Nothing Special   »   [go: up one dir, main page]

WO2025013779A1 - Resonant inverter - Google Patents

Resonant inverter Download PDF

Info

Publication number
WO2025013779A1
WO2025013779A1 PCT/JP2024/024387 JP2024024387W WO2025013779A1 WO 2025013779 A1 WO2025013779 A1 WO 2025013779A1 JP 2024024387 W JP2024024387 W JP 2024024387W WO 2025013779 A1 WO2025013779 A1 WO 2025013779A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
switch
switch element
negative
positive
Prior art date
Application number
PCT/JP2024/024387
Other languages
French (fr)
Japanese (ja)
Inventor
剛幸 松本
友寛 山口
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2025013779A1 publication Critical patent/WO2025013779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a resonant inverter having an auxiliary resonant circuit.
  • a power storage system such as an uninterruptible power supply comprises a power storage device and a PCS (power conditioner unit) with a built-in inverter that converts AC and DC between the external power system and the power storage device.
  • the power storage device is, for example, composed of multiple power storage modules, each having multiple storage elements. In recent years, power storage devices have become higher in voltage and larger in capacity.
  • Patent No. 5195161 Patent No. 5569204
  • the auxiliary resonant circuit serves as a path for the energy stored in the resonant inductor, and no snubber loss occurs.
  • the auxiliary circuit requires the same high-voltage withstand elements as the main circuit. There are only a few types of high-voltage withstand elements, and their switching speed is slow, which raises concerns about a decrease in efficiency.
  • One aspect of the present invention provides a resonant inverter in which a lossless auxiliary resonant circuit, which serves as a path for the energy stored in the resonant inductor, can be constructed from elements with a lower voltage resistance than the main circuit.
  • One aspect of the present invention is a resonant inverter comprising a positive side capacitor and a negative side capacitor connected in series between a positive side DC line and a negative side DC line, and a neutral point clamp circuit in which the connection point between the positive side capacitor and the negative side capacitor serves as a neutral point.
  • the resonant inverter comprises an upper arm switch and a lower arm switch connected in series between the positive side DC line and the negative side DC line, and a main leg in which the connection point between the upper arm switch and the lower arm switch serves as an input/output point for the inverter current.
  • the resonant inverter comprises a first resonant capacitor and a second resonant capacitor connected in parallel to the upper arm switch and the lower arm switch.
  • the resonant inverter comprises a first anti-parallel diode and a second anti-parallel diode connected in anti-parallel to the upper arm switch and the lower arm switch.
  • the resonant inverter includes a neutral phase leg having a positive side neutral phase switch and a negative side neutral phase switch that respectively open and close a positive side polarity path in which the current polarity is limited to the direction from the neutral point to the input/output point and a negative side polarity path in which the current polarity is limited to the direction from the input/output point to the neutral point.
  • the resonant inverter includes an auxiliary resonant circuit including a resonant inductor having one end connected to the input/output point.
  • the auxiliary resonant circuit includes a positive side resonant path in which the current polarity is limited to the direction from the neutral point to the resonant inductor and is opened and closed by a positive side resonant switch.
  • the auxiliary resonant circuit includes a negative side resonant path in which the current polarity is limited to the direction from the resonant inductor to the neutral point and is opened and closed by a negative side resonant switch.
  • the auxiliary resonant circuit includes a positive side regenerative path in which the current polarity is limited to the direction from the resonant inductor to the positive side DC line.
  • the auxiliary resonant circuit includes a negative side regenerative path in which the current polarity is limited to the direction from the negative side DC line to the resonant inductor.
  • the lossless auxiliary resonant circuit which serves as a path for the energy stored in the resonant inductor, is clamped to the neutral voltage by the positive and negative resonant paths, so that the elements that make up the auxiliary resonant circuit can be constructed with elements that have a lower voltage resistance than the elements of the main leg, which is the main circuit.
  • FIG. 2 is a diagram showing a circuit configuration for one phase of an embodiment of a resonant inverter.
  • 2 is a timing chart showing a discharging operation of the resonant inverter shown in FIG. 1 .
  • 3A to 3C are diagrams illustrating the operation of each mode shown in FIG. 2.
  • 11 is a timing chart showing a clamp snubber operation in a positive direction.
  • FIG. 5 is a diagram showing the operation of mode 5A shown in FIG. 4 .
  • 2 is a timing chart showing a discharging operation of the resonant inverter shown in FIG. 1 .
  • 7A to 7C are diagrams illustrating the operation of each mode shown in FIG. 6.
  • 11 is a timing chart showing a clamp snubber operation in the negative direction.
  • FIG. 9 is a diagram showing the operation of mode 15A shown in FIG. 8 .
  • 2 is a timing chart showing a charging operation of the resonant inverter shown in FIG. 1 .
  • 11A to 11C are diagrams illustrating the operation of each mode shown in FIG. 10.
  • 2 is a timing chart showing a discharging operation of the resonant inverter shown in FIG. 1 .
  • 13A to 13C are diagrams illustrating the operation of each mode shown in FIG. 12.
  • FIG. 2 is a diagram illustrating a first application example of the auxiliary resonant circuit shown in FIG.
  • FIG. 2 is a diagram illustrating a second application example of the resonant inverter illustrated in FIG. 1 .
  • FIG. 13 is a diagram illustrating a third application example of the resonant inverter illustrated in FIG. 17 is a diagram illustrating the operation of the resonant inverter shown in FIG. 16.
  • the resonant inverter 1 of this embodiment is a three-level inverter having an auxiliary resonant circuit 2 of an NPC (neutral point clamped) type ARCP (auxiliary resonant commutated pole) topology.
  • NPC neutral point clamped
  • ARCP auxiliary resonant commutated pole
  • the resonant inverter 1 includes a neutral point clamp circuit 3 in which a positive side capacitor Cp and a negative side capacitor Cn are connected in series.
  • the neutral point clamp circuit 3 is connected between a positive side DC line P and a negative side DC line N.
  • the capacitors Cp and Cn are configured to have the same capacitance.
  • the connection point between the capacitors Cp and Cn is the neutral point A where a voltage Vdc/2, which is half the voltage of the input DC voltage Vdc input between the positive side DC line P and the negative side DC line N, is generated.
  • the resonant inverter 1 has a main leg 4, which is a series circuit consisting of a switch element Tm1, which is an upper arm switch arranged in the upper arm, and a switch element Tm2, which is a lower arm switch arranged in the lower arm.
  • the switch elements Tm1 and Tm2 are, for example, configured with insulated gate bipolar transistors (IGBTs).
  • the switch elements Tm1 and Tm2 may also be configured with MOSFETs.
  • the main leg 4 is connected between a positive side DC line P and a negative side DC line N.
  • the switch element Tm1 has a collector connected to the positive side DC line P and an emitter connected to the collector of the switch element Tm2.
  • the switch element Tm2 has an emitter connected to the negative side DC line N.
  • the connection point between the emitter of the switch element Tm1 and the collector of the switch element Tm2 becomes an input/output point B of the inverter current Iinv, and is connected to the AC input/output
  • the switch element Tm1 has an anti-parallel diode D1 connected in anti-parallel, i.e., the cathode and anode of which are connected to the collector and emitter of the switch element Tm1, respectively.
  • the anti-parallel diode D1 is formed, for example, by the body diode of the switch element Tm1.
  • the switch element Tm1 has a resonant capacitor C1 connected in parallel.
  • the resonant capacitor C1 is formed by the stray capacitance of the switch element Tm1 or an external capacitor.
  • the switch element Tm2 includes an anti-parallel diode D2 connected in anti-parallel, i.e., with its cathode and anode connected to the collector and emitter of the switch element Tm2, respectively.
  • the anti-parallel diode D2 is formed, for example, by the body diode of the switch element Tm2.
  • the switch element Tm2 includes a resonant capacitor C2 connected in parallel.
  • the resonant capacitor C2 is formed by the stray capacitance of the switch element Tm2 or an external capacitor.
  • the resonant inverter 1 has a neutral phase leg 5.
  • the neutral phase leg 5 has a positive polarity path np and a negative polarity path nn.
  • the positive polarity path np and the negative polarity path nn are connected in parallel between the neutral point A of the neutral point clamp circuit 3 and the input/output point B of the main leg 4.
  • the positive polarity path np is a series circuit consisting of a diode Dnp and a switch element Tn3, which limits the current polarity to one direction (from neutral point A to input/output point B) and is opened and closed by the switch element Tn3.
  • the switch element Tn3 is composed of an IGBT or MOSFET.
  • the anode of the diode Dnp is connected to the neutral point A, and the cathode is connected to the collector of the switch element Tn3.
  • the emitter of the switch element Tn3 is connected to the input/output point B.
  • the negative polarity path nn is a series circuit consisting of a diode Dnn and a switch element Tn4, which limits the current polarity to one direction (from input/output point B to neutral point A) and is opened and closed by the switch element Tn4.
  • the switch element Tn4 is composed of an IGBT or MOSFET.
  • the collector of the switch element Tn4 is connected to the input/output point B, and the emitter is connected to the anode of the diode Dnn.
  • the cathode of the diode Dnn is connected to neutral point A.
  • the auxiliary resonant circuit 2 includes a resonant inductor Lr, a positive resonant path rp, and a negative resonant path rn connected in parallel between the resonant inductor Lr, the input/output point B of the main leg 4, and the neutral point A of the neutral point clamp circuit 3.
  • the positive-side resonant path rp is configured as a series circuit including, from the other end of the resonant inductor Lr, one end of which is connected to the input/output point B, a switch element Tr5, which is a positive-side resonant switch, and a diode Drp.
  • the switch element Tr5 is configured, for example, as an insulated gate bipolar transistor (IGBT).
  • the switch element Tr5 may also be configured as a MOSFET.
  • One end of the resonant inductor Lr is connected to the input/output point B, and the other end is connected to the emitter of the switch element Tr5.
  • the collector of the switch element Tr5 is connected to the cathode of the diode Drp, and the anode of the diode Drp is connected to the neutral point A.
  • the diode Drp limits the current polarity of the positive resonant path rp to one direction (from neutral point A to input/output point B).
  • the switch element Tr5 opens and closes the positive resonant path rp.
  • the switch element Tr5 is provided with an anti-parallel diode D5, the cathode and anode of which are connected in anti-parallel to the collector and emitter of the switch element Tr5, respectively.
  • the anti-parallel diode D5 is formed, for example, by the body diode of the switch element Tr5.
  • the auxiliary resonant circuit 2 includes a lossless regenerative clamp snubber diode Dsp that connects the connection point between the collector of the switch element Tr5 and the cathode of the diode Drp to the positive DC line P.
  • the lossless regenerative clamp snubber diode Dsp has an anode connected to the connection point between the collector of the switch element Tr5 and the cathode of the diode Drp, and a cathode connected to the positive DC line P.
  • the anti-parallel diode D5 of the switch element Tr5 and the lossless regenerative clamp snubber diode Dsp form a positive regenerative path in which the current polarity is limited to one direction (from the resonant inductor Lr to the positive DC line P).
  • the negative resonant path rn is configured as a series circuit including, from one end of the resonant inductor Lr, which is connected to the input/output point B, a switch element Tr6, which is a negative resonant switch, and a diode Drn.
  • the resonant inductor Lr is also used as the positive resonant path rp.
  • the switch element Tr6 is configured, for example, as an insulated gate bipolar transistor (IGBT).
  • the switch element Tr6 may also be configured as a MOSFET.
  • One end of the resonant inductor Lr is connected to the input/output point B, and the other end is connected to the collector of the switch element Tr6.
  • the emitter of the switch element Tr6 is connected to the anode of the diode Drn, and the cathode of the diode Drn is connected to the neutral point A.
  • the diode Drn limits the current polarity of the negative resonant path rn to one direction (from input/output point B to neutral point A).
  • the switch element Tr6 opens and closes the negative resonant path rn.
  • the switch element Tr6 is provided with an anti-parallel diode D6, the cathode and anode of which are connected in anti-parallel to the collector and emitter of the switch element Tr6, respectively.
  • the anti-parallel diode D6 is formed, for example, by the body diode of the switch element Tr6.
  • the auxiliary resonant circuit 2 includes a lossless regenerative clamp snubber diode Dsn that connects the connection point between the emitter of the switch element Tr6 and the anode of the diode Drn to the negative DC line N.
  • the lossless regenerative clamp snubber diode Dsn has a cathode connected to the connection point between the emitter of the switch element Tr6 and the anode of the diode Drn, and an anode connected to the negative DC line N.
  • the anti-parallel diode D6 of the switch element Tr6 and the lossless regenerative clamp snubber diode Dsn form a negative regenerative path in which the current polarity is limited to one direction (from the negative DC line N to the resonant inductor Lr).
  • the resonant inverter 1 includes a control circuit 6 that controls the on/off of each of the switch elements Tm1, Tm2, Tn3, Tn4, Tr5, and Tr6.
  • the control circuit 6 turns on the switch element Tm1 at zero voltage during PWM control of the switch element Tm1 of the main leg 4 and the switch element Tn4 of the neutral phase leg 5.
  • the control circuit 6 turns on the switch element Tm2 at zero voltage during PWM control of the switch element Tm2 of the main leg 4 and the switch element Tn3 of the neutral phase leg 5.
  • Figure 2 is a timing chart showing the operation of the resonant inverter 1.
  • Figure 3 shows the operation in each mode shown in Figure 2 using an equivalent circuit of the resonant inverter 1.
  • the switch elements Tm1 and Tn4 alternate in PWM operation.
  • the target of zero-voltage (ZV) turn-on control by resonance is the on-timing of the switch element Tm1.
  • the control circuit 6 operates the resonant inverter 1 as a two-level inverter by turning off the switch element Tn3 before resonant operation, creating a mode in which the anti-parallel diode D2 of the switch element Tm2 is conductive.
  • the control circuit 6 controls the switch element Tr5 of the positive-side resonant path rp before and after turning on the switch element Tm1 to perform resonant operation on the positive side.
  • Mode 0 shown in Figure 3(a) is a state in which the inverter current Iinv flows back through the positive polarity path np of the neutral phase leg 5.
  • the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2.
  • the terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn.
  • the terminal voltages of the elements of the neutral phase leg 5 are all 0V.
  • mode 1 at time t1, the switch elements Tn3 and Tn4 are simultaneously turned off, and the inverter current Iinv is commutated to the anti-parallel diode D2 of the lower-arm switch element Tm2. All other switch elements Tm1, Tm2, Tr5, and Tr6 are in the off state.
  • mode 1 as shown in FIG. 3(b), the resonant capacitor C1 of the switch element Tm1 is charged, and the resonant capacitor C2 of the switch element Tm2 is discharged. Therefore, the switch element Tn3 is subjected to zero-voltage turn-off control by the lossless snubber.
  • Vce of switch element Tm1 changes from Vdc/2 to Vdc
  • Vce of switch element Tm2 changes from Vdc/2 to 0V
  • the terminal voltages of each element of the neutral phase leg 5, Tn3, and Dnn change from 0V to Vdc/2.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr5, Drn, and Dsp, and 0V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are Vdc/2 for Tn3 and Dnn, and 0V for the other elements.
  • Mode 3 at time t3 during the dead time DT, the switch element Tr5 in the positive resonant path rp is turned on under zero current (ZC) control, and the inverter current Iinv is commutated to the resonant inductor Lr (positive resonant path rp) as shown in FIG. 3(d). Mode 3 continues until the anti-parallel diode D2 of the switch element Tm2 is turned off.
  • ZC zero current
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsp, Vdc/4 for Tr6, Drn, and Dsn, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 2.
  • mode 4 the commutation to the resonant inductor Lr is completed at time t4, and the Vce of the switch element Tm1 and the switch element Tm2 changes sinusoidally due to resonance with the resonant capacitors C1 and C2 shown by the dotted lines in FIG. 3(e).
  • the Vce of the switch element Tm1 changes from Vdc to 0 V
  • the Vce of the switch element Tm2 changes from 0 V to Vdc.
  • the period of mode 3+4 is the sum of the first commutation time Tcom1 [Lr ⁇ Vdcn ⁇ Iinv] and the resonance time Tres [ ⁇ (Lr ⁇ 2Cr)].
  • Lr is the inductance of the resonance inductor Lr
  • Cr is the capacitance of the resonance capacitors C1 and C2.
  • Vdcn is the voltage across the capacitor Cn in the neutral point clamp circuit 3.
  • the first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed.
  • the resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2 ⁇ (Lr ⁇ 2Cr)).
  • switch elements Tm1 and Tn3 are subjected to zero-voltage turn-on control, and the resonant inductor current ILr is commutated to switch element Tm1.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 3.
  • the terminal voltages of each element of the neutral phase leg 5 are 0V for Tn3 and Dnn, and Vdc/2 for the other elements.
  • the period of mode 5 is the second commutation time Tcom2 [Lr ⁇ Vdcp ⁇ Iinv].
  • Vdcp is the voltage across the capacitor Cp in the neutral point clamp circuit 3.
  • the second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm1 is completed.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drp, Tr6, and Dsn, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 5.
  • the inverter current Iinv is commutated to the positive polarity path np of the neutral phase leg 5 by turning off the upper arm switch element Tm1 at time t7, and this is the period until the dead time DT has elapsed after the turn-off control of the switch element Tm1.
  • mode 7 as shown in FIG. 3(h), the resonant capacitor C1 of the switch element Tm1 is charged and the resonant capacitor C2 of the switch element Tm2 is discharged. Therefore, the switch element Tm1 is subjected to zero-voltage turn-off control by the lossless snubber.
  • switch element Tn4 At time t8 when the dead time DT following the turn-off control of switch element Tm1 has elapsed, switch element Tn4 is subjected to zero-voltage turn-on control and returns to mode 0.
  • Vce of switch element Tm1 changes from 0V to Vdc/2
  • Vce of switch element Tm2 changes from Vdc to Vdc/2
  • the terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drp, Tr6, and Dsn, and from 0V to Vdc/4 for Drn, Tr5, and Dsp.
  • the terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn4 and Dnp.
  • the above modes 0 to 7 are repeated, and the switch elements Tm1 and Tn3 are controlled to be turned on at zero voltage.
  • the auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr.
  • the terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.
  • Fig. 4 is a timing chart showing the operation of the resonant inverter 1.
  • Fig. 5 shows the operation in mode 5A shown in Fig. 4 using an equivalent circuit of the resonant inverter 1.
  • the switch element Tr5 turns off due to element variation, calculation variation, malfunction, etc. at time t5A while the resonant inductor current ILr is commutating to the switch element Tm1.
  • the energy excited in the positive direction in the resonant inductor Lr is regenerated to the DC bus without loss as the lossless regenerative clamp snubber diode Dsn and the anti-parallel diode D6 of the switch element Tr6 conduct, as shown by the dotted line in Figure 5.
  • the auxiliary resonant circuit 2 is clamped to the neutral point A of the DC bus, so each element of the auxiliary resonant circuit 2, including the switch element Tr5 (diode Drn, lossless regenerative clamp snubber diode Dsp), is clamped at Vdc/2.
  • Figure 6 is a timing chart showing the operation of the resonant inverter 1.
  • Figure 7 shows the operation in each mode shown in Figure 6 using an equivalent circuit of the resonant inverter 1.
  • the switch elements Tm2 and Tn3 alternate in PWM operation.
  • the target of zero-voltage turn-on control by resonance is the on-timing of the switch element Tm2.
  • the control circuit 6 turns off the switch element Tn4 before resonant operation, thereby operating the resonant inverter 1 as a two-level inverter and creating a mode in which the anti-parallel diode D1 of the switch element Tm1 is conductive.
  • the control circuit 6 controls the switch element Tr6 of the negative side resonant path rn before and after turning on the switch element Tm2 to perform resonant operation on the negative side.
  • Mode 10 shown in FIG. 7(a) is a state in which the inverter current Iinv flows back through the negative polarity path nn of the neutral phase leg 5.
  • the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2.
  • the terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn.
  • the terminal voltages of the elements of the neutral phase leg 5 are all 0V.
  • mode 11 at time t11, the switch elements Tn3 and Tn4 are simultaneously turned off, and the inverter current Iinv is commutated to the anti-parallel diode D1 of the switch element Tm1 in the upper arm. All other switch elements Tm1, Tm2, Tr5, and Tr6 are in the off state.
  • mode 11 as shown in FIG. 7(b), the resonant capacitor C2 of the switch element Tm2 is charged, and the resonant capacitor C1 of the switch element Tm1 is discharged. Therefore, the switch element Tn4 is subjected to zero-voltage turn-off control by the lossless snubber.
  • Vce of switch element Tm2 changes from Vdc/2 to Vdc
  • Vce of switch element Tm1 changes from Vdc/2 to 0V
  • the terminal voltages of each element of auxiliary resonant circuit 2 change from Vdc/4 to Vdc/2 for Tr6, Dsn, and Drp, and from Vdc/4 to 0V for Tr5, Dsp, and Drn.
  • the terminal voltages of each element of neutral phase leg 5 change from 0V to Vdc/2 for Tn4 and Dnp.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr6, Drp, and Dsn, and 0V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are Vdc/2 for Tn4 and Dnp, and 0V for the other elements.
  • Mode 13 at time t13 during the dead time DT, the switch element Tr6 of the negative resonant path rn is turned on with zero current, and the inverter current Iinv is commutated to the resonant inductor Lr (negative resonant path rn) as shown in FIG. 7(d). Mode 13 continues until the anti-parallel diode D1 of the switch element Tm1 is turned off.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsn, Vdc/4 for Tr5, Drp, and Dsp, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 12.
  • mode 14 the commutation to resonant inductor Lr is completed at time t14, and Vce of switch element Tm1 and switch element Tm2 changes sinusoidally due to resonance with resonant capacitors C1 and C2 shown by dotted lines in FIG. 7(e).
  • Vce of switch element Tm2 changes from Vdc to 0V
  • Vce of switch element Tm1 changes from 0V to Vdc.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 13.
  • the period of mode 13+14 is the sum of the first commutation time Tcom1 [Lr ⁇ Vdcp ⁇ Iinv] and the resonance time Tres [ ⁇ (Lr ⁇ 2Cr)].
  • the first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed.
  • the resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2 ⁇ (Lr ⁇ 2Cr)).
  • the switch element Tr6 of the negative resonant path rn is controlled to be turned on (first commutation time Tcom1+resonant time Tres) before the turn-on timing of the switch elements Tm2 and Tn4.
  • switch elements Tm2 and Tn4 are subjected to zero-voltage turn-on control, and the resonant inductor current ILr is commutated to switch element Tm2.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 13.
  • the terminal voltages of each element of the neutral phase leg 5 are 0V for Tn4 and Dnp, and Vdc/2 for the other elements.
  • the period of mode 15 is the second commutation time Tcom2 [Lr ⁇ Vdcn ⁇ Iinv].
  • the second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm2 is completed.
  • the switch element Tr6 of the negative resonant path rn is controlled to be turned off after (the second commutation time Tcom2) the turn-on timing of the switch elements Tm2 and Tn4.
  • the switch element Tr6 is turned off at time t16 when the commutation of the resonant inductor current ILr to the switch element Tm2 is completed.
  • mode 16 as shown in FIG. 7(g), power is discharged from the DC bus (negative DC line N) to the load (AC system).
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drn, Tr5, and Dsp, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 15.
  • the inverter current Iinv is commutated to the negative polarity path nn of the neutral phase leg 5 by turning off the lower arm switch element Tm2 at time t17, and this is the period until the dead time DT has elapsed after the turn-off control of the switch element Tm1.
  • the resonant capacitor C2 of the switch element Tm2 is charged and the resonant capacitor C1 of the switch element Tm1 is discharged. Therefore, the switch element Tm2 is subjected to zero-voltage turn-off control by the lossless snubber.
  • switch element Tn3 is subjected to zero-voltage turn-on control, returning to mode 10.
  • Vce of switch element Tm2 changes from 0V to Vdc/2
  • Vce of switch element Tm1 changes from Vdc to Vdc/2
  • the terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drn, Tr5, and Dsp, and from 0V to Vdc/4 for Drp, Tr4, and Dsn.
  • the terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn4 and Dnp.
  • the above modes 10 to 17 are repeated, and the switch elements Tm2 and Tn3 are controlled to be turned on at zero voltage.
  • the auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr.
  • the terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.
  • Fig. 8 is a timing chart showing the operation of the resonant inverter 1.
  • Fig. 9 shows the operation in mode 15A shown in Fig. 8 using an equivalent circuit of the resonant inverter 1.
  • mode 15A at time t15A while the resonant inductor current ILr is commutating to the switch element Tm2, the switch element Tr6 is turned off due to element variation, calculation variation, malfunction, etc.
  • the energy excited in the negative direction in the resonant inductor Lr is regenerated to the DC bus without loss as the lossless regenerative clamp snubber diode Dsp and the anti-parallel diode D5 of the switch element Tr5 conduct, as shown by the dotted line in Figure 9.
  • the auxiliary resonant circuit 2 is clamped to the neutral point A of the DC bus, so each element of the auxiliary resonant circuit 2, including the switch element Tr6 (diode Drp, lossless regenerative clamp snubber diode Dsn), is clamped at Vdc/2.
  • Figure 10 is a timing chart showing the operation of the resonant inverter 1.
  • Figure 11 shows the operation in each mode shown in Figure 10 using an equivalent circuit of the resonant inverter 1.
  • the switch elements Tm1 and Tn4 alternate in PWM operation.
  • the target of zero-voltage turn-on control by resonance is the on-timing of the switch element Tn4.
  • Mode 20 shown in FIG. 11(a) is a state in which the inverter current Iinv circulates through the anti-parallel diode D1 of the switch element Tm1. As shown in FIG. 11(a), power is being charged from the load (AC system) to the DC bus (positive DC line P).
  • Vce of switch element Tm2 is Vdc.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr6, Drp, and Dsn, and 0V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are 0V for Tn3 and Dnn, and Vdc/2 for the other elements.
  • mode 21 As shown in FIG. 11(b), at time t21, switch elements Tm1 and Tn3 are simultaneously turned off. In mode 21, there is no change in state from mode 20.
  • Mode 22 at time t22 during the dead time DT, the switch element Tr6 of the negative resonant path rn is subjected to zero current turn-on control, and the inverter current Iinv is commutated to the resonant inductor Lr (negative resonant path rn) as shown in FIG. 11(c). Mode 22 continues until the anti-parallel diode D1 of the switch element Tm1 is turned off.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsn, Vdc/4 for Tr5, Drp, and Dsp, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 21.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 22.
  • the period of mode 22+23 is the sum of the first commutation time Tcom1 [Lr ⁇ Vdcp ⁇ Iinv] and the resonance time Tres [ ⁇ (Lr ⁇ 2Cr)].
  • the first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed.
  • the resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2 ⁇ (Lr ⁇ 2Cr)).
  • the switch element Tr6 of the negative resonant path rn is controlled to be turned on (first commutation time Tcom1+resonant time Tres) before the turn-on timing of the switch elements Tm2 and Tn4.
  • switch element Tm2 and switch element Tn4 are subjected to zero voltage turn-on control.
  • the resonant inductor current ILr is commutated to switch element Tm2 without being commutated to neutral phase leg 5.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 23.
  • the terminal voltages of each element of the neutral phase leg 5 are 0V for Tn4 and Dnp, and Vdc/2 for the other elements.
  • the period of mode 24 is the second commutation time Tcom2 [Lr ⁇ Vdcn ⁇ Iinv].
  • the second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm2 is completed.
  • the switch element Tr6 of the negative resonant path rn is controlled to be turned off after (the second commutation time Tcom2) the turn-on timing of the switch elements Tm2 and Tn4.
  • the switch element Tr6 is turned off at time t25 upon completion of the commutation of the resonant inductor current ILr to the switch element Tm2.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drn, Tr5, and Dsp, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 24.
  • the inverter current Iinv is commutated to the negative polarity path nn of the neutral phase leg 5 by controlling the turn-off of the lower arm switch element Tm2 at time t26.
  • mode 26 as shown in FIG. 11(g), the resonant capacitor C2 of the switch element Tm2 is charged, and the resonant capacitor C1 of the switch element Tm1 is discharged. Therefore, the switch element Tm2 is subjected to zero-voltage turn-off control by the lossless snubber.
  • Vce of switch element Tm2 changes from 0V to Vdc/2
  • Vce of switch element Tm1 changes from Vdc to Vdc/2
  • the terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drn, Tr5, and Dsp, and from 0V to Vdc/4 for Drp, Tr4, and Dsn.
  • the terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn3 and Dnn.
  • Mode 27 is a state in which commutation is completed and inverter current Iinv is circulating through the negative polarity path nn of neutral phase leg 5.
  • mode 27 after commutation to the negative polarity path nn of neutral phase leg 5 is completed, a series of zero voltage turn-ons is completed by controlling switch element Tn3 to be turned on at zero current.
  • the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2.
  • the terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn.
  • the terminal voltages of the elements of the neutral phase leg 5 are all 0V.
  • Vce of switch element Tm2 changes from Vdc/2 to Vdc
  • Vce of switch element Tm1 changes from Vdc/2 to 0V
  • the terminal voltages of each element of the neutral phase leg 5, Tn4, and Dnp change from 0V to Vdc/2.
  • switch element Tm1 is subjected to zero-voltage turn-on control and returns to mode 20.
  • the above modes 20 to 28 are repeated, and the switch elements Tm1 and Tn4 are controlled to be turned on at zero voltage.
  • the auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr.
  • the terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.
  • the switch element Tr6 is turned off during the above mode 24, the energy negatively excited in the resonant inductor Lr is regenerated to the DC bus without loss, similar to mode 15A shown in FIG. 9.
  • the lossless regenerative clamp snubber diode Dsp and the anti-parallel diode D5 of the switch element Tr5 are conductive.
  • the auxiliary resonant circuit 2 is clamped to the neutral point A of the DC bus, so each element of the auxiliary resonant circuit 2, including the switch element Tr6 (diode Drp, lossless regenerative clamp snubber diode Dsn), is clamped at Vdc/2.
  • Figure 12 is a timing chart showing the operation of the resonant inverter 1.
  • Figure 13 shows the operation in each mode shown in Figure 12 using an equivalent circuit of the resonant inverter 1.
  • the switch elements Tm2 and Tn3 alternate in PWM operation.
  • the target of zero-voltage turn-on control by resonance is the on-timing of the switch element Tn3.
  • Mode 30 shown in FIG. 13(a) is a state in which the inverter current Iinv circulates through the anti-parallel diode D2 of the switch element Tm2. As shown in FIG. 13(a), power is being charged from the load (AC system) to the DC bus (negative DC line N).
  • Vce of switch element Tm1 is Vdc.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr5, Drn, and Dsp, and 0V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are 0V for Tn4 and Dnp, and Vdc/2 for the other elements.
  • mode 31 As shown in FIG. 13(b), at time t31, switch elements Tm2 and Tn4 are simultaneously turned off. In mode 31, there is no change in state from mode 30.
  • Mode 32 at time t32 during the dead time DT, the switch element Tr5 in the positive resonant path rp is turned on with zero current, and the inverter current Iinv is commutated to the resonant inductor Lr (positive resonant path rp) as shown in FIG. 13(c). Mode 32 continues until the anti-parallel diode D2 of the switch element Tm2 is turned off.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsp, Vdc/4 for Tr6, Drn, and Dsn, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 31.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 32.
  • the terminal voltages of each element of the neutral phase leg 5 change from 0V to Vdc/2 for Tn4 and Dnp, and from Vdc/2 to 0V for Tn3 and Dnn.
  • the period of mode 32+33 is the sum of the first commutation time Tcom1 [Lr ⁇ Vdcn ⁇ Iinv] and the resonance time Tres [ ⁇ (Lr ⁇ 2Cr)].
  • the first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed.
  • the resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2 ⁇ (Lr ⁇ 2Cr)).
  • the switch element Tr5 of the positive-side resonant path rp is controlled to be turned on (first commutation time Tcom1+resonant time Tres) before the turn-on timing of the switch elements Tm1 and Tn3.
  • switch element Tm1 and switch element Tn3 are subjected to zero voltage turn-on control.
  • the resonant inductor current ILr is commutated to switch element Tm1 without being commutated to neutral phase leg 5.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 33.
  • the terminal voltages of each element of the neutral phase leg 5 are 0V for Tn3 and Dnn, and Vdc/2 for the other elements.
  • the period of mode 34 is the second commutation time Tcom2 [Lr ⁇ Vdcp ⁇ Iinv].
  • the second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm1 is completed.
  • the switch element Tr5 of the positive-side resonant path rp is controlled to be turned off after (the second commutation time Tcom2) the turn-on timing of the switch elements Tm1 and Tn3.
  • the switch element Tr5 is turned off at time t35 upon completion of the commutation of the resonant inductor current ILr to the switch element Tm1.
  • the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drp, Tr6, and Dsn, and 0 V for the other elements.
  • the terminal voltages of each element of the neutral phase leg 5 are the same as in mode 34.
  • mode 36 the upper arm switch element Tm1 is turned off at time t36, thereby commutating the inverter current Iinv to the positive polarity path np of the neutral phase leg 5.
  • mode 36 as shown in FIG. 13(g), the resonant capacitor C1 of the switch element Tm1 is charged, and the resonant capacitor C2 of the switch element Tm2 is discharged. Therefore, the switch element Tm1 is subjected to zero-voltage turn-off control by the lossless snubber.
  • Vce of switch element Tm1 changes from 0V to Vdc/2
  • Vce of switch element Tm2 changes from Vdc to Vdc/2
  • the terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drp, Tr6, and Dsn, and from 0V to Vdc/4 for Drn, Tr5, and Dsp.
  • the terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn4 and Dnp.
  • Mode 37 is a state in which commutation is completed and inverter current Iinv is flowing back through the positive polarity path np of neutral phase leg 5.
  • mode 37 after commutation to the positive polarity path np of neutral phase leg 5 is completed, a series of zero voltage turn-ons is completed by controlling switch element Tn4 to be turned on at zero current.
  • the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2.
  • the terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn.
  • the terminal voltages of the elements of the neutral phase leg 5 are all 0V.
  • Vce of switch element Tm1 changes from Vdc/2 to Vdc
  • Vce of switch element Tm2 changes from Vdc/2 to 0V
  • the terminal voltages of each element of the auxiliary resonant circuit 2, Tr5, Dsp, and Drn change from Vdc/4 to Vdc/2
  • Tr6, Dsn, and Drp change from Vdc/4 to 0V
  • the terminal voltages of each element of the neutral phase leg 5, Tn3, and Dnn change from 0V to Vdc/2.
  • switch element Tm2 At time t39 when the dead time DT following the turn-off control of switch element Tn3 has elapsed, switch element Tm2 is subjected to zero-voltage turn-on control and returns to mode 30.
  • the above modes 30 to 38 are repeated, and the switch elements Tm2 and Tn3 are controlled to be turned on at zero voltage.
  • the auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr.
  • the terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.
  • the switch element Tn3 and the anti-parallel diode D4 of the switch element Tn4 function as a positive polarity path np that is opened and closed by the switch element Tn3.
  • the switch element Tn4 and the anti-parallel diode D3 of the switch element Tn3 function as a negative polarity path nn that is opened and closed by the switch element Tn4.
  • FIG. 15 shows a full-bridge inverter circuit 11 to which the resonant inverter 1 is applied.
  • the full-bridge inverter circuit 11 is a resonant inverter 1 configured in a full-bridge configuration.
  • the full-bridge inverter circuit 11 includes a U-phase main leg 4u, a U-phase neutral leg 5au of the U-phase main leg 4u, and a U-phase auxiliary resonant circuit 2u.
  • the full-bridge inverter circuit 11 includes a W-phase main leg 4w, a W-phase neutral leg 5aw of the W-phase main leg 4w, and a W-phase auxiliary resonant circuit 2w.
  • the U-phase control circuit 6u and the W-phase control circuit 6w control the U-phase auxiliary resonant circuit 2u and the W-phase auxiliary resonant circuit 2w separately at different timings.
  • the control of the U-phase auxiliary resonant circuit 2u operates differently depending on the switching state of the W phase.
  • the control of the W-phase auxiliary resonant circuit 2w operates differently depending on the switching state of the U phase.
  • FIG. 16 shows a three-phase inverter circuit 12 to which the resonant inverter 1 is applied.
  • the three-phase inverter circuit 12 is a three-phase configuration of the resonant inverter 1.
  • the three-phase inverter circuit 12 includes a U-phase main leg 4u, a U-phase neutral phase leg 5au of the U-phase main leg 4u, and a U-phase auxiliary resonant circuit 2u.
  • the three-phase inverter circuit 12 includes a V-phase main leg 4v, a V-phase neutral phase leg 5av of the V-phase main leg 4v, and a V-phase auxiliary resonant circuit 2v.
  • the three-phase inverter circuit 12 includes a W-phase main leg 4w, a W-phase neutral phase leg 5aw of the W-phase main leg 4w, and a W-phase auxiliary resonant circuit 2w.
  • Mode 40 shown in FIG. 17(a) is a state in which the inverter current Iinv flows back through the anti-parallel diode D2 of the switch element Tm2 of the U-phase main leg 4u, and the anti-parallel diode D1 of the switch element Tm1 of the V-phase main leg 4v and the W-phase main leg 4w.
  • mode 42 commutation to resonant inductor Lr of U-phase auxiliary resonant circuit 2u is completed.
  • Vce of switch element Tm1 and switch element Tm2 of U-phase main leg 4u changes sinusoidally due to resonance with resonant capacitors C1 and C2 of U-phase main leg 4u shown by dotted lines in FIG. 17(c).
  • Vce of switch element Tm1 of U-phase main leg 4u changes from Vdc to 0V
  • Vce of switch element Tm2 of U-phase main leg 4u changes from 0V to Vdc.
  • the above is the operation of the U-phase by the U-phase control circuit 6u.
  • the V-phase control circuit 6v and the W-phase control circuit 6w control the V-phase and W-phase at separate timings, just like the U-phase.
  • a resonant inverter 1 according to one embodiment of the present invention includes a neutral point clamp circuit 3 including a capacitor Cp (positive side capacitor) and a capacitor Cn (negative side capacitor) connected in series between a positive side DC line P and a negative side DC line N.
  • a connection point between the capacitor Cp and the capacitor Cn serves as a neutral point A.
  • the resonant inverter 1 includes a main leg 4 connected in series between the positive side DC line P and the negative side DC line N.
  • the main leg 4 includes a switch element Tm1 (upper arm switch) and a switch element Tm2 (lower arm switch), and a connection point between the switch element Tm1 and the switch element Tm2 serves as an input/output point B of the inverter current.
  • the resonant inverter 1 includes a resonant capacitor C1 (first resonant capacitor) and a resonant capacitor C2 (second resonant capacitor) connected in parallel to the switch element Tm1 and the switch element Tm2.
  • the neutral phase leg 5 includes a switch element Tn3 (positive side neutral phase switch) and a switch element Tn4 (negative side neutral phase switch) that open and close the positive polarity path np and the negative polarity path nn, respectively.
  • the resonant inverter 1 includes an auxiliary resonant circuit 2 including a resonant inductor Lr having one end connected to the input/output point B.
  • the auxiliary resonant circuit 2 includes a positive side resonant path rp in which the current polarity is limited to the direction from the neutral point A to the resonant inductor Lr, and which is opened and closed by a switch element Tr5 (positive side resonant switch).
  • the auxiliary resonant circuit 2 includes a negative-side resonant path rn whose current polarity is limited to the direction from the resonant inductor Lr to the neutral point A and which is opened and closed by a switch element Tr6 (negative-side resonant switch).
  • the auxiliary resonant circuit 2 includes a positive-side regenerative path (anti-parallel diode D3 of switch element Tr3 + lossless regenerative clamp snubber diode Dsp) whose current polarity is limited to the direction from the resonant inductor Lr to the positive-side DC line P.
  • the auxiliary resonant circuit 2 includes a negative-side regenerative path (anti-parallel diode D4 of switch element Tr4 + lossless regenerative clamp snubber diode Dsn) whose current polarity is limited to the direction from the negative-side DC line N to the resonant inductor Lr.
  • the auxiliary resonant circuit 2 becomes a lossless regenerative path of the energy stored in the resonant inductor Lr.
  • the auxiliary resonant circuit 2 is clamped to the voltage of the neutral point A by the positive side resonant path rp and the negative side resonant path rn.
  • the elements constituting the auxiliary resonant circuit 2 can be composed of elements with a lower withstand voltage than the elements of the main leg 4, which is the main circuit.
  • the range of elements to be selected for the auxiliary resonant circuit 2 is wider, and the auxiliary resonant circuit 2 can be constructed at low cost.
  • the lossless regenerative clamp snubber diodes Dsp and Dsn become a regenerative path of the energy of the resonant inductor Lr, enabling highly efficient overvoltage protection measures.
  • the auxiliary resonant circuit 2 which is a three-level inverter, the efficiency of the resonant inverter 1 can be further improved.
  • the resonant inverter 1 is optimal for charging and discharging applications because soft switching is possible even at power factors other than 1.
  • the resonant inverter 1 has a heat dissipation effect due to the provision of the auxiliary resonant circuit 2, and therefore the heat dissipation mechanism is inexpensive.
  • the switch element Tn3 may be controlled to be turned off simultaneously with the switch element Tn4 and may be controlled to be turned on simultaneously with the switch element Tm1.
  • the resonant inverter 1 can be treated as a two-level converter, making it easy to control the resonant operation.
  • the switch element Tr5 may be turned on during the dead time DT before the switch element Tm1 is turned on, and the switch element Tr5 may be turned off after the switch element Tm1 is turned on.
  • the resonant inverter 1 described in (3) above allows the inverter current Iinv to be commutated to the auxiliary resonant circuit 2 during the discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between, thereby causing a resonant operation.
  • the resonant inverter 1 described in (4) above can achieve zero-voltage turn-on control of the switch element Tm1 during the discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between.
  • the switch element Tr5 may be turned off at a timing after a second commutation time Tcom2 (second positive side commutation time) from the timing of the turn-on control of the switch element Tm1.
  • the second commutation time Tcom2 (second positive side commutation time) is the time until the commutation of the resonant inductor current ILr from the resonant inductor Lr to the switch element Tm1 is completed by the turn-on control of the switch element Tm1.
  • the resonant inverter 1 described in (5) above can quickly terminate the resonant operation after the zero voltage turn-on control of the switch elements Tm1 and Tn3 during the discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between.
  • the switch element Tn4 may be controlled to be turned off simultaneously with the switch element Tn3 and may be controlled to be turned on simultaneously with the switch element Tm2.
  • the resonant inverter 1 can be treated as a two-level converter, making it easy to control the resonant operation.
  • the switch element Tr6 may be turned on during the dead time DT before the switch element Tm2 is turned on, and the switch element Tr6 may be turned off after the switch element Tm2 is turned on.
  • the inverter current Iinv can be commutated to the auxiliary resonant circuit 2 to cause a resonant operation.
  • the switch element Tr6 may be turned on at a timing before the timing of the turn-on control of the switch element Tm2, which is the sum of the first commutation time Tcom1 (first negative commutation time) and the resonant time Tres.
  • the first commutation time Tcom1 (first negative commutation time) is the time until the commutation of the inverter current Iinv to the resonant inductor Lr is completed by the turn-on control of the switch element Tr6.
  • the resonant inverter 1 described in (8) above can achieve zero-voltage turn-on control of the switch element Tm2 during the discharge operation in which the switch elements Tm2 and Tn3 are alternately controlled with a dead time DT in between.
  • the switch element Tr6 may be turned off at a timing after a second commutation time Tcom2 (second negative commutation time) from the timing of the turn-on control of the switch element Tm2.
  • the second commutation time Tcom2 (second negative commutation time) is the time until the commutation of the resonant inductor current ILr from the resonant inductor Lr to the switch element Tm2 is completed by the turn-on control of the switch element Tm2.
  • the resonant inverter 1 described in (9) above can quickly terminate the resonant operation after the zero voltage turn-on control of the switch elements Tm2 and Tn4 during the discharge operation in which the switch elements Tm2 and Tn3 are alternately controlled with the dead time DT in between.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A resonant inverter (1) is a three-level converter and operates under zero voltage turn-on control at a time of discharge. An auxiliary resonance circuit (2) includes a negative-side resonance path (rn) that has a current polarity limited to a direction from a resonance inductor (Lr) to a neutral point (A), and that is opened and closed by a switch element (Tr6). The auxiliary resonance circuit (2) includes a positive-side regeneration path (D5 + Dsp) that has a current polarity limited to a direction from the resonance inductor (Lr) to a positive-side DC line (P). The auxiliary resonance circuit (2) includes a negative-side regeneration path (D6 + Dsn) that has a current polarity limited to a direction from a negative-side DC line (N) to the resonance inductor (Lr).

Description

共振型インバータResonant Inverter

 本発明は、補助共振回路を有する共振型インバータに関する。 The present invention relates to a resonant inverter having an auxiliary resonant circuit.

 無停電電源装置等の蓄電システムは、蓄電装置と、外部の電力系統と蓄電装置との間で交流と直流との変換を行うインバータを内蔵したPCS(パワーコンディショナユニット)を備えている。蓄電装置は、例えば、複数の蓄電素子を有する蓄電モジュールを複数備えて構成される。近年、蓄電装置は、高電圧化、大容量化が進んでいる。 A power storage system such as an uninterruptible power supply comprises a power storage device and a PCS (power conditioner unit) with a built-in inverter that converts AC and DC between the external power system and the power storage device. The power storage device is, for example, composed of multiple power storage modules, each having multiple storage elements. In recent years, power storage devices have become higher in voltage and larger in capacity.

 蓄電装置の高電圧化、大容量化に伴って、インバータにおけるスイッチング損失および電磁干渉(EMI)ノイズの増大が大きな問題となる。スイッチング損失およびEMIノイズを低減させる方法として、共振型インバータが用いられている(例えば、特許文献1、2、3参照)。 As the voltage and capacity of power storage devices increases, the increase in switching loss and electromagnetic interference (EMI) noise in the inverter becomes a major problem. Resonant inverters are used as a method for reducing switching loss and EMI noise (see, for example, Patent Documents 1, 2, and 3).

特許第5195161号公報Patent No. 5195161 特許第5569204号公報Patent No. 5569204

 特許文献1の共振型インバータは、全スイッチがオフの時、共振インダクタに蓄積されたエネルギーの経路は、スナバ回路によって確保されているが、スナバ損失によって効率が低下する。 In the resonant inverter of Patent Document 1, when all switches are off, a path for the energy stored in the resonant inductor is secured by a snubber circuit, but efficiency drops due to snubber loss.

 特許文献2の共振型インバータは、全スイッチがオフの時、共振インダクタに蓄積されたエネルギーを補助共振回路によって無損失で直流リンクへ回生している。補助共振回路は、共振インダクタに蓄積されたエネルギーの経路となり、スナバ損失も発生しない。しかし、補助回路は、主回路と同じ高耐圧の素子が必要になる。高耐圧の素子は、種類が少ないうえ,スイッチングスピードが遅く効率の悪化が懸念される。 In the resonant inverter of Patent Document 2, when all switches are off, the energy stored in the resonant inductor is regenerated to the DC link without loss by the auxiliary resonant circuit. The auxiliary resonant circuit serves as a path for the energy stored in the resonant inductor, and no snubber loss occurs. However, the auxiliary circuit requires the same high-voltage withstand elements as the main circuit. There are only a few types of high-voltage withstand elements, and their switching speed is slow, which raises concerns about a decrease in efficiency.

 本発明の一態様は、共振インダクタに蓄積されたエネルギーの経路となる無損失の補助共振回路を、主回路よりも低耐圧の素子で構成できる共振型インバータを提供する。 One aspect of the present invention provides a resonant inverter in which a lossless auxiliary resonant circuit, which serves as a path for the energy stored in the resonant inductor, can be constructed from elements with a lower voltage resistance than the main circuit.

 本発明の一態様は、正側直流ラインと負側直流ラインとの間に直列に接続された正側キャパシタと負側キャパシタとからなり、前記正側キャパシタと前記負側キャパシタとの接続点が中性点となる中性点クランプ回路を備える共振型インバータである。前記共振型インバータは、前記正側直流ラインと前記負側直流ラインとの間に直列に接続された上アームスイッチと下アームスイッチとからなり、前記上アームスイッチと前記下アームスイッチとの接続点がインバータ電流の入出力点となるメインレグを備える。前記共振型インバータは、前記上アームスイッチ及び前記下アームスイッチに並列に接続された第1共振キャパシタ及び第2共振キャパシタを備える。前記共振型インバータは、前記上アームスイッチ及び前記下アームスイッチに逆並列に接続された第1逆並列ダイオード及び第2逆並列ダイオードを備える。前記共振型インバータは、電流極性が前記中性点から前記入出力点の方向に限定された正側極性経路及び電流極性が前記入出力点から前記中性点の方向に限定された負側極性経路をそれぞれ開閉する正側中性相スイッチ及び負側中性相スイッチを有する中性相レグを備える。前記共振型インバータは、前記入出力点に一端が接続された共振インダクタを含む補助共振回路を備える。前記補助共振回路は、電流極性が前記中性点から前記共振インダクタの方向に限定され、正側共振スイッチによって開閉される正側共振経路を備える。前記補助共振回路は、電流極性が前記共振インダクタから前記中性点の方向に限定され、負側共振スイッチによって開閉される負側共振経路を備える。前記補助共振回路は、電流極性が前記共振インダクタから前記正側直流ラインの方向に限定された正側回生経路を備える。前記補助共振回路は、電流極性が前記負側直流ラインから前記共振インダクタの方向に限定された負側回生経路を備える。 One aspect of the present invention is a resonant inverter comprising a positive side capacitor and a negative side capacitor connected in series between a positive side DC line and a negative side DC line, and a neutral point clamp circuit in which the connection point between the positive side capacitor and the negative side capacitor serves as a neutral point. The resonant inverter comprises an upper arm switch and a lower arm switch connected in series between the positive side DC line and the negative side DC line, and a main leg in which the connection point between the upper arm switch and the lower arm switch serves as an input/output point for the inverter current. The resonant inverter comprises a first resonant capacitor and a second resonant capacitor connected in parallel to the upper arm switch and the lower arm switch. The resonant inverter comprises a first anti-parallel diode and a second anti-parallel diode connected in anti-parallel to the upper arm switch and the lower arm switch. The resonant inverter includes a neutral phase leg having a positive side neutral phase switch and a negative side neutral phase switch that respectively open and close a positive side polarity path in which the current polarity is limited to the direction from the neutral point to the input/output point and a negative side polarity path in which the current polarity is limited to the direction from the input/output point to the neutral point. The resonant inverter includes an auxiliary resonant circuit including a resonant inductor having one end connected to the input/output point. The auxiliary resonant circuit includes a positive side resonant path in which the current polarity is limited to the direction from the neutral point to the resonant inductor and is opened and closed by a positive side resonant switch. The auxiliary resonant circuit includes a negative side resonant path in which the current polarity is limited to the direction from the resonant inductor to the neutral point and is opened and closed by a negative side resonant switch. The auxiliary resonant circuit includes a positive side regenerative path in which the current polarity is limited to the direction from the resonant inductor to the positive side DC line. The auxiliary resonant circuit includes a negative side regenerative path in which the current polarity is limited to the direction from the negative side DC line to the resonant inductor.

 本発明の一態様によれば、共振インダクタに蓄積されたエネルギーの経路となる無損失の補助共振回路は、正側共振経路及び負側共振経路によって中性点の電圧にクランプされるため、補助共振回路を構成する素子は、主回路であるメインレグの素子よりも低耐圧の素子で構成できる。 According to one aspect of the present invention, the lossless auxiliary resonant circuit, which serves as a path for the energy stored in the resonant inductor, is clamped to the neutral voltage by the positive and negative resonant paths, so that the elements that make up the auxiliary resonant circuit can be constructed with elements that have a lower voltage resistance than the elements of the main leg, which is the main circuit.

共振型インバータの実施の形態の1相分の回路構成を示す図である。FIG. 2 is a diagram showing a circuit configuration for one phase of an embodiment of a resonant inverter. 図1に示す共振型インバータの放電動作を示すタイミングチャートである。2 is a timing chart showing a discharging operation of the resonant inverter shown in FIG. 1 . 図2に示す各モードの動作を示す図である。3A to 3C are diagrams illustrating the operation of each mode shown in FIG. 2. 正方向のクランプスナバ動作を示すタイミングチャートである。11 is a timing chart showing a clamp snubber operation in a positive direction. 図4に示すモード5Aの動作を示す図である。FIG. 5 is a diagram showing the operation of mode 5A shown in FIG. 4 . 図1に示す共振型インバータの放電動作を示すタイミングチャートである。2 is a timing chart showing a discharging operation of the resonant inverter shown in FIG. 1 . 図6に示す各モードの動作を示す図である。7A to 7C are diagrams illustrating the operation of each mode shown in FIG. 6. 負方向のクランプスナバ動作を示すタイミングチャートである。11 is a timing chart showing a clamp snubber operation in the negative direction. 図8に示すモード15Aの動作を示す図である。FIG. 9 is a diagram showing the operation of mode 15A shown in FIG. 8 . 図1に示す共振型インバータの充電動作を示すタイミングチャートである。2 is a timing chart showing a charging operation of the resonant inverter shown in FIG. 1 . 図10に示す各モードの動作を示す図である。11A to 11C are diagrams illustrating the operation of each mode shown in FIG. 10. 図1に示す共振型インバータの放電動作を示すタイミングチャートである。2 is a timing chart showing a discharging operation of the resonant inverter shown in FIG. 1 . 図12に示す各モードの動作を示す図である。13A to 13C are diagrams illustrating the operation of each mode shown in FIG. 12. 図1に示す補助共振回路の第1適用例を示す図である。FIG. 2 is a diagram illustrating a first application example of the auxiliary resonant circuit shown in FIG. 図1に示す共振型インバータの第2適用例を示す図である。FIG. 2 is a diagram illustrating a second application example of the resonant inverter illustrated in FIG. 1 . 図1に示す共振型インバータの第3適用例を示す図である。FIG. 13 is a diagram illustrating a third application example of the resonant inverter illustrated in FIG. 図16に示す共振型インバータの動作を示す図である。17 is a diagram illustrating the operation of the resonant inverter shown in FIG. 16.

 以下、図を参照して本発明の実施の形態を詳細に説明する。以下の実施の形態において、同様の機能を示す構成には、同一の符号を付して適宜説明を省略する。 Below, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, components exhibiting similar functions will be given the same reference numerals and descriptions will be omitted as appropriate.

 本実施の形態の共振型インバータ1は、図1を参照すると、NPC(neutral point clamped/中性点クランプ)タイプのARCP(auxiliary resonant commutated pole/補助共振転流ポール)トポロジーの補助共振回路2を有する3レベルインバータである。 Referring to FIG. 1, the resonant inverter 1 of this embodiment is a three-level inverter having an auxiliary resonant circuit 2 of an NPC (neutral point clamped) type ARCP (auxiliary resonant commutated pole) topology.

 共振型インバータ1は、正側のキャパシタCpと負側のキャパシタCnとが直列に接続された中性点クランプ回路3を備える。中性点クランプ回路3は、正側直流ラインPと負側直流ラインNとの間に接続される。キャパシタCp及びキャパシタCnは、同容量に構成される。キャパシタCpとキャパシタCnとの接続点は、正側直流ラインPと負側直流ラインNとの間に入力される入力直流電圧Vdcの電圧の1/2の電圧Vdc/2が生成される中性点Aである。 The resonant inverter 1 includes a neutral point clamp circuit 3 in which a positive side capacitor Cp and a negative side capacitor Cn are connected in series. The neutral point clamp circuit 3 is connected between a positive side DC line P and a negative side DC line N. The capacitors Cp and Cn are configured to have the same capacitance. The connection point between the capacitors Cp and Cn is the neutral point A where a voltage Vdc/2, which is half the voltage of the input DC voltage Vdc input between the positive side DC line P and the negative side DC line N, is generated.

 共振型インバータ1は、メインレグ4として、上アームに配置された上アームスイッチであるスイッチ素子Tm1と、下アームに配置された下アームスイッチであるスイッチ素子Tm2とからなる直列回路を備える。スイッチ素子Tm1及びスイッチ素子Tm2は、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)で構成される。スイッチ素子Tm1及びスイッチ素子Tm2は、MOSFETで構成してもよい。メインレグ4は、正側直流ラインPと負側直流ラインNとの間に接続される。スイッチ素子Tm1は、コレクタが正側直流ラインPに、エミッタがスイッチ素子Tm2のコレクタにそれぞれ接続される。スイッチ素子Tm2は、エミッタが負側直流ラインNに接続される。スイッチ素子Tm1のエミッタとスイッチ素子Tm2のコレクタとの接続点は、インバータ電流Iinvの入出力点Bとなり、インダクタL1を介して交流入出力端子に接続される。 The resonant inverter 1 has a main leg 4, which is a series circuit consisting of a switch element Tm1, which is an upper arm switch arranged in the upper arm, and a switch element Tm2, which is a lower arm switch arranged in the lower arm. The switch elements Tm1 and Tm2 are, for example, configured with insulated gate bipolar transistors (IGBTs). The switch elements Tm1 and Tm2 may also be configured with MOSFETs. The main leg 4 is connected between a positive side DC line P and a negative side DC line N. The switch element Tm1 has a collector connected to the positive side DC line P and an emitter connected to the collector of the switch element Tm2. The switch element Tm2 has an emitter connected to the negative side DC line N. The connection point between the emitter of the switch element Tm1 and the collector of the switch element Tm2 becomes an input/output point B of the inverter current Iinv, and is connected to the AC input/output terminal via the inductor L1.

 スイッチ素子Tm1は、逆並列に、すなわちスイッチ素子Tm1のコレクタとエミッタとにカソードとアノードとがそれぞれ接続された逆並列ダイオードD1を備える。逆並列ダイオードD1は、例えば、スイッチ素子Tm1のボディダイオードで構成される。スイッチ素子Tm1は、並列に接続された共振キャパシタC1を備える。共振キャパシタC1は、スイッチ素子Tm1の浮遊容量や外付けキャパシタで構成される。 The switch element Tm1 has an anti-parallel diode D1 connected in anti-parallel, i.e., the cathode and anode of which are connected to the collector and emitter of the switch element Tm1, respectively. The anti-parallel diode D1 is formed, for example, by the body diode of the switch element Tm1. The switch element Tm1 has a resonant capacitor C1 connected in parallel. The resonant capacitor C1 is formed by the stray capacitance of the switch element Tm1 or an external capacitor.

 スイッチ素子Tm2は、逆並列に、すなわちスイッチ素子Tm2のコレクタとエミッタとにカソードとアノードとがそれぞれ接続された逆並列ダイオードD2を備える。逆並列ダイオードD2は、例えば、スイッチ素子Tm2のボディダイオードで構成される。スイッチ素子Tm2は、並列に接続された共振キャパシタC2を備える。共振キャパシタC2は、スイッチ素子Tm2の浮遊容量や外付けキャパシタで構成される。 The switch element Tm2 includes an anti-parallel diode D2 connected in anti-parallel, i.e., with its cathode and anode connected to the collector and emitter of the switch element Tm2, respectively. The anti-parallel diode D2 is formed, for example, by the body diode of the switch element Tm2. The switch element Tm2 includes a resonant capacitor C2 connected in parallel. The resonant capacitor C2 is formed by the stray capacitance of the switch element Tm2 or an external capacitor.

 共振型インバータ1は、中性相レグ5を備える。中性相レグ5は、正側極性経路np及び負側極性経路nnを備える。正側極性経路np及び負側極性経路nnは、中性点クランプ回路3の中性点Aとメインレグ4の入出力点Bとの間を並列に接続する。 The resonant inverter 1 has a neutral phase leg 5. The neutral phase leg 5 has a positive polarity path np and a negative polarity path nn. The positive polarity path np and the negative polarity path nn are connected in parallel between the neutral point A of the neutral point clamp circuit 3 and the input/output point B of the main leg 4.

 正側極性経路npは、ダイオードDnpとスイッチ素子Tn3とからなる直列回路であり、電流極性を一方向(中性点Aから入出力点Bの方向)に限定し、スイッチ素子Tn3によって開閉される。スイッチ素子Tn3は、IGBTやMOSFETで構成される。ダイオードDnpは、アノードが中性点Aに、カソードがスイッチ素子Tn3のコレクタにそれぞれ接続される。スイッチ素子Tn3は、エミッタが入出力点Bに接続される。 The positive polarity path np is a series circuit consisting of a diode Dnp and a switch element Tn3, which limits the current polarity to one direction (from neutral point A to input/output point B) and is opened and closed by the switch element Tn3. The switch element Tn3 is composed of an IGBT or MOSFET. The anode of the diode Dnp is connected to the neutral point A, and the cathode is connected to the collector of the switch element Tn3. The emitter of the switch element Tn3 is connected to the input/output point B.

 負側極性経路nnは、ダイオードDnnとスイッチ素子Tn4とからなる直列回路であり、電流極性を一方向(入出力点Bから中性点Aの方向)に限定し、スイッチ素子Tn4によって開閉される。スイッチ素子Tn4は、IGBTやMOSFETで構成される。スイッチ素子Tn4は、コレクタが入出力点Bに、エミッタがダイオードDnnのアノードに接続される。ダイオードDnnは、カソードが中性点Aに接続される。 The negative polarity path nn is a series circuit consisting of a diode Dnn and a switch element Tn4, which limits the current polarity to one direction (from input/output point B to neutral point A) and is opened and closed by the switch element Tn4. The switch element Tn4 is composed of an IGBT or MOSFET. The collector of the switch element Tn4 is connected to the input/output point B, and the emitter is connected to the anode of the diode Dnn. The cathode of the diode Dnn is connected to neutral point A.

 補助共振回路2は、共振インダクタLrと、メインレグ4の入出力点Bと、中性点クランプ回路3の中性点Aとの間に並列に接続された正側共振経路rpと負側共振経路rnとを備える。 The auxiliary resonant circuit 2 includes a resonant inductor Lr, a positive resonant path rp, and a negative resonant path rn connected in parallel between the resonant inductor Lr, the input/output point B of the main leg 4, and the neutral point A of the neutral point clamp circuit 3.

 正側共振経路rpは、一端が入出力点Bに接続された共振インダクタLrの他端側から、正側共振スイッチであるスイッチ素子Tr5,ダイオードDrpの順に直列回路を構成している。スイッチ素子Tr5は、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)で構成される。スイッチ素子Tr5は、MOSFETで構成してもよい。 The positive-side resonant path rp is configured as a series circuit including, from the other end of the resonant inductor Lr, one end of which is connected to the input/output point B, a switch element Tr5, which is a positive-side resonant switch, and a diode Drp. The switch element Tr5 is configured, for example, as an insulated gate bipolar transistor (IGBT). The switch element Tr5 may also be configured as a MOSFET.

 共振インダクタLrは、一端が入出力点Bに、他端がスイッチ素子Tr5のエミッタにそれぞれ接続される。スイッチ素子Tr5のコレクタは、ダイオードDrpのカソードに、ダイオードDrpのアノードは、中性点Aにそれぞれ接続される。 One end of the resonant inductor Lr is connected to the input/output point B, and the other end is connected to the emitter of the switch element Tr5. The collector of the switch element Tr5 is connected to the cathode of the diode Drp, and the anode of the diode Drp is connected to the neutral point A.

 ダイオードDrpは、正側共振経路rpの電流極性を一方向(中性点Aから入出力点Bの方向)に限定する。スイッチ素子Tr5は、正側共振経路rpを開閉する。 The diode Drp limits the current polarity of the positive resonant path rp to one direction (from neutral point A to input/output point B). The switch element Tr5 opens and closes the positive resonant path rp.

 スイッチ素子Tr5は、逆並列に、すなわちスイッチ素子Tr5のコレクタとエミッタとにカソードとアノードとがそれぞれ接続された逆並列ダイオードD5を備える。逆並列ダイオードD5は、例えば、スイッチ素子Tr5のボディダイオードで構成される。 The switch element Tr5 is provided with an anti-parallel diode D5, the cathode and anode of which are connected in anti-parallel to the collector and emitter of the switch element Tr5, respectively. The anti-parallel diode D5 is formed, for example, by the body diode of the switch element Tr5.

 補助共振回路2は、スイッチ素子Tr5のコレクタとダイオードDrpのカソードとの接続点と、正側直流ラインPとを接続する無損失回生クランプスナバダイオードDspを備える。無損失回生クランプスナバダイオードDspは、アノードがスイッチ素子Tr5のコレクタとダイオードDrpのカソードとの接続点に、カソードが正側直流ラインPに接続される。 The auxiliary resonant circuit 2 includes a lossless regenerative clamp snubber diode Dsp that connects the connection point between the collector of the switch element Tr5 and the cathode of the diode Drp to the positive DC line P. The lossless regenerative clamp snubber diode Dsp has an anode connected to the connection point between the collector of the switch element Tr5 and the cathode of the diode Drp, and a cathode connected to the positive DC line P.

 スイッチ素子Tr5の逆並列ダイオードD5と、無損失回生クランプスナバダイオードDspとは、電流極性が一方向(共振インダクタLrから正側直流ラインPの方向)に限定された正側回生経路を構成する。 The anti-parallel diode D5 of the switch element Tr5 and the lossless regenerative clamp snubber diode Dsp form a positive regenerative path in which the current polarity is limited to one direction (from the resonant inductor Lr to the positive DC line P).

 負側共振経路rnは、一端が入出力点Bに接続された共振インダクタLrの他端側から、負側共振スイッチであるスイッチ素子Tr6,ダイオードDrnの順に直列回路を構成している。共振インダクタLrは、正側共振経路rpと共用される。スイッチ素子Tr6は、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)で構成される。スイッチ素子Tr6は、MOSFETで構成してもよい。 The negative resonant path rn is configured as a series circuit including, from one end of the resonant inductor Lr, which is connected to the input/output point B, a switch element Tr6, which is a negative resonant switch, and a diode Drn. The resonant inductor Lr is also used as the positive resonant path rp. The switch element Tr6 is configured, for example, as an insulated gate bipolar transistor (IGBT). The switch element Tr6 may also be configured as a MOSFET.

 共振インダクタLrは、一端が入出力点Bに、他端がスイッチ素子Tr6のコレクタにそれぞれ接続される。スイッチ素子Tr6のエミッタは、ダイオードDrnのアノードに、ダイオードDrnのカソードは、中性点Aにそれぞれ接続される。 One end of the resonant inductor Lr is connected to the input/output point B, and the other end is connected to the collector of the switch element Tr6. The emitter of the switch element Tr6 is connected to the anode of the diode Drn, and the cathode of the diode Drn is connected to the neutral point A.

 ダイオードDrnは、負側共振経路rnの電流極性を一方向(入出力点Bから中性点Aの方向)に限定する。スイッチ素子Tr6は、負側共振経路rnを開閉する。 The diode Drn limits the current polarity of the negative resonant path rn to one direction (from input/output point B to neutral point A). The switch element Tr6 opens and closes the negative resonant path rn.

 スイッチ素子Tr6は、逆並列に、すなわちスイッチ素子Tr6のコレクタとエミッタとにカソードとアノードとがそれぞれ接続された逆並列ダイオードD6を備える。逆並列ダイオードD6は、例えば、スイッチ素子Tr6のボディダイオードで構成される。 The switch element Tr6 is provided with an anti-parallel diode D6, the cathode and anode of which are connected in anti-parallel to the collector and emitter of the switch element Tr6, respectively. The anti-parallel diode D6 is formed, for example, by the body diode of the switch element Tr6.

 補助共振回路2は、スイッチ素子Tr6のエミッタとダイオードDrnのアノードとの接続点と、負側直流ラインNとを接続する無損失回生クランプスナバダイオードDsnを備える。無損失回生クランプスナバダイオードDsnは、カソードがスイッチ素子Tr6のエミッタとダイオードDrnのアノードとの接続点に、アノードが負側直流ラインNに接続される。 The auxiliary resonant circuit 2 includes a lossless regenerative clamp snubber diode Dsn that connects the connection point between the emitter of the switch element Tr6 and the anode of the diode Drn to the negative DC line N. The lossless regenerative clamp snubber diode Dsn has a cathode connected to the connection point between the emitter of the switch element Tr6 and the anode of the diode Drn, and an anode connected to the negative DC line N.

 スイッチ素子Tr6の逆並列ダイオードD6と、無損失回生クランプスナバダイオードDsnとは、電流極性が一方向(負側直流ラインNから共振インダクタLrの方向)に限定された負側回生経路を構成する。 The anti-parallel diode D6 of the switch element Tr6 and the lossless regenerative clamp snubber diode Dsn form a negative regenerative path in which the current polarity is limited to one direction (from the negative DC line N to the resonant inductor Lr).

 共振型インバータ1は、スイッチ素子Tm1、Tm2、Tn3、Tn4、Tr5、Tr6のそれぞれをオンオフ制御する制御回路6を備える。制御回路6は、メインレグ4のスイッチ素子Tm1と中性相レグ5のスイッチ素子Tn4とのPWM制御時において、スイッチ素子Tm1をゼロ電圧ターンオンさせる。制御回路6は、メインレグ4のスイッチ素子Tm2と中性相レグ5のスイッチ素子Tn3とのPWM制御時において、スイッチ素子Tm2をゼロ電圧ターンオンさせる。 The resonant inverter 1 includes a control circuit 6 that controls the on/off of each of the switch elements Tm1, Tm2, Tn3, Tn4, Tr5, and Tr6. The control circuit 6 turns on the switch element Tm1 at zero voltage during PWM control of the switch element Tm1 of the main leg 4 and the switch element Tn4 of the neutral phase leg 5. The control circuit 6 turns on the switch element Tm2 at zero voltage during PWM control of the switch element Tm2 of the main leg 4 and the switch element Tn3 of the neutral phase leg 5.

 出力電圧Vo、インバータ電流Iinvが正の場合の共振型インバータ1の放電動作について図2及び図3を参照して説明する。図2は、共振型インバータ1の動作を示すタイミングチャートである。図3は、図2に示す各モード(Mode)における動作を共振型インバータ1の等価回路を用いて示す。 The discharge operation of the resonant inverter 1 when the output voltage Vo and the inverter current Iinv are positive will be described with reference to Figures 2 and 3. Figure 2 is a timing chart showing the operation of the resonant inverter 1. Figure 3 shows the operation in each mode shown in Figure 2 using an equivalent circuit of the resonant inverter 1.

 出力電圧Voが正であるため,スイッチ素子Tm1とTn4は、交番でPWM動作を行っている。インバータ電流Iinvが正の場合、共振によるゼロ電圧(ZV)ターンオン制御の対象は、スイッチ素子Tm1のオンタイミングである。 Since the output voltage Vo is positive, the switch elements Tm1 and Tn4 alternate in PWM operation. When the inverter current Iinv is positive, the target of zero-voltage (ZV) turn-on control by resonance is the on-timing of the switch element Tm1.

 制御回路6は、共振動作をさせる前にスイッチ素子Tn3をオフすることにより、共振型インバータ1を2レベルインバータとして動作させ、スイッチ素子Tm2の逆並列ダイオードD2を導通させるモードをつくる。インバータ電流Iinvが正の場合、正側を共振動作させるため、制御回路6は、スイッチ素子Tm1のオン前後において正側共振経路rpのスイッチ素子Tr5を制御する。 The control circuit 6 operates the resonant inverter 1 as a two-level inverter by turning off the switch element Tn3 before resonant operation, creating a mode in which the anti-parallel diode D2 of the switch element Tm2 is conductive. When the inverter current Iinv is positive, the control circuit 6 controls the switch element Tr5 of the positive-side resonant path rp before and after turning on the switch element Tm1 to perform resonant operation on the positive side.

 図3(a)に示すモード0は、インバータ電流Iinvが中性相レグ5の正側極性経路npを還流している状態である。 Mode 0 shown in Figure 3(a) is a state in which the inverter current Iinv flows back through the positive polarity path np of the neutral phase leg 5.

 モード0において、スイッチ素子Tm1、Tm2のコレクタ-エミッタ電圧VceはいずれもVdc/2である。補助共振回路2の各素子の端子間電圧(Vce、逆方向電圧VR)は、Tr5、Tr6、Dsp、Dsn、Drp、DrnがそれぞれVdc/4である。中性相レグ5の各素子の端子間電圧は、いずれも0Vである。 In mode 0, the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2. The terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn. The terminal voltages of the elements of the neutral phase leg 5 are all 0V.

 モード1は、時刻t1でスイッチ素子Tn3、Tn4を同時にターンオフ制御させ、インバータ電流Iinvを下アームのスイッチ素子Tm2の逆並列ダイオードD2へ転流させる。他の全てのスイッチ素子Tm1、Tm2、Tr5、Tr6は、オフ状態である。モード1において、図3(b)に示すように、スイッチ素子Tm1の共振キャパシタC1は、充電され、スイッチ素子Tm2の共振キャパシタC2は、放電される。このため、スイッチ素子Tn3は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 1, at time t1, the switch elements Tn3 and Tn4 are simultaneously turned off, and the inverter current Iinv is commutated to the anti-parallel diode D2 of the lower-arm switch element Tm2. All other switch elements Tm1, Tm2, Tr5, and Tr6 are in the off state. In mode 1, as shown in FIG. 3(b), the resonant capacitor C1 of the switch element Tm1 is charged, and the resonant capacitor C2 of the switch element Tm2 is discharged. Therefore, the switch element Tn3 is subjected to zero-voltage turn-off control by the lossless snubber.

 モード1において、スイッチ素子Tm1のVceは、Vdc/2からVdcに、スイッチ素子Tm2のVceは、Vdc/2から0Vにそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Tr5、Dsp、Drnが、Vdc/4からVdc/2に、Tr6、Dsn、DrpがVdc/4から0Vにそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn3、Dnnが、0VからVdc/2にそれぞれ変化する。 In mode 1, Vce of switch element Tm1 changes from Vdc/2 to Vdc, and Vce of switch element Tm2 changes from Vdc/2 to 0V. The terminal voltages of each element of the auxiliary resonant circuit 2, Tr5, Dsp, and Drn, change from Vdc/4 to Vdc/2, and Tr6, Dsn, and Drp, change from Vdc/4 to 0V. The terminal voltages of each element of the neutral phase leg 5, Tn3, and Dnn, change from 0V to Vdc/2.

 モード2は、時刻t2でスイッチ素子Tm1のVceがVdcに、スイッチ素子Tm2のVceが0Vにそれぞれ変化し、インバータ電流Iinvは、図3(c)に示すように、下アームのスイッチ素子Tm2の逆並列ダイオードD2を還流している状態である。 In mode 2, at time t2, Vce of switch element Tm1 changes to Vdc and Vce of switch element Tm2 changes to 0 V, and the inverter current Iinv circulates through the anti-parallel diode D2 of the lower arm switch element Tm2, as shown in Figure 3(c).

 モード2において、補助共振回路2の各素子の端子間電圧は、Tr5、Drn、DspがそれぞれVdc/2で、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、Tn3、DnnがそれぞれVdc/2で、他の素子は、0Vである。 In mode 2, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr5, Drn, and Dsp, and 0V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are Vdc/2 for Tn3 and Dnn, and 0V for the other elements.

 モード3は、デッドタイムDTの期間中である時刻t3で正側共振経路rpのスイッチ素子Tr5をゼロ電流(ZC)ターンオン制御させ、図3(d)に示すように、インバータ電流Iinvを共振インダクタLr(正側共振経路rp)へ転流させる。モード3は、スイッチ素子Tm2の逆並列ダイオードD2がオフするまで継続する。 In mode 3, at time t3 during the dead time DT, the switch element Tr5 in the positive resonant path rp is turned on under zero current (ZC) control, and the inverter current Iinv is commutated to the resonant inductor Lr (positive resonant path rp) as shown in FIG. 3(d). Mode 3 continues until the anti-parallel diode D2 of the switch element Tm2 is turned off.

 モード3において、補助共振回路2の各素子の端子間電圧は、DspがVdc/2、Tr6、Drn、DsnがそれぞれVdc/4であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード2と同様である。 In mode 3, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsp, Vdc/4 for Tr6, Drn, and Dsn, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 2.

 モード4は、時刻t4で共振インダクタLrへの転流が完了し、図3(e)に点線で示す共振キャパシタC1、C2との共振によって、スイッチ素子Tm1及びスイッチ素子Tm2のVceが正弦波状に変化する。モード4において、スイッチ素子Tm1のVceは、Vdcから0Vに、スイッチ素子Tm2のVceは、0VからVdcにそれぞれ変化する。 In mode 4, the commutation to the resonant inductor Lr is completed at time t4, and the Vce of the switch element Tm1 and the switch element Tm2 changes sinusoidally due to resonance with the resonant capacitors C1 and C2 shown by the dotted lines in FIG. 3(e). In mode 4, the Vce of the switch element Tm1 changes from Vdc to 0 V, and the Vce of the switch element Tm2 changes from 0 V to Vdc.

 モード4において、補助共振回路2の各素子の端子間電圧は、モード3と同様である。中性相レグ5の各素子の端子間電圧は、Tn4、Dnpが、0VからVdc/2に、
Tn3、Dnnが、Vdc/2から0Vにそれぞれ変化する。
In mode 4, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as those in mode 3. The terminal voltages of each element of the neutral phase leg 5, Tn4 and Dnp, change from 0 V to Vdc/2.
Tn3 and Dnn change from Vdc/2 to 0V, respectively.

 モード3+4の期間は、第1転流時間Tcom1[Lr÷Vdcn×Iinv]と共振時間Tres[π×√(Lr×2Cr)]とを加算した時間となる。Lrは、共振インダクタLrのインダクタンス、Crは、共振キャパシタC1、C2の容量である。Vdcnは、中性点クランプ回路3におけるキャパシタCnの両端電圧である。第1転流時間Tcom1は、インバータ電流Iinvの共振インダクタLrへの転流が完了するまでの時間である。共振時間Tresは、共振周波数が(1/2π√(Lr×2Cr))となる共振の1/2周期である。 The period of mode 3+4 is the sum of the first commutation time Tcom1 [Lr÷Vdcn×Iinv] and the resonance time Tres [π×√(Lr×2Cr)]. Lr is the inductance of the resonance inductor Lr, and Cr is the capacitance of the resonance capacitors C1 and C2. Vdcn is the voltage across the capacitor Cn in the neutral point clamp circuit 3. The first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed. The resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2π√(Lr×2Cr)).

 換言すると、正側共振経路rpのスイッチ素子Tr5は、スイッチ素子Tm1及びスイッチ素子Tn3のターンオンタイミングよりも(第1転流時間Tcom1+共振時間Tres)前にターンオン制御される。 In other words, the switch element Tr5 of the positive-side resonant path rp is controlled to be turned on (first commutation time Tcom1+resonant time Tres) before the turn-on timing of the switch elements Tm1 and Tn3.

 モード5は、スイッチ素子Tm1のVceが0Vになった時刻t5のタイミングで、図3(f)に示すように、スイッチ素子Tm1及びスイッチ素子Tn3をゼロ電圧ターンオン制御させ、共振インダクタ電流ILrをスイッチ素子Tm1へ転流させる。 In mode 5, at time t5 when Vce of switch element Tm1 becomes 0V, as shown in FIG. 3(f), switch elements Tm1 and Tn3 are subjected to zero-voltage turn-on control, and the resonant inductor current ILr is commutated to switch element Tm1.

 モード5において、補助共振回路2の各素子の端子間電圧は、モード3と同様である。中性相レグ5の各素子の端子間電圧は、Tn3、Dnnがそれぞれ0Vで、他の素子は、Vdc/2である。 In mode 5, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 3. The terminal voltages of each element of the neutral phase leg 5 are 0V for Tn3 and Dnn, and Vdc/2 for the other elements.

 モード5の期間は、第2転流時間Tcom2[Lr÷Vdcp×Iinv]となる。Vdcpは、中性点クランプ回路3におけるキャパシタCpの両端電圧である。第2転流時間Tcom2は、インバータ電流Iinvのスイッチ素子Tm1への転流が完了するまでの時間である。 The period of mode 5 is the second commutation time Tcom2 [Lr ÷ Vdcp × Iinv]. Vdcp is the voltage across the capacitor Cp in the neutral point clamp circuit 3. The second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm1 is completed.

 換言すると、正側共振経路rpのスイッチ素子Tr5は、スイッチ素子Tm1及びスイッチ素子Tn3のターンオンタイミングよりも(第2転流時間Tcom2)後にターンオフ制御される。 In other words, the switch element Tr5 of the positive-side resonant path rp is controlled to be turned off after (the second commutation time Tcom2) the turn-on timing of the switch elements Tm1 and Tn3.

 モード6は、共振インダクタ電流ILrのスイッチ素子Tm1への転流完了に伴って、時刻t6でスイッチ素子Tr5をターンオフ制御させ、図3(g)に示すように、直流バス(正側直流ラインP)から負荷(交流系統)へ電力を放電している。 In mode 6, when the commutation of the resonant inductor current ILr to the switch element Tm1 is completed, the switch element Tr5 is turned off at time t6, and power is discharged from the DC bus (positive DC line P) to the load (AC system) as shown in FIG. 3(g).

 モード6において、補助共振回路2の各素子の端子間電圧は、Drp、Tr6、DsnがそれぞれVdc/2であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード5と同様である。 In mode 6, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drp, Tr6, and Dsn, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 5.

 モード7は、時刻t7で上アームのスイッチ素子Tm1をターンオフ制御することで、インバータ電流Iinvを中性相レグ5の正側極性経路npへ転流させ、スイッチ素子Tm1のターンオフ制御後のデッドタイムDTが経過するまでの期間である。モード7において、図3(h)に示すように、スイッチ素子Tm1の共振キャパシタC1は、充電され、スイッチ素子Tm2の共振キャパシタC2は、放電される。このため、スイッチ素子Tm1は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 7, the inverter current Iinv is commutated to the positive polarity path np of the neutral phase leg 5 by turning off the upper arm switch element Tm1 at time t7, and this is the period until the dead time DT has elapsed after the turn-off control of the switch element Tm1. In mode 7, as shown in FIG. 3(h), the resonant capacitor C1 of the switch element Tm1 is charged and the resonant capacitor C2 of the switch element Tm2 is discharged. Therefore, the switch element Tm1 is subjected to zero-voltage turn-off control by the lossless snubber.

 スイッチ素子Tm1のターンオフ制御後のデッドタイムDTが経過した時刻t8で、スイッチ素子Tn4は、ゼロ電圧ターンオン制御され、モード0に戻る。 At time t8 when the dead time DT following the turn-off control of switch element Tm1 has elapsed, switch element Tn4 is subjected to zero-voltage turn-on control and returns to mode 0.

 モード7において、スイッチ素子Tm1のVceは、0VからVdc/2に、スイッチ素子Tm2のVceは、VdcからVdc/2にそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Drp、Tr6、DsnがVdc/2からVdc/4に、Drn、Tr5、Dspが0VからVdc/4にそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn4、DnpがVdc/2から0Vにそれぞれ変化する。 In mode 7, Vce of switch element Tm1 changes from 0V to Vdc/2, and Vce of switch element Tm2 changes from Vdc to Vdc/2. The terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drp, Tr6, and Dsn, and from 0V to Vdc/4 for Drn, Tr5, and Dsp. The terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn4 and Dnp.

 以上のモード0~モード7が繰り返しとなり、スイッチ素子Tm1、Tn3は、ゼロ電圧ターンオン制御される。補助共振回路2は、共振インダクタLrに蓄積されたエネルギーの経路となる。補助共振回路2及び中性相レグ5の各素子の端子間電圧は、いずれのモードにおいてもVdc/2を上回ることがない。 The above modes 0 to 7 are repeated, and the switch elements Tm1 and Tn3 are controlled to be turned on at zero voltage. The auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr. The terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.

 上記のモード5の途中でスイッチ素子Tr5がオフしてしまった場合の共振型インバータ1の動作をモード5Aとして図4及び図5に示す。図4は、共振型インバータ1の動作を示すタイミングチャートである。図5は、図4に示すモード5Aにおける動作を共振型インバータ1の等価回路を用いて示す。  The operation of the resonant inverter 1 when the switch element Tr5 turns off during the above-mentioned mode 5 is shown as mode 5A in Figs. 4 and 5. Fig. 4 is a timing chart showing the operation of the resonant inverter 1. Fig. 5 shows the operation in mode 5A shown in Fig. 4 using an equivalent circuit of the resonant inverter 1.

 モード5Aは、共振インダクタ電流ILrがスイッチ素子Tm1へ転流している途中の時刻t5Aで、素子バラツキや計算バラツキ,誤動作等によりスイッチ素子Tr5がオフしてしまった状態である。共振インダクタLrに正方向に励磁されたエネルギーは、図5に点線で示すように、無損失回生クランプスナバダイオードDsnとスイッチ素子Tr6の逆並列ダイオードD6が導通して無損失で直流バスへ回生される。この回生時において、補助共振回路2は、直流バスの中性点Aにクランプされているため、スイッチ素子Tr5を含む補助共振回路2の各素子(ダイオードDrn、無損失回生クランプスナバダイオードDsp)は、Vdc/2でクランプされる。 In mode 5A, the switch element Tr5 turns off due to element variation, calculation variation, malfunction, etc. at time t5A while the resonant inductor current ILr is commutating to the switch element Tm1. The energy excited in the positive direction in the resonant inductor Lr is regenerated to the DC bus without loss as the lossless regenerative clamp snubber diode Dsn and the anti-parallel diode D6 of the switch element Tr6 conduct, as shown by the dotted line in Figure 5. During this regeneration, the auxiliary resonant circuit 2 is clamped to the neutral point A of the DC bus, so each element of the auxiliary resonant circuit 2, including the switch element Tr5 (diode Drn, lossless regenerative clamp snubber diode Dsp), is clamped at Vdc/2.

 出力電圧Vo、インバータ電流Iinvが負の場合の共振型インバータ1の放電動作について図6及び図7を参照して説明する。図6は、共振型インバータ1の動作を示すタイミングチャートである。図7は、図6に示す各モード(Mode)における動作を共振型インバータ1の等価回路を用いて示す。 The discharge operation of the resonant inverter 1 when the output voltage Vo and the inverter current Iinv are negative will be described with reference to Figures 6 and 7. Figure 6 is a timing chart showing the operation of the resonant inverter 1. Figure 7 shows the operation in each mode shown in Figure 6 using an equivalent circuit of the resonant inverter 1.

 出力電圧Voが負であるため,スイッチ素子Tm2とTn3は、交番でPWM動作を行っている。インバータ電流Iinvが負の場合、共振によるゼロ電圧ターンオン制御の対象は、スイッチ素子Tm2のオンタイミングである。 Since the output voltage Vo is negative, the switch elements Tm2 and Tn3 alternate in PWM operation. When the inverter current Iinv is negative, the target of zero-voltage turn-on control by resonance is the on-timing of the switch element Tm2.

 制御回路6は、共振動作をさせる前にスイッチ素子Tn4をオフすることにより、共振型インバータ1を2レベルインバータとして動作させ、スイッチ素子Tm1の逆並列ダイオードD1を導通させるモードをつくる。インバータ電流Iinvが負の場合、負側を共振動作させるため、制御回路6は、スイッチ素子Tm2のオン前後において負側共振経路rnのスイッチ素子Tr6を制御する。 The control circuit 6 turns off the switch element Tn4 before resonant operation, thereby operating the resonant inverter 1 as a two-level inverter and creating a mode in which the anti-parallel diode D1 of the switch element Tm1 is conductive. When the inverter current Iinv is negative, the control circuit 6 controls the switch element Tr6 of the negative side resonant path rn before and after turning on the switch element Tm2 to perform resonant operation on the negative side.

 図7(a)に示すモード10は、インバータ電流Iinvが中性相レグ5の負側極性経路nnを還流している状態である。 Mode 10 shown in FIG. 7(a) is a state in which the inverter current Iinv flows back through the negative polarity path nn of the neutral phase leg 5.

 モード10において、スイッチ素子Tm1、Tm2のコレクタ-エミッタ電圧VceはいずれもVdc/2である。補助共振回路2の各素子の端子間電圧(Vce、逆方向電圧VR)は、Tr5、Tr6、Dsp、Dsn、Drp、DrnがそれぞれVdc/4である。中性相レグ5の各素子の端子間電圧は、いずれも0Vである。 In mode 10, the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2. The terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn. The terminal voltages of the elements of the neutral phase leg 5 are all 0V.

 モード11は、時刻t11でスイッチ素子Tn3、Tn4を同時にターンオフ制御させ、インバータ電流Iinvを上アームのスイッチ素子Tm1の逆並列ダイオードD1へ転流させる。他の全てのスイッチ素子Tm1、Tm2、Tr5、Tr6は、オフ状態である。モード11において、図7(b)に示すように、スイッチ素子Tm2の共振キャパシタC2は、充電され、スイッチ素子Tm1の共振キャパシタC1は、放電される。このため、スイッチ素子Tn4は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 11, at time t11, the switch elements Tn3 and Tn4 are simultaneously turned off, and the inverter current Iinv is commutated to the anti-parallel diode D1 of the switch element Tm1 in the upper arm. All other switch elements Tm1, Tm2, Tr5, and Tr6 are in the off state. In mode 11, as shown in FIG. 7(b), the resonant capacitor C2 of the switch element Tm2 is charged, and the resonant capacitor C1 of the switch element Tm1 is discharged. Therefore, the switch element Tn4 is subjected to zero-voltage turn-off control by the lossless snubber.

 モード11において、スイッチ素子Tm2のVceは、Vdc/2からVdcに、スイッチ素子Tm1のVceは、Vdc/2から0Vにそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Tr6、Dsn、DrpがVdc/4からVdc/2に、Tr5、Dsp、DrnがVdc/4から0Vにそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn4、Dnpが、0VからVdc/2にそれぞれ変化する。 In mode 11, Vce of switch element Tm2 changes from Vdc/2 to Vdc, and Vce of switch element Tm1 changes from Vdc/2 to 0V. The terminal voltages of each element of auxiliary resonant circuit 2 change from Vdc/4 to Vdc/2 for Tr6, Dsn, and Drp, and from Vdc/4 to 0V for Tr5, Dsp, and Drn. The terminal voltages of each element of neutral phase leg 5 change from 0V to Vdc/2 for Tn4 and Dnp.

 モード12は、時刻t12でスイッチ素子Tm2のVceがVdcに、スイッチ素子Tm1のVceが0Vにそれぞれ変化し、インバータ電流Iinvは、図7(c)に示すように、上アームのスイッチ素子Tm1の逆並列ダイオードD1を還流している状態である。 In mode 12, at time t12, Vce of switch element Tm2 changes to Vdc and Vce of switch element Tm1 changes to 0 V, and the inverter current Iinv circulates through the anti-parallel diode D1 of the upper arm switch element Tm1, as shown in FIG. 7(c).

 モード12において、補助共振回路2の各素子の端子間電圧は、Tr6、Drp、DsnがそれぞれVdc/2で、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、Tn4、DnpがそれぞれVdc/2で、他の素子は、0Vである。 In mode 12, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr6, Drp, and Dsn, and 0V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are Vdc/2 for Tn4 and Dnp, and 0V for the other elements.

 モード13は、デッドタイムDTの期間中である時刻t13で負側共振経路rnのスイッチ素子Tr6をゼロ電流ターンオン制御させ、図7(d)に示すように、インバータ電流Iinvを共振インダクタLr(負側共振経路rn)へ転流させる。モード13は、スイッチ素子Tm1の逆並列ダイオードD1がオフするまで継続する。 In mode 13, at time t13 during the dead time DT, the switch element Tr6 of the negative resonant path rn is turned on with zero current, and the inverter current Iinv is commutated to the resonant inductor Lr (negative resonant path rn) as shown in FIG. 7(d). Mode 13 continues until the anti-parallel diode D1 of the switch element Tm1 is turned off.

 モード13において、補助共振回路2の各素子の端子間電圧は、DsnがVdc/2、Tr5、Drp、DspがそれぞれVdc/4であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード12と同様である。 In mode 13, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsn, Vdc/4 for Tr5, Drp, and Dsp, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 12.

 モード14は、時刻t14で共振インダクタLrへの転流が完了し、図7(e)に点線で示す共振キャパシタC1、C2との共振によって、スイッチ素子Tm1及びスイッチ素子Tm2のVceが正弦波状に変化する。モード14において、スイッチ素子Tm2のVceは、Vdcから0Vに、スイッチ素子Tm1のVceは、0VからVdcにそれぞれ変化する。 In mode 14, the commutation to resonant inductor Lr is completed at time t14, and Vce of switch element Tm1 and switch element Tm2 changes sinusoidally due to resonance with resonant capacitors C1 and C2 shown by dotted lines in FIG. 7(e). In mode 14, Vce of switch element Tm2 changes from Vdc to 0V, and Vce of switch element Tm1 changes from 0V to Vdc.

 モード14において、補助共振回路2の各素子の端子間電圧は、モード13と同様である。中性相レグ5の各素子の端子間電圧は、Tn3、Dnnが、0VからVdc/2に、Tn4、Dnpが、Vdc/2から0Vにそれぞれ変化する。 In mode 14, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 13. The terminal voltages of each element of the neutral phase leg 5, Tn3 and Dnn, change from 0V to Vdc/2, and Tn4 and Dnp change from Vdc/2 to 0V.

 モード13+14の期間は、第1転流時間Tcom1[Lr÷Vdcp×Iinv]と共振時間Tres[π×√(Lr×2Cr)]とを加算した時間となる。第1転流時間Tcom1は、インバータ電流Iinvの共振インダクタLrへの転流が完了するまでの時間である。共振時間Tresは、共振周波数が(1/2π√(Lr×2Cr))となる共振の1/2周期である。 The period of mode 13+14 is the sum of the first commutation time Tcom1 [Lr÷Vdcp×Iinv] and the resonance time Tres [π×√(Lr×2Cr)]. The first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed. The resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2π√(Lr×2Cr)).

 換言すると、負側共振経路rnのスイッチ素子Tr6は、スイッチ素子Tm2及びスイッチ素子Tn4のターンオンタイミングよりも(第1転流時間Tcom1+共振時間Tres)前にターンオン制御される。 In other words, the switch element Tr6 of the negative resonant path rn is controlled to be turned on (first commutation time Tcom1+resonant time Tres) before the turn-on timing of the switch elements Tm2 and Tn4.

 モード15は、スイッチ素子Tm2のVceが0Vになった時刻t15のタイミングで、図7(f)に示すように、スイッチ素子Tm2及びスイッチ素子Tn4をゼロ電圧ターンオン制御させ、共振インダクタ電流ILrをスイッチ素子Tm2へ転流させる。 In mode 15, at time t15 when Vce of switch element Tm2 becomes 0V, as shown in FIG. 7(f), switch elements Tm2 and Tn4 are subjected to zero-voltage turn-on control, and the resonant inductor current ILr is commutated to switch element Tm2.

 モード15において、補助共振回路2の各素子の端子間電圧は、モード13と同様である。中性相レグ5の各素子の端子間電圧は、Tn4、Dnpがそれぞれ0Vで、他の素子は、Vdc/2である。 In mode 15, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 13. The terminal voltages of each element of the neutral phase leg 5 are 0V for Tn4 and Dnp, and Vdc/2 for the other elements.

 モード15の期間は、第2転流時間Tcom2[Lr÷Vdcn×Iinv]となる。第2転流時間Tcom2は、インバータ電流Iinvのスイッチ素子Tm2への転流が完了するまでの時間である。 The period of mode 15 is the second commutation time Tcom2 [Lr ÷ Vdcn × Iinv]. The second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm2 is completed.

 換言すると、負側共振経路rnのスイッチ素子Tr6は、スイッチ素子Tm2及びスイッチ素子Tn4のターンオンタイミングよりも(第2転流時間Tcom2)後にターンオフ制御される。 In other words, the switch element Tr6 of the negative resonant path rn is controlled to be turned off after (the second commutation time Tcom2) the turn-on timing of the switch elements Tm2 and Tn4.

 モード16は、共振インダクタ電流ILrのスイッチ素子Tm2への転流完了に伴って、時刻t16でスイッチ素子Tr6をターンオフ制御させる。モード16は、図7(g)に示すように、直流バス(負側直流ラインN)から負荷(交流系統)へ電力を放電している。 In mode 16, the switch element Tr6 is turned off at time t16 when the commutation of the resonant inductor current ILr to the switch element Tm2 is completed. In mode 16, as shown in FIG. 7(g), power is discharged from the DC bus (negative DC line N) to the load (AC system).

 モード16において、補助共振回路2の各素子の端子間電圧は、Drn、Tr5、DspがそれぞれVdc/2であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード15と同様である。 In mode 16, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drn, Tr5, and Dsp, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 15.

 モード17は、時刻t17で下アームのスイッチ素子Tm2をターンオフ制御することで、インバータ電流Iinvを中性相レグ5の負側極性経路nnへ転流させ、スイッチ素子Tm1のターンオフ制御後のデッドタイムDTが経過するまでの期間である。モード17において、図7(h)に示すように、スイッチ素子Tm2の共振キャパシタC2は、充電され、スイッチ素子Tm1の共振キャパシタC1は、放電される。このため、スイッチ素子Tm2は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 17, the inverter current Iinv is commutated to the negative polarity path nn of the neutral phase leg 5 by turning off the lower arm switch element Tm2 at time t17, and this is the period until the dead time DT has elapsed after the turn-off control of the switch element Tm1. In mode 17, as shown in FIG. 7(h), the resonant capacitor C2 of the switch element Tm2 is charged and the resonant capacitor C1 of the switch element Tm1 is discharged. Therefore, the switch element Tm2 is subjected to zero-voltage turn-off control by the lossless snubber.

 スイッチ素子Tm2のターンオフ制御後のデッドタイムDTが経過した時刻t18で、スイッチ素子Tn3は、ゼロ電圧ターンオン制御され、モード10に戻る。 At time t18 when the dead time DT following the turn-off control of switch element Tm2 has elapsed, switch element Tn3 is subjected to zero-voltage turn-on control, returning to mode 10.

 モード17において、スイッチ素子Tm2のVceは、0VからVdc/2に、スイッチ素子Tm1のVceは、VdcからVdc/2にそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Drn、Tr5、DspがVdc/2からVdc/4に、Drp、Tr4、Dsnが0VからVdc/4にそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn4、DnpがVdc/2から0Vにそれぞれ変化する。 In mode 17, Vce of switch element Tm2 changes from 0V to Vdc/2, and Vce of switch element Tm1 changes from Vdc to Vdc/2. The terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drn, Tr5, and Dsp, and from 0V to Vdc/4 for Drp, Tr4, and Dsn. The terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn4 and Dnp.

 以上のモード10~モード17が繰り返しとなり、スイッチ素子Tm2、Tn3は、ゼロ電圧ターンオン制御される。補助共振回路2は、共振インダクタLrに蓄積されたエネルギーの経路となる。補助共振回路2及び中性相レグ5の各素子の端子間電圧は、いずれのモードにおいてもVdc/2を上回ることがない。 The above modes 10 to 17 are repeated, and the switch elements Tm2 and Tn3 are controlled to be turned on at zero voltage. The auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr. The terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.

 上記のモード15の途中でスイッチ素子Tr6がオフしてしまった場合の共振型インバータ1の動作をモード15Aとして図8及び図9に示す。図8は、共振型インバータ1の動作を示すタイミングチャートである。図9は、図8に示すモード15Aにおける動作を共振型インバータ1の等価回路を用いて示す。 The operation of the resonant inverter 1 in the case where the switch element Tr6 turns off during the above-mentioned mode 15 is shown as mode 15A in Figs. 8 and 9. Fig. 8 is a timing chart showing the operation of the resonant inverter 1. Fig. 9 shows the operation in mode 15A shown in Fig. 8 using an equivalent circuit of the resonant inverter 1.

 モード15Aは、共振インダクタ電流ILrがスイッチ素子Tm2へ転流している途中の時刻t15Aで、素子バラツキや計算バラツキ,誤動作等によりスイッチ素子Tr6がオフしてしまった状態である。共振インダクタLrに負方向に励磁されたエネルギーは、図9に点線で示すように、無損失回生クランプスナバダイオードDspとスイッチ素子Tr5の逆並列ダイオードD5が導通して無損失で直流バスへ回生される。この回生時において、補助共振回路2は、直流バスの中性点Aにクランプされているため、スイッチ素子Tr6を含む補助共振回路2の各素子(ダイオードDrp、無損失回生クランプスナバダイオードDsn)は、Vdc/2でクランプされる。 In mode 15A, at time t15A while the resonant inductor current ILr is commutating to the switch element Tm2, the switch element Tr6 is turned off due to element variation, calculation variation, malfunction, etc. The energy excited in the negative direction in the resonant inductor Lr is regenerated to the DC bus without loss as the lossless regenerative clamp snubber diode Dsp and the anti-parallel diode D5 of the switch element Tr5 conduct, as shown by the dotted line in Figure 9. During this regeneration, the auxiliary resonant circuit 2 is clamped to the neutral point A of the DC bus, so each element of the auxiliary resonant circuit 2, including the switch element Tr6 (diode Drp, lossless regenerative clamp snubber diode Dsn), is clamped at Vdc/2.

 出力電圧Voが正、インバータ電流Iinvが負の場合の共振型インバータ1の充電動作について図10及び図11を参照して説明する。図10は、共振型インバータ1の動作を示すタイミングチャートである。図11は、図10に示す各モード(Mode)における動作を共振型インバータ1の等価回路を用いて示す。 The charging operation of the resonant inverter 1 when the output voltage Vo is positive and the inverter current Iinv is negative will be described with reference to Figures 10 and 11. Figure 10 is a timing chart showing the operation of the resonant inverter 1. Figure 11 shows the operation in each mode shown in Figure 10 using an equivalent circuit of the resonant inverter 1.

 出力電圧Voが正であるため,スイッチ素子Tm1とTn4は、交番でPWM動作を行っている。インバータ電流Iinvが負の場合、共振によるゼロ電圧ターンオン制御の対象は、スイッチ素子Tn4のオンタイミングである。 Since the output voltage Vo is positive, the switch elements Tm1 and Tn4 alternate in PWM operation. When the inverter current Iinv is negative, the target of zero-voltage turn-on control by resonance is the on-timing of the switch element Tn4.

 図11(a)に示すモード20は、インバータ電流Iinvがスイッチ素子Tm1の逆並列ダイオードD1を還流している状態である。図11(a)に示すとおり、負荷(交流系統)から直流バス(正側直流ラインP)へ電力を充電している。 Mode 20 shown in FIG. 11(a) is a state in which the inverter current Iinv circulates through the anti-parallel diode D1 of the switch element Tm1. As shown in FIG. 11(a), power is being charged from the load (AC system) to the DC bus (positive DC line P).

 モード20において、スイッチ素子Tm2のVceはVdcである。補助共振回路2の各素子の端子間電圧は、Tr6、Drp、DsnがそれぞれVdc/2で、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、Tn3、Dnnがそれぞれ0Vで、他の素子は、Vdc/2である。 In mode 20, Vce of switch element Tm2 is Vdc. The terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr6, Drp, and Dsn, and 0V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are 0V for Tn3 and Dnn, and Vdc/2 for the other elements.

 モード21は、図11(b)に示すように、時刻t21でスイッチ素子Tm1とスイッチ素子Tn3を同時にターンオフ制御させる。モード21は、モード20から状態に変化は発生しない。 In mode 21, as shown in FIG. 11(b), at time t21, switch elements Tm1 and Tn3 are simultaneously turned off. In mode 21, there is no change in state from mode 20.

 モード22は、デッドタイムDTの期間中である時刻t22で負側共振経路rnのスイッチ素子Tr6をゼロ電流ターンオン制御させ、図11(c)に示すように、インバータ電流Iinvを共振インダクタLr(負側共振経路rn)へ転流させる。モード22は、スイッチ素子Tm1の逆並列ダイオードD1がオフするまで継続する。 In mode 22, at time t22 during the dead time DT, the switch element Tr6 of the negative resonant path rn is subjected to zero current turn-on control, and the inverter current Iinv is commutated to the resonant inductor Lr (negative resonant path rn) as shown in FIG. 11(c). Mode 22 continues until the anti-parallel diode D1 of the switch element Tm1 is turned off.

 モード22において、補助共振回路2の各素子の端子間電圧は、DsnがVdc/2、Tr5、Drp、DspがそれぞれVdc/4であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード21と同様である。 In mode 22, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsn, Vdc/4 for Tr5, Drp, and Dsp, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 21.

 モード23は、時刻t23で共振インダクタLrへの転流が完了し、図11(d)に点線で示す共振キャパシタC1、C2との共振によって、スイッチ素子Tm1及びスイッチ素子Tm2のVceが正弦波状に変化する。モード23において、スイッチ素子Tm2のVceは、Vdcから0Vに、スイッチ素子Tm1のVceは、0VからVdcにそれぞれ変化する。 In mode 23, the commutation to resonant inductor Lr is completed at time t23, and Vce of switch element Tm1 and switch element Tm2 changes sinusoidally due to resonance with resonant capacitors C1 and C2 shown by dotted lines in FIG. 11(d). In mode 23, Vce of switch element Tm2 changes from Vdc to 0 V, and Vce of switch element Tm1 changes from 0 V to Vdc.

 モード23において、補助共振回路2の各素子の端子間電圧は、モード22と同様である。中性相レグ5の各素子の端子間電圧は、Tn3、Dnnが、0VからVdc/2に、Tn4、Dnpが、Vdc/2から0Vにそれぞれ変化する。 In mode 23, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 22. The terminal voltages of each element of the neutral phase leg 5, Tn3 and Dnn, change from 0V to Vdc/2, and Tn4 and Dnp change from Vdc/2 to 0V.

 モード22+23の期間は、第1転流時間Tcom1[Lr÷Vdcp×Iinv]と共振時間Tres[π×√(Lr×2Cr)]とを加算した時間となる。第1転流時間Tcom1は、インバータ電流Iinvの共振インダクタLrへの転流が完了するまでの時間である。共振時間Tresは、共振周波数が(1/2π√(Lr×2Cr))となる共振の1/2周期である。 The period of mode 22+23 is the sum of the first commutation time Tcom1 [Lr÷Vdcp×Iinv] and the resonance time Tres [π×√(Lr×2Cr)]. The first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed. The resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2π√(Lr×2Cr)).

 換言すると、負側共振経路rnのスイッチ素子Tr6は、スイッチ素子Tm2及びスイッチ素子Tn4のターンオンタイミングよりも(第1転流時間Tcom1+共振時間Tres)前にターンオン制御される。 In other words, the switch element Tr6 of the negative resonant path rn is controlled to be turned on (first commutation time Tcom1+resonant time Tres) before the turn-on timing of the switch elements Tm2 and Tn4.

 モード24は、スイッチ素子Tm2のVceが0Vになった時刻t24のタイミングで、図11(e)に示すように、スイッチ素子Tm2及びスイッチ素子Tn4をゼロ電圧ターンオン制御させる。モード24は、共振インダクタ電流ILrを中性相レグ5へ転流させることなく、スイッチ素子Tm2へ転流させる。 In mode 24, as shown in FIG. 11(e), at time t24 when Vce of switch element Tm2 becomes 0V, switch element Tm2 and switch element Tn4 are subjected to zero voltage turn-on control. In mode 24, the resonant inductor current ILr is commutated to switch element Tm2 without being commutated to neutral phase leg 5.

 モード24において、補助共振回路2の各素子の端子間電圧は、モード23と同様である。中性相レグ5の各素子の端子間電圧は、Tn4、Dnpがそれぞれ0Vで、他の素子は、Vdc/2である。 In mode 24, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 23. The terminal voltages of each element of the neutral phase leg 5 are 0V for Tn4 and Dnp, and Vdc/2 for the other elements.

 モード24の期間は、第2転流時間Tcom2[Lr÷Vdcn×Iinv]となる。第2転流時間Tcom2は、インバータ電流Iinvのスイッチ素子Tm2への転流が完了するまでの時間である。 The period of mode 24 is the second commutation time Tcom2 [Lr ÷ Vdcn × Iinv]. The second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm2 is completed.

 換言すると、負側共振経路rnのスイッチ素子Tr6は、スイッチ素子Tm2及びスイッチ素子Tn4のターンオンタイミングよりも(第2転流時間Tcom2)後にターンオフ制御される。 In other words, the switch element Tr6 of the negative resonant path rn is controlled to be turned off after (the second commutation time Tcom2) the turn-on timing of the switch elements Tm2 and Tn4.

 モード25は、共振インダクタ電流ILrのスイッチ素子Tm2への転流完了に伴って、時刻t25でスイッチ素子Tr6をターンオフ制御させる。 In mode 25, the switch element Tr6 is turned off at time t25 upon completion of the commutation of the resonant inductor current ILr to the switch element Tm2.

 モード25において、補助共振回路2の各素子の端子間電圧は、Drn、Tr5、DspがそれぞれVdc/2であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード24と同様である。 In mode 25, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drn, Tr5, and Dsp, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 24.

 モード26は、時刻t26で下アームのスイッチ素子Tm2をターンオフ制御することで、インバータ電流Iinvを中性相レグ5の負側極性経路nnへ転流させる。モード26において、図11(g)に示すように、スイッチ素子Tm2の共振キャパシタC2は、充電され、スイッチ素子Tm1の共振キャパシタC1は、放電される。このため、スイッチ素子Tm2は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 26, the inverter current Iinv is commutated to the negative polarity path nn of the neutral phase leg 5 by controlling the turn-off of the lower arm switch element Tm2 at time t26. In mode 26, as shown in FIG. 11(g), the resonant capacitor C2 of the switch element Tm2 is charged, and the resonant capacitor C1 of the switch element Tm1 is discharged. Therefore, the switch element Tm2 is subjected to zero-voltage turn-off control by the lossless snubber.

 モード26において、スイッチ素子Tm2のVceは、0VからVdc/2に、スイッチ素子Tm1のVceは、VdcからVdc/2にそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Drn、Tr5、DspがVdc/2からVdc/4に、Drp、Tr4、Dsnが0VからVdc/4にそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn3、DnnがVdc/2から0Vにそれぞれ変化する。 In mode 26, Vce of switch element Tm2 changes from 0V to Vdc/2, and Vce of switch element Tm1 changes from Vdc to Vdc/2. The terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drn, Tr5, and Dsp, and from 0V to Vdc/4 for Drp, Tr4, and Dsn. The terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn3 and Dnn.

 モード27は、転流が完了してインバータ電流Iinvが中性相レグ5の負側極性経路nnを還流している状態である。中性相レグ5の負側極性経路nnへの転流が完了後のモード27において、スイッチ素子Tn3をゼロ電流ターンオン制御することで、一連のゼロ電圧ターンオンが完了する。 Mode 27 is a state in which commutation is completed and inverter current Iinv is circulating through the negative polarity path nn of neutral phase leg 5. In mode 27 after commutation to the negative polarity path nn of neutral phase leg 5 is completed, a series of zero voltage turn-ons is completed by controlling switch element Tn3 to be turned on at zero current.

 モード27において、スイッチ素子Tm1、Tm2のコレクタ-エミッタ電圧VceはいずれもVdc/2である。補助共振回路2の各素子の端子間電圧(Vce、逆方向電圧VR)は、Tr5、Tr6、Dsp、Dsn、Drp、DrnがそれぞれVdc/4である。中性相レグ5の各素子の端子間電圧は、いずれも0Vである。 In mode 27, the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2. The terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn. The terminal voltages of the elements of the neutral phase leg 5 are all 0V.

 モード28は、時刻t28でスイッチ素子Tn4をターンオフ制御させ、インバータ電流Iinvをスイッチ素子Tm1へ転流させる。モード28において、図11(i)に示すように、スイッチ素子Tm2の共振キャパシタC2は、充電され、スイッチ素子Tm1の共振キャパシタC1は、放電される。このため、スイッチ素子Tn4は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 28, at time t28, the switch element Tn4 is turned off and the inverter current Iinv is commutated to the switch element Tm1. In mode 28, as shown in FIG. 11(i), the resonant capacitor C2 of the switch element Tm2 is charged and the resonant capacitor C1 of the switch element Tm1 is discharged. Therefore, the switch element Tn4 is subjected to zero-voltage turn-off control by the lossless snubber.

 モード28において、スイッチ素子Tm2のVceは、Vdc/2からVdcに、スイッチ素子Tm1のVceは、Vdc/2から0Vにそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Tr6、Dsn、Drpが、Vdc/4からVdc/2に、Tr5、Dsp、DrnがVdc/4から0Vにそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn4、Dnpが、0VからVdc/2にそれぞれ変化する。 In mode 28, Vce of switch element Tm2 changes from Vdc/2 to Vdc, and Vce of switch element Tm1 changes from Vdc/2 to 0V. The terminal voltages of each element of the auxiliary resonant circuit 2, Tr6, Dsn, and Drp, change from Vdc/4 to Vdc/2, and Tr5, Dsp, and Drn, change from Vdc/4 to 0V. The terminal voltages of each element of the neutral phase leg 5, Tn4, and Dnp, change from 0V to Vdc/2.

 スイッチ素子Tn4のターンオフ制御後のデッドタイムDTが経過した時刻t29で、スイッチ素子Tm1は、ゼロ電圧ターンオン制御され、モード20に戻る。 At time t29 when the dead time DT following the turn-off control of switch element Tn4 has elapsed, switch element Tm1 is subjected to zero-voltage turn-on control and returns to mode 20.

 以上のモード20~モード28が繰り返しとなり、スイッチ素子Tm1、Tn4は、ゼロ電圧ターンオン制御される。補助共振回路2は、共振インダクタLrに蓄積されたエネルギーの経路となる。補助共振回路2及び中性相レグ5の各素子の端子間電圧は、いずれのモードにおいてもVdc/2を上回ることがない。 The above modes 20 to 28 are repeated, and the switch elements Tm1 and Tn4 are controlled to be turned on at zero voltage. The auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr. The terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.

 上記のモード24の途中でスイッチ素子Tr6がオフしてしまった場合、共振インダクタLrに負方向に励磁されたエネルギーは、図9に示すモード15Aと同様に無損失で直流バスへ回生される。無損失回生クランプスナバダイオードDspとスイッチ素子Tr5の逆並列ダイオードD5が導通する。この回生時において、補助共振回路2は、直流バスの中性点Aにクランプされているため、スイッチ素子Tr6を含む補助共振回路2の各素子(ダイオードDrp、無損失回生クランプスナバダイオードDsn)は、Vdc/2でクランプされる。 If the switch element Tr6 is turned off during the above mode 24, the energy negatively excited in the resonant inductor Lr is regenerated to the DC bus without loss, similar to mode 15A shown in FIG. 9. The lossless regenerative clamp snubber diode Dsp and the anti-parallel diode D5 of the switch element Tr5 are conductive. During this regeneration, the auxiliary resonant circuit 2 is clamped to the neutral point A of the DC bus, so each element of the auxiliary resonant circuit 2, including the switch element Tr6 (diode Drp, lossless regenerative clamp snubber diode Dsn), is clamped at Vdc/2.

 出力電圧Voが負、インバータ電流Iinvが正の場合の共振型インバータ1の充電動作について図12及び図13を参照して説明する。図12は、共振型インバータ1の動作を示すタイミングチャートである。図13は、図12に示す各モード(Mode)における動作を共振型インバータ1の等価回路を用いて示す。 The charging operation of the resonant inverter 1 when the output voltage Vo is negative and the inverter current Iinv is positive will be described with reference to Figures 12 and 13. Figure 12 is a timing chart showing the operation of the resonant inverter 1. Figure 13 shows the operation in each mode shown in Figure 12 using an equivalent circuit of the resonant inverter 1.

 出力電圧Voが負であるため,スイッチ素子Tm2とTn3は、交番でPWM動作を行っている。インバータ電流Iinvが正の場合、共振によるゼロ電圧ターンオン制御の対象は、スイッチ素子Tn3のオンタイミングである。 Since the output voltage Vo is negative, the switch elements Tm2 and Tn3 alternate in PWM operation. When the inverter current Iinv is positive, the target of zero-voltage turn-on control by resonance is the on-timing of the switch element Tn3.

 図13(a)に示すモード30は、インバータ電流Iinvがスイッチ素子Tm2の逆並列ダイオードD2を還流している状態である。図13(a)に示すように、負荷(交流系統)から直流バス(負側直流ラインN)へ電力を充電している。 Mode 30 shown in FIG. 13(a) is a state in which the inverter current Iinv circulates through the anti-parallel diode D2 of the switch element Tm2. As shown in FIG. 13(a), power is being charged from the load (AC system) to the DC bus (negative DC line N).

 モード30において、スイッチ素子Tm1のVceはVdcである。補助共振回路2の各素子の端子間電圧は、Tr5、Drn、DspがそれぞれVdc/2で、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、Tn4、Dnpがそれぞれ0Vで、他の素子は、Vdc/2である。 In mode 30, Vce of switch element Tm1 is Vdc. The terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Tr5, Drn, and Dsp, and 0V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are 0V for Tn4 and Dnp, and Vdc/2 for the other elements.

 モード31は、図13(b)に示すように、時刻t31でスイッチ素子Tm2とスイッチ素子Tn4とを同時にターンオフ制御させる。モード31は、モード30から状態に変化は発生しない。 In mode 31, as shown in FIG. 13(b), at time t31, switch elements Tm2 and Tn4 are simultaneously turned off. In mode 31, there is no change in state from mode 30.

 モード32は、デッドタイムDTの期間中である時刻t32で正側共振経路rpのスイッチ素子Tr5をゼロ電流ターンオン制御させ、図13(c)に示すように、インバータ電流Iinvを共振インダクタLr(正側共振経路rp)へ転流させる。モード32は、スイッチ素子Tm2の逆並列ダイオードD2がオフするまで継続する。 In mode 32, at time t32 during the dead time DT, the switch element Tr5 in the positive resonant path rp is turned on with zero current, and the inverter current Iinv is commutated to the resonant inductor Lr (positive resonant path rp) as shown in FIG. 13(c). Mode 32 continues until the anti-parallel diode D2 of the switch element Tm2 is turned off.

 モード32において、補助共振回路2の各素子の端子間電圧は、DspがVdc/2、Tr6、Drn、DsnがそれぞれVdc/4であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード31と同様である。 In mode 32, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Dsp, Vdc/4 for Tr6, Drn, and Dsn, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 31.

 モード33は、時刻t33で共振インダクタLrへの転流が完了し、図13(d)に点線で示す共振キャパシタC1、C2との共振によって、スイッチ素子Tm1及びスイッチ素子Tm2のVceが正弦波状に変化する。モード33において、スイッチ素子Tm1のVceは、Vdcから0Vに、スイッチ素子Tm2のVceは、0VからVdcにそれぞれ変化する。 In mode 33, the commutation to resonant inductor Lr is completed at time t33, and Vce of switch element Tm1 and switch element Tm2 changes sinusoidally due to resonance with resonant capacitors C1 and C2 shown by dotted lines in FIG. 13(d). In mode 33, Vce of switch element Tm1 changes from Vdc to 0V, and Vce of switch element Tm2 changes from 0V to Vdc.

 モード33において、補助共振回路2の各素子の端子間電圧は、モード32と同様である。中性相レグ5の各素子の端子間電圧は、Tn4、Dnpが、0VからVdc/2に、Tn3、Dnnが、Vdc/2から0Vにそれぞれ変化する。 In mode 33, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 32. The terminal voltages of each element of the neutral phase leg 5 change from 0V to Vdc/2 for Tn4 and Dnp, and from Vdc/2 to 0V for Tn3 and Dnn.

 モード32+33の期間は、第1転流時間Tcom1[Lr÷Vdcn×Iinv]と共振時間Tres[π×√(Lr×2Cr)]とを加算した時間となる。第1転流時間Tcom1は、インバータ電流Iinvの共振インダクタLrへの転流が完了するまでの時間である。共振時間Tresは、共振周波数が(1/2π√(Lr×2Cr))となる共振の1/2周期である。 The period of mode 32+33 is the sum of the first commutation time Tcom1 [Lr÷Vdcn×Iinv] and the resonance time Tres [π×√(Lr×2Cr)]. The first commutation time Tcom1 is the time until the commutation of the inverter current Iinv to the resonance inductor Lr is completed. The resonance time Tres is 1/2 the period of resonance at which the resonance frequency is (1/2π√(Lr×2Cr)).

 換言すると、正側共振経路rpのスイッチ素子Tr5は、スイッチ素子Tm1及びスイッチ素子Tn3のターンオンタイミングよりも(第1転流時間Tcom1+共振時間Tres)前にターンオン制御される。 In other words, the switch element Tr5 of the positive-side resonant path rp is controlled to be turned on (first commutation time Tcom1+resonant time Tres) before the turn-on timing of the switch elements Tm1 and Tn3.

 モード34は、スイッチ素子Tm1のVceが0Vになった時刻t34のタイミングで、図13(e)に示すように、スイッチ素子Tm1及びスイッチ素子Tn3をゼロ電圧ターンオン制御させる。モード34は、共振インダクタ電流ILrを中性相レグ5へ転流させることなく、スイッチ素子Tm1へ転流させる。 In mode 34, as shown in FIG. 13(e), at time t34 when Vce of switch element Tm1 becomes 0V, switch element Tm1 and switch element Tn3 are subjected to zero voltage turn-on control. In mode 34, the resonant inductor current ILr is commutated to switch element Tm1 without being commutated to neutral phase leg 5.

 モード34において、補助共振回路2の各素子の端子間電圧は、モード33と同様である。中性相レグ5の各素子の端子間電圧は、Tn3、Dnnがそれぞれ0Vで、他の素子は、Vdc/2である。 In mode 34, the terminal voltages of each element of the auxiliary resonant circuit 2 are the same as in mode 33. The terminal voltages of each element of the neutral phase leg 5 are 0V for Tn3 and Dnn, and Vdc/2 for the other elements.

 モード34の期間は、第2転流時間Tcom2[Lr÷Vdcp×Iinv]となる。第2転流時間Tcom2は、インバータ電流Iinvのスイッチ素子Tm1への転流が完了するまでの時間である。 The period of mode 34 is the second commutation time Tcom2 [Lr ÷ Vdcp × Iinv]. The second commutation time Tcom2 is the time until the commutation of the inverter current Iinv to the switch element Tm1 is completed.

 換言すると、正側共振経路rpのスイッチ素子Tr5は、スイッチ素子Tm1及びスイッチ素子Tn3のターンオンタイミングよりも(第2転流時間Tcom2)後にターンオフ制御される。 In other words, the switch element Tr5 of the positive-side resonant path rp is controlled to be turned off after (the second commutation time Tcom2) the turn-on timing of the switch elements Tm1 and Tn3.

 モード35は、共振インダクタ電流ILrのスイッチ素子Tm1への転流完了に伴って、時刻t35でスイッチ素子Tr5をターンオフ制御させる。 In mode 35, the switch element Tr5 is turned off at time t35 upon completion of the commutation of the resonant inductor current ILr to the switch element Tm1.

 モード35において、補助共振回路2の各素子の端子間電圧は、Drp、Tr6、DsnがそれぞれVdc/2であり、他の素子は、0Vである。中性相レグ5の各素子の端子間電圧は、モード34と同様である。 In mode 35, the terminal voltages of each element of the auxiliary resonant circuit 2 are Vdc/2 for Drp, Tr6, and Dsn, and 0 V for the other elements. The terminal voltages of each element of the neutral phase leg 5 are the same as in mode 34.

 モード36は、時刻t36で上アームのスイッチ素子Tm1をターンオフ制御することで、インバータ電流Iinvを中性相レグ5の正側極性経路npへ転流させる。モード36において、図13(g)に示すように、スイッチ素子Tm1の共振キャパシタC1は、充電され、スイッチ素子Tm2の共振キャパシタC2は、放電される。このため、スイッチ素子Tm1は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 36, the upper arm switch element Tm1 is turned off at time t36, thereby commutating the inverter current Iinv to the positive polarity path np of the neutral phase leg 5. In mode 36, as shown in FIG. 13(g), the resonant capacitor C1 of the switch element Tm1 is charged, and the resonant capacitor C2 of the switch element Tm2 is discharged. Therefore, the switch element Tm1 is subjected to zero-voltage turn-off control by the lossless snubber.

 モード36において、スイッチ素子Tm1のVceは、0VからVdc/2に、スイッチ素子Tm2のVceは、VdcからVdc/2にそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Drp、Tr6、DsnがVdc/2からVdc/4に、Drn、Tr5、Dspが0VからVdc/4にそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn4、DnpがVdc/2から0Vにそれぞれ変化する。 In mode 36, Vce of switch element Tm1 changes from 0V to Vdc/2, and Vce of switch element Tm2 changes from Vdc to Vdc/2. The terminal voltages of each element of the auxiliary resonant circuit 2 change from Vdc/2 to Vdc/4 for Drp, Tr6, and Dsn, and from 0V to Vdc/4 for Drn, Tr5, and Dsp. The terminal voltages of each element of the neutral phase leg 5 change from Vdc/2 to 0V for Tn4 and Dnp.

 モード37は、転流が完了してインバータ電流Iinvが中性相レグ5の正側極性経路npを還流している状態である。中性相レグ5の正側極性経路npへの転流が完了後のモード37において、スイッチ素子Tn4をゼロ電流ターンオン制御することで、一連のゼロ電圧ターンオンが完了する。 Mode 37 is a state in which commutation is completed and inverter current Iinv is flowing back through the positive polarity path np of neutral phase leg 5. In mode 37 after commutation to the positive polarity path np of neutral phase leg 5 is completed, a series of zero voltage turn-ons is completed by controlling switch element Tn4 to be turned on at zero current.

 モード37において、スイッチ素子Tm1、Tm2のコレクタ-エミッタ電圧VceはいずれもVdc/2である。補助共振回路2の各素子の端子間電圧(Vce、逆方向電圧VR)は、Tr5、Tr6、Dsp、Dsn、Drp、DrnがそれぞれVdc/4である。中性相レグ5の各素子の端子間電圧は、いずれも0Vである。 In mode 37, the collector-emitter voltages Vce of the switching elements Tm1 and Tm2 are both Vdc/2. The terminal voltages (Vce, reverse voltage VR) of the elements of the auxiliary resonant circuit 2 are Vdc/4 for Tr5, Tr6, Dsp, Dsn, Drp, and Drn. The terminal voltages of the elements of the neutral phase leg 5 are all 0V.

 モード38は、時刻t38でスイッチ素子Tn3をターンオフ制御させ、インバータ電流Iinvをスイッチ素子Tm2へ転流させる。モード38において、図13(i)に示すように、スイッチ素子Tm1の共振キャパシタC1は、充電され、スイッチ素子Tm2の共振キャパシタC2は、放電される。このため、スイッチ素子Tn3は、ロスレススナバによるゼロ電圧ターンオフ制御となる。 In mode 38, at time t38, the switch element Tn3 is turned off and the inverter current Iinv is commutated to the switch element Tm2. In mode 38, as shown in FIG. 13(i), the resonant capacitor C1 of the switch element Tm1 is charged and the resonant capacitor C2 of the switch element Tm2 is discharged. Therefore, the switch element Tn3 is subjected to zero-voltage turn-off control by the lossless snubber.

 モード38において、スイッチ素子Tm1のVceは、Vdc/2からVdcに、スイッチ素子Tm2のVceは、Vdc/2から0Vにそれぞれ変化する。補助共振回路2の各素子の端子間電圧は、Tr5、Dsp、Drnが、Vdc/4からVdc/2に、Tr6、Dsn、DrpがVdc/4から0Vにそれぞれ変化する。中性相レグ5の各素子の端子間電圧は、Tn3、Dnnが、0VからVdc/2にそれぞれ変化する。 In mode 38, Vce of switch element Tm1 changes from Vdc/2 to Vdc, and Vce of switch element Tm2 changes from Vdc/2 to 0V. The terminal voltages of each element of the auxiliary resonant circuit 2, Tr5, Dsp, and Drn, change from Vdc/4 to Vdc/2, and Tr6, Dsn, and Drp, change from Vdc/4 to 0V. The terminal voltages of each element of the neutral phase leg 5, Tn3, and Dnn, change from 0V to Vdc/2.

 スイッチ素子Tn3のターンオフ制御後のデッドタイムDTが経過した時刻t39で、スイッチ素子Tm2は、ゼロ電圧ターンオン制御され、モード30に戻る。 At time t39 when the dead time DT following the turn-off control of switch element Tn3 has elapsed, switch element Tm2 is subjected to zero-voltage turn-on control and returns to mode 30.

 以上のモード30~モード38が繰り返しとなり、スイッチ素子Tm2、Tn3は、ゼロ電圧ターンオン制御される。補助共振回路2は、共振インダクタLrに蓄積されたエネルギーの経路となる。補助共振回路2及び中性相レグ5の各素子の端子間電圧は、いずれのモードにおいてもVdc/2を上回ることがない。 The above modes 30 to 38 are repeated, and the switch elements Tm2 and Tn3 are controlled to be turned on at zero voltage. The auxiliary resonant circuit 2 serves as a path for the energy stored in the resonant inductor Lr. The terminal voltage of each element of the auxiliary resonant circuit 2 and the neutral phase leg 5 never exceeds Vdc/2 in any mode.

 上記のモード34の途中でスイッチ素子Tr5がオフしてしまった場合、共振インダクタLrに正方向に励磁されたエネルギーは、図5に示すモード5Aと同様に無損失で直流バスへ回生される。無損失回生クランプスナバダイオードDsnとスイッチ素子Tr6の逆並列ダイオードD6が導通する。この回生時において、補助共振回路2は、直流バスの中性点Aにクランプされているため、スイッチ素子Tr5を含む補助共振回路2の各素子(ダイオードDrn、無損失回生クランプスナバダイオードDsp)は、Vdc/2でクランプされる。 If the switch element Tr5 is turned off during the above mode 34, the energy excited in the positive direction in the resonant inductor Lr is regenerated to the DC bus without loss, similar to mode 5A shown in FIG. 5. The lossless regenerative clamp snubber diode Dsn and the anti-parallel diode D6 of the switch element Tr6 are conductive. During this regeneration, the auxiliary resonant circuit 2 is clamped to the neutral point A of the DC bus, so each element of the auxiliary resonant circuit 2, including the switch element Tr5 (diode Drn, lossless regenerative clamp snubber diode Dsp), is clamped at Vdc/2.

 図14は、補助共振回路2を適用したT-NPC型インバータ回路10を示す。T-NPC型インバータ回路10は、中性点Aと入出力点Bとの間に接続された中性相レグ5aとして、スイッチ素子Tn3とスイッチ素子Tn4とが互いに逆の耐圧方向に制御できる方向に直列接続される。スイッチ素子Tn3は、コレクタが中性点Aに、エミッタがスイッチ素子Tn4のエミッタにそれぞれ接続され、スイッチ素子Tn4は、コレクタが入出力点Bに接続される。 FIG. 14 shows a T-NPC type inverter circuit 10 to which an auxiliary resonant circuit 2 is applied. In the T-NPC type inverter circuit 10, the switch elements Tn3 and Tn4 are connected in series as a neutral phase leg 5a connected between the neutral point A and the input/output point B so that they can be controlled to have opposite withstand voltage directions. The collector of the switch element Tn3 is connected to the neutral point A and the emitter is connected to the emitter of the switch element Tn4, and the collector of the switch element Tn4 is connected to the input/output point B.

 中性相レグ5aにおいて、スイッチ素子Tn3とスイッチ素子Tn4の逆並列ダイオードD4とは、スイッチ素子Tn3によって開閉される正側極性経路npとして機能する。スイッチ素子Tn4とスイッチ素子Tn3の逆並列ダイオードD3とは、スイッチ素子Tn4によって開閉される負側極性経路nnとして機能する。 In the neutral phase leg 5a, the switch element Tn3 and the anti-parallel diode D4 of the switch element Tn4 function as a positive polarity path np that is opened and closed by the switch element Tn3. The switch element Tn4 and the anti-parallel diode D3 of the switch element Tn3 function as a negative polarity path nn that is opened and closed by the switch element Tn4.

 図15は、共振型インバータ1を適用したフルブリッジインバータ回路11である。フルブリッジインバータ回路11は、共振型インバータ1をフルブリッジ構成にしたものである。フルブリッジインバータ回路11は、U相メインレグ4uと、U相メインレグ4uのU相中性相レグ5au及びU相補助共振回路2uとを備える。フルブリッジインバータ回路11は、W相メインレグ4wと、W相メインレグ4wのW相中性相レグ5aw及びW相補助共振回路2wとを備える。 FIG. 15 shows a full-bridge inverter circuit 11 to which the resonant inverter 1 is applied. The full-bridge inverter circuit 11 is a resonant inverter 1 configured in a full-bridge configuration. The full-bridge inverter circuit 11 includes a U-phase main leg 4u, a U-phase neutral leg 5au of the U-phase main leg 4u, and a U-phase auxiliary resonant circuit 2u. The full-bridge inverter circuit 11 includes a W-phase main leg 4w, a W-phase neutral leg 5aw of the W-phase main leg 4w, and a W-phase auxiliary resonant circuit 2w.

 U相制御回路6uとW相制御回路6wとは、U相補助共振回路2uとW相補助共振回路2wをそれぞれ別に別のタイミングで制御する。U相補助共振回路2uの制御は、W相のスイッチングの状態により動作が異なる。W相補助共振回路2wの制御は、U相のスイッチングの状態により動作が異なる。 The U-phase control circuit 6u and the W-phase control circuit 6w control the U-phase auxiliary resonant circuit 2u and the W-phase auxiliary resonant circuit 2w separately at different timings. The control of the U-phase auxiliary resonant circuit 2u operates differently depending on the switching state of the W phase. The control of the W-phase auxiliary resonant circuit 2w operates differently depending on the switching state of the U phase.

 図16は、共振型インバータ1を適用した三相インバータ回路12である。三相インバータ回路12は、共振型インバータ1を三相構成にしたものである。三相インバータ回路12は、U相メインレグ4uと、U相メインレグ4uのU相中性相レグ5au及びU相補助共振回路2uとを備える。三相インバータ回路12は、V相メインレグ4vと、V相メインレグ4vのV相中性相レグ5av及びV相補助共振回路2vとを備える。三相インバータ回路12は、W相メインレグ4wと、W相メインレグ4wのW相中性相レグ5aw及びW相補助共振回路2wとを備える。 FIG. 16 shows a three-phase inverter circuit 12 to which the resonant inverter 1 is applied. The three-phase inverter circuit 12 is a three-phase configuration of the resonant inverter 1. The three-phase inverter circuit 12 includes a U-phase main leg 4u, a U-phase neutral phase leg 5au of the U-phase main leg 4u, and a U-phase auxiliary resonant circuit 2u. The three-phase inverter circuit 12 includes a V-phase main leg 4v, a V-phase neutral phase leg 5av of the V-phase main leg 4v, and a V-phase auxiliary resonant circuit 2v. The three-phase inverter circuit 12 includes a W-phase main leg 4w, a W-phase neutral phase leg 5aw of the W-phase main leg 4w, and a W-phase auxiliary resonant circuit 2w.

 U相制御回路6u、V相制御回路6v、W相制御回路6wは、U相補助共振回路2u、V相補助共振回路2v、W相補助共振回路2wをそれぞれ個別のタイミングで制御する。U相補助共振回路2uの制御は、V相及びW相のスイッチングの状態により動作が異なる。V相補助共振回路2vの制御は、U相及びW相のスイッチングの状態により動作が異なるW相補助共振回路2wの制御は、U相及びV相のスイッチングの状態により動作が異なる。 The U-phase control circuit 6u, V-phase control circuit 6v, and W-phase control circuit 6w control the U-phase auxiliary resonant circuit 2u, V-phase auxiliary resonant circuit 2v, and W-phase auxiliary resonant circuit 2w at individual timings. The control of the U-phase auxiliary resonant circuit 2u operates differently depending on the switching states of the V and W phases. The control of the V-phase auxiliary resonant circuit 2v operates differently depending on the switching states of the U and W phases. The control of the W-phase auxiliary resonant circuit 2w operates differently depending on the switching states of the U and V phases.

 V相メインレグ4v及びW相メインレグ4wのスイッチ素子Tm1がいずれもオン状態で、U相メインレグ4uのスイッチ素子Tm1をゼロ電圧ターンオンさせる場合について図17を参照して説明する。U相電流は、正,V相電流及びW相電流は、いずれも負とする。 The case where the switch element Tm1 of the U-phase main leg 4u is turned on at zero voltage while the switch element Tm1 of the V-phase main leg 4v and the W-phase main leg 4w are both on will be described with reference to FIG. 17. The U-phase current is positive, and the V-phase current and the W-phase current are all negative.

 図17(a)に示すモード40は、インバータ電流IinvがU相メインレグ4uのスイッチ素子Tm2の逆並列ダイオードD2、V相メインレグ4v及びW相メインレグ4wのスイッチ素子Tm1の逆並列ダイオードD1を還流している状態である。 Mode 40 shown in FIG. 17(a) is a state in which the inverter current Iinv flows back through the anti-parallel diode D2 of the switch element Tm2 of the U-phase main leg 4u, and the anti-parallel diode D1 of the switch element Tm1 of the V-phase main leg 4v and the W-phase main leg 4w.

 モード41は、U相メインレグ4uのU相補助共振回路2uにおけるスイッチ素子Tr5をターンオン制御することで、図17(b)に示すように、インバータ電流IinvをU相補助共振回路2uの正側共振経路rp(共振インダクタLr)に転流させる。 In mode 41, the switch element Tr5 in the U-phase auxiliary resonant circuit 2u of the U-phase main leg 4u is turned on, so that the inverter current Iinv is commutated to the positive resonant path rp (resonant inductor Lr) of the U-phase auxiliary resonant circuit 2u, as shown in FIG. 17(b).

 モード42は、U相補助共振回路2uの共振インダクタLrへの転流が完了する。モード42は、図17(c)に点線で示すU相メインレグ4uの共振キャパシタC1、C2との共振によって、U相メインレグ4uのスイッチ素子Tm1及びスイッチ素子Tm2のVceが正弦波状に変化する。モード42において、U相メインレグ4uのスイッチ素子Tm1のVceは、Vdcから0Vに、U相メインレグ4uのスイッチ素子Tm2のVceは、0VからVdcにそれぞれ変化する。 In mode 42, commutation to resonant inductor Lr of U-phase auxiliary resonant circuit 2u is completed. In mode 42, Vce of switch element Tm1 and switch element Tm2 of U-phase main leg 4u changes sinusoidally due to resonance with resonant capacitors C1 and C2 of U-phase main leg 4u shown by dotted lines in FIG. 17(c). In mode 42, Vce of switch element Tm1 of U-phase main leg 4u changes from Vdc to 0V, and Vce of switch element Tm2 of U-phase main leg 4u changes from 0V to Vdc.

 モード43は、U相メインレグ4uのスイッチ素子Tm1のVceが0Vになったタイミングで、図17(d)に示すように、U相メインレグ4uのスイッチ素子Tm1をゼロ電圧ターンオン制御させる。モード43は、共振インダクタ電流ILrをU相メインレグ4uのスイッチ素子Tm1へ転流させる。 In mode 43, as shown in FIG. 17(d), when Vce of the switch element Tm1 of the U-phase main leg 4u becomes 0V, the switch element Tm1 of the U-phase main leg 4u is subjected to zero-voltage turn-on control. In mode 43, the resonant inductor current ILr is commutated to the switch element Tm1 of the U-phase main leg 4u.

 モード44は、共振インダクタ電流ILrのスイッチ素子Tm1への転流完了に伴って、スイッチ素子Tr5をターンオフ制御させ、図17(e)に示すように、電流がインバータ入出力点の間を還流している。 In mode 44, when the resonant inductor current ILr is commutated to the switch element Tm1, the switch element Tr5 is turned off, and the current flows back between the inverter input and output points, as shown in FIG. 17(e).

 以上がU相制御回路6uによるU相の動作である。V相制御回路6v、W相制御回路6wは、U相と同様にV相、W相をそれぞれ個別のタイミングで制御する。 The above is the operation of the U-phase by the U-phase control circuit 6u. The V-phase control circuit 6v and the W-phase control circuit 6w control the V-phase and W-phase at separate timings, just like the U-phase.

 (まとめ)
 本発明の各実施形態にかかる共振型インバータは、以下のように記載することもできる。
 (1)本実施の一実施形態にかかる共振型インバータ1は、正側直流ラインPと負側直流ラインNとの間に直列に接続されたキャパシタCp(正側キャパシタ)とキャパシタCn(負側キャパシタ)とからなる中性点クランプ回路3を備える。中性点クランプ回路3は、キャパシタCpとキャパシタCnとの接続点が中性点Aとなる。共振型インバータ1は、正側直流ラインPと負側直流ラインNとの間に直列に接続されたメインレグ4を備える。メインレグ4は、スイッチ素子Tm1(上アームスイッチ)とスイッチ素子Tm2(下アームスイッチ)とからなり、スイッチ素子Tm1とスイッチ素子Tm2との接続点がインバータ電流の入出力点Bとなる。共振型インバータ1は、スイッチ素子Tm1及びスイッチ素子Tm2に並列に接続された共振キャパシタC1(第1共振キャパシタ)及び共振キャパシタC2(第2共振キャパシタ)を備える。共振型インバータ1は、スイッチ素子Tm1及びスイッチ素子Tm2に逆並列に接続された逆並列ダイオードD1(第1逆並列ダイオード)及び逆並列ダイオードD2(第2逆並列ダイオード)を備える。共振型インバータ1は、電流極性が中性点Aから入出力点Bの方向に限定された正側極性経路np及び電流極性が入出力点Bから中性点Aの方向に限定された負側極性経路nnが設けられた中性相レグ5を備える。中性相レグ5は、正側極性経路np及び負側極性経路nnをそれぞれ開閉するスイッチ素子Tn3(正側中性相スイッチ)及びスイッチ素子Tn4(負側中性相スイッチ)を備える。共振型インバータ1は、入出力点Bに一端が接続された共振インダクタLrを含む補助共振回路2を備える。補助共振回路2は、電流極性が中性点Aから共振インダクタLrの方向に限定され、スイッチ素子Tr5(正側共振スイッチ)によって開閉される正側共振経路rpを備える。補助共振回路2は、電流極性が共振インダクタLrから中性点Aの方向に限定され、スイッチ素子Tr6(負側共振スイッチ)によって開閉される負側共振経路rnを備える。補助共振回路2は、電流極性が共振インダクタLrから正側直流ラインPの方向に限定された正側回生経路(スイッチ素子Tr3の逆並列ダイオードD3+無損失回生クランプスナバダイオードDsp)を備える。補助共振回路2は、電流極性が負側直流ラインNから共振インダクタLrの方向に限定された負側回生経路(スイッチ素子Tr4の逆並列ダイオードD4+無損失回生クランプスナバダイオードDsn)を備える。
(summary)
The resonant inverter according to each embodiment of the present invention can also be described as follows.
(1) A resonant inverter 1 according to one embodiment of the present invention includes a neutral point clamp circuit 3 including a capacitor Cp (positive side capacitor) and a capacitor Cn (negative side capacitor) connected in series between a positive side DC line P and a negative side DC line N. In the neutral point clamp circuit 3, a connection point between the capacitor Cp and the capacitor Cn serves as a neutral point A. The resonant inverter 1 includes a main leg 4 connected in series between the positive side DC line P and the negative side DC line N. The main leg 4 includes a switch element Tm1 (upper arm switch) and a switch element Tm2 (lower arm switch), and a connection point between the switch element Tm1 and the switch element Tm2 serves as an input/output point B of the inverter current. The resonant inverter 1 includes a resonant capacitor C1 (first resonant capacitor) and a resonant capacitor C2 (second resonant capacitor) connected in parallel to the switch element Tm1 and the switch element Tm2. The resonant inverter 1 includes an anti-parallel diode D1 (first anti-parallel diode) and an anti-parallel diode D2 (second anti-parallel diode) connected in anti-parallel to the switch element Tm1 and the switch element Tm2. The resonant inverter 1 includes a neutral phase leg 5 provided with a positive polarity path np in which the current polarity is limited to the direction from the neutral point A to the input/output point B, and a negative polarity path nn in which the current polarity is limited to the direction from the input/output point B to the neutral point A. The neutral phase leg 5 includes a switch element Tn3 (positive side neutral phase switch) and a switch element Tn4 (negative side neutral phase switch) that open and close the positive polarity path np and the negative polarity path nn, respectively. The resonant inverter 1 includes an auxiliary resonant circuit 2 including a resonant inductor Lr having one end connected to the input/output point B. The auxiliary resonant circuit 2 includes a positive side resonant path rp in which the current polarity is limited to the direction from the neutral point A to the resonant inductor Lr, and which is opened and closed by a switch element Tr5 (positive side resonant switch). The auxiliary resonant circuit 2 includes a negative-side resonant path rn whose current polarity is limited to the direction from the resonant inductor Lr to the neutral point A and which is opened and closed by a switch element Tr6 (negative-side resonant switch). The auxiliary resonant circuit 2 includes a positive-side regenerative path (anti-parallel diode D3 of switch element Tr3 + lossless regenerative clamp snubber diode Dsp) whose current polarity is limited to the direction from the resonant inductor Lr to the positive-side DC line P. The auxiliary resonant circuit 2 includes a negative-side regenerative path (anti-parallel diode D4 of switch element Tr4 + lossless regenerative clamp snubber diode Dsn) whose current polarity is limited to the direction from the negative-side DC line N to the resonant inductor Lr.

 上記(1)に記載の共振型インバータ1によれば、補助共振回路2は、共振インダクタLrに蓄積されたエネルギーの無損失の回生経路となる。補助共振回路2は、正側共振経路rp及び負側共振経路rnによって中性点Aの電圧にクランプされる。補助共振回路2を構成する素子は、主回路であるメインレグ4の素子よりも低耐圧の素子で構成できる。補助共振回路2の素子選択の範囲が広くなり、安価に構成できる。無損失回生クランプスナバダイオードDsp、Dsnは、共振インダクタLrのエネルギーの回生経路となり、高効率な過電圧保護対策が可能となる。補助共振回路2を3レベルインバータである共振型インバータ1に適用することで、共振型インバータ1は、さらなる高効率化できる。共振型インバータ1は、力率1以外でもソフトスイッチングが可能となるため充放電用途に
最適となる。共振型インバータ1は、補助共振回路2を設けることで、熱分散効果が得られるため、放熱機構が安価となる。
According to the resonant inverter 1 described in (1) above, the auxiliary resonant circuit 2 becomes a lossless regenerative path of the energy stored in the resonant inductor Lr. The auxiliary resonant circuit 2 is clamped to the voltage of the neutral point A by the positive side resonant path rp and the negative side resonant path rn. The elements constituting the auxiliary resonant circuit 2 can be composed of elements with a lower withstand voltage than the elements of the main leg 4, which is the main circuit. The range of elements to be selected for the auxiliary resonant circuit 2 is wider, and the auxiliary resonant circuit 2 can be constructed at low cost. The lossless regenerative clamp snubber diodes Dsp and Dsn become a regenerative path of the energy of the resonant inductor Lr, enabling highly efficient overvoltage protection measures. By applying the auxiliary resonant circuit 2 to the resonant inverter 1, which is a three-level inverter, the efficiency of the resonant inverter 1 can be further improved. The resonant inverter 1 is optimal for charging and discharging applications because soft switching is possible even at power factors other than 1. The resonant inverter 1 has a heat dissipation effect due to the provision of the auxiliary resonant circuit 2, and therefore the heat dissipation mechanism is inexpensive.

 (2)上記(1)に記載の共振型インバータ1において、スイッチ素子Tm1とスイッチ素子Tn4とをデッドタイムDTを挟んで交番制御する放電動作時に、スイッチ素子Tn3は、スイッチ素子Tn4と同時にターンオフ制御すると共に、スイッチ素子Tm1と同時にターンオン制御してもよい。 (2) In the resonant inverter 1 described in (1) above, during a discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between, the switch element Tn3 may be controlled to be turned off simultaneously with the switch element Tn4 and may be controlled to be turned on simultaneously with the switch element Tm1.

 上記(2)に記載の共振型インバータ1によれば、スイッチ素子Tm1とスイッチ素子Tn4とをデッドタイムDTを挟んで交番制御する放電動作時に、共振型インバータ1を2レベルコンバータとして扱うことができ、共振動作を容易に制御できる。 According to the resonant inverter 1 described in (2) above, during the discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between, the resonant inverter 1 can be treated as a two-level converter, making it easy to control the resonant operation.

 (3)上記(2)に記載の共振型インバータ1において、スイッチ素子Tm1のターンオン制御前のデッドタイムDTにスイッチ素子Tr5をターンオン制御すると共に、スイッチ素子Tm1のターンオン制御後にスイッチ素子Tr5をターンオフ制御してもよい。 (3) In the resonant inverter 1 described in (2) above, the switch element Tr5 may be turned on during the dead time DT before the switch element Tm1 is turned on, and the switch element Tr5 may be turned off after the switch element Tm1 is turned on.

 上記(3)に記載の共振型インバータ1によれば、スイッチ素子Tm1とスイッチ素子Tn4とをデッドタイムDTを挟んで交番制御する放電動作時に、インバータ電流Iinvを補助共振回路2に転流させ、共振動作を起こすことができる。 The resonant inverter 1 described in (3) above allows the inverter current Iinv to be commutated to the auxiliary resonant circuit 2 during the discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between, thereby causing a resonant operation.

 (4)上記(2)又は(3)に記載の共振型インバータ1において、スイッチ素子Tr5は、スイッチ素子Tm1のターンオン制御のタイミングの、第1転流時間Tcom1(正側第1転流時間)と共振時間Tresとを加算した時間前のタイミングでターンオン制御してもよい。第1転流時間Tcom1(正側第1転流時間)は、スイッチ素子Tr5のターンオン制御によってインバータ電流Iinvの共振インダクタLrへの転流が完了するまでの時間である。共振時間Tresは、共振インダクタLrと共振キャパシタC1及び共振キャパシタC2とによる共振の1/2周期である。 (4) In the resonant inverter 1 described in (2) or (3) above, the switch element Tr5 may be turned on at a timing before the timing of the turn-on control of the switch element Tm1, which is the sum of the first commutation time Tcom1 (first positive side commutation time) and the resonant time Tres. The first commutation time Tcom1 (first positive side commutation time) is the time until the commutation of the inverter current Iinv to the resonant inductor Lr is completed by the turn-on control of the switch element Tr5. The resonant time Tres is 1/2 the period of the resonance of the resonant inductor Lr and the resonant capacitors C1 and C2.

 上記(4)に記載の共振型インバータ1によれば、スイッチ素子Tm1とスイッチ素子Tn4とをデッドタイムDTを挟んで交番制御する放電動作時に、スイッチ素子Tm1のゼロ電圧ターンオン制御を実現できる。 The resonant inverter 1 described in (4) above can achieve zero-voltage turn-on control of the switch element Tm1 during the discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between.

 (5)上記(2)~(3)の何れかに記載の共振型インバータ1において、スイッチ素子Tr5は、スイッチ素子Tm1のターンオン制御のタイミングの、第2転流時間Tcom2(正側第2転流時間)後のタイミングでターンオフ制御してもよい。第2転流時間Tcom2(正側第2転流時間)は、スイッチ素子Tm1のターンオン制御によって共振インダクタLrからの共振インダクタ電流ILrのスイッチ素子Tm1への転流が完了するまでの時間である。 (5) In the resonant inverter 1 described in any one of (2) to (3) above, the switch element Tr5 may be turned off at a timing after a second commutation time Tcom2 (second positive side commutation time) from the timing of the turn-on control of the switch element Tm1. The second commutation time Tcom2 (second positive side commutation time) is the time until the commutation of the resonant inductor current ILr from the resonant inductor Lr to the switch element Tm1 is completed by the turn-on control of the switch element Tm1.

 上記(5)に記載の共振型インバータ1によれば、スイッチ素子Tm1とスイッチ素子Tn4とをデッドタイムDTを挟んで交番制御する放電動作時の、スイッチ素子Tm1、Tn3のゼロ電圧ターンオン制御後に、すみやかに共振動作を終了できる。 The resonant inverter 1 described in (5) above can quickly terminate the resonant operation after the zero voltage turn-on control of the switch elements Tm1 and Tn3 during the discharge operation in which the switch elements Tm1 and Tn4 are alternately controlled with a dead time DT in between.

 (6)上記(1)に記載の共振型インバータ1において、スイッチ素子Tm2とスイッチ素子Tn3とをデッドタイムDTを挟んで交番制御する放電動作時において、スイッチ素子Tn4は、スイッチ素子Tn3と同時にターンオフ制御すると共に、スイッチ素子Tm2と同時にターンオン制御してもよい。 (6) In the resonant inverter 1 described in (1) above, during a discharge operation in which the switch elements Tm2 and Tn3 are alternately controlled with a dead time DT in between, the switch element Tn4 may be controlled to be turned off simultaneously with the switch element Tn3 and may be controlled to be turned on simultaneously with the switch element Tm2.

 上記(6)に記載の共振型インバータ1によれば、スイッチ素子Tm2とスイッチ素子Tn3とをデッドタイムDTを挟んで交番制御する放電動作時に、共振型インバータ1を2レベルコンバータとして扱うことができ、共振動作を容易に制御できる。 According to the resonant inverter 1 described in (6) above, during the discharge operation in which the switch elements Tm2 and Tn3 are alternately controlled with a dead time DT in between, the resonant inverter 1 can be treated as a two-level converter, making it easy to control the resonant operation.

 (7)上記(6)に記載の共振型インバータ1において、スイッチ素子Tm2のターンオン制御前のデッドタイムDTにスイッチ素子Tr6をターンオン制御すると共に、スイッチ素子Tm2のターンオン制御後にスイッチ素子Tr6をターンオフ制御してもよい。 (7) In the resonant inverter 1 described in (6) above, the switch element Tr6 may be turned on during the dead time DT before the switch element Tm2 is turned on, and the switch element Tr6 may be turned off after the switch element Tm2 is turned on.

 上記(7)に記載の共振型インバータ1によれば、スイッチ素子Tm2とスイッチ素子Tn3とをデッドタイムDTを挟んで交番制御する放電動作時に、インバータ電流Iinvを補助共振回路2に転流させ、共振動作を起こすことができる。 According to the resonant inverter 1 described in (7) above, during the discharge operation in which the switch elements Tm2 and Tn3 are alternately controlled with a dead time DT in between, the inverter current Iinv can be commutated to the auxiliary resonant circuit 2 to cause a resonant operation.

 (8)上記(6)又は(7)に記載の共振型インバータ1において、スイッチ素子Tr6は、スイッチ素子Tm2のターンオン制御のタイミングの、第1転流時間Tcom1(負側第1転流時間)と共振時間Tresとを加算した時間前のタイミングでターンオン制御してもよい。第1転流時間Tcom1(負側第1転流時間)は、スイッチ素子Tr6のターンオン制御によってインバータ電流Iinvの共振インダクタLrへの転流が完了するまでの時間である。  (8) In the resonant inverter 1 described in (6) or (7) above, the switch element Tr6 may be turned on at a timing before the timing of the turn-on control of the switch element Tm2, which is the sum of the first commutation time Tcom1 (first negative commutation time) and the resonant time Tres. The first commutation time Tcom1 (first negative commutation time) is the time until the commutation of the inverter current Iinv to the resonant inductor Lr is completed by the turn-on control of the switch element Tr6.

 上記(8)に記載の共振型インバータ1によれば、スイッチ素子Tm2とスイッチ素子Tn3とをデッドタイムDTを挟んで交番制御する放電動作時に、スイッチ素子Tm2のゼロ電圧ターンオン制御を実現できる。 The resonant inverter 1 described in (8) above can achieve zero-voltage turn-on control of the switch element Tm2 during the discharge operation in which the switch elements Tm2 and Tn3 are alternately controlled with a dead time DT in between.

 (9)上記(6)~(7)の何れかに記載の共振型インバータ1において、スイッチ素子Tr6は、スイッチ素子Tm2のターンオン制御のタイミングの、第2転流時間Tcom2(負側第2転流時間)後のタイミングでターンオフ制御してもよい。第2転流時間Tcom2(負側第2転流時間)は、スイッチ素子Tm2のターンオン制御によって共振インダクタLrからの共振インダクタ電流ILrのスイッチ素子Tm2への転流が完了するまでの時間である。 (9) In the resonant inverter 1 described in any one of (6) to (7) above, the switch element Tr6 may be turned off at a timing after a second commutation time Tcom2 (second negative commutation time) from the timing of the turn-on control of the switch element Tm2. The second commutation time Tcom2 (second negative commutation time) is the time until the commutation of the resonant inductor current ILr from the resonant inductor Lr to the switch element Tm2 is completed by the turn-on control of the switch element Tm2.

 上記(9)に記載の共振型インバータ1によれば、スイッチ素子Tm2とスイッチ素子Tn3とをデッドタイムDTを挟んで交番制御する放電動作時に、スイッチ素子Tm2、Tn4のゼロ電圧ターンオン制御後に、すみやかに共振動作を終了できる。 The resonant inverter 1 described in (9) above can quickly terminate the resonant operation after the zero voltage turn-on control of the switch elements Tm2 and Tn4 during the discharge operation in which the switch elements Tm2 and Tn3 are alternately controlled with the dead time DT in between.

 以上、本発明を具体的な実施形態で説明したが、上記実施形態は例であって、本発明の趣旨を逸脱しない範囲で変更して実施できることは言うまでも無い。 The present invention has been described above using specific embodiments, but the above embodiments are merely examples, and it goes without saying that the present invention can be modified and implemented without departing from the spirit of the invention.

1 共振型インバータ
2、2u、2v、2w 補助共振回路
3 中性点クランプ回路
4 メインレグ
4u U相メインレグ
4v V相メインレグ
4w W相メインレグ
5 中性相レグ
5a 中性相レグ
5au U相中性相レグ
5av V相中性相レグ
5aw W相中性相レグ
5u U相中性相レグ
5w W相中性相レグ
6 制御回路
6u U相制御回路
6v V相制御回路
6w W相制御回路
10 T-NPC型インバータ回路
11 フルブリッジインバータ回路
12 三相インバータ回路
C1、C2 共振キャパシタ
Cn、Cp キャパシタ
D1、D2、D3、D4、D5、D6 逆並列ダイオード
Dnn、Dnp、Drn、Drp ダイオード
Dsn、Dsp 無損失回生クランプスナバダイオード
L1 インダクタ
Lr 共振インダクタ
N 負側直流ライン
P 正側直流ライン
Tm1、Tm2、Tn3、Tn4、Tr5、Tr6 スイッチ素子
nn 負側極性経路
np 正側極性経路
rn 負側共振経路
rp 正側共振経路
1 Resonant inverter 2, 2u, 2v, 2w Auxiliary resonant circuit 3 Neutral point clamp circuit 4 Main leg 4u U-phase main leg 4v V-phase main leg 4w W-phase main leg 5 Neutral phase leg 5a Neutral phase leg 5au U-phase neutral phase leg 5av V-phase neutral phase leg 5aw W-phase neutral phase leg 5u U-phase neutral phase leg 5w W-phase neutral phase leg 6 Control circuit 6u U-phase control circuit 6v V-phase control circuit 6w W-phase control circuit 10 T-NPC type inverter circuit 11 Full bridge inverter circuit 12 Three-phase inverter circuit C1, C2 Resonant capacitor Cn, Cp Capacitor D1, D2, D3, D4, D5, D6 Anti-parallel diode Dnn, Dnp, Drn, Drp Diode Dsn, Dsp Lossless regenerative clamp snubber diode L1 Inductor Lr Resonant inductor N Negative side DC line P Positive side DC line Tm1, Tm2, Tn3, Tn4, Tr5, Tr6 Switch element nn Negative side polarity path np Positive side polarity path rn Negative side resonant path rp Positive side resonant path

Claims (9)

 正側直流ラインと負側直流ラインとの間に直列に接続された正側キャパシタと負側キャパシタとからなり、前記正側キャパシタと前記負側キャパシタとの接続点が中性点となる中性点クランプ回路と、
 前記正側直流ラインと前記負側直流ラインとの間に直列に接続された上アームスイッチと下アームスイッチとからなり、前記上アームスイッチと前記下アームスイッチとの接続点がインバータ電流の入出力点となるメインレグと、
 前記上アームスイッチ及び前記下アームスイッチに並列に接続された第1共振キャパシタ及び第2共振キャパシタと、
 前記上アームスイッチ及び前記下アームスイッチに逆並列に接続された第1逆並列ダイオード及び第2逆並列ダイオードと、
 電流極性が前記中性点から前記入出力点の方向に限定された正側極性経路及び電流極性が前記入出力点から前記中性点の方向に限定された負側極性経路をそれぞれ開閉する正側中性相スイッチ及び負側中性相スイッチを有する中性相レグと、
 前記入出力点に一端が接続された共振インダクタを含む補助共振回路と、を備え、
 前記補助共振回路は、
 電流極性が前記中性点から前記共振インダクタの方向に限定され、正側共振スイッチによって開閉される正側共振経路と、
 電流極性が前記共振インダクタから前記中性点の方向に限定され、負側共振スイッチによって開閉される負側共振経路と、
 電流極性が前記共振インダクタから前記正側直流ラインの方向に限定された正側回生経路と、
 電流極性が前記負側直流ラインから前記共振インダクタの方向に限定された負側回生経路と、を備える共振型インバータ。
a neutral point clamp circuit including a positive side capacitor and a negative side capacitor connected in series between a positive side DC line and a negative side DC line, the connection point between the positive side capacitor and the negative side capacitor being a neutral point;
a main leg including an upper arm switch and a lower arm switch connected in series between the positive DC line and the negative DC line, the connection point between the upper arm switch and the lower arm switch being an input/output point of an inverter current;
a first resonant capacitor and a second resonant capacitor connected in parallel to the upper arm switch and the lower arm switch;
a first anti-parallel diode and a second anti-parallel diode connected in anti-parallel to the upper arm switch and the lower arm switch;
a neutral phase leg including a positive side neutral phase switch and a negative side neutral phase switch for opening and closing a positive polarity path, the polarity of which is limited to a direction from the neutral point to the input/output point, and a negative polarity path, the polarity of which is limited to a direction from the input/output point to the neutral point, respectively;
an auxiliary resonant circuit including a resonant inductor having one end connected to the input/output point;
The auxiliary resonant circuit includes:
a positive-side resonant path in which a current polarity is limited to a direction from the neutral point to the resonant inductor and which is opened and closed by a positive-side resonant switch;
a negative-side resonant path in which a current polarity is limited to a direction from the resonant inductor to the neutral point and which is opened and closed by a negative-side resonant switch;
a positive-side regenerative path in which a current polarity is limited to a direction from the resonant inductor to the positive-side DC line;
a negative-side regenerative path whose current polarity is limited to a direction from the negative-side DC line to the resonant inductor.
 前記上アームスイッチと前記負側中性相スイッチとをデッドタイムを挟んで交番制御する放電動作時において、前記正側中性相スイッチは、前記負側中性相スイッチと同時にターンオフ制御される請求項1に記載の共振型インバータ。 The resonant inverter according to claim 1, in which the upper arm switch and the negative side neutral phase switch are alternately controlled with a dead time between them during a discharge operation, and the positive side neutral phase switch is controlled to be turned off simultaneously with the negative side neutral phase switch.  前記上アームスイッチのターンオン制御前の前記デッドタイムに前記正側共振スイッチをターンオン制御されると共に、前記上アームスイッチのターンオン制御後に前記正側共振スイッチをターンオフ制御される請求項2に記載の共振型インバータ。 The resonant inverter according to claim 2, wherein the positive side resonant switch is controlled to be turned on during the dead time before the upper arm switch is controlled to be turned on, and the positive side resonant switch is controlled to be turned off after the upper arm switch is controlled to be turned on.  前記正側共振スイッチは、前記上アームスイッチのターンオン制御のタイミングの、前記正側共振スイッチのターンオン制御によって前記インバータ電流の前記共振インダクタへの転流が完了するまでの正側第1転流時間と、前記共振インダクタと前記第1共振キャパシタ及び第2共振キャパシタとによる共振の1/2周期である共振時間とを加算した時
間前のタイミングでターンオン制御される請求項2に記載の共振型インバータ。
3. The resonant inverter according to claim 2, wherein the positive side resonant switch is turned on at a timing before the timing of the turn-on control of the upper arm switch, the timing being a sum of a positive side first commutation time until the commutation of the inverter current to the resonant inductor is completed by the turn-on control of the positive side resonant switch, and a resonance time which is 1/2 the period of resonance by the resonant inductor, the first resonant capacitor, and the second resonant capacitor.
 前記正側共振スイッチは、前記上アームスイッチのターンオン制御のタイミングの、前記上アームスイッチのターンオン制御によって前記共振インダクタからの共振インダクタ電流の前記上アームスイッチへの転流が完了するまでの正側第2転流時間後のタイミングでターンオフ制御される請求項2に記載の共振型インバータ。 The resonant inverter according to claim 2, wherein the positive-side resonant switch is turned off at a timing that is a second positive-side commutation time after the upper arm switch is turned on and until the commutation of the resonant inductor current from the resonant inductor to the upper arm switch is completed by the upper arm switch turn-on control.  前記下アームスイッチと前記正側中性相スイッチとをデッドタイムを挟んで交番制御する放電動作時において、前記負側中性相スイッチは、前記正側中性相スイッチと同時にターンオフ制御される請求項1に記載の共振型インバータ。 The resonant inverter according to claim 1, in which the lower arm switch and the positive side neutral phase switch are alternately controlled with a dead time between them during a discharge operation, and the negative side neutral phase switch is controlled to be turned off simultaneously with the positive side neutral phase switch.  前記下アームスイッチのターンオン制御前の前記デッドタイムに前記負側共振スイッチをターンオン制御されると共に、前記下アームスイッチのターンオン制御後に前記負側共振スイッチをターンオフ制御される請求項6に記載の共振型インバータ。 The resonant inverter according to claim 6, wherein the negative-side resonant switch is controlled to be turned on during the dead time before the lower-arm switch is controlled to be turned on, and the negative-side resonant switch is controlled to be turned off after the lower-arm switch is controlled to be turned on.  前記負側共振スイッチは、前記下アームスイッチのターンオン制御のタイミングの、前記負側共振スイッチのターンオン制御によって前記インバータ電流の前記共振インダクタへの転流が完了するまでの負側第1転流時間と、前記共振インダクタと前記第1共振キャパシタ及び第2共振キャパシタとによる共振の1/2周期である共振時間とを加算した時
間前のタイミングでターンオン制御される請求項6に記載の共振型インバータ。
7. The resonant inverter according to claim 6, wherein the negative side resonant switch is turned on at a timing before the timing of the turn-on control of the lower arm switch, the timing being a sum of a negative side first commutation time until the commutation of the inverter current to the resonant inductor is completed by the turn-on control of the negative side resonant switch, and a resonance time which is 1/2 the period of resonance by the resonant inductor, the first resonant capacitor, and the second resonant capacitor.
 前記負側共振スイッチは、前記下アームスイッチのターンオン制御のタイミングの、前記下アームスイッチのターンオン制御によって前記共振インダクタからの共振インダクタ電流の前記下アームスイッチへの転流が完了するまでの負側第2転流時間後のタイミングでターンオフ制御される請求項6に記載の共振型インバータ。 The resonant inverter according to claim 6, wherein the negative-side resonant switch is turned off at a timing that is a second negative-side commutation time after the timing of the turn-on control of the lower arm switch, the time until the commutation of the resonant inductor current from the resonant inductor to the lower arm switch is completed by the turn-on control of the lower arm switch.
PCT/JP2024/024387 2023-07-07 2024-07-05 Resonant inverter WO2025013779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-112361 2023-07-07
JP2023112361A JP2025009386A (en) 2023-07-07 2023-07-07 Resonant Inverter

Publications (1)

Publication Number Publication Date
WO2025013779A1 true WO2025013779A1 (en) 2025-01-16

Family

ID=94215781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/024387 WO2025013779A1 (en) 2023-07-07 2024-07-05 Resonant inverter

Country Status (2)

Country Link
JP (1) JP2025009386A (en)
WO (1) WO2025013779A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019437A (en) * 2013-07-09 2015-01-29 サンケン電気株式会社 Resonance-type inverter device
CN109586602A (en) * 2018-12-19 2019-04-05 合肥工业大学 Auxiliary resonant pole T-type three-level soft switch inverter circuit and modulator approach

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019437A (en) * 2013-07-09 2015-01-29 サンケン電気株式会社 Resonance-type inverter device
CN109586602A (en) * 2018-12-19 2019-04-05 合肥工业大学 Auxiliary resonant pole T-type three-level soft switch inverter circuit and modulator approach

Also Published As

Publication number Publication date
JP2025009386A (en) 2025-01-20

Similar Documents

Publication Publication Date Title
Huang et al. A soft-switching scheme for an isolated DC/DC converter with pulsating DC output for a three-phase high-frequency-link PWM converter
WO2011033698A1 (en) Power converter
KR20080109908A (en) Space-Saving Inverter with Reduced Switching Loss and Increased Lifetime
JP2002325464A (en) Resonant inverter circuit
Carr et al. A three-level full-bridge zero-voltage zero-current switching converter with a simplified switching scheme
Cho et al. Three level auxiliary resonant commutated pole inverter for high power applications
Mazuela et al. Simple voltage balancing method to protect series-connected devices experimentally verified in a 5L-MPC converter
Chao et al. Three-phase soft-switching inverter for induction motor drives
Mauger et al. Soft-switching current source inverter for next-generation electric vehicle drivetrains
WO2025013779A1 (en) Resonant inverter
WO2025013780A1 (en) Resonant inverter
JP6175946B2 (en) Resonant inverter device
Cordes et al. Active common mode cancellation
Martinez et al. Hard switching and soft switching inverters efficiency evaluation
WO2025013700A1 (en) Resonance inverter
Kurokawa et al. Auxiliary resonant DC link snubber assisted voltage-source soft switching inverter with space zero voltage vector generation method
Gao et al. Dead-time elimination of nine-switch converter
Cho et al. Zero-voltage-switching three-level auxiliary resonant commutated pole inverter for high-power applications
Teichmann et al. A multi-level ARCP voltage source converter topology
JP4097998B2 (en) Resonant type inverter
Ram et al. An si+ sic based hybrid voltage source inverter topology for transformerless grid tied inverters
JP3296424B2 (en) Power converter
WO2024090345A1 (en) Power converter
WO2024162289A1 (en) Power conversion device
US20240333124A1 (en) Balancer Circuit for Series Connection of Two DC-Link Capacitors, Method for Controlling the Balancer Circuit and Converter Arrangement