Nothing Special   »   [go: up one dir, main page]

WO2024221972A1 - 顺式烯酰胺类衍生物及其在制备抗炎药物中的应用 - Google Patents

顺式烯酰胺类衍生物及其在制备抗炎药物中的应用 Download PDF

Info

Publication number
WO2024221972A1
WO2024221972A1 PCT/CN2023/138785 CN2023138785W WO2024221972A1 WO 2024221972 A1 WO2024221972 A1 WO 2024221972A1 CN 2023138785 W CN2023138785 W CN 2023138785W WO 2024221972 A1 WO2024221972 A1 WO 2024221972A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmr
cdcl
cis
compound
inflammatory
Prior art date
Application number
PCT/CN2023/138785
Other languages
English (en)
French (fr)
Inventor
姚宏亮
李刚
关文
童荣标
宋立彦
张亚莉
Original Assignee
广东省科学院动物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院动物研究所 filed Critical 广东省科学院动物研究所
Publication of WO2024221972A1 publication Critical patent/WO2024221972A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/22Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/11Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/12Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups
    • C07C233/13Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/34Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms

Definitions

  • the present invention belongs to the field of biomedicine, and specifically relates to cis-enamide derivatives, and their anti-inflammatory and drug research effects for treating respiratory diseases such as lung injury and chronic obstructive pulmonary disease.
  • Pneumonia refers to inflammation in the distal lungs, that is, the interstitial lungs, alveolar cavities, and terminal airways.
  • the factors that cause inflammation are mainly pathogenic microorganisms such as bacteria, parasites, fungi, and viruses, or chemical allergies, radiation, etc.
  • the clinical symptoms of pneumonia are mainly cough, fever, blood in sputum or sputum, often accompanied by dyspnea or chest tightness.
  • pneumonia can be divided into viral pneumonia, fungal pneumonia, bacterial pneumonia, mycoplasma pneumonia, physical and chemical pneumonia, allergic pneumonia, other pathogen pneumonia, immune pneumonia, etc.
  • the most common pneumonia is bacterial pneumonia, accounting for more than 70% of pneumonia in adults.
  • mitogen-activated protein kinase MNK
  • nuclear transcription factor- ⁇ B nuclear transcription factor- ⁇ B
  • other signal transduction pathways are activated, triggering inflammatory responses for immunity.
  • immune cells such as alveolar macrophages, neutrophils, and lymphocytes are activated by signal transduction pathways and release inflammatory mediators such as tumor necrosis factor, interleukin, interferon, growth factor, and chemokines, such as TNF- ⁇ , IL-6, IFN- ⁇ , IL-1 ⁇ , IL-12, and IL-18, which provide feedback regulation on the inflammatory response and signal transduction pathways.
  • inflammatory mediators such as tumor necrosis factor, interleukin, interferon, growth factor, and chemokines, such as TNF- ⁇ , IL-6, IFN- ⁇ , IL-1 ⁇ , IL-12, and IL-18, which provide feedback regulation on the inflammatory response and signal transduction pathways.
  • Pulmonary inflammation is an important component of many acute and chronic respiratory diseases such as COPD, asthma, and ARDS, which can cause patients to have symptoms such as excessive mucus secretion, airway obstruction, emphysema, and pulmonary edema, as well as complications of some other organs and tissues and even systemic diseases, which can be life-threatening in severe cases.
  • the purpose of the present invention is to provide cis-enamide derivatives and their application in preparing anti-inflammatory drugs.
  • R1 is hydrogen, methoxy, methyl, trifluoromethyl, halogen, etc.
  • R2 is methyl, methoxy, trifluoromethyl, halogen or the like.
  • the cis-enamide derivatives of the present invention are preferably one of the following compounds:
  • the present invention has found through experiments that cis-enamide derivatives can effectively inhibit the expression levels of IL-6 and IL-1 ⁇ in a dose-dependent manner, have good activity in reducing inflammatory factor indicators, and can be used as drugs for treating respiratory diseases such as lung injury and chronic obstructive pulmonary disease.
  • the second object of the present invention is to provide the use of cis-enamide derivatives or salts thereof in the preparation of anti-inflammatory drugs.
  • the anti-inflammatory drug is a drug for treating respiratory diseases.
  • the anti-inflammatory drug is a drug for treating lung injury and chronic obstructive pulmonary disease.
  • the third object of the present invention is to provide an anti-inflammatory drug containing a cis-enamide derivative or a salt thereof as an active ingredient.
  • the compound cis-enamide derivatives Due to their unique structural characteristics, the compound cis-enamide derivatives have the following mechanisms to fight pneumonia: regulating signal transduction pathways such as MAPK and NF- ⁇ B, affecting the accumulation of inflammatory cells in the lungs, inhibiting the release of cytokines, and reducing the production of pro-inflammatory mediators to inhibit the occurrence and development of inflammatory responses.
  • signal transduction pathways such as MAPK and NF- ⁇ B
  • the cis-enamide derivatives of the compounds of the present invention have anti-inflammatory effects, which provides a new lead compound for the development and treatment of respiratory diseases such as lung injury and chronic obstructive pulmonary disease.
  • FIG1 is a screening of the anti-inflammatory activity of target compounds
  • FIG2 is an anti-inflammatory experiment of compound 2033
  • FIG3 shows the antioxidant effect of compound 2033
  • Figure 7 shows the effect of compound 2033 on the pathological morphology of lung tissue in ALI mice (200x), Note: A: blank group; B: model group; C: dexamethasone positive control group; D: low-dose group of compound 2033; E: medium-dose group of compound 2033; F: high-dose group of compound 2033;
  • the 2033 of the present invention was subjected to an inhibition test on the expression level of cellular inflammatory factors, and the test method adopted a conventional qPCR method.
  • Mouse mononuclear macrophage leukemia cells RAW264.7 were cultured in DMEM high-glucose medium supplemented with 10% (V/V) FBS, 100 U/mL penicillin and 100 ⁇ g/mL streptomycin at 37°C and 5% CO 2 , and the cells were passaged when they reached 80% confluence.
  • the experiment was conducted using cells in the logarithmic growth phase.
  • the cells were seeded in a 12-well plate at 2*10 5 cells/well and cultured at 37°C and 5% CO 2 until they grew to 70% and were set aside.
  • the groups were set up as follows: blank stimulation group, LPS stimulation group, positive control group (dexamethasone, Dex, 1 ⁇ M/L) and drug treatment group (10 ⁇ M/L).
  • the culture medium was carefully removed, and fresh complete culture medium containing the compound was added to the positive control group and the drug treatment group, respectively, while an equal volume of DMSO was added to the blank stimulation group and the LPS stimulation group. After 1 hour, 1 ⁇ g/mL LPS was added to all groups except the blank stimulation group for 4 hours to induce cell inflammation.
  • RT-PCR (20uL for each system), including 5x BUFFER 4 ⁇ L, Total RNA X ⁇ L (1pg-1ug, 200-400ng in most cases), DEPC-H 2 O (16-X) ⁇ L placed in 8 tubes, marked with serial numbers, placed in a PCR instrument and set at 50°C for 15min, 85°C for 5s, and 16°C for ⁇ for reverse transcription;
  • the present invention targets IL-6 and IL-1 ⁇ genes, with GADPH as the internal reference gene. Search for the target gene in the gene library of NCBI, check the target gene sequence in GeneBank, and design the primer parameters according to the detection requirements, as shown in Table 1 below.
  • Synthesis of cDNA Synthesize cDNA using total RNA as template using 5x HiScript II Q Select RT SuperMix. Vortex each solution before use and quickly centrifuge to collect the liquid remaining on the tube wall. Prepare the reaction system in an ice bath. After thawing the template RNA on ice, prepare the reverse transcription reaction system as shown in Table 2:
  • Genome removal and reverse transcription were carried out in Veriti 96well Thermal Cycler PCR instrument.
  • the reaction procedure was: 50°C for 15 min, 85°C for 5 s.
  • the reverse transcription product was stored in a -20°C refrigerator for later use.
  • Real-time qPCR The real-time qPCR reaction system was prepared as shown in Table 3.
  • the primer sequences used in this experiment are shown in Table 1.
  • the GADPH gene was selected as the internal reference.
  • the primers were synthesized by Sangon Biotechnology (Shanghai) Co., Ltd.
  • the real-time qPCR reaction was performed in the CFX Connect Real-Time System real-time fluorescence quantitative PCR instrument.
  • the amplification program was: 95°C2min, followed by 40 cycles: 95°C20s, 57°C20s, 72°C20s.
  • the temperature was raised from 55°C to 95°C to obtain the melting curve.
  • the results were automatically analyzed by the analysis software to generate the amplification curve and calculate the Ct value.
  • the 2 - ⁇ ct method was used to analyze the experimental results.
  • 2- ⁇ ct represents the expression multiple of the target gene in the experimental group relative to the control group, and the LPS stimulation group is used as the benchmark for normalization.
  • test results show that 10 compounds were initially screened out with good anti-inflammatory activity, among which 2033 had the strongest anti-inflammatory activity.
  • Compound 2033 can effectively inhibit the expression levels of IL-6 and IL-1 ⁇ in a dose-dependent manner in the tested mouse mononuclear macrophage leukemia cells RAW264.7 ( Figure 2).
  • the above experimental results show that the compounds of the present invention have good anti-inflammatory activity and can be used in the research of anti-inflammatory drugs.
  • FRAP method is a total antioxidant capacity test. Its principle is that under acidic conditions, antioxidants can reduce Ferric-tripyridyltriazine (Fe 3+ -TPTZ) to produce blue Fe 2+ -TPTZ, and then measure the blue Fe 2+ -TPTZ at 585nm to obtain the total antioxidant capacity of the sample.
  • Fe 3+ -TPTZ Ferric-tripyridyltriazine
  • the absorbance value (OD value) at 585nm can be detected by an enzyme-linked immunosorbent assay, and the antioxidant capacity can be reflected according to the absorbance value.
  • the larger the OD value the stronger the antioxidant capacity and the better the antioxidant effect of the drug.
  • FRAP method add 5 ⁇ L of sample/standard solution to 180 ⁇ L of FRAP working solution, incubate at 37°C for 5 min, detect OD value at 585 nm, and calculate the antioxidant capacity of compound 2033 based on the FeSO4 standard curve.
  • the test results show that compound 2033 exhibits antioxidant activity at concentrations of 2.5, 5, and 10 mM.
  • the above experimental results show that the compound of the present invention has good antioxidant activity at a concentration range of 2.5 to 10 mM and can be used in the research of antioxidant drugs.
  • 0.5 ⁇ M compound 2033 was incubated with liver microsomes (1 mg/mL) at 37°C. 100 ⁇ L of the reaction solution was taken at each time point of 0, 5, 15, 30, 45 and 60 minutes. 200 ⁇ L of acetonitrile containing internal standard was added to 100 ⁇ L of the reaction solution to extract the compound to be tested. The obtained mixture was centrifuged and the supernatant was analyzed by LC-MS/MS. The results are shown in Table 4. It can be seen from Table 4 that the half-life in human liver microsomes is 15.3 minutes, the half-life in macaque liver microsomes is 3.1 minutes, and the half-life in mouse liver microsomes is 3.1 minutes. Compound 2033 has relatively good metabolic stability.
  • MUC5AC is a secretory high-molecular-weight mucin that is overproduced in lung cancer cells and is associated with lung cancer progression.
  • Epidermal growth factor EGF
  • EGFR epidermal growth factor receptor
  • NCI-H292 cells were cultured in 1640 medium (containing 10% FBS), 5% CO 2 and a 37°C incubator. 2x10 5 cells were plated in a 6-well plate and divided into: blank control group, EGF group (25ng/mL), and compound 2033 group (10 ⁇ M). When the cells grew to 80%, the cells were starved using 1640 medium without fetal bovine serum. After 24h, the corresponding drugs were added for culture. After 1h of culture, 25ng/mL EGF was added to the original culture medium and culture was continued. After 24h, the cell bodies were collected.
  • the TRIZOL method was used to extract RNA from the cells, and 500 ng of RNA sample was reverse transcribed into cDNA.
  • the qPCR method was used to measure the expression level of the MUC5AC gene in the cells.
  • test results showed that compound 2033 can effectively inhibit the expression of MUC5AC in the NCI-H292 cell hypersecretion model and has a certain effect on reducing mucus in vitro.
  • ALI refers to acute, progressive, hypoxic respiratory failure caused by various intrapulmonary and extrapulmonary pathogenic factors other than cardiogenic. Its pathophysiological characteristics include diffuse damage to the alveolar-capillary barrier, inflammatory cell infiltration, protein-rich edema fluid in the alveoli, and severe gas exchange abnormalities.
  • the LPS-induced ALI model is highly consistent with clinical symptoms and has the characteristics of high model reproducibility. Therefore, the LPS-induced ALI model was used as the research object to explore the anti-inflammatory effect of compound 33 on the LPS-induced ALI mouse model and the improvement of acute lung injury.
  • mice were randomly divided into 6 groups: blank control group, model group (LPS, 10 mg/kg), low, medium and high doses of compound 2033 (15, 30, 60 mg/kg), and dexamethasone positive control group (DEX, 2 mg/kg), 8 mice in each group, and the drugs were administered for 7 consecutive days.
  • the blank control group and the model group were given an equal amount of normal saline.
  • the mice were anesthetized by intraperitoneal injection of 0.3% sodium pentobarbital (30 mg/kg diluted with normal saline). After anesthesia, LPS was dripped into the mouse trachea (10 mg/kg), and the blank control group mice were dripped with a corresponding volume of normal saline in the trachea.
  • mice were anesthetized by intraperitoneal injection of 3% sodium pentobarbital, the left lung was ligated, the mouse trachea was fully exposed, and 0.6 mL of physiological pressure water at 4°C was slowly injected for lavage. After staying for 3 seconds, the syringe was slowly withdrawn, and the lavage fluid was combined to form the alveolar lavage fluid (BALF). The BALF was centrifuged at 1000 r/min for 5 minutes, and the cell pellet and supernatant were collected separately. The left lung lobes of 3 mice in each group were fixed with 4% paraformaldehyde.
  • the cell pellet was determined using a cell counter.
  • Inflammatory factors in BALF were detected according to the instructions provided by the TNF- ⁇ , IL-1 ⁇ and IL-6 ELISA kits of Beyotime Reagent Company.
  • test results show that compound 2033 can effectively reduce the levels of TNF- ⁇ , IL-1 ⁇ and IL-6 in BALF.
  • the lung tissue fixed with 4% paraformaldehyde was dehydrated with gradient ethanol, transparentized with xylene (15 min each for I and II), immersed in wax (1 h each for paraffin I and II), embedded in paraffin, sectioned, and stained with HE.
  • the pathological changes of the lung tissue were observed under a light microscope and photographed for preservation.
  • the above experimental results show that the compound of the present invention has a good anti-inflammatory effect on ALI mice at a dose of 15, 30, and 60 mg/kg, and can improve lung damage caused by ALI, and can be used for the research of anti-inflammatory drugs.
  • the expectorant effect of drugs is currently often evaluated by the phenol red secretion method, which is a classic method to simulate the amount of sputum excreted by the human body and to preliminarily examine the expectorant activity of drugs.
  • Phenol red has the characteristic of being partially secreted from the trachea and enters the abdominal cavity by injection. The amount of absorption increases with the increase in sputum secretion, so it can be used as an indicator to evaluate the strength of expectoration.
  • Expectorants can increase the excretion of respiratory secretions, allowing the diluted sputum to be excreted smoothly.
  • the increase in respiratory secretions is also beneficial to protect the cough receptors that are overly exposed on the surface mucosa, so as to achieve the purpose of reducing coughing.
  • mice were randomly divided into 3 groups: blank control group, compound 2033 (50 mg/kg), and ammonium chloride positive control group (NH 4 CL, 1 g/kg), 8 mice in each group, and the drugs were administered for 7 consecutive days.
  • the blank control group and the model group were given the same amount of normal saline.
  • 5% phenol red solution was injected intraperitoneally at a volume of 0.2 mL/10 g. After 30 minutes, the animals were killed by cervical dislocation and intubated. The trachea was lavaged with 0.6 mL 5% NaHCO 3 and the lavage fluid was recovered. This was repeated twice. The two lavage fluids were combined and centrifuged at 1000 r/min for 5 minutes. The supernatant was collected as the bronchoalveolar lavage fluid (BALF).
  • BALF bronchoalveolar lavage fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开了顺式烯酰胺类衍生物及其在制备抗炎药物中的应用。所述的顺式烯酰胺类衍生物,其化学结构如式(a)中任一所示,式(a)中,R 1是氢、甲氧基、甲基、三氟甲基或卤素;R 2是甲基、甲氧基、三氟甲基或卤素。所述的顺式烯酰胺类衍生物具有抗炎症作用,这为发展治疗肺损伤、慢性阻塞性肺疾病等呼吸系统疾病提供一种新的先导化合物。

Description

顺式烯酰胺类衍生物及其在制备抗炎药物中的应用 技术领域
本发明属于生物医药领域,具体涉及顺式烯酰胺类衍生物,及其抗炎,以及用于治疗肺损伤、慢性阻塞性肺疾病等呼吸系统疾病的药物研究作用。
背景技术
肺炎指的是远端肺部,也就是肺间质、肺泡腔以及终末气道出现的炎症。引起炎症的因素主要是细菌、寄生虫、真菌以及病毒等致病微生物,抑或化学过敏、放射线等。肺炎的临床症状主要是咳嗽、发热、痰中有血或者咳痰,经常伴随着呼吸困难或者胸闷等。按照病因学可以把肺炎划分成病毒性肺炎、真菌性肺炎、细菌性肺炎、支原体肺炎、理化性肺炎、变态反应性肺炎、其他病原体肺炎、免疫性肺炎等,最为常见的肺炎是细菌性肺炎,在成人肺炎中占据70%以上。当病原体入侵肺部组织时,机体的丝裂原活化蛋白激酶(MAPK)、核转录因子-κB等信号传导通路被激活,引发炎症反应以进行免疫。炎症反应中,肺泡巨噬细胞、中性粒细胞、淋巴细胞等免疫细胞被信号转导通路激活,并释放肿瘤坏死因子、白细胞介素、干扰素、生长因子、趋化因子等炎性介质,如TNF-α、IL-6、IFN-γ、IL-1β、IL-12、IL-18等对炎症反应以及信号转导通路进行反馈调节。肺部炎症是多种急慢性呼吸系统疾病如COPD、哮喘、ARDS等的重要组成部分,会致使患者出现粘液分泌过多、气道堵塞、肺气肿、肺水肿等病症,以及一些其他器官组织的并发疾病乃至全身性疾病,严重时殃及生命。
发明内容
本发明的目的是提供顺式烯酰胺类衍生物及其在制备抗炎药物中的应用。
所述的顺式烯酰胺类衍生物,其化学结构如(a)所示,
(a)式中,R1是氢,甲氧基,甲基,三氟甲基,卤素等;
R2是甲基,甲氧基,三氟甲基,卤素等。
本发明所述的顺式烯酰胺类衍生物优选下述化合物之一:
进一步优选,所述的顺式烯酰胺类衍生物的结构式如下所示:
本发明通过实验发现,顺式烯酰胺类衍生物能以剂量依赖型有效抑制IL-6和IL-1β的表达水平,具有良好的降低炎性因子指标的活性,可用于治疗肺损伤、慢性阻塞性肺疾病等呼吸系统疾病的药物。
因此,本发明的第二个目的是提供顺式烯酰胺类衍生物或其盐在制备抗炎药物中的应用。
优选,所述的抗炎药物是治疗呼吸系统疾病的药物。
优选,所述的抗炎药物是治疗肺损伤、慢性阻塞性肺疾病的药物。
本发明的第三个目的是提供一种抗炎药物,其含有顺式烯酰胺类衍生物或其盐作为活性成分。
化合物顺式烯酰胺类衍生物因其特有结构特点,对抗肺炎的机制主要有以下几个途径:对MAPK、NF-κB等信号传导通路进行调节,影响炎性细胞在肺内的积聚,抑制细胞因子的释放,减少促炎介质的产生,以抑制炎症反应的发生发展。
本发明所述的化合物顺式烯酰胺类衍生物具有抗炎症作用,这为发展治疗肺损伤、慢性阻塞性肺疾病等呼吸系统疾病提供一种新的先导化合物。
附图说明:
图1是目标化合物的抗炎活性筛选;
图2是化合物2033的抗炎实验;
图3是化合物2033的抗氧化作用;
图4是化合物2033的细胞高分泌实验,注:与空白组比较,*P<0.05**P<0.01;与EGF模型组比较,#P<0.05##P<0.01;n=4;
图5是化合物2033对BALF内细胞总数的影响,注:与空白组比较,*P<0.05**P<0.01;与LPS组比较,#P<0.05##P<0.01;n=8;
图6是化合物2033对BALF内TNF-α、IL-1β以及IL-6的影响,注:与空白组比较,*P<0.05**P<0.01;与LPS组比较,#P<0.05##P<0.01;n=8;
图7是化合物2033对ALI小鼠肺组织病理形态学的影响(200x),注:A:空白组;B:模型组;C:地塞米松阳性对照组;D:化合物2033低剂量组;E:化合物2033中剂量组;F:化合物2033高剂量组;
图8是化合物2033的祛痰实验,注:与空白组比较,*P<0.05**P<0.01;n=8。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
化合物2002-2046的结构式如下式所示:
实施例1化合物2002-2018的合成。
化合物1的合成:
250ml的两口烧瓶、磁子、抽气头提前放烘箱干燥,安装好烧瓶,抽真空至室温换入氩气,迅速称入碘仿(21mmol)、三苯基膦(22mmol),再次抽真空换入氩气三次,将长针头吸取的无水THF(80ml)打入烧瓶。加入t-BuOK(20mmol),1min后,加入芳香醛衍生物(10mmol)的无水THF(15ml)溶液。常温搅拌30min,将悬浮液冷却至-78℃后,分批加入t-BuOK(50mmol)。15分钟后,滴入饱和食盐水淬灭,让溶液慢慢恢复至室温。乙酸乙酯(3x50mL)萃取,有机相合并,然后用无水的硫酸钠干燥,最后减压蒸发溶剂。得到粗液用石油醚洗脱液,硅胶层析柱纯化。得到化合物1。
化合物2的合成:
称取化合物1(9.8mmol)于100ml的封管中,加入磁子,量入THF(20mL)和等量的水,称入4-甲基苯磺酰肼(19.6mmol)和乙酸钠(29.4mmol),旋紧封管塞,于油浴下加热回流反应。用TLC监测反应,待起始原料已完全消耗(12h)后,撤去油浴,将反应混合物冷却至室温,冰浴下加入饱和氯化铵水溶液淬灭反应,然后用Et2O(3×20mL)萃取,用饱和氯化钠水溶液洗涤有机相,用无水的硫酸钠干燥。滤出有机相,在减压下除去溶剂,残余物过柱子。用石油醚为洗脱剂,纯化得到化合物2。
化合物3的合成:
Schlenk管称入CuI(0.25mmol,5mol%)、Cs2CO3(7.5mmol)和反式肉桂酰胺(0.882g,6.0mmol),抽真空换入氩气。加入DMEDA(0.50mmol,10mol%)、化合物2(5.0mmol)和THF(10.0ml)。把Schlenk管密封,置于60℃油浴下反应。在TLC分析表明起始原料已完全消耗(3h)后,撤去油浴换为冰浴降温,待恢复到室温。用硅藻土滤除固体,乙酸乙酯洗涤(50ml)。用真空旋转蒸发仪除去溶剂后将得到粗品。用石油醚/乙酸乙酯(v/v=5:1)为洗脱剂,过柱子纯化后得到化合物3。
化合物4的合成:
0℃下,向含有化合物3(4.13mmol)的无水DMF(15mL)中加入60%NaH(24.78mmol)。反应30min后,滴入碘甲烷(28.91mmol)。在TLC分析表明起始原料已完全消耗(2h)后,缓慢滴入水淬灭反应。乙酸乙酯(3×10ml)萃取有机物,有机相合并用饱和食盐水洗涤,然后用无水Na2SO4干燥,最后减压蒸发溶剂。得到粗液用石油醚/乙酸乙酯(v/v=10:1)为洗脱液,硅胶层析柱纯化得到目标化合物2002-2018。
2002:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.48(d,J=15.6Hz,1H),7.45-7.43(m,2H),7.38-7.32(m,3H),7.22(dd,J=7.6Hz,1H),7.18(td,J=7.6,1.6Hz,1H),6.91(d,J=15.6Hz,1H),6.88(t,J=7.6Hz,1H),6.76(d,J=7.6Hz,1H),6.50(d,J=8.8Hz,1H),6.41(d,J=8.8Hz,1H),3.75(s,3H),3.06(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.5,156.7,142.0,135.4,129.6,129.3,129.2,129.1,128.7(2×C),128.0(2×C),123.6,120.7,119.7,118.8,110.5,55.4,34.9.HRMS(ESI)m/z calculated for C19H20O2N+[M+H]+294.1489,found,294.1493.
2003:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.62(d,J=15.6Hz,1H),7.47-7.44(m,2H),7.36-7.32(m,3H),7.21(t,J=8.0Hz,1H),6.92(d,J=15.6Hz,1H),6.91(d,J=8.0Hz,1H),6.85(s,1H),6.78(dd,J=8.0,2.4Hz,1H),6.49(d,J=8.8Hz,1H),6.21(d,J=8.8Hz,1H),3.74(s,3H),3.10(s,3H).13C{1H}NMR(100 MHz,CDCl3)δ:166.5,159.7,142.7,135.8,135.2,129.8,129.7,129.1,128.8(2×C),128.0(2×C),124.9,121.2,118.4,113.9,113.8,55.3,34.8.HRMS(ESI)m/z calculated for C19H20O2N+[M+H]+294.1489,found 294.1493.
2004:Yellowish oil.1H NMR(400 MHz,CDCl3)δ:7.65(d,J=15.6Hz,1H),7.46-7.43(m,2H),7.35-7.31(m,3H),7.28(d,J=8.8Hz,2H),6.95(d,J=15.6Hz,1H),6.83(d,J=8.8Hz,2H),6.37(d,J=8.4Hz,1H),6.20(d,J=8.4Hz,1H),3.77(s,3H),3.10(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.6,159.4,142.6,135.3,130.2(2×C),129.7,128.8(2×C),128.0(2×C),127.0,126.9,125.5,118.4,114.1(2×C),55.3,34.5.HRMS(ESI)m/z calculated for C19H20O2N+[M+H]+294.1489,found 294.1499.
2005:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.59(d,J=15.6Hz,1H),7.51-7.49(m,2H),7.38-7.35(m,3H),7.23-7.20(m,1H),7.16-7.13(m,3H),6.92(d,J=15.6Hz,1H),6.65(d,J=8.8Hz,1H),6.22(d,J=8.8Hz,1H),2.94(s,3H),2.28(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.6,142.7,136.1,135.2,134.1,130.2,129.8,129.5,128.8(2×C),128.6,128.0(2×C),127.9,126.1,121.2,118.4,34.9,20.1.HRMS(ESI)m/z calculated for C19H20ON+[M+H]+278.1539,found 278.1544.
2006:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.62(d,J=15.6Hz,1H),7.48-7.45(m,2H),7.37-7.33(m,3H),7.20(t,J=7.6Hz,1H),7.13(d,J=7.6Hz,1H),7.11(s,1H),7.04(d,J=7.6Hz,1H),6.93(d,J=15.6Hz,1H),6.48(d,J=8.8Hz,1H),6.20(d,J=8.8Hz,1H),3.09(s,3H),2.29(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.6,142.6,138.3,135.3,134.5,129.8,129.5,128.9,128.8(2×C),128.7,128.6,128.0(2×C),125.8,125.0,118.5,34.8,21.5.HRMS(ESI)m/z calculated for C19H20ON+[M+H]+278.1539,found 278.1545.
2007:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.65(d,J=15.6Hz,1H),7.47-7.44(m,2H),7.36-7.32(m,3H),7.23(d,J=8.0Hz,2H),7.11(d,J=8.0Hz,2H),6.95(d,J=15.6Hz,1H),6.44(d,J=8.8Hz,1H),6.22(d,J=8.8Hz,1H),3.10(s,3H),2.31(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.5,142.6,138.2,135.2,131.5,129.7,129.4(2×C),128.8(2×C),128.6(2×C),128.1,128.0(2×C),125.5,118.3,24.6,21.3.HRMS(ESI)m/z calculated for C19H20ON+[M+H]+278.1539,found 278.1548.
2008:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.57(d,J=15.6Hz,1H),7.48-7.45(m,2H),7.39-7.33(m,3H),7.30(d,J=7.6Hz,1H),7.20(dd,J=13.2,6.4Hz,1H),7.06(t,J=7.6Hz,1H),6.98(t,J=9.2Hz,1H),6.90(d,J=15.6Hz,1H),6.62(d,J=8.8Hz,1H),6.32(d,J=8.8Hz,1H),3.07(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.4,160.1(d,J=248Hz),142.9,135.1,130.9,129.9,129.8(d,J=8.9Hz),129.7,128.8(2×C),128.0(2×C),124.3(d,J=3.0Hz),122.6(d,J=13.9Hz),118.2,116.2(d,J=3.7Hz),115.7(d,J=21.7Hz),34.8.19F NMR(376MHz,CDCl3)δ-114.9.HRMS(ESI)m/z calculated for C18H17ONF+[M+H]+282.1289, found 282.1296.
2009:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.64(d,J=15.6Hz,1H),7.48-7.45(m,2H),7.36-7.33(m,3H),7.27(dd,J=14.0,8.0Hz,1H),7.10(d,J=8.0Hz,1H),7.00(d,J=10.0Hz,1H),6.93(td,J=8.0,2.4Hz,1H),6.90(d,J=15.6Hz,1H),6.56(d,J=8.8Hz,1H),6.19(d,J=8.8Hz,1H),3.09(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.6,162.9(d,J=245Hz),143.2(2×C),136.7(d,J=7.8Hz),135.1,130.3(d,J=8.3Hz),130.0(d,J=16Hz),128.9(2×C),128.1(2×C),124.5(d,J=2.3Hz),123.4,118.1,115.4(d,J=21.8Hz),115.1(d,J=21.1Hz),34.9.19F NMR(376MHz,CDCl3)δ-112.6.HRMS(ESI)m/z calculated for C18H17ONF+[M+H]+282.1289,found 282.1297.
2010:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.63(d,J=15.6Hz,1H),7.46-7.43(m,2H),7.35-7.27(m,5H),6.98(t,J=8.8Hz,2H),6.91(d,J=15.6Hz,1H),6.47(d,J=8.8Hz,1H),6.20(d,J=8.8Hz,1H),3.08(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.5,162.2(d,J=247Hz),142.9,135.1,130.6(d,J=3.3Hz),130.5(d,J=8.0Hz,2×C),129.9,128.8(2×C),128.7,128.0(2×C),124.1,118.2,115.8(d,J=21.5Hz,2×C),34.6.19F NMR(376MHz,CDCl3)δ-112.5.HRMS(ESI)m/z calculated for C18H17ONF+[M+H]+282.1289,found 282.1297.
2011:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.54(d,J=15.6Hz,1H),7.50-7.47(m,2H),7.38-7.34(m,3H),7.30-7.27(m,2H),7.21-7.12(m,2H),6.88(d,J=15.6Hz,1H),6.64(d,J=8.8Hz,1H),6.37(d,J=8.8Hz,1H),3.02(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.4,142.9,135.1,133.5,133.3,130.7,129.9,129.7,129.1,128.8(2×C),128.1(3×C),127.0,119.9,118.1,35.1.HRMS(ESI)m/z calculated for C18H17ONCl+[M+H]+298.0993,found 298.0998.
2012:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.67(d,J=15.6Hz,1H),7.53-7.48(m,2H),7.42-7.36(m,3H),7.29(s,1H),7.25-7.21(m,3H),6.92(d,J=15.6Hz,1H),6.59(d,J=8.8Hz,1H),6.17(d,J=8.8Hz,1H),3.10(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.5,143.1,136.4,135.0,134.5,130.2,129.9(2×C),128.8(2×C),128.7(2×C),128.0(2×C),126.6,122.7,118.0,34.9.HRMS(ESI)m/z calculated for C18H17ClNO+[M+H]+298.0993,found 298.1000.
2013:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.66(d,J=15.6Hz,1H),7.49-7.46(m,2H),7.38-7.35(m,3H),7.28(ABq,J=8.8Hz,4H),6.92(d,J=15.6Hz,1H),6.55(d,J=8.8Hz,1H),6.21(d,J=8.8Hz,1H),3.10(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.5,143.1,135.1,133.8,133.0,130.0(2×C),129.9,129.5,129.0(2×C),128.8(2×C),128.1(2×C),123.7,118.1,34.8.HRMS(ESI)m/z calculated for C18H17ONCl+[M+H]+298.0993,found 298.0999.
2014:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.58(d,J=7.2Hz,1H),7.57(d,J=15.6Hz,1H),7.50-7.45(m,3H),7.39-7.29(m,5H),6.88(d,J=15.6Hz,1H),6.69(d,J=8.8Hz,1H),6.43(d,J=8.8Hz,1H),2.96(s,3H).13C{1H}NMR (100MHz,CDCl3)δ:166.6,143.3,134.9,133.6,132.0,131.1,130.3,130.0,128.8(2×C),128.1(2×C),128.0(q,J=29.6Hz),127.8,126.1(q,J=5.4Hz),124.2(q,J=272Hz)118.5,117.9,35.1.19F NMR(376MHz,CDCl3)δ-60.7.HRMS(ESI)m/z calculated for C19H17ONF3 +[M+H]+332.1257,found 332.1265.
2015:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.62(d,J=15.6Hz,1H),7.53-7.49(m,2H),7.48-7.40(m,4H),7.35-7.32(m,3H),6.88(d,J=15.6Hz,1H),6.61(d,J=8.8Hz,1H),6.22(d,J=8.8Hz,1H),3.07(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.5,143.2,135.5,135.0,131.5,131.1(q,J=32.1Hz),130.6,130.0,129.2,128.8(2×C),128.0(2×C),125.6(q,J=3.7Hz),124.6,123.9(q,J=271Hz),122.4,118.0,34.9.19F NMR(376MHz,CDCl3)δ-62.9.HRMS(ESI)m/z calculated for C19H17ONF3 +[M+H]+332.1257,found 332.1263.
2016:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.61(d,J=15.6Hz,1H),7.54(d,J=8.0Hz,2H),7.47-7.43(m,2H),7.39(d,J=8.0Hz,2H),7.37-7.33(m,3H),6.88(d,J=15.6Hz,1H),6.63(d,J=8.8Hz,1H),6.23(d,J=8.8Hz,1H),3.08(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.5,143.3,138.3,135.0,131.0,130.0,129.8(q,J=33Hz),128.9(2×C),128.8(2×C),128.0(2×C),125.6(q,J=3.3Hz,2×C),124.0(q,J=265Hz),122.7,118.0,35.0.19F NMR(376MHz,CDCl3)δ-62.7;HRMS(ESI)m/z calculated for C19H17ONF3 +[M+H]+332.1257,found 332.1265.
2017:Yellowish oil.1H NMR(400MHz,CDCl3)δ:8.00(dd,J=8.0Hz,1H),7.82(d,J=8.0Hz,1H),7.76(t,J=4.4Hz,1H),7.58(d,J=15.6Hz,1H),7.55-7.46(m,3H),7.45-7.41(m,2H),7.38-7.35(m,2H),7.34-7.30(m,2H),6.95(d,J=15.6Hz,1H),6.86(d,J=8.8Hz,1H),6.67(d,J=8.8Hz,1H),2.90(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.6,142.9,135.1,133.7,132.1,131.4,130.7,129.8,128.8(2×C),128.4,128.0(2×C),126.7,126.5,126.1(2×C),125.6,124.2,119.4,118.3,34.9.HRMS(ESI)m/z calculated for C22H20ON+[M+H]+314.1539,found 314.1544.
2018:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.80-7.75(m,4H),7.66(d,J=15.6Hz,1H),7.49-7.43(m,5H),7.33-7.31(m,3H),7.00(d,J=15.6Hz,1H),6.60(d,J=8.8Hz,1H),6.39(d,J=8.8Hz,1H),3.13(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.8,143.0,135.2,133.3,132.9,132.1,129.8,129.2,128.8(2×C),128.5,128.4,128.2,128.0(2×C),127.7,126.6,126.5,126.1,124.7,118.4,35.0.HRMS(ESI)m/z calculated for C22H20ON+[M+H]+314.1539,found 314.1546.
实施例2化合物2021-2046的合成。
化合物A的合成:
100ml两口烧瓶、抽气头和磁子烘箱烘干,取出后组装抽真空至室温换入氩气,称取邻甲氧基苯甲醛(1.36g,10mmol)于样品瓶中,吸取无水THF(40ml)打入烧瓶,称取乙氧甲酰基亚甲基三苯基膦(4.176g,12mmol),冰浴条件下缓慢加入烧瓶,冰浴反应10min后撤去冰浴,反应隔夜后,冰浴条件下,加入饱和氯化铵溶液(20ml)淬灭反应,减压蒸发除去THF,加入乙酸乙酯(20ml)萃取,饱和氯化钠溶液(20ml)洗涤1次,有机相使用无水硫酸钠干燥30min,减压蒸发除去溶剂,柱层析纯化,洗脱剂为石油醚和乙酸乙酯(v:v=20:1),得到无色油状液体A(2.02g,9.8mmol),产率:98%。
化合物B的合成:
取10ml封管,称入A(206mg,1mmol),加入氨-甲醇溶液(2ml),旋紧旋塞,室温反应3天,减压蒸发除去溶剂得粗品,柱层析纯化,洗脱剂为石油醚和丙酮(v:v=5:1)得到白色固体B(124mg,0.70mol),产率76%。
化合物C的合成:
取100ml封管,加入磁子,称取碘(2.80g,11.0mmol),冲入氩气(持续1min),反扣橡胶塞,插入粗针头,吸取无水苯(12mL)打入封管,加入无水吗啡啉(2.62mL,30.0mmol),室温反应30min。称取苯乙炔(2.25g,10.0mmol)于样品瓶中,加入无水苯(10mL)稀释缓慢滴入封管中,再用无水苯(8ml)分两次洗涤样品瓶打入封管。油浴加热至45℃反应24h,自然冷却至室温后使用硅藻土过滤,乙酸乙酯洗涤(3×20mL)。收集滤液,饱和氯化铵溶液(20ml)、饱和氯化钠溶液(20ml)依次洗涤1次,收集有机相无水硫酸钠干燥30min,旋转蒸发除去溶剂,柱层析纯化,洗脱剂为石油醚,得到黄色油状液体C(2.23g,9.8mmol),产率:98%。
化合物D的合成:
取100ml的封管,称取C(2.23g,9.8mmol)于封管中,加入磁子、THF(20mL)和水(20ml),称取4-甲基苯磺酰肼(3.65g,19.6mmol)、无水乙酸钠(2.41g,29.4mmol)加入封管,旋紧封管塞,120℃油浴反应12h后,自然冷却至室温,冰浴下加入饱和氯化铵溶液淬灭反应,乙酸乙酯(3×20mL)萃取,饱和氯化钠溶液(20mL)洗涤1次,有机相无水硫酸钠干燥30min,旋转蒸发除去溶剂,柱层析纯化,洗脱剂为石油醚,得到无色油状液体D(1.31g,5.68mmol),产率:58%。
化合物E的合成:
取10ml Schlenk管和磁子烘干,组装后(塞上橡胶塞)抽真空至室温换入氩气,加入B(195mg,1.1mmol),称入CuI(9.5mg,0.05mmol)、Cs2CO3(407mg,1.25mmol),称取D(230mg,1mmol),吸取无水THF(5mL),2.5mL稀释D1,2.5mL分两次洗涤样品瓶打入。再滴入DMEDA(10.8μL,0.1mmol),换橡胶塞为涂少量油脂的玻璃塞,密封Schlenk管,65℃油浴下反应。反应3h后,撤去油浴,自然恢复到室温。硅藻土滤除固体,乙酸乙酯洗涤(30ml)。旋转蒸发除去溶剂。柱层析纯化,洗脱剂为石油醚和乙酸乙酯(v/v=5:1),纯化后得到淡黄色固体E(209mg,0.75mmol),产率:75%。
化合物S的合成:
取25mL两口烧瓶、磁子和抽气头烘干,组装装置抽真空至室温换入氩气,称取E(0.75mmol),吸取无水DMF(3ml),冰浴条件下,加入纯度为60%的NaH(4.5mmol)。保持冰浴反应30min后,缓慢滴入碘甲烷(5.25mmol)。室温反应3h,冰浴条件下,缓慢滴入水淬灭反应。乙酸乙酯(3×10ml)萃取,合并有机相,饱和氯化钠溶液洗涤1次,有机相无水硫酸钠干燥30min,旋转蒸发除去溶剂。柱层析纯化,洗脱液为石油醚和乙酸乙酯(v/v=10:1),得到目标化合物S。
2021:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.59(d,J=15.6Hz,1H),7.33-7.27(m,4H),7.25-7.20(m,2H),7.05(d,J=7.6Hz,1H),6.96(s,1H),6.91(d,J=15.6Hz,1H),6.88(dd,J=7.6,2.0Hz,1H),6.49(d,J=8.8Hz,1H),6.24(d,J=8.8Hz,1H),3.81(s,3H),3.09(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.4,159.8,142.6,136.6,134.5,129.8,128.9,128.7(4×C),128.2,125.2,120.6,118.7,115.4,113.2,55.4,34.7.HRMS(ESI)m/z calculated for C19H20O2N+[M+H]+294.1489,found 294.1492.
2023:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.90(d,J=15.6Hz,1H),7.40(d,J=7.6Hz,1H),7.34-7.28(m,4H),7.26-7.20(m,2H),7.17-7.13(m,2H),6.84(d,J=15.6Hz,1H),6.49(d,J=8.8Hz,1H),6.23(d,J=8.8Hz,1H),3.10(s,3H),2.38(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.6,140.6,137.7,134.5,134.3,130.7,129.5,128.9,128.7(4×C),128.2,126.3,126.2,125.2,119.6,34.7,19.9.HRMS(ESI)m/z calculated for C19H20ON+[M+H]+278.1539,found 278.1542.
2024:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.64(d,J=15.6Hz,1H), 7.37-7.31(m,4H),7.30-7.23(m,4H),7.17(d,J=7.2Hz,1H),6.94(d,J=15.6Hz,1H),6.54(d,J=8.8Hz,1H),6.27(d,J=8.8Hz,1H),3.11(s,3H),2.37(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.7,143.1,138.5,135.2,134.6,130.7,129.0,128.9(2×C),128.8(2×C),128.7,128.6,128.2,125.3,125.0,118.1,34.8,21.5.HRMS(ESI)m/z calculated for C19H20ON+[M+H]+278.1539,found 278.1542.
2027:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.55(d,J=15.6Hz,1H),7.32-7.27(m,5H),7.24-7.22(m,1H),7.19(d,J=8.0Hz,1H),7.11(d,J=10.0Hz,1H),7.01(td,J=8.0,2.0Hz,1H),6.91(d,J=15.6Hz,1H),6.46(d,J=8.8Hz,1H),6.27(d,J=8.8Hz,1H),3.10(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.0,163.0(d,J=245Hz),141.2(d,J=2.6Hz),137.5(d,J=7.7Hz),134.3,130.3(d,J=8.2Hz),128.8(2×C),128.7(3×C),128.2,125.6,124.1(d,J=2.7Hz),119.7,116.6(d,J=21.3Hz),114.0(d,J=21.6Hz),34.7.19F NMR(376MHz,CDCl3)δ:-113.0.HRMS(ESI)m/z calculated for C18H17ONF+[M+H]+282.1289,found 282.1292.
2028:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.57(d,J=15.6Hz,1H),7.42(dd,J=8.8,5.6Hz,2H),7.32-7.27(m,4H),7.25-7.20(m,1H),7.02(t,J=8.8Hz,2H),6.84(d,J=15.6Hz,1H),6.48(d,J=8.8Hz,1H),6.25(d,J=8.8Hz,1H),3.09(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.4,163.6(d,J=249Hz),141.5,134.5,131.5(d,J=3.3Hz),129.8(d,J=8.3Hz,2×C),128.9(d,J=7.6Hz,2×C),128.8(2×C),128.7(2×C),128.2,125.3,118.1(d,J=1.9Hz),115.9(d,J=21.6Hz),34.8.19F NMR(376MHz,CDCl3)δ:-110.6.HRMS(ESI)m/z calculated for C18H17ONF+[M+H]+282.1289,found 282.1292.
2033:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.64(s,1H),7.60(d,J=15.6Hz,1H),7.58-7.56(m,2H),7.45(t,J=7.6Hz,1H),7.34-7.28(m,4H),7.25-7.20(m,1H),6.98(d,J=15.6Hz,1H),6.48(d,J=8.8Hz,1H),6.31(d,J=8.8Hz,1H),3.14(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:165.7,140.7,136.0,134.3,131.2,131.1(q,J=32.2Hz),129.3,128.8(2×C),128.6(3×C),128.2,126.0(q,J=3.5Hz),125.7,124.2(q,J=3.6Hz),123.9(q,J=271Hz),120.3,34.7.19F NMR(376MHz,CDCl3)δ:-62.8.HRMS(ESI)m/z calculated for C19H17ONF3 +[M+H]+332.1257,found 332.1260.
2036:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.86-7.77(m,5H),7.59(dd,J=8.4,1.2Hz,1H),7.52-7.46(m,2H),7.36-7.29(m,4H),7.25-7.20(m,1H),7.05(d,J=15.6Hz,1H),6.55(d,J=8.8Hz,1H),6.28(d,J=8.8Hz,1H),3.12(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.6,142.8,134.5,134.1,133.4,132.7,129.7,129.0,128.8(4×C),128.6,128.5,128.2,127.8,127.0,126.7,125.1,123.8,118.5,34.8.HRMS(ESI)m/z calculated for C22H20ON+[M+H]+314.1539,found 314.1543.
2037:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.96(d,J=15.6Hz,1H),7.42(d,J=7.6Hz,1H),7.25-7.28(m,5H),7.25-7.21(m,1H),7.03(d,J=15.6Hz,1H),6.91(t,J=7.6Hz,1H),6.88(d,J=7.6Hz,1H),6.52(d,J=8.8Hz,1H),6.20 (d,J=8.8Hz,1H),3.84(s,3H),3.07(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:167.1,158.3,138.3,134.7,131.0,129.2,128.9,128.8(2×C),128.7(2×C),128.0,124.3,124.2,120.6,119.0,111.1,55.5,34.7.HRMS(ESI)m/z calculated for C19H20O2N+[M+H]+294.1489,found 294.1492.
2038:Yellowish oil.1H NMR(400MHz,CD3OD)δ:7.41(d,J=15.6Hz,1H),7.39(d,J=8.8Hz,2H),7.29-7.27(m,4H),7.22-7.17(m,1H),6.88(d,J=8.8Hz,2H),6.85(d,J=15.6Hz,1H),6.52(d,J=8.8Hz,1H),6.38(d,J=8.8Hz,1H),3.8(s,3H),3.06(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:168.7,162.7,143.6,135.9,130.6(2×C),129.8,129.7(2×C),129.6(2×C),129.1,128.8,127.3,116.6,115.2(2×C),55.8,35.0.HRMS(ESI)m/z calculated for C19H20O2N+[M+H]+294.1489,found,294.1492.
2039:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.63(d,J=15.6Hz,1H),7.36(d,J=8.0Hz,2H),7.34-7.28(m,4H),7.25-7.20(m,1H),7.15(d,J=8.0Hz,2H),6.90(d,J=15.6Hz,1H),6.51(d,J=8.8Hz,1H),6.23(d,J=8.8Hz,1H),3.08(s,3H),2.35(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.7,142.8,140.1,134.5,132.5,129.5(2×C),129.0,128.8(2×C),128.7(2×C),128.1,128.0(2×C),124.9,117.2,34.7,21.5.HRMS(ESI)m/z calculated for C19H20ON+[M+H]+278.1539,found 278.1542.
2040:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.70(d,J=15.6Hz,1H),7.42(td,J=7.6,1.6Hz,1H),7.32-7.27(m,5H),7.25-7.20(m,1H),7.10(t,J=7.6Hz,1H),7.06(dd,J=7.6,1.6Hz,1H),7.04(d,J=15.6Hz,1H),6.48(d,J=8.8Hz,1H),6.25(d,J=8.8Hz,1H),3.10(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.4,161.4(d,J=252Hz),135.6,134.5,131.1(d,J=8.6Hz),129.6(d,J=3.2Hz),128.8,128.7(4×C),128.2,125.3,124.3(d,J=3.5Hz),123.3(d,J=11.6Hz),121.2(d,J=7.3Hz),116.2(d,J=21.8Hz),34.8.19F NMR(376MHz,CDCl3)δ:-114.1.HRMS(ESI)m/z calculated for C18H17ONF+[M+H]+282.1289,found 282.1292.
2041:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.98(d,J=15.6Hz,1H),7.43(dd,J=7.6,2.0Hz,1H),7.36(dd,J=7.6,1.6Hz,1H),7.33-7.30(m,4H),7.26-7.18(m,3H),6.91(d,J=15.6Hz,1H),6.47(d,J=8.8Hz,1H),6.24(d,J=8.8Hz,1H),3.10(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.0,138.7,134.9,134.4,133.6,130.5,130.1,128.8(3×C),128.7(2×C),128.2,127.7,126.9,125.4,121.2,34.8.HRMS(ESI)m/z calculated for C18H17ONCl+[M+H]+298.0993,found 298.0996.
2042:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.52(d,J=15.6Hz,1H),7.39(s,1H),7.32-7.20(m,8H),6.91(d,J=15.6Hz,1H),6.47(d,J=8.8Hz,1H),6.27(d,J=8.8Hz,1H),3.10(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.0,141.1,137.1,134.7,134.3,130.0,129.6,128.8(2×C),128.7(3×C),128.3,127.5,126.4,125.7,119.8,34.8.HRMS(ESI)m/z calculated for C18H17ONCl+[M+H]+298.0993,found 298.0996.
2043:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.54(d,J=15.6Hz,1H),7.36(d,J=8.4Hz,2H),7.32-7.27(m,6H),7.24-7.20(m,1H),6.89(d,J=15.6Hz,1H),6.47(d,J=8.8Hz,1H),6.25(d,J=8.8Hz,1H),3.09(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.2,141.3,135.6,134.4,133.7,129.2(2×C),129.1(2×C),128.9(2×C),128.8,128.7(2×C),128.3,125.5,118.9,34.8.HRMS(ESI)m/z calculated for C18H17ONCl+[M+H]+298.0993,found 298.0996.
2044:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.97(dq,J=15.6,2.0Hz,1H),7.65(d,J=7.6Hz,1H),7.50-7.37(m,3H),7.36-7.29(m,4H),7.27-7.21(m,1H),6.86(d,J=15.6Hz,1H),6.45(d,J=8.8Hz,1H),6.25(d,J=8.8Hz,1H),3.11(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:165.6,138.4,134.5,134.3,131.9,130.1,129.1,128.8(2×C),128.7(2×C),128.6,128.4,128.0,126.1(q,J=5.6Hz),125.6,124.0(q,J=272Hz),122.9,34.8.19F NMR(376MHz,CDCl3)δ:-62.8.HRMS(ESI)m/z calculated for C19H17ONF3 +[M+H]+332.1257,found 332.1260.
2045:Yellowish oil.1H NMR(400MHz,CDCl3)δ:7.48(d,J=15.6Hz,1H),7.44(ABq,J=8.4Hz,4H),7.21-7.18(m,4H),7.15-7.10(m,1H),6.88(d,J=15.6Hz,1H),6.36(d,J=8.8Hz,1H),6.19(d,J=8.8Hz,1H),3.02(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:165.8,140.8,138.7,134.3,131.2(q,J=32.3Hz),128.9(2×C),128.7(2×C),128.6,128.3,128.1(2×C),125.9,125.8(q,J=3.7Hz,2×C),124.0(q,J=270Hz),121.0,34.8.19F NMR:(376MHz,CDCl3)δ-62.7.HRMS(ESI)m/z calculated for C19H17ONF3 +[M+H]+332.1257,found 332.1260.
2046:Yellowish oil.1H NMR(400MHz,CDCl3)δ:8.46(d,J=15.2Hz,1H),8.15(d,J=7.6Hz,1H),7.93-7.85(m,2H),7.59-7.51(m,3H),7.45(t,J=7.6Hz,1H),7.39-7.32(m,4H),7.28-7.24(m,1H),7.02(d,J=15.2Hz,1H),6.53(d,J=8.8Hz,1H),6.28(d,J=8.8Hz,1H),3.18(s,3H).13C{1H}NMR(100MHz,CDCl3)δ:166.4,140.0,134.5,133.7,132.9,131.6,130.0,128.9,128.8(2×C),128.7(2×C),128.6,128.4,126.7,126.2,125.5,125.4,124.8,123.9,121.3,34.8.HRMS(ESI)m/z calculated for C22H20ON+[M+H]+314.1539,found 314.1543.
实施例3抗炎活性实验
对本发明的2033进行了细胞炎症因子表达水平的抑制试验,试验方法采用常规的qPCR法。
细胞的培养
小鼠单核巨噬细胞白血病细胞RAW264.7采用加入10%(V/V)FBS、100U/mL青霉素及100μg/mL链霉素的DMEM高糖培养基进行培养。培养条件为37℃、5%CO2,细胞长至80%融合度时进行传代。
细胞给药与诱导细胞炎症
采用处于对数生长期的细胞进行实验,细胞以2*105个/孔接种于12孔板,37℃、5%CO2的环境中培养至生长到70%,待用。设置分组:空白刺激组,LPS刺激组,阳性对照组(地塞米松,Dex,1μM/L)和给药组(10μM/L)。小心的去除培养基,阳性对照组和给药组分别加入含有化合物的新鲜完全培养基,空白刺激组和LPS刺激组则加入等体积的DMSO。1小时后,除空白刺激组,均分别加入1μg/mL LPS 4小时以诱导细胞炎症。
RNA的提取及qPCR的测定
1.将培养好的细胞完全弃去培养基后,每孔加入0.5mL RNA提取试剂盒中的RA2进行裂解;
2.收集细胞裂解物按试剂盒说明书提取Total RNA,并用超微量紫外可见分光光度计测其浓度;
3.RT-PCR(每个体系20uL),包括5x BUFFER 4μL,Total RNA X μL(1pg-1ug,大多数时候取200-400ng),DEPC-H2O(16-X)μL置于8连管中后,标记序号,置于PCR仪中设置50℃15min,85℃5s,16℃∝的时长进行逆转录;
4.转录后的cDNA加80μL DEPC-H2O至100μL,离心混匀,-20℃备用;
5.按(SYBR 10μL+DEPC-H2O 10μL+引物0.5μL)乘以样品数,取18μL/孔至96孔板中,再加入2μL cDNA,构成20μL体系,1200rpm 1min离心混匀;
6.将样品板放入CFX Connect Real-Time System(实时荧光定量PCR仪)中进行检测,按照(95℃2min,95℃20s,57℃20s,72℃20s)共循环39次,95℃1min,55℃30s,95℃30s的程序进行检测;
7.采用2-ΔΔCt法分析实验结果,计算公式如下:△Ct目的基因=Ct目的基因-Ct内参基因,△△Ct目的基因=△Ct实验组目的基因-△Ct对照组目的基因。2-ΔΔCt表示实验组相对于对照组目的基因的表达倍数。
扩增引物的设计:本发明针对的是IL-6、IL-1β基因,以GADPH为内参基因。在NCBI里的基因库中搜索目的基因,查看GeneBank中的目的基因序列,根据检测要求进行引物参数的设计,如下表1所示。
表1
cDNA的合成:以总RNA为模板合成cDNA,采用5x HiScript II Q Select RT SuperMix,使用前将每种溶液涡旋振荡混匀,快速离心后收集残留在管壁的液体。在冰浴中完成反应体系的配制,在冰上解冻模板RNA后,按照表2所示配制反转录反应体系:
表2
在Veriti 96well Thermal Cycler PCR仪中进行去除基因组及反转录反应,反应程序为:50℃15min,85℃5s,反转录产物置于-20℃冰箱中保存备用。
Real-time qPCR:按照表3所示配制real-time qPCR反应体系,在本实验中使用的引物序列见表1,选择GADPH基因作为内参,引物由生工生物工程(上海)股份有限公司合成。
表3
在CFX Connect Real-Time System实时荧光定量PCR仪中进行real-time qPCR反应,扩增程序为:95℃2min,然后进行40个循环:95℃20s,57℃20s,72℃20s。温度从55℃升至95℃,得到熔解曲线。结果由分析软件自动分析,生成扩增曲线并计算Ct值。采用2-ΔΔct法分析实验结果,计算公式如下:△Ct目的基 =Ct目的基因-Ct内参基因,△△Ct目的基因=△Ct实验组目的基因-△Ct对照组目的基因。2-ΔΔct表示实验组相对于对照组目的基因的表达倍数,以LPS刺激组为基准进行归一化处理。
结果如图1和2所示:
测试结果显示,初步筛选出10个化合物抗炎活性较好,其中2033的抗炎活性最强。对化合物2033在所测试的小鼠单核巨噬细胞白血病细胞RAW264.7中,能以剂量依赖型有效抑制IL-6和IL-1β的表达水平(图2)。以上实验结果表明,本发明的化合物具有良好的抗炎活性,可用于抗炎症药物的研究。
实施例4化合物2033在抗氧化方面的研究
本发明化合物的对抗氧化效果采用如下方法测试所证明。
这些效果表明本发明化合物在体外抗氧化效果明显。具体测试方法如下:
一、实验目的及原理
实验目的:采用FRAP法检测合成的黄皮衍生物的抗氧化效果。
实验原理:FRAP法是一种总抗氧化能力检测。其原理是酸性条件下抗氧化物可以还原Ferric-tripyridyltriazine(Fe3+-TPTZ)产生蓝色的Fe2+-TPTZ,随后在585nm测定蓝色的Fe2+-TPTZ即可获得样品中的总抗氧化能力。
Fe3+-TPTZ——————>Fe2+-TPTZ(蓝色)
用酶联免疫检测仪检测585nm下的吸光度值(OD值),可以根据吸光度值 反映抗氧化能力,在一定范围内,OD值越大,则表明抗氧化能力越强,药物的抗氧化效果越好。
二、试剂基本信息
三、试剂配制
1、化合物配置
取高压灭菌后的EP管用于称取化合物,向EP管中加入对应量的DMSO,使液体成100mM的母液,并分别按比例稀释到10mM,5mM,2.5mM。
四、实验过程
(1)FeSO4标准曲线测定准备
称取27.8mg本试剂盒提供的FeSO4·7H2O,溶解并定容到1mL,此时浓度即为100mM。取适量100mM FeSO4溶液稀释至0.15、0.3、0.6、0.9、1.2和1.5mM。
(2)样品以及标准品抗氧化能力测定
根据碧云天总抗氧化能力检测试剂盒(FRAP法),往180μL FRAP工作液中5μL样品/标准品溶液,37℃下孵育5min,在585nm下检测OD值,并根据FeSO4标准曲线,计算出化合物2033的抗氧化能力。
结果如图3所示:
测试结果显示,化合物2033在2.5、5、10mM浓度下均表现出抗氧化活性。以上实验结果表明,本发明的化合物在浓度为2.5~10mM范围内,具有良好的抗氧化,可用于抗氧化药物的研究。
实施例5体外肝微粒体代谢稳定性实验
将0.5μM化合物2033与肝微粒体(1mg/mL)保持在37℃下孵育。分别在第0、5、15、30、45分钟和60分钟每个时间点取100μL反应溶液。将200μL含有内标的乙腈加入100μL反应液中提取待测化合物。将得到的混合物离心,用LC-MS/MS对上层清液进行分析。结果如表4所示,从表4中可以看出,在人肝微粒体的半衰期为15.3分钟,在猕猴肝微粒体的半衰期为3.1分钟,在小鼠肝微粒体的半衰期为3.1分钟,化合物2033具有比较好的代谢稳定性。
表4
实施例6化合物2033对NCI-H292细胞高分泌模型中粘液蛋白表达的研究
本发明化合物对NCI-H292细胞高分泌模型中粘液蛋白MUC5AC表达效果采用如下方法测试所证明。
这些效果表明本发明化合物抑制NCI-H292细胞高分泌模型中粘液蛋白MUC5AC表达的效果明显。具体测试方法如下:
一、实验目的及原理
实验目的:采用NCI-H292细胞高分泌模型评价化合物2033在体外的祛痰效果。
实验原理:MUC5AC是一种分泌型高分子黏液素,在肺癌细胞内能过量产生,与肺癌进展相关。表皮生长因子(EGF)可激活表皮生长因子受体(EGFR)信号通路,是许多炎症介质引起黏液高分泌的共同通路。研究表明,采用25ng/mL EGF刺激人粘液表皮样肺癌细胞(NCI-H292细胞),可有效引起细胞高表达MUC5AC。
二、试剂基本信息
三、实验过程
(1)细胞培养、分组以及给药
NCI-H292细胞在1640培养基(包含10%FBS)、5%CO2以及37℃培养箱中培养。将2x105个细胞铺于6孔板中,分为:空白对照组、EGF组(25ng/mL)、化合物2033组(10μM)。待细胞长至80%时,采用无胎牛血清的1640培养基对细胞进行饥饿。24h后,加入相应药物培养。培养1h后,在原培养基中加入25ng/mL EGF继续培养。24h后,收集细胞体。
(2)细胞样品中MUC5AC表达量检测
采用TRIZOL法对细胞的RNA进行提取,取500ngRNA样品逆转录为cDNA,并采用qPCR的方法,对细胞内MUC5AC基因的表达量进行测定。
结果如图4所示:
测试结果显示,化合物2033在NCI-H292细胞高分泌模型中,可有效抑制MUC5AC的表达,在体外具有一定降低粘液的作用。
实施例7化合物2033对急性肺损伤小鼠的抗炎作用
本发明化合物的对急性肺损伤小鼠抗炎效果采用如下方法测试所证明。
这些效果表明本发明化合物在急性肺损伤小鼠模型内抗炎效果明显。具体测试方法如下:
一、实验目的及原理
实验目的:采用急性肺损伤(Actue lung injury,ALI)小鼠模型评价化合物33在体内的抗炎效果以及对急性肺损伤的改善作用。
实验原理:ALI是指心源性以外的各种肺内、肺外致病因素导致的急性、进行性、缺氧性呼吸衰竭,其病理生理学特点包括肺泡-毛细血管屏障弥漫性损伤、炎症细胞浸润、肺泡中富含蛋白质的水肿液以及严重的气体交换异常。LPS诱导的ALI模型与临床病征吻合性高,以及具有模型重复率高等特点。因此采用LPS诱导的ALI模型作为研究对象,探讨化合物33对LPS诱导的ALI小鼠模型的抗炎作用以及对急性肺损伤的改善作用。
二、试剂基本信息
三、实验过程
(1)动物分组、给药以及造模
将小鼠随机分为6组:空白对照组、模型组(LPS,10mg/kg)、化合物2033低、中、高(15、30、60mg/kg)、地塞米松阳性对照组(DEX,2mg/kg),每组8只,连续给药7天,其中空白对照组和模型组给予等量生理盐水。最后一次给药1h后,采用腹腔注射0.3%戊巴比妥钠(30mg/kg用生理盐水稀释)的方法,对小鼠进行麻醉,麻醉后将LPS滴注入小鼠气管中(10mg/kg),空白对照组小鼠气管内滴注相应体积的生理盐水。
(2)动物取材
24h后,用3%戊巴比妥钠腹腔注射麻醉后,结扎左肺,充分暴露小鼠气管,缓慢注入4℃的0.6mL生理压水进行灌洗,停留3s后用注射器缓缓回抽,重复两次,合并灌洗液,即为肺泡灌洗液(Bronchoalveolar fluid,BALF),BALF在1000r/min下离心5min,细胞沉淀以及上清液分别收集。每组取3只小鼠左肺叶采用4%多聚甲醛进行固定。
(3)BALF内细胞总数测定
细胞沉淀根据细胞计数仪进行测定。
结果如图5所示:测试结果显示,化合物2033可有效减少BALF内细胞数量。
(4)BALF内TNF-α、IL-1β和IL-6以及水平测定
根据碧云天试剂公司的TNF-α、IL-1β和IL-6ELISA试剂盒提供的说明书,对BALF中炎症因子进行检测。
结果如图6所示:测试结果显示,化合物2033可有效减少BALF内TNF-α、IL-1β以及IL-6水平。
(5)ALI小鼠肺组织病理形态学变化(HE)
将经过4%多聚甲醛固定的肺组织,采用梯度乙醇脱水,二甲苯透明(I和II各15min),浸蜡(石蜡I和II各1h),石蜡包埋、切片,HE染色,在光镜下观察肺组织病理学改变并拍摄照片留存。
结果如图7所示:与空白组比较,模型组肺泡塌陷且肺泡壁增厚,细胞间隙存在大量炎症细胞浸润,可见大量出血点;与模型组相比,地塞米松阳性对照组和2033化合物组均可改善肺泡壁增厚,并能减少炎症细胞浸润。表明化合物2033可有效改善ALI小鼠肺组织病理形态学变化。
以上实验结果表明,本发明的化合物在15、30、60mg/kg剂量下,对ALI小鼠具有良好的抗炎作用,并可改善由ALI引起的肺损伤,可用于抗炎药物的研究。
实施例8化合物2033对小鼠痰液分泌的研究
本发明化合物的对小鼠痰液分泌效果采用如下方法测试所证明。
这些效果表明本发明化合物促进小鼠的痰液分泌效果明显。具体测试方法如下:
一、实验目的及原理
实验目的:采用酚红排泌法评价化合物2033在体内的祛痰效果。
实验原理:药物的祛痰效果目前常采用酚红排泌法进行评价,是模拟人体排痰量、初步考察药物祛痰活性的经典方法。酚红具有部分从气管排泌的特点,经注射方式进入腹腔,吸收量随痰液分泌量增多而增多,因此可作为评价祛痰强弱的指标。祛痰药可增加呼吸道分泌液的排泄,使得痰液稀释得以顺利被排出,呼吸道分泌的增多还有利于保护表面黏膜过多暴露的咳嗽感受器,以达到减少咳嗽的目的。
二、试剂基本信息
三、实验过程
(1)动物分组以及给药
将小鼠随机分为3组:空白对照组、化合物2033(50mg/kg)、氯化铵阳性对照组(NH4CL,1g/kg),每组8只,连续给药7天,其中空白对照组和模型组给予等量生理盐水。
(2)动物取材
最后一次给药1h后,采用腹腔注射5%酚红溶液,给药体积为0.2mL/10g,30min后脱颈椎处死,气管插管。采用0.6mL 5%NaHCO3,对气管进行灌洗,回收灌洗液,重复2次。合并两次灌洗液,在1000r/min条件下离心5min,取上清液,为肺泡灌洗液(Bronchoalveolar fluid,BALF)。
(3)BALF内酚红含量测定
各组每管BALF取100μL样品,置于96孔板中,在558nm下处测吸光度,计算酚红排泌量。
结果如图8所示:测试结果显示,化合物2033可有效促进BALF内酚红的排出,具有一定的祛痰作用。

Claims (9)

  1. 顺式烯酰胺类衍生物或其盐;
    所述的顺式烯酰胺类衍生物,其化学结构如(a)中任一所示,
    (a)式中,R1是氢、甲氧基、甲基、三氟甲基或卤素;
    R2是甲基、甲氧基、三氟甲基或卤素。
  2. 根据权利要求1所述的顺式烯酰胺类衍生物,其特征在于,所述的顺式烯酰胺类衍生物为下述化合物之一:
  3. 根据权利要求2所述的顺式烯酰胺类衍生物,其特征在于,所述的顺式烯酰胺类衍生物的结构式如下所示:
  4. 权利要求1所述的顺式烯酰胺类衍生物或其盐在制备抗炎药物中的应用
  5. 根据权利要求4所述的应用,其特征在于,所述的抗炎药物是治疗呼吸系统疾病的药物。
  6. 根据权利要求5所述的应用,其特征在于,所述的抗炎药物是治疗肺损伤、慢性阻塞性肺疾病的药物。
  7. 一种抗炎药物,其特征在于,含有权利要求1所述的顺式烯酰胺类衍生物或其盐作为活性成分。
  8. 根据权利要求7所述的抗炎药物,其特征在于,所述的抗炎药物是治疗呼吸系统疾病的药物。
  9. 根据权利要求8所述的抗炎药物,其特征在于,所述的抗炎药物是治疗肺损伤、慢性阻塞性肺疾病的药物。
PCT/CN2023/138785 2023-04-28 2023-12-14 顺式烯酰胺类衍生物及其在制备抗炎药物中的应用 WO2024221972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310481210.6A CN116621725B (zh) 2023-04-28 2023-04-28 顺式烯酰胺类衍生物及其在制备抗炎药物中的应用
CN202310481210.6 2023-04-28

Publications (1)

Publication Number Publication Date
WO2024221972A1 true WO2024221972A1 (zh) 2024-10-31

Family

ID=87640814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138785 WO2024221972A1 (zh) 2023-04-28 2023-12-14 顺式烯酰胺类衍生物及其在制备抗炎药物中的应用

Country Status (2)

Country Link
CN (1) CN116621725B (zh)
WO (1) WO2024221972A1 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417788A (zh) * 2022-08-31 2022-12-02 中国人民解放军空军军医大学 一种抗炎化合物及其制备方法和用途

Also Published As

Publication number Publication date
CN116621725B (zh) 2024-08-06
CN116621725A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2018121689A1 (zh) 磺酰胺-芳基酰胺类化合物及其治疗乙型肝炎的药物用途
JP2008526951A (ja) 抗炎症活性を有するビス−(クマリン)化合物
RU2642784C2 (ru) Форзициазида сульфат и его производные, способ его получения и его применение
JP7123417B2 (ja) 抗不安重水素化合物及びその医薬的用途
WO2024221972A1 (zh) 顺式烯酰胺类衍生物及其在制备抗炎药物中的应用
AU2021320763A1 (en) Compositions for modulating splicing
WO2023236809A1 (zh) 一种2,6-二苯亚甲基环己酮肟类化合物及其制备方法和应用
JP5932827B2 (ja) チアゾールアミン誘導体および抗ピコルナウイルス感染薬剤としてのその使用
CN113004253B (zh) 二-(苯并咪唑)-1,2,3-三唑衍生物及其制备和在炎症性皮肤病中的应用
CN110903224A (zh) 一种芳基磺酰胺类化合物、其制备方法、药物组合物及用途
WO2023045302A1 (zh) 一种双取代苯并二氢吡喃酮类化合物合成方法及治疗copd等肺部炎症中应用
CN102633796A (zh) 一种苦参酸类衍生物的新制备方法
CN118084693A (zh) (z)-3-甲氧基-n-甲基-n-苯乙烯基苯甲酰胺及其在制备抗炎药物中的应用
WO2023169119A1 (zh) 化合物的固体形式及其制备方法和用途
RU2380366C2 (ru) Производные пиридазиниламина и их применение для получения ингибиторов пикорнавирусов
CN118084712A (zh) (z)-n-甲基-n-苯乙烯基苯甲酰胺及其在制备抗炎药物中的应用
CN113773295B (zh) 单取代二氢色原酮合成方法及治疗copd等肺部炎症中应用
CN113773188A (zh) 查尔酮衍生物合成方法及治疗copd等肺部炎症药物中的应用
WO2024183123A1 (zh) 一种巴拉苏酰胺衍生物及其在制备治疗急性肺损伤药物中的应用
CN112480104B (zh) 硝唑尼特衍生物及其医药用途
TWI531368B (zh) 減輕內毒素所引發全身性發炎反應之醫藥組成物及其用途
CN113735920B (zh) 一种氰苷类化合物Menisdaurin F在制备抗乙肝病毒药物组合物中的应用
CN104774159B (zh) 一种酰肼类化合物及其在制备抗手足口病药物中的应用
CN113549046B (zh) 一种双联苄地钱素s衍生物及其制备方法和应用
CN117562915A (zh) 一种腺苷衍生物在制备预防、缓解或治疗纤维化疾病的药物中的应用