Nothing Special   »   [go: up one dir, main page]

WO2024230187A1 - Systems and methods for sensing and positioning assisted mobility management - Google Patents

Systems and methods for sensing and positioning assisted mobility management Download PDF

Info

Publication number
WO2024230187A1
WO2024230187A1 PCT/CN2023/141241 CN2023141241W WO2024230187A1 WO 2024230187 A1 WO2024230187 A1 WO 2024230187A1 CN 2023141241 W CN2023141241 W CN 2023141241W WO 2024230187 A1 WO2024230187 A1 WO 2024230187A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
area
communication method
message
communication device
Prior art date
Application number
PCT/CN2023/141241
Other languages
French (fr)
Inventor
Zhiqiang Han
Chuangxin JIANG
Qi Yang
Junpeng LOU
Junchen Liu
Original Assignee
Zte Corporation
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2024230187A1 publication Critical patent/WO2024230187A1/en

Links

Definitions

  • the disclosure relates generally to wireless communications, including but not limited to systems and methods for sensing and positioning assisted mobility management.
  • the standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) .
  • the 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) .
  • 5G-AN 5G Access Network
  • 5GC 5G Core Network
  • UE User Equipment
  • the elements of the 5GC also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
  • example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
  • a wireless communication method can include a wireless communication node sending a first message indicating communication information including at least one of a mobility measurement report configuration.
  • the first message can indicate an area list including a plurality of the areas, each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area.
  • the mobility measurement resource configuration based on sensing or positioning data to a wireless communication device.
  • the mobility measurement report configuration can indicate an area that meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range.
  • the wireless communication method can include the wireless communication node receiving a second message including measurement results performed based on the communication information from the wireless communication device. Sensing data is the information about characteristics of the environment and/or objects within the environment, wherein positioning data is the information about positioning and/or velocity of the wireless communication device.
  • the wireless communication method can include the wireless communication node determining parameters for a mobility measurement report configuration and/or a mobility measurement resource configuration based on the sensing data and/or positioning data.
  • the mobility measurement report configuration includes mapping relationships between velocity thresholds and measurement report cycles or an area list. The mapping relationships indicates that in response to one of the velocity thresholds being increased, a corresponding one of the measurement report cycles is decreased.
  • the mobility measurement resource configuration can include one or more wireless resource and each wireless resource is associated with a set of reference signals.
  • the reference signal can include at least one of: a Synchronization Signal Block (SSB) or a Channel State Information-Reference Signal (CSI-RS) .
  • the mobility measurement resource configuration can indicate whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
  • the mobility measurement resource configuration can indicate which wireless resource be measured, or not be measured.
  • the wireless communication method can include the wireless communication node sending the mapping relationships between velocity thresholds and measurement report cycles or a new area list to the wireless communication device. One of the measurement report cycles based on a corresponding one of the velocity thresholds and a corresponding one of the mapping relationships.
  • the area list can indicate a list of areas that each area meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range.
  • the wireless communication method can include the wireless communication node prioritizing one of the measurement results having a cell signal quality of one of the wireless resources.
  • the measurement results include an indication of whether each of the wireless resources is LOS or NLOS.
  • the wireless communication method can include the wireless communication node receiving a third message from a network entity.
  • the third message can include at least one of: the base station ID, a response type, or the area list or mapping relationships between velocity thresholds and measurement report cycles or sensing data.
  • the wireless communication method can include the wireless communication node sending a forth message requesting information regarding the area or the mapping relationships between velocity thresholds and measurement to the network entity.
  • the fourth message can include at least one of: a base station ID, a request type, or UE ID.
  • the response type can indicate a period response or an event-based response.
  • the response type, when being the period response can include at least one of: a period or a next sending time.
  • the response type, when being the event-based response can include an event type.
  • the wireless communication method can include the wireless communication node determining whether a terminal area in which the wireless communication device is currently located belongs to the area.
  • the wireless communication method can include the wireless communication node receiving a fifth message from a network entity.
  • the fifth message can include at least one of the base station ID or the terminal ID list indicating respective statuses of one or more terminals.
  • the wireless communication method can include the wireless communication node sending a sixth message requesting information regarding the terminal area to the network entity.
  • the sixth message can include at least one of: a base station ID, a request type, or a terminal ID list.
  • the wireless communication method can include the wireless communication node receiving a seventh message from the network entity recommending to handover from the wireless communication node to a target wireless communication node.
  • the seventh message can include at least one of: a UE ID or a list of a plural number of the target wireless communication nodes.
  • a wireless communication method can include a wireless communication node receiving, by a wireless communication device, a first message indicating communication information including at least one of a mobility measurement report configuration or a mobility measurement resource configuration based on sensing data.
  • the wireless communication method can include the wireless communication device performing a measurement process based on the communication information and sending a second message including a result of the measurement process to the wireless communication device.
  • the wireless communication method can include the wireless communication node determining the measurement report cycles, based on the mapping relationships between velocity thresholds and measurement report cycles and the velocity of the wireless communication device.
  • the wireless communication method can include the wireless communication node blocking the wireless communication device from sending the second message when the wireless communication device is not in an area list.
  • the second message can include the wireless resource ID, the measurement result, and whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
  • LOS Line-of-Sight
  • NLOS Non-Line-of-Sight
  • the wireless communication method can include the wireless communication device notifying the measurement report cycles, thereby causing the wireless communication device to adjust one of the measurement report cycles.
  • the wireless communication method can include the wireless communication device identifying whether the wireless communication device is within an area indicated by an area list blocking the wireless communication device from sending the second message based on the identification that the wireless communication device is not within the area indicated by the area list.
  • FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure
  • FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates an example for notifying a velocity threshold, in accordance with an embodiment of the present disclosure
  • FIG. 4 illustrates an example for a process of the velocity threshold configuration, in accordance with an embodiment of the present disclosure
  • FIG. 5 illustrates an example for an environment within the coverage of a base station, in accordance with an embodiment of the present disclosure
  • FIG. 6 illustrates an example for a process for mobility management, in accordance with an embodiment of the present disclosure
  • FIG. 7 illustrates an example for a good area list, in accordance with an embodiment of the present disclosure
  • FIG. 8 illustrates an example for a sensing function notifying the good area list, in accordance with an embodiment of the present disclosure
  • FIG. 9 illustrates an example for notifying the good area list, in accordance with an embodiment of the present disclosure.
  • FIG. 10 illustrates an example for a process for terminal area notification information, in accordance with an embodiment of the present disclosure
  • FIG. 11 illustrates an example the good areas of multiple base station, in accordance with an embodiment of the present disclosure
  • FIG. 12 illustrates an example a network initiating cell handover, in accordance with an embodiment of the present disclosure
  • FIG. 13 illustrates an example method, in accordance with an embodiment of the present disclosure.
  • FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100.
  • NB-IoT narrowband Internet of things
  • Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as wireless communication device) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101.
  • the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126.
  • Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
  • the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104.
  • the BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively.
  • Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128.
  • the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
  • FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution.
  • the system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
  • system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of FIG. 1, as described above.
  • the System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) .
  • the BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220.
  • the UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240.
  • the BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
  • system 200 may further include any number of modules other than the modules shown in FIG. 2.
  • modules other than the modules shown in FIG. 2.
  • the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof.
  • various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure
  • the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232.
  • a duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion.
  • the operations of the two transceiver modules 210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two transceivers 210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
  • the UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme.
  • the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • LTE Long Term Evolution
  • 5G 5G
  • the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example.
  • eNB evolved node B
  • the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc.
  • PDA personal digital assistant
  • the processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof.
  • the memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively.
  • the memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230.
  • the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively.
  • Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
  • the network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202.
  • network communication module 218 may be configured to support internet or WiMAX traffic.
  • network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network.
  • the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems.
  • the model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it.
  • the OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols.
  • the OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model.
  • a first layer may be a physical layer.
  • a second layer may be a Medium Access Control (MAC) layer.
  • MAC Medium Access Control
  • a third layer may be a Radio Link Control (RLC) layer.
  • a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer.
  • PDCP Packet Data Convergence Protocol
  • a fifth layer may be a Radio Resource Control (RRC) layer.
  • a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
  • NAS Non Access Stratum
  • IP Internet Protocol
  • Embodiments #1 Base station notifies the mapping relationship between velocity and measurement report cycle.
  • the network 100 may manage the movement of terminals 104 and may optimize links between the terminals 104 and the network 100, thereby providing an application of one or more network services.
  • the terminals 104 may move from the coverage area of one BS 102 o the coverage area of another BS 102. There may be differences in the movement of the terminals 104 in the network 100. For example, one or more terminals 104 may be on high-speed trains, whereas one or more terminals 104 may be moving at a lower speed or stationery.
  • the BS 102 can notify the mapping relationship between velocity and measurement report cycles to the terminals 104. In response to the velocity of the terminals 104, the BS 102 can set different measurement cycles.
  • the BS 102 can notify mapping relationships between velocity thresholds and measurement report cycles to the terminals 104. For example, one BS 102 sets the velocity threshold to six levels.
  • One level of the six levels can be ⁇ 5km/h, 20480ms>, which indicates that when the velocity of the terminals is less than 5km/h, the reporting cycle is 20480 ms.
  • Another level of the six levels can be ⁇ 20km/h, 5120ms>, which indicates that when the velocity of the terminals is more than 5km/h and les than 20km/h, the reporting cycle is 5120 ms.
  • Another level of the six levels can be ⁇ 80km/h, 1024ms>, which indicates that when the velocity of the terminals is more than 20km/h and les than 80km/h, the reporting cycle is 1024 ms.
  • Another level of the six levels can be ⁇ 120km/h, 640ms>, which indicates that when the velocity of the terminals is more than 80km/h and les than 120km/h, the reporting cycle is 640 ms.
  • Another level of the six levels can be ⁇ 200km/h, 240ms>, which indicates that when the velocity of the terminals is more than 120km/h and les than 200km/h, the reporting cycle is 240 ms.
  • Another level of the six levels can be ⁇ 500km/h, 120ms>, which indicates that when the velocity of the terminals is more than 5km/h and les than 20km/h, the reporting cycle is 120 ms.
  • the BS 102 can notify the mapping relationship between velocity thresholds and measurement report cycles to the terminals 104 by unicast or broadcast as depicted in FIG. 3.
  • FIG. 3 illustrates an example 300 for notifying the velocity threshold.
  • One terminal 104 may receive the mapping relationship between velocity thresholds and measurement report cycles and reports the measurement report based on the velocity of itself.
  • the terminal 104 can obtain its own velocity.
  • FIG. 3 illustrates that the BS 102 can transmit one or more signals to the terminal.
  • the one or more signals can be used to measure the velocity of the terminal 104.
  • FIG. 3 further illustrates that the terminal 104 can receive the one or more signals and derive the velocity from the one or more signals.
  • the terminal 104 can adjust a measurement report cycle based on the velocity and a mapping relationship between velocity thresholds and measurement report cycles.
  • the BS 102 can notify the measurement report cycles to the terminal 104 and the terminal 104 can adjust measurement report cycle based on signal information.
  • the BS 102 can measure the one or more transmitted signals by the terminal 104 and can obtain the velocity of the terminal.
  • the BS 102 can notify the velocity to the terminal 104, the terminal 104 can adjust the measurement report cycle based on the velocity and the mapping relationship between velocity thresholds and measurement report cycles.
  • the BS 102 can notify the measurement report cycles to the terminal 104 and the terminal 104 can adjust the measurement report cycle based on the signal information. If the BS 102 updates the mapping relationship between velocity thresholds and measurement report cycle and can notify a new mapping relationship between velocity thresholds and measurement report cycles to the terminals 104.
  • the terminals 104 can update its parameters and use the new mapping relationship between velocity thresholds and measurement report cycles.
  • the BS 102 can request the mapping relationships between velocity thresholds and measurement report cycles.
  • the BS 102 can request the mapping relationships between velocity thresholds and measurement report cycles from another function (e.g., Access and Mobility Management Function (AMF) , Location Management Function (LMF) , among others) .
  • FIG. 4 illustrates an example for a process of the velocity threshold configuration with another function.
  • the BS 102 can send a velocity threshold request message to an AMF 402, and the AMF 402 can respond with a velocity threshold request message. before the BS 102 can send the velocity threshold response message, the BS received the velocity threshold response message from the AMF 402.
  • the velocity threshold response message can be sent by the AMF 402 or based on the velocity threshold request message.
  • Embodiment #2 Base Station or Core Network indicates the measurement configuration
  • a wireless communication system of the present disclosure can automatically support positioning, sensing, and communication.
  • Positioning refers to the transmission and reception of signals between the BS 102 and the terminal 104 to calculate the position of the terminal.
  • Sensing refers to the use of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment.
  • the wireless communication system can utilize the reflection or scattering of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment.
  • the wireless communication system can optimize terminal mobility management by utilizing the positing of the terminal 104 and the characteristics of the environment and/or objects in the environment.
  • the terminal 104 can measure one or more reference signals (e.g., single-sideband modulation (SSB) or channel state information-reference signal (CSI-RS) ) sent by the BS 102 to receive cell signal quality.
  • the BS 102 can inform the terminal 104 of the resources occupied by signals (e.g., SSB or CSI-RS) .
  • the terminal 104 can report the measurement results, based on the reporting cycle negotiated with the BS 102.
  • the terminal 104 can report the measurement result based on events.
  • the terminal can measure the received SSB and/or CSI-RS and report the measurement result to the BS 102.
  • the terminal can measure all the received SSB and/or CSI-RS, which uses a significant number of resources and is not conductive to UE 104 power saving.
  • FIG. 5 illustrates an example for an environment within the coverage of a BS 102.
  • a BS 102 can use a plurality of beams to send an SSB.
  • the BS 102 can send an indication information to one or more terminals 104.
  • the indication information can indicate resources used in sending the plurality of beams, where terminal A 104 and terminal B 104 are associated with the BS 102.
  • the obstacles can block a line of sight (LoS) transmission between the BS 102 and the terminals 104.
  • LiS line of sight
  • a mobile system described herein can sense the obstacles or obtain positions of the terminals 104. Using the positions of the terminals 104, the mobile system can detect one or more beams in the plurality of beams that can measure the terminal A 104 or terminal B 104. Therefore, the BS 102 can recommend the detected one or more beams for the terminals 104 to use to measure and report signals. For example, the BS 102 can recommend that terminal A 104 measure and report via beam #1, beam #3 and beam #4. The BS 102 can notify terminal A 104 by indicating wireless resources corresponding to beam #1, beam #3 and beam #4. Each wireless resource corresponds to time-frequency domain resources of a beam.
  • the BS 102 can indicate the wireless resource corresponding to beam #1 is NLOS. Furthermore, the BS 102 can indicate LOS or NLOS for each wireless resource. The BS 102 can notify terminal B 104 by indicating the wireless resources corresponding to beam #5 and beam #8. Each wireless resource corresponds to the time-frequency domain resources of the beam. If beam#5 and beam#8 are NLOS, the BS 102 can indicate the wireless resource corresponding to beam #5 and beam#8 are NLOS.
  • the terminals 104 can prioritize reporting the cell signal quality about beams recommended by the BS 102. Each beam can correspond to a set of measurement parameters (e.g., Reference Signal Received Power (RSRP) , Reference Signal Received Quality (RSRQ) , wireless resource ID, etc. ) .
  • FIG. 6 illustrates an example for a process for mobility management. If the terminals 104 can determine that the measured wireless resource is NLOS or LOS, the terminal 104 can indicate the measured wireless resource is NLOS or LOS.
  • the measured wireless resource can include a format where the format is ⁇ wireless resource ID 1, RSRP and/or RSRQ, LOS>or ⁇ wireless resource ID 2, RSRP and/or RSRQ, NLOS>.
  • Embodiment #3 Base Station configures Good Area List to terminals
  • a wireless communication system of the present disclosure can automatically support positioning, sensing, and communication.
  • Positioning refers to the transmission and reception of signals between the BS 102 and the terminal 104 to calculate the position of the terminal.
  • Sensing refers to the use of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment.
  • the wireless communication system can utilize the reflection or scattering of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment.
  • the wireless communication system can obtain the characteristics of the environment and/or objects within the environment (e.g. shape, size, orientation, speed, location, distances or relative motion between objects, etc. ) using RF signals.
  • the wireless communication system can learn the environment within the coverage of each BS 102.
  • FIG. 7 illustrates an example for a good area list, the wireless communication system can obtain characteristics of objects in the environment.
  • the objects may block the transmission between BS 102 A and terminals 104. Therefore, the wireless communication system can calculate some good areas based on the characteristics of the environment and/or objects in the environment.
  • the good area can be defined as an area where terminals 104 and the BS 102 have a LOS path and an area where terminals 104 meet cell selection criterion S.
  • the good area can be estimated by the system based on the capabilities of the BS 102 (e.g., transmission power, bandwidth, number of antennas, and/or the distance between the BS 102 and the area) . In some case, based on the distance, a path lost can be obtained.
  • the good area can be further defined as an area where the distance from the BS 102 is within a specific range, an area where the angle with the normal direction of the BS 102 is within a specific range, and an area where the time of radio wave transmission and the BS 102 is within a certain range.
  • the wireless communication system can derive the good areas based on the characteristics of the environment and/or objects within the environment as the BS 102 notifies terminals 104 the good area lists.
  • the good area list can include good area list information.
  • the good area list information can include a Good area ID, a Good area distance range, a Good area angle range, a Good area time range, and a Geographical area.
  • the Good area distance range is indicated by a minimum distance, a maximum distance or a combination of minimum distance and maximum distance.
  • the Good area angle range is indicated by a minimum angle, a maximum angle or a combination of minimum angle and maximum angle.
  • the Good area time range is indicated by a minimum time, a maximum time or a combination of minimum time and maximum time.
  • the Geographical area is indicated by latitude and longitude.
  • the BS 102 can send a good area list information to terminals 104.
  • the good area list information includes a good area list.
  • the terminal may not report the measurement result.
  • the measurement result includes intra-frequency measurement and/or inter-frequency measurement.
  • the BS 102 receives the good area list information and the positioning of terminals 104 from other functions such as sensing function (SF) , location management function (LMF) and so on.
  • the functions and so on are located in core network or radio access network (RAN) .
  • SF sensing function
  • LMF location management function
  • RAN radio access network
  • FIG. 8 illustrates an example for the SF 802 notifying the good area list, the SF 802 notifies the BS 102 the good area list information.
  • the SF 802 can send the good area list information actively or based on a request from the BS 102.
  • the BS 102 can send a good area list request information to the SF 802.
  • the good area list request information can include the BS 102 ID, a Request type, and the Good area list.
  • the BS 102 ID can indicate the identification of the BS 102 such as TRP ID, cell ID and so on.
  • the request type can indicate the request is the period request or event-based request.
  • the SF 802 can send a good area list response information
  • the good area list response information can include the BS 102 ID, a response type, and the Good area list.
  • the response type is used to indicate the response is the period response or event-based response.
  • the good area list response information can further include a period and a next sending time.
  • the good area list response information can further include an Event typ.
  • the event type can indicate an event.
  • the event can be at least one of a terminal is re-associated with the BS 102, speed of the terminal changes, positioning of the terminal changes, or signal quality of the terminal changes.
  • the BS 102 can send notification messages to indicate whether the terminal is located in a good area.
  • FIG. 9 illustrates an example for notifying the good area list.
  • the terminal area notification message can define whether the terminal is in a good area or not.
  • the terminal may not report the measurement result.
  • the measurement result includes intra-frequency measurement and/or inter-frequency measurement.
  • the BS 102 receives the terminal area notification messages from other functions such as SF, LMF and so on. The functions and so on are located in core network or RAN.
  • FIG. 10 illustrates an example for a process for terminal area notification information, the SF 802 notifies the terminal area response information.
  • the SF 802 can send the terminal area response information actively or based on the request from the BS 102.
  • the BS 102 can send a terminal area request information to the SF 802, the terminal area request information can include the BS 102 ID, the Request type, and a terminal ID list.
  • the request type can indicate the terminal area request.
  • the terminal ID list can indicate a set of terminal identifiers to list the terminals 104 which are requested whether they are in good areas.
  • the SF 802 can send a terminal area response information.
  • the terminal area response information can include the BS 102 ID and a List of ⁇ terminal ID, status>.
  • the List of ⁇ terminal ID, status> can indicate the terminals 104 and the status of these terminals 104 remaining in the good areas.
  • Embodiment #4 Network Initiated Cell Handover
  • the wireless communication system can obtain characteristics of objects in the environment and positioning of the terminals 104.
  • the wireless communication system can derive the good areas of each BS 102 based on sensing data collected from the base stations and terminals 104.
  • different base stations may have different environments and different obstacles. Therefore, different base stations may have different good areas.
  • FIG. 11 illustrates an example the good areas of multiple base station. As depicted in FIG. 11, BS 102 A and BS 102 B have overlapping areas. Within the overlapping area, there are obstacles between BS 102 A and terminal 104 A, whereas there are no obstacles between BS 102 B and terminal 104 A. Therefore, the signal quality between BS 102 A and terminal 104 A may be worse than the signal quality between BS 102 B and terminal 104 A.
  • FIG. 12 illustrates an example network 1302 initiating cell handover.
  • the core network 1202 can initiate the handover and issue a HANDOVER RECOMMENDATION.
  • the HANDOVER RECOMMENDATION can include a UE ID to indicate which UE are recommended to switch to a new BS 102 and a target BS 102 list.
  • the target BS 102 list can one or more potential target base stations (e.g., target BS 102 ID) and/or their recommendation reason (e.g., recommended reason list) .
  • the recommended reason list can include one or more reasons such as the UE in the good area, LOS between UE and the base station, and the cell measurement meets cell selection criterion S with this base station.
  • the source gNB can initiate handover and issue a HANDOVER REQUEST over the Xn interface.
  • the target gNB can perform admission control and provide a new RRC configuration as part of a HANDOVER REQUEST ACKNOWLEDGE.
  • the source gNB can provide the RRC configuration to the UE by forwarding the RRCReconfiguration message received in the HANDOVER REQUEST ACKNOWLEDGE.
  • the RRCReconfiguration message can include the cell ID and information required to access the target cell so that the UE can access the target cell without reading system information. In some cases, the information required for contention-based and contention-free random access can be included in the RRCReconfiguration message.
  • the access information to the target cell may include beam specific information.
  • the UE moves the RRC connection to the target gNB and replies with the RRCReconfigurationComplete.
  • FIG. 13 illustrates a flow diagram of a method 1300 for an energy control.
  • the method 1300 may be executed by any one or more of the components and devices detailed herein in conjunction with FIGS. 1 to 12.
  • the method 1300 may be performed by a wireless communication node (e.g., a base station (BS) 102) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1300 depending on the embodiment. At least one aspect of the operations is directed to a system, method, apparatus, or a computer-readable medium.
  • BS base station
  • a wireless communication method can include a wireless communication node sending a first message indicating communication information including at least one of a mobility measurement report configuration.
  • the first message can indicate an area list including a plural number of the areas, each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area.
  • the mobility measurement resource configuration based on sensing or positioning data to a wireless communication device.
  • the mobility measurement report configuration can indicate an area that meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range.
  • the wireless communication method can include the wireless communication node receiving a second message including measurement results performed based on the communication information from the wireless communication device. Sensing data is the information about characteristics of the environment and/or objects within the environment, wherein positioning data is the information about positioning and/or velocity of the wireless communication device.
  • the wireless communication method can include the wireless communication node determining parameters for a mobility measurement report configuration and/or a mobility measurement resource configuration based on the sensing data and/or positioning data.
  • the mobility measurement report configuration includes mapping relationships between velocity thresholds and measurement report cycles or an area list. The mapping relationships indicates that in response to one of the velocity thresholds being increased, a corresponding one of the measurement report cycles is decreased.
  • the mobility measurement resource configuration can include one or more wireless resource and each wireless resource is associated with a set of reference signals.
  • the reference signal can include at least one of: a Synchronization Signal Block (SSB) or a Channel State Information-Reference Signal (CSI-RS) .
  • the mobility measurement resource configuration can indicate whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
  • the mobility measurement resource configuration can indicate which wireless resource be measured, or not be measured.
  • the wireless communication method can include the wireless communication node sending the mapping relationships between velocity thresholds and measurement report cycles or a new area list to the wireless communication device. One of the measurement report cycles based on a corresponding one of the velocity thresholds and a corresponding one of the mapping relationships.
  • the area list can indicate a list of areas that each area meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range.
  • the wireless communication method can include the wireless communication node prioritizing one of the measurement results having a cell signal quality of one of the wireless resources.
  • the measurement results include an indication of whether each of the wireless resources is LOS or NLOS.
  • the wireless communication method can include the wireless communication node receiving a third message from a network entity.
  • the third message can include at least one of: the base station ID, a response type, or the area list or mapping relationships between velocity thresholds and measurement report cycles or sensing data.
  • the wireless communication method can include the wireless communication node sending a forth message requesting information regarding the area or the mapping relationships between velocity thresholds and measurement to the network entity.
  • the fourth message can include at least one of: a base station ID, a request type, or UE ID.
  • the response type can indicate a period response or an event-based response.
  • the response type, when being the period response can include at least one of: a period or a next sending time.
  • the response type, when being the event-based response can include an event type.
  • the wireless communication method can include the wireless communication node determining whether a terminal area in which the wireless communication device is currently located belongs to the area.
  • the wireless communication method can include the wireless communication node receiving a fifth message from a network entity.
  • the fifth message can include at least one of the base station ID or the terminal ID list indicating respective statuses of one or more terminals.
  • the wireless communication method can include the wireless communication node sending a sixth message requesting information regarding the terminal area to the network entity.
  • the sixth message can include at least one of: a base station ID, a request type, or a terminal ID list.
  • the wireless communication method can include the wireless communication node receiving a seventh message from the network entity recommending to handover from the wireless communication node to a target wireless communication node.
  • the seventh message can include at least one of: a UE ID or a list of a plural number of the target wireless communication nodes.
  • a wireless communication method can include a wireless communication node receiving, by a wireless communication device, a first message indicating communication information including at least one of a mobility measurement report configuration or a mobility measurement resource configuration based on sensing data.
  • the wireless communication method can include the wireless communication device performing a measurement process based on the communication information and sending a second message including a result of the measurement process to the wireless communication device.
  • the wireless communication method can include the wireless communication node determining the measurement report cycles, based on the mapping relationships between velocity thresholds and measurement report cycles and the velocity of the wireless communication device.
  • the wireless communication method can include the wireless communication node blocking the wireless communication device from sending the second message when the wireless communication device is not in an area list.
  • the second message can include the wireless resource ID, the measurement result, and whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
  • LOS Line-of-Sight
  • NLOS Non-Line-of-Sight
  • the wireless communication method can include the wireless communication device notifying the measurement report cycles, thereby causing the wireless communication device to adjust one of the measurement report cycles.
  • the wireless communication method can include the wireless communication device identifying whether the wireless communication device is within an area indicated by an area list blocking the wireless communication device from sending the second message based on the identification that the wireless communication device is not within the area indicated by the area list.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or any combination of these techniques.
  • firmware e.g., a digital implementation, an analog implementation, or a combination of the two
  • firmware various forms of program or design code incorporating instructions
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general-purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media can include both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according to embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Abstract

At least one aspect is directed to a system, method, apparatus, or a computer-readable medium of the following. A wireless communication method can include a wireless communication node sending a first message indicating communication information including at least one of a mobility measurement report configuration. The first message can indicate an area list including a plurality of the areas, each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area. The wireless communication method can include the wireless communication node receiving a second message including measurement results performed based on the communication information from the wireless communication device.

Description

SYSTEMS AND METHODS FOR SENSING AND POSITIONING ASSISTED MOBILITY MANAGEMENT TECHNICAL FIELD
The disclosure relates generally to wireless communications, including but not limited to systems and methods for sensing and positioning assisted mobility management.
BACKGROUND
The standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) . The 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) . In order to facilitate the enablement of different data services and requirements, the elements of the 5GC, also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
SUMMARY
The example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments, example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
At least one aspect is directed to a system, method, apparatus, or a computer-readable medium of the following. A wireless communication method can include a wireless communication node sending a first message indicating communication information including at least one of a mobility measurement report configuration. The first message can indicate an area list including a plurality of the areas, each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area. The mobility measurement resource configuration based on sensing or positioning data to a wireless communication device. The mobility measurement report configuration can indicate an area that meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range. The wireless communication method can include the wireless communication node receiving a second message  including measurement results performed based on the communication information from the wireless communication device. Sensing data is the information about characteristics of the environment and/or objects within the environment, wherein positioning data is the information about positioning and/or velocity of the wireless communication device.
In some embodiments, the wireless communication method can include the wireless communication node determining parameters for a mobility measurement report configuration and/or a mobility measurement resource configuration based on the sensing data and/or positioning data. The mobility measurement report configuration includes mapping relationships between velocity thresholds and measurement report cycles or an area list. The mapping relationships indicates that in response to one of the velocity thresholds being increased, a corresponding one of the measurement report cycles is decreased. The mobility measurement resource configuration can include one or more wireless resource and each wireless resource is associated with a set of reference signals. The reference signal can include at least one of: a Synchronization Signal Block (SSB) or a Channel State Information-Reference Signal (CSI-RS) . The mobility measurement resource configuration can indicate whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) . The mobility measurement resource configuration can indicate which wireless resource be measured, or not be measured.
In some embodiments, the wireless communication method can include the wireless communication node sending the mapping relationships between velocity thresholds and measurement report cycles or a new area list to the wireless communication device. One of the measurement report cycles based on a corresponding one of the velocity thresholds and a corresponding one of the mapping relationships. The area list can indicate a list of areas that each area meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range. Each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area.
In some embodiments, the wireless communication method can include the wireless communication node prioritizing one of the measurement results having a cell signal quality of one of the wireless resources. The measurement results include an indication of whether each of the wireless resources is LOS or NLOS. The wireless communication method can include the wireless communication node receiving a third message from a network entity. The third message can include at least one of: the base station ID, a response type, or the area list or mapping relationships between velocity thresholds and measurement report cycles or sensing data. The wireless communication method can include the wireless communication node sending a forth message requesting information regarding the area or the mapping relationships between velocity thresholds and measurement to the network entity. The fourth message can include at least one of: a base station ID, a request type, or UE ID. The response type can indicate a period response or an event-based response. The response type, when being the period response, can include at least one of: a period or a next sending time. The response type, when being the event-based response, can include an event type.
In some embodiments, the wireless communication method can include the wireless communication node determining whether a terminal area in which the wireless communication device is currently located belongs to the area. The wireless communication method can include the wireless communication node receiving a fifth message from a network entity. The fifth message can include at least one of the base station ID or the terminal ID list indicating respective statuses of one or more terminals. The wireless communication method can include the wireless communication node sending a sixth message requesting information regarding the terminal area to the network entity. The sixth message can include at least one of: a base station ID, a request type, or a terminal ID list. The wireless communication method can include the wireless communication node receiving a seventh message from the network entity recommending to handover from the wireless communication node to a target wireless communication node. The seventh message can include at least one of: a UE ID or a list of a plural number of the target wireless communication nodes.
A wireless communication method can include a wireless communication node receiving, by a wireless communication device, a first message indicating communication information including at least one of a mobility measurement report configuration or a mobility measurement resource configuration based on sensing data. The wireless communication method can include the wireless communication device performing a measurement process based on the communication information and sending a second message including a result of the measurement process to the wireless communication device. The wireless communication method can include the wireless communication node determining the measurement report cycles, based on the mapping relationships between velocity thresholds and measurement report cycles and the velocity of the wireless communication device. The wireless communication method can include the wireless communication node blocking the wireless communication device from sending the second message when the wireless communication device is not in an area list. The second message can include the wireless resource ID, the measurement result, and whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
In some embodiments, the wireless communication method can include the wireless communication device notifying the measurement report cycles, thereby causing the wireless communication device to adjust one of the measurement report cycles. The wireless communication method can include the wireless communication device identifying whether the wireless communication device is within an area indicated by an area list blocking the wireless communication device from sending the second message based on the identification that the wireless communication device is not within the area indicated by the area list.
BRIEF DESCRIPTION OF THE DRAWINGS
Various example embodiments of the present solution are described in detail below with reference to the following figures or drawings. The drawings are provided for purposes of illustration only and merely depict example embodiments of the present solution to facilitate the reader's understanding of the present solution. Therefore, the drawings should not be considered limiting of the breadth, scope, or applicability of the present solution. It should be noted that for clarity and ease of illustration, these drawings are not necessarily drawn to scale.
FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure;
FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure;
FIG. 3 illustrates an example for notifying a velocity threshold, in accordance with an embodiment of the present disclosure;
FIG. 4 illustrates an example for a process of the velocity threshold configuration, in accordance with an embodiment of the present disclosure;
FIG. 5 illustrates an example for an environment within the coverage of a base station, in accordance with an embodiment of the present disclosure;
FIG. 6 illustrates an example for a process for mobility management, in accordance with an embodiment of the present disclosure;
FIG. 7 illustrates an example for a good area list, in accordance with an embodiment of the present disclosure;
FIG. 8 illustrates an example for a sensing function notifying the good area list, in accordance with an embodiment of the present disclosure;
FIG. 9 illustrates an example for notifying the good area list, in accordance with an embodiment of the present disclosure;
FIG. 10 illustrates an example for a process for terminal area notification information, in accordance with an embodiment of the present disclosure;
FIG. 11 illustrates an example the good areas of multiple base station, in accordance with an embodiment of the present disclosure;
FIG. 12 illustrates an example a network initiating cell handover, in accordance with an embodiment of the present disclosure;
FIG. 13 illustrates an example method, in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
Mobile Communication Technology and Environment
FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure. In the following discussion, the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100. ” Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as  wireless communication device) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101. In FIG. 1, the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126. Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
For example, the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution. The system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one illustrative embodiment, system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of FIG. 1, as described above.
System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) . The BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220. The UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240. The BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 200 may further include any number of modules other than the modules shown in FIG. 2. Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure
In accordance with some embodiments, the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion. The operations of the two transceiver modules 210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two transceivers 210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
The UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme. In some illustrative embodiments, the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
In accordance with various embodiments, the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example. In some embodiments, the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc. The processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof. The memory modules 216 and 234  may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard, memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively. The memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230. In some embodiments, the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively. Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
The network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202. For example, network communication module 218 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network. In this manner, the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for, ” “configured to” and conjugations thereof, as used herein with respect to a specified operation or function, refer to a device, component, circuit, structure, machine, signal, etc., that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
The Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems. The model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it. The OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols. The OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model. In some embodiments, a first layer may be a physical layer. In some embodiments, a second layer may be a Medium Access Control (MAC) layer. In some embodiments, a third layer may be a Radio Link Control (RLC) layer. In some embodiments, a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer. In some embodiments, a fifth layer may be a Radio Resource Control (RRC) layer. In some embodiments, a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
Various example embodiments of the present solution are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the present solution. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the present solution. Thus, the present solution is not limited to the example embodiments and applications described and  illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely example approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present solution. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present solution is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
Systems and Methods for Sensing and Positioning Assisted Mobility Management
Embodiments #1: Base station notifies the mapping relationship between velocity and measurement report cycle.
In the mobile communication network, the network 100 may manage the movement of terminals 104 and may optimize links between the terminals 104 and the network 100, thereby providing an application of one or more network services. The terminals 104 may move from the coverage area of one BS 102 o the coverage area of another BS 102. There may be differences in the movement of the terminals 104 in the network 100. For example, one or more terminals 104 may be on high-speed trains, whereas one or more terminals 104 may be moving at a lower speed or stationery. The BS 102 can notify the mapping relationship between velocity and measurement report cycles to the terminals 104. In response to the velocity of the terminals 104, the BS 102 can set different measurement cycles. The BS 102can notify mapping relationships between velocity thresholds and measurement report cycles to the terminals 104. For example, one BS 102 sets the velocity threshold to six levels.
One level of the six levels can be <5km/h, 20480ms>, which indicates that when the velocity of the terminals is less than 5km/h, the reporting cycle is 20480 ms. Another level of the six levels can be <20km/h, 5120ms>, which indicates that when the velocity of the terminals is more than 5km/h and les than 20km/h, the reporting cycle is 5120 ms. Another level of the six levels can be <80km/h, 1024ms>, which indicates that when the velocity of the terminals is more than 20km/h and les than 80km/h, the reporting cycle is 1024 ms. Another level of the six levels can be <120km/h, 640ms>, which indicates that when the velocity of the terminals is more than 80km/h and les than 120km/h, the reporting cycle is 640 ms. Another level of the six levels can be <200km/h, 240ms>, which indicates that when the velocity of the terminals is more than 120km/h and les than 200km/h, the reporting cycle is 240 ms. Another level of the six levels can be <500km/h, 120ms>, which indicates that when the velocity of the terminals is more than 5km/h and les than 20km/h, the reporting cycle is 120 ms.
The slower the velocity of the terminal 104, the larger the measurement reporting cycle can be set. The BS 102 can notify the mapping relationship between velocity thresholds and measurement report cycles to the terminals 104 by unicast or broadcast as depicted in FIG. 3. FIG. 3 illustrates an example 300 for notifying the velocity threshold. One terminal 104 may receive the mapping relationship between velocity thresholds and measurement report cycles and reports the measurement report based on the velocity of itself. The terminal 104 can obtain its own velocity. FIG. 3 illustrates that the BS 102 can transmit one or more signals to the terminal. The one or more signals can be used to measure the velocity of the terminal 104. FIG. 3 further illustrates that the terminal 104 can receive the one or more signals and derive the velocity from the one or more signals. In some arrangements, the terminal 104 can adjust a measurement report cycle based on the velocity and a mapping  relationship between velocity thresholds and measurement report cycles. In some arrangements, the BS 102 can notify the measurement report cycles to the terminal 104 and the terminal 104 can adjust measurement report cycle based on signal information.
The BS 102 can measure the one or more transmitted signals by the terminal 104 and can obtain the velocity of the terminal. The BS 102 can notify the velocity to the terminal 104, the terminal 104 can adjust the measurement report cycle based on the velocity and the mapping relationship between velocity thresholds and measurement report cycles. The BS 102 can notify the measurement report cycles to the terminal 104 and the terminal 104 can adjust the measurement report cycle based on the signal information. If the BS 102 updates the mapping relationship between velocity thresholds and measurement report cycle and can notify a new mapping relationship between velocity thresholds and measurement report cycles to the terminals 104. The terminals 104 can update its parameters and use the new mapping relationship between velocity thresholds and measurement report cycles.
The BS 102 can request the mapping relationships between velocity thresholds and measurement report cycles. The BS 102 can request the mapping relationships between velocity thresholds and measurement report cycles from another function (e.g., Access and Mobility Management Function (AMF) , Location Management Function (LMF) , among others) . FIG. 4 illustrates an example for a process of the velocity threshold configuration with another function. For example, the BS 102 can send a velocity threshold request message to an AMF 402, and the AMF 402 can respond with a velocity threshold request message. before the BS 102 can send the velocity threshold response message, the BS received the velocity threshold response message from the AMF 402. The velocity threshold response message can be sent by the AMF 402 or based on the velocity threshold request message.
Embodiment #2: Base Station or Core Network indicates the measurement configuration
A wireless communication system of the present disclosure can automatically support positioning, sensing, and communication. Positioning refers to the transmission and reception of signals between the BS 102 and the terminal 104 to calculate the position of the terminal. Sensing refers to the use of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment. The wireless communication system can utilize the reflection or scattering of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment.
The wireless communication system can optimize terminal mobility management by utilizing the positing of the terminal 104 and the characteristics of the environment and/or objects in the environment. In a 5G mobile communication system, the terminal 104 can measure one or more reference signals (e.g., single-sideband modulation (SSB) or channel state information-reference signal (CSI-RS) ) sent by the BS 102 to receive cell signal quality. The BS 102 can inform the terminal 104 of the resources occupied by signals (e.g., SSB or CSI-RS) . In conventional solutions, the terminal 104 can report the measurement results, based on the reporting cycle negotiated with the BS 102. The terminal 104 can report the measurement result based on events. The terminal can measure the received SSB and/or CSI-RS and report the measurement result to the BS 102. The terminal can measure all the received SSB and/or CSI-RS, which uses a significant number of resources and is not conductive to UE 104 power saving.
To combat this pitfall, the BS 102 of the present disclosure can send measurement configuration messages to the terminal 104 to configure the terminal 104 to detect which SSB or CSI-RS can or cannot be measured. FIG. 5 illustrates an example for an environment within the coverage of a BS 102. Referring to FIG. 5, a BS 102 can use a plurality of beams to send an SSB. The BS 102 can send an indication information to one or more terminals 104. The indication information can indicate resources used in sending the plurality of beams, where terminal A 104 and terminal B 104 are associated with the BS 102. There may be one or more obstacles (e.g., trees, buildings, vehicles, people, poles, etc. ) between terminal A 104, terminal B 104, and the BS 102. The obstacles can block a line of sight (LoS) transmission between the BS 102 and the terminals 104.
A mobile system described herein can sense the obstacles or obtain positions of the terminals 104. Using the positions of the terminals 104, the mobile system can detect one or more beams in the plurality of beams that can measure the terminal A 104 or terminal B 104. Therefore, the BS 102 can recommend the detected one or more beams for the terminals 104 to use to measure and report signals. For example, the BS 102 can recommend that terminal A 104 measure and report via beam #1, beam #3 and beam #4. The BS 102 can notify terminal A 104 by indicating wireless resources corresponding to beam #1, beam #3 and beam #4. Each wireless resource corresponds to time-frequency domain resources of a beam. When beam#1 is not line of sight (NLOS) , the BS 102 can indicate the wireless resource corresponding to beam #1 is NLOS. Furthermore, the BS 102 can indicate LOS or NLOS for each wireless resource. The BS 102 can notify terminal B 104 by indicating the wireless resources corresponding to beam #5 and beam #8. Each wireless resource corresponds to the time-frequency domain resources of the beam. If beam#5 and beam#8 are NLOS, the BS 102 can indicate the wireless resource corresponding to beam #5 and beam#8 are NLOS.
The terminals 104 can prioritize reporting the cell signal quality about beams recommended by the BS 102. Each beam can correspond to a set of measurement parameters (e.g., Reference Signal Received Power (RSRP) , Reference Signal Received Quality (RSRQ) , wireless resource ID, etc. ) . FIG. 6 illustrates an example for a process for mobility management. If the terminals 104 can determine that the measured wireless resource is NLOS or LOS, the terminal 104 can indicate the measured wireless resource is NLOS or LOS. The measured wireless resource can include a format where the format is <wireless resource ID 1, RSRP and/or RSRQ, LOS>or <wireless resource ID 2, RSRP and/or RSRQ, NLOS>.
Embodiment #3: Base Station configures Good Area List to terminals
A wireless communication system of the present disclosure can automatically support positioning, sensing, and communication. Positioning refers to the transmission and reception of signals between the BS 102 and the terminal 104 to calculate the position of the terminal. Sensing refers to the use of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment. The wireless communication system can utilize the reflection or scattering of signals in the wireless communication system to obtain characteristics of the environment and/or objects in the environment.
The wireless communication system can obtain the characteristics of the environment and/or objects within the environment (e.g. shape, size, orientation, speed, location, distances or relative motion between objects, etc. ) using RF signals. The wireless communication system can learn the environment within the coverage of each BS 102. FIG. 7 illustrates an example for a good area list, the wireless communication system  can obtain characteristics of objects in the environment. The objects may block the transmission between BS 102 A and terminals 104. Therefore, the wireless communication system can calculate some good areas based on the characteristics of the environment and/or objects in the environment.
The good area can be defined as an area where terminals 104 and the BS 102 have a LOS path and an area where terminals 104 meet cell selection criterion S. The good area can be estimated by the system based on the capabilities of the BS 102 (e.g., transmission power, bandwidth, number of antennas, and/or the distance between the BS 102 and the area) . In some case, based on the distance, a path lost can be obtained. The good area can be further defined as an area where the distance from the BS 102 is within a specific range, an area where the angle with the normal direction of the BS 102 is within a specific range, and an area where the time of radio wave transmission and the BS 102 is within a certain range.
The wireless communication system can derive the good areas based on the characteristics of the environment and/or objects within the environment as the BS 102 notifies terminals 104 the good area lists. The good area list can include good area list information. The good area list information can include a Good area ID, a Good area distance range, a Good area angle range, a Good area time range, and a Geographical area.
For ease of description, the Good area distance range is indicated by a minimum distance, a maximum distance or a combination of minimum distance and maximum distance. For ease of description, the Good area angle range is indicated by a minimum angle, a maximum angle or a combination of minimum angle and maximum angle. For ease of description, the Good area time range is indicated by a minimum time, a maximum time or a combination of minimum time and maximum time. For ease of description, the Geographical area is indicated by latitude and longitude. In some arrangements, the BS 102 can send a good area list information to terminals 104. The good area list information includes a good area list.
Furthermore, if the terminal knows the terminals 104 position and the location of the terminal is within one area indicated by the good area list information and the serving cell meets the cell selection criterion S, the terminal may not report the measurement result. The measurement result includes intra-frequency measurement and/or inter-frequency measurement.
Furthermore, the BS 102 receives the good area list information and the positioning of terminals 104 from other functions such as sensing function (SF) , location management function (LMF) and so on. The functions and so on are located in core network or radio access network (RAN) .
FIG. 8 illustrates an example for the SF 802 notifying the good area list, the SF 802 notifies the BS 102 the good area list information. The SF 802 can send the good area list information actively or based on a request from the BS 102. The BS 102 can send a good area list request information to the SF 802. The good area list request information can include the BS 102 ID, a Request type, and the Good area list. For ease of description, the BS 102 ID can indicate the identification of the BS 102 such as TRP ID, cell ID and so on. For ease of description, the request type can indicate the request is the period request or event-based request. The SF 802 can send a good area list response information, the good area list response information can include the BS 102 ID, a response type, and the Good area list. For ease of description, the response type is used to indicate the response is the period response or event-based response.
In some cases, if the response type is a period response, the good area list response information can further include a period and a next sending time. In some cases, if the response is event-based response, the good area list response information can further include an Event typ. The event type can indicate an event. The event can be at least one of a terminal is re-associated with the BS 102, speed of the terminal changes, positioning of the terminal changes, or signal quality of the terminal changes.
The BS 102 can send notification messages to indicate whether the terminal is located in a good area. FIG. 9 illustrates an example for notifying the good area list. The terminal area notification message can define whether the terminal is in a good area or not.
Furthermore, if the terminal knows the terminals 104 position and the location of the terminal is within one area indicated by the good area list information and the serving cell meets the cell selection criterion S, the terminal may not report the measurement result. The measurement result includes intra-frequency measurement and/or inter-frequency measurement. Furthermore, the BS 102 receives the terminal area notification messages from other functions such as SF, LMF and so on. The functions and so on are located in core network or RAN.
FIG. 10 illustrates an example for a process for terminal area notification information, the SF 802 notifies the terminal area response information. The SF 802 can send the terminal area response information actively or based on the request from the BS 102. The BS 102 can send a terminal area request information to the SF 802, the terminal area request information can include the BS 102 ID, the Request type, and a terminal ID list. For ease of description, the request type can indicate the terminal area request. For ease of description, the terminal ID list can indicate a set of terminal identifiers to list the terminals 104 which are requested whether they are in good areas. The SF 802 can send a terminal area response information. The terminal area response information can include the BS 102 ID and a List of <terminal ID, status>. The List of < terminal ID, status>can indicate the terminals 104 and the status of these terminals 104 remaining in the good areas.
Embodiment #4: Network Initiated Cell Handover
The wireless communication system can obtain characteristics of objects in the environment and positioning of the terminals 104. The wireless communication system can derive the good areas of each BS 102 based on sensing data collected from the base stations and terminals 104. In the wireless communication system, different base stations may have different environments and different obstacles. Therefore, different base stations may have different good areas. FIG. 11 illustrates an example the good areas of multiple base station. As depicted in FIG. 11, BS 102 A and BS 102 B have overlapping areas. Within the overlapping area, there are obstacles between BS 102 A and terminal 104 A, whereas there are no obstacles between BS 102 B and terminal 104 A. Therefore, the signal quality between BS 102 A and terminal 104 A may be worse than the signal quality between BS 102 B and terminal 104 A.
When terminal 104 A moves from the coverage of BS 102 A to the coverage of BS 102 B, terminal 104 A can enter the good area C of BS 102 B. Thus, the network 100 can initiate cell handover, as shown in FIG. 12.FIG. 12 illustrates an example network 1302 initiating cell handover. The core network 1202 can initiate the handover and issue a HANDOVER RECOMMENDATION. The HANDOVER RECOMMENDATION can  include a UE ID to indicate which UE are recommended to switch to a new BS 102 and a target BS 102 list. The target BS 102 list can one or more potential target base stations (e.g., target BS 102 ID) and/or their recommendation reason (e.g., recommended reason list) . The recommended reason list can include one or more reasons such as the UE in the good area, LOS between UE and the base station, and the cell measurement meets cell selection criterion S with this base station.
The source gNB can initiate handover and issue a HANDOVER REQUEST over the Xn interface. The target gNB can perform admission control and provide a new RRC configuration as part of a HANDOVER REQUEST ACKNOWLEDGE. The source gNB can provide the RRC configuration to the UE by forwarding the RRCReconfiguration message received in the HANDOVER REQUEST ACKNOWLEDGE. The RRCReconfiguration message can include the cell ID and information required to access the target cell so that the UE can access the target cell without reading system information. In some cases, the information required for contention-based and contention-free random access can be included in the RRCReconfiguration message. The access information to the target cell may include beam specific information. Lastly, the UE moves the RRC connection to the target gNB and replies with the RRCReconfigurationComplete.
FIG. 13 illustrates a flow diagram of a method 1300 for an energy control. The method 1300 may be executed by any one or more of the components and devices detailed herein in conjunction with FIGS. 1 to 12. In overview, the method 1300 may be performed by a wireless communication node (e.g., a base station (BS) 102) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1300 depending on the embodiment. At least one aspect of the operations is directed to a system, method, apparatus, or a computer-readable medium.
A wireless communication method can include a wireless communication node sending a first message indicating communication information including at least one of a mobility measurement report configuration. The first message can indicate an area list including a plural number of the areas, each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area. The mobility measurement resource configuration based on sensing or positioning data to a wireless communication device. The mobility measurement report configuration can indicate an area that meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range. The wireless communication method can include the wireless communication node receiving a second message including measurement results performed based on the communication information from the wireless communication device. Sensing data is the information about characteristics of the environment and/or objects within the environment, wherein positioning data is the information about positioning and/or velocity of the wireless communication device.
The wireless communication method can include the wireless communication node determining parameters for a mobility measurement report configuration and/or a mobility measurement resource configuration based on the sensing data and/or positioning data. The mobility measurement report configuration  includes mapping relationships between velocity thresholds and measurement report cycles or an area list. The mapping relationships indicates that in response to one of the velocity thresholds being increased, a corresponding one of the measurement report cycles is decreased. The mobility measurement resource configuration can include one or more wireless resource and each wireless resource is associated with a set of reference signals. The reference signal can include at least one of: a Synchronization Signal Block (SSB) or a Channel State Information-Reference Signal (CSI-RS) . The mobility measurement resource configuration can indicate whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) . The mobility measurement resource configuration can indicate which wireless resource be measured, or not be measured.
The wireless communication method can include the wireless communication node sending the mapping relationships between velocity thresholds and measurement report cycles or a new area list to the wireless communication device. One of the measurement report cycles based on a corresponding one of the velocity thresholds and a corresponding one of the mapping relationships. The area list can indicate a list of areas that each area meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a certain range. Each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area.
The wireless communication method can include the wireless communication node prioritizing one of the measurement results having a cell signal quality of one of the wireless resources. The measurement results include an indication of whether each of the wireless resources is LOS or NLOS. The wireless communication method can include the wireless communication node receiving a third message from a network entity. The third message can include at least one of: the base station ID, a response type, or the area list or mapping relationships between velocity thresholds and measurement report cycles or sensing data. The wireless communication method can include the wireless communication node sending a forth message requesting information regarding the area or the mapping relationships between velocity thresholds and measurement to the network entity. The fourth message can include at least one of: a base station ID, a request type, or UE ID. The response type can indicate a period response or an event-based response. The response type, when being the period response, can include at least one of: a period or a next sending time. The response type, when being the event-based response, can include an event type.
The wireless communication method can include the wireless communication node determining whether a terminal area in which the wireless communication device is currently located belongs to the area. The wireless communication method can include the wireless communication node receiving a fifth message from a network entity. The fifth message can include at least one of the base station ID or the terminal ID list indicating respective statuses of one or more terminals. The wireless communication method can include the wireless communication node sending a sixth message requesting information regarding the terminal area to the network entity. The sixth message can include at least one of: a base station ID, a request type, or a terminal ID  list. The wireless communication method can include the wireless communication node receiving a seventh message from the network entity recommending to handover from the wireless communication node to a target wireless communication node. The seventh message can include at least one of: a UE ID or a list of a plural number of the target wireless communication nodes.
A wireless communication method can include a wireless communication node receiving, by a wireless communication device, a first message indicating communication information including at least one of a mobility measurement report configuration or a mobility measurement resource configuration based on sensing data. The wireless communication method can include the wireless communication device performing a measurement process based on the communication information and sending a second message including a result of the measurement process to the wireless communication device. The wireless communication method can include the wireless communication node determining the measurement report cycles, based on the mapping relationships between velocity thresholds and measurement report cycles and the velocity of the wireless communication device. The wireless communication method can include the wireless communication node blocking the wireless communication device from sending the second message when the wireless communication device is not in an area list. The second message can include the wireless resource ID, the measurement result, and whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
The wireless communication method can include the wireless communication device notifying the measurement report cycles, thereby causing the wireless communication device to adjust one of the measurement report cycles. The wireless communication method can include the wireless communication device identifying whether the wireless communication device is within an area indicated by an area list blocking the wireless communication device from sending the second message based on the identification that the wireless communication device is not within the area indicated by the area list.
While various embodiments of the present solution have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand example features and functions of the present solution. Such persons would understand, however, that the solution is not restricted to the illustrated example architectures or configurations but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described illustrative embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or any combination of these techniques. To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general-purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media can include both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for  purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according to embodiments of the present solution.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present solution. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present solution with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the embodiments described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other embodiments without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (32)

  1. A wireless communication method, comprising:
    sending, by a wireless communication node to a wireless communication device, a first message indicating communication information including at least one of a mobility measurement report configuration and/or a mobility measurement resource configuration, wherein the mobility measurement report configuration and the mobility measurement resource configuration are based on sensing, or positioning data; and
    receiving, by the wireless communication node from the wireless communication device, a second message including measurement results performed based on the communication information.
  2. The wireless communication method of claim 1, wherein sensing data is the information about characteristics of the environment and/or objects within the environment, wherein positioning data is the information about positioning and/or velocity of the wireless communication device.
  3. The wireless communication method of claim 2, further comprising determining, by the wireless communication node, parameters for a mobility measurement report configuration and/or a mobility measurement resource configuration based on the sensing data and/or positioning data.
  4. The wireless communication method of claim 1, wherein the mobility measurement report configuration includes mapping relationships between velocity thresholds and measurement report cycles or an area list.
  5. The wireless communication method of claim 4, wherein the mapping relationships can indicate that in response to one of the velocity thresholds being increased, a corresponding one of the measurement report cycles is decreased.
  6. The wireless communication method of claim 4, further comprising:
    notifying, by the wireless communication node to the wireless communication device, new mapping relationships between velocity thresholds and measurement report cycles or a new area list.
  7. The wireless communication method of claim 4, wherein the area list indicates a list of areas that each area meets at least one of the following conditions: in the area, both the wireless communication device and the wireless communication node have an LOS path; in the area, the wireless communication device meets a cell criterion S; in the area, a distance from the wireless communication node is within a specific range; in the area, an angle with a normal direction of the wireless communication node is within a specific range; or in the area, a time of radio wave transmission and the wireless communication node is within a specific range.
  8. The wireless communication method of claim 7, wherein each of the areas associated with at least one of the following parameters: an area ID, an area distance range; an area angle range; an area time range; or a geographical area.
  9. The wireless communication method of claim 1, wherein the mobility measurement resource configuration includes one or more wireless resources and each wireless resource associating with a set of reference signals.
  10. The wireless communication method of claim 9, wherein the reference signal includes at least one of: a Synchronization Signal Block (SSB) or a Channel State Information-Reference Signal (CSI-RS) .
  11. The wireless communication method of claim 9, wherein the mobility measurement resource configuration indicates whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
  12. The wireless communication method of claim 9, wherein the mobility measurement resource configuration indicates which wireless resource to measure, or to not measure.
  13. The wireless communication method of claim 1, further comprising:
    prioritizing, by the wireless communication node, one of the measurement results having a cell signal quality of one of the wireless resources.
  14. The wireless communication method of claim 13 wherein the measurement results include an indication of whether each of the wireless resources is LOS or NLOS.
  15. The wireless communication method of claim 1, prior to sending the first message, further comprising:
    receiving, by the wireless communication node from the core network entity, a third message, wherein the third message includes at least one of: the base station ID; a response type or the area list or mapping relationships between velocity thresholds and measurement report cycles or sensing data.
  16. The wireless communication method of claim 15, prior to sending the third message, further comprising:
    sending, by the wireless communication node to a core network entity, a fourth message requesting information regarding the area or the mapping relationships between velocity thresholds and measurement, wherein the third message includes at least one of: a base station ID; a request type; or UE ID.
  17. The wireless communication method of claim 15, wherein the response type indicates a period response or an event-based response.
  18. The wireless communication method of claim 17, wherein the response type, when being the period response, includes at least one of: a period; or a next sending time.
  19. The wireless communication method of claim 17, wherein the response type, when being the event-based response, includes an event type.
  20. The wireless communication method of claim 7, further comprising:
    determining, by the wireless communication node, whether a terminal area in which the wireless communication device is located belongs to an area within the area list.
  21. The wireless communication method of claim 20, further comprising:
    receiving, by the wireless communication node from a network entity, a fifth message wherein the fifth message includes at least one of: the base station ID; or the terminal ID list indicating respective statuses of one  or more terminals.
  22. The wireless communication method of claim 20, further comprising:
    sending, by the wireless communication node to a network entity, a sixth message requesting information regarding the terminal area, wherein the sixth message includes at least one of: a base station ID; a request type; or a terminal ID list.
  23. The wireless communication method of claim 1, further comprising:
    receiving, by the wireless communication node from a network entity, a seventh message recommending to handover from the wireless communication node to a target wireless communication node, wherein the seventh message includes at least one of: a UE ID; or a list of a plurality of the target wireless communication nodes.
  24. A wireless communication method, comprising:
    receiving, by a wireless communication device from a wireless communication node, a first message indicating communication information including at least one of a mobility measurement report configuration or a mobility measurement resource configuration based on sensing data or positioning data;
    executing, by the wireless communication device, a measurement process based on the communication information; and
    sending, by the wireless communication device to the wireless communication node, a second message including a result of the measurement process.
  25. The wireless communication method of claim 24, further comprising:
    determining, by the wireless communication device, the measurement report cycles based on the mapping relationships between velocity thresholds and measurement report cycles and the velocity of the wireless communication device.
  26. The wireless communication method of claim 24, wherein the second message includes the wireless resource ID, the measurement result, and whether each of the wireless resources is Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) .
  27. The wireless communication method of claim 24, further comprising:
    optimizing, by the wireless communication device, a measurement process based on the communication information.
  28. The wireless communication method of claim 2, further comprising:
    notifying, by the wireless communication node to the wireless communication device, the measurement report cycles, thereby causing the wireless communication device to adjust one of the measurement report cycles.
  29. The wireless communication method of claim 24, wherein sending a second message including a result of the measurement process further comprising:
    identifying, by the wireless communication device, whether the wireless communication device is within an area indicated by an area list; and
    blocking, by the wireless communication device, the wireless communication device from sending the second message based on identification that the wireless communication device is within the area indicated by the area list.
  30. A wireless communication method, comprising:
    receiving, by a wireless communication device to a wireless communication node, a first message indicating communication information including at least one of a mobility measurement report configuration, a mobility measurement resource configuration based on sensing, or positioning data; and
    sending, by the wireless communication device from the wireless communication node, a second message including measurement results performed based on the communication information.
  31. A wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory and implement a method recited in any of claims 1 to 29.
  32. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 29.
PCT/CN2023/141241 2023-12-22 Systems and methods for sensing and positioning assisted mobility management WO2024230187A1 (en)

Publications (1)

Publication Number Publication Date
WO2024230187A1 true WO2024230187A1 (en) 2024-11-14

Family

ID=

Similar Documents

Publication Publication Date Title
CN112586048A (en) Method, apparatus, computer program product and dataset for managing a fronthaul network
US20230152471A1 (en) Erroneous time and location detection and correction
WO2024230187A1 (en) Systems and methods for sensing and positioning assisted mobility management
CN115836567A (en) System and method for UE reporting to facilitate handover
WO2024016224A1 (en) Systems and methods for identifying subscription-based unmanned aerial vehicle (uav)
WO2024026870A1 (en) Systems and methods for non-public network (npn) measurement
WO2024026876A1 (en) Systems and methods for configuring unmanned aerial vehicle (uav) service in inter-system and intra-system with inter-radio access technology (rat)
WO2024065569A1 (en) Systems and methods for ue capability report
WO2023236049A1 (en) Systems and methods for inter-donor migration and apparatus
WO2024031269A1 (en) Systems and methods for optimizing processes for changing primary cells in secondary cell groups
WO2024026875A1 (en) Systems and methods for configuring unmanned aerial vehicle (uav) multi-rat dual connectivity (mrdc)
WO2024016339A1 (en) Systems and methods for alignment of radio access network (ran) visible quality of experience (qoe) and minimized drive test (mdt)
WO2024092757A1 (en) Coordination of quality of experience management collection configuration
WO2024109084A1 (en) Systems and methods for predicting quality of experience of user equipment using an artificial intelligence model
WO2024026871A1 (en) Systems and methods for successful handover reporting
WO2023197277A1 (en) Systems and methods for network based positioning
WO2024011613A1 (en) Systems and methods for sidelink positioning
WO2023065290A1 (en) Systems and methods for side-link communication for positioning information
WO2022236671A1 (en) Systems and methods for indicating uplink positioning information in wireless communication systems
WO2024168824A1 (en) Systems and methods for transferring wireless power
WO2022147818A1 (en) Systems and methods for determining quasi-co-location information based on reference signal
WO2023283755A1 (en) Systems and methods for downlink positioning
WO2023000267A1 (en) Systems and methods for measurements on positioning reference signals
WO2024168947A1 (en) Systems and methods for coverage enhancement in non terrestrial network
WO2023050248A1 (en) Systems and methods for measurements on positioning reference signals