Nothing Special   »   [go: up one dir, main page]

WO2024222257A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2024222257A1
WO2024222257A1 PCT/CN2024/081402 CN2024081402W WO2024222257A1 WO 2024222257 A1 WO2024222257 A1 WO 2024222257A1 CN 2024081402 W CN2024081402 W CN 2024081402W WO 2024222257 A1 WO2024222257 A1 WO 2024222257A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
line
sub
transistor
pixel
Prior art date
Application number
PCT/CN2024/081402
Other languages
English (en)
French (fr)
Inventor
袁粲
李永谦
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024222257A1 publication Critical patent/WO2024222257A1/zh

Links

Definitions

  • the present disclosure relates to but is not limited to the field of display technology, and in particular to a display substrate and a preparation method thereof, and a display device.
  • OLED Organic light emitting diode
  • A active matrix OLED
  • TFT independent transistor
  • Transparent display is an important personalized display field of display technology. It refers to the display of images in a transparent state. Viewers can not only see the images in the display device, but also the scenes behind the display device, which can realize virtual reality (VR) and augmented reality (AR) and 3D display functions.
  • Transparent display devices using OLED technology usually divide each sub-pixel into a display area and a light-transmitting area. The display area is equipped with a pixel driving circuit and a light-emitting device to realize image display, and the light-transmitting area realizes light transmission.
  • An embodiment of the present disclosure provides a display substrate, comprising a plurality of regularly arranged repeating units, wherein the repeating units include a display area and a light-transmitting area located on at least one side of the display area, wherein the display area is configured to display an image, and the light-transmitting area is configured to transmit light;
  • the display area includes a plurality of sub-pixels forming at least two pixel rows and two pixel columns, and the sub-pixels include a pixel driving circuit;
  • the pixel driving circuit includes a first transistor, a second transistor, a third transistor and a storage capacitor, wherein a first electrode of the first transistor is connected to a data signal line, a second electrode of the first transistor is respectively connected to a gate electrode of the second transistor and a first end of the storage capacitor, a first electrode of the second transistor is connected to a first power line, a second electrode of the second transistor is respectively connected to a second electrode of the third transistor and a second end of the storage capacitor, a first electrode
  • gate electrodes of the plurality of first transistors and gate electrodes of the plurality of third transistors are connected to the same scan signal line.
  • the plurality of first transistors are connected to the same scanning signal line.
  • the scanning signal line extends from the display area to the light-transmitting area, and the scanning signal line includes a single line segment of a single-line structure and a double line segment of a double-line structure, the single line segment is arranged in the light-transmitting area, and the double line segment is arranged in the display area, and the double line segments are respectively connected to pixel driving circuits of multiple sub-pixels in the repeating unit.
  • the double line segment includes a first sub-line and a second sub-line extending along a pixel row direction, the first sub-line and the second sub-line are arranged along a pixel column direction, the first sub-line is respectively connected to pixel driving circuits of multiple sub-pixels in one pixel row, and the second sub-line is respectively connected to pixel driving circuits of multiple sub-pixels in another adjacent pixel row.
  • the double line segment also includes a first connecting line and a second connecting line, the first connecting line is respectively connected to one end of the first sub-line and the second sub-line, the second connecting line is respectively connected to the other end of the first sub-line and the second sub-line, and the first connecting line, the first sub-line, the second connecting line and the second sub-line form a ring structure.
  • the single line segment is located in an extending direction of the first sub-line or the second sub-line.
  • the first connection line is connected to a single line segment in the light-transmitting area on one side of the display area in the pixel row direction
  • the second connection line is connected to a single line segment in the light-transmitting area on the other side of the display area in the pixel row direction.
  • the single line segment and the double line segment are an integral structure connected to each other.
  • orthographic projections of the first power line, the data signal line, and the compensation signal line on the display substrate plane at least partially overlap with an orthographic projection of the ring structure on the display substrate plane.
  • the active layers of the third transistors of two sub-pixels in adjacent pixel rows are interconnected as an integrated structure, and the orthographic projection of the active layer of the third transistor on the plane of the display substrate at least partially overlaps with the orthographic projection of the annular structure on the plane of the display substrate.
  • the plurality of sub-pixels are mirror-symmetric with respect to the scanning signal line.
  • the first end of the storage capacitor includes a first plate and a third plate
  • the second end of the storage capacitor includes a second plate
  • the orthographic projection of the second plate on the display substrate plane at least partially overlaps with the orthographic projection of the first plate on the display substrate plane
  • the first plate and the second plate form a first capacitor
  • the orthographic projection of the second plate on the display substrate plane at least partially overlaps with the orthographic projection of the third plate on the display substrate plane
  • the third plate and the second plate form a second capacitor
  • the first plate is respectively connected to the third plate
  • the second plate is respectively connected to the second electrode of the second transistor and the second electrode of the third transistor
  • the first capacitor and the second capacitor constitute a storage capacitor with a parallel structure.
  • the display area in a direction perpendicular to the display substrate, includes a driving circuit layer arranged on the substrate and a light-emitting structure layer arranged on a side of the driving circuit layer away from the substrate, the driving circuit layer includes at least a first conductive layer, a second conductive layer and a third conductive layer arranged in sequence along a direction away from the substrate, the first electrode plate is arranged in the first conductive layer, the second electrode plate is arranged in the second conductive layer, the third electrode plate is arranged in the third conductive layer, and the third electrode plate is connected to the first electrode plate through a via hole; at least one repeating unit also includes an electrode plate connecting electrode, the electrode plate connecting electrode is arranged in the light-transmitting area, and the electrode plate connecting electrode is connected to the The first plates are connected.
  • the electrode connecting electrode and the first electrode plate are an integral structure connected to each other.
  • the light-emitting structure layer includes at least a fourth conductive layer arranged on a side of the third conductive layer away from the substrate, the fourth conductive layer includes at least a first anode and an anode connecting electrode, the first anode is arranged in a plurality of sub-pixels in the display area, the anode connecting electrode is arranged in the light-transmitting area, the anode connecting electrode is connected to the plate connecting electrode through an anode via, and the anode via is arranged in the light-transmitting area; in at least one sub-pixel, the first anode includes a first sub-anode and a second sub-anode arranged in isolation, the first end of the anode connecting electrode is connected to the first sub-anode, and the second end of the anode connecting electrode is connected to the second sub-anode.
  • the third conductive layer further includes a second power line and a first auxiliary electrode, the second power line is disposed in the display region, the first auxiliary electrode is disposed in the light-transmitting region, and the first auxiliary electrode is connected to the second power line.
  • the first auxiliary electrode and the second power line are an integral structure connected to each other.
  • an orthographic projection of the second power line on the plane of the display substrate at least partially overlaps with an orthographic projection of the loop structure of the scan signal line on the plane of the display substrate.
  • the embodiment of the present disclosure further provides a display device, comprising the aforementioned display substrate.
  • the embodiment of the present disclosure also provides a method for preparing a display substrate, wherein the display substrate includes a plurality of regularly arranged repeating units, wherein the repeating units include a display area and a light-transmitting area located at least on one side of the display area, wherein the display area is configured to display an image, and the light-transmitting area is configured to transmit light; the display area includes a plurality of sub-pixels forming at least two pixel rows and two pixel columns, and the sub-pixels include a pixel driving circuit; the preparation method includes:
  • a pixel driving circuit is formed in the sub-pixel; the pixel driving circuit includes a first transistor, a second transistor, a third transistor and a storage capacitor, the first electrode of the first transistor is connected to the data signal line, the second electrode of the first transistor is respectively connected to the gate electrode of the second transistor and the first end of the storage capacitor, the first electrode of the second transistor is connected to the first power line, the second electrode of the second transistor is respectively connected to the second electrode of the third transistor and the second end of the storage capacitor, the first electrode of the third transistor is connected to the compensation signal line, and the gate electrode of the first transistor and the gate electrode of the third transistor are connected to the same scanning signal line.
  • FIG1 is a schematic structural diagram of a display device
  • FIG2 is a schematic diagram of a planar structure of a display substrate
  • FIG3 is a schematic diagram showing the arrangement of sub-pixels in a substrate according to an exemplary embodiment of the present disclosure
  • FIG4 is a schematic structural diagram of a display substrate according to an exemplary embodiment of the present disclosure.
  • FIG5 is an equivalent circuit diagram of a pixel driving circuit in a display unit according to an exemplary embodiment of the present disclosure
  • FIG6 is a schematic structural diagram of a scanning signal line according to an exemplary embodiment of the present disclosure.
  • FIG7 is a schematic diagram of an embodiment of the present disclosure after forming a first conductive layer pattern
  • FIGS. 8A and 8B are schematic diagrams of the semiconductor layer pattern formed according to the embodiment of the present disclosure.
  • 9A and 9B are schematic diagrams of an embodiment of the present disclosure after forming a second conductive layer pattern
  • FIG10 is a schematic diagram of an embodiment of the present disclosure after forming a third insulating layer pattern
  • FIGS. 11A and 11B are schematic diagrams of an embodiment of the present disclosure after a third conductive layer pattern is formed;
  • FIG12 is a schematic diagram of an embodiment of the present disclosure after forming patterns of a fourth insulating layer and a first planar layer;
  • FIGS. 13A and 13B are schematic diagrams of an embodiment of the present disclosure after a fourth conductive layer pattern is formed;
  • FIGS. 14A and 14B are schematic diagrams of an embodiment of the present disclosure after a fifth conductive layer pattern is formed;
  • FIG15 is a schematic diagram of an embodiment of the present disclosure after forming a pixel definition layer pattern
  • FIG. 16 is a schematic diagram of repairing a short circuit defect of a display substrate according to an exemplary embodiment of the present disclosure.
  • 31 scanning signal line
  • 31-1 double line segment
  • 31-2 single line segment
  • 35 first power auxiliary line
  • 36 second power auxiliary line
  • 37 power connection line
  • auxiliary electrode line auxiliary electrode line
  • 52 first auxiliary electrode
  • 61 first anode
  • 61-1 first sub-anode
  • 61-2 second sub-anode
  • 62 anode connecting electrode
  • 110 display area
  • 120 light-transmitting area
  • 200 short-circuit point
  • the proportions of the drawings in this disclosure can be used as a reference in the actual process, but are not limited to this.
  • the width-to-length ratio of the channel, the thickness and spacing of each film layer, the width and spacing of each signal line can be adjusted according to actual needs.
  • the number of pixels in the display substrate and the number of sub-pixels in each pixel are not limited to the numbers shown in the figures.
  • the drawings described in this disclosure are only structural schematic diagrams, and one method of this disclosure is not limited to the shapes or values shown in the drawings.
  • ordinal numbers such as “first”, “second” and “third” are provided to avoid confusion among constituent elements, and are not intended to limit the number.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate, or the internal communication of two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate, or the internal communication of two elements.
  • a transistor refers to an element including at least three terminals: a gate electrode, a drain electrode, and a source electrode.
  • the transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode.
  • the channel region refers to a region where current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and the “drain electrode” are sometimes interchanged. Therefore, in this specification, the “source electrode” and the “drain electrode” may be interchanged, and the “source terminal” and the “drain terminal” may be interchanged.
  • electrical connection includes the case where components are connected together through an element having some electrical function.
  • element having some electrical function There is no particular limitation on the “element having some electrical function” as long as it can transmit and receive electrical signals between the connected components. Examples of “element having some electrical function” include not only electrodes and wiring, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements having various functions.
  • parallel means a state where the angle formed by two straight lines is greater than -10° and less than 10°, and therefore, also includes a state where the angle is greater than -5° and less than 5°.
  • perpendicular means a state where the angle formed by two straight lines is greater than 80° and less than 100°, and therefore, also includes a state where the angle is greater than 85° and less than 95°.
  • film and “layer” may be interchanged.
  • conductive layer may be replaced by “conductive film”.
  • insulating film may be replaced by “insulating layer”.
  • triangles, rectangles, trapezoids, pentagons or hexagons in this specification are not in the strict sense, and may be approximate triangles, rectangles, trapezoids, pentagons or hexagons, etc. There may be some small deformations caused by tolerances, and there may be chamfers, arc edges and deformations.
  • FIG. 1 is a schematic diagram of the structure of a display device.
  • the OLED display device may include a timing controller, a data driver, a scan driver, and a pixel array, wherein the timing controller is connected to the data driver and the scan driver respectively, the data driver is connected to a plurality of data signal lines (D1 to Dn) respectively, and the scan driver is connected to a plurality of scan signal lines (S1 to Sm) respectively.
  • the pixel array may include a plurality of sub-pixels Pxij, each of which may be connected to a corresponding data signal line and a corresponding scan signal line, and i and j may be natural numbers.
  • At least one sub-pixel Pxij may include at least a circuit unit and a display unit, wherein the circuit unit may include at least a pixel driving circuit, wherein the pixel driving circuit is connected to a scan signal line and a data signal line respectively, and the display unit may include at least a light-emitting device, wherein the light-emitting device is connected to a pixel driving circuit of the circuit unit, and the sub-pixel PXij may refer to a sub-pixel whose pixel driving circuit is connected to the i-th scan signal line and to the j-th data signal line.
  • the timing controller may provide a grayscale value and a control signal suitable for the specifications of the data driver to the data driver, and may provide a clock signal, a scan start signal, etc. suitable for the specifications of the scan driver to the scan driver.
  • the data driver may generate a data voltage to be provided to the data signal lines 531, D2, D3, ... and Dn using the grayscale value and the control signal received from the timing controller.
  • the data driver may sample the grayscale value using a clock signal, and apply the data voltage corresponding to the grayscale value to the data signal lines 531 to Dn in units of pixel rows, where n may be a natural number.
  • the scan driver may generate a scan signal to be provided to the scan signal lines S1, S2, S3, ...
  • the scan driver may sequentially provide a scan signal having a conduction level pulse to the scan signal lines S1 to Sm.
  • the scan driver may be configured in the form of a shift register, and may generate a scan signal in a manner that sequentially transmits a scan start signal provided in the form of a conduction level pulse to a next level circuit under the control of a clock signal, where m may be a natural number.
  • a pixel array may be provided on a display substrate.
  • FIG2 is a schematic diagram of a planar structure of a display substrate.
  • the display substrate may include a plurality of regularly arranged repeating units 100, and at least one repeating unit 100 may include a display area 110 and a light-transmitting area 120.
  • the display area 110 may include a plurality of sub-pixels, and at least one sub-pixel may include a circuit unit and a light-emitting unit.
  • the circuit unit may include at least a pixel driving circuit, and the light-emitting unit may include at least a light-emitting device.
  • the light-emitting device of the light-emitting unit is connected to the pixel driving circuit of the corresponding circuit unit, and the display area 110 is configured to display an image.
  • the light-transmitting area 120 may be located on at least one side of the display area 110 in the repeating unit 100, and the light-transmitting area 120 is configured to transmit light, so that the repeating unit 100 can realize image display in a transparent state, that is, transparent display.
  • the repeating unit is a basic unit constituting the display substrate, and the display substrate is formed by repeating and continuously arranging along at least one direction, that is, the display substrate is spliced by a plurality of repeating units.
  • An exemplary embodiment of the present disclosure provides a display substrate, comprising a plurality of regularly arranged repeating units, wherein the repeating units include a display area and a light-transmitting area located at least on one side of the display area, wherein the display area is configured to display an image, and the light-transmitting area is configured to transmit light;
  • the display area includes a plurality of sub-pixels forming at least two pixel rows and two pixel columns, wherein the sub-pixels include a pixel driving circuit;
  • the pixel driving circuit includes a first transistor, a second transistor, a third transistor, and a storage capacitor, wherein a first electrode of the first transistor is connected to a data signal line, a second electrode of the first transistor is respectively connected to a gate electrode of the second transistor and a first end of the storage capacitor, a first electrode of the second transistor is connected to a first power line, a second electrode of the second transistor is respectively connected to a second electrode of the third transistor and a second end of the storage capacitor,
  • gate electrodes of the plurality of first transistors and gate electrodes of the plurality of third transistors are connected to the same scan signal line.
  • gate electrodes of the plurality of first transistors and gate electrodes of the plurality of third transistors are connected to the same scan signal line.
  • the scanning signal line extends from the display area to the light-transmitting area, and the scanning signal line includes a single line segment of a single-line structure and a double line segment of a double-line structure, the single line segment is arranged in the light-transmitting area, and the double line segment is arranged in the display area, and the double line segments are respectively connected to pixel driving circuits of multiple sub-pixels in the repeating unit.
  • the plurality of sub-pixels are mirror-symmetric with respect to the scanning signal line.
  • the display substrate of the present disclosure is described below by way of some exemplary embodiments.
  • the display substrate in a direction parallel to the display substrate, may include a plurality of regularly arranged repeating units, at least one of the repeating units may include a display area 110 and a light-transmitting area 120, the display area 110 is configured to realize image display, and the light-transmitting area 120 is configured to realize light transmission, thereby realizing transparent display.
  • the display substrate may include at least a driving circuit layer disposed on a substrate and a light-emitting structure layer disposed on a side of the driving circuit layer away from the substrate, in at least one repeating unit, the driving circuit layer of the display area 110 may include a plurality of circuit units, the light-emitting structure layer of the display area 110 may include a plurality of light-emitting units, the circuit unit may include at least a pixel driving circuit, the light-emitting unit may include at least a light-emitting device, and the light-emitting device is connected to the pixel driving circuit of the corresponding circuit unit.
  • the circuit unit mentioned in the present disclosure refers to an area divided according to a pixel driving circuit
  • the light-emitting unit mentioned in the present disclosure refers to an area divided according to a light-emitting device.
  • the position of the orthogonal projection of the light-emitting unit on the substrate may correspond to the position of the orthogonal projection of the circuit unit on the substrate, or the position of the orthogonal projection of the light-emitting unit on the substrate may not correspond to the position of the orthogonal projection of the circuit unit on the substrate.
  • the position of the circuit unit's orthographic projection on the substrate corresponds one-to-one to the position of the light-emitting unit's orthographic projection on the substrate.
  • the circuit unit and the light-emitting unit constitute a sub-pixel. Therefore, in the following content, sub-pixels are uniformly used to refer to the circuit unit and the light-emitting unit.
  • FIG3 is a schematic diagram of the arrangement of sub-pixels in a display substrate of an exemplary embodiment of the present disclosure, illustrating the structure of a repeating unit.
  • the repeating unit may include a display area 110 and a light-transmitting area 120, and the display area 110 may be located on one side of the light-transmitting area 120 in the first direction X.
  • the display area 110 may include four sub-pixels, namely a first sub-pixel P1, a second sub-pixel P2, a third sub-pixel P3, and a fourth sub-pixel P4, and the four sub-pixels are arranged in a square manner, which can effectively increase the aperture ratio and the area of the light-transmitting area.
  • the second subpixel P2 may be disposed on one side of the first subpixel P1 in the first direction X
  • the third subpixel P3 may be disposed on one side of the first subpixel P1 in the second direction Y
  • the fourth subpixel P4 may be disposed on one side of the third subpixel P3 in the first direction X
  • a plurality of subpixels sequentially disposed along the first direction X may be referred to as a pixel row
  • a plurality of subpixels sequentially disposed along the second direction Y may be referred to as a pixel column
  • the first direction X intersects the second direction Y.
  • the first sub-pixel P1 may be a red sub-pixel (R) emitting red light
  • the second sub-pixel P2 may be a blue sub-pixel (B) emitting blue light
  • the third sub-pixel P3 may be a white sub-pixel (B) emitting white light
  • the fourth sub-pixel P4 may be a green sub-pixel (W) emitting green light.
  • the arrangement of RGBW may be adjusted according to actual needs, and the present disclosure does not make any specific limitation thereto.
  • each sub-pixel may include a circuit unit and a light-emitting unit arranged on a side of the circuit unit away from the substrate, the circuit unit may include at least a pixel driving circuit, the light-emitting unit may include at least a light-emitting device, and the light-emitting device of the light-emitting unit is connected to the pixel driving circuit of the corresponding circuit unit.
  • Fig. 4 is a schematic diagram of a display substrate according to an exemplary embodiment of the present disclosure, illustrating the structure of a pixel driving circuit in a repeating unit.
  • the repeating unit may include a display area 110 and a light-transmitting area 120, and the display area 110 may include a first sub-pixel P1, a second sub-pixel P2, a third sub-pixel P3, and a fourth sub-pixel P4 arranged in a square manner, and at least one sub-pixel may include a pixel driving circuit and a light-emitting device.
  • At least one repeating unit may include one scan signal line 31, one first power line 51, one second power line 52, four data signal lines 53, and one compensation signal line 54.
  • the scan signal line 31 may be disposed in the display region 110 and the light-transmitting region 120, and the first power line 51, the second power line 52, the data signal line 53, and the compensation signal line 54 may be disposed in the display region 110.
  • At least one pixel driving circuit includes at least a first transistor T1 as a data writing transistor, a second transistor T2 as a driving transistor, a third transistor T3 as a sensing transistor, and a storage capacitor C.
  • the gate electrode of the first transistor T1 and the gate electrode of the third transistor T3 are connected to the same scan signal line 31 .
  • gate electrodes of two first transistors T1 and gate electrodes of two third transistors T3 are connected to the same scan signal line 31 .
  • gate electrodes of four first transistors T1 and gate electrodes of four third transistors T3 are connected to the same scan signal line 31 .
  • the shape of the scan signal line 31 can be a line shape with a main portion extending along the first direction X, and can be arranged in the middle area of the repeating unit in the second direction Y.
  • the plurality of sub-pixels in the repeating unit can be mirror-symmetrical with respect to the scan signal line 31.
  • the shapes of the first power line 51, the second power line 52, the data signal line 53, and the compensation signal line 54 may be line shapes whose main parts extend along the second direction Y, and one first power line 51, two data signal lines 53, one compensation signal line 54, two data signal lines 53, and one second power line 52 may be sequentially arranged along the first direction X.
  • the first power line 51 may be located at one side of the display area 110 in the first direction X
  • the second power line 52 may be located at the other side of the display area 110 in the first direction X
  • the compensation signal line 54 may be located between the first power line 51 and the second power line 52
  • two of the four data signal lines 53 may be located between the first power line 51 and the compensation signal line 54
  • the other two of the four data signal lines 53 may be located between the second power line 52 and the compensation signal line 54.
  • the positions of the first power line 51 and the second power line 52 can be substantially mirror-symmetrical with respect to the compensation signal line 54, and the two data signal lines 53 located on the opposite side of the first direction X of the compensation signal line 54 and the two data signal lines 53 located on the side of the first direction X of the compensation signal line 54 can be substantially mirror-symmetrical with respect to the compensation signal line 54.
  • one scanning signal line 31 may define two adjacent pixel rows, the side of the scanning signal line 31 in the opposite direction of the second direction Y is the first pixel row, and the side of the scanning signal line 31 in the second direction Y is the second pixel row.
  • the first power line 51, the compensation signal line 54, and the second power line 52 may define two pixel columns, the first power line 51 and the compensation signal line 54.
  • the source line 51 and the compensation signal line 54 may define a first pixel column, and the second power line 52 and the compensation signal line 54 may define a second pixel column.
  • the scanning signal line 31, the first power line 51, the second power line 52 and the compensation signal line 54 define four sub-pixels.
  • the sub-pixel located at the first pixel row and the first pixel column position (upper left of the display unit) can be called a first sub-pixel P1
  • the sub-pixel located at the first pixel row and the second pixel column position (upper right of the display unit) can be called a second sub-pixel P2
  • the sub-pixel located at the second pixel row and the first pixel column position (lower left of the display unit)
  • the sub-pixel located at the second pixel row and the first pixel column position (lower right of the display unit) can be called a fourth sub-pixel P4.
  • the pixel driving circuit structure in the first pixel column and the pixel driving circuit structure in the second pixel column can be basically mirror-symmetrical with respect to the compensation signal line 54, that is, the pixel driving circuit structure of the first sub-pixel P1 and the pixel driving circuit structure of the second sub-pixel P2 can be basically mirror-symmetrical with respect to the compensation signal line 54, and the pixel driving circuit structure of the third sub-pixel P3 and the pixel driving circuit structure of the fourth sub-pixel P4 can be basically mirror-symmetrical with respect to the compensation signal line 54.
  • Fig. 5 is an equivalent circuit diagram of a pixel driving circuit in a display unit of an exemplary embodiment of the present disclosure. As shown in Fig. 5, at least one display unit may include four pixel driving circuits, and the four pixel driving circuits may be arranged in a square manner, and the pixel driving circuit may be a 3T1C structure.
  • At least one pixel driving circuit may include three transistors (a first transistor T1, a second transistor T2 and a third transistor T3) and a storage capacitor C, and the pixel driving circuit is respectively connected to the scanning signal line 31, the first power line 51, the data signal line 53 and the compensation signal line 54.
  • the pixel driving circuit may include a first node N1 and a second node N2.
  • the first node N1 is respectively connected to the second electrode of the first transistor T1, the gate electrode of the second transistor T2, and the first end of the storage capacitor C
  • the second node N2 is respectively connected to the second electrode of the second transistor T2, the second electrode of the third transistor T3, and the second end of the storage capacitor C.
  • a first end of the storage capacitor C is connected to the first node N1
  • a second end of the storage capacitor C is connected to the second node N2
  • the storage capacitor C is used to store the potential of the gate electrode of the second transistor T2 .
  • a gate electrode of the first transistor T1 is connected to the scan signal line 31, a first electrode of the first transistor T1 is connected to the data signal line 53, and a second electrode of the first transistor T1 is connected to the first node N1.
  • the first transistor T1 inputs a data signal of the data signal line 53 to the gate electrode of the second transistor T2.
  • a gate electrode of the second transistor T2 is connected to the first node N1
  • a first electrode of the second transistor T2 is connected to the first power line 51
  • a second electrode of the second transistor T2 is connected to the second node N2.
  • the second transistor T2 generates a corresponding current at its second electrode under the control of the data signal received by its gate electrode.
  • a gate electrode of the third transistor T3 is connected to the scan signal line 31
  • a first electrode of the third transistor T3 is connected to the compensation signal line 54
  • a second electrode of the third transistor T3 is connected to the second node N2.
  • the gate electrode of the first transistor T1 and the gate electrode of the third transistor T3 are connected to the same scan signal line 31 .
  • gate electrodes of two first transistors T1 and gate electrodes of two third transistors T3 are connected to the same scan signal line 31 .
  • the gate electrodes of the four first transistors T1 and the gate electrodes of the four third transistors T3 are connected to the same scan signal line 31 .
  • the light emitting device EL may be an OLED, including a stacked first electrode (anode), an organic light emitting layer, and a second electrode (cathode), or may be a QLED, including a stacked first electrode (anode), a quantum dot light emitting layer, and a second electrode (cathode).
  • the first electrode of the light emitting device EL is connected to the second node N2
  • the second electrode of the light emitting device EL is connected to the second power line 52
  • the light emitting device EL emits light of corresponding brightness in response to the current of the second electrode of the second transistor T2.
  • the signal of the first power line 51 is a high level signal that is continuously provided
  • the signal of the second power line 52 is a low level signal that is continuously provided.
  • the first transistor T1 to the third transistor T3 may be a P-type transistor, or may be an N-type transistor. Using the same type of transistors in the pixel driving circuit can simplify the process flow, reduce the process difficulty of the display panel, and improve the yield of the product. In some possible implementations, the first transistor T1 to the third transistor T3 may include a P-type transistor and an N-type transistor.
  • the first transistor T1 to the third transistor T3 may be a low-temperature polysilicon thin film transistor, or an oxide thin film transistor, or a low-temperature polysilicon thin film transistor and an oxide thin film transistor.
  • the active layer of the low-temperature polysilicon thin film transistor is low-temperature polysilicon (LTPS for short), and the active layer of the oxide thin film transistor is oxide semiconductor (Oxide).
  • the low-temperature polysilicon thin film transistor has the advantages of high mobility and fast charging, and the oxide thin film transistor has the advantages of low leakage current.
  • the low-temperature polysilicon thin film transistor and the oxide thin film transistor are integrated on a display substrate, that is, the LTPS+Oxide (LTPO for short) display substrate, which can take advantage of the advantages of both, can achieve low-frequency driving, can reduce power consumption, and can improve display quality.
  • LTPS+Oxide (LTPO for short) display substrate which can take advantage of the advantages of both, can achieve low-frequency driving, can reduce power consumption, and can improve display quality.
  • the shape of the scan signal line 31 may be a line shape in which the main part extends along the first direction X, and may be provided in the display area 110 and the light-transmitting area 120.
  • the scan signal line 31 may extend from the display area 110 to the light-transmitting area 120, or the scan signal line 31 may extend from the light-transmitting area 120 to the display area 110.
  • the scan signal line 31 may be provided in the middle area of the repeating unit in the second direction Y, between the first sub-pixel P1 and the third sub-pixel P3, and between the second sub-pixel P2 and the fourth sub-pixel P4.
  • a plurality of sub-pixels in the repeating unit are mirror-symmetric with respect to the scan signal line 31, that is, the first sub-pixel P1 and the third sub-pixel P3 may be substantially mirror-symmetric with respect to the scan signal line 31, and the second sub-pixel P2 and the fourth sub-pixel P4 may be substantially mirror-symmetric with respect to the scan signal line 31.
  • Fig. 6 is a schematic diagram of a structure of a scanning signal line of an exemplary embodiment of the present disclosure.
  • the scanning signal line 31 may include a double line segment 31-1 of a double line structure and a single line segment 31-2 of a single line structure, the double line segment 31-1 may be located in the display area 110, and the single line segment 31-2 may be located in the light-transmitting area 120, that is, the display area 110 is provided with two signal lines, the two signal lines are respectively connected to the pixel driving circuits of the plurality of sub-pixels in the repeating unit, and the light-transmitting area 120 is provided with only one signal line.
  • the double line segment 31-1 of the display area 110 may include a first sub-line 31a and a second sub-line 31b extending along a first direction X (pixel row direction), the first sub-line 31a and the second sub-line 31b are arranged along a second direction Y (pixel column direction), and the second sub-line 31b may be disposed on one side of the first sub-line 31a in the second direction Y.
  • the first sub-line 31a may be connected to the pixel driving circuits of the two sub-pixels in the first pixel row, respectively, and the second sub-line 31b may be connected to the pixel driving circuits of the two sub-pixels in the second pixel row, respectively, thereby realizing the connection between the double line segment 31-1 and a plurality of pixel driving circuits in a repeating unit.
  • the first sub-line 31a is connected to the gate electrode of the first transistor T1 and the gate electrode of the third transistor T3 in the first sub-pixel P1 and the second sub-pixel P2, respectively, and the second sub-line 31b is connected to the gate electrode of the first transistor T1 and the gate electrode of the third transistor T3 in the third sub-pixel P3 and the fourth sub-pixel P4, respectively, so that the double line segment 31-1 can control the conduction or disconnection of multiple first transistors T1 and third transistors T3 in the repeating unit.
  • the double line segment 31-1 of the display area 110 may also include a first connecting line 31c and a second connecting line 31d.
  • the first connecting line 31 may be connected to the ends of the first sub-line 31a and the second sub-line 31b in the opposite direction of the first direction X, respectively, and the second connecting line 31d may be connected to the ends of the first sub-line 31a and the second sub-line 31b in the first direction X, respectively, so that the first connecting line 31c, the first sub-line 31a, the second connecting line 31d and the second sub-line 31b are connected in sequence to form a ring structure.
  • the single line segment 31-2 can be located in the extension direction of the first sub-line 31a or the second sub-line 31b, the first connecting line 31c can be connected to the single line segment 31-2 of the light-transmitting area 120 in the opposite direction of the first direction X of the display area 110, and the second connecting line 31d can be connected to the single line segment 31-2 of the light-transmitting area 120 in the first direction X of the display area 110.
  • the double line segment 31-1 and the single line segment 31-2 constitute a continuous scanning signal line 31.
  • the double line segment 31 - 1 of the display region 110 and the single line segment 31 - 2 of the light-transmitting region 120 may be an integral structure connected to each other.
  • the gate electrode of the first transistor T1 and the gate electrode of the third transistor T3 are connected to the same scan signal line 31, the first electrode of the first transistor T1 is connected to the data signal line 53, the second electrode of the first transistor T1 is respectively connected to the gate electrode of the second transistor and the first end of the storage capacitor C, the first electrode of the second transistor T2 is connected to the first power line 51, the second electrode of the second transistor T2 is respectively connected to the second electrode of the third transistor T3 and the second end of the storage capacitor C, and the first electrode of the third transistor T3 is connected to the compensation signal line 54.
  • At least one repeating unit may further include a compensation connection line 13, the shape of the compensation connection line 13 may be a strip shape extending along the first direction X, may be located between the first pixel row and the second pixel row, and the extension length of the compensation connection line 13 in the first pixel column is substantially the same as the extension length in the second pixel column, and the compensation connection line 13 in the first pixel column and the compensation connection line 13 in the second pixel column may be substantially mirror-symmetrical relative to the compensation signal line 54.
  • the compensation signal line 54 is connected to the compensation connection line 13 through a via hole.
  • the end of the compensation connection line 13 located in the first pixel column is connected to the first electrode of the third transistor T3 in the first pixel column
  • the end of the compensation connection line 13 located in the second pixel column is connected to the first electrode of the third transistor T3 in the second pixel column, thereby realizing a one-to-four structure of the compensation connection line, and one compensation signal line can write the compensation signal into the four pixel driving circuits in the display unit respectively.
  • At least one repeating unit may also include at least one first power auxiliary line 35, the orthographic projection of the first power auxiliary line 35 on the substrate at least partially overlaps with the orthographic projection of the first power line 51 on the substrate, and the first power line 51 is connected to the first power auxiliary line 35 through a via to form a double-layer first power routing structure.
  • At least one repeating unit may also include at least one second power auxiliary line 36, the orthographic projection of the second power auxiliary line 36 on the substrate at least partially overlaps with the orthographic projection of the second power line 52 on the substrate, and the second power line 52 is connected to the second power auxiliary line 36 through a via to form a double-layer second power routing structure.
  • the first end of the storage capacitor C may include a first plate and a third plate
  • the second end of the storage capacitor C may include a second plate.
  • the orthographic projection of the second plate on the substrate overlaps at least partially with the orthographic projection of the first plate on the substrate, and the first plate and the second plate form a first capacitor.
  • the orthographic projection of the second plate on the substrate overlaps at least partially with the orthographic projection of the third plate on the substrate, and the third plate and the second plate form a second capacitor.
  • the first plate is connected to the third plate, and the first capacitor and the second capacitor constitute a storage capacitor in a parallel structure.
  • the display area 110 may include a driving circuit layer disposed on the substrate and a light emitting structure disposed on a side of the driving circuit layer away from the substrate.
  • the driving circuit layer may include at least a first conductive layer, a second conductive layer, and a third conductive layer sequentially disposed in a direction away from the substrate, the first electrode may be disposed in the first conductive layer, the second electrode may be disposed in the second conductive layer, the third electrode may be disposed in the third conductive layer, and the third electrode is connected to the first electrode through a via.
  • the light emitting structure layer may include at least a fourth conductive layer disposed on a side of the third conductive layer away from the substrate, a fifth conductive layer disposed on a side of the fourth conductive layer away from the substrate, and a cathode layer disposed on a side of the fifth conductive layer away from the substrate, the fourth conductive layer may include at least a first anode disposed in a plurality of sub-pixels of the display area 110, and the fifth conductive layer may include at least a second anode disposed in a plurality of sub-pixels of the display area 110.
  • the light-transmitting region 120 may further include at least one auxiliary cathode 80, and the auxiliary cathode 80 is connected to the second power line 52.
  • the auxiliary cathode 80 is configured to provide a low-level signal to the cathode and is configured to reduce the diffraction effect of the light-transmitting region.
  • the following is an exemplary explanation through the preparation process of the display substrate.
  • the "patterning process" mentioned in the present disclosure includes processes such as coating photoresist, mask exposure, development, etching, and stripping photoresist for metal materials, inorganic materials or transparent conductive materials, and includes processes such as coating organic materials, mask exposure and development for organic materials.
  • Deposition can be any one or more of sputtering, evaporation, and chemical vapor deposition
  • coating can be any one or more of spraying, spin coating and inkjet printing
  • etching can be any one or more of dry etching and wet etching, which are not limited in the present disclosure.
  • Thin film refers to a layer of thin film made by deposition, coating or other processes of a certain material on a substrate. If the "thin film” does not require a patterning process during the entire production process, the “thin film” can also be called a “layer”. If the "thin film” requires a patterning process during the entire production process, it is called a “thin film” before the patterning process and a “layer” after the patterning process. The “layer” after the patterning process contains at least one "pattern”.
  • the "A and B are arranged in the same layer” mentioned in the present disclosure means that A and B are formed simultaneously through the same patterning process, and the "thickness" of the film layer is the size of the film layer in the direction perpendicular to the display substrate.
  • the orthographic projection of B is within the range of the orthographic projection of A” or "the orthographic projection of A includes the orthographic projection of B” means that the boundary of the orthographic projection of B falls within the boundary of the orthographic projection of A, or the boundary of the orthographic projection of A overlaps with the boundary of the orthographic projection of B.
  • the preparation process of the display substrate of the exemplary embodiment of the present disclosure may include the following operations.
  • Forming a first conductive layer pattern includes: depositing a first conductive film on a substrate, patterning the first conductive film through a patterning process, and forming a first conductive layer pattern on the substrate, as shown in FIG7.
  • the first conductive layer may be referred to as a light shielding layer (SHL).
  • the first conductive layer of each sub-pixel in the display substrate may include at least a first plate 11 and a plate connecting electrode 12 .
  • the shape of the first electrode plate 11 may be rectangular, and the corners of the rectangle may be chamfered.
  • the first electrode plate 11 may serve as a plate of a storage capacitor, and the first electrode plate 11 is configured to form a first capacitor with a second electrode plate formed subsequently.
  • the first electrode plate 11 is further configured to shield the second transistor from light, reduce the intensity of light irradiating the second transistor, reduce the leakage current of the second transistor, and thus reduce the influence of light on the characteristics of the second transistor.
  • the plate connecting electrode 12 may be in the shape of a strip having a main portion extending along the first direction X, a first end of the plate connecting electrode 12 is connected to the first plate 11, and a second end of the plate connecting electrode 12 extends to the adjacent light-transmitting region 120 in a direction away from the first plate 11, and the plate connecting electrode 12 is configured to be connected to the rear
  • the anode connection electrode is connected to the subsequently formed sixth connection electrode, and is connected to the anode connection electrode through the sixth connection electrode.
  • the second end of the plate connection electrode 12 may form a rectangular anode connection block 12-1, so that the entire plate connection electrode 12 is in a "T" shape, and the anode connection block 12-1 is located in the light-transmitting region 120.
  • the connection block 12-1 is configured to accommodate the eleventh via hole formed subsequently, so that the sixth connection electrode formed subsequently is connected to the plate connection electrode 12 through the via hole.
  • the plate connection electrode 12 in the first sub-pixel P1 may be located on one side of the first plate 11 in the sub-pixel in the opposite direction of the first direction X, and the first plate 11 and the plate connection electrode 12 in the first sub-pixel P1 may be an integrated structure connected to each other.
  • the plate connection electrode 12 in the second sub-pixel P2 may be located on one side of the first plate 11 in the sub-pixel in the first direction X, and the first plate 11 and the plate connection electrode 12 in the second sub-pixel P2 may be an integrated structure connected to each other.
  • the plate connection electrode 12 in the third sub-pixel P3 may be located on one side of the first plate 11 in the sub-pixel in the opposite direction of the first direction X, and the first plate 11 and the plate connection electrode 12 in the third sub-pixel P3 may be an integrated structure connected to each other.
  • the plate connection electrode 12 in the fourth sub-pixel P4 may be located on one side of the first plate 11 in the sub-pixel in the first direction X, and the first plate 11 and the plate connection electrode 12 in the fourth sub-pixel P4 may be an integrated structure connected to each other.
  • the first conductive layer in at least one repeating unit may further include a compensation connection line 13.
  • the shape of the compensation connection line 13 may be a strip shape in which the main part extends along the first direction X. In the first direction X, the compensation connection line 13 may be arranged across the first pixel column and the second pixel column. In the second direction Y, the compensation connection line 13 may be arranged between the first pixel row and the second pixel row.
  • the compensation connection line 13 is configured to be connected to the compensation signal line formed subsequently on the one hand, so as to realize a one-to-four structure of the compensation signal line in one repeating unit, and to be connected to the first region of the third active layer in each sub-pixel through the connection electrode formed subsequently on the other hand, so that the compensation signal line can provide a compensation signal to the third transistor in each sub-pixel.
  • the first conductive layer pattern in the first subpixel P1 and the first conductive layer pattern in the third subpixel P3 may be substantially mirror-symmetrical with respect to a horizontal reference line
  • the first conductive layer pattern in the second subpixel P2 and the first conductive layer pattern in the fourth subpixel P4 may be substantially mirror-symmetrical with respect to the horizontal reference line
  • the first conductive layer pattern in the first subpixel P1 and the first conductive layer pattern in the second subpixel P2 may be substantially mirror-symmetrical with respect to a vertical reference line
  • the first conductive layer pattern in the third subpixel P3 and the first conductive layer pattern in the fourth subpixel P4 may be substantially mirror-symmetrical with respect to the vertical reference line.
  • the horizontal reference line may be a straight line extending along the first direction X and bisecting the display area 110 in the second direction Y
  • the vertical reference line may be a straight line extending along the second direction Y and bisecting the display area 110 in the first direction X.
  • the first electrode 11 , the electrode connecting electrode 12 and the compensation connecting line 13 are formed in the display area 110 , and there is no corresponding film layer in the light-transmitting area 120 .
  • forming a semiconductor layer pattern may include: depositing a first insulating film and a semiconductor film in sequence on the substrate on which the aforementioned pattern is formed, patterning the semiconductor film through a patterning process to form a first insulating layer covering the first conductive layer, and a semiconductor layer disposed on the first insulating layer, as shown in FIGS. 8A and 8B , where FIG. 8B is a schematic diagram of the semiconductor layer in FIG. 8A .
  • the semiconductor layer of each sub-pixel in the display substrate may include at least a first active layer 21, a second active layer 22, and a third active layer 23, the first active layer 21 serving as an active layer of the first transistor T1, the second active layer 22 serving as an active layer of the second transistor T2, and the third active layer 23 serving as an active layer of the third transistor T3.
  • the first active layer 21 and the third active layer 23 may be disposed on one side of the first electrode plate 11 of the subpixel in the second direction Y
  • the second active layer 22 may be disposed in an end region of the first electrode plate 11 of the subpixel away from the first active layer 21 and the third active layer 23, and the second active layer 23 may be disposed on the first electrode plate 11 of the subpixel.
  • the positive projection of the layer 22 on the substrate is within the range of the positive projection of the first electrode plate 11 of the sub-pixel on the substrate, so that the first electrode plate 11 as a shielding layer can shield the channel area of the second transistor T2, prevent light from affecting the channel, and ensure the electrical performance of the second transistor T2.
  • the third active layer 23 of the first sub-pixel P1 can be arranged on one side of the first active layer 21 of the sub-pixel in the first direction X, and the third active layer 23 of the second sub-pixel P2 can be arranged on one side of the first active layer 21 of the sub-pixel in the opposite direction of the first direction X.
  • the first active layer 21 and the third active layer 23 can be arranged on the side opposite to the second direction Y of the first electrode plate 11 of the subpixel
  • the second active layer 22 can be arranged in the end region of the first electrode plate 11 of the subpixel away from the first active layer 21 and the third active layer 23, and the positive projection of the second active layer 22 on the substrate is located within the range of the positive projection of the first electrode plate 11 of the subpixel on the substrate, so that the first electrode plate 11 as a shielding layer can shield the channel region of the second transistor T2, avoid the influence of light on the channel, and ensure the electrical performance of the second transistor T2.
  • the third active layer 23 of the third subpixel P3 can be arranged on the side opposite to the first direction X of the first active layer 21 of the subpixel, and the third active layer 23 of the fourth subpixel P4 can be arranged on the side of the first direction X of the first active layer 21 of the subpixel.
  • the third active layer 23 of the first subpixel P1 and the third active layer 23 of the third subpixel P3 may be an integrated structure connected to each other
  • the third active layer 23 of the second subpixel P2 and the third active layer 23 of the fourth subpixel P4 may be an integrated structure connected to each other, that is, the third active layers 23 of two subpixels in adjacent pixel rows are an integrated structure connected to each other.
  • the present disclosure not only saves space, but also reduces the via connection structure and simplifies the preparation process by setting the second transistors of two adjacent subpixels in a pixel column to share the source.
  • the first active layer 21 and the third active layer 23 may be in an "I" shape
  • the second active layer 22 may be in a rectangular shape, the corners of the rectangular shape may be chamfered, and the sides of the rectangular shape may be grooved.
  • the active layer of each transistor may include a first region, a second region, and a channel region between the first region and the second region.
  • the orthographic projection of the first active layer 21 on the substrate does not overlap with the orthographic projection of the first electrode plate 11 on the substrate
  • the orthographic projection of the third active layer 23 on the substrate does not overlap with the orthographic projection of the first electrode plate 11 on the substrate.
  • the present disclosure is conducive to designing the channel width-to-length ratio of the first transistor and the third transistor according to relevant requirements by setting the non-overlapping area between the first active layer 21 and the first electrode plate 11 and the third active layer 23 and the first electrode plate 11.
  • the first active layer 21 and the third active layer 23 in the first subpixel P1 and the first active layer 21 and the third active layer 23 in the third subpixel P3 may be substantially mirror-symmetrical with respect to a vertical reference line
  • the first active layer 21 and the third active layer 23 in the second subpixel P2 and the first active layer 21 and the third active layer 23 in the fourth subpixel P4 may be substantially mirror-symmetrical with respect to the vertical reference line.
  • the semiconductor layer may use a metal oxide, such as an oxide containing indium and tin, an oxide containing tungsten and indium, an oxide containing tungsten, indium and zinc, an oxide containing titanium and indium, an oxide containing titanium, indium and tin, an oxide containing indium and zinc, an oxide containing silicon, indium and tin, an oxide containing indium, gallium and zinc, etc.
  • the semiconductor layer may be a single layer, a double layer, or a multilayer.
  • a semiconductor layer pattern is formed in the display region 110 , and the film layer in the light-transmitting region 120 includes a first insulating layer.
  • forming the second conductive layer pattern may include: depositing a second insulating film and a second conductive film in sequence on the substrate on which the aforementioned pattern is formed, patterning the second conductive film through a patterning process to form a second insulating layer covering the semiconductor layer, and a second conductive layer pattern disposed on the second insulating layer, as shown in FIGS. 9A and 9B , where FIG. 9B is a schematic diagram of the second conductive layer in FIG. 9A .
  • the second conductive layer in at least one repeating unit may include at least one scan signal line 31.
  • the scan signal line 31 may be in the shape of a line extending along the first direction X, and may be disposed in the middle of the repeating unit in the second direction Y, that is, between the first sub-pixel P1 and the second sub-pixel P2 and the third sub-pixel P3 and the fourth sub-pixel P4, and the region where the scan signal line 31 overlaps with the plurality of first active layers may serve as the gate electrodes of the plurality of first transistors T1, and the region where the scan signal line 31 overlaps with the plurality of third active layers may serve as the gate electrodes of the plurality of third transistors T3.
  • the scan signal line 31 may include a double line segment 31-1 and a single line segment 31-2, the double line segment 31-1 may be located in the display area 110, and the single line segment 31-2 may be located in the light-transmitting area 120, that is, the display area 110 is provided with two signal lines, while the light-transmitting area 120 is provided with only one signal line.
  • the double line segment 31-1 of the display area 110 may include a first sub-line 31a and a second sub-line 31b extending along the first direction X, the first sub-line 31a and the second sub-line 31b are arranged along the second direction Y, and the second sub-line 31b may be disposed on one side of the first sub-line 31a in the second direction Y.
  • the first sub-line 31a may be connected to the pixel driving circuits of the two sub-pixels in the first pixel row, respectively, and the second sub-line 31b may be connected to the pixel driving circuits of the two sub-pixels in the second pixel row, respectively, thereby realizing the connection between the double line segment 31-1 and the plurality of pixel driving circuits in the repeating unit.
  • the orthographic projection of the first sub-line 31a on the substrate at least partially overlaps with the orthographic projections of the first active layer 21 and the third active layer 23 on the substrate in the first sub-pixel P1 and the second sub-pixel P2, respectively, and the overlapping areas serve as the gate electrodes of the first transistor T1 and the third transistor T3, respectively, that is, the first sub-line 31a is simultaneously connected to the gate electrode of the first transistor T1 and the gate electrode of the third transistor T3 in the first sub-pixel P1 and the second sub-pixel P2.
  • the orthographic projections of the second sub-line 31b on the substrate at least partially overlap with the orthographic projections of the first active layer 21 and the third active layer 23 in the third sub-pixel P3 and the fourth sub-pixel P4 on the substrate, respectively, and the overlapping areas serve as the gate electrodes of the first transistor T1 and the third transistor T3, respectively, that is, the second sub-line 31b is simultaneously connected to the gate electrode of the first transistor T1 and the gate electrode of the third transistor T3 in the third sub-pixel P3 and the fourth sub-pixel P4, respectively, so that the double line segment 31-1 transmitting the same scanning signal simultaneously controls the conduction or disconnection of all the first transistors T1 and all the third transistors T3 in the four sub-pixels of the repeating unit.
  • the double line segment 31-1 of the display area 110 may further include a first connection line 31c and a second connection line 31d
  • the first connection line 31 may be respectively connected to the ends of the first sub-line 31a and the second sub-line 31b in the opposite direction of the first direction X
  • the second connection line 31d may be respectively connected to the ends of the first sub-line 31a and the second sub-line 31b in the first direction X, so that the first connection line 31c, the first sub-line 31a, the second connection line 31d and the second sub-line 31b are sequentially connected to form a ring structure.
  • the ring shape may be a rectangular ring, or may be a polygonal ring.
  • the single line segment 31-2 may be located in the extension direction of the first sub-line 31a or the second sub-line 31b
  • the first connection line 31c may be connected to the single line segment 31-2 of the light-transmitting area 120 in the opposite direction of the first direction X of the display area 110
  • the second connection line 31d may be connected to the single line segment 31-2 of the light-transmitting area 120 in the first direction X of the display area 110
  • the double line segment 31-1 and the single line segment 31-2 constitute a continuous scan signal line 31. Therefore, the double line segment 31-1 of the display area 110 and the single line segment 31-2 of the light-transmitting area 120 constitute a continuous scan signal line 31.
  • the double line segment 31-1 and the single line segment 31-2 in each repeating unit may be an interconnected integral structure, and the plurality of double line segments 31-1 and the plurality of single line segments 31-2 in the plurality of repeating units may be an interconnected integral structure.
  • the orthographic projection of the third active layer of the integrated structure in two sub-pixels of adjacent pixel rows on the substrate at least partially overlaps with the orthographic projection of the ring structure of the scan signal line 31 on the substrate.
  • the orthographic projection of the compensation connection line 13 on the substrate may be located within the range of the orthographic projection of the region surrounded by the ring structure of the scan signal line 31 on the substrate.
  • the second conductive layer of each sub-pixel in the display substrate may include at least a second electrode plate 32 , a second gate electrode 33 , and a power connection electrode 34 .
  • the shape of the second electrode plate 32 can be rectangular, the corners of the rectangle can be chamfered, and it can be set at a position of the sub-pixel close to the scanning signal line 31.
  • the orthographic projection of the second electrode plate 32 on the substrate at least partially overlaps with the orthographic projection of the first electrode plate 11 on the substrate.
  • the second electrode plate 32 can serve as an intermediate electrode plate of the storage capacitor, and the first electrode plate 11 and the second electrode plate 32 form a first capacitor.
  • the second electrode plate 32 may be provided with an opening on a side away from the third active layer, and the opening is configured to accommodate a seventh via hole formed subsequently, so that the third electrode plate formed subsequently is connected to the first electrode plate 11 through the via hole.
  • the second gate electrode 33 may be in the shape of a strip extending along the second direction Y, and may be located on the side of the second electrode 32 of the sub-pixel away from the scanning signal line 31, a first end of the second gate electrode 33 is connected to the second electrode 32 of the sub-pixel, a second end of the second gate electrode 33 extends in a direction away from the scanning signal line 31, and an orthographic projection of the second gate electrode 33 on the substrate at least partially overlaps with an orthographic projection of the second active layer 22 on the substrate, and the second gate electrode 33 serves as the gate electrode of the second transistor T2.
  • the second electrode plate 32 and the second gate electrode 33 may be an integral structure connected to each other.
  • the power connection electrode 34 may be rectangular in shape and may be located on a side of the second gate electrode 33 of the sub-pixel away from the scanning signal line 31 .
  • the power connection electrode 34 is configured to be connected to the first electrode of the second transistor T2 through a second connection electrode formed subsequently.
  • the second conductive layer in at least one repeating unit may further include a first power auxiliary line 35 , a second power auxiliary line 36 , a power connection line 37 , and an electrode connection line 38 .
  • the first power auxiliary line 35 may be in the shape of a strip extending along the second direction Y, and may be respectively disposed in the first sub-pixel P1 and the third sub-pixel P3, and located on one side of the second electrode plate 32 in the opposite direction of the first direction X.
  • the first power auxiliary line 35 is configured to be connected to the first power line formed subsequently, and forms a double-layer routing structure with the first power line.
  • the second power auxiliary line 36 may be in the shape of a strip extending along the second direction Y, and may be respectively disposed in the second sub-pixel P2 and the fourth sub-pixel P4, and located on one side of the second electrode plate 32 in the first direction X.
  • the second power auxiliary line 36 is configured to be connected to a second power line formed subsequently, and forms a double-layer routing structure with the second power line.
  • the power connection line 37 may be in the shape of a strip extending along the first direction X, and may be respectively disposed in the first sub-pixel P1 and the third sub-pixel P3, and may be located on a side of the second gate electrode 33 of the sub-pixel away from the scanning signal line 31.
  • a first end of the power connection line 37 is connected to the first power auxiliary line 35, and a second end of the power connection line 37 is respectively connected to the power connection electrodes 34 in the first sub-pixel P1 and the third sub-pixel P3 after extending along the first direction X, so that the first power signal can be transmitted to the power connection electrodes 34 in the first sub-pixel P1 and the third sub-pixel P3.
  • the electrode connection line 38 may be in the shape of a strip extending along the first direction X, and may be located between the power connection electrodes 34 of the sub-pixels adjacent to each other in the first direction X.
  • the two ends of the electrode connection line 38 in the first pixel row are respectively connected to the power connection electrode 34 of the first sub-pixel P1 and the power connection electrode 34 of the second sub-pixel P2, and the two ends of the electrode connection line 38 in the second pixel row are respectively connected to the power connection electrode 34 of the third sub-pixel P3 and the power connection electrode 34 of the fourth sub-pixel P4, so that the first power signal can be transmitted to the second sub-pixel P1.
  • the power connection lines 37 and the electrode connection lines 38 are configured to implement a one-to-four structure of the first power lines in one repeating unit.
  • two power connection electrodes 34 , at least one first power auxiliary line 35 , one power connection line 37 , and one electrode connection line 38 in one pixel row may be an integrated structure connected to each other.
  • a strip opening (through hole) extending along the first direction X may be provided in the middle of the electrode connection line 38, so that the electrode connection line 38 forms a ring structure to reduce the overlapping area between the electrode connection line 38 and the subsequently formed data signal line and compensation signal line, reduce the parasitic capacitance between the first power line and the data signal line, reduce the parasitic capacitance between the first power line and the compensation signal line, and improve the display effect.
  • these patterns in the first sub-pixel P1 and the second sub-pixel P2 can be substantially mirror-symmetrical with respect to the vertical reference line
  • these patterns in the third sub-pixel P3 and the fourth sub-pixel P4 can be substantially mirror-symmetrical with respect to the vertical reference line.
  • the second conductive layer pattern in the first subpixel P1 and the second conductive layer pattern in the third subpixel P3 can be substantially mirror-symmetrical with respect to a horizontal reference line
  • the second conductive layer pattern in the second subpixel P2 and the second conductive layer pattern in the fourth subpixel P4 can be substantially mirror-symmetrical with respect to the horizontal reference line.
  • the double line segment pattern may be substantially mirror-symmetrical with respect to a horizontal reference line and may be substantially mirror-symmetrical with respect to a vertical reference line.
  • this process can simultaneously pattern the second conductive film and the second insulating film so that the second insulating layer pattern is the same as the second conductive layer pattern.
  • the semiconductor layer can be conductorized using the first conductive layer as a shield, the semiconductor layer in the area shielded by the first conductive layer forms the channel region of the first transistor T1 to the third transistor T3, and the semiconductor layer in the area not shielded by the first conductive layer is conductorized.
  • a scanning signal line 31 is formed in the display area 110 and the light-transmitting area 120, and a second electrode 32, a second gate electrode 33, a power connection electrode 34, a first power auxiliary line 35, a second power auxiliary line 36, a power connection line 37 and an electrode connection line 38 are formed in the display area 110. Therefore, after this patterning process, the film layer of the light-transmitting area 120 includes a first insulating layer and a second insulating layer, and a single line segment of the scanning signal line is arranged on the second insulating layer.
  • forming the third insulating layer pattern may include: depositing a third insulating film on the substrate on which the aforementioned pattern is formed, patterning the third insulating film through a patterning process to form a third insulating layer pattern covering the second conductive layer, wherein a plurality of vias are disposed on the third insulating layer, as shown in FIG. 10 .
  • the multiple via holes of each sub-pixel in the display substrate include at least: a first via hole V1, a second via hole V2, a third via hole V3, a fourth via hole V4, a fifth via hole V5, a sixth via hole V6, a seventh via hole V7, an eighth via hole V8, a ninth via hole V9, a tenth via hole V10 and an eleventh via hole V11.
  • the orthographic projection of the first via hole V1 on the substrate is located within the range of the orthographic projection of the first region of the first active layer on the substrate, the third insulating layer and the second insulating layer in the first via hole V1 are etched away to expose the surface of the first region of the first active layer, and the first via hole V1 is configured to connect a subsequently formed data signal line to the first region of the first active layer through the via hole.
  • the orthographic projection of the first via hole V1 on the substrate may be located around the scanning signal line 31.
  • the area enclosed by the shaped structure is within the range of the orthographic projection on the substrate.
  • the orthographic projection of the second via hole V2 on the substrate is located within the range of the orthographic projection of the second region of the first active layer on the substrate, the third insulating layer and the second insulating layer in the second via hole V2 are etched away to expose the surface of the second region of the first active layer, and the second via hole V2 is configured to connect a subsequently formed first connecting electrode to the second region of the first active layer through the via hole.
  • the orthographic projection of the third via hole V3 on the substrate is within the range of the orthographic projection of the first region of the second active layer on the substrate, the third insulating layer and the second insulating layer in the third via hole V3 are etched away, exposing the surface of the first region of the second active layer, and the third via hole V3 is configured to connect the second connection electrode formed subsequently to the first region of the second active layer through the via hole.
  • the orthographic projection of the fourth via hole V4 on the substrate is within the range of the orthographic projection of the second region of the second active layer on the substrate, the third insulating layer and the second insulating layer in the fourth via hole V4 are etched away to expose the surface of the second region of the second active layer, and the fourth via hole V4 is configured to connect the subsequently formed third connection electrode to the second region of the second active layer through the via hole.
  • the orthographic projection of the fifth via hole V5 on the substrate is located within the range of the orthographic projection of the first area of the third active layer on the substrate, the third insulating layer and the second insulating layer in the fifth via hole V5 are etched away to expose the surface of the first area of the third active layer, and the fifth via hole V5 is configured to connect a subsequently formed fourth connecting electrode to the first area of the third active layer through the via hole.
  • the orthographic projection of the fifth via hole V5 on the substrate may be located within the range of the orthographic projection of the region surrounded by the ring structure of the scan signal line 31 on the substrate.
  • the orthographic projection of the sixth via hole V6 on the substrate is located within the range of the orthographic projection of the second region of the third active layer on the substrate, the third insulating layer and the second insulating layer in the sixth via hole V6 are etched away to expose the surface of the second region of the third active layer, and the sixth via hole V6 is configured to connect a subsequently formed fifth connecting electrode to the second region of the third active layer through the via hole.
  • the orthographic projection of the seventh via hole V7 on the substrate is located within the range of the orthographic projection of the first electrode plate 11 on the substrate, the third insulating layer, the second insulating layer and the first insulating layer in the seventh via hole V7 are etched away to expose the surface of the first electrode plate 11, and the seventh via hole V7 is configured to connect the subsequently formed third electrode plate to the first electrode plate 11 through the via hole.
  • the orthographic projection of the eighth via hole V8 on the substrate is located within the range of the orthographic projection of the second electrode plate 32 on the substrate, the third insulating layer in the eighth via hole V8 is etched away to expose the surface of the second electrode plate 32, and the eighth via hole V8 is configured to connect the subsequently formed first connecting electrode to the second electrode plate 32 through the via hole.
  • the orthographic projection of the ninth via hole V9 on the substrate is located within the range of the orthographic projection of the end of the compensation connection line 13 close to the third active layer on the substrate, the third insulating layer, the second insulating layer and the first insulating layer in the ninth via hole V9 are etched away to expose the surface of the compensation connection line 13, and the ninth via hole V9 is configured to connect the subsequently formed fourth connection electrode to the compensation connection line 13 through the via hole.
  • the orthographic projection of the ninth via hole V9 on the substrate may be located within the range of the orthographic projection of the region surrounded by the ring structure of the scan signal line 31 on the substrate.
  • the orthographic projection of the tenth via hole V10 on the substrate is located within the range of the orthographic projection of the power connection electrode 34 on the substrate, and the third insulating layer in the tenth via hole V10 is etched away to expose the power connection electrode 34.
  • the tenth via hole V10 is configured to connect the second connection electrode formed subsequently to the power connection electrode 34 through the via hole.
  • the orthographic projection of the eleventh via hole V11 on the substrate is located within the range of the orthographic projection of the connecting block 12-1 of the plate connecting electrode 12 on the substrate, the third insulating layer, the second insulating layer and the first insulating layer in the eleventh via hole V11 are etched away to expose the surface of the connecting block 12-1, and the eleventh via hole V11 is configured to connect the subsequently formed sixth connecting electrode to the connecting block 12-1 through the via hole.
  • the at least one repetition unit may further include a twelfth via hole V12 , a thirteenth via hole V13 , and a fourteenth via hole V14 .
  • the twelfth via hole V12 may be disposed in the first sub-pixel P1 and the third sub-pixel P3, the orthographic projection of the twelfth via hole V12 on the substrate is within the range of the orthographic projection of the first power auxiliary line 35 on the substrate, the third insulating layer in the twelfth via hole V12 is etched away, exposing the surface of the first power auxiliary line 35, and the twelfth via hole V12 is configured to connect the first power auxiliary line formed subsequently to the first power auxiliary line 35 through the via hole.
  • the thirteenth via hole V13 may be disposed in the second sub-pixel P2 and the fourth sub-pixel P4, the orthographic projection of the thirteenth via hole V13 on the substrate is located within the range of the orthographic projection of the second power auxiliary line 36 on the substrate, the third insulating layer in the thirteenth via hole V13 is etched away, exposing the surface of the second power auxiliary line 36, and the thirteenth via hole V13 is configured to connect the second power auxiliary line 36 formed subsequently through the via hole.
  • the orthographic projection of the fourteenth via hole V14 on the substrate is located within the range of the orthographic projection of the middle portion of the compensation connection line 13 on the substrate, the third insulating layer, the second insulating layer and the first insulating layer in the fourteenth via hole V14 are etched away to expose the surface of the compensation connection line 13, and the fourteenth via hole V14 is configured to connect a subsequently formed compensation signal line to the compensation connection line 13 through the via hole.
  • the orthographic projection of the fourteenth via hole V14 on the substrate may be located within the range of the orthographic projection of the region surrounded by the ring structure of the scan signal line 31 on the substrate.
  • the patterning process may use a half tone mask process.
  • the film layer of the light-transmitting region 120 includes a first insulating layer, a second insulating layer and a third insulating layer.
  • forming the third conductive layer pattern may include: depositing a third conductive film on the substrate on which the aforementioned pattern is formed, patterning the third conductive film through a patterning process, and forming a third conductive layer pattern on the third insulating layer, as shown in FIGS. 11A and 11B , where FIG. 11B is a schematic diagram of the third conductive layer in FIG. 1A .
  • the third conductive layer of each repeating unit in the display substrate may include at least one first power line 51 , one second power line 52 , four data signal lines 53 , one compensation signal line 54 , two auxiliary electrode lines 55 and two first auxiliary electrodes 56 .
  • the first power line 51, the second power line 52, the data signal line 53, and the compensation signal line 54 may be in the shape of a straight line with a main portion extending along the second direction Y.
  • the first power line 51 may be located on one side of the display area 110 in the first direction X
  • the second power line 52 may be located on the other side of the display area 110 in the first direction X.
  • the compensation signal line 54 can be located between the first power line 51 and the second power line 52
  • two of the four data signal lines 53 can be located between the first power line 51 and the compensation signal line 54
  • the other two of the four data signal lines 53 can be located between the second power line 52 and the compensation signal line 54.
  • the first power line 51 may be located on one side of the display area 110 in the opposite direction of the first direction X
  • the second power line 52 may be located on one side of the display area 110 in the first direction X.
  • the first power line 51 and the compensation signal line 54 may define a first pixel column, and the two data signal lines 53 are disposed in the first pixel column.
  • the second power line 52 and the compensation signal line 54 may define a second pixel column, and the two data signal lines 53 are disposed in the second pixel column.
  • the present disclosure arranges the first power line 51 and the second power line 52 on both sides of the display area 110.
  • the first power line 51 and the second power line 52 are separated by two pixel driving circuits.
  • the first power line 51 and the second power line 52 are separated by a light-transmitting area 120, so that the distance between the two is relatively far, which can effectively prevent a short circuit caused by the overlap of the two, and minimize the risk of high-current burn-in caused by a short circuit.
  • the positions of the first power line 51 and the second power line 52 can be substantially mirror-symmetrical with respect to the compensation signal line 54, and the two data signal lines 53 in the first pixel column and the two data signal lines 53 in the second pixel column can be substantially mirror-symmetrical with respect to the compensation signal line 54.
  • the first power line 51 can be connected to multiple first power auxiliary lines 35 respectively through multiple twelfth vias V12.
  • the first power line 51 and the first power auxiliary line 35 form a double-layer routing structure, which ensures the reliability of power signal transmission, can effectively reduce the resistance of the first power line, effectively reduce the voltage drop of the first power signal, and improve the display effect.
  • the second power line 52 can be connected to multiple second power auxiliary lines 36 respectively through multiple thirteenth vias V13.
  • the second power line 52 and the second power auxiliary line 36 form a double-layer routing structure, which ensures the reliability of power signal transmission, can effectively reduce the resistance of the second power line, effectively reduce the voltage drop of the second power signal, and improve the display effect.
  • each data signal line 53 may be connected to the first region of the first active layer in one sub-pixel through the first via hole V1 , thereby enabling the data signal line 53 to write the data signal into the first electrode of the first transistor T1 .
  • the four data signal lines 53 may include a first data signal line, a second data signal line, a third data signal line, and a fourth data signal line.
  • the first data signal line may be located on one side of the first power line 51 in the first direction X, and may be connected to the first region of the first active layer in the first sub-pixel P1 through the first via hole V1.
  • the second data signal line may be located on one side of the compensation signal line 54 in the opposite direction of the first direction X, and may be connected to the first region of the first active layer in the third sub-pixel P3 through the first via hole V1.
  • the third data signal line may be located on one side of the compensation signal line 54 in the first direction X, and may be connected to the first region of the first active layer in the fourth sub-pixel P4 through the first via hole V1.
  • the fourth data signal line may be located on one side of the second power line 52 in the opposite direction of the first direction X, and may be connected to the first region of the first active layer in the second sub-pixel P2 through the first via hole V1.
  • the compensation signal line 54 can be connected to the compensation connection line 13 through the fourteenth via hole V14, so that the compensation signal line 54 can provide a compensation signal to the pixel driving circuit in each sub-pixel through the compensation connection line 13, so that four pixel driving circuits in a display area 110 can share one compensation connection line 13, that is, the compensation connection lines in a repeating unit are a one-to-four structure.
  • the display substrate disclosed in the present invention saves the number of signal lines and reduces the occupied space by designing the compensation signal line as a one-to-four structure, has a simple structure, a reasonable layout, makes full use of the layout space, improves the space utilization rate, and is conducive to improving the resolution and transparency.
  • the compensation signal line 54 is disposed between the first pixel column and the second pixel column, the compensation signal line 54 is disposed between the first pixel column and the second pixel column.
  • the compensation signal line 54 is connected to the third transistor T3 in the first pixel column and the second pixel column through the compensation connection line 13, and the third transistor T3 of the first pixel column and the third transistor T3 of the second pixel column are symmetrically arranged relative to the compensation signal line 54. Therefore, this symmetrical structure can ensure that the RC delay of the compensation signal written into the third transistor T3 is basically the same, thereby ensuring display uniformity.
  • two auxiliary electrode lines 55 and two first auxiliary electrodes 56 may be disposed in the light-transmitting region 120 of the repeating unit.
  • the auxiliary electrode line 55 may be in the shape of a strip extending along the first direction X, the first end of the auxiliary electrode line 55 is connected to the second power line 52, and the second end of the auxiliary electrode line 55 is connected to the auxiliary electrode 55 after extending in a direction away from the second power line 52.
  • the first auxiliary electrode 56 may be in the shape of a rectangle, and the first auxiliary electrode 56 is configured to be connected to the second auxiliary electrode formed subsequently. Since the first auxiliary electrode 56 is connected to the second power line 52 through the auxiliary electrode line 55, and the second auxiliary electrode is configured to be connected to the cathode formed subsequently, the connection between the second power line 52 and the cathode can be achieved.
  • two auxiliary electrode lines 55 and two first auxiliary electrodes 56 may be disposed in the light-transmitting region 120 on one side of the first direction X of the second subpixel P2 and the fourth subpixel P4.
  • the extension lengths of the two auxiliary electrode lines 55 in the first direction X may be the same or different, and the areas of the two first auxiliary electrodes 56 may be the same or different.
  • the second power line 52 , the two auxiliary electrode lines 55 , and the two first auxiliary electrodes 56 may be an integral structure connected to each other.
  • the disclosed embodiment specifically sets a second power line for transmitting a low-voltage signal in each repeating unit.
  • the second power line is connected to the cathode in the subsequently formed light-emitting structure layer through an auxiliary electrode, which can effectively reduce the voltage drop of the second power signal, effectively solve the voltage drop problem existing in large-size transparent displays, and ensure display uniformity.
  • the third conductive layer of each subpixel in the display substrate may include at least first, second, third, fourth, fifth, sixth, and third connection electrodes 41 , 42 , 43 , 44 , 45 , 46 , and a third electrode plate 47 .
  • the shape of the first connection electrode 41 can be a strip shape with the main part extending along the second direction Y, the first end of the first connection electrode 41 is connected to the second area of the first active layer through the second via hole V2, and the second end of the first connection electrode 41 is connected to the second electrode plate 32 through the eighth via hole V8, so that the second electrode of the first transistor T1 of each sub-pixel and the second electrode plate 32 have the same potential.
  • the second connection electrode 42 may be in the shape of a strip having a main body extending along the second direction Y, a first end of the second connection electrode 42 is connected to the first region of the second active layer through a third via hole V3, and a second end of the second connection electrode 42 is connected to the power connection electrode 34 through a tenth via hole V10. Since the power connection electrode 34 is connected to the first power auxiliary line 35 through a power connection line 37, and the first power auxiliary line 35 is connected to the first power line through a via hole, the first power line is connected to the first region of the second active layer, and the first power line can write a first power signal to the first electrode of the second transistor T2 of each sub-pixel.
  • the shape of the third connection electrode 43 can be a strip shape with a main portion extending along the second direction Y, the first end of the third connection electrode 43 is connected to the third electrode plate 47, and the second end of the third connection electrode 43 is connected to the second area of the second active layer through the fourth via hole V4, so that the second electrode of the second transistor T2 of each sub-pixel and the third electrode plate 47 have the same potential.
  • the fourth connection electrode 44 may be in the shape of a strip having a main portion extending along the first direction X, a first end of the fourth connection electrode 44 is connected to the first region of the third active layer through a fifth via hole V5, and a The second end of the fourth connection electrode 44 is connected to the compensation connection line 13 through the ninth via hole V9. Since the compensation connection line 13 is connected to the compensation signal line through the via hole, the compensation signal line is connected to the first area of the third active layer, and the compensation signal line can write the compensation signal into the first electrode of the third transistor T3 of each sub-pixel.
  • the shape of the fifth connection electrode 45 can be a strip shape with a main portion extending along the second direction Y, the first end of the fifth connection electrode 45 is connected to the third electrode plate 47, and the second end of the fifth connection electrode 45 is connected to the second area of the third active layer through the sixth via hole V6, so that the second electrode of the third transistor T3 of each sub-pixel and the third electrode plate 47 have the same potential.
  • the shape of the sixth connecting electrode 46 can be rectangular, and the orthographic projection of the sixth connecting electrode 46 on the substrate at least partially overlaps with the orthographic projection of the connecting block 12-1 of the plate connecting electrode on the substrate, and the sixth connecting electrode 46 is connected to the connecting block 12-1 through the eleventh via V11, and the sixth connecting electrode 46 is configured to be connected to the anode connecting electrode formed subsequently.
  • the shape of the third electrode plate 47 may be rectangular, the corners of the rectangle may be chamfered, and the third electrode plate 47 may be disposed at a position of the sub-pixel close to the scanning signal line 31, and the third electrode plate 47 is connected to the first electrode plate 11 through the seventh via hole V7.
  • the orthographic projection of the third electrode plate 47 on the substrate at least partially overlaps the orthographic projection of the second electrode plate 32 on the substrate, and the third electrode plate 47 may serve as an upper electrode plate of the storage capacitor, and the second electrode plate 32 and the third electrode plate 47 form a second capacitor.
  • the third connection electrode 43 , the fifth connection electrode 45 , and the third electrode plate 47 may be an integral structure connected to each other.
  • the first connecting electrode 41 since the first connecting electrode 41 is connected to the second electrode plate 32, and the second electrode plate 32 is connected to the second gate electrode 33, the first connecting electrode 41 makes the second electrode of the first transistor T1, the gate electrode of the second transistor T2 and the first end of the storage capacitor (including the second electrode plate 32) have the same potential, and the first connecting electrode 41 can serve as the first node N1 of the pixel driving circuit.
  • the third connection electrode 43 is connected to the second area of the second active layer
  • the fifth connection electrode 45 is connected to the second area of the third active layer
  • the third connection electrode 43 and the fifth connection electrode 45 are connected to the third electrode plate 47
  • the first electrode plate 11 and the third electrode plate 47 are connected
  • the third connection electrode 43 and the fifth connection electrode 45 make the second electrode of the second transistor T2
  • the second electrode of the third transistor T3 and the second end of the storage capacitor including the first electrode plate 11 and the third electrode plate 47
  • the third connection electrode 43 and the fifth connection electrode 45 can serve as the second node N2 in the pixel driving circuit.
  • the second electrode plate 32 has a potential of the first node N1
  • the first electrode plate 11 and the third electrode plate 47 have a potential of the second node N2
  • the second node N2 having a potential of the first node N1 and the first electrode plate 11 having a potential of the second node N2 constitute a first capacitor of the pixel driving circuit
  • the second node N2 having a potential of the first node N1 and the third electrode plate 47 having a potential of the second node N2 constitute a second capacitor of the pixel driving circuit
  • the first capacitor and the second capacitor are connected in parallel.
  • the present disclosure uses the first conductive layer, the second conductive layer, and the third conductive layer to form a first capacitor and a second capacitor of a parallel structure, and the first capacitor and the second capacitor of the parallel structure constitute a storage capacitor of a complete pixel driving circuit, which can effectively increase the capacitance value of the storage capacitor on the one hand, and reduce the electrode plate area while ensuring the capacitance value of the storage capacitor on the other hand, effectively reducing the occupied area.
  • the first power auxiliary line 35 is connected to two power connection electrodes 34 in a pixel row through the power connection line 37 and the electrode connection line 38, and the first power line 51 is connected to the first power auxiliary line 35, four pixel driving circuits in a display area 110 can share one first power line 51, that is, the first power line in a repeating unit is a one-to-four structure, which can reduce the occupied space of the display area, increase the area ratio of the light-transmitting area, and improve the resolution and transparency.
  • the orthographic projections of the first power line 51 , the second power line 52 , the data signal line 53 and the compensation signal line 54 on the substrate at least partially overlap with the orthographic projection of the ring structure of the scan signal line 31 on the substrate.
  • the film layer of the light-transmitting region 120 includes a first insulating layer, a second insulating layer and a third insulating layer.
  • Forming a fourth insulating layer and a first planar layer pattern may include: first depositing a fourth insulating film on the substrate on which the aforementioned pattern is formed, then coating the first planar film, patterning the fourth insulating film and the first planar film through a patterning process to form a fourth insulating layer covering the third conductive layer and a first planar layer pattern disposed on the fourth insulating layer, and a plurality of vias are disposed on the fourth insulating layer and the first planar layer, as shown in FIG. 12 .
  • the first planar layer is only provided in the display region 110 , and the first planar layer in the light-transmitting region 120 is completely removed, including the region where the plate connecting electrode 12 and the first auxiliary electrode 56 are located.
  • At least one repetition unit may include four twenty-first via holes V21 and two twenty-second via holes V22 .
  • the orthographic projection of each twenty-first via hole V21 on the substrate is located within the range of the orthographic projection of the sixth connecting electrode 46 on the substrate, the fourth insulating layer in the twenty-first via hole V21 is etched away to expose the surface of the sixth connecting electrode 46, and the twenty-first via hole V21 is configured to connect a subsequently formed anode connecting electrode to the sixth connecting electrode 46 through the via hole.
  • the orthographic projection of each twenty-second via hole V22 on the substrate is located within the range of the orthographic projection of the first auxiliary electrode 56 on the substrate, the fourth insulating layer in the twenty-second via hole V22 is etched away to expose the surface of the first auxiliary electrode 56, and the twenty-second via hole V22 is configured to connect the subsequently formed second auxiliary electrode to the first auxiliary electrode 56 through the via hole.
  • the patterning process may use a half tone mask process.
  • the film layer of the light-transmitting region 120 includes a first insulating layer, a second insulating layer, a third insulating layer and a fourth insulating layer.
  • Forming a fourth conductive layer pattern may include: depositing a fourth conductive film on the substrate on which the aforementioned pattern is formed, and patterning the fourth conductive film through a patterning process to form a fourth conductive layer pattern, as shown in FIGS. 13A and 13B , where FIG. 13B is a schematic diagram of the fourth conductive layer in FIG. 3A .
  • the fourth conductive layer of each sub-pixel in the display substrate may include at least a first anode 61 and an anode connection electrode 62 .
  • the first anode 61 in at least one sub-pixel may include a first sub-anode 61-1 and a second sub-anode 61-2 that are isolated from each other.
  • the first sub-anode 61-1 and the second sub-anode 61-2 may be rectangular in shape, may be located in the display area 110, and may be arranged on the first flat layer.
  • the first sub-anode 61-1 and the second sub-anode 61-2 may be arranged sequentially along the second direction Y.
  • the anode connection electrode 62 may be in a "C" shape, may be located in the light-transmitting region 120, and is disposed on the fourth insulating layer.
  • the first end of the anode connection electrode 62 is connected to the first sub-anode 61-1
  • the second end of the anode connection electrode 62 is connected to the second sub-anode 61-2
  • the area between the first end and the second end is connected to the sixth connection electrode 46 through the twenty-first via hole V21.
  • the anode connection electrode 62 realizes the mutual connection between the first sub-anode 61-1 and the second sub-anode 61-2. Since the sixth connection electrode 46 is connected to the plate connection electrode 12
  • the plate connecting electrode 12 is connected to the first plate 11 , and thus the anode connecting electrode 62 realizes the connection between the first anode 61 and the first plate 11 of the storage capacitor.
  • the anode connection electrode 62 can be cut off by laser cutting so that one of the first sub-anode 61-1 and the second sub-anode 61-2 is connected to the first electrode plate 11 and the other is floating, thereby repairing the bright spot defect.
  • the twenty-first via hole V21 can be called an anode via hole, and the orthographic projection of the anode via hole on the substrate does not overlap with the orthographic projections of the first sub-anode 61-1 and the second sub-anode 61-2 on the substrate. This can not only improve the success rate of repairing bright spot defects and avoid the impact of the repair on the pixel driving circuit, but also ensure the flatness of the anode, improve the light output quality of the light-emitting device, and improve the display effect.
  • first anodes 61 are arranged in a square, the upper left first anode 61 is connected to the pixel driving circuit in the first sub-pixel P1, the upper right first anode 61 is connected to the pixel driving circuit in the second sub-pixel P2, the lower left first anode 61 is connected to the pixel driving circuit in the third sub-pixel P3, and the lower right first anode 61 is connected to the pixel driving circuit in the fourth sub-pixel P4.
  • the arrangement of the anodes can be adjusted according to actual needs, and the present disclosure does not specifically limit this.
  • the first sub-anode 61 - 1 , the second sub-anode 61 - 2 , and the anode connection electrode 62 of each sub-pixel may be an integral structure connected to each other.
  • the fourth conductive layer of at least one repeating unit may further include a second auxiliary electrode 63.
  • the second auxiliary electrode 63 may be rectangular in shape, the orthographic projection of the second auxiliary electrode 63 on the substrate at least partially overlaps the orthographic projection of the first auxiliary electrode 56 on the substrate, the second auxiliary electrode 63 may be connected to the first auxiliary electrode 56 through the twenty-second via hole V22, and the second auxiliary electrode 63 is configured to be connected to a third auxiliary electrode formed subsequently.
  • the fourth conductive layer may be made of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the film layer of the light-transmitting region 120 remains unchanged.
  • Forming a fifth conductive layer pattern may include: depositing a fifth conductive film on the substrate on which the aforementioned pattern is formed, and patterning the fifth conductive film through a patterning process to form a fifth conductive layer pattern, as shown in FIGS. 14A and 14B , where FIG. 14B is a schematic diagram of the fifth conductive layer in FIG. 4A .
  • the fifth conductive layer of each sub-pixel in the display substrate may include at least the second anode 72 .
  • the second anode 72 may include a third sub-anode 72-1 and a fourth sub-anode 72-2 that are isolated from each other.
  • the third sub-anode 72-1 and the fourth sub-anode 72-2 may be rectangular in shape and may be located in the display area 110 and respectively disposed on the first sub-anode 61-1 and the second sub-anode 61-2.
  • the third sub-anode 72-1 and the fourth sub-anode 72-2 may be disposed sequentially along the second direction Y.
  • the orthographic projection of the third sub-anode 72-1 on the substrate at least partially overlaps with the orthographic projection of the first sub-anode 61-1 on the substrate.
  • the third sub-anode 72-1 is connected to the first sub-anode 61-1.
  • the orthographic projection of the fourth sub-anode 72-2 on the substrate at least partially overlaps with the orthographic projection on the substrate.
  • the fourth sub-anode 72-2 is connected to the second sub-anode 61-2.
  • the fifth conductive layer of at least one repeating unit may further include a third auxiliary electrode 73.
  • the shape of the third auxiliary electrode 73 may be rectangular, the second auxiliary electrode 63 may be disposed on the second auxiliary electrode 63, the positive projection of the second auxiliary electrode 63 on the substrate at least partially overlaps with the positive projection of the second auxiliary electrode 63 on the substrate, the second auxiliary electrode 63 is connected to the second auxiliary electrode 63, and the third auxiliary electrode 73 is configured to be connected to the cathode electrode formed subsequently. connect.
  • the third auxiliary electrode 73 can adopt an isolation column (RIB) structure, and the cross-sectional shape of the third auxiliary electrode 73 can be an inverted trapezoid, so that the subsequently formed organic light-emitting layer can be disconnected at the side edge of the third auxiliary electrode 73 to form an isolated and isolated organic light-emitting block, which effectively avoids the interference of the organic light-emitting block on the outgoing light, improves the quality of the outgoing light, and is conducive to improving the display quality.
  • IOB isolation column
  • the stacked first auxiliary electrode 56 , the second auxiliary electrode 63 , and the third auxiliary electrode 73 constitute an auxiliary cathode.
  • the fifth conductive layer may be made of a transparent conductive material such as indium tin oxide ITO or indium zinc oxide IZO.
  • the film layer of the light-transmitting region 120 remains unchanged.
  • Forming a pixel definition layer may include: coating a pixel definition film on the substrate having the aforementioned pattern formed thereon, and patterning the pixel definition film by a patterning process to form a pixel definition layer, as shown in FIG. 15 .
  • a first pixel opening K1 and a second pixel opening K2 are opened on the pixel definition layer of each sub-pixel in the display substrate, the pixel definition film in the first pixel opening K1 is removed to expose a portion of the surface of the third sub-anode 72-1 in the second anode 72, and the pixel definition film in the second pixel opening K2 is removed to expose a portion of the surface of the fourth sub-anode 72-2 in the second anode 72.
  • the orthographic projection of the first pixel opening K1 on the substrate is located within the range of the orthographic projection of the third sub-anode 72-1 on the substrate, and the orthographic projection of the second pixel opening K2 on the substrate is located within the range of the orthographic projection of the fourth sub-anode 72-2 on the substrate.
  • the shapes of the first pixel opening K1 and the second pixel opening K2 may be similar to the shape of the sub-anode, and in a plane perpendicular to the substrate, the cross-sectional shape of the first pixel opening K1 and the second pixel opening K2 may be a rectangle or a trapezoid, etc.
  • an auxiliary electrode opening K3 is opened on the pixel definition layer of at least one repeating unit, the pixel definition film in the auxiliary electrode opening K3 is removed to expose a portion of the surface of the third auxiliary electrode 73, and the orthographic projection of the auxiliary electrode opening K3 on the substrate is within the range of the orthographic projection of the third auxiliary electrode 73 on the substrate.
  • the shape of the auxiliary electrode opening K3 in a plane parallel to the substrate, may be similar to that of the third auxiliary electrode 73 , and in a plane perpendicular to the substrate, the cross-sectional shape of the auxiliary electrode opening K3 may be rectangular or trapezoidal.
  • the pixel definition layer of the light-transmitting area 120 is substantially removed to form a light-transmitting opening T.
  • a groove may be provided on a side of the light-transmitting opening T close to the display area 110 , and a pixel definition block provided in the groove may shield the anode connection electrode 62 .
  • the pixel definition layer may be made of polyimide, acryl, polyethylene terephthalate, or the like.
  • Forming an organic light-emitting layer and a cathode pattern may include: first forming an organic light-emitting layer pattern in the display area 110, wherein the organic light-emitting layer is connected to the third sub-anode 72-1 and the fourth sub-anode 72-2 through the first pixel opening K1 and the second pixel opening K2, respectively. Then forming a cathode, wherein the cathode is connected to the organic light-emitting layer in the display area 110, and the cathode is connected to the third auxiliary electrode 73 in the light-transmitting area 120 through the auxiliary electrode opening K3. Since the third auxiliary electrode 73 is connected to the second power line, the cathode is connected to the second power line. Connection of the power cord.
  • the organic light emitting layer may include a light emitting layer (EML), and any one or more of the following layers: a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), a hole blocking layer (HBL), an electron transport layer (ETL), and an electron injection layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • HBL hole blocking layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the organic light emitting layer may be formed by evaporation using a fine metal mask (FMM) or an open mask (Open Mask), or by inkjet process.
  • FMM fine metal mask
  • Open Mask open mask
  • the preparation process of the display substrate may further include forming an encapsulation layer pattern.
  • Forming the encapsulation layer pattern may include: first depositing a first inorganic thin film using an open mask to form a first encapsulation layer. Subsequently, an organic material is inkjet printed on the first encapsulation layer using an inkjet printing process, and after curing into a film, a second encapsulation layer is formed. Subsequently, a second inorganic thin film is deposited using an open mask to form a third encapsulation layer, and the first encapsulation layer, the second encapsulation layer and the third encapsulation layer constitute an encapsulation layer.
  • the first encapsulation layer and the third encapsulation layer may be any one or more of silicon oxide (SiOx), silicon nitride (SiNx), silicon carbide (SiC), silicon carbonitride (SiCN) and silicon oxynitride (SiON), and may be a single layer, a multilayer or a composite layer.
  • the second encapsulation layer may be made of a resin material to form a laminated structure of inorganic material/organic material/inorganic material.
  • the organic material layer is disposed between two inorganic material layers to ensure that external water vapor cannot enter the light-emitting structure layer.
  • the preparation process of the display substrate may further include forming a color filter layer and a black matrix, wherein the black matrix has a plurality of opening regions arranged in a matrix, and the color filter layer is filled in the opening regions.
  • the substrate may be a flexible substrate or a rigid substrate.
  • the rigid substrate may be, but is not limited to, one or more of glass and quartz
  • the flexible substrate may be, but is not limited to, one or more of polyethylene terephthalate, polyethylene terephthalate, polyetheretherketone, polystyrene, polycarbonate, polyarylate, polyarylate, polyimide, polyvinyl chloride, polyethylene, and textile fiber.
  • the flexible substrate may include a first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer, and a second inorganic material layer stacked, and the materials of the first flexible material layer and the second flexible material layer may be polyimide (PI), polyethylene terephthalate (PET), or a surface-treated polymer soft film, and the materials of the first inorganic material layer and the second inorganic material layer may be silicon nitride (SiNx) or silicon oxide (SiOx), etc., to improve the water and oxygen resistance of the substrate, and the material of the semiconductor layer may be amorphous silicon (a-si).
  • PI polyimide
  • PET polyethylene terephthalate
  • SiOx silicon oxide
  • the first conductive layer, the second conductive layer, and the third conductive layer may be made of metal materials, such as any one or more of silver (Ag), copper (Cu), aluminum (Al), and molybdenum (Mo), or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), and may be a single layer structure, or a multi-layer composite structure, such as Mo/Cu/Mo, etc.
  • metal materials such as any one or more of silver (Ag), copper (Cu), aluminum (Al), and molybdenum (Mo), or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb)
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum niobium alloy
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer may be made of any one or more of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON), and may be a single layer, a multi-layer, or a composite layer.
  • the first planar layer may be made of an organic material, such as a resin, etc.
  • FIG16 is a schematic diagram of a short circuit repair of a display substrate in an exemplary embodiment of the present disclosure.
  • a short circuit point 200 appears between the scan connection line 31 and other signal lines (such as the data signal line 53)
  • the first sub-lines on both sides of the short circuit point 200 can be cut off by laser cutting, and two truncation points 300 are formed on both sides of the short circuit point 200 to isolate the short circuit point 200.
  • the truncation point 300 will not affect the pixel driving circuit, which can not only ensure that all pixel driving circuits in the repeated area of the scan signal line drive can be repaired, but also the short circuit points 200 at all positions can be repaired, so that the full signal short circuit repair is realized, the product is avoided from being scrapped, and the product yield is effectively improved.
  • the display substrate provided by the present disclosure adopts a 3T1C pixel driving circuit with one scanning signal line, and one scanning signal line is connected to the first transistor and the third transistor in the pixel driving circuit.
  • the display substrate provided by the present disclosure adopts a 3T1C pixel driving circuit with one scanning signal line, and one scanning signal line is connected to the first transistor and the third transistor in the pixel driving circuit.
  • a repeating unit since a repeating unit only requires one scanning signal line to drive, the number of its corresponding gate driving circuit (GOA) and clock signal line (CLK) can be reduced exponentially, effectively reducing the area occupied by the gate driving circuit and clock signal line, which is conducive to achieving a narrow frame and improving product advantages.
  • GOA gate driving circuit
  • CLK clock signal line
  • the exemplary embodiment of the present disclosure sets a single-line structure in the light-transmitting area and a double-line structure in the display area, which not only ensures that the scanning signal line drives all pixel driving circuits in the repeated area, but also realizes a dual-channel function, can repair signal lines at all positions, realizes full signal short-circuit repair, and effectively improves product yield.
  • the exemplary embodiment of the present disclosure forms a first capacitor and a second capacitor of a three-layer metal layout sandwich structure by utilizing a first conductive layer, a second conductive layer, and a third conductive layer.
  • the first capacitor and the second capacitor of the parallel structure form a storage capacitor.
  • the capacitance value of the storage capacitor can be effectively increased.
  • the plate area can be reduced while ensuring the capacitance value of the storage capacitor, thereby effectively reducing the occupied area of the pixel driving circuit, which is conducive to achieving high-resolution display.
  • the exemplary embodiment of the present disclosure saves the number of signal lines and reduces the occupied space by setting a one-to-four structure of the first power line and a one-to-four structure of the compensation signal line. It has a simple structure, a reasonable layout, fully utilizes the layout space, improves space utilization, and is conducive to improving resolution.
  • the exemplary embodiment of the present disclosure sets an anode connecting electrode to connect the first sub-anode and the second sub-anode respectively, which not only improves the success rate of repairing bright spot defects, avoids the impact of the repair on the pixel driving circuit, and does not cause other defects.
  • the repair success rate is high, and the flatness of the anode is guaranteed, thereby improving the light output quality of the light-emitting device and the display effect.
  • the exemplary embodiment of the present disclosure provides a second power line and an auxiliary electrode, and the second power line is connected to the cathode through the auxiliary electrode, which can effectively reduce the voltage drop of the second power source and ensure display uniformity.
  • the exemplary embodiment of the present disclosure changes the light-transmitting area into an irregular shape by arranging the anode connecting electrode and the auxiliary electrode in the light-transmitting area.
  • the diffraction fringes are generated in different positions and directions, so the diffraction fringes generated by the light will not diffuse in one direction but in multiple directions, thereby greatly weakening the diffraction effect, avoiding the blurring of objects behind the screen, and improving the transparent display effect.
  • the preparation process of the exemplary embodiment of the present disclosure is well compatible with the existing preparation process, and the process is simple to realize, easy to implement, high in production efficiency, low in production cost, and high in yield rate.
  • the structure and preparation process shown above in the present disclosure are merely exemplary.
  • the corresponding structure can be changed and the patterning process can be increased or decreased according to actual needs, and the present disclosure does not limit this.
  • the display substrate of the present disclosure can be applied to a display device having a pixel driving circuit, such as OLED, quantum dot display (QLED), light emitting diode display (Micro LED or Mini LED) or quantum dot light emitting diode display (QDLED), etc., which is not limited in the present disclosure.
  • a pixel driving circuit such as OLED, quantum dot display (QLED), light emitting diode display (Micro LED or Mini LED) or quantum dot light emitting diode display (QDLED), etc., which is not limited in the present disclosure.
  • the present disclosure also provides a method for preparing a display substrate to prepare the display substrate provided in the above embodiment.
  • the display substrate includes a plurality of regularly arranged repeating units, the repeating units include a display area and a light-transmitting area located on at least one side of the display area, the display area is configured to display an image, and the light-transmitting area is configured to transmit light;
  • the display area includes a plurality of sub-pixels forming at least two pixel rows and two pixel columns, and the sub-pixels include a pixel driving circuit;
  • the preparation method includes:
  • a pixel driving circuit is formed in the sub-pixel; the pixel driving circuit includes a first transistor, a second transistor, a third transistor and a storage capacitor, the first electrode of the first transistor is connected to the data signal line, the second electrode of the first transistor is respectively connected to the gate electrode of the second transistor and the first end of the storage capacitor, the first electrode of the second transistor is connected to the first power line, the second electrode of the second transistor is respectively connected to the second electrode of the third transistor and the The first electrode of the third transistor is connected to the compensation signal line, and the gate electrode of the first transistor and the gate electrode of the third transistor are connected to the same scan signal line.
  • the present disclosure also provides a display device, which includes the aforementioned display substrate.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc., but the embodiments of the present invention are not limited thereto.

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例提供了一种显示基板及其制备方法、显示装置。显示基板包括多个重复单元,重复单元包括显示区域和透光区域;显示区域包括多个子像素,子像素包括像素驱动电路;像素驱动电路包括第一晶体管、第二晶体管、第三晶体管和存储电容,第一晶体管的第一极与数据信号线连接,第一晶体管的第二极分别与第二晶体管的栅电极和存储电容的第一端连接,第二晶体管的第一极与第一电源线连接,第二晶体管的第二极分别与第三晶体管的第二极和存储电容的第二端连接,第三晶体管的第一极与补偿信号线连接,至少一个子像素中,第一晶体管的栅电极和第三晶体管的栅电极与同一条扫描信号线连接。

Description

显示基板及其制备方法、显示装置
本申请要求于2023年4月26日提交中国专利局、申请号为202310466298.4、发明名称为“显示基板及其制备方法、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开涉及但不限于显示技术领域,尤指一种显示基板及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)为主动发光显示器件,具有主动发光、超薄、广视角、高亮度、高对比度、低耗电、极高反应速度、轻薄化、可异形化及可柔性显示等优点,已逐渐成为极具发展前景的下一代显示技术。其中,有源矩阵驱动(Active Matrix,AM)型OLED是电流驱动器件,采用独立的晶体管(Thin Film Transistor,TFT)控制每个子像素,每个子像素皆可以连续且独立的驱动发光。
随着显示技术的不断发展,OLED技术越来越多的应用于透明显示中。透明显示是显示技术一个重要的个性化显示领域,是指在透明状态下进行图像显示,观看者不仅可以看到显示装置中的影像,而且可以看到显示装置背后的景象,可实现虚拟现实(Virtual Reality,简称VR)和增强现实(Augmented Reality,简称AR)和3D显示功能。采用OLED技术的透明显示装置通常是将每个子像素划分为显示区域和透光区域,显示区域设置像素驱动电路和发光器件实现图像显示,透光区域实现光线透过。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种显示基板,包括规则排布的多个重复单元,所述重复单元包括显示区域和位于所述显示区域至少一侧的透光区域,所述显示区域被配置为进行图像显示,所述透光区域被配置为透过光线;所述显示区域包括形成至少两个像素行和两个像素列的多个子像素,所述子像素包括像素驱动电路;所述像素驱动电路包括第一晶体管、第二晶体管、第三晶体管和存储电容,所述第一晶体管的第一极与数据信号线连接,所述第一晶体管的第二极分别与所述第二晶体管的栅电极和所述存储电容的第一端连接,所述第二晶体管的第一极与第一电源线连接,所述第二晶体管的第二极分别与所述第三晶体管的第二极和所述存储电容的第二端连接,所述第三晶体管的第一极与补偿信号线连接,至少一个子像素的像素驱动电路中,所述第一晶体管的栅电极和所述第三晶体管的栅电极与同一条扫描信号线连接。
在示例性实施方式中,至少一个像素行的多个像素驱动电路中,多个第一晶体管的栅电极和多个第三晶体管的栅电极与同一条扫描信号线连接。
在示例性实施方式中,至少一个重复单元的多个像素驱动电路中,多个第一晶体管的 栅电极和多个第三晶体管的栅电极与同一条扫描信号线连接。
在示例性实施方式中,至少一个重复单元中,所述扫描信号线从所述显示区域延伸到所述透光区域,所述扫描信号线包括单线结构的单线段和双线结构的双线段,所述单线段设置在所述透光区域,所述双线段设置在所述显示区域,所述双线段分别与所述重复单元中多个子像素的像素驱动电路连接。
在示例性实施方式中,所述双线段包括沿着像素行方向延伸的第一子线和第二子线,所述第一子线与所述第二子线沿着像素列方向排布,所述第一子线与一个像素行中多个子像素的像素驱动电路分别连接,所述第二子线与相邻的另一个像素行中多个子像素的像素驱动电路分别连接。
在示例性实施方式中,所述双线段还包括第一连接线和第二连接线,所述第一连接线分别与所述第一子线和所述第二子线的一端连接,所述第二连接线分别与所述第一子线和所述第二子线的另一端连接,所述第一连接线、所述第一子线、所述第二连接线和所述第二子线构成环形结构。
在示例性实施方式中,所述单线段位于所述第一子线或者所述第二子线的延伸方向上。
在示例性实施方式中,所述第一连接线与位于所述显示区域所述像素行方向一侧的所述透光区域中的单线段连接,第二连接线与位于所述显示区域所述像素行方向另一侧的所述透光区域中的单线段连接。
在示例性实施方式中,至少一个重复单元中,所述单线段和所述双线段为相互连接的一体结构。
在示例性实施方式中,所述第一电源线、所述数据信号线和所述补偿信号线在所述显示基板平面上的正投影与所述环形结构在所述显示基板平面上的正投影至少部分交叠。
在示例性实施方式中,至少一个重复单元中,相邻像素行中两个子像素的所述第三晶体管的有源层为相互连接的一体结构,所述第三晶体管的有源层在所述显示基板平面上的正投影与所述环形结构在所述显示基板平面上的正投影至少部分交叠。
在示例性实施方式中,至少一个重复单元中,多个子像素相对于所述扫描信号线镜像对称。
在示例性实施方式中,所述存储电容的第一端包括第一极板和第三极板,所述存储电容的第二端包括第二极板,所述第二极板在所述显示基板平面上的正投影与所述第一极板在所述显示基板平面上的正投影至少部分交叠,所述第一极板和所述第二极板形成第一电容,所述第二极板在所述显示基板平面上的正投影与所述第三极板在所述显示基板平面上的正投影至少部分交叠,所述第三极板和所述第二极板形成第二电容,所述第一极板分别与所述第三极板、所述第一晶体管的第二极和所述第二晶体管的栅电极连接,所述第二极板分别与所述第二晶体管的第二极和所述第三晶体管的第二极连接,所述第一电容和所述第二电容构成并联结构的存储电容。
在示例性实施方式中,在垂直于显示基板的方向上,所述显示区域包括设置在基底上的驱动电路层和设置在所述驱动电路层远离所述基底一侧的发光结构层,所述驱动电路层至少包括沿着远离所述基底方向依次设置的第一导电层、第二导电层和第三导电层,所述第一极板设置在所述第一导电层中,所述第二极板设置在所述第二导电层中,所述第三极板设置在所述第三导电层中,所述第三极板通过过孔与所述第一极板连接;至少一个重复单元还包括极板连接电极,所述极板连接电极设置在所述透光区域,所述极板连接电极与 所述第一极板连接。
在示例性实施方式中,至少一个重复单元中,所述极板连接电极和所述第一极板为相互连接的一体结构。
在示例性实施方式中,所述发光结构层至少包括设置在所述第三导电层远离所述基底一侧的第四导电层,所述第四导电层至少包括第一阳极和阳极连接电极,所述第一阳极设置在所述显示区域的多个子像素中,所述阳极连接电极设置在所述透光区域中,所述阳极连接电极通过阳极过孔与所述极板连接电极连接,所述阳极过孔设置在所述透光区域;至少一个子像素中,所述第一阳极包括隔离设置的第一子阳极和第二子阳极,所述阳极连接电极的第一端与所述第一子阳极连接,所述阳极连接电极的第二端与所述第二子阳极连接。
在示例性实施方式中,所述第三导电层还包括第二电源线和第一辅助电极,所述第二电源线设置在所述显示区域中,所述第一辅助电极设置在所述透光区域中,所述第一辅助电极与所述第二电源线连接。
在示例性实施方式中,至少一个重复单元中,所述第一辅助电极和所述第二电源线为相互连接的一体结构。
在示例性实施方式中,所述第二电源线在所述显示基板平面上的正投影与所述扫描信号线的环形结构在所述显示基板平面上的正投影至少部分交叠。
本公开实施例还提供了一种显示装置,包括前述的显示基板。
本公开实施例还提供了一种显示基板的制备方法,所述显示基板包括规则排布的多个重复单元,所述重复单元包括显示区域和位于所述显示区域至少一侧的透光区域,所述显示区域被配置为进行图像显示,所述透光区域被配置为透过光线;所述显示区域包括形成至少两个像素行和两个像素列的多个子像素,所述子像素包括像素驱动电路;所述制备方法包括:
在所述子像素中形成像素驱动电路;所述像素驱动电路包括第一晶体管、第二晶体管、第三晶体管和存储电容,所述第一晶体管的第一极与数据信号线连接,所述第一晶体管的第二极分别与所述第二晶体管的栅电极和所述存储电容的第一端连接,所述第二晶体管的第一极与第一电源线连接,所述第二晶体管的第二极分别与所述第三晶体管的第二极和所述存储电容的第二端连接,所述第三晶体管的第一极与补偿信号线连接,所述第一晶体管的栅电极和所述第三晶体管的栅电极与同一条扫描信号线连接。
当然,实施本发明的任一产品或方法并不一定需要同时达到以上所述的所有优点。本发明的其它特征和优点将在随后的说明书实施例中阐述,并且,部分地从说明书实施例中变得显而易见,或者通过实施本发明而了解。本公开实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
在阅读理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为一种显示装置的结构示意图;
图2为一种显示基板的平面结构示意图;
图3为本公开示例性实施例显示基板中子像素的排布示意图;
图4为本公开示例性实施例一种显示基板的结构示意图;
图5本公开示例性实施例一个显示单元中像素驱动电路的等效电路图;
图6为本公开示例性实施例一种扫描信号线的结构示意图;
图7为本公开实施例形成第一导电层图案后的示意图;
图8A和图8B本公开实施例形成半导体层图案后的示意图;
图9A和图9B为本公开实施例形成第二导电层图案后的示意图;
图10为本公开实施例形成第三绝缘层图案后的示意图;
图11A和图11B为本公开实施例形成第三导电层图案后的示意图;
图12为本公开实施例形成第四绝缘层和第一平坦层图案后的示意图;
图13A和图13B为本公开实施例形成第四导电层图案后的示意图;
图14A和图14B为本公开实施例形成第五导电层图案后的示意图;
图15为本公开实施例形成像素定义层图案后的示意图;
图16为本公开示例性实施例一种显示基板的短路不良维修示意图。
附图标记说明:
11—第一极板;              12—极板连接电极;          13—补偿连接线;
21—第一有源层;            22—第二有源层;            23—第三有源层;
31—扫描信号线;            31-1—双线段;              31-2—单线段;
32—第二极板;              33—第二栅电极;            34—电源连接电极;
35—第一电源辅助线;        36—第二电源辅助线;        37—电源连接线;
38—电极连接线;            41—第一连接电极;          42—第二连接电极;
43—第三连接电极;          44—第四连接电极;          45—第五连接电极;
46—第六连接电极;          47—第三极板;              51—第一电源线;
52—第二电源线;            53—数据信号线;            54—补偿信号线;
55—辅助电极线;            52—第一辅助电极;          61—第一阳极;
61-1—第一子阳极;          61-2—第二子阳极;          62—阳极连接电极;
72—第二阳极;              72-1—第三子阳极;          72-1—第四子阳极;
73—第三辅助电极;          80—重复单元;              100—重复单元;
110—显示区域;             120—透光区域;             200—短路点;
300—截断点。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围 的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:沟道的宽长比、各个膜层的厚度和间距、各个信号线的宽度和间距,可以根据实际需要进行调整。显示基板中像素的个数和每个像素中子像素的个数也不是限定为图中所示的数量,本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换,“源端”和“漏端”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本说明书中三角形、矩形、梯形、五边形或六边形等并非严格意义上的,可以是近似三角形、矩形、梯形、五边形或六边形等,可以存在公差导致的一些小变形,可以存在导角、弧边以及变形等。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
图1为一种显示装置的结构示意图。如图1所示,OLED显示装置可以包括时序控制器、数据驱动器、扫描驱动器和像素阵列,时序控制器分别与数据驱动器和扫描驱动器连接,数据驱动器分别与多条数据信号线(D1到Dn)连接,扫描驱动器分别与多条扫描信号线(S1到Sm)连接。像素阵列可以包括多个子像素Pxij,每个像素子PXij可以连接到对应的数据信号线和对应的扫描信号线,i和j可以是自然数。至少一个子像素Pxij可以至少包括电路单元和显示单元,电路单元可以至少包括像素驱动电路,像素驱动电路分别与扫描信号线和数据信号线连接,显示单元可以至少包括发光器件,发光器件与电路单元的像素驱动电路连接,子像素PXij可以是指像素驱动电路连接到第i扫描信号线和连接到第j数据信号线的子像素。在示例性实施方式中,时序控制器可以将适合于数据驱动器的规格的灰度值和控制信号提供到数据驱动器,可以将适合于扫描驱动器的规格的时钟信号、扫描起始信号等提供到扫描驱动器。数据驱动器可以利用从时序控制器接收的灰度值和控制信号来产生将提供到数据信号线531、D2、D3、……和Dn的数据电压。例如,数据驱动器可以利用时钟信号对灰度值进行采样,并且以像素行为单位将与灰度值对应的数据电压施加到数据信号线531至Dn,n可以是自然数。扫描驱动器可以通过从时序控制器接收时钟信号、扫描起始信号等来产生将提供到扫描信号线S1、S2、S3、……和Sm的扫描信号。例如,扫描驱动器可以将具有导通电平脉冲的扫描信号顺序地提供到扫描信号线S1至Sm。例如,扫描驱动器可以被构造为移位寄存器的形式,并且可以以在时钟信号的控制下顺序地将以导通电平脉冲形式提供的扫描起始信号传输到下一级电路的方式产生扫描信号,m可以是自然数。在示例性实施方式中,像素阵列可以设置在显示基板上。
图2为一种显示基板的平面结构示意图。如图2所示,在示例性实施方式中,显示基板可以包括规则排布的多个重复单元100,至少一个重复单元100可以包括显示区域110和透光区域120。显示区域110可以包括多个子像素,至少一个子像素可以包括电路单元和发光单元,电路单元可以至少包括像素驱动电路,发光单元可以至少包括发光器件,发光单元的发光器件与对应电路单元的像素驱动电路连接,显示区域110被配置为进行图像显示。透光区域120可以位于重复单元100中显示区域110的至少一侧,透光区域120被配置为透过光线,使得重复单元100能够实现透明状态下的图像显示,即透明显示。在示例性实施方式中,重复单元是组成显示基板的基本单元,通过重复且沿着至少一个方向连续设置构成显示基板,即显示基板由多个重复单元拼接而成。
目前,现有透明显示装置存在分辨率较低和透明度较低等问题。此外,采用OLED技术的透明显示装置,特别是大尺寸透明显示装置,信号线不良和像素级良率要求较高,对于出现的信号线不良,需要进行修复。经本申请发明人研究发现,由于现有修复处理仅能修复部分位置的信号线,不能实现全信号线可维修,因而修复成功率较低,降低了产品良率。
本公开示例性实施例提供了一种显示基板,包括规则排布的多个重复单元,所述重复单元包括显示区域和位于所述显示区域至少一侧的透光区域,所述显示区域被配置为进行图像显示,所述透光区域被配置为透过光线;所述显示区域包括形成至少两个像素行和两个像素列的多个子像素,所述子像素包括像素驱动电路;所述像素驱动电路包括第一晶体管、第二晶体管、第三晶体管和存储电容,所述第一晶体管的第一极与数据信号线连接,所述第一晶体管的第二极分别与所述第二晶体管的栅电极和所述存储电容的第一端连接,所述第二晶体管的第一极与第一电源线连接,所述第二晶体管的第二极分别与所述第三晶体管的第二极和所述存储电容的第二端连接,所述第三晶体管的第一极与补偿信号线连接,至少一个子像素的像素驱动电路中,所述第一晶体管的栅电极和所述第三晶体管的栅电极 与同一条扫描信号线连接。
在示例性实施方式中,至少一个像素行的多个像素驱动电路中,多个第一晶体管的栅电极和多个第三晶体管的栅电极与同一条扫描信号线连接。
在示例性实施方式中,至少一个重复单元的多个像素驱动电路中,多个第一晶体管的栅电极和多个第三晶体管的栅电极与同一条扫描信号线连接。
在示例性实施方式中,至少一个重复单元中,所述扫描信号线从所述显示区域延伸到所述透光区域,所述扫描信号线包括单线结构的单线段和双线结构的双线段,所述单线段设置在所述透光区域,所述双线段设置在所述显示区域,所述双线段分别与所述重复单元中多个子像素的像素驱动电路连接。
在示例性实施方式中,至少一个重复单元中,多个子像素相对于所述扫描信号线镜像对称。
下面通过一些示例性实施例对本公开显示基板进行举例说明。
在示例性实施方式中,在平行于显示基板的方向上,显示基板可以包括规则排布的多个重复单元,至少一个重复单元可以包括显示区域110和透光区域120,显示区域110被配置为实现图像显示,透光区域120被配置为实现光线透过,从而实现透明显示。在垂直于显示基板的方向上,显示基板可以至少包括设置在基底上的驱动电路层以及设置在驱动电路层远离基底一侧的发光结构层,至少一个重复单元中,显示区域110的驱动电路层可以包括多个电路单元,显示区域110的发光结构层可以包括多个发光单元,电路单元可以至少包括像素驱动电路,发光单元可以至少包括发光器件,发光器件与对应电路单元的像素驱动电路连接。
在示例性实施方式中,本公开中所说的电路单元,是指按照像素驱动电路划分的区域,本公开中所说的发光单元,是指按照发光器件划分的区域。在示例性实施例中,发光单元在基底上正投影的位置与电路单元在基底上正投影的位置可以是对应的,或者,发光单元在基底上正投影的位置与电路单元在基底上正投影的位置可以是不对应的。
本公开示例性实施例中,电路单元在基底上正投影的位置与发光单元在基底上正投影的位置是一一对应的,电路单元和发光单元组成子像素,因而以下内容中,统一采用子像素来指代电路单元和发光单元。
图3为本公开示例性实施例显示基板中子像素的排布示意图,示意了一个重复单元的结构。如图3所示,重复单元可以包括显示区域110和透光区域120,显示区域110可以位于透光区域120第一方向X的一侧。在示例性实施方式中,显示区域110可以包括四个子像素,分别为第一子像素P1、第二子像素P2、第三子像素P3和第四子像素P4,四个子像素采用正方形(Square)方式排列,可以有效增加开口率及透光区域面积。
在示例性实施方式中,第二子像素P2可以设置在第一子像素P1第一方向X的一侧,第三子像素P3可以设置在第一子像素P1第二方向Y的一侧,第四子像素P4可以设置在第三子像素P3第一方向X的一侧,沿着第一方向X依次设置的多个子像素可以称为像素行,沿着第二方向Y依次设置的多个子像素可以称为像素列,第一方向X与第二方向Y交叉。
在示例性实施方式中,第一子像素P1可以是出射红光的红色子像素(R),第二子像素P2可以是出射蓝光的蓝色子像素(B),第三子像素P3可以是出射白光的白色子像 素(W),第四子像素P4可以是出射绿光的绿色子像素(G)。在一些可能的实施方式中,RGBW的排列方式可以根据实际需要进行调整,本公开在此不做具体限定。
在示例性实施方式中,每个子像素可以包括电路单元以及设置在电路单元远离基底一侧的发光单元,电路单元可以至少包括像素驱动电路,发光单元可以至少包括发光器件,发光单元的发光器件与对应电路单元的像素驱动电路连接。
图4为本公开示例性实施例一种显示基板的结构示意图,示意了一个重复单元中像素驱动电路的结构。如图4所示,重复单元可以包括显示区域110和透光区域120,显示区域110可以包括采用正方形方式排列的第一子像素P1、第二子像素P2、第三子像素P3和第四子像素P4,至少一个子像素可以包括像素驱动电路和发光器件。
在示例性实施方式中,至少一个重复单元可以包括一条扫描信号线31、一条第一电源线51、一条第二电源线52、四条数据信号线53和一条补偿信号线54。在示例性实施方式中,扫描信号线31可以设置在显示区域110和透光区域120,第一电源线51、第二电源线52、数据信号线53和补偿信号线54可以设置在显示区域110。
在示例性实施方式中,至少一个像素驱动电路至少包括作为数据写入晶体管的第一晶体管T1、作为驱动晶体管的第二晶体管T2、作为感测晶体管的第三晶体管T3和存储电容C。
在示例性实施方式中,至少一个子像素中,第一晶体管T1的栅电极和第三晶体管T3的栅电极与同一条扫描信号线31连接。
在示例性实施方式中,至少一个像素行中,两个第一晶体管T1的栅电极和两个第三晶体管T3的栅电极与同一条扫描信号线31连接。
在示例性实施方式中,至少一个重复单元中,四个第一晶体管T1的栅电极和四个第三晶体管T3的栅电极与同一条扫描信号线31连接。
在示例性实施方式中,扫描信号线31的形状可以是主体部分沿着第一方向X延伸的线形状,可以设置在重复单元第二方向Y的中部区域,重复单元中的多个子像素可以相对于扫描信号线31镜像对称。
在示例性实施方式中,第一电源线51、第二电源线52、数据信号线53和补偿信号线54的形状可以是主体部分沿着第二方向Y延伸的线形状,一条第一电源线51、两条数据信号线53、一条补偿信号线54、两条数据信号线53和一条第二电源线52可以沿着第一方向X依次设置。至少一个重复单元中,第一电源线51可以位于显示区域110第一方向X的一侧,第二电源线52可以位于显示区域110第一方向X的另一侧,补偿信号线54可以位于第一电源线51与第二电源线52之间,四条数据信号线53中的两条数据信号线53可以位于第一电源线51与补偿信号线54之间,四条数据信号线53中的另外两条数据信号线53可以位于第二电源线52与补偿信号线54之间。
在示例性实施方式中,第一电源线51和第二电源线52的位置可以相对于补偿信号线54基本上镜像对称,位于补偿信号线54第一方向X的反方向一侧的两条数据信号线53和位于补偿信号线54第一方向X一侧的两条数据信号线53可以相对于补偿信号线54基本上镜像对称。
在示例性实施方式中,一条扫描信号线31可以限定两个相邻的像素行,扫描信号线31第二方向Y的反方向的一侧为第一像素行,扫描信号线31第二方向Y的一侧为第二像素行。第一电源线51、补偿信号线54和第二电源线52可以限定两个像素列,第一电 源线51和补偿信号线54可以限定第一像素列,第二电源线52和补偿信号线54可以限定第二像素列。这样,扫描信号线31、第一电源线51、第二电源线52和补偿信号线54限定出四个子像素。
在示例性实施方式中,位于第一像素行和第一像素列位置(显示单元左上方)的子像素可以称为第一子像素P1,位于第一像素行和第二像素列位置(显示单元右上方)的子像素可以称为第二子像素P2,位于第二像素行和第一像素列位置(显示单元左下方)的子像素可以称为第三子像素P3,位于第二像素行和第二像素列位置(显示单元右下方)的子像素可以称为第四子像素P4。
在示例性实施方式中,第一像素列中的像素驱动电路结构与第二像素列中的的像素驱动电路结构相对于补偿信号线54可以基本上镜像对称,即第一子像素P1的像素驱动电路结构与第二子像素P2的像素驱动电路结构相对于补偿信号线54可以基本上镜像对称,第三子像素P3的像素驱动电路结构与第四子像素P4的像素驱动电路结构相对于补偿信号线54可以基本上镜像对称。
图5本公开示例性实施例一个显示单元中像素驱动电路的等效电路图。如图5所示,至少一个显示单元可以包括4个像素驱动电路,4个像素驱动电路可以采用正方形(Square)方式排列,像素驱动电路可以是3T1C结构。
在示例性实施方式中,至少一个像素驱动电路可以包括3个晶体管(第一晶体管T1、第二晶体管T2和第三晶体管T3)和1个存储电容C,像素驱动电路分别与扫描信号线31、第一电源线51、数据信号线53和补偿信号线54连接。
在示例性实施方式中,像素驱动电路可以包括第一节点N1和第二节点N2。第一节点N1分别与第一晶体管T1的第二极、第二晶体管T2的栅电极和存储电容C的第一端连接,第二节点N2分别与第二晶体管T2的第二极、第三晶体管T3的第二极和存储电容C的第二端连接。
在示例性实施方式中,存储电容C的第一端与第一节点N1连接,存储电容C的第二端与第二节点N2连接,存储电容C用于存储第二晶体管T2的栅电极的电位。
在示例性实施方式中,第一晶体管T1的栅电极与扫描信号线31连接,第一晶体管T1的第一极与数据信号线53连接,第一晶体管T1的第二极与第一节点N1连接。当导通信号施加到扫描信号线31时,第一晶体管T1将数据信号线53的数据信号输入到第二晶体管T2的栅电极。
在示例性实施方式中,第二晶体管T2的栅电极与第一节点N1连接,第二晶体管T2的第一极与第一电源线51连接,第二晶体管T2的第二极与第二节点N2连接。第二晶体管T2在其栅电极所接收数据信号的控制下,在其第二极产生相应的电流。
在示例性实施方式中,第三晶体管T3的栅电极与扫描信号线31连接,第三晶体管T3的第一极与补偿信号线54连接,第三晶体管T3的第二极与第二节点N2连接。当导通信号施加到扫描信号线31时,第三晶体管T3响应补偿时序提取第二晶体管T2的阈值电压Vth以及迁移率,以对阈值电压Vth进行补偿。
在示例性实施方式中,至少一个子像素的像素驱动电路中,第一晶体管T1的栅电极和第三晶体管T3的栅电极与同一条扫描信号线31连接。
在示例性实施方式中,至少一个像素行的两个像素驱动电路中,两个第一晶体管T1的栅电极和两个第三晶体管T3的栅电极与同一条扫描信号线31连接。
在示例性实施方式中,至少一个重复单元的四个像素驱动电路中,四个第一晶体管T1的栅电极和四个第三晶体管T3的栅电极与同一条扫描信号线31连接。
在示例性实施方式中,发光器件EL可以是OLED,包括叠设的第一极(阳极)、有机发光层和第二极(阴极),或者可以是QLED,包括叠设的第一极(阳极)、量子点发光层和第二极(阴极)。发光器件EL的第一极与第二节点N2连接,发光器件EL的第二极与第二电源线52连接,发光器件EL响应第二晶体管T2的第二极的电流而发出相应亮度的光。
在示例性实施方式中,第一电源线51的信号为持续提供的高电平信号,第二电源线52的信号为持续提供的低电平信号。
在示例性实施方式中,第一晶体管T1至第三晶体管T3可以是P型晶体管,或者可以是N型晶体管。像素驱动电路中采用相同类型的晶体管可以简化工艺流程,减少显示面板的工艺难度,提高产品的良率。在一些可能的实现方式中,第一晶体管T1至第三晶体管T3可以包括P型晶体管和N型晶体管。
在示例性实施方式中,第一晶体管T1至第三晶体管T3可以采用低温多晶硅薄膜晶体管,或者可以采用氧化物薄膜晶体管,或者可以采用低温多晶硅薄膜晶体管和氧化物薄膜晶体管。低温多晶硅薄膜晶体管的有源层采用低温多晶硅(Low Temperature Poly-Silicon,简称LTPS),氧化物薄膜晶体管的有源层采用氧化物半导体(Oxide)。低温多晶硅薄膜晶体管具有迁移率高、充电快等优点,氧化物薄膜晶体管具有漏电流低等优点,将低温多晶硅薄膜晶体管和氧化物薄膜晶体管集成在一个显示基板上,即LTPS+Oxide(简称LTPO)显示基板,可以利用两者的优势,可以实现低频驱动,可以降低功耗,可以提高显示品质。
如图4和图5所示,在示例性实施方式中,扫描信号线31的形状可以为主体部分沿着第一方向X延伸的线形状,可以设置在显示区域110和透光区域120。在第一方向X上,扫描信号线31可以从显示区域110延伸到透光区域120,或者,扫描信号线31可以从透光区域120延伸到显示区域110。在第二方向Y上,扫描信号线31可以设置在重复单元第二方向Y的中部区域,位于第一子像素P1和第三子像素P3之间,以及位于第二子像素P2和第四子像素P4之间,相对于扫描信号线31,重复单元中的多个子像素相对于扫描信号线31镜像对称,即第一子像素P1与第三子像素P3可以相对于扫描信号线31基本上镜像对称,第二子像素P2与第四子像素P4可以相对于扫描信号线31基本上镜像对称。
图6为本公开示例性实施例一种扫描信号线的结构示意图。如图6所示,在示例性实施方式中,扫描信号线31可以包括双线结构的双线段31-1和单线结构的单线段31-2,双线段31-1可以位于显示区域110,单线段31-2可以位于透光区域120,即显示区域110设置有两条信号线,该两条信号线分别与重复单元中多个子像素的像素驱动电路连接,而透光区域120仅设置有一条信号线。
在示例性实施方式中,显示区域110的双线段31-1可以包括沿着第一方向X(像素行方向)延伸的第一子线31a和第二子线31b,第一子线31a和第二子线31b沿着第二方向Y(像素列方向)排布,第二子线31b可以设置在第一子线31a第二方向Y的一侧。第一子线31a可以与第一像素行中两个子像素的像素驱动电路分别连接,第二子线31b可以与第二像素行中两个子像素的像素驱动电路分别连接,因而实现了双线段31-1与重复单元中多个像素驱动电路的连接。
在示例性实施方式中,第一子线31a分别与第一子像素P1和第二子像素P2中第一晶体管T1的栅电极和第三晶体管T3的栅电极连接,第二子线31b分别与第三子像素P3和第四子像素P4中第一晶体管T1的栅电极和第三晶体管T3的栅电极连接,使得双线段31-1可以控制重复单元中多个第一晶体管T1和第三晶体管T3的导通或者断开。
在示例性实施方式中,显示区域110的双线段31-1还可以包括第一连接线31c和第二连接线31d,第一连接线31可以分别与第一子线31a和第二子线31b第一方向X的反方向的端部连接,第二连接线31d可以分别与第一子线31a和第二子线31b第一方向X的端部连接,使得第一连接线31c、第一子线31a、第二连接线31d和第二子线31b依次连接,构成环形结构。
在示例性实施方式中,单线段31-2可以位于第一子线31a或第二子线31b的延伸方向上,第一连接线31c可以与显示区域110第一方向X的反方向上透光区域120的单线段31-2连接,第二连接线31d可以与显示区域110第一方向X上透光区域120的单线段31-2连接,双线段31-1和单线段31-2构成连续的扫描信号线31。
在示例性实施方式中,至少一个重复单元中,显示区域110的双线段31-1和透光区域120的单线段31-2可以为相互连接的一体结构。
在示例性实施方式中,至少一个子像素中,第一晶体管T1的栅电极和第三晶体管T3的栅电极与同一条扫描信号线31连接,第一晶体管T1的第一极与数据信号线53连接,第一晶体管T1的第二极分别与第二晶体管的栅电极和存储电容C的第一端连接,第二晶体管T2的第一极与第一电源线51连接,第二晶体管T2的第二极分别与第三晶体管T3的第二极和存储电容C的第二端连接,第三晶体管T3的第一极与补偿信号线54连接。
在示例性实施方式中,至少一个重复单元还可以包括补偿连接线13,补偿连接线13的形状可以是沿着第一方向X延伸的条形状,可以位于第一像素行和第二像素行之间,且补偿连接线13在第一像素列中的延伸长度与在第二像素列中的延伸长度基本上相同,第一像素列中的补偿连接线13与第二像素列中的中的补偿连接线13可以相对于补偿信号线54基本上镜像对称。
在示例性实施方式中,在补偿连接线13与补偿信号线54的交叠位置,补偿信号线54通过过孔与补偿连接线13连接。补偿连接线13位于第一像素列中的端部与第一像素列中的第三晶体管T3的第一极连接,补偿连接线13位于第二像素列中的端部与第二像素列中的第三晶体管T3的第一极连接,因而实现了补偿连接线的一拖四结构,一条补偿信号线可以将补偿信号分别写入显示单元中的四个像素驱动电路。
在示例性实施方式中,至少一个重复单元还可以包括至少一个第一电源辅助线35,第一电源辅助线35在基底上的正投影与第一电源线51在基底上的正投影至少部分交叠,且第一电源线51通过过孔与第一电源辅助线35连接,形成双层的第一电源走线结构。
在示例性实施方式中,至少一个重复单元还可以包括至少一个第二电源辅助线36,第二电源辅助线36在基底上的正投影与第二电源线52在基底上的正投影至少部分交叠,且第二电源线52通过过孔与第二电源辅助线36连接,形成双层的第二电源走线结构。
在示例性实施方式中,存储电容C的第一端可以包括第一极板和第三极板,存储电容C的第二端可以包括第二极板。第二极板在基底上的正投影与第一极板在基底上的正投影至少部分交叠,第一极板和第二极板形成第一电容。第二极板在在基底上的正投影与第三极板在基底上的正投影至少部分交叠,第三极板和第二极板形成第二电容。第一极板与第三极板连接,第一电容和第二电容构成并联结构的存储电容。
在示例性实施方式中,在垂直于基底的方向上,显示区域110可以包括设置在基底上的驱动电路层和设置在驱动电路层远离基底一侧的发光结构。驱动电路层可以至少包括沿着远离基底方向依次设置的第一导电层、第二导电层和第三导电层,第一极板可以设置在第一导电层中,第二极板可以设置在第二导电层中,第三极板可以设置在第三导电层中,第三极板通过过孔与第一极板连接。发光结构层可以至少包括设置在第三导电层远离基底一侧的第四导电层、设置在第四导电层远离基底一侧的第五导电层、设置在第五导电层远离基底一侧的阴极层,第四导电层可以至少包括设置在显示区域110的多个子像素中的第一阳极,第五导电层可以至少包括设置在显示区域110的多个子像素中的第二阳极。
在示例性实施方式中,至少一个重复单元中,透光区域120还可以包括至少一个辅助阴极80,辅助阴极80和第二电源线52连接。辅助阴极80被配置为向阴极提供低电平信号,同时被配置为降低透光区域的衍射效应。
下面通过显示基板的制备过程进行示例性说明。本公开所说的“图案化工艺”,对于金属材料、无机材料或透明导电材料,包括涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理,对于有机材料,包括涂覆有机材料、掩模曝光和显影等处理。沉积可以采用溅射、蒸镀、化学气相沉积中的任意一种或多种,涂覆可以采用喷涂、旋涂和喷墨打印中的任意一种或多种,刻蚀可以采用干刻和湿刻中的任意一种或多种,本公开不做限定。“薄膜”是指将某一种材料在基底上利用沉积、涂覆或其它工艺制作出的一层薄膜。若在整个制作过程当中该“薄膜”无需图案化工艺,则该“薄膜”还可以称为“层”。若在整个制作过程当中该“薄膜”需图案化工艺,则在图案化工艺前称为“薄膜”,图案化工艺后称为“层”。经过图案化工艺后的“层”中包含至少一个“图案”。本公开所说的“A和B同层设置”是指,A和B通过同一次图案化工艺同时形成,膜层的“厚度”为膜层在垂直于显示基板方向上的尺寸。本公开示例性实施例中,“B的正投影位于A的正投影的范围之内”或者“A的正投影包含B的正投影”是指,B的正投影的边界落入A的正投影的边界范围内,或者A的正投影的边界与B的正投影的边界重叠。
在示例性实施方式中,以一个重复单元的四个子像素(第一子像素P1、第二子像素P2、第三子像素P3和第四子像素P4)为例,本公开示例性实施例显示基板的制备过程可以包括如下操作。
(1)形成第一导电层图案。在示例性实施方式中,形成第一导电层图案包括:在基底上沉积第一导电薄膜,通过图案化工艺对第一导电薄膜进行图案化,在基底上形成第一导电层图案,如图7所示。在示例性实施方式中,第一导电层可以称为遮光层(SHL)。
在示例性实施方式中,显示基板中每个子像素的第一导电层可以至少包括第一极板11和极板连接电极12。
在示例性实施方式中,第一极板11的形状可以呈矩形状,矩形状的角部可以设置倒角,第一极板11可以作为存储电容的一个极板,第一极板11被配置为与后续形成的第二极板形成第一电容。
在示例性实施方式中,第一极板11还被配置为对第二晶体管进行遮光,降低照射到第二晶体管上的光强度,降低第二晶体管的漏电流,从而减少光照对第二晶体管特性的影响。
在示例性实施方式中,极板连接电极12的形状可以为主体部分沿着第一方向X延伸的条形状,极板连接电极12的第一端与第一极板11连接,极板连接电极12的第二端向着远离第一极板11的方向延伸到邻近的透光区域120中,极板连接电极12被配置为与后 续形成的第六连接电极连接,并通过第六连接电极与阳极连接电极连接。
在示例性实施方式中,极板连接电极12的第二端可以形成矩形状的阳极连接块12-1,使得极板连接电极12的整体呈“T”字形状,阳极连接块12-1位于透光区域120中。连接块12-1被配置为容置后续形成的第十一过孔,使得后续形成的第六连接电极通过该过孔与极板连接电极12连接。
在示例性实施方式中,第一子像素P1中的极板连接电极12可以位于该子像素中第一极板11第一方向X的反方向的一侧,且第一子像素P1中的第一极板11和极板连接电极12可以为相互连接的一体结构。第二子像素P2中的极板连接电极12可以位于该子像素中第一极板11第一方向X的一侧,且第二子像素P2中的第一极板11和极板连接电极12可以为相互连接的一体结构。第三子像素P3中的极板连接电极12可以位于该子像素中第一极板11第一方向X的反方向的一侧,且第三子像素P3中的第一极板11和极板连接电极12可以为相互连接的一体结构。第四子像素P4中的极板连接电极12可以位于该子像素中第一极板11第一方向X的一侧,且第四子像素P4中的第一极板11和极板连接电极12可以为相互连接的一体结构。
在示例性实施方式中,至少一个重复单元中的第一导电层还可以包括补偿连接线13。补偿连接线13的形状可以为主体部分沿着第一方向X延伸的条形状,在第一方向X上,补偿连接线13可以跨设在第一像素列和第二像素列中,在第二方向Y上,补偿连接线13可以设置在第一像素行与第二像素行之间,补偿连接线13被配置为一方面与后续形成的补偿信号线连接,实现一个重复单元中补偿信号线的一拖四结构,另一方面通过后续形成的连接电极与每个子像素中的第三有源层的第一区连接,使得补偿信号线可以向每个子像素中的第三晶体管提供补偿信号。
在示例性实施方式中,第一子像素P1中的第一导电层图案与第三子像素P3中的第一导电层图案相对于水平基准线可以基本上镜像对称,第二子像素P2中的第一导电层图案与第四子像素P4中的第一导电层图案相对于水平基准线可以基本上镜像对称。第一子像素P1中的第一导电层图案与第二子像素P2中的第一导电层图案相对于垂直基准线可以基本上镜像对称,第三子像素P3中的第一导电层图案与第四子像素P4中的第一导电层图案相对于垂直基准线可以基本上镜像对称。水平基准线可以是沿着第一方向X延伸且在第二方向Y上平分显示区域110的直线,垂直基准线可以是沿着第二方向Y延伸且在第一方向X上平分显示区域110的直线。
本次图案化工艺后,第一极板11、极板连接电极12和补偿连接线13形成在显示区域110,透光区域120没有相应膜层。
(2)形成半导体层图案。在示例性实施方式中,形成半导体层图案可以包括:在形成前述图案的基底上,依次沉积第一绝缘薄膜和半导体薄膜,通过图案化工艺对半导体薄膜进行图案化,形成覆盖第一导电层的第一绝缘层,以及设置在第一绝缘层上的半导体层,如图8A和图8B所示,图8B为图8A中半导体层的示意图。
在示例性实施方式中,显示基板中每个子像素的半导体层可以至少包括第一有源层21、第二有源层22和第三有源层23,第一有源层21作为第一晶体管T1的有源层,第二有源层22作为第二晶体管T2的有源层,第三有源层23作为第三晶体管T3的有源层。
在示例性实施方式中,对于第一子像素P1和第二子像素P2,第一有源层21和第三有源层23可以设置在本子像素的第一极板11第二方向Y的一侧,第二有源层22可以设置在本子像素的第一极板11远离第一有源层21和第三有源层23的端部区域,第二有源 层22在基底上的正投影位于本子像素的第一极板11在基底上的正投影的范围之内,使得作为遮挡层的第一极板11可以遮挡第二晶体管T2的沟道区域,避免光线对沟道产生影响,保证第二晶体管T2的电学性能。第一子像素P1的第三有源层23可以设置在本子像素的第一有源层21第一方向X的一侧,第二子像素P2的第三有源层23可以设置在本子像素的第一有源层21第一方向X的反方向的一侧。
在示例性实施方式中,对于第三子像素P3和第四子像素P4,第一有源层21和第三有源层23可以设置在本子像素的第一极板11第二方向Y的反方向的一侧,第二有源层22可以设置在本子像素的第一极板11远离第一有源层21和第三有源层23的端部区域,第二有源层22在基底上的正投影位于本子像素的第一极板11在基底上的正投影的范围之内,使得作为遮挡层的第一极板11可以遮挡第二晶体管T2的沟道区域,避免光线对沟道产生影响,保证第二晶体管T2的电学性能。第三子像素P3的第三有源层23可以设置在本子像素的第一有源层21第一方向X的反方向的一侧,第四子像素P4的第三有源层23可以设置在本子像素的第一有源层21第一方向X的一侧。
在示例性实施方式中,第一子像素P1的第三有源层23和第三子像素P3的第三有源层23可以为相互连接的一体结构,第二子像素P2的第三有源层23和第四子像素P4的第三有源层23可以为相互连接的一体结构,即相邻像素行中两个子像素的第三有源层23为相互连接的一体结构。本公开通过设置一个像素列中相邻两个子像素的第二晶体管共用源极,不仅节省了空间,而且减少了过孔连接结构,简化了制备工艺。
在示例性实施方式中,第一有源层21和第三有源层23的形状可以呈“I”字形状,第二有源层22的形状可以呈矩形状,矩形状的角部可以设置倒角,矩形状的侧边可以设置凹槽。
在示例性实施方式中,每个晶体管的有源层可以包括第一区、第二区以及位于第一区和第二区之间的沟道区。
在示例性实施方式中,第一有源层21在基底上的正投影与第一极板11在基底上的正投影没有交叠,第三有源层23在基底上的正投影与第一极板11在基底上的正投影没有交叠。本公开通过设置第一有源层21与第一极板11之间、第三有源层23与第一极板11没有交叠区域,有利于根据相关需求设计第一晶体管和第三晶体管的沟道宽长比。
在示例性实施方式中,第一子像素P1中的第一有源层21和第三有源层23与第三子像素P3中的第一有源层21和第三有源层23相对于垂直基准线可以基本上镜像对称,第二子像素P2中的第一有源层21和第三有源层23与第四子像素P4中的第一有源层21和第三有源层23相对于垂直基准线可以基本上镜像对称。
在示例性实施方式中,半导体层可以采用金属氧化物,如包含铟和锡的氧化物、包含钨和铟的氧化物、包含钨和铟和锌的氧化物、包含钛和铟的氧化物、包含钛和铟和锡的氧化物、包含铟和锌的氧化物、包含硅和铟和锡的氧化物、包含铟和镓和锌的氧化物等。半导体层可以单层,或者可以是双层,或者可以是多层。
在示例性实施方式中,本次图案化工艺后,半导体层图案形成在显示区域110,透光区域120的膜层包括第一绝缘层。
(3)形成第二导电层图案。在示例性实施方式中,形成第二导电层图案可以包括:在形成前述图案的基底上,依次沉积第二绝缘薄膜和第二导电薄膜,通过图案化工艺对第二导电薄膜进行图案化,形成覆盖半导体层的第二绝缘层,以及设置在第二绝缘层上的第二导电层图案,如图9A和图9B所示,图9B为图9A中第二导电层的示意图。
在示例性实施方式中,至少一个重复单元中的第二导电层可以至少包括一条扫描信号线31。扫描信号线31的形状可以为沿着第一方向X延伸的线形状,可以设置在重复单元第二方向Y的中部,即位于第一子像素P1和第二子像素P2与第三子像素P3和第四子像素P4之间,扫描信号线31与多个第一有源层相重叠的区域可以作为多个第一晶体管T1的栅电极,扫描信号线31与多个第三有源层相重叠的区域可以作为多个第三晶体管T3的栅电极。
在示例性实施方式中,扫描信号线31可以包括双线段31-1和单线段31-2,双线段31-1可以位于显示区域110,单线段31-2可以位于透光区域120,即显示区域110设置有两条信号线,而透光区域120仅设置有一条信号线。
在示例性实施方式中,显示区域110的双线段31-1可以包括沿着第一方向X延伸的第一子线31a和第二子线31b,第一子线31a和第二子线31b沿着第二方向Y排布,第二子线31b可以设置在第一子线31a第二方向Y的一侧。第一子线31a可以与第一像素行中两个子像素的像素驱动电路分别连接,第二子线31b可以与第二像素行中两个子像素的像素驱动电路分别连接,因而实现了双线段31-1与重复单元中多个像素驱动电路的连接。
在示例性实施方式中,第一子线31a在基底上的正投影分别与第一子像素P1和第二子像素P2中第一有源层21和第三有源层23在基底上的正投影至少部分交叠,相重叠的区域分别作为第一晶体管T1和第三晶体管T3的栅电极,即第一子线31a同时与第一子像素P1和第二子像素P2中第一晶体管T1的栅电极和第三晶体管T3的栅电极连接。第二子线31b在基底上的正投影分别与第三子像素P3和第四子像素P4中第一有源层21和第三有源层23在基底上的正投影至少部分交叠,相重叠的区域分别作为第一晶体管T1和第三晶体管T3的栅电极,即第二子线31b同时与第三子像素P3和第四子像素P4中第一晶体管T1的栅电极和第三晶体管T3的栅电极分别连接,使得传输相同扫描信号的双线段31-1同时控制重复单元四个子像素中所有第一晶体管T1和所有第三晶体管T3的导通或者断开。
在示例性实施方式中,显示区域110的双线段31-1还可以包括第一连接线31c和第二连接线31d,第一连接线31可以分别与第一子线31a和第二子线31b第一方向X的反方向的端部连接,第二连接线31d可以分别与第一子线31a和第二子线31b第一方向X的端部连接,使得第一连接线31c、第一子线31a、第二连接线31d和第二子线31b依次连接,构成环形结构。在示例性实施方式中,环状可以是矩形环,或者可以是多边形环。
在示例性实施方式中,单线段31-2可以位于第一子线31a或第二子线31b的延伸方向上,第一连接线31c可以与显示区域110第一方向X的反方向上透光区域120的单线段31-2连接,第二连接线31d可以与显示区域110第一方向X上透光区域120的单线段31-2连接,双线段31-1和单线段31-2构成连续的扫描信号线31。因而,显示区域110的双线段31-1和透光区域120的单线段31-2构成连续的扫描信号线31。
在示例性实施方式中,对于在第一方向X上依次设置的多个重复单元,每个重复单元中的双线段31-1和单线段31-2可以为相互连接的一体结构,多个重复单元中的多个双线段31-1和多个单线段31-2可以为相互连接的一体结构。
在示例性实施方式中,至少一个重复单元中,相邻像素行两个子像素中一体结构的第三有源层在基底上的正投影与扫描信号线31的环形结构在基底上的正投影至少部分交叠。
在示例性实施方式中,至少一个重复单元中,补偿连接线13在基底上的正投影可以位于扫描信号线31的环形结构所围成的区域在基底上的正投影的范围之内。
在示例性实施方式中,显示基板中每个子像素的第二导电层可以至少包括第二极板32、第二栅电极33和电源连接电极34。
在示例性实施方式中,第二极板32的形状可以为矩形状,矩形状的角部可以设置倒角,可以设置在本子像素靠近扫描信号线31的位置,第二极板32在基底上的正投影与第一极板11在基底上的正投影至少部分交叠,第二极板32可以作为存储电容的中间极板,第一极板11和第二极板32形成第一电容。
在示例性实施方式中,第二极板32远离第三有源层的一侧可以设置有开口,开口被配置为容置后续形成的第七过孔,使后续形成的第三极板通过该过孔与第一极板11连接。
在示例性实施方式中,第二栅电极33的形状可以为沿着第二方向Y延伸的条形状,可以位于本子像素的第二极板32远离扫描信号线31的一侧,第二栅电极33的第一端与本子像素的第二极板32连接,第二栅电极33的第二端向着远离扫描信号线31的方向延伸,且第二栅电极33在基底上的正投影与第二有源层22在基底上的正投影至少部分交叠,第二栅电极33作为第二晶体管T2的栅电极。
在示例性实施方式中,第二极板32和第二栅电极33可以为相互连接的一体结构。
在示例性实施方式中,电源连接电极34的形状可以为矩形状,可以位于本子像素的第二栅电极33远离扫描信号线31的一侧,电源连接电极34被配置为通过后续形成的第二连接电极与第二晶体管T2的第一极连接。
在示例性实施方式中,至少一个重复单元中的第二导电层还可以包括第一电源辅助线35、第二电源辅助线36、电源连接线37和电极连接线38。
在示例性实施方式中,第一电源辅助线35的形状可以为沿着第二方向Y延伸的条形状,可以分别设置在第一子像素P1和第三子像素P3中,且位于第二极板32第一方向X的反方向的一侧,第一电源辅助线35被配置为与后续形成的第一电源线连接,与第一电源线形成双层走线结构。在示例性实施方式中,第一电源辅助线35可以有多个,多个第一电源辅助线35可以沿着第二方向Y间隔设置。
在示例性实施方式中,第二电源辅助线36的形状可以为沿着第二方向Y延伸的条形状,可以分别设置在第二子像素P2和第四子像素P4中,位于第二极板32第一方向X的一侧,第二电源辅助线36被配置为与后续形成的第二电源线连接,与第二电源线形成双层走线结构。在示例性实施方式中,第二电源辅助线36可以有多个,多个第二电源辅助线36可以沿着第二方向Y间隔设置。
在示例性实施方式中,电源连接线37的形状可以为沿着第一方向X延伸的条形状,可以分别设置在第一子像素P1和第三子像素P3中,可以位于本子像素的第二栅电极33远离扫描信号线31的一侧。电源连接线37的第一端与第一电源辅助线35连接,电源连接线37的第二端沿着第一方向X延伸后,分别与第一子像素P1和第三子像素P3中的电源连接电极34连接,因而可以实现将第一电源信号传输给第一子像素P1和第三子像素P3中的电源连接电极34。
在示例性实施方式中,电极连接线38的形状可以为沿着第一方向X延伸的条形状,可以位于第一方向X相邻的子像素的电源连接电极34之间,第一像素行中的电极连接线38的两端分别与第一子像素P1的电源连接电极34和第二子像素P2的电源连接电极34连接,第二像素行中的电极连接线38的两端分别与第三子像素P3的电源连接电极34和第四子像素P4的电源连接电极34连接,因而可以实现将第一电源信号传输给第二子像 素P2和第四子像素P4中的电源连接电极34。
在示例性实施方式中,电源连接线37和电极连接线38被配置为实现一个重复单元中第一电源线的一拖四结构。
在示例性实施方式中,一个像素行中的两个电源连接电极34、至少一个第一电源辅助线35、一个电源连接线37和一个电极连接线38可以为相互连接的一体结构。
在示例性实施方式中,电极连接线38的中部可以设置有沿着第一方向X延伸的条状开口(通孔),使得电极连接线38形成环形结构,以减少电极连接线38与后续形成的数据信号线和补偿信号线的重叠面积,减小第一电源线与数据信号线之间的寄生电容,减小第一电源线与补偿信号线之间的寄生电容,提高显示效果。
在示例性实施方式中,对于第二导电层中的第二极板32、第二栅电极33和电源连接电极34,第一子像素P1中的这些图案与第二子像素P2中的这些图案相对于垂直基准线可以基本上镜像对称,第三子像素P3中的这些图案与第四子像素P4中的这些图案相对于垂直基准线可以基本上镜像对称。
在示例性实施方式中,第一子像素P1中的第二导电层图案与第三子像素P3中的第二导电层图案相对于水平基准线可以基本上镜像对称,第二子像素P2中的第二导电层图案与第四子像素P4中的第二导电层图案相对于水平基准线可以基本上镜像对称。
在示例性实施方式中,对于第二导电层中的双线段31-1,双线段图案相对于水平基准线可以基本上镜像对称,相对于垂直基准线可以基本上镜像对称。
在示例性实施方式中,本次工艺可以同时对第二导电薄膜和第二绝缘薄膜进行图案化,使得第二绝缘层图案与第二导电层图案相同
在示例性实施方式中,形成第一导电层图案后,可以利用第一导电层作为遮挡,对半导体层进行导体化处理,被第一导电层遮挡区域的半导体层形成第一晶体管T1至第三晶体管T3的沟道区域,未被第一导电层遮挡区域的半导体层被导体化。
在示例性实施方式中,扫描信号线31形成在显示区域110和透光区域120,第二极板32、第二栅电极33、电源连接电极34、第一电源辅助线35、第二电源辅助线36、电源连接线37和电极连接线38形成在显示区域110,因而本次图案化工艺后,透光区域120的膜层包括第一绝缘层和第二绝缘层,扫描信号线的单线段设置在第二绝缘层上。
(4)形成第三绝缘层图案。在示例性实施方式中,形成第三绝缘层图案可以包括:在形成前述图案的基底上,沉积第三绝缘薄膜,通过图案化工艺对第三绝缘薄膜进行图案化,形成覆盖第二导电层的第三绝缘层图案,第三绝缘层上设置有多个过孔,如图10所示。
在示例性实施方式中,显示基板中每个子像素的多个过孔至少包括:第一过孔V1、第二过孔V2、第三过孔V3、第四过孔V4、第五过孔V5、第六过孔V6、第七过孔V7、第八过孔V8、第九过孔V9、第十过孔V10和第十一过孔V11。
在示例性实施方式中,第一过孔V1在基底上的正投影位于第一有源层的第一区在基底上的正投影的范围之内,第一过孔V1内的第三绝缘层和第二绝缘层被刻蚀掉,暴露出第一有源层的第一区的表面,第一过孔V1被配置为使后续形成的数据信号线通过该过孔与第一有源层的第一区连接。
在示例性实施方式中,第一过孔V1在基底上的正投影可以位于扫描信号线31的环 形结构所围成的区域在基底上的正投影的范围之内。
在示例性实施方式中,第二过孔V2在基底上的正投影位于第一有源层的第二区在基底上的正投影的范围之内,第二过孔V2内的第三绝缘层和第二绝缘层被刻蚀掉,暴露出第一有源层的第二区的表面,第二过孔V2被配置为使后续形成的第一连接电极通过该过孔与第一有源层的第二区连接。
在示例性实施方式中,第三过孔V3在基底上的正投影位于第二有源层的第一区在基底上的正投影的范围之内,第三过孔V3内的第三绝缘层和第二绝缘层被刻蚀掉,暴露出第二有源层的第一区的表面,第三过孔V3被配置为使后续形成的第二连接电极通过该过孔与第二有源层的第一区连接。在示例性实施方式中,第三过孔V3可以有多个,以增加连接可靠性。
在示例性实施方式中,第四过孔V4在基底上的正投影位于第二有源层的第二区在基底上的正投影的范围之内,第四过孔V4内的第三绝缘层和第二绝缘层被刻蚀掉,暴露出第二有源层的第二区的表面,第四过孔V4被配置为使后续形成的第三连接电极通过该过孔与第二有源层的第二区连接。在示例性实施方式中,第四过孔V4可以有多个,以增加连接可靠性。
在示例性实施方式中,第五过孔V5在基底上的正投影位于第三有源层的第一区在基底上的正投影的范围之内,第五过孔V5内的第三绝缘层和第二绝缘层被刻蚀掉,暴露出第三有源层的第一区的表面,第五过孔V5被配置为使后续形成的第四连接电极通过该过孔与第三有源层的第一区连接。
在示例性实施方式中,第五过孔V5在基底上的正投影可以位于扫描信号线31的环形结构所围成的区域在基底上的正投影的范围之内。
在示例性实施方式中,第六过孔V6在基底上的正投影位于第三有源层的第二区在基底上的正投影的范围之内,第六过孔V6内的第三绝缘层和第二绝缘层被刻蚀掉,暴露出第三有源层的第二区的表面,第六过孔V6被配置为使后续形成的第五连接电极通过该过孔与第三有源层的第二区连接。
在示例性实施方式中,第七过孔V7在基底上的正投影位于第一极板11在基底上的正投影的范围之内,第七过孔V7内的第三绝缘层、第二绝缘层和第一绝缘层被刻蚀掉,暴露出第一极板11的表面,第七过孔V7被配置为使后续形成的第三极板通过该过孔与第一极板11连接。
在示例性实施方式中,第八过孔V8在基底上的正投影位于第二极板32在基底上的正投影的范围之内,第八过孔V8内的第三绝缘层被刻蚀掉,暴露出第二极板32的表面,第八过孔V8被配置为使后续形成的第一连接电极通过该过孔与第二极板32连接。
在示例性实施方式中,第九过孔V9在基底上的正投影位于补偿连接线13靠近第三有源层的端部在基底上的正投影的范围之内,第九过孔V9内的第三绝缘层、第二绝缘层和第一绝缘层被刻蚀掉,暴露出补偿连接线13的表面,第九过孔V9被配置为使后续形成的第四连接电极通过该过孔与补偿连接线13连接。
在示例性实施方式中,第九过孔V9在基底上的正投影可以位于扫描信号线31的环形结构所围成的区域在基底上的正投影的范围之内。
在示例性实施方式中,第十过孔V10在基底上的正投影位于电源连接电极34在基底上的正投影的范围之内,第十过孔V10内的第三绝缘层被刻蚀掉,暴露出电源连接电极 34的表面,第十过孔V10被配置为使后续形成的第二连接电极通过该过孔与电源连接电极34连接。
在示例性实施方式中,第十一过孔V11在基底上的正投影位于极板连接电极12的连接块12-1在基底上的正投影的范围之内,第十一过孔V11内的第三绝缘层、第二绝缘层和第一绝缘层被刻蚀掉,暴露出连接块12-1的表面,第十一过孔V11被配置为使后续形成的第六连接电极通过该过孔与连接块12-1连接。
在示例性实施方式中,至少一个重复单元还可以包括第十二过孔V12、第十三过孔V13和第十四过孔V14。
在示例性实施方式中,第十二过孔V12可以设置在第一子像素P1和第三子像素P3中,第十二过孔V12在基底上的正投影位于第一电源辅助线35在基底上的正投影的范围之内,第十二过孔V12内的第三绝缘层被刻蚀掉,暴露出第一电源辅助线35的表面,第十二过孔V12被配置为使后续形成的第一电源线通过该过孔与第一电源辅助线35连接。在示例性实施方式中,第十二过孔V12可以有多个,多个第十二过孔V12可以沿着第二方向Y依次设置,以增加连接可靠性。
在示例性实施方式中,第十三过孔V13可以设置在第二子像素P2和第四子像素P4中,第十三过孔V13在基底上的正投影位于第二电源辅助线36在基底上的正投影的范围之内,第十三过孔V13内的第三绝缘层被刻蚀掉,暴露出第二电源辅助线36的表面,第十三过孔V13被配置为使后续形成的第二电源线通过该过孔与第二电源辅助线36连接。在示例性实施方式中,第十三过孔V13可以有多个,多个第十三过孔V13可以沿着第一方向X依次设置形成过孔组,多个过孔组可以沿着第二方向Y依次设置,以增加连接可靠性。
在示例性实施方式中,第十四过孔V14在基底上的正投影位于补偿连接线13的中部在基底上的正投影的范围之内,第十四过孔V14内的第三绝缘层、第二绝缘层和第一绝缘层被刻蚀掉,暴露出补偿连接线13的表面,第十四过孔V14被配置为使后续形成的补偿信号线通过该过孔与补偿连接线13连接。
在示例性实施方式中,第十四过孔V14在基底上的正投影可以位于扫描信号线31的环形结构所围成的区域在基底上的正投影的范围之内。
在示例性实施方式中,本次图案化工艺可以采用半色调掩膜板(Half Tone Mask)工艺。
本次图案化工艺后,透光区域120的膜层包括第一绝缘层、第二绝缘层和第三绝缘层。
(5)形成第三导电层图案。在示例性实施方式中,形成第三导电层图案可以包括:在形成前述图案的基底上,沉积第三导电薄膜,通过图案化工艺对第三导电薄膜进行图案化,在第三绝缘层上形成第三导电层图案,如图11A和图11B所示,图11B为图1A中第三导电层的示意图。
在示例性实施方式中,显示基板中每个重复单元的第三导电层可以至少包括一条第一电源线51、一条第二电源线52、四条数据信号线53、一条补偿信号线54、两个辅助电极线55和两个第一辅助电极56。
在示例性实施方式中,第一电源线51、第二电源线52、数据信号线53和补偿信号线54的形状可以为主体部分沿着第二方向Y延伸的直线状,第一电源线51可以位于显示区域110第一方向X的一侧,第二电源线52可以位于显示区域110第一方向X的另一侧, 补偿信号线54可以位于第一电源线51与第二电源线52之间,四条数据信号线53中的两条数据信号线53可以位于第一电源线51与补偿信号线54之间,四条数据信号线53中的另外两条数据信号线53可以位于第二电源线52与补偿信号线54之间。
在示例性实施方式中,第一电源线51可以位于显示区域110第一方向X的反方向的一侧,第二电源线52可以位于显示区域110第一方向X的一侧。第一电源线51和补偿信号线54可以限定出第一像素列,两条数据信号线53设置在第一像素列中。第二电源线52和补偿信号线54可以限定出第二像素列,两条数据信号线53设置在第二像素列中。
在示例性实施方式中,本公开通过将第一电源线51和第二电源线52设置在显示区域110的两侧,在一个重复单元中,第一电源线51和第二电源线52之间通过两个像素驱动电路隔开,在第一方向X相邻的两个重复单元中,第一电源线51和第二电源线52之间通过一个透光区域120隔开,使得两者之间的距离较远,可以有效防止两者交叠导致的短路不良,最大限度地避免了短路不良引起大电流烧屏的风险。
在示例性实施方式中,第一电源线51和第二电源线52的位置可以相对于补偿信号线54基本上镜像对称,第一像素列中的两条数据信号线53和第二像素列中的两条数据信号线53可以相对于补偿信号线54基本上镜像对称。
在示例性实施方式中,第一电源线51可以通过多个第十二过孔V12分别与多个第一电源辅助线35连接,第一电源线51和第一电源辅助线35形成双层走线结构,保证了电源信号传输的可靠性,可以有效降低第一电源线的电阻,有效减小第一电源信号的压降,提高显示效果。
在示例性实施方式中,第二电源线52可以通过多个第十三过孔V13分别与多个第二电源辅助线36连接,第二电源线52和第二电源辅助线36形成双层走线结构,保证了电源信号传输的可靠性,可以有效降低第二电源线的电阻,有效减小第二电源信号的压降,提高显示效果。
在示例性实施方式中,每条数据信号线53可以通过第一过孔V1与一个子像素中的第一有源层的第一区连接,因而实现了数据信号线53将数据信号写入第一晶体管T1的第一极。
在示例性实施方式中,四条数据信号线53可以包括第一数据信号线、第二数据信号线、第三数据信号线和第四数据信号线。第一数据信号线可以位于第一电源线51第一方向X的一侧,可以通过第一过孔V1与第一子像素P1中的第一有源层的第一区连接。第二数据信号线可以位于补偿信号线54第一方向X的反方向的一侧,可以通过第一过孔V1与第三子像素P3中的第一有源层的第一区连接。第三数据信号线可以位于补偿信号线54第一方向X的一侧,可以通过第一过孔V1与第四子像素P4中的第一有源层的第一区连接。第四数据信号线可以位于第二电源线52第一方向X的反方向的一侧,可以通过第一过孔V1与第二子像素P2中的第一有源层的第一区连接。
在示例性实施方式中,补偿信号线54可以通过第十四过孔V14与补偿连接线13连接,使得补偿信号线54通过补偿连接线13可以向每个子像素中的像素驱动电路提供补偿信号,因而一个显示区域110中的四个像素驱动电路可以共用一条补偿连接线13,即一个重复单元中的补偿连接线为一拖四结构。本公开显示基板通过将补偿信号线设计为一拖四结构,节省了信号线数量,减小了占用空间,结构简洁,布局合理,充分利用布图空间,提高了空间利用率,有利于提高分辨率和透明度。
在示例性实施方式中,由于补偿信号线54设置在第一像素列和第二像素列之间,补 偿信号线54通过补偿连接线13与第一像素列和第二像素列中的第三晶体管T3连接,而第一像素列的第三晶体管T3与第二像素列的第三晶体管T3相对于补偿信号线54对称设置,因而这种对称结构可以确保补偿信号写入第三晶体管T3的RC延迟基本上相同,保证了显示均一性。
在示例性实施方式中,两个辅助电极线55和两个第一辅助电极56可以设置在重复单元的透光区域120中。辅助电极线55的形状可以为沿着第一方向X延伸的条形状,辅助电极线55的第一端与第二电源线52连接,辅助电极线55的第二端向着远离第二电源线52的方向延伸后与辅助电极55连接。第一辅助电极56的形状可以为矩形状,第一辅助电极56被配置为与后续形成的第二辅助电极连接。由于第一辅助电极56通过辅助电极线55与第二电源线52连接,第二辅助电极被配置为与后续形成的阴极连接,因而可以实现第二电源线52与阴极的连接。
在示例性实施方式中,两个辅助电极线55和两个第一辅助电极56可以设置在第二子像素P2和第四子像素P4第一方向X一侧的透光区域120中。
在示例性实施方式中,两个辅助电极线55第一方向X的延伸长度可以相同或者不同,两个第一辅助电极56的面积可以相同或者不同。
在示例性实施方式中,第二电源线52、两个辅助电极线55和两个第一辅助电极56可以为相互连接的一体结构。
在示例性实施方式中,考虑到大尺寸透明显示存在的电压降(IR Drop)问题,本公开实施例有针对性地在每个重复单元中设置了一条传输低电压信号的第二电源线,第二电源线通过辅助电极与后续形成的发光结构层中的阴极连接,可以有效降低第二电源信号的压降,有效解决大尺寸透明显示存在的电压降问题,保证了显示均一性。
在示例性实施方式中,显示基板中每个子像素的第三导电层可以至少包括第一连接电极41、第二连接电极42、第三连接电极43、第四连接电极44、第五连接电极45、第六连接电极46和第三极板47。
在示例性实施方式中,第一连接电极41的形状可以为主体部分沿着第二方向Y延伸的条形状,第一连接电极41的第一端通过第二过孔V2与第一有源层的第二区连接,第一连接电极41的第二端通过第八过孔V8与第二极板32连接,使每个子像素的第一晶体管T1的第二极和第二极板32具有相同的电位。
在示例性实施方式中,第二连接电极42的形状可以为主体部分沿着第二方向Y延伸的条形状,第二连接电极42的第一端通过第三过孔V3与第二有源层的第一区连接,第二连接电极42的第二端通过第十过孔V10与电源连接电极34连接。由于电源连接电极34通过电源连接线37与第一电源辅助线35连接,第一电源辅助线35通过过孔与第一电源线连接,因而实现了第一电源线连接第二有源层的第一区,第一电源线可以将第一电源信号写入每个子像素的第二晶体管T2的第一极。
在示例性实施方式中,第三连接电极43的形状可以为主体部分沿着第二方向Y延伸的条形状,第三连接电极43的第一端与第三极板47连接,第三连接电极43的第二端通过第四过孔V4与第二有源层的第二区连接,使每个子像素的第二晶体管T2的第二极和第三极板47具有相同的电位。
在示例性实施方式中,第四连接电极44的形状可以为主体部分沿着第一方向X延伸的条形状,第四连接电极44的第一端通过第五过孔V5与第三有源层的第一区连接,第 四连接电极44的第二端通过第九过孔V9与补偿连接线13连接。由于补偿连接线13通过过孔与补偿信号线连接,因而实现了补偿信号线连接第三有源层的第一区,补偿信号线可以将补偿信号写入每个子像素的第三晶体管T3的第一极。
在示例性实施方式中,第五连接电极45的形状可以为主体部分沿着第二方向Y延伸的条形状,第五连接电极45的第一端与第三极板47连接,第五连接电极45的第二端通过第六过孔V6与第三有源层的第二区连接,使每个子像素的第三晶体管T3的第二极和第三极板47具有相同的电位。
在示例性实施方式中,第六连接电极46的形状可以为矩形状,第六连接电极46在基底上的正投影与极板连接电极的连接块12-1在基底上的正投影至少部分交叠,第六连接电极46通过第十一过孔V11与连接块12-1连接,第六连接电极46被配置为与后续形成的阳极连接电极连接。
在示例性实施方式中,第三极板47的形状可以为矩形状,矩形状的角部可以设置倒角,可以设置在本子像素靠近扫描信号线31的位置,第三极板47通过第七过孔V7与第一极板11连接。第三极板47在基底上的正投影与第二极板32在基底上的正投影至少部分交叠,第三极板47可以作为存储电容的上极板,第二极板32和第三极板47形成第二电容。
在示例性实施方式中,第三连接电极43、第五连接电极45和第三极板47可以为相互连接的一体结构。
在示例性实施方式中,由于第一连接电极41与第二极板32连接,第二极板32与第二栅电极33连接,因而第一连接电极41使得第一晶体管T1的第二极、第二晶体管T2的栅电极和存储电容的第一端(包括第二极板32)具有相同的电位,第一连接电极41可以作为像素驱动电路的第一节点N1。
在示例性实施方式中,由于第三连接电极43与第二有源层的第二区连接,第五连接电极45与第三有源层的第二区连接,第三连接电极43和第五连接电极45与第三极板47连接,第一极板11和第三极板47连接,因而第三连接电极43和第五连接电极45使得第二晶体管T2的第二极、第三晶体管T3的第二极和存储电容的第二端(包括第一极板11和第三极板47)具有相同的电位,第三连接电极43和第五连接电极45可以作为像素驱动电路中的第二节点N2。
在示例性实施方式中,由于第二极板32具有第一节点N1的电位,第一极板11和第三极板47具有第二节点N2的电位,因而具有第一节点N1的电位的第二节点N2与具有第二节点N2的电位的第一极板11构成像素驱动电路的第一电容,具有第一节点N1的电位的第二节点N2与具有第二节点N2的电位的第三极板47构成像素驱动电路的第二电容,且第一电容和第二电容并联。本公开利用第一导电层、第二导电层和第三导电层形成并联结构的第一电容和第二电容,并联结构的第一电容和第二电容构成完整的像素驱动电路的存储电容,一方面可以有效增加存储电容的电容值,另一方面可以在保证存储电容的电容值的情况下减小极板面积,有效减小占用面积。
在示例性实施方式中,由于第一电源辅助线35通过电源连接线37和电极连接线38与一个像素行中的两个电源连接电极34连接,第一电源线51与第一电源辅助线35连接,因而一个显示区域110中的四个像素驱动电路可以共用一条第一电源线51,即一个重复单元中的第一电源线为一拖四结构,可以减小显示区域的占用空间,提高了透光区域的面积比,提高分辨率和透明度。
在示例性实施方式中,至少一个重复单元中,第一电源线51、第二电源线52、数据信号线53和补偿信号线54在基底上的正投影与扫描信号线31的环形结构在基底上的正投影至少部分交叠。
本次图案化工艺后,透光区域120的膜层包括第一绝缘层、第二绝缘层和第三绝缘层。
(6)形成第四绝缘层和第一平坦层图案。在示例性实施方式中,形成第四绝缘层和第一平坦层图案可以包括:在形成前述图案的基底上,先沉积第四绝缘薄膜,后涂覆第一平坦薄膜,通过图案化工艺对第四绝缘薄膜和第一平坦薄膜进行图案化,形成覆盖第三导电层的第四绝缘层以及设置在第四绝缘层上的第一平坦层图案,第四绝缘层和第一平坦层上设置有多个过孔,如图12所示。
在示例性实施方式中,第一平坦层仅设置在显示区域110,位于透光区域120的第一平坦层被全部去掉,包括极板连接电极12和第一辅助电极56所在区域。
在示例性实施方式中,至少一个重复单元可以包括四个第二十一过孔V21和两个第二十二过孔V22。
在示例性实施方式中,每个第二十一过孔V21在基底上的正投影位于第六连接电极46在基底上的正投影的范围之内,第二十一过孔V21内的第四绝缘层被刻蚀掉,暴露出第六连接电极46的表面,第二十一过孔V21被配置为使后续形成的阳极连接电极通过该过孔与第六连接电极46连接。
在示例性实施方式中,每个第二十二过孔V22在基底上的正投影位于第一辅助电极56在基底上的正投影的范围之内,第二十二过孔V22内的第四绝缘层被刻蚀掉,暴露出第一辅助电极56的表面,第二十二过孔V22被配置为使后续形成的第二辅助电极通过该过孔与第一辅助电极56连接。
在示例性实施方式中,本次图案化工艺可以采用半色调掩膜板(Half Tone Mask)工艺。
本次图案化工艺后,透光区域120的膜层包括第一绝缘层、第二绝缘层、第三绝缘层和第四绝缘层。
(7)形成第四导电层图案。在示例性实施方式中,形成第四导电层图案可以包括:在形成前述图案的基底上,沉积第四导电薄膜,通过图案化工艺对第四导电薄膜进行图案化,形成第四导电层图案,如图13A和图13B所示,图13B为图3A中第四导电层的示意图。
在示例性实施方式中,显示基板中每个子像素的第四导电层可以至少包括第一阳极61和阳极连接电极62。
在示例性实施方式中,至少一个子像素中的第一阳极61可以包括隔离设置的第一子阳极61-1和第二子阳极61-2,第一子阳极61-1和第二子阳极61-2的形状可以为矩形状,可以位于显示区域110,并设置在第一平坦层上,第一子阳极61-1和第二子阳极61-2可以沿着第二方向Y依次设置。
在示例性实施方式中,阳极连接电极62的形状可以为“C”字形状,可以位于透光区域120,并设置在第四绝缘层上,阳极连接电极62的第一端与第一子阳极61-1连接,阳极连接电极62的第二端与第二子阳极61-2,第一端和第二端之间的区域通过第二十一过孔V21与第六连接电极46连接。在示例性实施方式中,阳极连接电极62实现了第一子阳极61-1和第二子阳极61-2之间的相互连接,由于第六连接电极46与极板连接电极12 连接,极板连接电极12与第一极板11连接,因而阳极连接电极62实现了第一阳极61与存储电容的第一极板11的连接。
在示例性实施方式中,当显示基板出现亮点不良时,可以通过激光切割方式截断阳极连接电极62,使得第一子阳极61-1和第二子阳极61-2中的一个与第一极板11连接,而另一个浮置,由此可以修复亮点不良。
在示例性实施方式中,第二十一过孔V21可以称为阳极过孔,阳极过孔在基底上的正投影与第一子阳极61-1和第二子阳极61-2在基底上的正投影没有交叠,不仅可以提高修复亮点不良的成功率,避免修复对像素驱动电路的影响,而且可以保证阳极的平坦性,提高发光器件的出光质量,提高显示效果。
在示例性实施方式中,四个第一阳极61呈正方形(Square)排列,左上的第一阳极61与第一子像素P1中的像素驱动电路连接,右上的第一阳极61与第二子像素P2中的像素驱动电路连接,左下的第一阳极61与第三子像素P3中的像素驱动电路连接,右下的第一阳极61与第四子像素P4中的像素驱动电路连接。在一些可能的实现方式中,阳极的排列方式可以根据实际需要进行调整,本公开在此不做具体限定。
在示例性实施方式中,每个子像素的第一子阳极61-1、第二子阳极61-2和阳极连接电极62可以为相互连接的一体结构。
在示例性实施方式中,至少一个重复单元的第四导电层还可以包括第二辅助电极63。第二辅助电极63的形状可以为矩形状,第二辅助电极63在基底上的正投影与第一辅助电极56在基底上的正投影至少部分交叠,第二辅助电极63可以通过第二十二过孔V22与第一辅助电极56连接,第二辅助电极63被配置为与后续形成的第三辅助电极连接。
在示例性实施方式中,第四导电层的材料可以采用透明导电材料,如氧化铟锡ITO或氧化铟锌IZO等。
本次图案化工艺后,透光区域120的膜层没有变化。
(8)形成第五导电层图案。在示例性实施方式中,形成第五导电层图案可以包括:在形成前述图案的基底上,沉积第五导电薄膜,通过图案化工艺对第五导电薄膜进行图案化,形成第五导电层图案,如图14A和图14B所示,图14B为图4A中第五导电层的示意图。
在示例性实施方式中,显示基板中每个子像素的第五导电层可以至少包括第二阳极72。
在示例性实施方式中,第二阳极72可以包括隔离设置的第三子阳极72-1和第四子阳极72-2,第三子阳极72-1和第四子阳极72-2的形状可以为矩形状,可以位于显示区域110,并分别设置在第一子阳极61-1和第二子阳极61-2上,第三子阳极72-1和第四子阳极72-2可以沿着第二方向Y依次设置,第三子阳极72-1在基底上的正投影与第一子阳极61-1在基底上的正投影至少部分交叠,第三子阳极72-1与第一子阳极61-1连接,第四子阳极72-2在基底上的正投影与在基底上的正投影至少部分交叠,第四子阳极72-2与第二子阳极61-2连接。
在示例性实施方式中,至少一个重复单元的第五导电层还可以包括第三辅助电极73。第三辅助电极73的形状可以为矩形状,第二辅助电极63可以设置在第二辅助电极63上,第二辅助电极63在基底上的正投影与第二辅助电极63在基底上的正投影至少部分交叠,第二辅助电极63与第二辅助电极63连接,第三辅助电极73被配置为与后续形成的阴极 连接。
在示例性实施方式中,第三辅助电极73可以采用隔离柱(RIB)结构,第三辅助电极73的截面形状可以为倒梯形,使得后续形成的有机发光层可以在第三辅助电极73的侧面边缘处断开,形成孤立并隔离的有机发光块,有效避免了有机发光块对出射光的干扰,提高了出射光的品质,有利于提高显示品质。
在示例性实施方式中,叠设的第一辅助电极56、第二辅助电极63和第三辅助电极73构成辅助阴极。
在示例性实施方式中,第五导电层的材料可以采用透明导电材料,如氧化铟锡ITO或氧化铟锌IZO等。
本次图案化工艺后,透光区域120的膜层没有变化。
(9)形成像素定义层。在示例性实施方式中,形成像素定义层图案可以包括:在形成前述图案的基底上,涂覆像素定义薄膜,通过图案化工艺对像素定义薄膜进行图案化,形成像素定义层,如图15所示。
在示例性实施方式中,显示基板中每个子像素的像素定义层上开设有第一像素开口K1和第二像素开口K2,第一像素开口K1内的像素定义薄膜被去掉,暴露出第二阳极72中第三子阳极72-1的部分表面,第二像素开口K2内的像素定义薄膜被去掉,暴露出第二阳极72中第四子阳极72-2的部分表面。
在示例性实施方式中,第一像素开口K1在基底上的正投影位于第三子阳极72-1在基底上的正投影的范围之内,第二像素开口K2在基底上的正投影位于第四子阳极72-2在基底上的正投影的范围之内
在示例性实施方式中,在平行于基底的平面内,第一像素开口K1和第二像素开口K2的形状可以与子阳极的形状相似,在垂直于基底的平面内,第一像素开口K1和第二像素开口K2的截面形状可以是矩形或者梯形等。
在示例性实施方式中,至少一个重复单元的像素定义层上开设有辅助电极开口K3,辅助电极开口K3内的像素定义薄膜被去掉,暴露出第三辅助电极73的部分表面,辅助电极开口K3在基底上的正投影位于第三辅助电极73在基底上的正投影的范围之内。
在示例性实施方式中,在平行于基底的平面内,辅助电极开口K3的形状可以与第三辅助电极73的形状相似,在垂直于基底的平面内,辅助电极开口K3的截面形状可以是矩形或者梯形等。
在示例性实施方式中,透光区域120的像素定义层基本上被去掉,形成透光开口T,透光开口T靠近显示区域110的一侧可以设置有凹槽,凹槽内设置的像素定义块可以遮挡阳极连接电极62。
在示例性实施方式中,像素定义层可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。
(10)形成有机发光层和阴极图案。在示例性实施方式中,形成有机发光层和阴极图案可以包括:先在显示区域110形成有机发光层图案,有机发光层通过第一像素开口K1和第二像素开口K2分别与第三子阳极72-1和第四子阳极72-2连接。随后形成阴极,在显示区域110,阴极与有机发光层连接,在透光区域120,阴极通过辅助电极开口K3与第三辅助电极73连接。由于第三辅助电极73与第二电源线连接,因而实现了阴极与第二 电源线的连接。
在示例性实施方式中,有机发光层可以包括发光层(EML),以及如下任意一层或多层:空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、空穴阻挡层(HBL)、电子传输层(ETL)和电子注入层(EIL)。在示例性实施方式中,有机发光层可以采用精细金属掩模版(FMM)或者开放式掩膜版(Open Mask)蒸镀形成,或者采用喷墨工艺形成。
在示例性实施方式中,显示基板的制备过程还可以包括形成封装层图案。形成封装层图案可以包括:先利用开放式掩膜板沉积第一无机薄膜,形成第一封装层。随后,利用喷墨打印工艺在第一封装层上喷墨打印有机材料,固化成膜后,形成第二封装层。随后,利用开放式掩膜板沉积第二无机薄膜,形成第三封装层,第一封装层、第二封装层和第三封装层组成封装层。第一封装层和第三封装层可以采用硅氧化物(SiOx)、硅氮化物(SiNx)、碳化硅(SiC)、碳氮化硅(SiCN)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层,第二封装层可以采用树脂材料,形成无机材料/有机材料/无机材料的叠层结构,有机材料层设置在两个无机材料层之间,可以保证外界水汽无法进入发光结构层。
在示例性实施方式中,显示基板的制备过程还可以包括形成彩膜层和黑矩阵,黑矩阵具有呈矩阵排列的多个开口区域,彩膜层填充于开口区域内。
至此,完成本公开示例性实施例显示基板的制备。
在示例性实施方式中,基底可以是柔性基底,或者可以是刚性基底。刚性衬底可以为但不限于玻璃、石英中的一种或多种,柔性衬底可以为但不限于聚对苯二甲酸乙二醇酯、对苯二甲酸乙二醇酯、聚醚醚酮、聚苯乙烯、聚碳酸酯、聚芳基酸酯、聚芳酯、聚酰亚胺、聚氯乙烯、聚乙烯、纺织纤维中的一种或多种。在示例性实施方式中,柔性基底可以包括叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层,第一柔性材料层和第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一无机材料层和第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,半导体层的材料可以采用非晶硅(a-si)。
在示例性实施方式中,第一导电层、第二导电层和第三导电层可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)和钼(Mo)中的任意一种或多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Mo/Cu/Mo等。第一绝缘层、第二绝缘层、第三绝缘层和第四绝缘层可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。第一平坦层可以采用有机材料,如树脂等。
图16为本公开示例性实施例一种显示基板的短路不良维修示意图。如16所示,当扫描连接线31与其它信号线(如数据信号线53)之间出现短路点200时,可以通过激光切割将短路点200两侧的第一子线截断,在短路点200两侧分别形成两个截断点300,将短路点200隔离。由于显示区域的扫描连接线31为双线结构的双线段31-1,具有双通道功能,因而截断点300不会影响像素驱动电路,不仅可以保证扫描信号线驱动重复区域中所有像素驱动电路,而且可针对所有位置的短路点200进行修复,实现了全信号短路不良维修,避免了产品报废,有效提升了产品良率。
通过以上描述的显示基板的结构和制备流程可以看出,本公开所提供的显示基板,采用一条扫描信号线的3T1C的像素驱动电路,一条扫描信号线与像素驱动电路中的第一晶体管和第三晶体管连接,通过减少扫描信号线的数量,不仅可以简化像素驱动电路的结构, 减小像素驱动电路的占用面积,有利于实现高分辨率显示,而且可以有效增加透光区域的透光面积,提高透光区域空间占比,有利于实现高透明度显示。此外,由于一个重复单元仅需一条扫描信号线驱动,因而其对应的栅极驱动电路(GOA)和时钟信号线(CLK)的数目可以成倍降低,有效减小了栅极驱动电路和时钟信号线的占用面积,有利于实现窄边框,提高产品优势。
本公开示例性实施例通过在透光区域设置单线结构,在显示区域设置双线结构,不仅可以保证扫描信号线驱动重复区域中所有像素驱动电路,而且实现了双通道功能,可针对所有位置的信号线进行修复,实现了全信号短路不良维修,有效提升了产品良率。
本公开示例性实施例通过利用第一导电层、第二导电层和第三导电层形成三层金属布局三明治结构的第一电容和第二电容,并联结构的第一电容和第二电容组成存储电容,一方面可以有效增加存储电容的电容值,另一方面可以在保证存储电容的电容值的情况下减小极板面积,有效减小像素驱动电路的占用面积,有利于实现高分辨率显示。
本公开示例性实施例通过设置第一电源线的一拖四结构和补偿信号线的一拖四结构,节省了信号线数量,减小了占用空间,结构简洁,布局合理,充分利用布图空间,提高了空间利用率,有利于提高分辨率。
本公开示例性实施例通过设置阳极连接电极分别连接第一子阳极和第二子阳极,不仅可以提高修复亮点不良的成功率,避免修复对像素驱动电路的影响,也不会引起其它不良,修复成功率高,而且可以保证阳极的平坦性,提高发光器件的出光质量,提高显示效果。
本公开示例性实施例通过设置第二电源线和辅助电极,第二电源线通过辅助电极与阴极连接,可以有效降低第二电源的压降,保证了显示均一性。
本公开示例性实施例通过将阳极连接电极和辅助电极设置在透光区域,将透光区域改变成不规则形状,当光线经过不规则形状的透光区域时,由于产生衍射条纹的位置不同,产生衍射条纹的方向不同,因而光线产生衍射条纹不会朝着一个方向扩散,而是朝着多个方向扩散,因而大大弱化了衍射效应,避免了屏后物体虚化现象,提高了透明显示效果。
本公开示例性实施例的制备工艺可以很好地与现有制备工艺兼容,工艺实现简单,易于实施,生产效率高,生产成本低,良品率高。
本公开前述所示结构及其制备过程仅仅是一种示例性说明,在示例性实施方式中,可以根据实际需要变更相应结构以及增加或减少构图工艺,本公开在此不做限定。
在示例性实施方式中,本公开显示基板可以应用于具有像素驱动电路的显示装置中,如OLED、量子点显示(QLED)、发光二极管显示(Micro LED或Mini LED)或量子点发光二极管显示(QDLED)等,本公开在此不做限定。
本公开还提供一种显示基板的制备方法,以制备上述实施例提供的显示基板。在示例性实施方式中,所述显示基板包括规则排布的多个重复单元,所述重复单元包括显示区域和位于所述显示区域至少一侧的透光区域,所述显示区域被配置为进行图像显示,所述透光区域被配置为透过光线;所述显示区域包括形成至少两个像素行和两个像素列的多个子像素,所述子像素包括像素驱动电路;所述制备方法包括:
在所述子像素中形成像素驱动电路;所述像素驱动电路包括第一晶体管、第二晶体管、第三晶体管和存储电容,所述第一晶体管的第一极与数据信号线连接,所述第一晶体管的第二极分别与所述第二晶体管的栅电极和所述存储电容的第一端连接,所述第二晶体管的第一极与第一电源线连接,所述第二晶体管的第二极分别与所述第三晶体管的第二极和所 述存储电容的第二端连接,所述第三晶体管的第一极与补偿信号线连接,所述第一晶体管的栅电极和所述第三晶体管的栅电极与同一条扫描信号线连接。
本公开还提供一种显示装置,显示装置包括前述的显示基板。显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本发明实施例并不以此为限。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本发明。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (21)

  1. 一种显示基板,包括规则排布的多个重复单元,所述重复单元包括显示区域和位于所述显示区域至少一侧的透光区域,所述显示区域被配置为进行图像显示,所述透光区域被配置为透过光线;所述显示区域包括形成至少两个像素行和两个像素列的多个子像素,所述子像素包括像素驱动电路;所述像素驱动电路包括第一晶体管、第二晶体管、第三晶体管和存储电容,所述第一晶体管的第一极与数据信号线连接,所述第一晶体管的第二极分别与所述第二晶体管的栅电极和所述存储电容的第一端连接,所述第二晶体管的第一极与第一电源线连接,所述第二晶体管的第二极分别与所述第三晶体管的第二极和所述存储电容的第二端连接,所述第三晶体管的第一极与补偿信号线连接,至少一个子像素的像素驱动电路中,所述第一晶体管的栅电极和所述第三晶体管的栅电极与同一条扫描信号线连接。
  2. 根据权利要求1所述的显示基板,其中,至少一个像素行的多个像素驱动电路中,多个第一晶体管的栅电极和多个第三晶体管的栅电极与同一条扫描信号线连接。
  3. 根据权利要求1所述的显示基板,其中,至少一个重复单元的多个像素驱动电路中,多个第一晶体管的栅电极和多个第三晶体管的栅电极与同一条扫描信号线连接。
  4. 根据权利要求1所述的显示基板,其中,至少一个重复单元中,所述扫描信号线从所述显示区域延伸到所述透光区域,所述扫描信号线包括单线结构的单线段和双线结构的双线段,所述单线段设置在所述透光区域,所述双线段设置在所述显示区域,所述双线段分别与所述重复单元中多个子像素的像素驱动电路连接。
  5. 根据权利要求4所述的显示基板,其中,所述双线段包括沿着像素行方向延伸的第一子线和第二子线,所述第一子线与所述第二子线沿着像素列方向排布,所述第一子线与一个像素行中多个子像素的像素驱动电路分别连接,所述第二子线与相邻的另一个像素行中多个子像素的像素驱动电路分别连接。
  6. 根据权利要求5所述的显示基板,其中,所述双线段还包括第一连接线和第二连接线,所述第一连接线分别与所述第一子线和所述第二子线的一端连接,所述第二连接线分别与所述第一子线和所述第二子线的另一端连接,所述第一连接线、所述第一子线、所述第二连接线和所述第二子线构成环形结构。
  7. 根据权利要求6所述的显示基板,其中,所述单线段位于所述第一子线或者所述第二子线的延伸方向上。
  8. 根据权利要求6所述的显示基板,其中,所述第一连接线与位于所述显示区域所述像素行方向一侧的所述透光区域中的单线段连接,第二连接线与位于所述显示区域所述像素行方向另一侧的所述透光区域中的单线段连接。
  9. 根据权利要求8所述的显示基板,其中,至少一个重复单元中,所述单线段和所述双线段为相互连接的一体结构。
  10. 根据权利要求6所述的显示基板,其中,所述第一电源线、所述数据信号线和所述补偿信号线在所述显示基板平面上的正投影与所述环形结构在所述显示基板平面上的正投影至少部分交叠。
  11. 根据权利要求6所述的显示基板,其中,至少一个重复单元中,相邻像素行中两个子像素的所述第三晶体管的有源层为相互连接的一体结构,所述第三晶体管的有源层在 所述显示基板平面上的正投影与所述环形结构在所述显示基板平面上的正投影至少部分交叠。
  12. 根据权利要求1所述的显示基板,其中,至少一个重复单元中,多个子像素相对于所述扫描信号线镜像对称。
  13. 根据权利要求1至12任一项所述的显示基板,其中,所述存储电容的第一端包括第一极板和第三极板,所述存储电容的第二端包括第二极板,所述第二极板在所述显示基板平面上的正投影与所述第一极板在所述显示基板平面上的正投影至少部分交叠,所述第一极板和所述第二极板形成第一电容,所述第二极板在所述显示基板平面上的正投影与所述第三极板在所述显示基板平面上的正投影至少部分交叠,所述第三极板和所述第二极板形成第二电容,所述第一极板分别与所述第三极板、所述第一晶体管的第二极和所述第二晶体管的栅电极连接,所述第二极板分别与所述第二晶体管的第二极和所述第三晶体管的第二极连接,所述第一电容和所述第二电容构成并联结构的存储电容。
  14. 根据权利要求13所述的显示基板,其中,在垂直于显示基板的方向上,所述显示区域包括设置在基底上的驱动电路层和设置在所述驱动电路层远离所述基底一侧的发光结构层,所述驱动电路层至少包括沿着远离所述基底方向依次设置的第一导电层、第二导电层和第三导电层,所述第一极板设置在所述第一导电层中,所述第二极板设置在所述第二导电层中,所述第三极板设置在所述第三导电层中,所述第三极板通过过孔与所述第一极板连接;至少一个重复单元还包括极板连接电极,所述极板连接电极设置在所述透光区域,所述极板连接电极与所述第一极板连接。
  15. 根据权利要求14所述的显示基板,其中,至少一个重复单元中,所述极板连接电极和所述第一极板为相互连接的一体结构。
  16. 根据权利要求14所述的显示基板,其中,所述发光结构层至少包括设置在所述第三导电层远离所述基底一侧的第四导电层,所述第四导电层至少包括第一阳极和阳极连接电极,所述第一阳极设置在所述显示区域的多个子像素中,所述阳极连接电极设置在所述透光区域中,所述阳极连接电极通过阳极过孔与所述极板连接电极连接,所述阳极过孔设置在所述透光区域;至少一个子像素中,所述第一阳极包括隔离设置的第一子阳极和第二子阳极,所述阳极连接电极的第一端与所述第一子阳极连接,所述阳极连接电极的第二端与所述第二子阳极连接。
  17. 根据权利要求14所述的显示基板,其中,所述第三导电层还包括第二电源线和第一辅助电极,所述第二电源线设置在所述显示区域中,所述第一辅助电极设置在所述透光区域中,所述第一辅助电极与所述第二电源线连接。
  18. 根据权利要求17所述的显示基板,其中,至少一个重复单元中,所述第一辅助电极和所述第二电源线为相互连接的一体结构。
  19. 根据权利要求17所述的显示基板,其中,所述第二电源线在所述显示基板平面上的正投影与所述扫描信号线的环形结构在所述显示基板平面上的正投影至少部分交叠。
  20. 一种显示装置,包括如权利要求1到19任一项所述的显示基板。
  21. 一种显示基板的制备方法,所述显示基板包括规则排布的多个重复单元,所述重复单元包括显示区域和位于所述显示区域至少一侧的透光区域,所述显示区域被配置为进行图像显示,所述透光区域被配置为透过光线;所述显示区域包括形成至少两个像素行和两个像素列的多个子像素,所述子像素包括像素驱动电路;所述制备方法包括:
    在所述子像素中形成像素驱动电路;所述像素驱动电路包括第一晶体管、第二晶体管、第三晶体管和存储电容,所述第一晶体管的第一极与数据信号线连接,所述第一晶体管的第二极分别与所述第二晶体管的栅电极和所述存储电容的第一端连接,所述第二晶体管的第一极与第一电源线连接,所述第二晶体管的第二极分别与所述第三晶体管的第二极和所述存储电容的第二端连接,所述第三晶体管的第一极与补偿信号线连接,所述第一晶体管的栅电极和所述第三晶体管的栅电极与同一条扫描信号线连接。
PCT/CN2024/081402 2023-04-26 2024-03-13 显示基板及其制备方法、显示装置 WO2024222257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310466298.4 2023-04-26
CN202310466298.4A CN118866906A (zh) 2023-04-26 2023-04-26 显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2024222257A1 true WO2024222257A1 (zh) 2024-10-31

Family

ID=93180075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/081402 WO2024222257A1 (zh) 2023-04-26 2024-03-13 显示基板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN118866906A (zh)
WO (1) WO2024222257A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471268A (zh) * 2021-06-30 2021-10-01 合肥京东方卓印科技有限公司 显示基板及其制备方法、显示装置
CN114256296A (zh) * 2020-09-24 2022-03-29 京东方科技集团股份有限公司 显示基板和显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256296A (zh) * 2020-09-24 2022-03-29 京东方科技集团股份有限公司 显示基板和显示装置
CN113471268A (zh) * 2021-06-30 2021-10-01 合肥京东方卓印科技有限公司 显示基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN118866906A (zh) 2024-10-29

Similar Documents

Publication Publication Date Title
US20220376024A1 (en) Display Substrate and Manufacturing Method Therefor, and Display Apparatus
CN111179828B (zh) 显示基板及其制备方法、显示装置
WO2023241490A1 (zh) 显示基板和显示装置
WO2023004763A1 (zh) 显示基板及其制备方法、显示装置
WO2024027669A1 (zh) 显示基板及其制备方法、显示装置
CN113964109A (zh) 显示基板及其制备方法、显示装置
WO2024046040A1 (zh) 显示面板和显示装置
US20240172480A1 (en) Display Substrate, Manufacturing Method Thereof, and Display Apparatus
CN115835701B (zh) 显示基板及其制备方法、显示装置
WO2024222257A1 (zh) 显示基板及其制备方法、显示装置
WO2022227478A1 (zh) 一种显示基板及其制作方法、显示装置
US20240161691A1 (en) Display Substrate and Display Apparatus
CN114242755A (zh) 显示基板及显示装置
WO2024221402A1 (zh) 显示基板及其制备方法、显示装置
WO2023245557A1 (zh) 显示基板及其制备方法、显示装置
WO2024092434A1 (zh) 显示基板及其制备方法、显示装置
WO2023159511A1 (zh) 显示基板及其制备方法、显示装置
WO2023206462A1 (zh) 显示基板及其制备方法、显示装置
WO2024221363A1 (zh) 显示基板、显示装置
CN221488230U (zh) 显示基板和显示装置
WO2024065629A1 (zh) 显示基板及其制备方法、显示装置
WO2024178714A1 (zh) 像素驱动电路及其驱动方法、显示基板和显示装置
WO2024036629A1 (zh) 显示基板及其驱动方法、显示装置
WO2023221040A1 (zh) 显示基板及其制备方法、显示装置
WO2024197590A1 (zh) 显示基板及显示装置