列番号33; 本出願で新たに設計
hemAqRT-F; 配列番号34; 本出願で新たに設計
hemAqRT-F; 配列番号35; 本出願で新たに設計
The primers used for quantitative real-time PCR are shown below.
rpoZqRT-F; SEQ ID NO: 30; Gomelsky et al., Microbiology (2003) vol. 149, pp. 377-388.
rpoZqRT-R; SEQ ID NO: 31; Gomelsky et al., Microbiology (2003) vol. 149, pp. 377-388.
hemTqRT-F; SEQ ID NO: 32; newly designed in this application
hemTqRT-R; SEQ ID NO: 33; newly designed in this application
hemAqRT-F; SEQ ID NO: 34; newly designed in this application
hemAqRT-F; SEQ ID NO: 35; newly designed in this application

3.ALAS活性の検出
 細胞の粗抽出物中のALAS活性は、Yubisuiら(Arch. Biochem. Biophys., (1972), 150, 77-85.)の方法に従って測定した。培養液を8,000 × gで5分間、4℃で遠心分離し、得られた細胞ペレットを氷冷した50 mM Tris-HCl緩衝液(pH 7.5)に懸濁した。細胞の懸濁液を超音波処理し、10,000 × gで5分間、4℃で遠心させた後、得られた上清のタンパク質濃度をBradford protein assayによって測定した。酵素溶液(95%細胞破砕液上清、20 mM Tris-HCl(pH 7.5)、0.35 mMピリドキサールリン酸)と基質溶液(0.5 Mグリシン、1 mMスクシニルCoA)を37℃で5分間保温した。酵素溶液に対し25%の容量の基質溶液を加え、酵素反応を開始した。5分後に、反応液に対して30%の容量の10%トリクロロ酢酸を加え、氷冷することで反応を停止した。
 各反応液中の5-アミノレブリン酸濃度は、Mauzerallら(J. Biol. Chem., (1956), 219, 435.)の方法に従って測定した。各試料中の5-アミノレブリン酸を2M酢酸緩衝液(pH 4.6)中で100℃で15分間煮沸し、1%アセチルアセトンと反応させた。反応液に175%容量の改良Ehrlich試薬(20 g/L p-ジメチルアミノベンズアルデヒド、12%過塩素酸、60%氷酢酸)を加え、553 nmの吸光度を測定することにより生成したピロール化合物を比色定量した。
3. Detection of ALAS activity ALAS activity in crude cell extracts was measured according to the method of Yubisui et al. (Arch. Biochem. Biophys., (1972), 150, 77-85.). The culture medium was centrifuged at 8,000 × g for 5 min at 4°C, and the resulting cell pellet was suspended in ice-cold 50 mM Tris-HCl buffer (pH 7.5). The cell suspension was sonicated and centrifuged at 10,000 × g for 5 min at 4°C, and the protein concentration of the resulting supernatant was measured by Bradford protein assay. Enzyme solution (95% cell homogenate supernatant, 20 mM Tris-HCl (pH 7.5), 0.35 mM pyridoxal phosphate) and substrate solution (0.5 M glycine, 1 mM succinyl CoA) were incubated at 37°C for 5 min. The enzyme reaction was started by adding 25% of the substrate solution to the enzyme solution. After 5 minutes, the reaction was stopped by adding 10% trichloroacetic acid in an amount of 30% by volume relative to the reaction solution and cooling on ice.
The concentration of 5-aminolevulinic acid in each reaction solution was measured according to the method of Mauzerall et al. (J. Biol. Chem., (1956), 219, 435.). 5-aminolevulinic acid in each sample was boiled in 2 M acetate buffer (pH 4.6) at 100°C for 15 minutes and reacted with 1% acetylacetone. 175% volume of modified Ehrlich reagent (20 g/L p-dimethylaminobenzaldehyde, 12% perchloric acid, 60% glacial acetic acid) was added to the reaction solution, and the pyrrole compound formed was colorimetrically quantified by measuring the absorbance at 553 nm.

4.5-アミノレブリン酸の発酵による生産
 5-アミノレブリン酸は、Nishikawaら(J. Biosci. Bioeng., (1999), 87, 798-804.)の方法を用いてロドバクター・スフェロイデス(Rhodobacter sphaeroides)の各株で生産させた。各株は、300mLバッフル付き三角フラスコ中の120 mLのGGY2培地(50 mMグルコース、L-グルタミン酸ナトリウム一水和物 3.8g/L、バクトイーストエキストラクト 2.0g/L、NaH2PO4・12H2O 1.13g/L, NaH2PO4・2H2O 1.07 g/L, (NH4)2HPO4 0.8 g/L, MgSO4・7H2O 0.2 g/L, CaCl2・2H2O 53 mg/L, MnSO4 1.2 mg/L, ニコチン酸 1.0 mg/L, チアミン塩酸塩 1.0 mg/L, ビオチン 0.01 mg/L)に前培養液を2.4 mL加え、30°C、170 rpmで48時間、暗所、好気条件下で振盪培養した。各培養液を5,000×gで5分間遠心した。湿重量1.0 gの各細胞ペレットを基質(60 mMグリシン)と代謝阻害剤(30 mMレブリン酸)を含む新しいGGY2培地20 mlに懸濁し、試験管内で30℃、150 rpm、暗所で振盪培養した。各株は、3本の独立した試験管で培養した。0, 12, 18, 24, 36, 42, 48 時間の培養後、各培養液上清中の5-アミノレブリン酸濃度を上記(ALAS 活性の検出)と同様に測定した。
4. Fermentative Production of 5-Aminolevulinic Acid 5-Aminolevulinic acid was produced in various strains of Rhodobacter sphaeroides using the method of Nishikawa et al. (J. Biosci. Bioeng., (1999), 87, 798-804.). Each strain was cultured in 120 mL of GGY2 medium (50 mM glucose, 3.8 g/L sodium L-glutamate monohydrate, 2.0 g/L Bacto yeast extract, 1.13 g/L NaH2PO4·12H2O, 1.07 g / L NaH2PO4 · 2H2O , 0.8 g/L ( NH4 )2HPO4, 0.2 g / L MgSO4 · 7H2O , 53 mg/L CaCl2· 2H2O , 1.2 mg /L MnSO4, 1.0 mg/L nicotinic acid , 1.0 mg/ L thiamine hydrochloride, and 0.01 mg /L biotin) in a 300 mL baffled Erlenmeyer flask, and incubated at 30°C for 170 min. The strains were cultured in a dark, aerobic condition at 150 rpm for 48 h with shaking. Each culture was centrifuged at 5,000 × g for 5 min. A cell pellet (1.0 g wet weight) was suspended in 20 ml of fresh GGY2 medium containing substrate (60 mM glycine) and metabolic inhibitor (30 mM levulinic acid) and cultured in a test tube at 30°C with shaking at 150 rpm in the dark. Each strain was cultured in three independent test tubes. After 0, 12, 18, 24, 36, 42, and 48 h of culture, the 5-aminolevulinic acid concentration in each culture supernatant was measured as described above (detection of ALAS activity).

実施例1 ロドバクター・スフェロイデスのhemA又はhemT遺伝子の上流にrrnB又はrsp_7571プロモーターを挿入したセルフクローニング株の作出(図1、図2)
(1)
 hemAの転写開始部位の上流にrrnBプロモーターを挿入するために、自殺ベクターpZJD29A PrrnB hemAを構築した。hemAの転写開始点から上流、及び下流の600 bpのDNA断片、及び、rrnBプロモーターをPCR増幅し、pZJD29Aに挿入した。同様に、pZJD29A PrrnB hemTも構築した。これらのプラスミドを大腸菌を用いてロドバクター・スフェロイデスに接合伝達し、プラスミド上の抗生物質耐性遺伝子をマーカーにしてゲノム上にプラスミドが相同組換えされた1回組換え体を得た。これらの株をスクロースプレートでセレクションすることでプラスミド由来の配列がゲノムから相同組換えにより抜け落ちた2回組換え体を得た。得られた株のゲノムを確認し、プロモーターが挿入されていることを確認した。以上よりrrnBプロモーターがhemA又はhemT又はhemAとhemTの両方の上流に挿入されたロドバクター・スフェロイデスの株を構築した。
 より具体的には、rrnBの転写開始部位から195bp上流を、hemA又はhemT又はhemAとhemTの両方の転写開始部位の上流に挿入した(図2)。ここで、PrrnB が hemA にのみ挿入された株を BA、PrrnB が hemT にのみ挿入された株を BT、PrrnB が hemA と hemT の両方に挿入された株を BAT と命名した。
 なお、rrnB、hemA、及びhemTの転写開始部位は、Drydenら(J Bacteriol., (1993), 175, 6392-6402.)、 及びNeidleら(J. Bacteriol., (1993), 175, 2292-2303.)を参照した。rrnBのプロモーター(PrrnB )は、リボソームRNAオペロン(rrnA、rrnB、rrnC)のプロモーターの中で最も高い転写活性を示す構成的プロモーターとして知られている。
Example 1: Construction of a self-cloning strain in which the rrnB or rsp_7571 promoter is inserted upstream of the hemA or hemT gene of Rhodobacter sphaeroides (FIGS. 1 and 2)
(1)
In order to insert the rrnB promoter upstream of the transcription start site of hemA, a suicide vector pZJD29A PrrnB hemA was constructed. A 600 bp DNA fragment upstream and downstream from the transcription start site of hemA and the rrnB promoter were PCR amplified and inserted into pZJD29A. Similarly, pZJD29A PrrnB hemT was also constructed. These plasmids were conjugated to Rhodobacter sphaeroides using E. coli, and a single recombinant in which the plasmid was homologously recombined on the genome was obtained using the antibiotic resistance gene on the plasmid as a marker. These strains were selected on sucrose plates to obtain a double recombinant in which the sequence derived from the plasmid was removed from the genome by homologous recombination. The genome of the obtained strain was confirmed to confirm that the promoter was inserted. Thus, a Rhodobacter sphaeroides strain in which the rrnB promoter was inserted upstream of hemA, hemT, or both hemA and hemT was constructed.
More specifically, the 195 bp upstream of the transcription start site of rrnB was inserted upstream of the transcription start sites of hemA, hemT, or both hemA and hemT (Fig. 2). The strain in which PrrnB was inserted only in hemA was named BA, the strain in which PrrnB was inserted only in hemT was named BT, and the strain in which PrrnB was inserted in both hemA and hemT was named BAT.
The transcription initiation sites of rrnB, hemA, and hemT were determined by reference to Dryden et al. (J. Bacteriol., (1993), 175, 6392-6402.) and Neidle et al. (J. Bacteriol., (1993), 175, 2292-2303.). The rrnB promoter (PrrnB) is known as a constitutive promoter that exhibits the highest transcription activity among the promoters of ribosomal RNA operons (rrnA, rrnB, rrnC).

(2)hemA又はhemT遺伝子の転写開始点の上流にrsp_7571プロモーターを挿入したロドバクター・スフェロイデスのセルフクローニング株を、以下の手順で作出した。
 hemA開始コドンの上流にrsp_7571プロモーターを挿入するために、pZJD29A Prsp_7571 hemAを構築した。hemA開始コドンの上流と下流の2つの600bp DNA断片、及び、rsp_7571プロモーターをPCRで増幅し、pZJD29Aに挿入した。同様に、pZJD29A Prsp_7571 hemTも構築した。これらのプラスミドを用いて、rsp_7571プロモーター挿入ロドバクター・スフェロイデスの株を構築した。
 より具体的には、rsp_7571の開始コドンから498 bp上流をhemAおよび/またはhemTの開始コドンの上流に挿入した(図2)。Prsp_7571がhemAのみに挿入された株を7A、Prsp_7571がhemTのみに挿入された株を7T、Prsp_7571がhemAとhemTの両方に挿入された株を7ATと命名した。
 なお、rsp_7571 (Prsp_7571 ) のプロモーターは、ロドバクター・スフェロイデス2.4.1株において高活性な構成的プロモーターであることが知られている。
(2) A self-cloning strain of Rhodobacter sphaeroides in which the rsp_7571 promoter was inserted upstream of the transcription initiation site of the hemA or hemT gene was produced by the following procedure.
To insert the rsp_7571 promoter upstream of the hemA start codon, pZJD29A Prsp_7571 hemA was constructed. Two 600 bp DNA fragments, upstream and downstream of the hemA start codon, and the rsp_7571 promoter were amplified by PCR and inserted into pZJD29A. Similarly, pZJD29A Prsp_7571 hemT was also constructed. Using these plasmids, R. sphaeroides strains containing the rsp_7571 promoter were constructed.
More specifically, 498 bp upstream of the initiation codon of rsp_7571 was inserted upstream of the initiation codon of hemA and/or hemT (Fig. 2). The strain in which Prsp_7571 was inserted only into hemA was designated 7A, the strain in which Prsp_7571 was inserted only into hemT was designated 7T, and the strain in which Prsp_7571 was inserted into both hemA and hemT was designated 7AT.
The promoter of rsp_7571 (Prsp_7571) is known to be a highly active constitutive promoter in Rhodobacter sphaeroides strain 2.4.1.

実施例2 挿入されたPrrnB およびPrsp_7571  プロモーターの機能確認
 挿入されたPrrnBプロモーターが機能しているかどうかを確認するために、好気条件下及び微好気条件下で培養したWT、BA、BT、BATのhemA及びhemTのmRNA発現を定量した(図3)。
 PrrnB をhemAの上流に挿入したBAとBATでは、好気条件下でhemAのmRNAレベルがそれぞれ3.5倍と2.4倍増加した。微好気条件下では、WTのhemAの発現が誘導される為、その差は縮まったが、それでも尚、BAとBATのhemAの発現レベルはWTと比較して1.3倍に増加した(図3上)。
 PrrnB をhemTの上流に挿入したBTとBATでは、hemTの発現量は好気的条件下でそれぞれ24倍と41倍、微好気条件下でそれぞれ37倍と46倍増加した(図3下)。これらの結果から、ALAS遺伝子のプロモーター領域にPrrnB を挿入すると、その発現が増加することが示された。
 一方、hemAおよびhemTプロモーターへのPrsp_7571 の挿入による正の効果は観察されなかった。hemAおよびhemTの転写レベルは、好気的条件下および半好気的条件下で、7A、7Tおよび7ATではWTのものと比べて増加しなかった(図3)。
 以上の結果から、本発明では、rrnBプロモーターをhemT遺伝子の上流に配置したセルフクローニング株であるBT又はBAT株において良好な結果が確認された。
Example 2 Confirmation of the Function of the Inserted PrrnB and Prsp_7571 Promoters To confirm whether the inserted PrrnB promoter was functional, the mRNA expression of hemA and hemT in WT, BA, BT, and BAT cultured under aerobic and microaerobic conditions was quantified (Figure 3).
In BA and BAT, where PrrnB was inserted upstream of hemA, the hemA mRNA levels increased 3.5-fold and 2.4-fold, respectively, under aerobic conditions. Under microaerobic conditions, the difference was narrowed because expression of WT hemA was induced, but the hemA expression levels in BA and BAT were still increased 1.3-fold compared to WT (Fig. 3, top).
In BT and BAT, where PrrnB was inserted upstream of hemT, the expression levels of hemT increased 24-fold and 41-fold, respectively, under aerobic conditions, and 37-fold and 46-fold, respectively, under microaerobic conditions (Fig. 3, bottom). These results indicate that insertion of PrrnB into the promoter region of the ALAS gene increases its expression.
On the other hand, no positive effect was observed due to the insertion of Prsp_7571 into the hemA and hemT promoters: the transcription levels of hemA and hemT did not increase in 7A, 7T, and 7AT compared to those of the WT under aerobic and semi-aerobic conditions (Fig. 3).
From the above results, it was confirmed that in the present invention, good results were obtained with the BT or BAT strain, which is a self-cloning strain in which the rrnB promoter is placed upstream of the hemT gene.

実施例3 5-アミノレブリン酸の発酵による生産
 5-アミノレブリン酸の基質であるグリシン及び5-アミノレブリン酸の代謝阻害剤であるレブリン酸を添加した培地を用いて構築した菌株の 5-アミノレブリン酸生産性を評価した。
 菌体を生産培地に移した後、BT、WT(図4)の培地中で5-アミノレブリン酸の蓄積量の増加(~20時間前後)と減少(20時間以降)が観察された。特に、BT培養液中の最大5-アミノレブリン酸濃度は9.2 mMであり、WT(0.78 mM)の約12倍であった。その他の株、BA、BAT 培養液中には、5-アミノレブリン酸はWTに比べて低蓄積であった(図4)。
Example 3 Fermentative Production of 5-aminolevulinic Acid The productivity of 5-aminolevulinic acid of the constructed strains was evaluated using a medium supplemented with glycine, which is a substrate of 5-aminolevulinic acid, and levulinic acid, which is a metabolic inhibitor of 5-aminolevulinic acid.
After the cells were transferred to the production medium, the amount of 5-aminolevulinic acid accumulated increased (around 20 hours) and decreased (after 20 hours) in the BT and WT cultures (Fig. 4). In particular, the maximum concentration of 5-aminolevulinic acid in the BT culture was 9.2 mM, about 12-fold higher than that of the WT (0.78 mM). In the cultures of the other strains, BA, and BAT, 5-aminolevulinic acid accumulated at a lower level than that of the WT (Fig. 4).

Claims (3)

 5-アミノレブリン酸合成酵素であるHemTをコードする遺伝子(hemT)の上流に、リボソームRNAオペロンプロモーター(PrrnB)を含む発現制御領域を有するα-プロテオバクテリア網に属する光合成細菌の菌株であって、当該発現制御領域は該菌株と同種の光合成細菌に由来するものであり、かつ、hemTの発現を誘導するものであり、当該誘導が野生株と比して5-アミノレブリン酸の生産性の増大をもたらすものである、光合成細菌の菌株。 A photosynthetic bacterial strain belonging to the class α-proteobacteria that has an expression control region containing a ribosomal RNA operon promoter (PrrnB) upstream of the gene (hemT) that codes for the 5-aminolevulinic acid synthase HemT, the expression control region being derived from the same species of photosynthetic bacteria as the strain and inducing the expression of hemT, the induction resulting in increased productivity of 5-aminolevulinic acid compared to a wild-type strain.  請求項1に記載の菌株を培地中で培養し、菌株及び培地中に5-アミノレブリン酸を生成、蓄積させ、培養物から5-アミノレブリン酸を採取することを特徴とする、5-アミノレブリン酸の製造方法。 A method for producing 5-aminolevulinic acid, comprising culturing the strain according to claim 1 in a medium, producing and accumulating 5-aminolevulinic acid in the strain and the medium, and collecting 5-aminolevulinic acid from the culture.  5-アミノレブリン酸合成酵素であるHemTをコードする遺伝子(hemT)の上流に、リボソームRNAオペロンプロモーター(PrrnB)を含む発現制御領域を有するα-プロテオバクテリア網に属する光合成細菌の菌株であって、当該発現制御領域は該菌株と同種の光合成細菌に由来するものであり、かつ、hemTの発現を誘導するものであり、当該誘導が野生株と比して5-アミノレブリン酸の生産性の増大をもたらすものである、光合成細菌の菌株を作製する方法であって、PrrnBをhemTと機能的に結合させる工程を含むことを特徴とする、該菌株の作製方法。 A method for producing a photosynthetic bacterial strain belonging to the α-proteobacteria class, which has an expression control region including a ribosomal RNA operon promoter (PrrnB) upstream of the gene (hemT) encoding the 5-aminolevulinic acid synthase HemT, said expression control region being derived from the same species of photosynthetic bacteria as said strain and inducing expression of hemT, said induction resulting in increased productivity of 5-aminolevulinic acid compared to a wild-type strain, said method for producing said strain, characterized in that it includes a step of functionally binding PrrnB to hemT.
PCT/JP2024/025461 2023-07-14 2024-07-16 5-aminolevulinic acid-producing bacterium, method for producing same, and method for producing 5-aminolevulinic acid using same WO2025018332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-116193 2023-07-14
JP2023116193A JP2025012969A (en) 2023-07-14 2023-07-14 5-Aminolevulinic acid producing bacteria, method for producing same and method for producing 5-aminolevulinic acid using same

Publications (1)

Publication Number Publication Date
WO2025018332A1 true WO2025018332A1 (en) 2025-01-23

Family

ID=94282205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/025461 WO2025018332A1 (en) 2023-07-14 2024-07-16 5-aminolevulinic acid-producing bacterium, method for producing same, and method for producing 5-aminolevulinic acid using same

Country Status (2)

Country Link
JP (1) JP2025012969A (en)
WO (1) WO2025018332A1 (en)

Also Published As

Publication number Publication date
JP2025012969A (en) 2025-01-24

Similar Documents

Publication Publication Date Title
CA2619989C (en) Regulation of heterologous recombinant protein expression in methylotrophic and methanotrophic bacteria
JP5412446B2 (en) Vector for transformation using transposon, microorganism transformed with the vector, and method for producing L-lysine using the same
CN103555779B (en) A kind of method of fermentative production γ-aminobutyric acid
JP6646075B2 (en) Microorganism producing L-lysine and method for producing L-lysine using the same
KR100312456B1 (en) Gene Derived from Pseudomonas fluorescens Which Promotes the Secretion of Foreign Protein in Microorganism
US5759824A (en) Genes for butyrobetaine/crotonobetaine-l-carnitine metabolism and their use for the microbiological production of l-carnitine
CN113461789B (en) LysR family transcription regulation protein derived from Burkholderia, gene and application
KR101929158B1 (en) XMP-producing microorganism and method of producing XMP using the same
JP3399993B2 (en) Microorganisms for stabilizing plasmids
JPWO2007037301A1 (en) Production method of useful substances
WO2025018332A1 (en) 5-aminolevulinic acid-producing bacterium, method for producing same, and method for producing 5-aminolevulinic acid using same
CN109790557A (en) Biofilm dispersion is controlled to generate amino acid or amino acid derived product
CN115197954B (en) Recombinant DNA for fermentative production of 1, 5-pentanediamine, strain and use thereof
US7049097B2 (en) Antibiotics-independent vector for constant high-expression and method for gene expression using the same
CN109929853B (en) Application of heat shock protein gene derived from thermophilic bacteria
CN115873852A (en) Recombinant nucleic acid sequence, genetic engineering bacteria and method for producing 1,5-pentanediamine
CN110872595B (en) Acid-resistant expression cassette and application thereof in fermentation production of organic acid
RU2829715C2 (en) Variant of corynebacterium glutamicum with improved ability to produce l-lysine and method of producing l-lysine using same
KR102703209B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR102703218B1 (en) Mutant in Escherichia with enhanced L-histidine productivity and method for preparing L-histidine using the same
CN109439606B (en) A kind of genetically engineered bacteria for improving phloroglucinol yield and its construction method and application
KR20220148694A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20220126610A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20220149219A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20220149379A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same