Nothing Special   »   [go: up one dir, main page]

WO2024225295A1 - 継手構造 - Google Patents

継手構造 Download PDF

Info

Publication number
WO2024225295A1
WO2024225295A1 PCT/JP2024/016015 JP2024016015W WO2024225295A1 WO 2024225295 A1 WO2024225295 A1 WO 2024225295A1 JP 2024016015 W JP2024016015 W JP 2024016015W WO 2024225295 A1 WO2024225295 A1 WO 2024225295A1
Authority
WO
WIPO (PCT)
Prior art keywords
top plate
region
vertical wall
joint structure
height
Prior art date
Application number
PCT/JP2024/016015
Other languages
English (en)
French (fr)
Inventor
奈沙 島崎
毅 河内
功作 石原
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024225295A1 publication Critical patent/WO2024225295A1/ja

Links

Images

Definitions

  • the present invention relates to a joint structure.
  • weight reduction is required.
  • the weight of the car body is sometimes reduced by using thinner steel materials, but there are concerns that the rigidity of the car body may decrease as a result of the weight reduction.
  • joint structure the structure around the joints where multiple parts are joined together.
  • Patent Document 1 discloses a vehicle underbody structure that includes a pair of rockers extending in the vehicle longitudinal direction and a floor cross member with one end joined to the lower part of the rockers.
  • This vehicle underbody structure includes a connecting member that connects the inner side of the rockers in the vehicle width direction to the upper part of the floor cross member.
  • Patent document 2 discloses an automobile lower body structure that includes a floor panel that constitutes the passenger compartment floor, side sills that extend in the fore-and-aft direction of the vehicle body along the vehicle width edge of the floor panel, and a cross member that extends inward in the vehicle width direction from the vehicle width edge of the floor panel.
  • Patent Document 3 discloses a vehicle body frame structure that includes a first member arranged to extend in one direction, a second member arranged on the vehicle exterior side of the first member, a third member that is connected to the side of the first member from a direction intersecting the first member and forms the frame of the vehicle body together with the first member, and a fourth member that is provided between the first member and the second member on the longitudinal extension of the third member.
  • Patent document 4 discloses a mounting structure for a suspension upper arm that includes a suspension upper arm support bracket that connects an apron upper member and a front side member with a closed cross-sectional structure.
  • Patent document 5 discloses a reinforcement structure for an automobile floor panel in which a cross member is arranged in the vehicle width direction of a floor panel that has a tunnel section in the fore-and-aft direction of the vehicle body, a tunnel reinforcement member is crossed so as to straddle the cross member, and a seat mounting section is provided on the cross member.
  • Patent document 6 discloses a front body structure for an automobile that includes front side members that are disposed on each of the left and right sides of the vehicle body and extend in the longitudinal direction, and an instrument panel reinforcement that is disposed between the left and right front pillars and extends in the width direction.
  • Japanese Patent No. 6264864 Japanese Patent Application Publication No. Hei 4 (1992)-303076 Japanese Patent Application Publication No. 2004-322776 Japanese Utility Model Application Publication No. Hei 3 (1991)-040171 Japanese Patent Application Publication No. 2004-352080 Japanese Patent Application Publication No. 2000-153779
  • the vehicle underbody structure described in Patent Document 1 is a joint structure in which a connecting member is joined to the top surface of a floor cross member joined to the side of the rocker.
  • joining another member to a structure in which the rocker and floor cross member are joined results in an increase in weight.
  • the present invention was made in consideration of the above circumstances, and aims to provide a joint structure that is lightweight while preventing an excessive decrease in rigidity per unit weight.
  • the inventors focused on the relationship between the height and rigidity of the vertical wall near the joint between the first and second members in a joint structure that includes a first member having a top plate and a vertical wall, and a second member to which an axial end of the first member is joined. They discovered that by keeping the height of the vertical wall near the joint within a specific range, it is possible to reduce weight while preventing an excessive decrease in rigidity per unit weight, and thus came up with the present invention.
  • a joint structure comprising a first member having a top plate and a vertical wall, a second member joined to an axial end of the first member, and a third member joined to each of the first member and the second member, the vertical wall extending from the top plate towards the third member, the first member having a first region, a second region located between the first region and the second member, and a third region located between the first region and the second region, the first region having a first top plate that is a part of the top plate, and a first vertical wall having a first height from the first top plate, the first region having a first vertical wall that is a first height from the first top plate,
  • the second region has a second top plate that is a part of the top plate and a second vertical wall whose height from the second top plate is a second height, the second region is joined to the second member and not joined to the third member, there is a space between the second vertical wall and the third member, the third region has
  • Another aspect of the present invention is a joint structure comprising a first member having a top plate and a vertical wall, a second member that is not an automobile frame member and is joined to an axial end of the first member, and a third member joined to each of the first member and the second member, the vertical wall extending from the top plate toward the third member, the first member having a first region and a second region located between the first region and the second member, the first region comprising a first top plate that is a part of the top plate, a first vertical wall having a first height from the first top plate, The first region is joined to the third member, the second region has a second top plate that is a part of the top plate and a second vertical wall whose height from the second top plate is a second height, the second region is joined to the second member and not joined to the third member, there is a space between the second vertical wall and the third member, the first top plate and the second top plate are in the same plane, and the ratio of the second height to the height from the third member to the top
  • the present invention provides a joint structure that is lightweight while preventing excessive loss of rigidity per unit weight.
  • FIG. 2 is a perspective view for explaining an application location of a joint structure according to one embodiment of the present invention.
  • FIG. 1 is a perspective view for explaining a schematic configuration of a joint structure according to a first embodiment.
  • FIG. 2 is a side view for explaining a schematic configuration of a joint structure.
  • 4A and 4B are views showing cross sections AA and BB in FIG. 3.
  • FIG. 11 is a side view for explaining the definition of H 2 /H 0 .
  • FIG. 1 is a side view showing a conventional joint structure in which H 2 /H 0 is 1.0.
  • FIG. 11 is a perspective view for explaining a schematic configuration of a joint structure according to a second embodiment.
  • FIG. 2 is a side view for explaining a schematic configuration of a joint structure.
  • FIG. 1 is a perspective view for explaining a schematic configuration of a joint structure according to a first embodiment.
  • FIG. 2 is a side view for explaining a schematic configuration of a joint structure.
  • Fig. 1 is an example in which the joint structure 1 is applied to a parallel-cross subframe 90 to which an automobile suspension arm (not shown) is attached.
  • Fig. 1 illustrates the vicinity of the attachment portion of the suspension arm, and in the example shown in Fig. 1, the X direction is the vehicle length direction, the Y direction is the vehicle width direction, and the Z direction is the vehicle height direction.
  • the joint structure 1 in the application example of Figure 1 comprises a cross frame 10 as a first member, a bracket 20 as a second member, and a bottom plate 30 as a third member.
  • the cross frame 10 extends in the vehicle width direction, and a bracket 20 that serves as a mounting portion for a suspension arm (not shown) is joined to the end of the cross frame 10 in the vehicle width direction.
  • Both the cross frame 10 and the bracket 20 are joined to the bottom plate 30.
  • the axial end of a side frame 91 that extends in the vehicle length direction and is one of the components of a subframe 90 of an automobile is joined to the side surface of the axial end of the cross frame 10.
  • the cross-shaped subframe 90 in the example of Figure 1 has a pair of cross frames that extend parallel to each other and a pair of side frames that extend parallel to each other, but Figure 1 only illustrates one of the pair of cross frames, cross frame 10, and one of the pair of side frames, side frame 91, with the other cross frame and side frame not illustrated.
  • the "automobile subframe" to which the joint structure 1 is applied includes a front subframe to which a front suspension arm of the vehicle body is attached, and a rear subframe to which a rear suspension arm of the vehicle body is attached.
  • the application of the joint structure according to the present disclosure is not limited to the subframe of an automobile, but may also be applied to the places where parts are joined in a T-shape.
  • at least any of the first member, second member, and third member included in the joint structure may not be an automobile skeletal member like the subframe 90 described above, or may be an automobile skeletal member.
  • the automobile skeletal members mentioned here are members used as the skeleton of the vehicle body, such as the front bumper beam, rear bumper beam, front side member, rear side member, side sill, floor cross member, roof side rail, roof cross member, center pillar, side rails and cross members that make up a ladder frame, etc.
  • the joint structure according to the first embodiment may be applied to a joint between a floor cross member and a side sill, which are part of the lower body structure of an automobile.
  • the first member is a floor cross member extending in the vehicle width direction
  • the second member is a side sill extending in the vehicle length direction
  • the third member is, for example, a floor panel.
  • the joint structure may be applied to a joint between a roof cross member and a roof side rail, which are part of the upper body structure of an automobile.
  • the first member is a roof cross member extending in the vehicle width direction
  • the second member is a roof side rail extending in the vehicle length direction
  • the third member is, for example, a roof panel.
  • the joint structure may also be applied to a location where parts are joined in a T-shape.
  • the first member is not limited to a member extending in the vehicle width direction, but may be a member extending, for example, in the vehicle length direction or vehicle height direction depending on the application location of the joint structure.
  • the joint structure is not limited to application to automobile bodies, but may be applied to locations where rigidity is required in structures such as ships, railway vehicles, and steel frame structures.
  • the second member may not be a single part, but may be a part composed of multiple parts.
  • a joint structure may be formed by joining the first member to one part and the third member to the other part.
  • the third member is not limited to being a plate extending in the same plane, but may have a step, inclination, etc.
  • the materials of the first to third members are changed as appropriate depending on the application location of the joint structure, but when the joint structure is applied to an automobile body, for example, metal materials such as steel, aluminum alloy members, magnesium alloy members, etc. are used. Also, when the joint structure is applied to an automobile body and the material of the first to third members is steel, for example, steel with a tensile strength of 440 MPa or more, 590 MPa or more, or 780 MPa or more is used.
  • the plate thicknesses of the first to third members are changed as appropriate depending on the application location of the joint structure, but are, for example, 1 to 5 mm when the joint structure is applied to an automobile body.
  • the overall length, overall width, and overall height of the first to third members are changed as appropriate depending on the application location of the joint structure, but when the joint structure is applied to an automobile body, the length of the first member in the axial direction (Y direction) is, for example, 500 to 3000 mm.
  • the size of the cross section perpendicular to the axial direction (Y direction) of the tubular portion formed by joining the first and third members is, for example, 50 to 200 mm square.
  • the means for joining the first to third members is changed as appropriate depending on the application location of the joint structure, but for example, various types of welding such as spot welding, arc welding, and laser welding, or bonding using an industrial adhesive can be used.
  • the joint structure 1 includes a cross frame 10 as a first member, a bracket 20 as a second member, and a bottom plate 30 as a third member.
  • the cross frame 10 has a top plate 11 and vertical walls 12.
  • the top plate 11 extends in the vehicle width direction (Y direction).
  • the vertical walls 12 extend from both ends of the top plate 11 in the vehicle length direction (X direction) toward the bottom plate 30, and the two vertical walls 12 facing each other on either side of the top plate 11 extend in the vehicle width direction.
  • the vertical walls 12 do not have to be formed perpendicular to the top plate 11, and the angle between the top plate 11 and the vertical walls 12 is, for example, 80 to 110 degrees. A detailed explanation of the configuration of the cross frame 10 will be given later.
  • the bracket 20 is a member whose axial direction faces the vehicle width direction (Y direction) and whose cross section perpendicular to the axial direction is hat-shaped.
  • the bracket 20 has a top plate 21, vertical walls 22, and flanges 23.
  • the top plate 21 extends in the vehicle width direction, and the vertical walls 22 extend from both ends of the top plate 21 in the vehicle length direction (X direction) toward the bottom plate 30.
  • the flanges 23 are formed by opening outward from each of the bottom plate 30 side ends of the two opposing vertical walls 22.
  • a through hole 24 is formed in the center of each of the two vertical walls 22 for attaching a suspension arm (not shown).
  • the bottom plate 30 is a flat plate, and the lower end of the cross frame 10 and the flange 23 of the bracket 20 are joined to the upper surface of the bottom plate 30.
  • Figure 3 is a side view for explaining the general configuration of the joint structure 1 shown in Figure 2.
  • Figure 4(A) is a diagram showing the A-A cross section of Figure 3
  • Figure 4(B) is a diagram showing the B-B cross section of Figure 3.
  • the X, Y, and Z directions in each figure are perpendicular to each other.
  • the cross frame 10 has three areas, each with a different height of the vertical wall 12 from the top plate 11: a first area (I), a second area (II), and a third area (III).
  • the "height of the vertical wall” refers to the length of the vertical wall in the direction perpendicular to the top plate 11 (Z direction) when viewed from the axial direction (Y direction) of the cross frame 10. Also, for example, if the angle between the top plate 11 and the vertical wall 12 is not perpendicular, the Z direction component of the length from the top plate 11 to the tip of the vertical wall 12 is the height of the vertical wall.
  • the first area (I) has a hat-shaped cross section perpendicular to the axial direction, and has a first top plate 11a, two first vertical walls 12a, and two flanges 13.
  • the two first vertical walls 12a face each other so as to sandwich the first top plate 11a, and the height of the first vertical wall 12a from the first top plate 11a (i.e., the length from the first top plate 11a to the tip of the first vertical wall 12a in a direction perpendicular to the first top plate 11a) is a first height H 1.
  • the first height H 1 in the example of FIG. 1 can be rephrased as the length in the Z direction from the top plate 11 to the flange 13.
  • the flanges 13 extend outward from each of the lower ends of the two first vertical walls 12a.
  • the two flanges 23 are joined to the bottom plate 30, thereby joining the cross frame 10 to the bottom plate 30.
  • the first region (I) is the portion of the cross frame 10 that is joined to the bottom plate 30.
  • the second area (II) is an area located closer to the bracket 20 than the first area (I), and is located between the bracket 20 as the second member and the first area (I). As shown in FIG. 4(B), the second area (II) has a U-shaped cross section perpendicular to the axial direction that opens downward, and has a second top plate 11b and two second vertical walls 12b.
  • the two second vertical walls 12b face each other on either side of the second top plate 11b, and the height of the second vertical walls 12b from the second top plate 11b (i.e., the length from the second top plate 11b to the tip of the second vertical wall 12b in a direction perpendicular to the second top plate 11b) is a second height H2 .
  • the distance between the two second vertical walls 12b is narrower than the distance between the two vertical walls 22 of the bracket 20, and the second vertical walls 12b are in contact with the vertical walls 22 on the inside of the bracket 20. In this state, the second vertical walls 12b and the vertical walls 22 are joined together, thereby joining the axial end of the cross frame 10 and the bracket 20.
  • the lower end of the second vertical wall 12b does not have a flange like the flange 23 of the first area (I), and there is a gap between the lower end of the second vertical wall 12b and the bottom plate 30. Therefore, as shown in FIG. 3, a space 40 is formed below the second area (II), and the second area (II) is not joined to the bottom plate 30.
  • the second area (II) is joined to the bracket 20 as the second member, but is not joined to the bottom plate 30 as the third member.
  • the third region (III) is located between the first region (I) and the second region (II) and has a third top plate 11c and a third vertical wall 12c.
  • the third top plate 11c is a wall portion connecting the first top plate 11a and the second top plate 11b
  • the third vertical wall 12c is a wall portion connecting the first vertical wall 12a and the second vertical wall 12b.
  • a space 40 is formed below the third region (III), and the third region (III) is not joined to the bottom plate 30.
  • the cross frame 10 has a first region (I) to a third region (III), the top plate 11 is made up of a first top plate 11a, a second top plate 11b, and a third top plate 11c, and the vertical wall 12 is made up of a first vertical wall 12a, a second vertical wall 12b, and a third vertical wall 12c.
  • each of the first top plate 11a, the second top plate 11b, and the third top plate 11c is a part of the top plate 11, and each of the first vertical wall 12a, the second vertical wall 12b, and the third vertical wall 12c is a part of the vertical wall 12.
  • the height from the bottom plate 30 to the first top plate 11a is lower than the height from the bottom plate 30 to the second top plate 11b, and the first top plate 11a is located closer to the bottom plate 30 (negative side in the Z direction) as the third member than the second top plate 11b.
  • the third top plate 11c in the third region (III) connecting the first top plate 11a and the second top plate 11b is inclined with respect to the first top plate 11a.
  • the height H2 of the second vertical wall 12b is lower than the height H1 of the first vertical wall 12a.
  • the height from the bottom plate 30 to the top plate (second top plate 11b) in the second region (II) is defined as H 0.
  • the second vertical wall 12b is formed so that the ratio (H 2 /H 0 ) of the second height H 2 to the top plate height H 0 is within the range of 0.4 to 0.8.
  • the joint structure 1 of the first embodiment in which H2 / H0 satisfies 0.4 to 0.8 can suppress an excessive decrease in rigidity per unit weight against the lateral force input to the second member (in this embodiment, the force in the vehicle width direction input to the bracket 20).
  • H2 / H0 1.0
  • H2 / H0 is less than 0.4
  • the decrease in rigidity per unit weight is significant compared to the conventional joint structure 100, and the decrease in rigidity due to weight reduction is large.
  • H2 / H0 exceeds 0.8
  • the effect of improving rigidity per unit weight is small, so increasing the height H2 of the second vertical wall 12b so that H2 / H0 exceeds 0.8 is not an advantageous structure in terms of improving rigidity per unit weight.
  • the joint structure 1 according to the first embodiment in which H2 / H0 satisfies 0.4 to 0.8 and has the space 40 below the second region (II), is a structure that can obtain a weight reduction effect and suppress an excessive decrease in rigidity per unit weight.
  • H2/ H0 is preferably 0.5 or more, and more preferably 0.6 or more.
  • the angle ⁇ between the axial direction C3 in the straight line portion and the axial direction C1 of the first region (I) is preferably 25° or less.
  • the angle ⁇ is preferably 20° or less, more preferably 15° or less. Note that, since the third region (III) is inclined with respect to the first region (I), the angle ⁇ is necessarily an angle greater than 0°.
  • the second region (II) of the cross frame 10 is provided so that H2 / H0 falls within the range of 0.4 to 0.8, thereby making it possible to reduce the weight while suppressing an excessive decrease in rigidity per unit weight.
  • a space 40 is formed between the second region (II) of the cross frame 10 and the bottom plate 30, which improves the freedom of design of the vehicle body.
  • a vehicle body structure that could not be realized with conventional technology, such as providing another member (not shown) that extends in the vehicle length direction (X direction) within the above-mentioned space 40.
  • the cross frame 10 as the first member in the first embodiment is manufactured by pressing a metal plate using the curved part manufacturing method disclosed in Japanese Patent Publication No. 5733475 so that no flange is formed in the second region (II).
  • the height of the top plate 11 from the third member (bottom plate 30 in this embodiment) or the axial length of the first area (I) and the second area (II) are appropriately set according to the size of the design space around the application point of the joint structure and the performance required of the structure including the joint structure, etc.
  • Fig. 7 is a perspective view for explaining a schematic configuration of the joint structure 1 according to this embodiment.
  • Fig. 8 is a side view for explaining a schematic configuration of the joint structure 1.
  • the joint structure 1 according to the second embodiment differs from the first embodiment in that the height from the bottom plate 30 to the first top plate 11a, the height from the second top plate 11b, and the height from the third top plate 11c are all the same, and the top plates 11a to 11c are all on the same plane. Note that in the following explanation, content that overlaps with the explanation of the first embodiment may be omitted.
  • the second vertical wall 12b is formed so that H2 / H0 is within a range of 0.3 to 0.8.
  • a structure in which H2 / H0 is 1.0 corresponds to the conventional joint structure 101 shown in Fig. 9, but when H2 / H0 is less than 0.3, the decrease in rigidity per unit weight is significant compared to the conventional joint structure 101, and the decrease in rigidity due to weight reduction is large.
  • H2 / H0 exceeds 0.8, the effect of improving rigidity per unit weight is small, so increasing the height H2 of the second vertical wall 12b so that H2 / H0 exceeds 0.8 is not an advantageous structure in terms of improving rigidity per unit weight.
  • the joint structure 1 according to the second embodiment in which H2 / H0 satisfies 0.3 to 0.8 and has the space 40 below the second region (II), is a structure that can obtain a weight reduction effect and suppress an excessive decrease in rigidity per unit weight.
  • H2 / H0 is preferably 0.4 or more, and more preferably 0.5 or more.
  • the first region (I) and the second region (II) may be adjacent to each other without providing the third region (III).
  • the joint structure 1 according to the second embodiment is intended to be applied to an automobile subframe, but the application of the joint structure according to the present disclosure is not limited to an automobile subframe, and may also be applied to a location where parts are joined in a T-shape.
  • the first top plate 11a to the third top plate 11c extend in the same plane as in the second embodiment, at least the second member among the first member, second member, and third member is not an automobile skeleton member.
  • the automobile skeleton members referred to here are members used as the skeleton of the vehicle body, such as the front bumper beam, rear bumper beam, front side member, rear side member, side sill, floor cross member, roof side rail, roof cross member, center pillar, and side rails and cross members that make up a ladder frame.
  • ⁇ Simulation (1)> A simulation was carried out to evaluate the rigidity of the analytical model of the joint structure 1 shown in Figures 2 to 5.
  • the through hole 24 of the bracket 20 was used as a restraint point, and a load F parallel to the vehicle width direction was applied from the through hole 24 toward the cross frame 10 side to evaluate the rigidity.
  • This load F is assumed to be a lateral force from the wheel via a suspension arm (not shown).
  • the angle ⁇ between the axial direction C1 of the first region (I) and the axial direction C3 of the third region (III) shown in Figure 5 was set to 30°.
  • a joint structure with H2 / H0 of 0.4 to 0.8 can be said to be a structure in which the reduction in rigidity per unit weight is suppressed while achieving weight reduction.
  • H2 / H0 is within the range of 0.3 to 0.8, it is possible to ensure the same level of weight efficiency (rigidity per unit weight) of rigidity as the conventional structure with H2 / H0 of 1.0.
  • a joint structure with H2 / H0 of 0.3 to 0.8 is a structure that can suppress the decrease in rigidity per unit weight that accompanies weight reduction.

Landscapes

  • Connection Of Plates (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Abstract

天板と縦壁とを有した第1部材と、前記第1部材の軸方向端部に接合された第2部材と、前記第1部材と前記第2部材の各々に接合された第3部材と、を備え、前記第1部材は、第1領域部と、第2領域部と、第3領域部と、を有し、前記第1領域部は、第1天板と、前記第1天板からの前記縦壁の高さが第1高さである第1縦壁と、を有し、前記第2領域部は、第2天板と、前記第2天板からの前記縦壁の高さが第2高さである第2縦壁と、を有し、前記第3領域部は、第3天板と、前記第1縦壁と前記第2縦壁を繋ぐ第3縦壁と、を有し、前記第1天板の高さは、前記第2天板の高さより低く、前記第2領域部における前記第3部材から前記第2天板までの高さに対する前記第2高さの割合は、0.4~0.8である、継手構造。

Description

継手構造
 本発明は、継手構造に関する。
 自動車や船舶、鉄道車両などの輸送用機器や鉄骨構造物等の各種構造物においては、環境負荷低減の観点から軽量化が要求される。例えば自動車分野においては、使用する鋼材の薄肉化によって車体の軽量化を行うことがあるが、軽量化に伴う車体の剛性低下が懸念される。
 このため、車体剛性の低下を抑制しつつ軽量化の要求に対応するためには、各部品の形状改良や部品同士の接合構造の改良等を行うことが必要となる。なお、本明細書においては、複数の部品が互いに接合された接合部周辺の構造を「継手構造」と称すことがある。
 継手構造を含む車体構造として、特許文献1には、車両前後方向に延在された一対のロッカと、一端部が前記ロッカの下部へ接合されたフロアクロスメンバと、を備えた車両下部構造が開示されている。この車両下部構造は、前記ロッカの車両幅方向内側の側面と前記フロアクロスメンバの上部とを連結する連結部材を備えている。
 特許文献2には、車室床部を構成するフロアパネルと、前記フロアパネルの車幅方向端縁部に沿って車体前後方向に延設されたサイドシルと、前記フロアパネルの車幅方向端縁部より車幅方向内方へ延びるクロスメンバと、を備えてなる自動車の下部車体構造が開示されている。
 特許文献3には、一方向に沿って延びるように配置された第1部材と、該第1部材の車外側に配置される第2部材と、前記第1部材と交差する方向から当該第1部材の側部と連結されて前記第1部材と共に車体の骨格を構成する第3部材と、前記第3部材の長手方向延長上で前記第1部材と前記第2部材との間に設けられる第4部材とを具備した車体のフレーム構造が開示されている。
 特許文献4には、エプロンアッパメンバとフロントサイドメンバとを閉断面構造で連結するサスペンションアッパアーム支持ブラケットを備えた、サスペンションアッパアームの取付構造が開示されている。
 特許文献5には、車体の前後方向にトンネル部が設けられたフロアパネルの車幅方向にクロスメンバーを配設すると共に、上記クロスメンバーを跨ぐようにしてトンネル補強部材を交差させ、上記クロスメンバー上にシートの取付部を設けた自動車のフロアパネルの補強構造が開示されている。
 特許文献6には、車体の左右の各側部に配置され、前後方向へ伸びるフロントサイドメンバと、左右のフロントピラー間に配置され、幅方向へ伸びるインパネリィインフォースとを備える自動車の車体前部構造が開示されている。
日本国特許第6264864号公報 日本国特許出願公開第平4(1992)-303076号公報 日本国特許出願公開第2004-322776号公報 日本国実用新案出願公開第平3(1991)-040171号公報 日本国特許出願公開第2004-352080号公報 日本国特許出願公開第2000-153779号公報
 特許文献1に記載の車両下部構造は、ロッカの側面に接合したフロアクロスメンバの上面に連結部材という他の部材を接合した継手構造である。しかしながら、ロッカとフロアクロスメンバが接合された構造物に対し、さらに他の部材を接合することは重量の増大を招くことになる。
 軽量化と剛性を両立させる観点では、軽量化の影響によって単位重量あたりの剛性が過度に低下する構造は好ましくない。すなわち、軽量化を図りつつ、単位重量あたりの剛性の過度な低下を抑制することが可能な継手構造の創出が望まれる。しかし、そのような継手構造は、特許文献1~6に開示も示唆もされていない。また、継手構造において、軽量化を図りつつ、単位重量あたりの剛性の過度な低下を抑制するという課題は自動車以外の構造物においても同様に生じ得る。
 本発明は、上記事情に鑑みてなされたものであり、軽量化を図りつつ、単位重量あたりの剛性の過度な低下を抑制することが可能な継手構造を提供することを目的とする。
 本発明者らは、天板と縦壁とを有する第1部材と、第1部材の軸方向端部が接合される第2部材とを備える継手構造において、第1部材と第2部材の接合部近傍における縦壁の高さと剛性の関係に着目した。そして、接合部近傍における縦壁高さを特定の範囲内に収めることによって、軽量化を図りつつ単位重量あたりの剛性の過度な低下を抑制できることを見出し、本発明に想到した。
 前述の課題を解決する本発明の一態様は、継手構造であって、天板と縦壁とを有した第1部材と、前記第1部材の軸方向端部に接合された第2部材と、前記第1部材と前記第2部材の各々に接合された第3部材と、を備え、前記縦壁は、前記天板から前記第3部材側に延び、前記第1部材は、第1領域部と、前記第1領域部と前記第2部材との間に位置する第2領域部と、前記第1領域部と前記第2領域部との間に位置する第3領域部と、を有し、前記第1領域部は、前記天板の一部である第1天板と、前記第1天板からの前記縦壁の高さが第1高さである第1縦壁と、を有し、前記第1領域部は、前記第3部材に接合され、前記第2領域部は、前記天板の一部である第2天板と、前記第2天板からの前記縦壁の高さが第2高さである第2縦壁と、を有し、前記第2領域部は、前記第2部材に接合され、かつ、前記第3部材には接合されておらず、前記第2縦壁と前記第3部材との間には、空間が存在し、前記第3領域部は、前記天板の一部である第3天板と、前記第1縦壁と前記第2縦壁を繋ぐ第3縦壁と、を有し、前記第1天板の高さは、前記第2天板の高さより低く、前記第2領域部における前記第3部材から前記第2天板までの高さに対する前記第2高さの割合は、0.4~0.8であることを特徴とする。
 別の観点による本発明の一態様は、継手構造であって、天板と縦壁とを有した第1部材と、前記第1部材の軸方向端部に接合された、自動車骨格部材ではない第2部材と、前記第1部材と前記第2部材の各々に接合された第3部材と、を備え、前記縦壁は、前記天板から前記第3部材側に延び、前記第1部材は、第1領域部と、前記第1領域部と前記第2部材との間に位置する第2領域部と、を有し、前記第1領域部は、前記天板の一部である第1天板と、前記第1天板からの前記縦壁の高さが第1高さである第1縦壁と、を有し、前記第1領域部は、前記第3部材に接合され、前記第2領域部は、前記天板の一部である第2天板と、前記第2天板からの前記縦壁の高さが第2高さである第2縦壁と、を有し、前記第2領域部は、前記第2部材に接合され、かつ、前記第3部材には接合されておらず、前記第2縦壁と前記第3部材との間には、空間が存在し、前記第1天板と前記第2天板は同一平面内にあり、前記第2領域部における前記第3部材から前記天板までの高さに対する前記第2高さの割合は、0.3~0.8であることを特徴とする。
 本発明によれば、軽量化を図りつつ、単位重量あたりの剛性の過度な低下を抑制することが可能な継手構造を提供できる。
本発明の一実施形態に係る継手構造の適用箇所を説明するための斜視図である。 第1実施形態に係る継手構造の概略構成を説明するための斜視図である。 継手構造の概略構成を説明するための側面図である。 図3のA-A断面とB-B断面を示す図である。 2/H0の定義について説明するための側面図である。 2/H0が1.0の従来の継手構造を示す側面図である。 第2実施形態に係る継手構造の概略構成を説明するための斜視図である。 継手構造の概略構成を説明するための側面図である。 2/H0が1.0の従来の継手構造を示す側面図である。 シミュレーション条件を説明するための継手構造の側面図である。 シミュレーション(1)の結果を示すグラフである。 シミュレーション(2)の結果を示すグラフである。 シミュレーション条件を説明するための継手構造の側面図である。 シミュレーション(3)の結果を示すグラフである。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
<第1実施形態>
(継手構造の適用箇所)
 まず、第1実施形態に係る継手構造の適用箇所について図1を参照しながら説明する。図1に示した例は、自動車のサスペンションアーム(図示せず)が取り付けられる井桁状のサブフレーム90に対して継手構造1が適用された例である。図1ではサスペンションアームの取付部近傍が図示されており、図1で示した例におけるX方向は車長方向、Y方向は車幅方向、Z方向は車高方向である。
 図1の適用例における継手構造1は、第1部材としてのクロスフレーム10と、第2部材としてのブラケット20と、第3部材としての底板30を備えている。クロスフレーム10は車幅方向に延びており、クロスフレーム10の車幅方向端部には、サスペンションアーム(図示せず)の取付部となるブラケット20が接合されている。クロスフレーム10とブラケット20はいずれも底板30に接合されている。また、クロスフレーム10の軸方向端部の側面には、自動車のサブフレーム90の構成部品の一つである車長方向に延びたサイドフレーム91の軸方向端部が接合される。
 なお、図1の例における井桁状のサブフレーム90は、互いに平行に延在する一対のクロスフレームと、互いに平行に延在する一対のサイドフレームを有するが、図1では、一対のクロスフレームのうちの一方のクロスフレーム10と、一対のサイドフレームのうちの一方のサイドフレーム91のみが図示されており、他方のクロスフレームおよびサイドフレームの図示は省略されている。また、継手構造1が適用される「自動車のサブフレーム」には、車体のフロント側のサスペンションアームが取り付けられるフロントサブフレームと、車体のリア側のサスペンションアームが取り付けられるリアサブフレームと、が含まれる。
 また、本開示に係る継手構造の適用箇所は自動車のサブフレームに限定されず、部品同士がT字状に接合される箇所にも適用され得る。例えば継手構造に含まれる第1部材、第2部材および第3部材の少なくともいずれかの部材は、上述したサブフレーム90のように自動車の骨格部材でなくてもよいし、自動車の骨格部材であってもよい。ここで述べる自動車骨格部材とは、例えばフロントバンパービーム、リアバンパビーム、フロントサイドメンバ、リアサイドメンバ、サイドシル、フロアクロスメンバ、ルーフサイドレール、ルーフクロスメンバ、センターピラー、ラダーフレームを構成するサイドレールやクロスメンバ等の車体の骨格として使用される部材である。
 例えば第1実施形態に係る継手構造は、自動車の車体下部構造の一部であるフロアクロスメンバとサイドシルとの接合部に適用されてもよい。その場合、第1部材は車幅方向に延びたフロアクロスメンバであり、第2部材は車長方向に延びたサイドシルであり、第3部材は、例えばフロアパネルである。また例えば、継手構造は、自動車の車体上部構造の一部であるルーフクロスメンバとルーフサイドレールとの接合部に適用されてもよい。その場合、第1部材は車幅方向に延びたルーフクロスメンバであり、第2部材は車長方向に延びたルーフサイドレールであり、第3部材は、例えばルーフパネルである。すなわち、継手構造は、部品同士がT字状に接合される箇所にも適用され得る。
 また、第1部材は、車幅方向に延びた部材とは限らず、継手構造の適用箇所によっては、例えば車長方向あるいは車高方向に延びた部材となることもある。さらに、継手構造は自動車車体に適用されることに限定されず、例えば船舶や鉄道車両、鉄骨構造物等の構造物において、剛性が必要とされる箇所に適用され得る。
 なお、第2部材は、1部品ではなく、複数部品で構成された部材であってもよい。例えば第2部材が2つの部品で構成される場合、一方の部品に第1部材が接合され、他方の部品に第3部材が接合されることによって継手構造が構成されてもよい。また、第3部材は、同一平面内に延在する板に限定されず、段差や傾斜等を有していてもよい。
 第1~第3部材の材料は、継手構造の適用箇所に応じて適宜変更されるが、継手構造が自動車車体に適用される場合には、例えば鋼材やアルミニウム合金部材、マグネシウム合金部材等の金属材料が適用される。また、継手構造が自動車車体に適用され、第1~第3部材の材料が鋼材である場合には、例えば引張強さが440MPa以上または590MPa以上あるいは780MPa以上の鋼材が適用される。
 第1~第3部材の板厚は、継手構造の適用箇所に応じて適宜変更されるが、継手構造が自動車車体に適用される場合には例えば1~5mmである。第1~第3部材の全長や全幅、全高は、継手構造の適用箇所に応じて適宜変更されるが、継手構造が自動車車体に適用される場合、第1部材の軸方向(Y方向)の長さは、例えば500~3000mmである。また、第1部材と第3部材が接合されることで形成された筒状部における軸方向(Y方向)に垂直な断面の大きさは、例えば50~200mm角である。
 第1~第3部材の接合手段は、継手構造の適用箇所に応じて適宜変更されるが、例えばスポット溶接やアーク溶接、レーザー溶接等の各種溶接による接合手段あるいは工業用接着剤を用いた接着による接合手段が適用され得る。
 次に、第1実施形態に係る継手構造1について図2を参照して更に詳細に説明する。継手構造1は、第1部材としてのクロスフレーム10と、第2部材としてのブラケット20と、第3部材としての底板30を備えている。
 クロスフレーム10は、天板11と、縦壁12を有している。天板11は、車幅方向(Y方向)に延在している。縦壁12は、その天板11の車長方向(X方向)における両端部の各々から底板30側に向かって延びており、天板11を挟むように対向した2つの縦壁12は、車幅方向に延在している。縦壁12は、天板11に対して垂直に形成されなくてもよく、天板11と縦壁12のなす角は、例えば80~110度である。なお、クロスフレーム10の構成に関する詳細説明については後述する。
 ブラケット20は、軸方向が車幅方向(Y方向)に向き、かつ、その軸方向に垂直な断面形状がハット形状の部材である。ブラケット20は、天板21と、縦壁22と、フランジ23を有している。天板21は、車幅方向に延在しており、縦壁22は、天板21の車長方向(X方向)における両端部の各々から底板30側に向かって延びている。フランジ23は、対向する2つの縦壁22の底板30側端部の各々から外側に開いて形成されている。2つの縦壁22の各々の中央部には、サスペンションアーム(図示せず)を取り付けるための貫通孔24が形成されている。
 底板30は、平板であり、底板30の上面にクロスフレーム10の下端部とブラケット20のフランジ23が接合されている。
 ここで、クロスフレーム10の構成について更に詳細に説明する。図3は、図2に示した継手構造1の概略構成を説明するための側面図である。図4(A)は、図3のA-A断面を示す図であり、図4(B)は、図3のB-B断面を示す図である。各図のX方向、Y方向、Z方向は互いに垂直な方向である。
 本実施形態に係るクロスフレーム10は、天板11からの縦壁12の高さが互いに異なる3つの領域として、第1領域部(I)と、第2領域部(II)と、第3領域部(III)を有する。
 なお、本明細書における「縦壁の高さ」とは、クロスフレーム10の軸方向(Y方向)から見たときの天板11に垂直な方向(Z方向)における縦壁の長さのことである。また例えば、天板11と縦壁12のなす角が垂直でない場合には、天板11から縦壁12の先端までの長さのZ方向成分が縦壁の高さである。
 第1領域部(I)は、図4(A)に示すように、軸方向に垂直な断面形状がハット形状であり、第1天板11aと、2つの第1縦壁12aと、2つのフランジ13を有する。
 2つの第1縦壁12aは、第1天板11aを挟むように対向しており、第1天板11aからの第1縦壁12aの高さ(すなわち第1天板11aに垂直な方向における当該第1天板11aから第1縦壁12aの先端までの長さ)は、第1高さH1である。なお、図1の例における第1高さH1は、天板11からフランジ13までのZ方向長さと言い換えることができる。
 フランジ13は、2つの第1縦壁12aの下端部の各々から外側に向かって延びている。2つのフランジ23は、底板30に対して接合されており、これによってクロスフレーム10が底板30に対して接合されている。換言すると、第1領域部(I)は、クロスフレーム10における底板30に接合される領域からなる部位である。
 第2領域部(II)は、第1領域部(I)よりもブラケット20側に位置する領域であり、第2領域部(II)は、第2部材としてのブラケット20と第1領域部(I)との間に位置している。この第2領域部(II)は、図4(B)に示すように、軸方向に垂直な断面形状が下向きに開口したU字状であり、第2天板11bと、2つの第2縦壁12bを有する。
 2つの第2縦壁12bは、第2天板11bを挟むように対向しており、第2天板11bからの第2縦壁12bの高さ(すなわち第2天板11bに垂直な方向における当該第2天板11bから第2縦壁12bの先端までの長さ)は、第2高さH2である。
 2つの第2縦壁12bの間隔は、ブラケット20の2つの縦壁22の間隔よりも狭く、第2縦壁12bは、ブラケット20の内側で縦壁22に接している。この状態で第2縦壁12bと縦壁22とが接合されることによって、クロスフレーム10の軸方向端部とブラケット20とが接合されている。
 一方、第2縦壁12bの下端部には、第1領域部(I)のフランジ23のようなフランジは設けられておらず、第2縦壁12bの下端と底板30との間には間隔が空いている。このため、図3に示すように、第2領域部(II)の下方には、空間40が形成されており、第2領域部(II)は底板30には接合されていない。
 以上のように第2領域部(II)は、第2部材としてのブラケット20に接合されているが、第3部材としての底板30には接合されていない領域である。
 第3領域部(III)は、第1領域部(I)と第2領域部(II)との間に位置しており、第3天板11cと、第3縦壁12cを有する。第3天板11cは、第1天板11aと第2天板11bとを繋ぐ壁部であり、第3縦壁12cは、第1縦壁12aと第2縦壁12bとを繋ぐ壁部である。図3の例では、第3領域部(III)の下方に空間40が形成されており、第3領域部(III)は底板30には接合されていない。
 クロスフレーム10は、上述したように第1領域部(I)~第3領域部(III)を有しており、天板11は、第1天板11a、第2天板11b、第3天板11cで構成され、縦壁12は、第1縦壁12a、第2縦壁12b、第3縦壁12cで構成されている。換言すると、第1天板11a、第2天板11b、第3天板11cの各々は、天板11の一部であり、第1縦壁12a、第2縦壁12b、第3縦壁12cの各々は、縦壁12の一部である。
 第1実施形態では、底板30からの第1天板11aまでの高さが底板30から第2天板11bまでの高さよりも低く、第1天板11aは、第2天板11bよりも第3部材としての底板30側(Z方向負側)に位置している。これらの第1天板11aと第2天板11bとを繋ぐ第3領域部(III)における第3天板11cは、第1天板11aに対して傾斜している。また、第2縦壁12bの高さH2は、第1縦壁12aの高さH1よりも低い。なお、継手構造1が自動車のサブフレームに適用される場合、第1天板11aと第2天板11bの高さの差は、例えば20~100mmである。
 ここで、図5に示すように、第2領域部(II)における底板30から天板(第2天板11b)までの高さをH0と定義する。第1実施形態に係るクロスフレーム10においては、その天板高さH0に対する前述の第2高さH2の割合(H2/H0)が0.4~0.8の範囲内となるように第2縦壁12bが形成されている。
 後述の実施例でも示すように、H2/H0が0.4~0.8を満たす第1実施形態に係る継手構造1によれば、軽量化を実現しながらも、第2部材に入力される横力(本実施形態ではブラケット20に入力される車幅方向の力)に対する単位重量あたりの剛性の過度な低下を抑制できる。
 例えばH2/H0が1.0となる構造は、図6のような従来の継手構造100に相当するが、H2/H0が0.4未満である場合には、従来の継手構造100と比較すると単位重量あたりの剛性の低下が顕著となり、軽量化に伴う剛性の低下が大きい。一方、H2/H0が0.8を超えると、単位重量あたりの剛性の向上効果が小さいため、H2/H0が0.8を超えるように第2縦壁12bの高さH2を高くすることは、単位重量あたりの剛性を向上させる観点で有利な構造ではない。
 すなわち、H2/H0が0.4~0.8を満たし、第2領域部(II)の下方に空間40を有する第1実施形態に係る継手構造1は、軽量化効果を得ることができ、かつ単位重量あたりの剛性の過度な低下を抑制できる構造である。なお、H2/H0が1.0である従来構造と同等レベルの単位重量あたりの剛性を確保する観点では、H2/H0は、好ましくは0.5以上であり、より好ましくは0.6以上である。
 また、第1領域部(I)と第2領域部(II)とを繋ぐ傾斜した第3領域部(III)において、少なくとも一部が直線状に形成されている場合には、その直線部における軸方向C3と、第1領域部(I)の軸方向C1とのなす角θは、25°以下であることが好ましい。後述の実施例で示すように、角θが25°以下である場合には、単位重量あたりの剛性が向上する。この効果を高める観点において、角θは好ましくは20°以下であり、より好ましくは15°以下である。なお、第3領域部(III)が第1領域部(I)に対して傾斜しているため、角θは必然的に0°より大きい角度となる。
 以上、第1実施形態に係る継手構造1について説明した。第1実施形態に係る継手構造1によれば、H2/H0が0.4~0.8の範囲内となるようにクロスフレーム10の第2領域部(II)が設けられることによって、軽量化を図りつつ、単位重量あたりの剛性の過度な低下を抑制できる。
 さらに、継手構造1においては、クロスフレーム10の第2領域部(II)と底板30との間に空間40が形成されているため、車体の設計自由度も向上する。例えば上記の空間40内に車長方向(X方向)に延びた他の部材(図示せず)を設けるといった従来技術では実現し得なかった車体構造の設計も可能となる。
 なお、第1実施形態に係る第1部材としてのクロスフレーム10は、日本国特許第5733475号公報に開示された湾曲部品の製造方法を利用し、第2領域部(II)にフランジが形成されないように金属板をプレス加工することで製造される。
 また、第3部材(本実施形態では底板30)からの天板11の高さ、あるいは第1領域部(I)と第2領域部(II)の軸方向長さは、継手構造の適用箇所周辺の設計空間の大きさや継手構造を含む構造物として要求される性能等に応じて適宜設定される。
<第2実施形態>
 次に、第2実施形態に係る継手構造1について説明する。図7は、本実施形態に係る継手構造1の概略構成を説明するための斜視図である。図8は、その継手構造1の概略構成を説明するための側面図である。
 第2実施形態に係る継手構造1は、底板30からの、第1天板11aまでの高さと第2天板11bまでの高さと第3天板11cまでの高さがそれぞれ同一であり、各天板11a~11cが同一平面内にある点が前述の第1実施形態と相違している。なお、以降の説明においては、第1実施形態の説明と重複する内容については省略する場合がある。
 第1天板11a~第3天板11cが同一平面内に延在する継手構造1においては、H2/H0が0.3~0.8の範囲内となるように第2縦壁12bが形成されている。このような継手構造1によれば、後述の実施例で示すように、軽量化を実現しながらも、第2部材に入力される横力(本実施形態ではブラケット20に入力される車幅方向の力)に対する単位重量あたりの過度な剛性低下を抑制できる。
 例えばH2/H0が1.0となる構造は、図9のような従来の継手構造101に相当するが、H2/H0が0.3未満である場合には、従来の継手構造101と比較して単位重量あたりの剛性の低下が顕著となり、軽量化に伴う剛性の低下が大きい。一方、H2/H0が0.8を超えると、単位重量あたりの剛性の向上効果が小さいため、H2/H0が0.8を超えるように第2縦壁12bの高さH2を高くすることは、単位重量あたりの剛性を向上させる観点で有利な構造ではない。
 すなわち、H2/H0が0.3~0.8を満たし、かつ第2領域部(II)の下方に空間40を有する第2実施形態に係る継手構造1は、軽量化効果を得ることができ、かつ単位重量あたりの過度な剛性低下を抑制できる構造である。なお、H2/H0が1.0の従来構造と同等レベルの単位重量あたりの剛性を確保する観点では、H2/H0は、好ましくは0.4以上であり、より好ましくは0.5以上である。
 以上、第2実施形態に係る継手構造1について説明した。なお、継手構造1においては、第3領域部(III)を設けずに第1領域部(I)と第2領域部(II)とを隣接させてもよい。
 また、第2実施形態に係る継手構造1は、自動車のサブフレームへの適用が想定されたものであるが、本開示に係る継手構造の適用箇所は自動車のサブフレームに限定されず、部品同士がT字状に接合される箇所にも適用され得る。ただし、第2実施形態のように第1天板11a~第3天板11cが同一平面内に延在する継手構造においては、第1部材、第2部材および第3部材のうち、少なくとも第2部材は自動車の骨格部材ではない。ここで述べる自動車骨格部材とは、例えばフロントバンパービーム、リアバンパビーム、フロントサイドメンバ、リアサイドメンバ、サイドシル、フロアクロスメンバ、ルーフサイドレール、ルーフクロスメンバ、センターピラー、ラダーフレームを構成するサイドレールやクロスメンバ等の車体の骨格として使用される部材である。
 以上、本発明の実施形態の一例について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施形態の構成要件は任意に組み合わせることができる。当該任意の組み合せからは、組み合わせにかかるそれぞれの構成要件についての作用及び効果が当然に得られるとともに、本明細書の記載から当業者には明らかな他の作用及び他の効果が得られる。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、又は、上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
<シミュレーション(1)>
 図2~図5に示した継手構造1の解析モデルで剛性を評価するシミュレーションを実施した。本シミュレーションにおいては、図10に示すように、ブラケット20の貫通孔24を拘束点とし、貫通孔24からクロスフレーム10側に向かって車幅方向に平行な荷重Fを加えることで剛性を評価した。この荷重Fは、サスペンションアーム(図示せず)を介した車輪からの横力を想定したものである。なお、本シミュレーションにおいては、図5に示した第1領域部(I)の軸方向C1と第3領域部(III)の軸方向C3とのなす角θが30°に設定されている。
 シミュレーション(1)では、クロスフレーム10の第2縦壁12bの高さ(第2高さH2)を変動させたモデルを用いて複数回シミュレーションを実施した。その結果を図11に示す。
 図11に示すように、H2/H0が0.4未満となると、H2/H0が1.0の従来構造と比較して、剛性の重量効率(単位重量あたりの剛性)が75%未満に低下し、剛性が過度に低下する。一方、H2/H0が0.8を超えると、単位重量あたりの剛性の向上効果が小さい。このため、H2/H0が0.4~0.8の継手構造は、軽量化を図りながらも単位重量あたりの剛性の低下が抑制された構造といえる。
<シミュレーション(2)>
 次に、図5に示した継手構造1において、第2縦壁12bの高さ(第2高さH2)を30mmに固定し、第1領域部(I)の軸方向長さ(Y方向長さ)を調節することによって角θを変動させたモデルで複数回シミュレーションを実施した。その結果を図12に示す。なお、解析モデルの拘束条件や荷重入力位置は、シミュレーション(1)と同様の条件である。
 図12に示すように、角θが25°以下であれば、単位重量あたりの剛性が向上し、軽量化と剛性のバランスに優れた継手構造を得ることができる。
<シミュレーション(3)>
 次に、図7~図8に示した継手構造1の解析モデルで剛性を評価するシミュレーションを実施した。本シミュレーションにおいては、図13に示すように、ブラケット20の貫通孔24を拘束点とし、貫通孔24からクロスフレーム10側に向かって車幅方向に平行な荷重Fを加えることで剛性を評価した。この荷重Fは、サスペンションアーム(図示せず)を介した車輪からの横力を想定したものである。
 シミュレーション(3)では、クロスフレーム10の第2縦壁12bの高さ(第2高さH2)を変動させたモデルを用いて複数回シミュレーションを実施した。その結果を図14に示す。
 図14に示すように、H2/H0が0.3~0.8の範囲内であれば、H2/H0が1.0の従来構造と同等レベルの剛性の重量効率(単位重量あたりの剛性)を担保できる。換言すると、H2/H0が0.3~0.8の継手構造は、軽量化に伴う単位重量あたりの剛性の低下を抑制できる構造といえる。
1   継手構造
10  クロスフレーム
11  天板
11a 第1天板
11b 第2天板
11c 第3天板
12  縦壁
12a 第1縦壁
12b 第2縦壁
12c 第3縦壁
13  フランジ
20  ブラケット
21  天板
22  縦壁
23  フランジ
24  貫通孔
30  底板
40  空間
90  サブフレーム
91  サイドフレーム
100 従来の継手構造
101 従来の継手構造
(I)  第1領域部
(II) 第2領域部
(III) 第3領域部
1   第1領域部の軸方向
3   第3領域部の軸方向
0   第2領域部における底板から天板までの高さ
1   第1高さ
2   第2高さ
 

Claims (5)

  1.  継手構造であって、
     天板と縦壁とを有した第1部材と、
     前記第1部材の軸方向端部に接合された第2部材と、
     前記第1部材と前記第2部材の各々に接合された第3部材と、を備え、
     前記縦壁は、前記天板から前記第3部材側に延び、
     前記第1部材は、
     第1領域部と、
     前記第1領域部と前記第2部材との間に位置する第2領域部と、
     前記第1領域部と前記第2領域部との間に位置する第3領域部と、を有し、
     前記第1領域部は、
     前記天板の一部である第1天板と、
     前記第1天板からの前記縦壁の高さが第1高さである第1縦壁と、を有し、
     前記第1領域部は、前記第3部材に接合され、
     前記第2領域部は、
     前記天板の一部である第2天板と、
     前記第2天板からの前記縦壁の高さが第2高さである第2縦壁と、を有し、
     前記第2領域部は、前記第2部材に接合され、かつ、前記第3部材には接合されておらず、
     前記第2縦壁と前記第3部材との間には、空間が存在し、
     前記第3領域部は、
     前記天板の一部である第3天板と、
     前記第1縦壁と前記第2縦壁を繋ぐ第3縦壁と、を有し、
     前記第1天板の高さは、前記第2天板の高さより低く、
     前記第2領域部における前記第3部材から前記第2天板までの高さに対する前記第2高さの割合は、0.4~0.8である、継手構造。
  2.  前記第3領域部は、少なくとも一部が直線状に形成され、
     前記第1領域部の軸方向と前記第3領域部の軸方向とのなす角は25°以下である、請求項1に記載の継手構造。
  3.  継手構造であって、
     天板と縦壁とを有した第1部材と、
     前記第1部材の軸方向端部に接合された、自動車骨格部材ではない第2部材と、
     前記第1部材と前記第2部材の各々に接合された第3部材と、を備え、
     前記縦壁は、前記天板から前記第3部材側に延び、
     前記第1部材は、
     第1領域部と、
     前記第1領域部と前記第2部材との間に位置する第2領域部と、を有し、
     前記第1領域部は、
     前記天板の一部である第1天板と、
     前記第1天板からの前記縦壁の高さが第1高さである第1縦壁と、を有し、
     前記第1領域部は、前記第3部材に接合され、
     前記第2領域部は、
     前記天板の一部である第2天板と、
     前記第2天板からの前記縦壁の高さが第2高さである第2縦壁と、を有し、
     前記第2領域部は、前記第2部材に接合され、かつ、前記第3部材には接合されておらず、
     前記第2縦壁と前記第3部材との間には、空間が存在し、
     前記第1天板と前記第2天板は同一平面内にあり、
     前記第2領域部における前記第3部材から前記天板までの高さに対する前記第2高さの割合は、0.3~0.8である、継手構造。
  4.  前記第1部材は、前記第1領域部と前記第2領域部との間に位置する第3領域部を有し、
     前記第3領域部は、前記第1縦壁と前記第2縦壁を繋ぐ第3縦壁を有している、請求項3に記載の継手構造。
  5.  自動車のサブフレームに用いられることを特徴とする、請求項1~4のいずれか一項に記載の継手構造。
     
PCT/JP2024/016015 2023-04-24 2024-04-24 継手構造 WO2024225295A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-071009 2023-04-24
JP2023071009 2023-04-24

Publications (1)

Publication Number Publication Date
WO2024225295A1 true WO2024225295A1 (ja) 2024-10-31

Family

ID=93256828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/016015 WO2024225295A1 (ja) 2023-04-24 2024-04-24 継手構造

Country Status (1)

Country Link
WO (1) WO2024225295A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318451A (ja) * 1999-05-12 2000-11-21 Mazda Motor Corp 自動車の車体構造
JP2008238884A (ja) * 2007-03-26 2008-10-09 Toyota Motor Corp 車両のフロア構造体及びその製造方法
WO2019146789A1 (ja) * 2018-01-26 2019-08-01 日本製鉄株式会社 衝撃吸収部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318451A (ja) * 1999-05-12 2000-11-21 Mazda Motor Corp 自動車の車体構造
JP2008238884A (ja) * 2007-03-26 2008-10-09 Toyota Motor Corp 車両のフロア構造体及びその製造方法
WO2019146789A1 (ja) * 2018-01-26 2019-08-01 日本製鉄株式会社 衝撃吸収部材

Similar Documents

Publication Publication Date Title
US9045165B2 (en) Vehicle side portion joining portion structure
JP4286884B2 (ja) 自動車の車体構造
JP4021672B2 (ja) 車両用フロア構造
JP4384206B2 (ja) 自動車の車体構造
CN207416972U (zh) 前地板总成及汽车车身
RU2550401C2 (ru) Конструкция кузова автомобиля
WO2013054565A1 (ja) 車体後部のフロア構造
EP3434566A1 (en) Vehicle body lower structure
JP6256518B2 (ja) 車両の側部車体構造
JP6397534B1 (ja) 車体フロア構造
JP2019123343A (ja) 下部車体構造
US6983982B2 (en) Front vehicle body structure
JP5686586B2 (ja) 自動車用車体骨格における補強構造
JP4989443B2 (ja) 車体側部構造
WO2024225295A1 (ja) 継手構造
JPH0122784Y2 (ja)
JP2014004850A (ja) 車体フロア構造
JP3321065B2 (ja) 自動車の車体フレーム補強構造
JP4728296B2 (ja) 自動車の車体構造
CN212605472U (zh) 一种中通道总成、前地板总成以及汽车
CN100519310C (zh) 一种可伸缩顶汽车前底板的布置结构
JP2019123456A (ja) 車両の後部車体構造
CN118062117A (zh) 用于车辆的机舱组件及车辆
CN219487577U (zh) 车辆前地板下纵梁结构及车辆
WO2015076125A1 (ja) 車体後部構造