Nothing Special   »   [go: up one dir, main page]

WO2025013666A1 - Fe-Cr-Ni ALLOY MATERIAL - Google Patents

Fe-Cr-Ni ALLOY MATERIAL Download PDF

Info

Publication number
WO2025013666A1
WO2025013666A1 PCT/JP2024/023682 JP2024023682W WO2025013666A1 WO 2025013666 A1 WO2025013666 A1 WO 2025013666A1 JP 2024023682 W JP2024023682 W JP 2024023682W WO 2025013666 A1 WO2025013666 A1 WO 2025013666A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy material
content
alloy
less
yield strength
Prior art date
Application number
PCT/JP2024/023682
Other languages
French (fr)
Japanese (ja)
Inventor
誠也 岡田
桂一 近藤
一弥 中根
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2025013666A1 publication Critical patent/WO2025013666A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Definitions

  • This disclosure relates to alloy materials, and more specifically to Fe-Cr-Ni alloy materials.
  • Oil wells and gas wells use oil well alloy materials, such as oil well tubular goods.
  • Many oil wells are in sour environments that contain corrosive hydrogen sulfide.
  • a sour environment means an acidic environment that contains hydrogen sulfide.
  • a sour environment may contain not only hydrogen sulfide but also carbon dioxide. Materials used in such sour environments are required to have excellent corrosion resistance.
  • Materials that require excellent corrosion resistance include, for example, 18-8 stainless steel materials such as SUS304H, SUS316H, SUS321H, and SUS347H, and Fe-Cr-Ni alloy materials such as Alloy800H, which is specified as NCF800H in the JIS standard.
  • Fe-Cr-Ni alloy materials have superior corrosion resistance compared to 18-8 stainless steels.
  • Fe-Cr-Ni alloy materials are also more economical than Ni-based alloy materials such as Alloy617. For this reason, Fe-Cr-Ni alloy materials are sometimes used as alloy materials for oil wells used in sour environments.
  • Patent Document 1 JP Patent Publication No. 2-217445 (Patent Document 1) and WO 2015/072458 (Patent Document 2) propose an alloy material for oil wells that has excellent corrosion resistance.
  • Patent Document 1 The alloy material described in Patent Document 1 is an Fe-Cr-Ni alloy containing Ni: 27-32%, Cr: 24-28%, Cu: 1.25-3.0%, Mo: 1.0-3.0%, Si: 1.5-2.75%, Mn: 1.0-2.0%, N: 0.015% or less, B: 0.10% or less, C: 0.10% or less, Al: 0.30% or less, P: 0.03% or less, S: 0.02% or less, with the balance being essentially Fe and impurities.
  • Patent Document 1 describes this alloy material as having high strength, galling resistance, and corrosion resistance under stress.
  • the alloy material described in Patent Document 2 is a Ni-Cr alloy material and contains, in mass%, Si: 0.01 to 0.5%, Mn: 0.01 to less than 1.0%, Cu: 0.01 to less than 1.0%, Ni: 48 to less than 55%, Cr: 22 to 28%, Mo: 5.6 to less than 7.0%, N: 0.04 to 0.16%, sol.
  • the steel has a chemical composition consisting of Al: 0.03-0.20%, REM: 0.01-0.074%, W: 0-less than 8.0%, Co: 0-2.0%, one or more of Ca and Mg: 0.0003-0.01% in total, one or more of Ti, Nb, Zr, and V: 0-0.5% in total, with the balance being Fe and impurities, among the impurities being C: 0.03% or less, P: 0.03% or less, S: 0.001% or less, and O: 0.01% or less, and a dislocation density ⁇ satisfies the formula (7.0 ⁇ 10 ⁇ 15 ⁇ 2.7 ⁇ 10 ⁇ 16-2.67 ⁇ 10 ⁇ 17 ⁇ [REM(%)]).
  • Patent Document 2 describes that this alloy material has excellent hot workability and toughness, as well as excellent corrosion resistance (resistance to stress corrosion cracking at high temperatures exceeding 200°C and in environments containing hydrogen sulfide), and has a yield strength (0.2% yield strength) of 965 MPa or more.
  • inclined wells are also on the rise. Inclined wells are formed by drilling the well by bending the extension direction from vertical downward to horizontal. By including a portion that extends horizontally (horizontal well), inclined wells can cover a wide area of the strata in which production fluids such as crude oil and gas are buried, and the production efficiency of the production fluids can be improved.
  • the alloy material when used in such inclined wells, the alloy material may be subjected to compressive forces.
  • the alloy material has high not only tensile yield strength but also compressive yield strength.
  • Fe-Cr-Ni alloy materials intended for use in inclined wells not only have high strength but also have reduced strength anisotropy.
  • only the tensile yield strength is considered as the strength of the Fe-Cr-Ni alloy material.
  • the above Patent Documents 1 and 2 do not consider the strength anisotropy of the alloy material.
  • the objective of this disclosure is to provide an Fe-Cr-Ni alloy material that has high strength and reduced strength anisotropy.
  • the Fe-Cr-Ni alloy material according to the present disclosure has In mass percent, C: 0.030% or less, Si: 0.01-1.00%, Mn: 0.01-2.00%, P: 0.040% or less, S: 0.0050% or less, Al: 0.01-0.50%, Ni: more than 36.5 to 54.0%, Cr: 19.0-27.5%, Mo: 2.00-11.50%, Cu: 0.01-3.00%, N: 0.010-0.500%, Co: 0.01-2.00%, O: 0.010% or less, V: 0 to 0.50%, Nb: 0 to 0.10%, Ti: 0 to 0.40%, W: 0 to 3.0%, Sn: 0 to 0.010%, Ca: 0-0.0100%, B: 0 to 0.0100%, Mg: 0 to 0.0100%, Rare earth elements: 0 to 0.100%, and The balance is Fe and impurities, In the microstructure, the standard deviation of the grain size number of the austenite grains is 0.60 or less; The
  • the Fe-Cr-Ni alloy material disclosed herein has high strength and reduced strength anisotropy.
  • the inventors first focused on Fe-Cr-Ni alloy materials with a tensile yield strength of 110 ksi (758 MPa) or more as Fe-Cr-Ni alloy materials with high strength. Next, the inventors investigated the strength anisotropy of Fe-Cr-Ni alloy materials with a tensile yield strength of 758 MPa or more from the viewpoint of chemical composition.
  • the inventors found that the composition is, by mass%, C: 0.030% or less, Si: 0.01-1.00%, Mn: 0.01-2.00%, P: 0.040% or less, S: 0.0050% or less, Al: 0.01-0.50%, Ni: over 36.5-54.0%, Cr: 19.0-27.5%, Mo: 2.00-11.50%, Cu: 0.01-3.00%, N: 0.010-0.500%, Co: 0.01-2.00%, O: 0.010 %, V: 0-0.50%, Nb: 0-0.10%, Ti: 0-0.40%, W: 0-3.0%, Sn: 0-0.010%, Ca: 0-0.0100%, B: 0-0.0100%, Mg: 0-0.0100%, rare earth elements: 0-0.100%, and the balance being Fe and impurities, it is believed that an Fe-Cr-Ni alloy material with a tensile yield strength of 758 MPa or more and further reducing strength anisotropy is possible.
  • the Fe-Cr-Ni alloy material having the above-mentioned chemical composition has a microstructure consisting of austenite.
  • microstructure consisting of austenite means that phases other than austenite are negligibly small. Therefore, the inventors have focused on the austenite grains of an Fe-Cr-Ni alloy material having the above-mentioned chemical composition and a tensile yield strength of 758 MPa or more, and have conducted detailed studies on methods for reducing the strength anisotropy of the alloy material.
  • Figure 1 is a diagram showing the relationship between the standard deviation ⁇ of the grain size number and the anisotropy index AI in this embodiment.
  • Figure 1 was created using the standard deviation ⁇ of the grain size number and the anisotropy index AI for an embodiment described later in which the configuration other than the standard deviation ⁇ of the grain size number satisfies the conditions of this embodiment.
  • the anisotropy index AI can be increased to 0.700 or more.
  • the standard deviation ⁇ of the grain size number exceeds 0.60, the anisotropy index AI drops to less than 0.700. Therefore, the Fe-Cr-Ni alloy material according to this embodiment satisfies the above-mentioned chemical composition, has a tensile yield strength of 758 MPa or more, and further, the standard deviation ⁇ of the grain size number is 0.60 or less.
  • the Fe-Cr-Ni alloy material according to this embodiment can reduce strength anisotropy.
  • the strength anisotropy of an alloy material can be reduced by setting the standard deviation ⁇ of the grain size number to 0.60 or less are not clear. However, it has been proven by the examples described below that the strength anisotropy can be reduced by satisfying the above-mentioned chemical composition, having a tensile yield strength of 758 MPa or more, and further setting the standard deviation ⁇ of the grain size number to 0.60 or less.
  • the Fe-Cr-Ni alloy material of this embodiment which was completed based on the above findings, has the following features:
  • the shape of the Fe-Cr-Ni alloy material according to this embodiment is not particularly limited.
  • the shape of the Fe-Cr-Ni alloy material according to this embodiment may be a plate, a rod with a circular cross section, or a tube. That is, the Fe-Cr-Ni alloy material according to this embodiment may be an alloy plate, a rod with a circular cross section, or an alloy pipe.
  • the alloy pipe may be a seamless alloy pipe or a welded alloy pipe. When the alloy material is an oil well alloy pipe, it is preferably a seamless alloy pipe.
  • the chemical composition of the Fe-Cr-Ni alloy material according to this embodiment contains the following elements.
  • Carbon (C) is an unavoidably contained impurity. That is, the lower limit of the C content is more than 0%. If the C content is too high, Cr carbides will be generated at the grain boundaries even if the contents of other elements are within the range of this embodiment. Cr carbides increase the cracking sensitivity at the grain boundaries. As a result, the corrosion resistance of the alloy material decreases. Therefore, the C content is 0.030% or less.
  • the preferred upper limit of the C content is 0.028%, more preferably 0.025%, more preferably 0.020%, and even more preferably 0.015%. It is preferable that the C content is as low as possible. However, an extreme reduction in the C content significantly increases the manufacturing cost. Therefore, when considering industrial production, the preferred lower limit of the C content is 0.001%, and even more preferably 0.003%.
  • Si 0.01 ⁇ 1.00% Silicon (Si) deoxidizes the alloy. If the Si content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. If the Si content is too high, the hot workability of the alloy material decreases even if the contents of other elements are within the ranges of this embodiment. Therefore, the Si content is 0.01 to 1.00%.
  • the lower limit of the Si content is preferably 0.05%, more preferably 0.10%, and even more preferably 0.20%.
  • the upper limit of the Si content is preferably 0.90%, and even more preferably is 0.80%, and more preferably 0.70%.
  • Mn 0.01-2.00% Manganese (Mn) deoxidizes and desulfurizes the alloy. If the Mn content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. If the Mn content is too high, the hot workability of the alloy material is reduced even if the contents of other elements are within the ranges of this embodiment. Therefore, the Mn content is set to 0.01 to 2.00%.
  • the lower limit of the Mn content is preferably 0.10%, more preferably 0.20%, and even more preferably 0.30%.
  • the upper limit of the Mn content is preferably 1.80%. , more preferably 1.60%, more preferably 1.50%, more preferably 1.30%, and even more preferably 1.00%.
  • Phosphorus (P) is an impurity that is inevitably contained. That is, the lower limit of the P content is more than 0%. P segregates at grain boundaries. Therefore, if the P content is too high, the hot workability and corrosion resistance of the alloy material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the P content is 0.040% or less.
  • the preferred upper limit of the P content is 0.035%, more preferably 0.030%, and even more preferably 0.025%.
  • the P content is preferably as low as possible. However, an extreme reduction in the P content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the P content is 0.001%, more preferably 0.002%, and even more preferably 0.003%.
  • S 0.0050% or less Sulfur (S) is an impurity that is inevitably contained. That is, the lower limit of the S content is more than 0%. S segregates at grain boundaries. Therefore, if the S content is too high, the hot workability of the alloy material decreases even if the contents of other elements are within the range of this embodiment. Therefore, the S content is 0.0050% or less.
  • the preferred upper limit of the S content is 0.0040%, more preferably 0.0030%, and even more preferably 0.0020%.
  • the S content is preferably as low as possible. However, an extreme reduction in the S content significantly increases the manufacturing cost. Therefore, when considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%.
  • Al 0.01 ⁇ 0.50%
  • Aluminum (Al) deoxidizes the alloy. It also forms oxides to fix oxygen and improve the hot workability of the alloy. It also improves the impact resistance and corrosion resistance of the alloy. If the Al content is too low, the above-mentioned effect cannot be sufficiently obtained even if the contents of the other elements are within the range of this embodiment. On the other hand, if the Al content is too high, the other element contents are not sufficiently obtained. Even if the amount is within the range of this embodiment, excessive Al oxides are generated, and the hot workability of the alloy material is rather deteriorated. Therefore, the Al content is set to 0.01 to 0.50%.
  • the lower limit of the Al content is preferably 0.02%, more preferably 0.03%, and even more preferably 0.05%.
  • the upper limit of the Al content is preferably 0.45%.
  • the Al content is more preferably 0.40%, and even more preferably 0.30%.
  • the Al content in this specification means the content of "acid-soluble Al", that is,
  • Nickel (Ni) is an austenite-forming element and stabilizes austenite in the alloy material. If the Ni content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, Ni may increase strength anisotropy. Therefore, if the Ni content is too high, the strength anisotropy of the alloy material may increase even if the contents of other elements are within the range of this embodiment. Therefore, the Ni content is more than 36.5 to 54.0%.
  • the preferred lower limit of the Ni content is 36.6%, more preferably 37.0%, more preferably 38.0%, and even more preferably 40.0%.
  • the preferred upper limit of the Ni content is 53.5%, more preferably 53.0%, and even more preferably 52.0%.
  • Chromium (Cr) enhances the corrosion resistance of the alloy material. Cr may also reduce the strength anisotropy of the alloy material. If the Cr content is too low, the contents of other elements may be within the range of this embodiment. On the other hand, if the Cr content is too high, the hot workability of the alloy material is deteriorated even if the contents of other elements are within the range of this embodiment. In this case, intermetallic compounds such as the ⁇ phase are more likely to form, and the corrosion resistance of the alloy material decreases. Therefore, the Cr content is 19.0 to 27.5%. Cr Content The preferred lower limit of the Cr content is 19.5%, more preferably 20.0%, further preferably 21.0%, and further preferably 22.0%. The preferred upper limit of the Cr content is 27. 0%, and more preferably 26.5%.
  • Mo 2.00-11.50% Molybdenum (Mo) contributes to the stabilization of the corrosion protective film and improves the corrosion resistance of the alloy material. Mo also increases the strength of the alloy material by solid solution strengthening. If the Mo content is too low, the alloy material containing other elements will have a high corrosion resistance. On the other hand, if the Mo content is too high, the alloy may not be able to obtain the above-mentioned effects even if the contents of the other elements are within the ranges of the present embodiment. The hot workability of the material is reduced. In this case, the manufacturing cost is also significantly increased. Therefore, the Mo content is 2.00 to 11.50%. The preferred lower limit of the Mo content is 2.20%. The upper limit of the Mo content is preferably 11.20%, more preferably 11.00%, and even more preferably 10. .80%, and more preferably 10.00%.
  • Cu 0.01 ⁇ 3.00% Copper (Cu) contributes to stabilizing the corrosion protection film and enhances the corrosion resistance of the alloy material. If the Cu content is too low, the above effect will not be achieved even if the contents of other elements are within the range of this embodiment. On the other hand, if the Cu content is too high, the hot workability of the alloy material is reduced even if the contents of other elements are within the ranges of this embodiment.
  • the lower limit of the Cu content is preferably 0.02%, more preferably 0.05%, still more preferably 0.10%, and still more preferably 0.
  • the upper limit of the Cu content is preferably 2.80%, more preferably 2.50%, and even more preferably 2.00%.
  • N 0.010-0.500% Nitrogen (N) increases the strength of the alloy material by solid solution strengthening. If the N content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the N content is too high, the corrosion resistance of the alloy material may decrease even if the contents of other elements are within the range of this embodiment.
  • the lower limit of the N content is preferably 0.015%, more preferably 0.020%, still more preferably 0.030%, and still more preferably 0.050%.
  • the upper limit of the N content is preferably 0.495%, more preferably 0.480%, and still more preferably 0.450%.
  • Co Cobalt
  • the lower limit of the Co content is preferably 0.02%, more preferably 0.03%, further preferably 0.05%, and further preferably 0.10%.
  • the upper limit is 1.50%, more preferably 1.20%, further preferably 1.00%, and further preferably 0.90%.
  • Oxygen (O) is an impurity that is inevitably contained. That is, the lower limit of the O content is more than 0%. O forms oxides. Therefore, if the O content is too high, even if the contents of other elements are within the range of this embodiment, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is reduced. In this case, the corrosion resistance of the alloy material is further reduced. Therefore, the O content is 0.010% or less.
  • the preferred upper limit of the O content is 0.008%, more preferably 0.005%.
  • the O content is preferably as low as possible. However, an extreme reduction in the O content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the O content is 0.0001%, more preferably 0.001%, and even more preferably 0.002%.
  • the remainder of the chemical composition of the Fe-Cr-Ni alloy material according to this embodiment is composed of Fe and impurities.
  • impurities refer to substances that are mixed in from raw materials such as ore, scrap, or the manufacturing environment when the Fe-Cr-Ni alloy material is industrially manufactured, and are acceptable to the extent that they do not significantly adversely affect the effects of the Fe-Cr-Ni alloy material according to this embodiment.
  • the chemical composition of the Fe-Cr-Ni alloy material according to the present embodiment may further contain one or more elements selected from the group consisting of V, Nb, and Ti, all of which increase the strength of the alloy material.
  • V Vanadium
  • V is an optional element and may not be contained. In other words, the V content may be 0%. When contained, V forms carbonitrides with C and N, and increases the strength of the alloy material. If even a small amount of V is contained, the above effect can be obtained to some extent. However, if the V content is too high, even if the contents of other elements are within the range of this embodiment, excessive carbonitrides are formed, and the ductility of the alloy material decreases. Therefore, the V content is 0 to 0.50%.
  • the preferred lower limit of the V content is more than 0%, more preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%.
  • the preferred upper limit of the V content is 0.40%, more preferably 0.30%, more preferably 0.25%, and even more preferably 0.20%.
  • Niobium (Nb) is an optional element and may not be contained. In other words, the Nb content may be 0%. When Nb is contained, it forms carbonitrides with C and N, and The strength of the alloy material is increased. Even if even a small amount of Nb is contained, the above effect can be obtained to a certain extent. However, if the Nb content is too high, even if the contents of other elements are within the range of this embodiment, Carbonitrides and the like are formed in excess, and the ductility of the alloy material is reduced. Therefore, the Nb content is 0 to 0.10%.
  • the lower limit of the Nb content is preferably more than 0%, and more preferably 0.
  • the upper limit of the Nb content is preferably 0.09%, more preferably 0.08%, and even more preferably 0.07%. More preferably, it is 0.06%, more preferably, it is 0.05%, more preferably, it is 0.04%, and more preferably, it is 0.03%.
  • Titanium (Ti) is an optional element and may not be contained. In other words, the Ti content may be 0%. When contained, Ti forms carbonitrides with C and N, and The strength of the alloy material is increased. Even if even a small amount of Ti is contained, the above effect can be obtained to a certain extent. However, if the Ti content is too high, even if the contents of other elements are within the range of this embodiment, Carbonitrides and the like are formed in excess, and the ductility of the alloy material is reduced. Therefore, the Ti content is 0 to 0.40%.
  • the lower limit of the Ti content is preferably more than 0%, and more preferably 0.
  • the upper limit of the Ti content is preferably 0.35%, more preferably 0.30%, and more preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%.
  • the content is more preferably 0.20%, and even more preferably 0.10%.
  • the chemical composition of the Fe-Cr-Ni alloy material according to this embodiment may further contain one or more elements selected from the group consisting of W and Sn. All of these elements increase the corrosion resistance of the alloy material.
  • W 0 to 3.0%
  • Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When contained, W contributes to stabilization of the corrosion protection film and enhances the corrosion resistance of the alloy material. W further enhances the strength of the alloy material by solid solution strengthening. If even a small amount of W is contained, the above effect can be obtained to a certain extent. However, if the W content is too high, the hot workability of the alloy material decreases even if the contents of other elements are within the range of this embodiment. Therefore, the W content is 0 to 3.0%.
  • the preferred lower limit of the W content is more than 0%, more preferably 0.1%, more preferably 0.3%, and even more preferably 0.5%.
  • the preferred upper limit of the W content is 2.8%, more preferably 2.5%, more preferably 2.2%, and even more preferably 2.0%.
  • Tin (Sn) is an optional element and may not be contained. In other words, the Sn content may be 0%. When contained, Sn enhances the corrosion resistance of the alloy material. Even a small amount of Sn is contained. If the Sn content is too high, however, the hot workability of the alloy material is reduced even if the contents of other elements are within the ranges of this embodiment.
  • the Sn content is 0 to 0.010%.
  • the lower limit of the Sn content is preferably more than 0%, more preferably 0.001%, even more preferably 0.002%, and even more preferably
  • the upper limit of the Sn content is preferably 0.009%, more preferably 0.008%, and still more preferably 0.007%.
  • the chemical composition of the Fe-Cr-Ni alloy material according to this embodiment may further contain one or more elements selected from the group consisting of Ca, B, Mg, and rare earth elements (REM). All of these elements improve the hot workability of the alloy material.
  • Ca 0 ⁇ 0.0100%
  • Ca is an optional element and may not be contained. In other words, the Ca content may be 0%. When contained, Ca fixes S in the alloy as sulfides, The above effect can be obtained to some extent if even a small amount of Ca is contained. However, if the Ca content is too high, the contents of other elements will not fall within the range of this embodiment. Even if the Ca content is within the range, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is rather deteriorated. Therefore, the Ca content is 0 to 0.0100%.
  • the lower limit is more than 0%, more preferably 0.0001%, even more preferably 0.0005%, even more preferably 0.0009%, even more preferably 0.0011%, and even more preferably is 0.0013%, and more preferably 0.0015%.
  • the upper limit of the Ca content is preferably 0.0090%, more preferably 0.0080%, further preferably 0.0060%, and further preferably 0.0050%.
  • B 0-0.0100% Boron (B) is an optional element and may not be contained.
  • the B content may be 0%.
  • B fixes S in the alloy as sulfides, Even if even a small amount of B is contained, the above effects can be obtained to a certain extent. However, if the B content is too high, the contents of other elements will not fall within the range of this embodiment. Even if the B content is within the range, B segregates at grain boundaries, and the hot workability of the alloy material is rather deteriorated. Therefore, the B content is 0 to 0.0100%.
  • the preferable lower limit of the B content is 0. %, more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%.
  • the upper limit of the B content is preferably 0.0080%, more preferably 0.0060%, still more preferably 0.0040%, still more preferably 0.0030%, and still more preferably 0.0020%. %, more preferably 0.0015%, and even more preferably 0.0010%.
  • Mg 0-0.0100%
  • Mg Magnesium (Mg) is an optional element and may not be contained. In other words, the Mg content may be 0%. When contained, Mg fixes S in the alloy as sulfides, Even if even a small amount of Mg is contained, the above effects can be obtained to some extent. However, if the Mg content is too high, the contents of other elements will not fall within the range of this embodiment. Even if the Mg content is within the range of 0.0100%, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is rather deteriorated. Therefore, the Mg content is 0 to 0.0100%.
  • the lower limit is more than 0%, more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%.
  • the preferred upper limit of the Mg content is 0.0080%. More preferably, it is 0.0060%, and even more preferably, it is 0.0040%.
  • Rare earth elements are optional elements and may not be included.
  • the REM content may be 0%.
  • REM fixes S in the alloy as sulfides. Even if even a small amount of REM is contained, the above effect can be obtained to some extent. However, if the REM content is too high, the contents of other elements may be different from those of the present embodiment. Even if the REM content is within the range, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is rather deteriorated. Therefore, the REM content is 0 to 0.100%.
  • the lower limit is preferably more than 0%, more preferably 0.001%, more preferably 0.005%, and even more preferably 0.010%.
  • the upper limit of the REM content is preferably 0.080%. , more preferably 0.060%, and even more preferably 0.050%.
  • REM refers to one or more elements selected from the group consisting of scandium (Sc), atomic number 21; yttrium (Y), atomic number 39; and the lanthanides lanthanum (La), atomic number 57, to lutetium (Lu), atomic number 71.
  • the REM content in this specification refers to the total content of these elements.
  • the Fe-Cr-Ni alloy material according to the present embodiment has the above-mentioned chemical composition, and further has a standard deviation ⁇ of the grain size number of the austenite grains of 0.60 or less. As a result, the Fe-Cr-Ni alloy material according to the present embodiment can reduce strength anisotropy even if it has a tensile yield strength of 758 MPa or more.
  • the standard deviation ⁇ of the grain size number of the austenite grains is large, it is presumed that there are regions in the alloy material where coarse austenite grains (coarse grains) are unevenly distributed and regions where fine austenite grains (fine grains) are unevenly distributed.
  • the tensile yield strength of the Fe-Cr-Ni alloy material having the above-mentioned chemical composition is to be 758 MPa or more, in the manufacturing process described below, cold working or the like is performed after heat treatment such as solution treatment, and strain may be introduced into the alloy material. Therefore, anisotropy in strength may occur depending on the direction in which strain is introduced. Specifically, when cold drawing or cold rolling is performed as cold working, the tensile yield strength is greater than the compressive yield strength.
  • the inventors speculate that, based on the above mechanism, if the standard deviation ⁇ of the grain size number of the austenite grains of an Fe-Cr-Ni alloy material having the above chemical composition is 0.60 or less, the strength anisotropy can be reduced even if the material has a tensile yield strength of 758 MPa or more. It is possible that, based on a mechanism other than the above mechanism, if the standard deviation ⁇ of the grain size number of the austenite grains of an Fe-Cr-Ni alloy material having the above chemical composition is 0.60 or less, the strength anisotropy can be reduced even if the material has a tensile yield strength of 758 MPa or more.
  • the preferred upper limit of the standard deviation ⁇ of the grain size number of the austenite grains is 0.58, more preferably 0.55, and even more preferably 0.53.
  • the smaller the standard deviation ⁇ of the grain size number of the austenite grains the more preferable.
  • the lower limit of the standard deviation ⁇ of the grain size number of the austenite grains may be 0.00, 0.05, 0.10, or 0.15.
  • the standard deviation ⁇ of the grain size number of the austenite grains can be found by the following method. Specifically, a test piece for microstructure observation is prepared from the Fe-Cr-Ni alloy material according to this embodiment. If the alloy material is in the form of a plate, the test piece is prepared from the center of the plate thickness. If the alloy material is in the form of a tube, the test piece is prepared from the center of the wall thickness. If the alloy material is in the form of a rod with a circular cross section, the test piece is prepared from the R/2 position. In this specification, the R/2 position means the center position of the radius R in a cross section perpendicular to the axial direction. The size of the test piece is not particularly limited as long as it can provide the observation surface described below.
  • the observation surface of the prepared test piece is polished to a mirror finish, it is etched using aqua regia (a solution of hydrochloric acid and nitric acid mixed in a ratio of 3:1) to reveal the austenite grain boundaries.
  • aqua regia a solution of hydrochloric acid and nitric acid mixed in a ratio of 3:1
  • 10 fields of view are selected at random and observed using an optical microscope to generate photographic images.
  • the magnification for microscopic observation can be set appropriately depending on the grain size. Specifically, in microscopic observation, the magnification is set so that the field of view contains, for example, 50 or more grains.
  • the grain size number of the austenite grains is not particularly limited as long as the standard deviation ⁇ is 0.60 or less.
  • the lower limit of the grain size number of the austenite grains may be, for example, 4.0, 4.5, or 5.0.
  • the upper limit of the grain size number of the austenite grains may be, for example, 12.0, 11.5, or 11.0.
  • the grain size number of the austenite grains means the arithmetic average value of the 10 grain size numbers obtained by the above-mentioned method.
  • the Fe-Cr-Ni alloy material according to the present embodiment has the above-mentioned chemical composition, and further has a standard deviation ⁇ of the grain size number of the austenite grains of 0.60 or less. As a result, the Fe-Cr-Ni alloy material according to the present embodiment has a tensile yield strength of 758 MPa or more, but has reduced strength anisotropy.
  • the alloy material according to this embodiment can suppress the manifestation of strength anisotropy due to variations in grain size, because the standard deviation ⁇ of the grain size number of the austenite grains is 0.60 or less. Therefore, the alloy material according to this embodiment can reduce strength anisotropy even if it has a high tensile yield strength of 758 MPa or more.
  • the preferred lower limit of the tensile yield strength is 800 MPa, more preferably 830 MPa, and even more preferably 860 MPa.
  • the upper limit of the tensile yield strength is not particularly limited, and may be, for example, 1240 MPa, 1200 MPa, or 1150 MPa.
  • the compressive yield strength is not particularly limited.
  • the lower limit of the compressive yield strength may be, for example, 600 MPa, 610 MPa, or 630 MPa.
  • the upper limit of the compressive yield strength may be, for example, less than 1240 MPa, less than 1200 MPa, or less than 1150 MPa.
  • the method of measuring the tensile yield strength and compressive yield strength in this embodiment will be described later.
  • the Fe-Cr-Ni alloy material according to the present embodiment has the above-mentioned chemical composition, and further has a standard deviation ⁇ of the grain size number of the austenite grains of 0.60 or less. As a result, the Fe-Cr-Ni alloy material according to the present embodiment has a reduced strength anisotropy even though it has a tensile yield strength of 758 MPa or more.
  • the reduced strength anisotropy means that the anisotropy index AI is 0.700 or more.
  • the anisotropy index AI means the ratio (compressive YS/tensile YS) of the compressive yield strength (compressive YS) to the tensile yield strength (tensile YS).
  • the preferred lower limit of the anisotropy index AI is 0.705, more preferably 0.710, more preferably 0.715, more preferably 0.720, and even more preferably 0.730.
  • the upper limit of the anisotropy index AI is substantially less than 1.000, more preferably 0.999, more preferably 0.990, and even more preferably 0.980.
  • the anisotropy index AI, tensile yield strength, and compressive yield strength of the Fe-Cr-Ni alloy material according to this embodiment can be determined by the following method. First, the tensile yield strength and compressive yield strength of the Fe-Cr-Ni alloy material according to this embodiment are determined.
  • the tensile yield strength of the Fe-Cr-Ni alloy material according to this embodiment can be determined by the following method.
  • a tensile test is performed according to the method of ASTM E8/E8M (2021).
  • a round bar test piece is prepared from the alloy material according to this embodiment.
  • the alloy material has a plate shape
  • a round bar test piece is prepared from the center of the plate thickness.
  • the alloy material has a tubular shape
  • a round bar test piece is prepared from the center of the wall thickness.
  • a round bar test piece is prepared from the R/2 position.
  • the size of the round bar test piece is, for example, a parallel part diameter of 4 mm and a gauge length of 20 mm.
  • the axial direction of the round bar test piece is parallel to the rolling direction of the alloy material.
  • a tensile test is performed using the round bar test piece at room temperature (25°C) in the air, and the obtained 0.2% offset yield strength is defined as the tensile yield strength (MPa).
  • the tensile yield strength (MPa) is calculated by rounding the obtained value to the nearest tenth.
  • the compressive yield strength of the Fe-Cr-Ni alloy material according to this embodiment can be determined by the following method.
  • a compression test is performed according to ASTM E9 (2019).
  • a cylindrical test piece is prepared from the alloy material according to this embodiment. If the alloy material is plate-shaped, a cylindrical test piece is prepared from the center of the plate thickness. If the alloy material is tubular, a cylindrical test piece is prepared from the center of the wall thickness. If the alloy material is rod-shaped with a circular cross section, a cylindrical test piece is prepared from the R/2 position.
  • the size of the cylindrical test piece is, for example, 4 mm in parallel diameter and 8 mm in length.
  • the axial direction of the cylindrical test piece is parallel to the rolling direction of the alloy material.
  • a compression test is performed using the cylindrical test piece at room temperature (25°C) in the air, and the obtained 0.2% offset yield strength is defined as the compressive yield strength (MPa).
  • the compressive yield strength (MPa) is determined by rounding off the obtained value to the nearest tenth.
  • the anisotropy index AI is calculated by rounding the obtained value to the fourth decimal place.
  • the method for producing a seamless alloy pipe includes a step of preparing a material (material preparation step), a step of producing a mother pipe from the material (hot working step), a step of cold working the produced mother pipe (first cold working step), a step of performing a solution treatment (solution treatment step), and a step of cold working the solution-treated mother pipe (second cold working step). Note that the method for producing an Fe—Cr—Ni alloy material according to this embodiment is not limited to the production method described below.
  • an Fe—Cr—Ni alloy having the above-mentioned chemical composition is melted.
  • the Fe—Cr—Ni alloy may be melted in an electric furnace, or in an Ar—O 2 mixed gas bottom blown decarburization furnace (AOD furnace). It may also be melted in a vacuum decarburization furnace (VOD furnace).
  • the melted Fe—Cr—Ni alloy may be made into an ingot by an ingot casting method, or into a slab, bloom, or billet by a continuous casting method. If necessary, the slab, bloom, or ingot may be rolled to produce a billet.
  • the material (slab, bloom, or billet) is produced by the above-mentioned process.
  • the prepared material is hot worked to produce an intermediate alloy material (blank pipe).
  • the method of hot working is not particularly limited and may be a well-known method. That is, in this embodiment, the hot working may be hot rolling, hot extrusion, or hot forging. In the hot working, the heating temperature of the material is, for example, 1100 to 1300°C.
  • a round billet is pierced and rolled using a piercing machine.
  • the piercing ratio is not particularly limited and is, for example, 1.0 to 4.0.
  • the blank pipe that has been pierced and rolled may also be hot rolled using a mandrel mill, reducer, sizing mill, etc. to produce a blank pipe.
  • the intermediate alloy material refers to a plate-shaped alloy material when the final product is an alloy plate, a blank tube when the final product is an alloy pipe, and an alloy material with a circular cross section perpendicular to the axial direction when the final product is a solid material with a circular cross section.
  • the alloy material is a solid material with a circular cross section
  • the material is first heated in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • the material extracted from the heating furnace is subjected to hot processing to produce an intermediate alloy material with a circular cross section perpendicular to the axial direction.
  • the hot processing is, for example, blooming rolling by a blooming mill, or hot rolling by a continuous rolling mill.
  • the continuous rolling mill has a horizontal stand having a pair of grooved rolls arranged side by side in the vertical direction, and a vertical stand having a pair of grooved rolls arranged side by side in the horizontal direction, alternately arranged.
  • the alloy material is an alloy plate
  • the material is first heated in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • the material extracted from the heating furnace is hot rolled using a blooming mill and a continuous rolling mill to produce intermediate alloy material in the form of alloy plates.
  • the produced intermediate alloy material (blank pipe) is subjected to cold working.
  • the cold working may be cold drawing, or cold rolling.
  • a continuous rolling mill equipped with a plurality of cold rolling stands may be used. That is, in the first cold working step according to the present embodiment, a known cold rolling mill may be used.
  • the cold working may be performed under known conditions. Specifically, the temperature of the intermediate alloy material (base pipe) during cold working may be, for example, room temperature to 300°C.
  • a preferred cold working ratio R1 (%) is 5% or more.
  • the cold working ratio R1 means the reduction rate of the cross-sectional area of the intermediate alloy material (blank tube) from before the start of the first cold working step to after the end of the first cold working step.
  • the cold working ratio R1 (%) of the first cold working step is defined by the following formula (A).
  • R1 (%) 100 (1-S1(1)/S0(1)) (A)
  • the cold working rate R1 in the first cold working process is 5% or more.
  • the upper limit of the cold working rate R1 in the first cold working process is not particularly limited, but is, for example, 30%.
  • solution treatment process a solution treatment is performed on the intermediate alloy material (blank pipe) that has been subjected to cold working.
  • the method of the solution treatment is not particularly limited and may be a well-known method.
  • the blank pipe is loaded into a heat treatment furnace, held at a desired temperature, and then quenched.
  • the temperature at which the solution treatment is performed means the temperature (°C) of the heat treatment furnace for performing the solution treatment.
  • the time for which the solution treatment is performed means the time for which the blank pipe is held at the solution temperature.
  • the residence time at 900 to 1050°C is 9 minutes or more.
  • the intermediate alloy material having the above-mentioned chemical composition recrystallization and grain growth are likely to proceed at 900°C or higher. Therefore, if the residence time at 900 to 1050°C is too short, temperature variations in the intermediate alloy material are likely to occur, and recrystallization and grain growth are likely to become non-uniform.
  • the residence time at 900 to 1050°C is 9 minutes or more, recrystallization and grain growth are likely to become uniform. In this case, recrystallization is further likely to be promoted in the heat treatment at 1060°C or higher. As a result, the standard deviation ⁇ of the grain size number of the manufactured Fe-Cr-Ni alloy material can be stably reduced.
  • the residence time at 900 to 1050°C during heating in the solution treatment process is preferably 9 minutes or more.
  • a more preferable lower limit for the residence time at 900 to 1050°C during heating in the solution treatment process is 10 minutes.
  • the upper limit for the residence time at 900 to 1050°C during heating in the solution treatment process is, for example, 60 minutes.
  • the upper limit for the residence time at 900 to 1050°C during heating in the solution treatment process may be 45 minutes or 30 minutes.
  • the solution temperature in the solution treatment step according to this embodiment is 1060 to 1300°C. If the solution temperature is too low, precipitates (such as the ⁇ phase, which is an intermetallic compound) may remain in the blank tube after solution treatment. In this case, the corrosion resistance of the manufactured Fe-Cr-Ni alloy material may decrease. On the other hand, if the solution temperature is too high, the effect of the solution treatment is saturated. Therefore, in this embodiment, it is preferable to set the solution temperature in the solution treatment step to 1060 to 1300°C.
  • the holding time is, for example, 5 to 180 minutes.
  • the rapid cooling method is, for example, water cooling.
  • the solution-treated intermediate alloy material (blank tube) is cold worked to produce an Fe—Cr—Ni alloy material.
  • the cold working is In other words, in the second cold working step according to the present embodiment, the known cold working is performed in the same manner as in the first cold working step.
  • the temperature of the intermediate alloy material (base pipe) during cold working may be, for example, room temperature to 300°C.
  • a preferred cold working ratio R2 is 5 to 50%.
  • the cold working ratio R2 means a reduction ratio of a cross-sectional area of an intermediate alloy material (blank tube) from before the start of the second cold working step to after the end of the second cold working step.
  • the cold working rate R2 is 5 to 50%, the tensile yield strength of the Fe-Cr-Ni alloy material after the second cold working process can be stably set to 758 MPa or more. Therefore, it is preferable that the cold working rate R2 is 5 to 50%.
  • the cold working rate R1 (%) of the first cold working step and the cold working rate R2 (%) of the second cold working step satisfy the above-mentioned range, and the total cold working rate in the manufacturing process is not particularly limited.
  • the above manufacturing method allows the production of the Fe-Cr-Ni alloy material according to this embodiment.
  • the method for producing seamless alloy pipes has been described as one example.
  • the Fe-Cr-Ni alloy material according to this embodiment may be in other shapes, such as a plate shape.
  • a manufacturing method for other shapes, such as a plate shape also includes, for example, a material preparation step, a hot working step, a solution treatment step, and a cold working step.
  • the above manufacturing method is one example, and the material may be produced by other manufacturing methods. The present invention will be described in more detail below with reference to examples.
  • Alloys having the chemical compositions shown in Tables 1A and 1B were produced by high-frequency vacuum melting.
  • "-" means that the content of each element is at the impurity level.
  • the W content of A is rounded off to one decimal place and is 0%.
  • the V content, Nb content, and Ti content of A are rounded off to one decimal place and are 0%.
  • the Sn content and REM content of A are rounded off to the fourth decimal place and are 0%.
  • the Ca content, B content, and Mg content of A are rounded off to the fifth decimal place and are 0%.
  • a solution treatment was carried out on the alloy plates of each test number that had been subjected to the first cold working.
  • the alloy plates that had been subjected to the first cold working were heated and held at the solution temperature (°C) shown in Table 2 for the holding time (min) shown in Table 2, and then water-cooled.
  • the holding time at 900-1050°C when heating to the solution temperature is shown in the "Holding time (min)" column in Table 2.
  • a second cold working process was carried out on the alloy plates of each test number that had been subjected to solution treatment.
  • the cold working ratio R2 (%) of the second cold working process carried out on the alloy plates of each test number is shown in Table 2. Note that in test numbers 4 and 20, cold drawing was carried out as the cold working process. In each test number except test numbers 4 and 20, cold rolling was carried out as the cold working process.
  • the total cold working ratio R (%) of the cold working performed on the alloy plate of each test number is shown in Table 2.
  • the total cold working ratio R (%) is defined by the following formula (C).
  • R (%) R1 (%) + R2 (%) (C)
  • the cold working rate (%) of the first cold working is substituted for R1 in the formula (C)
  • the cold working rate (%) of the second cold working is substituted for R2.
  • a strength anisotropy measurement test was carried out on the alloy plate of each test number to obtain the anisotropy index AI.
  • the tensile yield strength (MPa) and the compressive yield strength (MPa) were first obtained by the above-mentioned method.
  • a round bar test piece for a tensile test and a cylindrical test piece for a compression test were prepared from the center of the plate thickness of the alloy plate of each test number.
  • the round bar test piece had a parallel part diameter of 4 mm and a gauge length of 20 mm.
  • the cylindrical test piece had a parallel part diameter of 4 mm and a length of 8 mm.
  • the axial direction of the round bar test piece and the cylindrical test piece was parallel to the rolling direction of the alloy plate.
  • a tensile test was performed on the round bar test pieces at room temperature (25°C) in air in accordance with ASTM E8/E8M (2021).
  • the 0.2% offset yield strength obtained by the tensile test was defined as the tensile yield strength (MPa).
  • a compression test was performed on the cylindrical test pieces at room temperature (25°C) in air in accordance with ASTM E9 (2019).
  • the 0.2% offset yield strength obtained by the compression test was defined as the compressive yield strength (MPa).
  • the ratio of the compressive yield strength (compressive YS) to the obtained tensile yield strength (tensile YS) was calculated and defined as the anisotropy index AI.
  • the obtained tensile yield strength is shown in the "Tensile YS (MPa)” column of Table 3
  • the compressive yield strength is shown in the “Compressive YS (MPa)” column of Table 3
  • the anisotropy index AI is shown in the "Anisotropy Index AI” column of Table 3.
  • the alloy plate of test number 24 had too high a Ni content.
  • this alloy plate had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.
  • the alloy plate with test number 25 had too low a Cr content. As a result, although this alloy plate had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.
  • the alloy plates of test numbers 26 and 27 had too low a cold working ratio R1 in the first cold working process. As a result, the standard deviation ⁇ of the grain size number of these alloy plates exceeded 0.60. As a result, although these alloy plates had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.
  • the alloy plates of test numbers 28 and 29 had too short a residence time at 900-1050°C during heating in the solution treatment process. As a result, the standard deviation ⁇ of the grain size number of these alloy plates exceeded 0.60. As a result, although these alloy plates had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is an Fe-Cr-Ni alloy material having high strength and decreased strength anisotropy. This Fe-Cr-Ni alloy material comprises, in mass%, C at 0.030% or less, Si at 0.01-1.00%, Mn at 0.01-2.00%, P at 0.040% or less, S at 0.0050% or less, Al at 0.01-0.50%, Ni at over 36.5% to 54.0%, Cr at 19.0-27.5%, Mo at 2.00-11.50%, Cu at 0.01-3.00%, N at 0.010-0.500%, Co at 0.01-2.00%, O at 0.010% or less, with the remainder being Fe and impurities. The Fe-Cr-Ni alloy material has a microstructure where the standard deviation of the crystal grain size number of austenite grains is 0.60 or less, and the tensile yield strength is 758 MPa or more.

Description

Fe-Cr-Ni合金材Fe-Cr-Ni alloy material

 本開示は合金材に関し、さらに詳しくは、Fe-Cr-Ni合金材に関する。 This disclosure relates to alloy materials, and more specifically to Fe-Cr-Ni alloy materials.

 油井やガス井(以下、油井及びガス井を総称して「油井」という)では、油井管に代表される油井用合金材が用いられている。油井の多くは、腐食性を有する硫化水素を含有するサワー環境である。本明細書において、サワー環境とは、硫化水素を含有する酸性化した環境を意味する。サワー環境は、硫化水素だけでなく、二酸化炭素も含有する場合がある。このようなサワー環境で使用される材料には、優れた耐食性が求められる。 Oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to as "oil wells") use oil well alloy materials, such as oil well tubular goods. Many oil wells are in sour environments that contain corrosive hydrogen sulfide. In this specification, a sour environment means an acidic environment that contains hydrogen sulfide. A sour environment may contain not only hydrogen sulfide but also carbon dioxide. Materials used in such sour environments are required to have excellent corrosion resistance.

 優れた耐食性が求められる材料として、たとえば、SUS304H、SUS316H、SUS321H、SUS347H等の18-8系ステンレス鋼材や、JIS規格でNCF800Hと規定されるAlloy800Hに代表されるFe-Cr-Ni合金材がある。Fe-Cr-Ni合金材は、18-8系ステンレス鋼に比較して優れた耐食性を有する。Fe-Cr-Ni合金材はさらに、Alloy617に代表されるNi基合金材に比較して、経済性に優れている。そのため、サワー環境に使用される油井用合金材として、Fe-Cr-Ni合金材が用いられる場合がある。 Materials that require excellent corrosion resistance include, for example, 18-8 stainless steel materials such as SUS304H, SUS316H, SUS321H, and SUS347H, and Fe-Cr-Ni alloy materials such as Alloy800H, which is specified as NCF800H in the JIS standard. Fe-Cr-Ni alloy materials have superior corrosion resistance compared to 18-8 stainless steels. Fe-Cr-Ni alloy materials are also more economical than Ni-based alloy materials such as Alloy617. For this reason, Fe-Cr-Ni alloy materials are sometimes used as alloy materials for oil wells used in sour environments.

 特開平2-217445号公報(特許文献1)、及び、国際公開第2015/072458号(特許文献2)は、優れた耐食性を有する油井用合金材を提案する。  JP Patent Publication No. 2-217445 (Patent Document 1) and WO 2015/072458 (Patent Document 2) propose an alloy material for oil wells that has excellent corrosion resistance.

 特許文献1に記載の合金材は、Fe-Cr-Ni合金であって、Ni:27~32%、Cr:24~28%、Cu:1.25~3.0%、Mo:1.0~3.0%、Si:1.5~2.75%、Mn:1.0~2.0%を含有し、N:0.015%以下、B:0.10%以下、C:0.10%以下、Al:0.30%以下、P:0.03%以下、S:0.02%以下に規制し、残部がFe及び不純物から実質上なる。この合金材は、高強度、ゴーリング耐性、及び、応力下での耐食性を有する、と特許文献1には記載されている。 The alloy material described in Patent Document 1 is an Fe-Cr-Ni alloy containing Ni: 27-32%, Cr: 24-28%, Cu: 1.25-3.0%, Mo: 1.0-3.0%, Si: 1.5-2.75%, Mn: 1.0-2.0%, N: 0.015% or less, B: 0.10% or less, C: 0.10% or less, Al: 0.30% or less, P: 0.03% or less, S: 0.02% or less, with the balance being essentially Fe and impurities. Patent Document 1 describes this alloy material as having high strength, galling resistance, and corrosion resistance under stress.

 特許文献2に記載の合金材は、Ni-Cr合金材であって、質量%で、Si:0.01~0.5%、Mn:0.01~1.0%未満、Cu:0.01~1.0%未満、Ni:48~55%未満、Cr:22~28%、Mo:5.6~7.0%未満、N:0.04~0.16%、sol.Al:0.03~0.20%、REM:0.01~0.074%、W:0~8.0%未満、及び、Co:0~2.0%と、Ca及びMgの1種以上:合計で0.0003~0.01%と、Ti、Nb、Zr、及びVの1種以上:合計で0~0.5%と、残部がFe及び不純物とからなり、不純物中で、C:0.03%以下、P:0.03%以下、S:0.001%以下、及び、O:0.01%以下である化学組成を有し、転位密度ρが式(7.0×1015≦ρ≦2.7×1016-2.67×1017×[REM(%)])を満たす。この合金材は、熱間加工性及び靱性に優れるとともに、耐食性(温度が200℃を超えるような高温で、硫化水素を含む環境での耐応力腐食割れ性)にも優れ、降伏強度(0.2%耐力)が965MPa以上である、と特許文献2には記載されている。 The alloy material described in Patent Document 2 is a Ni-Cr alloy material and contains, in mass%, Si: 0.01 to 0.5%, Mn: 0.01 to less than 1.0%, Cu: 0.01 to less than 1.0%, Ni: 48 to less than 55%, Cr: 22 to 28%, Mo: 5.6 to less than 7.0%, N: 0.04 to 0.16%, sol. The steel has a chemical composition consisting of Al: 0.03-0.20%, REM: 0.01-0.074%, W: 0-less than 8.0%, Co: 0-2.0%, one or more of Ca and Mg: 0.0003-0.01% in total, one or more of Ti, Nb, Zr, and V: 0-0.5% in total, with the balance being Fe and impurities, among the impurities being C: 0.03% or less, P: 0.03% or less, S: 0.001% or less, and O: 0.01% or less, and a dislocation density ρ satisfies the formula (7.0×10< 15 ≦ρ≦2.7×10 <16-2.67 ×10< 17 ×[REM(%)]). Patent Document 2 describes that this alloy material has excellent hot workability and toughness, as well as excellent corrosion resistance (resistance to stress corrosion cracking at high temperatures exceeding 200°C and in environments containing hydrogen sulfide), and has a yield strength (0.2% yield strength) of 965 MPa or more.

特開平2-217445号公報Japanese Patent Application Publication No. 2-217445 国際公開第2015/072458号International Publication No. 2015/072458

 近年、油井の深井戸化により、油井用合金材の高強度化が求められてきている。すなわち、油井用合金材としての使用が想定されたFe-Cr-Ni合金材は、高い強度を有することが求められてきている。 In recent years, as oil wells have become deeper, there has been a demand for higher strength oil well alloys. In other words, Fe-Cr-Ni alloys intended for use as oil well alloys are required to have high strength.

 最近の油井ではさらに、鉛直下向きに真っ直ぐ掘られる垂直坑井だけでなく、傾斜坑井が増加してきている。傾斜坑井は、坑井の延在方向を鉛直下向きから水平方向に曲げて掘削することにより形成される。傾斜坑井は、水平に延在する部分(水平坑井)を含むことにより、原油やガス等の生産流体が埋蔵されている地層を広範囲にカバーすることができ、生産流体の生産効率を高めることができる。 In recent oil wells, in addition to vertical wells that are drilled straight down vertically, inclined wells are also on the rise. Inclined wells are formed by drilling the well by bending the extension direction from vertical downward to horizontal. By including a portion that extends horizontally (horizontal well), inclined wells can cover a wide area of the strata in which production fluids such as crude oil and gas are buried, and the production efficiency of the production fluids can be improved.

 一方、このような傾斜坑井に用いられる場合、合金材には圧縮力が負荷される場合がある。この場合、合金材は引張降伏強度だけでなく、圧縮降伏強度も高い方が好ましい。つまり、傾斜坑井への使用が想定されたFe-Cr-Ni合金材では、高い強度を有するだけでなく、強度異方性が低減できた方が好ましい。しかしながら、上記特許文献1及び2では、Fe-Cr-Ni合金材の強度として、引張降伏強度についてのみ検討されている。つまり、上記特許文献1及び2では、合金材の強度異方性について検討されていない。 On the other hand, when used in such inclined wells, the alloy material may be subjected to compressive forces. In this case, it is preferable that the alloy material has high not only tensile yield strength but also compressive yield strength. In other words, it is preferable that Fe-Cr-Ni alloy materials intended for use in inclined wells not only have high strength but also have reduced strength anisotropy. However, in the above Patent Documents 1 and 2, only the tensile yield strength is considered as the strength of the Fe-Cr-Ni alloy material. In other words, the above Patent Documents 1 and 2 do not consider the strength anisotropy of the alloy material.

 本開示の目的は、高い強度を有し、かつ、強度異方性が低減されたFe-Cr-Ni合金材を提供することである。 The objective of this disclosure is to provide an Fe-Cr-Ni alloy material that has high strength and reduced strength anisotropy.

 本開示によるFe-Cr-Ni合金材は、
 質量%で、
 C:0.030%以下、
 Si:0.01~1.00%、
 Mn:0.01~2.00%、
 P:0.040%以下、
 S:0.0050%以下、
 Al:0.01~0.50%、
 Ni:36.5超~54.0%、
 Cr:19.0~27.5%、
 Mo:2.00~11.50%、
 Cu:0.01~3.00%、
 N:0.010~0.500%、
 Co:0.01~2.00%、
 O:0.010%以下、
 V:0~0.50%、
 Nb:0~0.10%、
 Ti:0~0.40%、
 W:0~3.0%、
 Sn:0~0.010%、
 Ca:0~0.0100%、
 B:0~0.0100%、
 Mg:0~0.0100%、
 希土類元素:0~0.100%、及び、
 残部がFe及び不純物からなり、
 ミクロ組織において、オーステナイト粒の結晶粒度番号の標準偏差が0.60以下であり、
 引張降伏強度が758MPa以上である。
The Fe-Cr-Ni alloy material according to the present disclosure has
In mass percent,
C: 0.030% or less,
Si: 0.01-1.00%,
Mn: 0.01-2.00%,
P: 0.040% or less,
S: 0.0050% or less,
Al: 0.01-0.50%,
Ni: more than 36.5 to 54.0%,
Cr: 19.0-27.5%,
Mo: 2.00-11.50%,
Cu: 0.01-3.00%,
N: 0.010-0.500%,
Co: 0.01-2.00%,
O: 0.010% or less,
V: 0 to 0.50%,
Nb: 0 to 0.10%,
Ti: 0 to 0.40%,
W: 0 to 3.0%,
Sn: 0 to 0.010%,
Ca: 0-0.0100%,
B: 0 to 0.0100%,
Mg: 0 to 0.0100%,
Rare earth elements: 0 to 0.100%, and
The balance is Fe and impurities,
In the microstructure, the standard deviation of the grain size number of the austenite grains is 0.60 or less;
The tensile yield strength is 758 MPa or more.

 本開示によるFe-Cr-Ni合金材は、高い強度を有し、かつ、強度異方性が低減されている。 The Fe-Cr-Ni alloy material disclosed herein has high strength and reduced strength anisotropy.

図1は、本実施例における結晶粒度番号の標準偏差σと、異方性指標AI(=圧縮YS/引張YS)との関係を示す図である。FIG. 1 is a diagram showing the relationship between the standard deviation σ of the grain size number and the anisotropy index AI (=compressive YS/tensile YS) in this embodiment.

 本発明者らは最初に、高い強度を有するFe-Cr-Ni合金材として、110ksi(758MPa)以上の引張降伏強度を有するFe-Cr-Ni合金材に着目した。次に本発明者らは、758MPa以上の引張降伏強度を有するFe-Cr-Ni合金材の強度異方性について、化学組成の観点から検討した。 The inventors first focused on Fe-Cr-Ni alloy materials with a tensile yield strength of 110 ksi (758 MPa) or more as Fe-Cr-Ni alloy materials with high strength. Next, the inventors investigated the strength anisotropy of Fe-Cr-Ni alloy materials with a tensile yield strength of 758 MPa or more from the viewpoint of chemical composition.

 その結果、本発明者らは、質量%で、C:0.030%以下、Si:0.01~1.00%、Mn:0.01~2.00%、P:0.040%以下、S:0.0050%以下、Al:0.01~0.50%、Ni:36.5超~54.0%、Cr:19.0~27.5%、Mo:2.00~11.50%、Cu:0.01~3.00%、N:0.010~0.500%、Co:0.01~2.00%、O:0.010%以下、V:0~0.50%、Nb:0~0.10%、Ti:0~0.40%、W:0~3.0%、Sn:0~0.010%、Ca:0~0.0100%、B:0~0.0100%、Mg:0~0.0100%、希土類元素:0~0.100%、及び、残部がFe及び不純物からなるFe-Cr-Ni合金材であれば、758MPa以上の引張降伏強度を有し、さらに、強度異方性を低減できる可能性があると考えた。 As a result, the inventors found that the composition is, by mass%, C: 0.030% or less, Si: 0.01-1.00%, Mn: 0.01-2.00%, P: 0.040% or less, S: 0.0050% or less, Al: 0.01-0.50%, Ni: over 36.5-54.0%, Cr: 19.0-27.5%, Mo: 2.00-11.50%, Cu: 0.01-3.00%, N: 0.010-0.500%, Co: 0.01-2.00%, O: 0.010 %, V: 0-0.50%, Nb: 0-0.10%, Ti: 0-0.40%, W: 0-3.0%, Sn: 0-0.010%, Ca: 0-0.0100%, B: 0-0.0100%, Mg: 0-0.0100%, rare earth elements: 0-0.100%, and the balance being Fe and impurities, it is believed that an Fe-Cr-Ni alloy material with a tensile yield strength of 758 MPa or more and further reducing strength anisotropy is possible.

 一方、上述の化学組成を有するFe-Cr-Ni合金材であっても、758MPa以上の引張降伏強度を有する場合、強度異方性が大きくなる場合があった。そこで、本発明者らは、上述の化学組成と758MPa以上の引張降伏強度とを有する合金材の強度異方性を低減することについて、詳細に検討した。 On the other hand, even in Fe-Cr-Ni alloy materials with the above-mentioned chemical composition, if they have a tensile yield strength of 758 MPa or more, strength anisotropy may be large. Therefore, the inventors conducted detailed studies on reducing the strength anisotropy of alloy materials with the above-mentioned chemical composition and a tensile yield strength of 758 MPa or more.

 ここで、上述の化学組成を有するFe-Cr-Ni合金材は、オーステナイトからなるミクロ組織を有する。本明細書において、「オーステナイトからなるミクロ組織」とは、オーステナイト以外の相が、無視できるほど少ないことを意味する。そこで本発明者らは、上述の化学組成を有し、758MPa以上の引張降伏強度を有するFe-Cr-Ni合金材のオーステナイト粒に着目して、合金材の強度異方性を低減する手法について詳細に検討した。 Here, the Fe-Cr-Ni alloy material having the above-mentioned chemical composition has a microstructure consisting of austenite. In this specification, "microstructure consisting of austenite" means that phases other than austenite are negligibly small. Therefore, the inventors have focused on the austenite grains of an Fe-Cr-Ni alloy material having the above-mentioned chemical composition and a tensile yield strength of 758 MPa or more, and have conducted detailed studies on methods for reducing the strength anisotropy of the alloy material.

 本発明者らによる詳細な検討の結果、上述の化学組成と、758MPa以上の引張降伏強度とを有するFe-Cr-Ni合金材では、ミクロ組織中の結晶粒度番号の標準偏差σが、合金材の強度異方性に影響を与えることが明らかになった。この点について、図面を用いて具体的に説明する。図1は、本実施例における結晶粒度番号の標準偏差σと、異方性指標AIとの関係を示す図である。図1は、後述する実施例のうち、結晶粒度番号の標準偏差σ以外の構成が本実施形態の条件を満たす実施例について、結晶粒度番号の標準偏差σと、異方性指標AIとを用いて作成した。 As a result of detailed investigations by the present inventors, it has become clear that in an Fe-Cr-Ni alloy material having the above-mentioned chemical composition and a tensile yield strength of 758 MPa or more, the standard deviation σ of the grain size number in the microstructure affects the strength anisotropy of the alloy material. This point will be specifically explained using the drawings. Figure 1 is a diagram showing the relationship between the standard deviation σ of the grain size number and the anisotropy index AI in this embodiment. Figure 1 was created using the standard deviation σ of the grain size number and the anisotropy index AI for an embodiment described later in which the configuration other than the standard deviation σ of the grain size number satisfies the conditions of this embodiment.

 図1を参照して、上述の化学組成と、758MPa以上の引張降伏強度とを有するFe-Cr-Ni合金材では、結晶粒度番号の標準偏差σが0.60以下であれば、異方性指標AIを0.700以上に高められる。一方、結晶粒度番号の標準偏差σが0.60を超えると、異方性指標AIが0.700未満に低下する。したがって、本実施形態によるFe-Cr-Ni合金材では、上述の化学組成を満たし、758MPa以上の引張降伏強度を有し、さらに、結晶粒度番号の標準偏差σを0.60以下とする。その結果、本実施形態によるFe-Cr-Ni合金材は、強度異方性を低減することができる。 Referring to FIG. 1, in an Fe-Cr-Ni alloy material having the above-mentioned chemical composition and a tensile yield strength of 758 MPa or more, if the standard deviation σ of the grain size number is 0.60 or less, the anisotropy index AI can be increased to 0.700 or more. On the other hand, if the standard deviation σ of the grain size number exceeds 0.60, the anisotropy index AI drops to less than 0.700. Therefore, the Fe-Cr-Ni alloy material according to this embodiment satisfies the above-mentioned chemical composition, has a tensile yield strength of 758 MPa or more, and further, the standard deviation σ of the grain size number is 0.60 or less. As a result, the Fe-Cr-Ni alloy material according to this embodiment can reduce strength anisotropy.

 結晶粒度番号の標準偏差σを0.60以下にすることによって、合金材の強度異方性を低減できる理由について、詳細は明らかになっていない。しかしながら、上述の化学組成を満たし、758MPa以上の引張降伏強度を有し、さらに、結晶粒度番号の標準偏差σを0.60以下とすることによって、強度異方性を低減できることは、後述する実施例によって証明されている。 The details of why the strength anisotropy of an alloy material can be reduced by setting the standard deviation σ of the grain size number to 0.60 or less are not clear. However, it has been proven by the examples described below that the strength anisotropy can be reduced by satisfying the above-mentioned chemical composition, having a tensile yield strength of 758 MPa or more, and further setting the standard deviation σ of the grain size number to 0.60 or less.

 以上の知見に基づいて完成した本実施形態によるFe-Cr-Ni合金材の要旨は、次のとおりである。 The Fe-Cr-Ni alloy material of this embodiment, which was completed based on the above findings, has the following features:

 [1]
 質量%で、
 C:0.030%以下、
 Si:0.01~1.00%、
 Mn:0.01~2.00%、
 P:0.040%以下、
 S:0.0050%以下、
 Al:0.01~0.50%、
 Ni:36.5超~54.0%、
 Cr:19.0~27.5%、
 Mo:2.00~11.50%、
 Cu:0.01~3.00%、
 N:0.010~0.500%、
 Co:0.01~2.00%、
 O:0.010%以下、
 V:0~0.50%、
 Nb:0~0.10%、
 Ti:0~0.40%、
 W:0~3.0%、
 Sn:0~0.010%、
 Ca:0~0.0100%、
 B:0~0.0100%、
 Mg:0~0.0100%、
 希土類元素:0~0.100%、及び、
 残部がFe及び不純物からなり、
 ミクロ組織において、オーステナイト粒の結晶粒度番号の標準偏差が0.60以下であり、
 引張降伏強度が758MPa以上である、
 Fe-Cr-Ni合金材。
[1]
In mass percent,
C: 0.030% or less,
Si: 0.01-1.00%,
Mn: 0.01 to 2.00%,
P: 0.040% or less,
S: 0.0050% or less,
Al: 0.01-0.50%,
Ni: more than 36.5 to 54.0%,
Cr: 19.0-27.5%,
Mo: 2.00-11.50%,
Cu: 0.01-3.00%,
N: 0.010-0.500%,
Co: 0.01-2.00%,
O: 0.010% or less,
V: 0-0.50%,
Nb: 0 to 0.10%,
Ti: 0 to 0.40%,
W: 0 to 3.0%,
Sn: 0 to 0.010%,
Ca: 0-0.0100%,
B: 0 to 0.0100%,
Mg: 0 to 0.0100%,
Rare earth elements: 0 to 0.100%, and
The balance is Fe and impurities,
In the microstructure, the standard deviation of the grain size number of the austenite grains is 0.60 or less;
The tensile yield strength is 758 MPa or more.
Fe-Cr-Ni alloy material.

 [2]
 [1]に記載のFe-Cr-Ni合金材であって、
 V:0.01~0.50%、
 Nb:0.01~0.10%、
 Ti:0.01~0.40%、
 W:0.1~3.0%、
 Sn:0.001~0.010%、
 Ca:0.0001~0.0100%、
 B:0.0001~0.0100%、
 Mg:0.0001~0.0100%、及び、
 希土類元素:0.001~0.100%からなる群から選択される1元素以上を含有する、
 Fe-Cr-Ni合金材。
[2]
The Fe-Cr-Ni alloy material according to [1],
V: 0.01-0.50%,
Nb: 0.01 to 0.10%,
Ti: 0.01-0.40%,
W: 0.1-3.0%,
Sn: 0.001 to 0.010%,
Ca: 0.0001-0.0100%,
B: 0.0001 to 0.0100%,
Mg: 0.0001 to 0.0100%, and
Rare earth elements: containing one or more elements selected from the group consisting of 0.001 to 0.100%;
Fe-Cr-Ni alloy material.

 [3]
 油井用継目無合金管である、
 [1]又は[2]に記載のFe-Cr-Ni合金材。
[3]
Seamless alloy pipe for oil wells.
The Fe-Cr-Ni alloy material according to [1] or [2].

 なお、本実施形態によるFe-Cr-Ni合金材の形状は、特に限定されない。本実施形態によるFe-Cr-Ni合金材の形状は、板状であってもよく、断面円形の棒状であってもよく、管状であってもよい。すなわち、本実施形態によるFe-Cr-Ni合金材は、合金板であってもよく、断面円形の棒材であってもよく、合金管であってもよい。なお、合金管とは、継目無合金管であってもよく、溶接合金管であってもよい。なお、合金材が油井用合金管である場合、継目無合金管であることが好ましい。 The shape of the Fe-Cr-Ni alloy material according to this embodiment is not particularly limited. The shape of the Fe-Cr-Ni alloy material according to this embodiment may be a plate, a rod with a circular cross section, or a tube. That is, the Fe-Cr-Ni alloy material according to this embodiment may be an alloy plate, a rod with a circular cross section, or an alloy pipe. The alloy pipe may be a seamless alloy pipe or a welded alloy pipe. When the alloy material is an oil well alloy pipe, it is preferably a seamless alloy pipe.

 以下、本実施形態によるFe-Cr-Ni合金材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。 The Fe-Cr-Ni alloy material according to this embodiment will be described in detail below. Unless otherwise specified, "%" for elements means mass %.

 [化学組成]
 本実施形態によるFe-Cr-Ni合金材の化学組成は、次の元素を含有する。
[Chemical composition]
The chemical composition of the Fe-Cr-Ni alloy material according to this embodiment contains the following elements.

 C:0.030%以下
 炭素(C)は、不可避に含有される不純物である。すなわち、C含有量の下限は0%超である。C含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、結晶粒界にCr炭化物が生成する。Cr炭化物は、粒界での割れ感受性を高める。その結果、合金材の耐食性が低下する。したがって、C含有量は0.030%以下である。C含有量の好ましい上限は0.028%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%である。
C: 0.030% or less Carbon (C) is an unavoidably contained impurity. That is, the lower limit of the C content is more than 0%. If the C content is too high, Cr carbides will be generated at the grain boundaries even if the contents of other elements are within the range of this embodiment. Cr carbides increase the cracking sensitivity at the grain boundaries. As a result, the corrosion resistance of the alloy material decreases. Therefore, the C content is 0.030% or less. The preferred upper limit of the C content is 0.028%, more preferably 0.025%, more preferably 0.020%, and even more preferably 0.015%. It is preferable that the C content is as low as possible. However, an extreme reduction in the C content significantly increases the manufacturing cost. Therefore, when considering industrial production, the preferred lower limit of the C content is 0.001%, and even more preferably 0.003%.

 Si:0.01~1.00%
 ケイ素(Si)は合金を脱酸する。Si含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、Si含有量は0.01~1.00%である。Si含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.20%である。Si含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%である。
Si: 0.01~1.00%
Silicon (Si) deoxidizes the alloy. If the Si content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. If the Si content is too high, the hot workability of the alloy material decreases even if the contents of other elements are within the ranges of this embodiment. Therefore, the Si content is 0.01 to 1.00%. The lower limit of the Si content is preferably 0.05%, more preferably 0.10%, and even more preferably 0.20%. The upper limit of the Si content is preferably 0.90%, and even more preferably is 0.80%, and more preferably 0.70%.

 Mn:0.01~2.00%
 マンガン(Mn)は合金を脱酸し、脱硫する。Mn含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、Mn含有量は0.01~2.00%である。Mn含有量の好ましい下限は0.10%であり、さらに好ましくは0.20%であり、さらに好ましくは0.30%である。Mn含有量の好ましい上限は1.80%であり、さらに好ましくは1.60%であり、さらに好ましくは1.50%であり、さらに好ましくは1.30%であり、さらに好ましくは1.00%である。
Mn: 0.01-2.00%
Manganese (Mn) deoxidizes and desulfurizes the alloy. If the Mn content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. If the Mn content is too high, the hot workability of the alloy material is reduced even if the contents of other elements are within the ranges of this embodiment. Therefore, the Mn content is set to 0.01 to 2.00%. The lower limit of the Mn content is preferably 0.10%, more preferably 0.20%, and even more preferably 0.30%. The upper limit of the Mn content is preferably 1.80%. , more preferably 1.60%, more preferably 1.50%, more preferably 1.30%, and even more preferably 1.00%.

 P:0.040%以下
 燐(P)は、不可避に含有される不純物である。すなわち、P含有量の下限は0%超である。Pは粒界に偏析する。そのため、P含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性及び耐食性が低下する。したがって、P含有量は0.040%以下である。P含有量の好ましい上限は0.035%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
P: 0.040% or less Phosphorus (P) is an impurity that is inevitably contained. That is, the lower limit of the P content is more than 0%. P segregates at grain boundaries. Therefore, if the P content is too high, the hot workability and corrosion resistance of the alloy material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the P content is 0.040% or less. The preferred upper limit of the P content is 0.035%, more preferably 0.030%, and even more preferably 0.025%. The P content is preferably as low as possible. However, an extreme reduction in the P content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the P content is 0.001%, more preferably 0.002%, and even more preferably 0.003%.

 S:0.0050%以下
 硫黄(S)は、不可避に含有される不純物である。すなわち、S含有量の下限は0%超である。Sは粒界に偏析する。そのため、S含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
S: 0.0050% or less Sulfur (S) is an impurity that is inevitably contained. That is, the lower limit of the S content is more than 0%. S segregates at grain boundaries. Therefore, if the S content is too high, the hot workability of the alloy material decreases even if the contents of other elements are within the range of this embodiment. Therefore, the S content is 0.0050% or less. The preferred upper limit of the S content is 0.0040%, more preferably 0.0030%, and even more preferably 0.0020%. The S content is preferably as low as possible. However, an extreme reduction in the S content significantly increases the manufacturing cost. Therefore, when considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%.

 Al:0.01~0.50%
 アルミニウム(Al)は、合金を脱酸する。Alはさらに、酸化物を生成して酸素を固定し、合金材の熱間加工性を高める。Alはさらに、合金材の耐衝撃特性及び耐食性を高める。Al含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Al酸化物が過剰に生成して、合金材の熱間加工性がかえって低下する。したがって、Al含有量は0.01~0.50%である。Al含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Al含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.30%である。なお、本明細書にいうAl含有量は、「酸可溶Al」、つまり、sol.Alの含有量を意味する。
Al: 0.01~0.50%
Aluminum (Al) deoxidizes the alloy. It also forms oxides to fix oxygen and improve the hot workability of the alloy. It also improves the impact resistance and corrosion resistance of the alloy. If the Al content is too low, the above-mentioned effect cannot be sufficiently obtained even if the contents of the other elements are within the range of this embodiment. On the other hand, if the Al content is too high, the other element contents are not sufficiently obtained. Even if the amount is within the range of this embodiment, excessive Al oxides are generated, and the hot workability of the alloy material is rather deteriorated. Therefore, the Al content is set to 0.01 to 0.50%. The lower limit of the Al content is preferably 0.02%, more preferably 0.03%, and even more preferably 0.05%. The upper limit of the Al content is preferably 0.45%. The Al content is more preferably 0.40%, and even more preferably 0.30%. The Al content in this specification means the content of "acid-soluble Al", that is, sol. Al. .

 Ni:36.5超~54.0%
 ニッケル(Ni)はオーステナイト形成元素であり、合金材中のオーステナイトを安定化する。Ni含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Niは強度異方性を高める場合がある。そのため、Ni含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の強度異方性が高まる場合がある。したがって、Ni含有量は36.5超~54.0%である。Ni含有量の好ましい下限は36.6%であり、さらに好ましくは37.0%であり、さらに好ましくは38.0%であり、さらに好ましくは40.0%である。Ni含有量の好ましい上限は53.5%であり、さらに好ましくは53.0%であり、さらに好ましくは52.0%である。
Ni: more than 36.5 to 54.0%
Nickel (Ni) is an austenite-forming element and stabilizes austenite in the alloy material. If the Ni content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, Ni may increase strength anisotropy. Therefore, if the Ni content is too high, the strength anisotropy of the alloy material may increase even if the contents of other elements are within the range of this embodiment. Therefore, the Ni content is more than 36.5 to 54.0%. The preferred lower limit of the Ni content is 36.6%, more preferably 37.0%, more preferably 38.0%, and even more preferably 40.0%. The preferred upper limit of the Ni content is 53.5%, more preferably 53.0%, and even more preferably 52.0%.

 Cr:19.0~27.5%
 クロム(Cr)は、合金材の耐食性を高める。Crはさらに、合金材の強度異方性を低下させる場合がある。Cr含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。この場合さらに、σ相に代表される金属間化合物が形成されやすくなり、合金材の耐食性が低下する。したがって、Cr含有量は19.0~27.5%である。Cr含有量の好ましい下限は19.5%であり、さらに好ましくは20.0%であり、さらに好ましくは21.0%であり、さらに好ましくは22.0%である。Cr含有量の好ましい上限は27.0%であり、さらに好ましくは26.5%である。
Cr: 19.0-27.5%
Chromium (Cr) enhances the corrosion resistance of the alloy material. Cr may also reduce the strength anisotropy of the alloy material. If the Cr content is too low, the contents of other elements may be within the range of this embodiment. On the other hand, if the Cr content is too high, the hot workability of the alloy material is deteriorated even if the contents of other elements are within the range of this embodiment. In this case, intermetallic compounds such as the σ phase are more likely to form, and the corrosion resistance of the alloy material decreases. Therefore, the Cr content is 19.0 to 27.5%. Cr Content The preferred lower limit of the Cr content is 19.5%, more preferably 20.0%, further preferably 21.0%, and further preferably 22.0%. The preferred upper limit of the Cr content is 27. 0%, and more preferably 26.5%.

 Mo:2.00~11.50%
 モリブデン(Mo)は、腐食保護皮膜の安定化に寄与し、合金材の耐食性を高める。Moはさらに、固溶強化により合金材の強度を高める。Mo含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。この場合さらに、製造コストが大幅に高まる。したがって、Mo含有量は2.00~11.50%である。Mo含有量の好ましい下限は2.20%であり、さらに好ましくは2.40%であり、さらに好ましくは2.50%である。Mo含有量の好ましい上限は11.20%であり、さらに好ましくは11.00%であり、さらに好ましくは10.80%であり、さらに好ましくは10.00%である。
Mo: 2.00-11.50%
Molybdenum (Mo) contributes to the stabilization of the corrosion protective film and improves the corrosion resistance of the alloy material. Mo also increases the strength of the alloy material by solid solution strengthening. If the Mo content is too low, the alloy material containing other elements will have a high corrosion resistance. On the other hand, if the Mo content is too high, the alloy may not be able to obtain the above-mentioned effects even if the contents of the other elements are within the ranges of the present embodiment. The hot workability of the material is reduced. In this case, the manufacturing cost is also significantly increased. Therefore, the Mo content is 2.00 to 11.50%. The preferred lower limit of the Mo content is 2.20%. The upper limit of the Mo content is preferably 11.20%, more preferably 11.00%, and even more preferably 10. .80%, and more preferably 10.00%.

 Cu:0.01~3.00%
 銅(Cu)は、腐食保護皮膜の安定化に寄与し、合金材の耐食性を高める。Cu含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、Cu含有量は0.01~3.00%である。Cu含有量の好ましい下限は0.02%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.20%である。Cu含有量の好ましい上限は2.80%であり、さらに好ましくは2.50%であり、さらに好ましくは2.00%である。
Cu: 0.01~3.00%
Copper (Cu) contributes to stabilizing the corrosion protection film and enhances the corrosion resistance of the alloy material. If the Cu content is too low, the above effect will not be achieved even if the contents of other elements are within the range of this embodiment. On the other hand, if the Cu content is too high, the hot workability of the alloy material is reduced even if the contents of other elements are within the ranges of this embodiment. The lower limit of the Cu content is preferably 0.02%, more preferably 0.05%, still more preferably 0.10%, and still more preferably 0. The upper limit of the Cu content is preferably 2.80%, more preferably 2.50%, and even more preferably 2.00%.

 N:0.010~0.500%
 窒素(N)は、固溶強化により合金材の強度を高める。N含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、N含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の耐食性が低下する場合がある。したがって、N含有量は0.010~0.500%である。N含有量の好ましい下限は0.015%であり、さらに好ましくは0.020%であり、さらに好ましくは0.030%であり、さらに好ましくは0.050%であり、さらに好ましくは0.090%である。N含有量の好ましい上限は0.495%であり、さらに好ましくは0.480%であり、さらに好ましくは0.450%である。
N: 0.010-0.500%
Nitrogen (N) increases the strength of the alloy material by solid solution strengthening. If the N content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the N content is too high, the corrosion resistance of the alloy material may decrease even if the contents of other elements are within the range of this embodiment. The lower limit of the N content is preferably 0.015%, more preferably 0.020%, still more preferably 0.030%, and still more preferably 0.050%. The upper limit of the N content is preferably 0.495%, more preferably 0.480%, and still more preferably 0.450%.

 Co:0.01~2.00%
 コバルト(Co)は、合金材中のオーステナイトを安定化する。Co含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Co含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、製造コストが大幅に高まる。したがって、Co含有量は0.01~2.00%である。Co含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Co含有量の好ましい上限は1.50%であり、さらに好ましくは1.20%であり、さらに好ましくは1.00%であり、さらに好ましくは0.90%である。
Co:0.01~2.00%
Cobalt (Co) stabilizes austenite in the alloy material. If the Co content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. On the other hand, if the Co content is too high, the manufacturing cost will increase significantly even if the contents of other elements are within the range of this embodiment. Therefore, the Co content is 0.01 to 2.00%. The lower limit of the Co content is preferably 0.02%, more preferably 0.03%, further preferably 0.05%, and further preferably 0.10%. The upper limit is 1.50%, more preferably 1.20%, further preferably 1.00%, and further preferably 0.90%.

 O:0.010%以下
 酸素(O)は、不可避に含有される不純物である。すなわち、O含有量の下限は0%超である。Oは酸化物を形成する。そのため、O含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性が低下する。この場合さらに、合金材の耐食性が低下する。したがって、O含有量は0.010%以下である。O含有量の好ましい上限は0.008%であり、さらに好ましくは0.005%である。O含有量はなるべく低い方が好ましい。ただし、O含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
O: 0.010% or less Oxygen (O) is an impurity that is inevitably contained. That is, the lower limit of the O content is more than 0%. O forms oxides. Therefore, if the O content is too high, even if the contents of other elements are within the range of this embodiment, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is reduced. In this case, the corrosion resistance of the alloy material is further reduced. Therefore, the O content is 0.010% or less. The preferred upper limit of the O content is 0.008%, more preferably 0.005%. The O content is preferably as low as possible. However, an extreme reduction in the O content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the O content is 0.0001%, more preferably 0.001%, and even more preferably 0.002%.

 本実施形態によるFe-Cr-Ni合金材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、Fe-Cr-Ni合金材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態によるFe-Cr-Ni合金材の作用効果に顕著な悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the Fe-Cr-Ni alloy material according to this embodiment is composed of Fe and impurities. Here, impurities refer to substances that are mixed in from raw materials such as ore, scrap, or the manufacturing environment when the Fe-Cr-Ni alloy material is industrially manufactured, and are acceptable to the extent that they do not significantly adversely affect the effects of the Fe-Cr-Ni alloy material according to this embodiment.

 [任意元素]
 本実施形態によるFe-Cr-Ni合金材の化学組成はさらに、V、Nb、及び、Tiからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、合金材の強度を高める。
[Optional element]
The chemical composition of the Fe-Cr-Ni alloy material according to the present embodiment may further contain one or more elements selected from the group consisting of V, Nb, and Ti, all of which increase the strength of the alloy material.

 V:0~0.50%
 バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、VはCやNと炭窒化物等を形成し、合金材の強度を高める。Vが少しでも含有されれば、上記効果がある程度得られる。しかしながら、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に形成され、合金材の延性が低下する。したがって、V含有量は0~0.50%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。V含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%であり、さらに好ましくは0.20%である。
V: 0 to 0.50%
Vanadium (V) is an optional element and may not be contained. In other words, the V content may be 0%. When contained, V forms carbonitrides with C and N, and increases the strength of the alloy material. If even a small amount of V is contained, the above effect can be obtained to some extent. However, if the V content is too high, even if the contents of other elements are within the range of this embodiment, excessive carbonitrides are formed, and the ductility of the alloy material decreases. Therefore, the V content is 0 to 0.50%. The preferred lower limit of the V content is more than 0%, more preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%. The preferred upper limit of the V content is 0.40%, more preferably 0.30%, more preferably 0.25%, and even more preferably 0.20%.

 Nb:0~0.10%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはCやNと炭窒化物等を形成し、合金材の強度を高める。Nbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に形成され、合金材の延性が低下する。したがって、Nb含有量は0~0.10%である。Nb含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Nb含有量の好ましい上限は0.09%であり、さらに好ましくは0.08%であり、さらに好ましくは0.07%であり、さらに好ましくは0.06%であり、さらに好ましくは0.05%であり、さらに好ましくは0.04%であり、さらに好ましくは0.03%である。
Nb: 0-0.10%
Niobium (Nb) is an optional element and may not be contained. In other words, the Nb content may be 0%. When Nb is contained, it forms carbonitrides with C and N, and The strength of the alloy material is increased. Even if even a small amount of Nb is contained, the above effect can be obtained to a certain extent. However, if the Nb content is too high, even if the contents of other elements are within the range of this embodiment, Carbonitrides and the like are formed in excess, and the ductility of the alloy material is reduced. Therefore, the Nb content is 0 to 0.10%. The lower limit of the Nb content is preferably more than 0%, and more preferably 0. The upper limit of the Nb content is preferably 0.09%, more preferably 0.08%, and even more preferably 0.07%. More preferably, it is 0.06%, more preferably, it is 0.05%, more preferably, it is 0.04%, and more preferably, it is 0.03%.

 Ti:0~0.40%
 チタン(Ti)は任意元素であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。含有される場合、TiはCやNと炭窒化物等を形成し、合金材の強度を高める。Tiが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ti含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に形成され、合金材の延性が低下する。したがって、Ti含有量は0~0.40%である。Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Ti含有量の好ましい上限は0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%である。
Ti: 0-0.40%
Titanium (Ti) is an optional element and may not be contained. In other words, the Ti content may be 0%. When contained, Ti forms carbonitrides with C and N, and The strength of the alloy material is increased. Even if even a small amount of Ti is contained, the above effect can be obtained to a certain extent. However, if the Ti content is too high, even if the contents of other elements are within the range of this embodiment, Carbonitrides and the like are formed in excess, and the ductility of the alloy material is reduced. Therefore, the Ti content is 0 to 0.40%. The lower limit of the Ti content is preferably more than 0%, and more preferably 0. The upper limit of the Ti content is preferably 0.35%, more preferably 0.30%, and more preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%. The content is more preferably 0.20%, and even more preferably 0.10%.

 本実施形態によるFe-Cr-Ni合金材の化学組成はさらに、W、及び、Snからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、合金材の耐食性を高める。 The chemical composition of the Fe-Cr-Ni alloy material according to this embodiment may further contain one or more elements selected from the group consisting of W and Sn. All of these elements increase the corrosion resistance of the alloy material.

 W:0~3.0%
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wは腐食保護皮膜の安定化に寄与し、合金材の耐食性を高める。Wはさらに、固溶強化により合金材の強度を高める。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、W含有量は0~3.0%である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.3%であり、さらに好ましくは0.5%である。W含有量の好ましい上限は2.8%であり、さらに好ましくは2.5%であり、さらに好ましくは2.2%であり、さらに好ましくは2.0%である。
W: 0 to 3.0%
Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When contained, W contributes to stabilization of the corrosion protection film and enhances the corrosion resistance of the alloy material. W further enhances the strength of the alloy material by solid solution strengthening. If even a small amount of W is contained, the above effect can be obtained to a certain extent. However, if the W content is too high, the hot workability of the alloy material decreases even if the contents of other elements are within the range of this embodiment. Therefore, the W content is 0 to 3.0%. The preferred lower limit of the W content is more than 0%, more preferably 0.1%, more preferably 0.3%, and even more preferably 0.5%. The preferred upper limit of the W content is 2.8%, more preferably 2.5%, more preferably 2.2%, and even more preferably 2.0%.

 Sn:0~0.010%
 スズ(Sn)は任意元素であり、含有されなくてもよい。すなわち、Sn含有量は0%であってもよい。含有される場合、Snは合金材の耐食性を高める。Snが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Sn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、Sn含有量は0~0.010%である。Sn含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。Sn含有量の好ましい上限は0.009%であり、さらに好ましくは0.008%であり、さらに好ましくは0.007%である。
Sn: 0-0.010%
Tin (Sn) is an optional element and may not be contained. In other words, the Sn content may be 0%. When contained, Sn enhances the corrosion resistance of the alloy material. Even a small amount of Sn is contained. If the Sn content is too high, however, the hot workability of the alloy material is reduced even if the contents of other elements are within the ranges of this embodiment. The Sn content is 0 to 0.010%. The lower limit of the Sn content is preferably more than 0%, more preferably 0.001%, even more preferably 0.002%, and even more preferably The upper limit of the Sn content is preferably 0.009%, more preferably 0.008%, and still more preferably 0.007%.

 本実施形態によるFe-Cr-Ni合金材の化学組成はさらに、Ca、B、Mg、及び、希土類元素(REM)からなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、合金材の熱間加工性を高める。 The chemical composition of the Fe-Cr-Ni alloy material according to this embodiment may further contain one or more elements selected from the group consisting of Ca, B, Mg, and rare earth elements (REM). All of these elements improve the hot workability of the alloy material.

 Ca:0~0.0100%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。含有される場合、Caは合金中のSを硫化物として固定することで無害化し、合金材の熱間加工性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性がかえって低下する。したがって、Ca含有量は0~0.0100%である。Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0009%であり、さらに好ましくは0.0011%であり、さらに好ましくは0.0013%であり、さらに好ましくは0.0015%である。Ca含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%である。
Ca: 0~0.0100%
Calcium (Ca) is an optional element and may not be contained. In other words, the Ca content may be 0%. When contained, Ca fixes S in the alloy as sulfides, The above effect can be obtained to some extent if even a small amount of Ca is contained. However, if the Ca content is too high, the contents of other elements will not fall within the range of this embodiment. Even if the Ca content is within the range, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is rather deteriorated. Therefore, the Ca content is 0 to 0.0100%. The lower limit is more than 0%, more preferably 0.0001%, even more preferably 0.0005%, even more preferably 0.0009%, even more preferably 0.0011%, and even more preferably is 0.0013%, and more preferably 0.0015%. The upper limit of the Ca content is preferably 0.0090%, more preferably 0.0080%, further preferably 0.0060%, and further preferably 0.0050%.

 B:0~0.0100%
 ホウ素(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。含有される場合、Bは合金中のSを硫化物として固定することで無害化し、合金材の熱間加工性を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Bが粒界に偏析して、合金材の熱間加工性がかえって低下する。したがって、B含有量は0~0.0100%である。B含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。B含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0010%である。
B: 0-0.0100%
Boron (B) is an optional element and may not be contained. In other words, the B content may be 0%. When contained, B fixes S in the alloy as sulfides, Even if even a small amount of B is contained, the above effects can be obtained to a certain extent. However, if the B content is too high, the contents of other elements will not fall within the range of this embodiment. Even if the B content is within the range, B segregates at grain boundaries, and the hot workability of the alloy material is rather deteriorated. Therefore, the B content is 0 to 0.0100%. The preferable lower limit of the B content is 0. %, more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%. The upper limit of the B content is preferably 0.0080%, more preferably 0.0060%, still more preferably 0.0040%, still more preferably 0.0030%, and still more preferably 0.0020%. %, more preferably 0.0015%, and even more preferably 0.0010%.

 Mg:0~0.0100%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、Mgは合金中のSを硫化物として固定することで無害化し、合金材の熱間加工性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性がかえって低下する。したがって、Mg含有量は0~0.0100%である。Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。Mg含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%である。
Mg: 0-0.0100%
Magnesium (Mg) is an optional element and may not be contained. In other words, the Mg content may be 0%. When contained, Mg fixes S in the alloy as sulfides, Even if even a small amount of Mg is contained, the above effects can be obtained to some extent. However, if the Mg content is too high, the contents of other elements will not fall within the range of this embodiment. Even if the Mg content is within the range of 0.0100%, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is rather deteriorated. Therefore, the Mg content is 0 to 0.0100%. The lower limit is more than 0%, more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%. The preferred upper limit of the Mg content is 0.0080%. More preferably, it is 0.0060%, and even more preferably, it is 0.0040%.

 希土類元素:0~0.100%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。含有される場合、REMは合金中のSを硫化物として固定することで無害化し、合金材の熱間加工性を高める。REMが少しでも含有されれば、上記効果がある程度得られる。しかしながら、REM含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性がかえって低下する。したがって、REM含有量は0~0.100%である。REM含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。REM含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%である。
Rare earth elements: 0-0.100%
Rare earth elements (REM) are optional elements and may not be included. In other words, the REM content may be 0%. When included, REM fixes S in the alloy as sulfides. Even if even a small amount of REM is contained, the above effect can be obtained to some extent. However, if the REM content is too high, the contents of other elements may be different from those of the present embodiment. Even if the REM content is within the range, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is rather deteriorated. Therefore, the REM content is 0 to 0.100%. The lower limit is preferably more than 0%, more preferably 0.001%, more preferably 0.005%, and even more preferably 0.010%. The upper limit of the REM content is preferably 0.080%. , more preferably 0.060%, and even more preferably 0.050%.

 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1元素以上を意味する。また、本明細書におけるREM含有量とは、これらの元素の合計含有量を意味する。 In this specification, REM refers to one or more elements selected from the group consisting of scandium (Sc), atomic number 21; yttrium (Y), atomic number 39; and the lanthanides lanthanum (La), atomic number 57, to lutetium (Lu), atomic number 71. In addition, the REM content in this specification refers to the total content of these elements.

 [結晶粒度番号の標準偏差σ]
 本実施形態によるFe-Cr-Ni合金材は、上述の化学組成を有し、さらに、オーステナイト粒の結晶粒度番号の標準偏差σを0.60以下とする。その結果、本実施形態によるFe-Cr-Ni合金材は、758MPa以上の引張降伏強度を有していても、強度異方性を低減できる。
[Standard deviation of grain size number σ]
The Fe-Cr-Ni alloy material according to the present embodiment has the above-mentioned chemical composition, and further has a standard deviation σ of the grain size number of the austenite grains of 0.60 or less. As a result, the Fe-Cr-Ni alloy material according to the present embodiment can reduce strength anisotropy even if it has a tensile yield strength of 758 MPa or more.

 ここで、オーステナイト粒の結晶粒度番号の標準偏差σが大きい場合、合金材中には粗大なオーステナイト粒(粗大粒)が偏在している領域と、微細なオーステナイト粒(微細粒)が偏在している領域とが生じていると推察される。また、上述の化学組成を有するFe-Cr-Ni合金材の引張降伏強度を758MPa以上とする場合、後述する製造工程において、溶体化処理に代表される熱処理後に冷間加工等が実施され、合金材中に歪が導入される場合がある。そのため、歪が導入された方向によって、強度に異方性が生じる可能性がある。具体的に、冷間加工等として冷間引抜や冷間圧延を実施した場合、引張降伏強度の方が圧縮降伏強度よりも大きくなる。 Here, when the standard deviation σ of the grain size number of the austenite grains is large, it is presumed that there are regions in the alloy material where coarse austenite grains (coarse grains) are unevenly distributed and regions where fine austenite grains (fine grains) are unevenly distributed. In addition, when the tensile yield strength of the Fe-Cr-Ni alloy material having the above-mentioned chemical composition is to be 758 MPa or more, in the manufacturing process described below, cold working or the like is performed after heat treatment such as solution treatment, and strain may be introduced into the alloy material. Therefore, anisotropy in strength may occur depending on the direction in which strain is introduced. Specifically, when cold drawing or cold rolling is performed as cold working, the tensile yield strength is greater than the compressive yield strength.

 より具体的に、引張方向への応力付与により強度異方性が生じた合金材に対して、引張方向へさらに応力を付与する引張試験を実施すると、転位運動の抑制が支配的となる。つまり、粗大粒と微細粒とで、引張試験中の転位の動きやすさは大きく変わらない。一方、同様の状況下で圧縮方向へ応力を付与する圧縮試験を実施すると、圧縮試験中の転位運動の抑制がはたらきにくくなり、粒界の影響を受けやすくなる。そのため、圧縮試験中において、粗大粒では転位が動きやすい一方、微細粒では転位が動きにくくなる。 More specifically, when a tensile test is conducted on an alloy material in which strength anisotropy has been created by applying stress in the tensile direction, in which further stress is applied in the tensile direction, the suppression of dislocation movement becomes dominant. In other words, the ease with which dislocations move during a tensile test does not differ significantly between coarse grains and fine grains. On the other hand, when a compression test is conducted under similar conditions, in which stress is applied in the compression direction, the suppression of dislocation movement during the compression test becomes less effective and the material becomes more susceptible to the effects of grain boundaries. As a result, dislocations move easily in coarse grains during a compression test, but dislocations move less easily in fine grains.

 つまり、引張方向への応力付与により強度異方性が生じた場合、引張方向への転位の動きやすさと、圧縮方向への転位の動きやすさとが異なると推察される。そのため、合金材中に粗大粒が偏在している箇所と、微細粒が偏在している箇所とが存在する場合、引張方向への転位の動きやすさと、圧縮方向への転位の動きにくさとが顕在化しやすい可能性がある。このようにして、オーステナイト粒の結晶粒度番号の標準偏差σが大きい場合、引張降伏強度の方が、圧縮降伏強度よりも大きくなりやすく、強度異方性が高まるものと推察される。 In other words, when strength anisotropy occurs due to the application of stress in the tensile direction, it is presumed that the ease with which dislocations move in the tensile direction differs from the ease with which dislocations move in the compressive direction. Therefore, when there are areas in an alloy material where coarse grains are unevenly distributed and areas where fine grains are unevenly distributed, the ease with which dislocations move in the tensile direction and the difficulty with which dislocations move in the compressive direction may become apparent. In this way, it is presumed that when the standard deviation σ of the crystal grain size number of austenite grains is large, the tensile yield strength is likely to be greater than the compressive yield strength, increasing strength anisotropy.

 以上のメカニズムにより、上述の化学組成を有するFe-Cr-Ni合金材について、オーステナイト粒の結晶粒度番号の標準偏差σを0.60以下とすれば、758MPa以上の引張降伏強度を有していても、強度異方性を低減できると本発明者らは推察している。なお、上記メカニズム以外のメカニズムによって、上述の化学組成を有するFe-Cr-Ni合金材について、オーステナイト粒の結晶粒度番号の標準偏差σを0.60以下とすれば、758MPa以上の引張降伏強度を有していても、強度異方性を低減できる可能性もある。しかしながら、上述のとおり、上述の化学組成を有するFe-Cr-Ni合金材について、オーステナイト粒の結晶粒度番号の標準偏差σを0.60以下とすれば、758MPa以上の引張降伏強度を有していても、強度異方性を低減できることは、後述の実施例によって証明されている。 The inventors speculate that, based on the above mechanism, if the standard deviation σ of the grain size number of the austenite grains of an Fe-Cr-Ni alloy material having the above chemical composition is 0.60 or less, the strength anisotropy can be reduced even if the material has a tensile yield strength of 758 MPa or more. It is possible that, based on a mechanism other than the above mechanism, if the standard deviation σ of the grain size number of the austenite grains of an Fe-Cr-Ni alloy material having the above chemical composition is 0.60 or less, the strength anisotropy can be reduced even if the material has a tensile yield strength of 758 MPa or more. However, as described above, it has been proven by the examples described below that if the standard deviation σ of the grain size number of the austenite grains of an Fe-Cr-Ni alloy material having the above chemical composition is 0.60 or less, the strength anisotropy can be reduced even if the material has a tensile yield strength of 758 MPa or more.

 本実施形態において、オーステナイト粒の結晶粒度番号の標準偏差σの好ましい上限は0.58であり、さらに好ましくは0.55であり、さらに好ましくは0.53である。本実施形態によるFe-Cr-Ni合金材において、オーステナイト粒の結晶粒度番号の標準偏差σは、小さい方が好ましい。つまり、オーステナイト粒の結晶粒度番号の標準偏差σの下限は0.00であってもよく、0.05であってもよく、0.10であってもよく、0.15であってもよい。 In this embodiment, the preferred upper limit of the standard deviation σ of the grain size number of the austenite grains is 0.58, more preferably 0.55, and even more preferably 0.53. In the Fe-Cr-Ni alloy material according to this embodiment, the smaller the standard deviation σ of the grain size number of the austenite grains, the more preferable. In other words, the lower limit of the standard deviation σ of the grain size number of the austenite grains may be 0.00, 0.05, 0.10, or 0.15.

 本実施形態によるFe-Cr-Ni合金材において、オーステナイト粒の結晶粒度番号の標準偏差σは、次の方法で求めることができる。具体的に、本実施形態によるFe-Cr-Ni合金材から、ミクロ組織観察用の試験片を作製する。合金材の形状が板状の場合、板厚中央部から試験片を作製する。合金材の形状が管状の場合、肉厚中央部から試験片を作製する。合金材の形状が断面円形の棒状の場合、R/2位置から試験片を作製する。本明細書において、R/2位置とは、軸方向に垂直な断面における半径Rの中心位置を意味する。なお、試験片の大きさは、後述する観察面が得られればよく、特に限定されない。 In the Fe-Cr-Ni alloy material according to this embodiment, the standard deviation σ of the grain size number of the austenite grains can be found by the following method. Specifically, a test piece for microstructure observation is prepared from the Fe-Cr-Ni alloy material according to this embodiment. If the alloy material is in the form of a plate, the test piece is prepared from the center of the plate thickness. If the alloy material is in the form of a tube, the test piece is prepared from the center of the wall thickness. If the alloy material is in the form of a rod with a circular cross section, the test piece is prepared from the R/2 position. In this specification, the R/2 position means the center position of the radius R in a cross section perpendicular to the axial direction. The size of the test piece is not particularly limited as long as it can provide the observation surface described below.

 作製された試験片の観察面を鏡面に研磨した後、王水(塩酸:硝酸=3:1で混合した溶液)を用いた腐食を実施して、オーステナイト結晶粒界を現出させる。観察面から、任意の10視野を特定し、光学顕微鏡にて観察を実施して、写真画像を生成する。なお、顕微鏡観察における倍率は、結晶粒径によって適宜設定することができる。具体的に、顕微鏡観察では、たとえば、視野内に50個以上の結晶粒が含まれるように倍率を設定する。 After the observation surface of the prepared test piece is polished to a mirror finish, it is etched using aqua regia (a solution of hydrochloric acid and nitric acid mixed in a ratio of 3:1) to reveal the austenite grain boundaries. From the observation surface, 10 fields of view are selected at random and observed using an optical microscope to generate photographic images. The magnification for microscopic observation can be set appropriately depending on the grain size. Specifically, in microscopic observation, the magnification is set so that the field of view contains, for example, 50 or more grains.

 各視野において、得られた写真画像に対して画像解析を実施して、ASTM E112(2021)に準拠して、結晶粒度番号を測定する。つまり、観察視野ごとに、1つの結晶粒度番号を得る。このとき、オーステナイト粒の結晶粒度番号は、得られた値の小数第二位を四捨五入して求める。得られた10個の結晶粒度番号の標準偏差を求め、オーステナイト粒の結晶粒度番号の標準偏差σと定義する。なお、オーステナイト粒の結晶粒度番号の標準偏差σは、得られた値の小数第三位を四捨五入して求める。 In each field of view, image analysis is performed on the obtained photographic image to measure the grain size number in accordance with ASTM E112 (2021). In other words, one grain size number is obtained for each observation field. At this time, the grain size number of the austenite grains is obtained by rounding off the obtained value to the nearest tenth. The standard deviation of the obtained 10 grain size numbers is calculated and defined as the standard deviation σ of the austenite grain grains. The standard deviation σ of the austenite grain grains is calculated by rounding off the obtained value to the nearest tenth.

 なお、本実施形態によるFe-Cr-Ni合金材において、オーステナイト粒の結晶粒度番号は、標準偏差σが0.60以下であればよく、特に限定されない。本実施形態において、オーステナイト粒の結晶粒度番号の下限はたとえば、4.0であってもよく、4.5であってもよく、5.0であってもよい。本実施形態において、オーステナイト粒の結晶粒度番号の上限はたとえば、12.0であってもよく、11.5であってもよく、11.0であってもよい。このとき、オーステナイト粒の結晶粒度番号は、上述の方法で得られた10個の結晶粒度番号の算術平均値を意味する。 In the Fe-Cr-Ni alloy material according to this embodiment, the grain size number of the austenite grains is not particularly limited as long as the standard deviation σ is 0.60 or less. In this embodiment, the lower limit of the grain size number of the austenite grains may be, for example, 4.0, 4.5, or 5.0. In this embodiment, the upper limit of the grain size number of the austenite grains may be, for example, 12.0, 11.5, or 11.0. In this case, the grain size number of the austenite grains means the arithmetic average value of the 10 grain size numbers obtained by the above-mentioned method.

 [引張降伏強度]
 本実施形態によるFe-Cr-Ni合金材は、上述の化学組成を有し、さらに、オーステナイト粒の結晶粒度番号の標準偏差σが0.60以下である。その結果、本実施形態によるFe-Cr-Ni合金材は、758MPa以上の引張降伏強度を有していても、強度異方性が低減されている。
[Tensile yield strength]
The Fe-Cr-Ni alloy material according to the present embodiment has the above-mentioned chemical composition, and further has a standard deviation σ of the grain size number of the austenite grains of 0.60 or less. As a result, the Fe-Cr-Ni alloy material according to the present embodiment has a tensile yield strength of 758 MPa or more, but has reduced strength anisotropy.

 上述のとおり、上述の化学組成を有するFe-Cr-Ni合金材において、758MPa以上の引張降伏強度を得ようとする場合、強度異方性が高くなる場合がある。しかしながら、本実施形態による合金材は、オーステナイト粒の結晶粒度番号の標準偏差σが0.60以下であることにより、結晶粒径のばらつきによる強度異方性の顕在化を抑制することができる。そのため、本実施形態による合金材は、758MPa以上の高い引張降伏強度を有していても、強度異方性を低減することができる。 As described above, when attempting to obtain a tensile yield strength of 758 MPa or more in an Fe-Cr-Ni alloy material having the above-mentioned chemical composition, strength anisotropy may become high. However, the alloy material according to this embodiment can suppress the manifestation of strength anisotropy due to variations in grain size, because the standard deviation σ of the grain size number of the austenite grains is 0.60 or less. Therefore, the alloy material according to this embodiment can reduce strength anisotropy even if it has a high tensile yield strength of 758 MPa or more.

 本実施形態において、引張降伏強度の好ましい下限は800MPaであり、さらに好ましくは830MPaであり、さらに好ましくは860MPaである。本実施形態において、引張降伏強度の上限は特に限定されず、たとえば、1240MPaであってよく、1200MPaであってよく、1150MPaであってもよい。 In this embodiment, the preferred lower limit of the tensile yield strength is 800 MPa, more preferably 830 MPa, and even more preferably 860 MPa. In this embodiment, the upper limit of the tensile yield strength is not particularly limited, and may be, for example, 1240 MPa, 1200 MPa, or 1150 MPa.

 また、本実施形態のFe-Cr-Ni合金材では、圧縮降伏強度は特に限定されない。本実施形態において圧縮降伏強度の下限は、たとえば、600MPaであってもよく、610MPaであってもよく、630MPaであってもよい。本実施形態において圧縮降伏強度の上限は、たとえば、1240MPa未満であってもよく、1200MPa未満であってよく、1150MPa未満であってもよい。また、本実施形態における引張降伏強度と圧縮降伏強度との測定方法は、後述する。 Furthermore, in the Fe-Cr-Ni alloy material of this embodiment, the compressive yield strength is not particularly limited. In this embodiment, the lower limit of the compressive yield strength may be, for example, 600 MPa, 610 MPa, or 630 MPa. In this embodiment, the upper limit of the compressive yield strength may be, for example, less than 1240 MPa, less than 1200 MPa, or less than 1150 MPa. Furthermore, the method of measuring the tensile yield strength and compressive yield strength in this embodiment will be described later.

 [強度異方性]
 本実施形態によるFe-Cr-Ni合金材は、上述の化学組成を有し、さらに、オーステナイト粒の結晶粒度番号の標準偏差σが0.60以下である。その結果、本実施形態によるFe-Cr-Ni合金材は、758MPa以上の引張降伏強度を有していても、強度異方性が低減されている。本明細書において、強度異方性が低減されているとは、異方性指標AIが0.700以上であることを意味する。また、本明細書において、異方性指標AIとは、引張降伏強度(引張YS)に対する圧縮降伏強度(圧縮YS)の比(圧縮YS/引張YS)を意味する。
[Strength anisotropy]
The Fe-Cr-Ni alloy material according to the present embodiment has the above-mentioned chemical composition, and further has a standard deviation σ of the grain size number of the austenite grains of 0.60 or less. As a result, the Fe-Cr-Ni alloy material according to the present embodiment has a reduced strength anisotropy even though it has a tensile yield strength of 758 MPa or more. In this specification, the reduced strength anisotropy means that the anisotropy index AI is 0.700 or more. In this specification, the anisotropy index AI means the ratio (compressive YS/tensile YS) of the compressive yield strength (compressive YS) to the tensile yield strength (tensile YS).

 異方性指標AIの好ましい下限は0.705であり、さらに好ましくは0.710であり、さらに好ましくは0.715であり、さらに好ましくは0.720であり、さらに好ましくは0.730である。なお、異方性指標AIの上限は、実質的に1.000未満であり、さらに好ましくは0.999であり、さらに好ましくは0.990であり、さらに好ましくは0.980である。 The preferred lower limit of the anisotropy index AI is 0.705, more preferably 0.710, more preferably 0.715, more preferably 0.720, and even more preferably 0.730. The upper limit of the anisotropy index AI is substantially less than 1.000, more preferably 0.999, more preferably 0.990, and even more preferably 0.980.

 本実施形態によるFe-Cr-Ni合金材の異方性指標AI、引張降伏強度、及び、圧縮降伏強度は、次の方法で求めることができる。まず、本実施形態によるFe-Cr-Ni合金材の引張降伏強度と、圧縮降伏強度とを求める。 The anisotropy index AI, tensile yield strength, and compressive yield strength of the Fe-Cr-Ni alloy material according to this embodiment can be determined by the following method. First, the tensile yield strength and compressive yield strength of the Fe-Cr-Ni alloy material according to this embodiment are determined.

 具体的に、本実施形態によるFe-Cr-Ni合金材の引張降伏強度は、次の方法で求めることができる。ASTM E8/E8M(2021)に準拠した方法で、引張試験を行う。本実施形態による合金材から、丸棒試験片を作製する。合金材の形状が板状の場合、板厚中央部から丸棒試験片を作製する。合金材の形状が管状の場合、肉厚中央部から丸棒試験片を作製する。合金材の形状が断面円形の棒状の場合、R/2位置から丸棒試験片を作製する。丸棒試験片の大きさは、たとえば、平行部直径4mm、標点距離20mmである。なお、丸棒試験片の軸方向は、合金材の圧延方向と平行である。丸棒試験片を用いて、常温(25℃)、大気中で引張試験を実施して、得られた0.2%オフセット耐力を引張降伏強度(MPa)と定義する。なお、引張降伏強度(MPa)は、得られた値の小数第一位を四捨五入して求める。 Specifically, the tensile yield strength of the Fe-Cr-Ni alloy material according to this embodiment can be determined by the following method. A tensile test is performed according to the method of ASTM E8/E8M (2021). A round bar test piece is prepared from the alloy material according to this embodiment. When the alloy material has a plate shape, a round bar test piece is prepared from the center of the plate thickness. When the alloy material has a tubular shape, a round bar test piece is prepared from the center of the wall thickness. When the alloy material has a rod shape with a circular cross section, a round bar test piece is prepared from the R/2 position. The size of the round bar test piece is, for example, a parallel part diameter of 4 mm and a gauge length of 20 mm. The axial direction of the round bar test piece is parallel to the rolling direction of the alloy material. A tensile test is performed using the round bar test piece at room temperature (25°C) in the air, and the obtained 0.2% offset yield strength is defined as the tensile yield strength (MPa). The tensile yield strength (MPa) is calculated by rounding the obtained value to the nearest tenth.

 同様に、本実施形態によるFe-Cr-Ni合金材の圧縮降伏強度は、次の方法で求めることができる。ASTM E9(2019)に準拠した方法で、圧縮試験を行う。本実施形態による合金材から、円柱試験片を作製する。合金材の形状が板状の場合、板厚中央部から円柱試験片を作製する。合金材の形状が管状の場合、肉厚中央部から円柱試験片を作製する。合金材の形状が断面円形の棒状の場合、R/2位置から円柱試験片を作製する。円柱試験片の大きさは、たとえば、平行部直径4mm、長さ8mmである。なお、円柱試験片の軸方向は、合金材の圧延方向と平行である。円柱試験片を用いて、常温(25℃)、大気中で圧縮試験を実施して、得られた0.2%オフセット耐力を圧縮降伏強度(MPa)と定義する。なお、圧縮降伏強度(MPa)は、得られた値の小数第一位を四捨五入して求める。 Similarly, the compressive yield strength of the Fe-Cr-Ni alloy material according to this embodiment can be determined by the following method. A compression test is performed according to ASTM E9 (2019). A cylindrical test piece is prepared from the alloy material according to this embodiment. If the alloy material is plate-shaped, a cylindrical test piece is prepared from the center of the plate thickness. If the alloy material is tubular, a cylindrical test piece is prepared from the center of the wall thickness. If the alloy material is rod-shaped with a circular cross section, a cylindrical test piece is prepared from the R/2 position. The size of the cylindrical test piece is, for example, 4 mm in parallel diameter and 8 mm in length. The axial direction of the cylindrical test piece is parallel to the rolling direction of the alloy material. A compression test is performed using the cylindrical test piece at room temperature (25°C) in the air, and the obtained 0.2% offset yield strength is defined as the compressive yield strength (MPa). The compressive yield strength (MPa) is determined by rounding off the obtained value to the nearest tenth.

 得られた引張降伏強度(引張YS)と、圧縮降伏強度(圧縮YS)とを用いて、異方性指標AI(=圧縮YS/引張YS)を求めることができる。なお、異方性指標AIは、得られた値の小数第四位を四捨五入して求める。 The anisotropy index AI (=compression YS/tensile YS) can be calculated using the obtained tensile yield strength (tensile YS) and compression yield strength (compression YS). The anisotropy index AI is calculated by rounding the obtained value to the fourth decimal place.

 [製造方法]
 本実施形態によるFe-Cr-Ni合金材の製造方法の一例を説明する。以下、本実施形態によるFe-Cr-Ni合金材の一例として、継目無合金管の製造方法を説明する。継目無合金管の製造方法は、素材を準備する工程(素材準備工程)と、素材から素管を製造する工程(熱間加工工程)と、製造された素管に冷間加工を実施する工程(第一冷間加工工程)と、溶体化処理を実施する工程(溶体化処理工程)と、溶体化処理された素管に対して冷間加工を実施する工程(第二冷間加工工程)とを備える。なお、本実施形態によるFe-Cr-Ni合金材の製造方法は、以下に説明する製造方法に限定されない。
[Production method]
An example of a method for producing an Fe—Cr—Ni alloy material according to this embodiment will be described below. As an example of the Fe—Cr—Ni alloy material according to this embodiment, a method for producing a seamless alloy pipe will be described below. The method for producing a seamless alloy pipe includes a step of preparing a material (material preparation step), a step of producing a mother pipe from the material (hot working step), a step of cold working the produced mother pipe (first cold working step), a step of performing a solution treatment (solution treatment step), and a step of cold working the solution-treated mother pipe (second cold working step). Note that the method for producing an Fe—Cr—Ni alloy material according to this embodiment is not limited to the production method described below.

 [素材準備工程]
 素材準備工程では、上述した化学組成を有するFe-Cr-Ni合金を溶製する。Fe-Cr-Ni合金は、電気炉によって溶製してもよく、Ar-O2混合ガス底吹き脱炭炉(AOD炉)によって溶製してもよい。また、真空脱炭炉(VOD炉)によって溶製してもよい。溶製したFe-Cr-Ni合金は、造塊法によってインゴットにしてもよく、連続鋳造法によってスラブ、ブルーム、又はビレットにしてもよい。必要に応じて、スラブ、ブルーム又はインゴットを分塊圧延して、ビレットを製造してもよい。以上の工程により素材(スラブ、ブルーム、又は、ビレット)を製造する。
[Material preparation process]
In the material preparation process, an Fe—Cr—Ni alloy having the above-mentioned chemical composition is melted. The Fe—Cr—Ni alloy may be melted in an electric furnace, or in an Ar—O 2 mixed gas bottom blown decarburization furnace (AOD furnace). It may also be melted in a vacuum decarburization furnace (VOD furnace). The melted Fe—Cr—Ni alloy may be made into an ingot by an ingot casting method, or into a slab, bloom, or billet by a continuous casting method. If necessary, the slab, bloom, or ingot may be rolled to produce a billet. The material (slab, bloom, or billet) is produced by the above-mentioned process.

 [熱間加工工程]
 熱間加工工程では、準備された素材を熱間加工して中間合金材(素管)を製造する。熱間加工の方法は特に限定されず、周知の方法でよい。すなわち、本実施形態において、熱間加工は、熱間圧延であってもよく、熱間押出であってもよく、熱間鍛造であってもよい。熱間加工において、素材の加熱温度は、たとえば、1100~1300℃である。
[Hot processing process]
In the hot working step, the prepared material is hot worked to produce an intermediate alloy material (blank pipe). The method of hot working is not particularly limited and may be a well-known method. That is, in this embodiment, the hot working may be hot rolling, hot extrusion, or hot forging. In the hot working, the heating temperature of the material is, for example, 1100 to 1300°C.

 たとえば、熱間加工としてマンネスマン法を実施して素管を製造する場合、穿孔機により丸ビレットを穿孔圧延する。この場合、穿孔比は特に限定されず、たとえば、1.0~4.0である。また、穿孔圧延された素管に対して、マンドレルミル、レデューサー、サイジングミル等により熱間圧延して素管にしてもよい。 For example, when manufacturing a blank pipe by carrying out the Mannesmann process as hot working, a round billet is pierced and rolled using a piercing machine. In this case, the piercing ratio is not particularly limited and is, for example, 1.0 to 4.0. The blank pipe that has been pierced and rolled may also be hot rolled using a mandrel mill, reducer, sizing mill, etc. to produce a blank pipe.

 なお、本明細書でいう中間合金材とは、最終製品が合金板の場合は、板状の合金材であり、最終製品が合金管の場合は素管であり、最終製品が断面円形の中実材の場合は軸方向に垂直な断面が円形の合金材である。ここで、合金材が断面円形の中実材の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して熱間加工を実施して、軸方向に垂直な断面が円形の中間合金材を製造する。熱間加工はたとえば、分塊圧延機による分塊圧延、又は、連続圧延機による熱間圧延である。連続圧延機は、上下方向に並んで配置された一対の孔型ロールを有する水平スタンドと、水平方向に並んで配置された一対の孔型ロールを有する垂直スタンドとが交互に配列されている。また、合金材が合金板の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して、分塊圧延機、及び、連続圧延機を用いて熱間圧延を実施して、合金板形状の中間合金材を製造する。 In this specification, the intermediate alloy material refers to a plate-shaped alloy material when the final product is an alloy plate, a blank tube when the final product is an alloy pipe, and an alloy material with a circular cross section perpendicular to the axial direction when the final product is a solid material with a circular cross section. Here, when the alloy material is a solid material with a circular cross section, the material is first heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. The material extracted from the heating furnace is subjected to hot processing to produce an intermediate alloy material with a circular cross section perpendicular to the axial direction. The hot processing is, for example, blooming rolling by a blooming mill, or hot rolling by a continuous rolling mill. The continuous rolling mill has a horizontal stand having a pair of grooved rolls arranged side by side in the vertical direction, and a vertical stand having a pair of grooved rolls arranged side by side in the horizontal direction, alternately arranged. In addition, when the alloy material is an alloy plate, the material is first heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. The material extracted from the heating furnace is hot rolled using a blooming mill and a continuous rolling mill to produce intermediate alloy material in the form of alloy plates.

 [第一冷間加工工程]
 第一冷間加工工程では、製造された中間合金材(素管)に対して冷間加工を実施する。本実施形態において、冷間加工は、冷間引抜であってもよく、冷間圧延であってもよい。冷間圧延を実施する場合、たとえば、複数の冷間圧延スタンドを備える連続圧延機を用いてもよい。すなわち、本実施形態による第一冷間加工工程では、周知の冷間加工を周知の条件で実施すればよい。具体的に、冷間加工時の中間合金材(素管)の温度は、たとえば、室温~300℃であってもよい。
[First cold working process]
In the first cold working step, the produced intermediate alloy material (blank pipe) is subjected to cold working. In this embodiment, the cold working may be cold drawing, or cold rolling. When cold rolling is performed, for example, a continuous rolling mill equipped with a plurality of cold rolling stands may be used. That is, in the first cold working step according to the present embodiment, a known cold rolling mill may be used. The cold working may be performed under known conditions. Specifically, the temperature of the intermediate alloy material (base pipe) during cold working may be, for example, room temperature to 300°C.

 本実施形態による第一冷間加工工程において、好ましい冷間加工率R1(%)は5%以上である。ここで、冷間加工率R1とは、第一冷間加工工程の開始前から、第一冷間加工工程の終了後における、中間合金材(素管)の断面積の減少率を意味する。具体的に、第一冷間加工工程前の素管の横断面の面積をS0(1)と定義し、第一冷間加工工程後の素管の横断面の面積をS1(1)と定義したとき、第一冷間加工工程の冷間加工率R1(%)は、次の式(A)で定義される。
 R1(%)=100(1-S1(1)/S0(1)) (A)
In the first cold working step according to the present embodiment, a preferred cold working ratio R1 (%) is 5% or more. Here, the cold working ratio R1 means the reduction rate of the cross-sectional area of the intermediate alloy material (blank tube) from before the start of the first cold working step to after the end of the first cold working step. Specifically, when the cross-sectional area of the blank tube before the first cold working step is defined as S0(1) and the cross-sectional area of the blank tube after the first cold working step is defined as S1(1), the cold working ratio R1 (%) of the first cold working step is defined by the following formula (A).
R1 (%) = 100 (1-S1(1)/S0(1)) (A)

 冷間加工率R1が5%以上であれば、後述する溶体化処理工程において、熱処理中の再結晶が促進される。その結果、製造されたFe-Cr-Ni合金材の結晶粒度番号の標準偏差σを、安定して小さくすることができる。したがって、本実施形態において、第一冷間加工工程の冷間加工率R1は、5%以上とするのが好ましい。なお、本実施形態において、第一冷間加工工程の冷間加工率R1の上限は特に限定されないが、たとえば、30%である。 If the cold working rate R1 is 5% or more, recrystallization during heat treatment is promoted in the solution treatment process described below. As a result, the standard deviation σ of the grain size number of the manufactured Fe-Cr-Ni alloy material can be stably reduced. Therefore, in this embodiment, it is preferable that the cold working rate R1 in the first cold working process is 5% or more. In this embodiment, the upper limit of the cold working rate R1 in the first cold working process is not particularly limited, but is, for example, 30%.

 [溶体化処理工程]
 溶体化処理工程では、冷間加工が実施された中間合金材(素管)に対して、溶体化処理を実施する。溶体化処理の方法は、特に限定されず、周知の方法でよい。たとえば、素管を熱処理炉に装入し、所望の温度で保持した後、急冷する。なお、素管を熱処理炉に装入し、所望の温度で保持した後、急冷して溶体化処理を実施する場合、溶体化処理を実施する温度(溶体化温度)とは、溶体化処理を実施するための熱処理炉の温度(℃)を意味する。この場合さらに、溶体化処理を実施する時間(保持時間)とは、素管が溶体化温度で保持される時間を意味する。
[Solution treatment process]
In the solution treatment process, a solution treatment is performed on the intermediate alloy material (blank pipe) that has been subjected to cold working. The method of the solution treatment is not particularly limited and may be a well-known method. For example, the blank pipe is loaded into a heat treatment furnace, held at a desired temperature, and then quenched. When the blank pipe is loaded into a heat treatment furnace, held at a desired temperature, and then quenched to perform the solution treatment, the temperature at which the solution treatment is performed (solution temperature) means the temperature (°C) of the heat treatment furnace for performing the solution treatment. In this case, the time for which the solution treatment is performed (holding time) means the time for which the blank pipe is held at the solution temperature.

 好ましくは、本実施形態による溶体化処理工程において、中間合金材(素管)を溶体化温度まで加熱する場合、900~1050℃での滞留時間を9分以上とする。上述の化学組成を有する中間合金材では、900℃以上では再結晶及び粒成長が進行しやすくなる。そのため、900~1050℃での滞留時間が短すぎれば、中間合金材中の温度ばらつきが発生しやすくなり、再結晶及び粒成長が不均一になりやすくなる。一方、900~1050℃での滞留時間が9分以上であれば、再結晶及び粒成長が均一になりやすくなる。この場合さらに、1060℃以上の熱処理において、再結晶が促進されやすくなる。その結果、製造されたFe-Cr-Ni合金材の結晶粒度番号の標準偏差σを、安定して小さくすることができる。 Preferably, in the solution treatment process according to this embodiment, when the intermediate alloy material (base tube) is heated to the solution temperature, the residence time at 900 to 1050°C is 9 minutes or more. In the intermediate alloy material having the above-mentioned chemical composition, recrystallization and grain growth are likely to proceed at 900°C or higher. Therefore, if the residence time at 900 to 1050°C is too short, temperature variations in the intermediate alloy material are likely to occur, and recrystallization and grain growth are likely to become non-uniform. On the other hand, if the residence time at 900 to 1050°C is 9 minutes or more, recrystallization and grain growth are likely to become uniform. In this case, recrystallization is further likely to be promoted in the heat treatment at 1060°C or higher. As a result, the standard deviation σ of the grain size number of the manufactured Fe-Cr-Ni alloy material can be stably reduced.

 したがって、本実施形態では、溶体化処理工程における加熱時の900~1050℃での滞留時間を9分以上とするのが好ましい。本実施形態において、溶体化処理工程における加熱時の900~1050℃での滞留時間のさらに好ましい下限は10分である。なお、900~1050℃での滞留時間が長すぎても、上記効果は飽和する。したがって、本実施形態では、溶体化処理工程における加熱時の900~1050℃での滞留時間の上限は、たとえば60分である。溶体化処理工程における加熱時の900~1050℃での滞留時間の上限は、45分であってもよく、30分であってもよい。 Therefore, in this embodiment, the residence time at 900 to 1050°C during heating in the solution treatment process is preferably 9 minutes or more. In this embodiment, a more preferable lower limit for the residence time at 900 to 1050°C during heating in the solution treatment process is 10 minutes. Note that if the residence time at 900 to 1050°C is too long, the above-mentioned effect saturates. Therefore, in this embodiment, the upper limit for the residence time at 900 to 1050°C during heating in the solution treatment process is, for example, 60 minutes. The upper limit for the residence time at 900 to 1050°C during heating in the solution treatment process may be 45 minutes or 30 minutes.

 好ましくは、本実施形態による溶体化処理工程における溶体化温度を1060~1300℃とする。溶体化温度が低すぎれば、溶体化処理後の素管に析出物(たとえば、金属間化合物であるσ相等)が残存する場合がある。この場合、製造されたFe-Cr-Ni合金材の耐食性が低下する場合がある。一方、溶体化温度が高すぎても、溶体化処理の効果は飽和する。したがって、本実施形態では、溶体化処理工程における溶体化温度を1060~1300℃とするのが好ましい。 Preferably, the solution temperature in the solution treatment step according to this embodiment is 1060 to 1300°C. If the solution temperature is too low, precipitates (such as the σ phase, which is an intermetallic compound) may remain in the blank tube after solution treatment. In this case, the corrosion resistance of the manufactured Fe-Cr-Ni alloy material may decrease. On the other hand, if the solution temperature is too high, the effect of the solution treatment is saturated. Therefore, in this embodiment, it is preferable to set the solution temperature in the solution treatment step to 1060 to 1300°C.

 素管を熱処理炉に装入し、所望の温度で保持した後、急冷して溶体化処理を実施する場合、保持時間は特に限定されず、周知の条件で実施すればよい。保持時間は、たとえば、5~180分である。急冷方法は、たとえば、水冷である。 When the blank tube is loaded into a heat treatment furnace, held at the desired temperature, and then rapidly cooled to perform solution treatment, there are no particular limitations on the holding time, and the process may be carried out under well-known conditions. The holding time is, for example, 5 to 180 minutes. The rapid cooling method is, for example, water cooling.

 [第二冷間加工工程]
 冷間加工工程では、溶体化処理された中間合金材(素管)を冷間加工して、Fe-Cr-Ni合金材を製造する。上述のとおり、本実施形態において、冷間加工は、冷間引抜であってもよく、冷間圧延であってもよい。すなわち、本実施形態による第二冷間加工工程でも、第一冷間加工工程と同様に、周知の冷間加工を周知の条件で実施すればよい。具体的に、冷間加工時の中間合金材(素管)の温度は、たとえば、室温~300℃であってもよい。
[Second cold working process]
In the cold working step, the solution-treated intermediate alloy material (blank tube) is cold worked to produce an Fe—Cr—Ni alloy material. As described above, in this embodiment, the cold working is In other words, in the second cold working step according to the present embodiment, the known cold working is performed in the same manner as in the first cold working step. Specifically, the temperature of the intermediate alloy material (base pipe) during cold working may be, for example, room temperature to 300°C.

 本実施形態による第二冷間加工工程において、好ましい冷間加工率R2(%)は5~50%である。ここで、冷間加工率R2とは、第二冷間加工工程の開始前から、第二冷間加工工程の終了後における、中間合金材(素管)の断面積の減少率を意味する。具体的に、第二冷間加工工程前の素管の横断面の面積をS0(2)と定義し、第二冷間加工工程後のFe-Cr-Ni合金材の横断面の面積をS1(2)と定義したとき、冷間加工率R2(%)は、次の式(B)で定義される。
 R2(%)=100(1-S1(2)/S0(2)) (B)
In the second cold working step according to the present embodiment, a preferred cold working ratio R2 (%) is 5 to 50%. Here, the cold working ratio R2 means a reduction ratio of a cross-sectional area of an intermediate alloy material (blank tube) from before the start of the second cold working step to after the end of the second cold working step. Specifically, when the cross-sectional area of the blank tube before the second cold working step is defined as S0(2) and the cross-sectional area of the Fe-Cr-Ni alloy material after the second cold working step is defined as S1(2), the cold working ratio R2 (%) is defined by the following formula (B).
R2 (%) = 100 (1-S1(2)/S0(2)) (B)

 冷間加工率R2が5~50%であれば、第二冷間加工工程後のFe-Cr-Ni合金材において、引張降伏強度を安定して758MPa以上にすることができる。したがって、冷間加工率R2は5~50%とするのが好ましい。 If the cold working rate R2 is 5 to 50%, the tensile yield strength of the Fe-Cr-Ni alloy material after the second cold working process can be stably set to 758 MPa or more. Therefore, it is preferable that the cold working rate R2 is 5 to 50%.

 なお、本実施形態において、上記第一冷間加工工程の冷間加工率R1(%)と、第二冷間加工工程の冷間加工率R2(%)とが、上述の範囲を満たしているのが好ましく、製造工程における総冷間加工率は、特に限定されない。 In this embodiment, it is preferable that the cold working rate R1 (%) of the first cold working step and the cold working rate R2 (%) of the second cold working step satisfy the above-mentioned range, and the total cold working rate in the manufacturing process is not particularly limited.

 以上の製造方法によって、本実施形態によるFe-Cr-Ni合金材を製造することができる。なお、上述の製造方法では、一例として継目無合金管の製造方法を説明した。しかしながら、本実施形態によるFe-Cr-Ni合金材は、板状等、他の形状であってもよい。板状等、他の形状の製造方法も、上述の製造方法と同様に、たとえば、素材準備工程と、熱間加工工程と、溶体化処理工程と、冷間加工工程とを備える。さらに、上述の製造方法は一例であり、他の製造方法によって製造されてもよい。以下、実施例によって本発明をさらに具体的に説明する。 The above manufacturing method allows the production of the Fe-Cr-Ni alloy material according to this embodiment. In the above manufacturing method, the method for producing seamless alloy pipes has been described as one example. However, the Fe-Cr-Ni alloy material according to this embodiment may be in other shapes, such as a plate shape. Similar to the above manufacturing method, a manufacturing method for other shapes, such as a plate shape, also includes, for example, a material preparation step, a hot working step, a solution treatment step, and a cold working step. Furthermore, the above manufacturing method is one example, and the material may be produced by other manufacturing methods. The present invention will be described in more detail below with reference to examples.

 表1A及び表1Bに示す化学組成を有する合金を、高周波真空溶解法により溶製した。なお、表1B中の「-」は、各元素の含有量が不純物レベルであることを意味する。具体的に、符号AのW含有量は、小数第二位を四捨五入して0%であったことを意味する。同様に、符号AのV含有量、Nb含有量、及び、Ti含有量は、小数第三位を四捨五入して0%であったことを意味する。同様に、符号AのSn含有量、及び、REM含有量は、小数第四位を四捨五入して0%であったことを意味する。同様に、符号AのCa含有量、B含有量、及び、Mg含有量は、小数第五位を四捨五入して0%であったことを意味する。 Alloys having the chemical compositions shown in Tables 1A and 1B were produced by high-frequency vacuum melting. In Table 1B, "-" means that the content of each element is at the impurity level. Specifically, the W content of A is rounded off to one decimal place and is 0%. Similarly, the V content, Nb content, and Ti content of A are rounded off to one decimal place and are 0%. Similarly, the Sn content and REM content of A are rounded off to the fourth decimal place and are 0%. Similarly, the Ca content, B content, and Mg content of A are rounded off to the fifth decimal place and are 0%.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 各符号の合金を用いて、造塊法により、各試験番号のインゴットを50kg製造した。得られた各試験番号のインゴットを1200℃で3時間加熱した後、熱間鍛造して、断面が50mm×50mmの角材を製造した。得られた角材を1200℃で1時間加熱した後、熱間圧延して、板厚30mmの板材(合金板)を製造した。得られた各試験番号の合金板に対して、第一冷間加工を実施した。このとき、各試験番号の合金板に実施した第一冷間加工の冷間加工率R1(%)を、表2に示す。 Using the alloys with each code, 50 kg of ingots with each test number were produced by ingot casting. The obtained ingots with each test number were heated at 1200°C for 3 hours and then hot forged to produce square bars with a cross section of 50 mm x 50 mm. The obtained square bars were heated at 1200°C for 1 hour and then hot rolled to produce plates (alloy plates) with a plate thickness of 30 mm. A first cold working process was performed on the obtained alloy plates with each test number. The cold working rate R1 (%) of the first cold working performed on the alloy plates with each test number is shown in Table 2.

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 第一冷間加工が実施された各試験番号の合金板に対して、溶体化処理を実施した。溶体化処理では、第一冷間加工が実施された合金板を加熱して、表2に記載の溶体化温度(℃)で、表2に記載の保持時間(分)だけ保持した後、水冷した。このとき、溶体化温度まで加熱する際、900~1050℃で滞留した時間を、表2の「滞留時間(分)」欄に示す。 A solution treatment was carried out on the alloy plates of each test number that had been subjected to the first cold working. In the solution treatment, the alloy plates that had been subjected to the first cold working were heated and held at the solution temperature (°C) shown in Table 2 for the holding time (min) shown in Table 2, and then water-cooled. The holding time at 900-1050°C when heating to the solution temperature is shown in the "Holding time (min)" column in Table 2.

 溶体化処理が実施された各試験番号の合金板に対して、第二冷間加工を実施した。このとき、各試験番号の合金板に実施した第二冷間加工の冷間加工率R2(%)を、表2に示す。なお、試験番号4及び20では、冷間加工として冷間引抜を実施した。試験番号4及び20を除く各試験番号では、冷間加工として冷間圧延を実施した。 A second cold working process was carried out on the alloy plates of each test number that had been subjected to solution treatment. The cold working ratio R2 (%) of the second cold working process carried out on the alloy plates of each test number is shown in Table 2. Note that in test numbers 4 and 20, cold drawing was carried out as the cold working process. In each test number except test numbers 4 and 20, cold rolling was carried out as the cold working process.

 また、各試験番号の合金板に対して実施された、冷間加工の総冷間加工率R(%)を表2に示す。なお、本実施例において、総冷間加工率R(%)とは、次の式(C)で定義される。
 R(%)=R1(%)+R2(%) (C)
 ここで、式(C)中のR1には、第一冷間加工の冷間加工率(%)が代入され、R2には、第二冷間加工の冷間加工率(%)が代入される。
The total cold working ratio R (%) of the cold working performed on the alloy plate of each test number is shown in Table 2. In this example, the total cold working ratio R (%) is defined by the following formula (C).
R (%) = R1 (%) + R2 (%) (C)
Here, the cold working rate (%) of the first cold working is substituted for R1 in the formula (C), and the cold working rate (%) of the second cold working is substituted for R2.

 [評価試験]
 以上の方法で製造された各試験番号の合金板に対して、以下に説明する結晶粒度番号測定試験、及び、強度異方性測定試験を実施した。
[Evaluation test]
The alloy plates having each test number produced by the above method were subjected to a grain size number measurement test and a strength anisotropy measurement test, which will be described below.

 [結晶粒度番号測定試験]
 各試験番号の合金板に対して、結晶粒度番号測定試験を実施して、結晶粒度番号の標準偏差σを求めた。具体的に、上述の方法で作製された試験片に対して、上述の方法で顕微鏡観察を実施した。顕微鏡観察により得られた写真画像に対して画像解析を実施して、ASTM E112(2021)に準拠して、結晶粒度番号を測定した。各試験番号について、10視野で得られた結晶粒度番号を、表3に示す。得られた10個の結晶粒度番号から得られた結晶粒度番号の平均値と、標準偏差σとを、表3に示す。
[Grain size number measurement test]
A grain size number measurement test was performed on the alloy plate of each test number to determine the standard deviation σ of the grain size number. Specifically, the test pieces prepared by the above-mentioned method were subjected to microscopic observation by the above-mentioned method. Image analysis was performed on the photographic images obtained by microscopic observation to measure the grain size number in accordance with ASTM E112 (2021). Table 3 shows the grain size numbers obtained in 10 fields of view for each test number. Table 3 shows the average value and standard deviation σ of the grain size numbers obtained from the 10 grain size numbers obtained.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 [強度異方性測定試験]
 各試験番号の合金板に対して、強度異方性測定試験を実施して、異方性指標AIを求めた。具体的に、まず、上述の方法で引張降伏強度(MPa)及び圧縮降伏強度(MPa)を求めた。具体的に、各試験番号の合金板の板厚中央部から、引張試験用の丸棒試験片及び圧縮試験用の円柱試験片を作製した。丸棒試験片は、平行部直径4mm、標点距離20mmであった。円柱試験片は、平行部直径4mm、長さ8mmであった。丸棒試験片及び円柱試験片の軸方向は、合金板の圧延方向と平行であった。
[Strength anisotropy measurement test]
A strength anisotropy measurement test was carried out on the alloy plate of each test number to obtain the anisotropy index AI. Specifically, the tensile yield strength (MPa) and the compressive yield strength (MPa) were first obtained by the above-mentioned method. Specifically, a round bar test piece for a tensile test and a cylindrical test piece for a compression test were prepared from the center of the plate thickness of the alloy plate of each test number. The round bar test piece had a parallel part diameter of 4 mm and a gauge length of 20 mm. The cylindrical test piece had a parallel part diameter of 4 mm and a length of 8 mm. The axial direction of the round bar test piece and the cylindrical test piece was parallel to the rolling direction of the alloy plate.

 引張試験用の丸棒試験片に対して、常温(25℃)、大気中でASTM E8/E8M(2021)に準拠した方法で、引張試験を実施した。引張試験により得られた0.2%オフセット耐力を、引張降伏強度(MPa)とした。さらに、圧縮試験用の円柱試験片に対して、常温(25℃)、大気中でASTM E9(2019)に準拠した方法で、圧縮試験を実施した。圧縮試験により得られた0.2%オフセット耐力を圧縮降伏強度(MPa)とした。得られた引張降伏強度(引張YS)に対する、圧縮降伏強度(圧縮YS)の比(圧縮YS/引張YS)を求め、異方性指標AIとした。各試験番号の合金板について、得られた引張降伏強度を表3の「引張YS(MPa)」欄に、圧縮降伏強度を表3の「圧縮YS(MPa)」欄に、異方性指標AIを表3の「異方性指標AI」欄に示す。 A tensile test was performed on the round bar test pieces at room temperature (25°C) in air in accordance with ASTM E8/E8M (2021). The 0.2% offset yield strength obtained by the tensile test was defined as the tensile yield strength (MPa). Furthermore, a compression test was performed on the cylindrical test pieces at room temperature (25°C) in air in accordance with ASTM E9 (2019). The 0.2% offset yield strength obtained by the compression test was defined as the compressive yield strength (MPa). The ratio of the compressive yield strength (compressive YS) to the obtained tensile yield strength (tensile YS) (compressive YS/tensile YS) was calculated and defined as the anisotropy index AI. For the alloy plates with each test number, the obtained tensile yield strength is shown in the "Tensile YS (MPa)" column of Table 3, the compressive yield strength is shown in the "Compressive YS (MPa)" column of Table 3, and the anisotropy index AI is shown in the "Anisotropy Index AI" column of Table 3.

 [評価結果]
 表1A~表3を参照して、試験番号1~23の合金板はいずれも、化学組成が適切であった。これらの合金板はさらに、結晶粒度番号の標準偏差σが0.60以下であった。その結果、これらの合金板は、引張降伏強度が758MPa以上を満たしていた。さらに、異方性指標AIが0.700以上となり、強度異方性が低減されていた。
[Evaluation Results]
Referring to Tables 1A to 3, all of the alloy plates of Test Nos. 1 to 23 had appropriate chemical compositions. Furthermore, the standard deviation σ of the grain size number of these alloy plates was 0.60 or less. As a result, the tensile yield strength of these alloy plates was 758 MPa or more. Furthermore, the anisotropy index AI was 0.700 or more, and the strength anisotropy was reduced.

 一方、試験番号24の合金板は、Ni含有量が高すぎた。その結果、この合金板は、引張降伏強度が758MPa以上を満たしていたものの、異方性指標AIが0.700未満となり、強度異方性が低減されていなかった。 On the other hand, the alloy plate of test number 24 had too high a Ni content. As a result, although this alloy plate had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.

 試験番号25の合金板は、Cr含有量が低すぎた。その結果、この合金板は、引張降伏強度が758MPa以上を満たしていたものの、異方性指標AIが0.700未満となり、強度異方性が低減されていなかった。 The alloy plate with test number 25 had too low a Cr content. As a result, although this alloy plate had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.

 試験番号26及び27の合金板は、第一冷間加工工程の冷間加工率R1が低すぎた。その結果、これらの合金板は、結晶粒度番号の標準偏差σが0.60を超えた。その結果、これらの合金板は、引張降伏強度が758MPa以上を満たしていたものの、異方性指標AIが0.700未満となり、強度異方性が低減されていなかった。 The alloy plates of test numbers 26 and 27 had too low a cold working ratio R1 in the first cold working process. As a result, the standard deviation σ of the grain size number of these alloy plates exceeded 0.60. As a result, although these alloy plates had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.

 試験番号28及び29の合金板は、溶体化処理工程の加熱時における900~1050℃での滞留時間が短すぎた。その結果、これらの合金板は、結晶粒度番号の標準偏差σが0.60を超えた。その結果、これらの合金板は、引張降伏強度が758MPa以上を満たしていたものの、異方性指標AIが0.700未満となり、強度異方性が低減されていなかった。 The alloy plates of test numbers 28 and 29 had too short a residence time at 900-1050°C during heating in the solution treatment process. As a result, the standard deviation σ of the grain size number of these alloy plates exceeded 0.60. As a result, although these alloy plates had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.700, and the strength anisotropy was not reduced.

 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The above describes the embodiments of the present disclosure. However, the above-described embodiments are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the above-described embodiments, and can be implemented by modifying the above-described embodiments as appropriate within the scope of the spirit of the present disclosure.

Claims (3)

 質量%で、
 C:0.030%以下、
 Si:0.01~1.00%、
 Mn:0.01~2.00%、
 P:0.040%以下、
 S:0.0050%以下、
 Al:0.01~0.50%、
 Ni:36.5超~54.0%、
 Cr:19.0~27.5%、
 Mo:2.00~11.50%、
 Cu:0.01~3.00%、
 N:0.010~0.500%、
 Co:0.01~2.00%、
 O:0.010%以下、
 V:0~0.50%、
 Nb:0~0.10%、
 Ti:0~0.40%、
 W:0~3.0%、
 Sn:0~0.010%、
 Ca:0~0.0100%、
 B:0~0.0100%、
 Mg:0~0.0100%、
 希土類元素:0~0.100%、及び、
 残部がFe及び不純物からなり、
 ミクロ組織において、オーステナイト粒の結晶粒度番号の標準偏差が0.60以下であり、
 引張降伏強度が758MPa以上である、
 Fe-Cr-Ni合金材。
In mass percent,
C: 0.030% or less,
Si: 0.01-1.00%,
Mn: 0.01 to 2.00%,
P: 0.040% or less,
S: 0.0050% or less,
Al: 0.01-0.50%,
Ni: more than 36.5 to 54.0%,
Cr: 19.0-27.5%,
Mo: 2.00-11.50%,
Cu: 0.01-3.00%,
N: 0.010-0.500%,
Co: 0.01-2.00%,
O: 0.010% or less,
V: 0-0.50%,
Nb: 0 to 0.10%,
Ti: 0 to 0.40%,
W: 0 to 3.0%,
Sn: 0 to 0.010%,
Ca: 0-0.0100%,
B: 0 to 0.0100%,
Mg: 0 to 0.0100%,
Rare earth elements: 0 to 0.100%, and
The balance is Fe and impurities,
In the microstructure, the standard deviation of the grain size number of the austenite grains is 0.60 or less;
The tensile yield strength is 758 MPa or more.
Fe-Cr-Ni alloy material.
 請求項1に記載のFe-Cr-Ni合金材であって、
 V:0.01~0.50%、
 Nb:0.01~0.10%、
 Ti:0.01~0.40%、
 W:0.1~3.0%、
 Sn:0.001~0.010%、
 Ca:0.0001~0.0100%、
 B:0.0001~0.0100%、
 Mg:0.0001~0.0100%、及び、
 希土類元素:0.001~0.100%からなる群から選択される1元素以上を含有する、
 Fe-Cr-Ni合金材。
The Fe-Cr-Ni alloy material according to claim 1,
V: 0.01-0.50%,
Nb: 0.01 to 0.10%,
Ti: 0.01-0.40%,
W: 0.1-3.0%,
Sn: 0.001 to 0.010%,
Ca: 0.0001-0.0100%,
B: 0.0001 to 0.0100%,
Mg: 0.0001 to 0.0100%, and
Rare earth elements: containing one or more elements selected from the group consisting of 0.001 to 0.100%;
Fe-Cr-Ni alloy material.
 油井用継目無合金管である、
 請求項1又は請求項2に記載のFe-Cr-Ni合金材。
Seamless alloy pipe for oil wells.
The Fe-Cr-Ni alloy material according to claim 1 or 2.
PCT/JP2024/023682 2023-07-07 2024-06-28 Fe-Cr-Ni ALLOY MATERIAL WO2025013666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-112446 2023-07-07
JP2023112446 2023-07-07

Publications (1)

Publication Number Publication Date
WO2025013666A1 true WO2025013666A1 (en) 2025-01-16

Family

ID=94215421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/023682 WO2025013666A1 (en) 2023-07-07 2024-06-28 Fe-Cr-Ni ALLOY MATERIAL

Country Status (1)

Country Link
WO (1) WO2025013666A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613833A (en) * 2008-06-25 2009-12-30 宝山钢铁股份有限公司 Peracidity deep-well Ni base alloy tubing and casing and manufacture method
WO2012128258A1 (en) * 2011-03-24 2012-09-27 住友金属工業株式会社 Austenite system alloy pipe and manufacturing method thereof
WO2018225831A1 (en) * 2017-06-08 2018-12-13 新日鐵住金株式会社 Nuclear-grade ni-base alloy pipe
WO2018225869A1 (en) * 2017-06-09 2018-12-13 新日鐵住金株式会社 Austenitic alloy pipe and method for manufacturing same
WO2021256128A1 (en) * 2020-06-19 2021-12-23 Jfeスチール株式会社 Alloy pipe and method for manufacturing same
WO2023132339A1 (en) * 2022-01-06 2023-07-13 日本製鉄株式会社 Fe-Cr-Ni ALLOY MATERIAL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613833A (en) * 2008-06-25 2009-12-30 宝山钢铁股份有限公司 Peracidity deep-well Ni base alloy tubing and casing and manufacture method
WO2012128258A1 (en) * 2011-03-24 2012-09-27 住友金属工業株式会社 Austenite system alloy pipe and manufacturing method thereof
WO2018225831A1 (en) * 2017-06-08 2018-12-13 新日鐵住金株式会社 Nuclear-grade ni-base alloy pipe
WO2018225869A1 (en) * 2017-06-09 2018-12-13 新日鐵住金株式会社 Austenitic alloy pipe and method for manufacturing same
WO2021256128A1 (en) * 2020-06-19 2021-12-23 Jfeスチール株式会社 Alloy pipe and method for manufacturing same
WO2023132339A1 (en) * 2022-01-06 2023-07-13 日本製鉄株式会社 Fe-Cr-Ni ALLOY MATERIAL

Similar Documents

Publication Publication Date Title
JP7397391B2 (en) Fe-Cr-Ni alloy material
WO2021033672A1 (en) Duplex stainless steel material
EP2725113B1 (en) Method for producing austenitic stainless steel and austenitic stainless steel material
WO2010082395A1 (en) Process for production of duplex stainless steel pipe
US20190284666A1 (en) NiCrFe Alloy
JP6497450B2 (en) Rolled bar wire for cold forging tempered products
JP7425360B2 (en) Martensitic stainless steel material and method for producing martensitic stainless steel material
WO2011136175A1 (en) High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
US20190112694A1 (en) Austenitic Stainless Steel Material
JP6819198B2 (en) Rolled bar for cold forged tempered products
WO2018003823A1 (en) Austenitic stainless steel
WO2020218426A1 (en) Two-phase stainless seamless steel pipe and method for producing two-phase stainless seamless steel pipe
JP2021167446A (en) Duplex stainless steel
JP6679935B2 (en) Steel for cold work parts
JP7339526B2 (en) Austenitic stainless steel
JP2021127517A (en) Austenitic stainless steel material
WO2021225103A1 (en) Duplex stainless steel seamless pipe
JP6137082B2 (en) High strength stainless steel seamless steel pipe excellent in low temperature toughness and method for producing the same
WO2020067444A1 (en) Austenitic alloy
JP7406177B1 (en) Steel suitable for use in sour environments
WO2023199902A1 (en) Alloy material
JP7284433B2 (en) alloy
WO2025013666A1 (en) Fe-Cr-Ni ALLOY MATERIAL
WO2025013665A1 (en) Fe-Cr-Ni ALLOY MATERIAL
JP7364955B1 (en) Duplex stainless steel material