Nothing Special   »   [go: up one dir, main page]

WO2024219214A1 - Laminate and method for manufacturing eyeglass lens - Google Patents

Laminate and method for manufacturing eyeglass lens Download PDF

Info

Publication number
WO2024219214A1
WO2024219214A1 PCT/JP2024/013575 JP2024013575W WO2024219214A1 WO 2024219214 A1 WO2024219214 A1 WO 2024219214A1 JP 2024013575 W JP2024013575 W JP 2024013575W WO 2024219214 A1 WO2024219214 A1 WO 2024219214A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
layer
metal layer
water
lens substrate
Prior art date
Application number
PCT/JP2024/013575
Other languages
French (fr)
Japanese (ja)
Inventor
クリストフ プロヴァン
将吾 柳瀬
恒 小笠原
Original Assignee
株式会社ニコン・エシロール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン・エシロール filed Critical 株式会社ニコン・エシロール
Publication of WO2024219214A1 publication Critical patent/WO2024219214A1/en

Links

Images

Definitions

  • This disclosure relates to a method for manufacturing a laminate and an eyeglass lens.
  • the present disclosure relates to a laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order, wherein the metal layer contains at least one selected from the group consisting of aluminum, zinc, copper, and nickel (embodiment 1).
  • the laminate of the present disclosure can be ground with small axial and horizontal deviations.
  • the present disclosure also relates to a method for manufacturing a spectacle lens, comprising step 1 of pressing a fixing member against the metal layer of a laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order to fix the laminate and grinding the periphery of the laminate, and step 2 of removing the metal layer in the ground laminate, the metal layer including at least one selected from the group consisting of aluminum, zinc, copper, and nickel (embodiment 2).
  • FIG. 2 is a schematic cross-sectional view of a laminate.
  • FIG. 2 is a schematic view of a portion of a grinding apparatus.
  • the laminate is preferably used to be ground by pressing a fixing member against the metal layer in the laminate to fix the laminate, in other words, it is preferably used in step 1 of the manufacturing method of a spectacle lens described later.
  • 1 is a cross-sectional schematic diagram of a laminate 100.
  • the laminate 100 has an antireflection layer 4 on a spectacle lens substrate 2, a water-repellent layer 6 on the antireflection layer 4, and a metal layer 8 on the water-repellent layer 6.
  • the laminate 100 does not necessarily have to have the antireflection layer 4.
  • the laminate 100 may further have a primer layer described later and/or a hard coat layer described later.
  • the laminate may have a water-repellent layer and a metal layer on only one surface of the eyeglass lens substrate, or may have a water-repellent layer and a metal layer on both surfaces of the eyeglass lens substrate.
  • the luminous transmittance of the laminate is preferably less than 100%, more preferably 90% or less, and even more preferably 88% or less.
  • the lower limit is preferably 0% or more, more preferably 10% or more, and even more preferably 20% or more.
  • the luminous transmittance can be adjusted, for example, by adjusting the thickness of each layer (for example, a metal layer) in the laminate.
  • the luminous transmittance is the average value of the transmittance in the wavelength range of 380 to 780 nm, and can be measured using a spectrometer.
  • the spectacle lens substrate examples include spectacle lens substrates made of organic or inorganic materials, and spectacle lens substrates made of organic materials (such as plastic lens substrates) are preferred.
  • spectacle lens substrates include finished lenses in which both the convex and concave surfaces are optically finished and molded to match a desired dioptric power, semi-finished lenses in which only the convex surface is finished as an optical surface (e.g., a spherical surface, a rotationally symmetric aspheric surface, a progressive surface, etc.), and semi-finished lenses in which the concave surface is processed and polished to match the wearer's prescription.
  • organic materials include acrylic resins, methacrylic resins, thiourethane resins, allyl resins, episulfide resins, polycarbonate resins, polyurethane resins, polyester resins, polystyrene resins, polyethersulfone resins, poly-4-methylpentene-1 resins, diethylene glycol bisallyl carbonate resins (CR-39), and polyvinyl chloride resins.
  • the thickness of the spectacle lens substrate is preferably 1 to 30 mm from the viewpoint of ease of handling.
  • the spectacle lens substrate may be opaque or colored so long as it has light-transmitting properties.
  • the laminate has a water-repellent layer on a spectacle lens substrate.
  • the water-repellent layer preferably contains at least one selected from the group consisting of organosilicon compounds, their hydrolysates, and their hydrolyzed condensates.
  • the hydrolyzate of an organosilicon compound means a compound that is generated by hydrolyzing the hydrolyzable group in an organosilicon compound that has a hydrolyzable group.
  • the hydrolyzate of an organosilicon compound may be a complete hydrolyzate in which all the hydrolyzable groups in the organosilicon compound are hydrolyzed, a partial hydrolyzate in which some of the hydrolyzable groups are decomposed, or a mixture thereof.
  • the hydrolysis condensate of an organosilicon compound means a compound that is produced by condensing the hydrolysis product of an organosilicon compound having a hydrolyzable group.
  • the hydrolysis condensate of an organosilicon compound may be a complete hydrolysis condensate in which all the hydrolyzed groups in the hydrolysis product are condensed, a partial hydrolysis condensate in which only a part of the hydrolysis groups are condensed, or a mixture thereof.
  • Organosilicon compounds include, for example, silane compounds, silazane compounds, silanol compounds, siloxane compounds, silicate compounds, and silyl ester compounds, with silane compounds being preferred.
  • hydrolyzable groups examples include alkoxy groups, halogen atoms, cyano groups, acetoxy groups, and isocyanate groups.
  • the organosilicon compound preferably has a fluorine atom-containing group.
  • fluorine atom-containing group include a group having a perfluorocarbon structure and a group having a perfluoropolyether structure.
  • organosilicon compound examples include those described in WO 2020/039795, U.S. Pat. No. 4,410,563, EP 0,203,730, EP 749,021, EP 844,265, and EP 933,377.
  • the thickness of the water-repellent layer is preferably 1 to 1000 nm.
  • the laminate has a metal layer on a water-repellent layer.
  • the laminate preferably has a metal layer adjacent to the water-repellent layer.
  • the metal layer has excellent adhesion to the fixing member in step 1 described below, and therefore, when the laminate is ground, the metal layer is easily ground into a desired shape with little axial deviation, etc.
  • the metal layer is a layer that is removed after grinding.
  • the metal layer contains at least one metal selected from the group consisting of aluminum, zinc, copper and nickel (hereinafter also referred to as the "specific metal"), and preferably contains aluminum.
  • the specific metal may be either a pure metal or an alloy, with a pure metal being preferred. As long as the metal layer contains the specific metal, it may contain other metals, such as known metals.
  • the content of the specific metal is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 95% by mass or more, and particularly preferably 99% by mass or more, based on the total mass of the metal layer.
  • the upper limit is preferably 100% by mass or less.
  • the thickness of the metal layer is preferably 0.1 to 200.0 nm, more preferably 1.0 to 100.0 nm, and even more preferably 5.0 to 80.0 nm.
  • the laminate may have other layers in addition to the above layers.
  • the other layers include a primer layer, a hard coat layer, an anti-reflection layer, and an intermediate layer.
  • the laminate preferably has the intermediate layer on the opposite side of the water-repellent layer to the metal layer.
  • the laminate further has a primer layer, a hard coat layer and an antireflection layer, in this order from the eyeglass lens substrate side, between the eyeglass lens substrate and the water-repellent layer.
  • the primer layer is a layer that improves the adhesion of the hard coat layer to the eyeglass lens substrate.
  • the primer layer preferably contains a resin, and more preferably contains a urethane-based resin, an epoxy-based resin, a phenol-based resin, a polyimide-based resin, a polyester-based resin, a bismaleimide-based resin, or a polyolefin-based resin.
  • the thickness of the primer layer is preferably 0.3 to 2 ⁇ m.
  • the hard coat layer is a layer disposed on the spectacle lens substrate, and is a layer that imparts scratch resistance to the spectacle lens substrate.
  • Examples of the hard coat layer include an organic hard coat layer, an inorganic hard coat layer, and an organic-inorganic hybrid hard coat layer.
  • the thickness of the hard coat layer is preferably from 1.0 to 20.0 ⁇ m, and more preferably from 1.5 to 15.0 ⁇ m.
  • the composition for forming a hard coat layer preferably contains at least one selected from the group consisting of an inorganic compound, a polymerization initiator, and an organic solvent.
  • Inorganic compounds include, for example, inorganic oxides and silsesquioxanes.
  • the inorganic oxide is preferably a metal oxide particle.
  • the metal oxide particles include oxide particles of at least one metal selected from the group consisting of Ti, Zr, Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, and In, and composite metal oxide particles thereof.
  • Composite metal oxide particles are oxide particles containing two or more metals (metal atoms).
  • the inorganic oxide particles preferably contain at least one selected from the group consisting of SiO2 (silicon oxide), Al2O3 (aluminum oxide), SnO2 (tin oxide), ZrO2 (zirconium oxide) and TiO2 (titanium oxide), and more preferably contain at least one selected from the group consisting of SiO2 and ZrO2 .
  • Silsesquioxanes are silane compounds obtained by hydrolysis of trifunctional silane compounds such as alkoxysilanes, chlorosilanes, and silanols.
  • the antireflection layer may have either a single-layer structure or a multi-layer structure.
  • the antireflection layer is preferably an inorganic antireflection layer, which means an antireflection layer made of an inorganic compound.
  • the multi-layered antireflection layer may have a structure in which high refractive index layers and low refractive index layers are alternately laminated.
  • the high refractive index layer preferably comprises an oxide of titanium, zirconium, aluminum, niobium, tantalum, or lanthanum.
  • the low refractive index layer preferably contains a silica compound.
  • the thickness of the antireflection layer is preferably from 0.2 to 3.0 ⁇ m, and more preferably from 0.3 to 2.0 ⁇ m.
  • the laminate can be produced, for example, by a known production method.
  • the method for producing the laminate is preferably a method for producing the laminate including a step of forming a water-repellent layer on a spectacle lens substrate, and a step of forming a metal layer on the water-repellent layer.
  • the step of forming the water-repellent layer is preferably a step of applying a composition for forming a water-repellent layer onto a spectacle lens substrate and curing the composition.
  • a composition for forming a water-repellent layer examples include dip coating, roll coating, bar coating, spin coating, spray coating, die coating, and gravure coating.
  • the curing method may be, for example, a drying method, and the drying may or may not involve heating.
  • the composition for forming the water-repellent layer is a composition containing the various components that the water-repellent layer can contain, and preferably further contains an organic solvent.
  • Examples of the process for forming the metal layer include dry film formation methods such as physical vapor deposition and chemical vapor deposition, and wet film formation methods such as coating, with physical vapor deposition being preferred.
  • Examples of physical vapor deposition include deposition methods such as thermal deposition and electron beam deposition, and sputtering, with thermal deposition being preferred since it can reduce damage to the laminate (e.g., the water-repellent layer, etc.).
  • the dry film-forming method and the wet film-forming method may be carried out under normal pressure, reduced pressure, or high pressure, and are preferably carried out under reduced pressure.
  • the method for producing the laminate includes the steps of forming a primer layer on a spectacle lens substrate, forming a hard coat layer on the primer layer, forming an anti-reflection layer on the hard coat layer, forming a water-repellent layer on the anti-reflection layer, and forming a metal layer on the water-repellent layer.
  • the step of forming the water-repellent layer and the step of forming the metal layer are as described above.
  • the step of forming the primer layer is preferably a method of applying a primer layer-forming composition onto the spectacle lens substrate.
  • the step of forming the primer layer may include a drying step. The drying may be performed with or without heating.
  • the step of forming the hard coat layer is preferably a method of applying a composition for forming a hard coat layer onto the primer layer and curing the composition.
  • the coating method of the composition for forming a hard coat layer can be, for example, the coating method of the composition for forming a water-repellent layer described above.
  • the spectacle lens substrate having a primer layer is immersed in the composition for forming a hard coat layer, and then the spectacle lens substrate having the primer layer is pulled up and dried, so that a coating film derived from the composition for forming a hard coat layer can be formed on the primer layer of the spectacle lens substrate.
  • the curing method includes, for example, a heat treatment and an exposure treatment.
  • the heat treatment conditions and light irradiation treatment conditions can be appropriately adjusted depending on the various components contained in the composition for forming a hard coat layer.
  • the type of light used for the light irradiation may be, for example, ultraviolet light or visible light, and the light source may be, for example, a high-pressure mercury lamp.
  • the integrated light quantity during light irradiation is preferably from 100 to 10,000 mJ/cm 2 , and more preferably from 100 to 5,000 mJ/cm 2 , from the viewpoints of productivity and curability of the coating film.
  • the process for forming the anti-reflective layer can be a dry process such as vacuum deposition, sputtering, ion plating, ion beam assisted deposition, or CVD.
  • the method for manufacturing a spectacle lens includes step 1 of pressing a fixing member against a metal layer of a laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order to fix the laminate, and grinding the periphery of the laminate, and step 2 of removing the metal layer in the ground laminate, wherein the metal layer contains a specific metal.
  • the laminate in the method for manufacturing eyeglass lenses is the same as the laminate described above, and the preferred embodiment is also the same.
  • Step 1 is a step of processing the laminate into a predetermined shape by grinding the periphery of the laminate, which is a so-called bead grinding step. Grinding can be performed using a known grinding device.
  • FIG. 2 is a schematic diagram of the grinding device 300 in step 1, and step 1 will be described in detail with reference to FIG.
  • the laminate 200 is placed between the fixing member 60 and the lens processing shaft 52 so that the fixing member 60 is in contact with the metal layer 40 of the laminate 200, and the fixing member 60 is pressed against the laminate 200 to fix it. That is, the laminate 200 is pressed and fixed by the fixing member 60 and the lens processing shaft 52. Also, in Fig.
  • the fixing member 60 has the lens processing shaft 51, the lens lock cap 30 fixed to the tip of the lens processing shaft 51, and the adhesive tape 20 attached to the surface of the lens lock cap 30, and the surface of the adhesive tape 20 opposite to the surface of the lens lock cap 30 is in contact with the metal layer of the laminate 200, but is not limited to such an embodiment.
  • An example of the grinding device 300 is LE-9000X (manufactured by NIDEK).
  • An example of the adhesive tape 20 is LEAPIII (manufactured by 3M).
  • the grinding method in step 1 may be, for example, the beveling process described in JP-A-2007-156226, JP-A-2003-141607, and JP-A-2007-505937.
  • Step 2 is a step of removing the metal layer in the ground laminate.
  • Methods for removing the metal layer include, for example, a method for removing the metal layer by tape peeling, a method for removing the metal layer using a release agent, a dry wiping method, and a combination of these.
  • the method for removing the metal layer by tape peeling or the method for removing the metal layer using a release agent are preferred.
  • An example of the dry wiping method is to rub the metal layer with a wipe.
  • An example of the tape peeling method is a method in which a metal layer is peeled off using a known tape.
  • the release agent include organic solvents such as alcohol solvents, water, and mixtures thereof, and alcohol solvents are preferred.
  • the release agent may contain an anionic surfactant, a cationic surfactant, and/or an amphoteric surfactant.
  • the stripping agent may be acidic, neutral or alkaline.
  • the laminates used in Examples 1 to 3 were prepared in the following manner.
  • ECC product name, manufactured by Nikon-Essilor
  • the eyeglass lens has an eyeglass lens substrate (diameter 70 mm, ⁇ 10.00D) with a refractive index of 1.60, a primer layer, a hard coat layer, an anti-reflection layer, and a water-repellent layer in this order.
  • an aluminum layer having a purity of 99% by mass or more was formed on the water-repellent layer of the eyeglass lens 1 by thermal evaporation using a physical vapor deposition apparatus (BC-P: manufactured by Synchron, or 1200-DLX2: manufactured by Satisloh) while adjusting the thickness so as to obtain the luminous transmittance shown in the table below, thereby obtaining a laminate 1.
  • BC-P physical vapor deposition apparatus
  • 1200-DLX2 manufactured by Satisloh
  • Laminates 2 and 3 were formed by adjusting the thickness of the aluminum layer with a purity of 99% by mass or more on the water-repellent layer of eyeglass lens 1, with reference to the procedure for laminate 1 described above, so as to achieve the luminous transmittance shown in the table below.
  • the eyeglass lens used in Comparative Example 1 was used for evaluation as is, without forming an aluminum layer on eyeglass lens 1.
  • Luminous transmittance of laminate The luminous transmittance of the laminate was measured using a spectrometer (LED spectrometer, manufactured by Fuji Kohden Kogyo Co., Ltd.).
  • Step 1 was carried out using the obtained laminate or eyeglass lens, and the axial deviation and horizontal deviation after grinding were evaluated.
  • the optical center of the laminate was identified using a lens meter (LM-1200, manufactured by Nidek Co., Ltd.), and a total of three points, including the optical center, were marked on the surface of the metal layer of the laminate so as to be equidistant on any line passing through the optical center on the surface of the metal layer.
  • LM-1200 manufactured by Nidek Co., Ltd.
  • a double-sided tape (LEAP III, manufactured by 3M Co., Ltd.) was attached to the laminate using a lens blocker (CE-1, manufactured by Nidek Co., Ltd.) with a point shifted from the optical center by the amount of eccentricity (a point shifted from the optical center by 5 mm on a line passing through the above three points), and a lens lock cap was further attached on top of the double-sided tape.
  • the lens lock cap with the laminate attached was fitted to one of the lens processing shafts of the edging machine, and then the laminate was sandwiched and fixed between the lens lock cap and the other processing shaft, and the edging process was performed with the eccentricity set to zero on the edging machine side.
  • the equipment and tools used for the edging process are listed below.
  • the edging process was also performed on the eyeglass lenses using the same procedure as for the laminate.
  • ⁇ Beveling machine LE-9000X (manufactured by NIDEK), chuck pressure value: 50 kg Lens shape: Nikon Classico, product number 9018 (approximately octagonal shape, 48 mm wide, 30 mm tall) - Lens lock cap: Smallest size cap (manufactured by NIDEK)
  • the metal layer of the laminate ground in the evaluation of the axial deviation and the horizontal deviation was removed using tape stripping or ethanol.
  • Nichiban 405 cellophane tape (width 18 mm, length 10 mm) was applied to the metal layer and the tape was peeled off three times. After this, the metal layer remaining on the eyeglass lens was visually inspected and it was found that the metal layer was almost completely removed in all examples.
  • the metal layer was rubbed several times with a wipe soaked in ethanol, and the metal layer was completely removed in all Examples, and the metal layer was removed more cleanly than by the tape peeling method described above.
  • the thickness of the metal layer was measured using a quartz crystal film thickness gauge to determine the thickness of the metal layer in each laminate before grinding.
  • the numerical values for axial deviation and horizontal deviation indicate the absolute value of the amount of deviation.

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present disclosure addresses the problem of providing a laminate that can be polished with small axial and horizontal deviations. This laminate has an eyeglass lens substrate, a water-repellent layer, and a metal layer in this order. The metal layer contains at least one selected from the group consisting of aluminum, zinc, copper, and nickel.

Description

積層体、眼鏡レンズの製造方法Laminate and method for manufacturing eyeglass lenses
 本開示は、積層体及び眼鏡レンズの製造方法に関する。 This disclosure relates to a method for manufacturing a laminate and an eyeglass lens.
 特許文献1には、「撥油コートされたレンズを、玉摺加工機により各種玉型へ玉摺り加工する玉摺加工方法であって、予め被加工レンズの両面に、厚さが10~100μmであり、ヤング率が1Gpa以上であるポリマーフィルム表面にシリコン系粘着剤がコートされている粘着剤付テープを貼り付け、その後、前記玉摺加工機にセットする工程を有することを特徴とする撥油コート付き眼鏡レンズの玉摺加工方法。」が開示されている。 Patent document 1 discloses "a method for edging an oil-repellent coated lens into various edging shapes using an edging machine, the method comprising the steps of attaching adhesive tape, which is made of a polymer film having a thickness of 10 to 100 μm and a Young's modulus of 1 GPa or more and has a silicone adhesive coated surface, to both sides of the lens to be processed, and then setting the lens in the edging machine."
特開2004-347660号公報JP 2004-347660 A
 本開示は、眼鏡レンズ基材、撥水層及び金属層をこの順に有する、積層体であって、金属層が、アルミニウム、亜鉛、銅及びニッケルからなる群から選択される少なくとも1種を含む、積層体に関する(実施態様1)。
 本開示の積層体を用いれば、軸偏位及び水平偏位が小さく研削できる。
The present disclosure relates to a laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order, wherein the metal layer contains at least one selected from the group consisting of aluminum, zinc, copper, and nickel (embodiment 1).
The laminate of the present disclosure can be ground with small axial and horizontal deviations.
 また、本開示は、眼鏡レンズ基材、撥水層及び金属層をこの順に有する積層体の金属層に固定部材を押し当てて積層体を固定して、積層体の周縁を研削する工程1と、研削された積層体中の金属層を除去する工程2とを含み、金属層が、アルミニウム、亜鉛、銅及びニッケルからなる群から選択される少なくとも1つを含む、眼鏡レンズの製造方法にも関する(実施態様2)。 The present disclosure also relates to a method for manufacturing a spectacle lens, comprising step 1 of pressing a fixing member against the metal layer of a laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order to fix the laminate and grinding the periphery of the laminate, and step 2 of removing the metal layer in the ground laminate, the metal layer including at least one selected from the group consisting of aluminum, zinc, copper, and nickel (embodiment 2).
積層体の断面模式図である。FIG. 2 is a schematic cross-sectional view of a laminate. 研削装置の一部部分の概略図である。FIG. 2 is a schematic view of a portion of a grinding apparatus.
 以下、本開示の積層体について詳述する。
 本明細書において、「~」とは、その前後に記載される数値を下限値及び上限値として含むことを意味する。
The laminate of the present disclosure will be described in detail below.
In this specification, the use of "to" means that the numerical values before and after it are included as the lower limit and upper limit.
〔第1実施形態:積層体〕
 積層体は、積層体中の金属層に固定部材を押し当てて積層体を固定して、研削されるために用いられることが好ましい。言い換えると、後述する眼鏡レンズの製造方法における工程1に用いられることが好ましい。
 図1は、積層体100の断面模式図である。積層体100は、眼鏡レンズ基材2上に反射防止層4を有し、上記反射防止層4上に撥水層6を有し、上記撥水層6上に金属層8を有する。なお、積層体100は、反射防止層4を有していなくてもよい。また、積層体100は、後述するプライマー層及び/又は後述するハードコート層を更に有していてもよい。
 なお、図1の積層体100とは異なり、積層体は、眼鏡レンズ基材の一方の表面のみに撥水層及び金属層を有していてもよいし、眼鏡レンズ基材の両面に撥水層及び金属層を有していてもよい。
[First embodiment: laminate]
The laminate is preferably used to be ground by pressing a fixing member against the metal layer in the laminate to fix the laminate, in other words, it is preferably used in step 1 of the manufacturing method of a spectacle lens described later.
1 is a cross-sectional schematic diagram of a laminate 100. The laminate 100 has an antireflection layer 4 on a spectacle lens substrate 2, a water-repellent layer 6 on the antireflection layer 4, and a metal layer 8 on the water-repellent layer 6. The laminate 100 does not necessarily have to have the antireflection layer 4. The laminate 100 may further have a primer layer described later and/or a hard coat layer described later.
Unlike the laminate 100 in FIG. 1, the laminate may have a water-repellent layer and a metal layer on only one surface of the eyeglass lens substrate, or may have a water-repellent layer and a metal layer on both surfaces of the eyeglass lens substrate.
 積層体の視感透過率は、100%未満が好ましく、90%以下がより好ましく、88%以下が更に好ましい。下限は、0%以上が好ましく、10%以上がより好ましく、20%以上が更に好ましい。
 視感透過率を調整する方法としては、例えば、積層体が有する各層(例えば、金属層等)の厚みを調整する方法が挙げられる。
 視感透過率は、波長380~780nmにおける透過率の平均値であり、スペクトロメーターを用いて測定できる。
The luminous transmittance of the laminate is preferably less than 100%, more preferably 90% or less, and even more preferably 88% or less. The lower limit is preferably 0% or more, more preferably 10% or more, and even more preferably 20% or more.
The luminous transmittance can be adjusted, for example, by adjusting the thickness of each layer (for example, a metal layer) in the laminate.
The luminous transmittance is the average value of the transmittance in the wavelength range of 380 to 780 nm, and can be measured using a spectrometer.
<眼鏡レンズ基材>
 眼鏡レンズ基材としては、例えば、有機系材料又は無機系材料から構成される眼鏡レンズ基材が挙げられ、有機系材料から構成される眼鏡レンズ基材(プラスチックレンズ基材等)が好ましい。
 眼鏡レンズ基材としては、例えば、凸面及び凹面共に光学的に仕上げ、所望の度数に合わせて成形されるフィニッシュレンズ、凸面のみが光学面(例えば、球面、回転対象非球面及び累進面等)として仕上げられているセミフィニッシュレンズ、及び、セミフィニッシュレンズの凹面が装用者の処方に合わせて加工研磨されたレンズが挙げられる。
 有機系材料としては、例えば、アクリル系樹脂、メタクリル系樹脂、チオウレタン系樹脂、アリル系樹脂、エピスルフィド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリエ-テルサルホン系樹脂、ポリ4-メチルペンテン-1系樹脂、ジエチレングリコールビスアリルカーボネート系樹脂(CR-39)及びポリ塩化ビニル系樹脂が挙げられる。
<Eyeglass lens substrate>
Examples of the spectacle lens substrate include spectacle lens substrates made of organic or inorganic materials, and spectacle lens substrates made of organic materials (such as plastic lens substrates) are preferred.
Examples of spectacle lens substrates include finished lenses in which both the convex and concave surfaces are optically finished and molded to match a desired dioptric power, semi-finished lenses in which only the convex surface is finished as an optical surface (e.g., a spherical surface, a rotationally symmetric aspheric surface, a progressive surface, etc.), and semi-finished lenses in which the concave surface is processed and polished to match the wearer's prescription.
Examples of organic materials include acrylic resins, methacrylic resins, thiourethane resins, allyl resins, episulfide resins, polycarbonate resins, polyurethane resins, polyester resins, polystyrene resins, polyethersulfone resins, poly-4-methylpentene-1 resins, diethylene glycol bisallyl carbonate resins (CR-39), and polyvinyl chloride resins.
 眼鏡レンズ基材の厚みは、取り扱い性の点で、1~30mmが好ましい。
 眼鏡レンズ基材は、透光性を有していれば、不透明であってもよく、着色されていてもよい。
The thickness of the spectacle lens substrate is preferably 1 to 30 mm from the viewpoint of ease of handling.
The spectacle lens substrate may be opaque or colored so long as it has light-transmitting properties.
<撥水層>
 積層体は、眼鏡レンズ基材上に撥水層を有する。
 撥水層は、有機ケイ素化合物、その加水分解物及びその加水分解縮合物からなる群から選択される少なくとも1種を含むことが好ましい。
 有機ケイ素化合物の加水分解物とは、有機ケイ素化合物が加水分解性基を有し、有機ケイ素化合物中の加水分解性基が加水分解して生成する化合物を意味する。また、有機ケイ素化合物の加水分解物は、有機ケイ素化合物中の全ての加水分解性基が加水分解した完全加水分解物、一部の加水分解性基が分解した部分加水分解物、及び、これらの混合物のいずれであってもよい。
 有機ケイ素化合物の加水分解縮合物とは、有機ケイ素化合物が加水分解性基を有し、有機ケイ素化合物の加水分解物が縮合して生成する化合物を意味する。また、有機ケイ素化合物の加水分解縮合物は、加水分解物中の全ての加水分解した基が縮合した完全加水分解縮合物、一部の加水分解した基のみが縮合した部分加水分解縮合物、及び、これらの混合物のいずれであってもよい。
<Water-repellent layer>
The laminate has a water-repellent layer on a spectacle lens substrate.
The water-repellent layer preferably contains at least one selected from the group consisting of organosilicon compounds, their hydrolysates, and their hydrolyzed condensates.
The hydrolyzate of an organosilicon compound means a compound that is generated by hydrolyzing the hydrolyzable group in an organosilicon compound that has a hydrolyzable group. The hydrolyzate of an organosilicon compound may be a complete hydrolyzate in which all the hydrolyzable groups in the organosilicon compound are hydrolyzed, a partial hydrolyzate in which some of the hydrolyzable groups are decomposed, or a mixture thereof.
The hydrolysis condensate of an organosilicon compound means a compound that is produced by condensing the hydrolysis product of an organosilicon compound having a hydrolyzable group.The hydrolysis condensate of an organosilicon compound may be a complete hydrolysis condensate in which all the hydrolyzed groups in the hydrolysis product are condensed, a partial hydrolysis condensate in which only a part of the hydrolysis groups are condensed, or a mixture thereof.
 有機ケイ素化合物としては、例えば、シラン化合物、シラザン化合物、シラノール化合物、シロキサン化合物、ケイ酸塩化合物及びシリルエステル化合物が挙げられ、シラン化合物が好ましい。 Organosilicon compounds include, for example, silane compounds, silazane compounds, silanol compounds, siloxane compounds, silicate compounds, and silyl ester compounds, with silane compounds being preferred.
 加水分解性基としては、例えば、アルコキシ基、ハロゲン原子、シアノ基、アセトキシ基及びイソシアネート基が挙げられる。 Examples of hydrolyzable groups include alkoxy groups, halogen atoms, cyano groups, acetoxy groups, and isocyanate groups.
 有機ケイ素化合物は、フッ素原子含有基を有することが好ましい。
 フッ素原子含有基としては、例えば、パーフルオロカーボン構造を有する基、及び、パーフルオロポリエーテル構造を有する基が挙げられる。
The organosilicon compound preferably has a fluorine atom-containing group.
Examples of the fluorine atom-containing group include a group having a perfluorocarbon structure and a group having a perfluoropolyether structure.
 有機ケイ素化合物としては、例えば、国際公開第2020/039795号、米国特許第4410563号、欧州特許第0203730号、欧州特許第749021号、欧州特許第844265号及び欧州特許第933377号に記載の有機ケイ素化合物が挙げられる。 Examples of the organosilicon compound include those described in WO 2020/039795, U.S. Pat. No. 4,410,563, EP 0,203,730, EP 749,021, EP 844,265, and EP 933,377.
 撥水層の厚みは、1~1000nmが好ましい。 The thickness of the water-repellent layer is preferably 1 to 1000 nm.
<金属層>
 積層体は、撥水層上に金属層を有する。
 積層体は、撥水層に隣接して金属層を有することが好ましい。
 積層体が金属層を有する場合、後述する工程1における固定部材との密着性に優れるため、積層体を研削する際に、軸偏位等が小さく所望の形状に研削しやすい。また、金属層は、研削後に除去される層である。
<Metal Layer>
The laminate has a metal layer on a water-repellent layer.
The laminate preferably has a metal layer adjacent to the water-repellent layer.
When the laminate has a metal layer, the metal layer has excellent adhesion to the fixing member in step 1 described below, and therefore, when the laminate is ground, the metal layer is easily ground into a desired shape with little axial deviation, etc. Furthermore, the metal layer is a layer that is removed after grinding.
 金属層は、アルミニウム、亜鉛、銅及びニッケルからなる群から選択される少なくとも1種(以下、「特定金属」ともいう。)を含み、アルミニウムを含むことが好ましい。
 特定金属は、純金属及び合金のいずれであってもよく、純金属が好ましい。
 金属層は、特定金属を含んでいれば、他の金属を含んでいてもよい。他の金属としては、例えば、公知の金属が挙げられる。
The metal layer contains at least one metal selected from the group consisting of aluminum, zinc, copper and nickel (hereinafter also referred to as the "specific metal"), and preferably contains aluminum.
The specific metal may be either a pure metal or an alloy, with a pure metal being preferred.
As long as the metal layer contains the specific metal, it may contain other metals, such as known metals.
 特定金属(好ましくは、アルミニウム)の含有量は、金属層の全質量に対して、50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上が更に好ましく、99質量%以上が特に好ましい。上限は、100質量%以下が好ましい。 The content of the specific metal (preferably aluminum) is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 95% by mass or more, and particularly preferably 99% by mass or more, based on the total mass of the metal layer. The upper limit is preferably 100% by mass or less.
 金属層の厚みは、0.1~200.0nmが好ましく、1.0~100.0nmがより好ましく、5.0~80.0nmが更に好ましい。 The thickness of the metal layer is preferably 0.1 to 200.0 nm, more preferably 1.0 to 100.0 nm, and even more preferably 5.0 to 80.0 nm.
<その他層>
 積層体は、上記層以外にその他層を有していてもよい。
 その他層としては、例えば、プライマー層、ハードコート層、反射防止層及び中間層が挙げられる。積層体が中間層を有する場合、積層体は撥水層の金属層とは反対側に中間層を有することが好ましい。
 積層体がその他層を有する場合、積層体は、更に、眼鏡レンズ基材と撥水層との間に、眼鏡レンズ基材側から、プライマー層、ハードコート層及び反射防止層をこの順に有することが好ましい。
<Others>
The laminate may have other layers in addition to the above layers.
Examples of the other layers include a primer layer, a hard coat layer, an anti-reflection layer, and an intermediate layer. When the laminate has an intermediate layer, the laminate preferably has the intermediate layer on the opposite side of the water-repellent layer to the metal layer.
When the laminate has other layers, it is preferable that the laminate further has a primer layer, a hard coat layer and an antireflection layer, in this order from the eyeglass lens substrate side, between the eyeglass lens substrate and the water-repellent layer.
 プライマー層は、ハードコート層の眼鏡レンズ基材に対する密着性を向上させる層である。
 プライマー層は、樹脂を含むことが好ましく、ウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ビスマレイミド系樹脂又はポリオレフィン系樹脂を含むことがより好ましい。
 プライマー層の厚みは、0.3~2μmが好ましい。
The primer layer is a layer that improves the adhesion of the hard coat layer to the eyeglass lens substrate.
The primer layer preferably contains a resin, and more preferably contains a urethane-based resin, an epoxy-based resin, a phenol-based resin, a polyimide-based resin, a polyester-based resin, a bismaleimide-based resin, or a polyolefin-based resin.
The thickness of the primer layer is preferably 0.3 to 2 μm.
 ハードコート層は、眼鏡レンズ基材上に配置される層であり、眼鏡レンズ基材に耐傷性を付与する層である。
 ハードコート層としては、例えば、有機ハードコート層、無機ハードコート層及び有機-無機ハイブリッドハードコート層が挙げられる。
 ハードコート層の厚みは、1.0~20.0μmが好ましく、1.5~15.0μmがより好ましい。
The hard coat layer is a layer disposed on the spectacle lens substrate, and is a layer that imparts scratch resistance to the spectacle lens substrate.
Examples of the hard coat layer include an organic hard coat layer, an inorganic hard coat layer, and an organic-inorganic hybrid hard coat layer.
The thickness of the hard coat layer is preferably from 1.0 to 20.0 μm, and more preferably from 1.5 to 15.0 μm.
 ハードコート層形成用組成物は、無機化合物、重合開始剤及び有機溶剤からなる群から選択される少なくとも1種を含むことが好ましい。
 無機化合物としては、例えば、無機酸化物及びシルセスキオキサンが挙げられる。
The composition for forming a hard coat layer preferably contains at least one selected from the group consisting of an inorganic compound, a polymerization initiator, and an organic solvent.
Inorganic compounds include, for example, inorganic oxides and silsesquioxanes.
 無機酸化物は、金属酸化物粒子が好ましい。
 金属酸化物粒子としては、例えば、Ti、Zr、Si、Al、Sn、Sb、Ta、Ce、La、Fe、Zn、W及びInからなる群から選択される少なくとも1種の金属の酸化物粒子、並び、それらの複合金属酸化物粒子が挙げられる。複合金属酸化物粒子とは、2種以上の金属(金属原子)を含む酸化物粒子である。
 無機酸化物粒子は、SiO(酸化ケイ素)、Al(酸化アルミニウム)、SnO(酸化スズ)、ZrO(酸化ジルコニウム)及びTiO(酸化チタン)からなる群から選択される少なくとも1種を含むことが好ましく、SiO及びZrOからなる群から選択される少なくとも1種を含むことがより好ましい。
The inorganic oxide is preferably a metal oxide particle.
Examples of the metal oxide particles include oxide particles of at least one metal selected from the group consisting of Ti, Zr, Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, and In, and composite metal oxide particles thereof. Composite metal oxide particles are oxide particles containing two or more metals (metal atoms).
The inorganic oxide particles preferably contain at least one selected from the group consisting of SiO2 (silicon oxide), Al2O3 (aluminum oxide), SnO2 (tin oxide), ZrO2 (zirconium oxide) and TiO2 (titanium oxide), and more preferably contain at least one selected from the group consisting of SiO2 and ZrO2 .
 シルセスキオキサンとは、アルコキシシラン、クロロシラン及びシラノール等の3官能性シラン化合物を加水分解することで得られるシラン化合物である。 Silsesquioxanes are silane compounds obtained by hydrolysis of trifunctional silane compounds such as alkoxysilanes, chlorosilanes, and silanols.
 反射防止層は、単層構造及び多層構造のいずれであってもよい。
 反射防止層としては、無機反射防止層が好ましい。無機反射防止層とは、無機化合物で構成される反射防止層を意味する。
 多層構造の反射防止層は、高屈折率層と低屈折率層とを交互に積層した構造であってもよい。
 高屈折率層は、チタン、ジルコン、アルミニウム、ニオブ、タンタル又はランタンの酸化物を含むことが好ましい。
 低屈折率層は、シリカ化合物を含むことが好ましい。
 反射防止層の厚みは、0.2~3.0μmが好ましく、0.3~2.0μmがより好ましい。
The antireflection layer may have either a single-layer structure or a multi-layer structure.
The antireflection layer is preferably an inorganic antireflection layer, which means an antireflection layer made of an inorganic compound.
The multi-layered antireflection layer may have a structure in which high refractive index layers and low refractive index layers are alternately laminated.
The high refractive index layer preferably comprises an oxide of titanium, zirconium, aluminum, niobium, tantalum, or lanthanum.
The low refractive index layer preferably contains a silica compound.
The thickness of the antireflection layer is preferably from 0.2 to 3.0 μm, and more preferably from 0.3 to 2.0 μm.
〔積層体の製造方法〕
 積層体の製造方法としては、例えば、公知の製造方法が挙げられる。
 積層体の製造方法としては、眼鏡レンズ基材上に撥水層を形成する工程と、上記撥水層上に金属層を形成する工程とを含む、積層体の製造方法が好ましい。
[Method for producing laminate]
The laminate can be produced, for example, by a known production method.
The method for producing the laminate is preferably a method for producing the laminate including a step of forming a water-repellent layer on a spectacle lens substrate, and a step of forming a metal layer on the water-repellent layer.
 撥水層を形成する工程としては、眼鏡レンズ基材上に撥水層形成用組成物を塗布して硬化する工程が好ましい。
 撥水層形成用組成物の塗布方法としては、例えば、ディップコート法、ロールコート法、バーコート法、スピンコート法、スプレーコート法、ダイコート法及びグラビアコート法が挙げられる。
 硬化方法としては、例えば、乾燥方法が挙げられ、乾燥する際に加熱しても加熱しなくてもよい。
 撥水層形成用組成物は、上述した撥水層が含み得る各種成分を含む組成物であり、更に有機溶剤を含むことが好ましい。
The step of forming the water-repellent layer is preferably a step of applying a composition for forming a water-repellent layer onto a spectacle lens substrate and curing the composition.
Examples of methods for applying the composition for forming a water-repellent layer include dip coating, roll coating, bar coating, spin coating, spray coating, die coating, and gravure coating.
The curing method may be, for example, a drying method, and the drying may or may not involve heating.
The composition for forming the water-repellent layer is a composition containing the various components that the water-repellent layer can contain, and preferably further contains an organic solvent.
 金属層を形成する工程としては、例えば、物理気相成長法及び化学気相成長法等の乾式成膜法、並びに、塗布法等の湿式成膜法が挙げられ、物理気相成長法が好ましい。
 物理気相成長法としては、熱蒸着法及び電子ビーム蒸着法等の蒸着法、並びに、スパッタリング法が挙げられ、積層体(例えば、撥水層等)へのダメージを軽減できる点で、熱蒸着法が好ましい。
 また、乾式成膜法及び湿式成膜法は、常圧下、減圧下及び高圧下のいずれで実施してもよく、減圧下で実施することが好ましい。
Examples of the process for forming the metal layer include dry film formation methods such as physical vapor deposition and chemical vapor deposition, and wet film formation methods such as coating, with physical vapor deposition being preferred.
Examples of physical vapor deposition include deposition methods such as thermal deposition and electron beam deposition, and sputtering, with thermal deposition being preferred since it can reduce damage to the laminate (e.g., the water-repellent layer, etc.).
The dry film-forming method and the wet film-forming method may be carried out under normal pressure, reduced pressure, or high pressure, and are preferably carried out under reduced pressure.
 また、積層体の製造方法は、眼鏡レンズ基材上にプライマー層を形成する工程と、上記プライマー層上にハードコート層を形成する工程と、ハードコート層上に反射防止層を形成する工程と、反射防止層上に撥水層を形成する工程と、撥水層上に金属層を形成する工程とを含むことも好ましい。
 撥水層を形成する工程及び金属層を形成する工程は、上述したとおりである。
It is also preferable that the method for producing the laminate includes the steps of forming a primer layer on a spectacle lens substrate, forming a hard coat layer on the primer layer, forming an anti-reflection layer on the hard coat layer, forming a water-repellent layer on the anti-reflection layer, and forming a metal layer on the water-repellent layer.
The step of forming the water-repellent layer and the step of forming the metal layer are as described above.
 プライマー層を形成する工程は、眼鏡レンズ基材上にプライマー層形成用組成物を塗布する方法が好ましい。
 プライマー層を形成する工程は、乾燥工程を含んでいてもよい。乾燥する際に加熱しても加熱しなくてもよい。
The step of forming the primer layer is preferably a method of applying a primer layer-forming composition onto the spectacle lens substrate.
The step of forming the primer layer may include a drying step. The drying may be performed with or without heating.
 ハードコート層を形成する工程は、プライマー層上にハードコート層形成用組成物を塗布して硬化する方法が好ましい。
 ハードコート層形成用組成物の塗布方法としては、例えば、上述した撥水層形成用組成物の塗布方法が挙げられる。例えば、ディッピングコート法を用いる場合、ハードコート層形成用組成物にプライマー層を有する眼鏡レンズ基材を浸漬し、その後、上記プライマー層を有する眼鏡レンズ基材を引き上げて乾燥することにより、上記眼鏡レンズ基材のプライマー層上にハードコート層形成用組成物由来の塗膜を形成できる。
The step of forming the hard coat layer is preferably a method of applying a composition for forming a hard coat layer onto the primer layer and curing the composition.
The coating method of the composition for forming a hard coat layer can be, for example, the coating method of the composition for forming a water-repellent layer described above.For example, when using a dipping coating method, the spectacle lens substrate having a primer layer is immersed in the composition for forming a hard coat layer, and then the spectacle lens substrate having the primer layer is pulled up and dried, so that a coating film derived from the composition for forming a hard coat layer can be formed on the primer layer of the spectacle lens substrate.
 硬化方法としては、例えば、加熱処理及び露光処理が挙げられる。
 加熱処理条件及び光照射処理条件は、ハードコート層形成用組成物に含まれる各種成分によって適宜調整できる。
 光照射の際の光の種類としては、例えば、紫外線及び可視光線が挙げられる。光源としては、例えば、高圧水銀灯が挙げられる。
 光照射の際の積算光量は、生産性及び塗膜の硬化性の点で、100~10000mJ/cmが好ましく、100~5000mJ/cmがより好ましい。
The curing method includes, for example, a heat treatment and an exposure treatment.
The heat treatment conditions and light irradiation treatment conditions can be appropriately adjusted depending on the various components contained in the composition for forming a hard coat layer.
The type of light used for the light irradiation may be, for example, ultraviolet light or visible light, and the light source may be, for example, a high-pressure mercury lamp.
The integrated light quantity during light irradiation is preferably from 100 to 10,000 mJ/cm 2 , and more preferably from 100 to 5,000 mJ/cm 2 , from the viewpoints of productivity and curability of the coating film.
 反射防止層を形成する工程は、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法及びCVD法等の乾式法を用いる方法が挙げられる。 The process for forming the anti-reflective layer can be a dry process such as vacuum deposition, sputtering, ion plating, ion beam assisted deposition, or CVD.
〔第2実施形態:眼鏡レンズの製造方法〕
 眼鏡レンズの製造方法は、眼鏡レンズ基材、撥水層及び金属層をこの順に有する積層体の金属層に固定部材を押し当てて積層体を固定して、積層体の周縁を研削する工程1と、研削された積層体中の金属層を除去する工程2とを含み、金属層が、特定金属を含む。
Second embodiment: manufacturing method of eyeglass lenses
The method for manufacturing a spectacle lens includes step 1 of pressing a fixing member against a metal layer of a laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order to fix the laminate, and grinding the periphery of the laminate, and step 2 of removing the metal layer in the ground laminate, wherein the metal layer contains a specific metal.
 眼鏡レンズの製造方法における積層体は、上述した積層体と同じであり、好適態様も同じである。 The laminate in the method for manufacturing eyeglass lenses is the same as the laminate described above, and the preferred embodiment is also the same.
 工程1は、積層体の周縁を研削することで、所定の形状に積層体を加工する工程であり、いわゆる玉摺り加工工程である。研削は、公知の研削装置を用いて実施できる。
 図2は、工程1における研削装置300の模式図であり、図2を参照しながら工程1について詳述する。
 まず、固定部材60とレンズ加工軸52との間に積層体200を、積層体200の金属層40に固定部材60が接するように配置し、固定部材60を押し当てて積層体200を固定する。つまり、積層体200は、固定部材60とレンズ加工軸52とに押圧され、固定される。また、図2において、固定部材60は、レンズ加工軸51と、レンズ加工軸51の先端に固定されたレンズロックキャップ30と、レンズロックキャップ30の表面に貼合された粘着テープ20とを有し、粘着テープ20のレンズロックキャップ30の表面とは反対側の表面と積層体200の金属層とが接しているが、そのような態様に限定されない。
Step 1 is a step of processing the laminate into a predetermined shape by grinding the periphery of the laminate, which is a so-called bead grinding step. Grinding can be performed using a known grinding device.
FIG. 2 is a schematic diagram of the grinding device 300 in step 1, and step 1 will be described in detail with reference to FIG.
First, the laminate 200 is placed between the fixing member 60 and the lens processing shaft 52 so that the fixing member 60 is in contact with the metal layer 40 of the laminate 200, and the fixing member 60 is pressed against the laminate 200 to fix it. That is, the laminate 200 is pressed and fixed by the fixing member 60 and the lens processing shaft 52. Also, in Fig. 2, the fixing member 60 has the lens processing shaft 51, the lens lock cap 30 fixed to the tip of the lens processing shaft 51, and the adhesive tape 20 attached to the surface of the lens lock cap 30, and the surface of the adhesive tape 20 opposite to the surface of the lens lock cap 30 is in contact with the metal layer of the laminate 200, but is not limited to such an embodiment.
 研削装置300としては、例えば、LE-9000X(ニデック社製)が挙げられる。
 粘着テープ20としては、例えば、LEAPIII(スリーエム社製)が挙げられる。
An example of the grinding device 300 is LE-9000X (manufactured by NIDEK).
An example of the adhesive tape 20 is LEAPIII (manufactured by 3M).
 次いで、固定部材60とレンズ加工軸52とを回転させることで積層体200を回転させながら、積層体200の周縁に、回転した砥石を押し当てることで所定の形状に研削できる。
 工程1における研削方法としては、例えば、特開2007-156226号公報、特開2003-141607号公報及び特開2007-505937号公報に記載の玉摺り加工が挙げられる。
Next, while rotating the laminate 200 by rotating the fixing member 60 and the lens processing shaft 52, a rotating grindstone is pressed against the periphery of the laminate 200, thereby grinding it into a predetermined shape.
The grinding method in step 1 may be, for example, the beveling process described in JP-A-2007-156226, JP-A-2003-141607, and JP-A-2007-505937.
 工程2は、研削された積層体中の金属層を除去する工程である。
 金属層の除去方法としては、例えば、テープ剥離により金属層を除去する方法、剥離剤を用いて金属層を除去する方法、乾拭きする方法及びこれらの組み合わせが挙げられ、金属層の効率的に除去できる点で、テープ剥離により金属層を除去する方法又は剥離剤を用いて金属層を除去する方法が好ましい。
 乾拭きとしては、例えば、ワイプを用いて金属層を擦る方法が挙げられる。
 テープ剥離としては、例えば、公知のテープを用いて金属層を剥離する方法が挙げられる。
 剥離剤としては、例えば、アルコール溶剤等の有機溶剤、水、及び、それらの混合液が挙げられ、アルコール溶剤が好ましい。剥離剤は、アニオン性界面活性剤、カチオン性界面活性剤及び/又は両性界面活性剤を含んでいてもよい。
 剥離剤は、酸性、中性及びアルカリ性のいずれであってもよい。
Step 2 is a step of removing the metal layer in the ground laminate.
Methods for removing the metal layer include, for example, a method for removing the metal layer by tape peeling, a method for removing the metal layer using a release agent, a dry wiping method, and a combination of these. In terms of efficient removal of the metal layer, the method for removing the metal layer by tape peeling or the method for removing the metal layer using a release agent are preferred.
An example of the dry wiping method is to rub the metal layer with a wipe.
An example of the tape peeling method is a method in which a metal layer is peeled off using a known tape.
Examples of the release agent include organic solvents such as alcohol solvents, water, and mixtures thereof, and alcohol solvents are preferred. The release agent may contain an anionic surfactant, a cationic surfactant, and/or an amphoteric surfactant.
The stripping agent may be acidic, neutral or alkaline.
 以下、本開示に関して実施例及び比較例によって更に詳しく説明するが、これらの実施例に制限されるものではない。  Below, the present disclosure will be explained in more detail using examples and comparative examples, but is not limited to these examples.
〔積層体の作製〕
 実施例1~3で用いた積層体は、以下の手順で作製した。
 眼鏡レンズ1として、ECC(商品名、ニコン・エシロール社製)を用いた。上記眼鏡レンズは、屈折率1.60の眼鏡レンズ基材(直径70mm、-10.00D)、プライマー層、ハードコート層、反射防止層及び撥水層をこの順に有する。
 更に、物理蒸着装置(BC-P:シンクロン社製、又は、1200-DLX2:Satisloh社製)を用いて熱蒸着法によって、下記表に示す視感透過率になるように、眼鏡レンズ1の撥水層上に純度99質量%以上のアルミニウム層の厚みを調整しながら形成し、積層体1を得た。なお、アルミニウム層を形成する際は、蒸着ボードとしてタングステン-タンタル合金製のボートを用い、減圧下(1×10-3~1×10-2Pa)で実施した。
[Preparation of Laminate]
The laminates used in Examples 1 to 3 were prepared in the following manner.
ECC (product name, manufactured by Nikon-Essilor) was used as the eyeglass lens 1. The eyeglass lens has an eyeglass lens substrate (diameter 70 mm, −10.00D) with a refractive index of 1.60, a primer layer, a hard coat layer, an anti-reflection layer, and a water-repellent layer in this order.
Furthermore, an aluminum layer having a purity of 99% by mass or more was formed on the water-repellent layer of the eyeglass lens 1 by thermal evaporation using a physical vapor deposition apparatus (BC-P: manufactured by Synchron, or 1200-DLX2: manufactured by Satisloh) while adjusting the thickness so as to obtain the luminous transmittance shown in the table below, thereby obtaining a laminate 1. When forming the aluminum layer, a boat made of a tungsten-tantalum alloy was used as the evaporation board, and the deposition was carried out under reduced pressure (1×10 -3 to 1×10 -2 Pa).
 積層体2及び3は、上記積層体1の手順を参考して、下記表に示す視感透過率になるように、眼鏡レンズ1の撥水層上に純度99質量%以上のアルミニウム層の厚みを調整しながら形成した。 Laminates 2 and 3 were formed by adjusting the thickness of the aluminum layer with a purity of 99% by mass or more on the water-repellent layer of eyeglass lens 1, with reference to the procedure for laminate 1 described above, so as to achieve the luminous transmittance shown in the table below.
 比較例1で用いた眼鏡レンズは、眼鏡レンズ1にアルミニウム層を形成せずに、そのまま評価に用いた。 The eyeglass lens used in Comparative Example 1 was used for evaluation as is, without forming an aluminum layer on eyeglass lens 1.
<評価>
(積層体の視感透過率)
 スペクトロメーター(LEDスペクトロメーター、富士光電工業社製)を用いて、積層体の視感透過率を測定した。
<Evaluation>
(Luminous transmittance of laminate)
The luminous transmittance of the laminate was measured using a spectrometer (LED spectrometer, manufactured by Fuji Kohden Kogyo Co., Ltd.).
(軸偏位及び水平偏位)
 得られた積層体又は眼鏡レンズを用いて工程1を実施し、研削後の軸偏位及び水平偏位を評価した。
 レンズメーター(LM-1200、ニデック社製)を用いて積層体の光学中心を特定し、金属層の表面上であってその光学中心を通るいずれかの直線上に光学中心を含めた計3点を等間隔になるように、積層体の金属層表面上に印点した。次いで、上記積層体をレンズブロッカー(CE-1、ニデック社製)を用いて、光学中心から偏心量分ずらした点(上記3点を通る直線上であって光学中心から5mmずらした点)を中心として両面テープ(LEAPIII、スリーエム社製)を貼り付け、更にその上にレンズロックキャップを貼り付けた。
 上記積層体が貼り付けられたレンズロックキャップを玉摺り加工機の一方のレンズ加工軸に嵌め込んだ後、レンズロックキャップと他方の加工軸の間に、積層体を挟み込んで固定し、玉摺り加工機側で偏芯量をゼロとして、玉摺り加工を行った。なお、玉摺り加工に用いた機器及び器具を以下に示す。また、眼鏡レンズについても上記積層体と同様の手順で、玉摺り加工を行った。
(axial and horizontal deviation)
Step 1 was carried out using the obtained laminate or eyeglass lens, and the axial deviation and horizontal deviation after grinding were evaluated.
The optical center of the laminate was identified using a lens meter (LM-1200, manufactured by Nidek Co., Ltd.), and a total of three points, including the optical center, were marked on the surface of the metal layer of the laminate so as to be equidistant on any line passing through the optical center on the surface of the metal layer. Next, a double-sided tape (LEAP III, manufactured by 3M Co., Ltd.) was attached to the laminate using a lens blocker (CE-1, manufactured by Nidek Co., Ltd.) with a point shifted from the optical center by the amount of eccentricity (a point shifted from the optical center by 5 mm on a line passing through the above three points), and a lens lock cap was further attached on top of the double-sided tape.
The lens lock cap with the laminate attached was fitted to one of the lens processing shafts of the edging machine, and then the laminate was sandwiched and fixed between the lens lock cap and the other processing shaft, and the edging process was performed with the eccentricity set to zero on the edging machine side. The equipment and tools used for the edging process are listed below. The edging process was also performed on the eyeglass lenses using the same procedure as for the laminate.
・玉摺り加工機:LE-9000 X(ニデック社製)、チャック圧値:50kg
・玉型:ニコンクラシオ、製品番号9018(横48mm、天地30mmの8角形近似形状)
・レンズロックキャップ:最小サイズキャップ(ニデック社製)
・Beveling machine: LE-9000X (manufactured by NIDEK), chuck pressure value: 50 kg
Lens shape: Nikon Classico, product number 9018 (approximately octagonal shape, 48 mm wide, 30 mm tall)
- Lens lock cap: Smallest size cap (manufactured by NIDEK)
 そして、研削後の積層体上の印点した上記3点の位置を、プロファイルプロジェクターV-16E(ニコン社製)により評価し、設計値からの軸偏位(回転軸ずれ量)及び水平偏位(平行軸ずれ量)を測定し、それぞれ以下の評価基準によって評価した。 Then, the positions of the three marked points on the laminate after grinding were evaluated using a profile projector V-16E (Nikon Corporation), and the axial deviation (rotational axis deviation) and horizontal deviation (parallel axis deviation) from the design values were measured and evaluated according to the following evaluation criteria.
-軸偏位の評価基準-
 「A」:軸偏位の絶対値が1.000°以下
 「B」:軸偏位の絶対値が1.000°超1.500°以下
 「C」:軸偏位の絶対値が1.500°超
-Evaluation criteria for axial deviation-
"A": The absolute value of the axial deviation is 1.000° or less. "B": The absolute value of the axial deviation is more than 1.000° and less than 1.500°. "C": The absolute value of the axial deviation is more than 1.500°.
-水平偏位の評価基準-
 「A」:水平偏位の絶対値が0.500mm以下
 「B」:水平偏位の絶対値が0.500mm超1.000mm以下
 「C」:水平偏位の絶対値が1.000mm超
- Horizontal deviation evaluation criteria -
"A": Absolute value of horizontal deviation is 0.500 mm or less. "B": Absolute value of horizontal deviation is more than 0.500 mm and less than 1.000 mm. "C": Absolute value of horizontal deviation is more than 1.000 mm.
(金属層の除去性)
 上記軸偏位及び上記水平偏位の評価において研削された積層体の金属層を、テープ剥離又はエタノールを用いて金属層を除去した。
 テープ剥離においては、ニチバン405セロファンテープ(幅18mm、長さ10mm)を金属層に貼り付けてそのテープを剥離することを、3回実施した後の眼鏡レンズ上に残存する金属層を目視で確認したところ、いずれの実施例のおいても金属層をほぼ除去することができた。
 エタノールを用いた除去においては、エタノールを浸み込ませたワイプを用いて金属層を数回擦ったところ、いずれの実施例もおいて金属層を完全に除去することができ、上記テープ剥離よりも綺麗に金属層を除去できた。
(Metal layer removability)
The metal layer of the laminate ground in the evaluation of the axial deviation and the horizontal deviation was removed using tape stripping or ethanol.
In the tape peeling, Nichiban 405 cellophane tape (width 18 mm, length 10 mm) was applied to the metal layer and the tape was peeled off three times. After this, the metal layer remaining on the eyeglass lens was visually inspected and it was found that the metal layer was almost completely removed in all examples.
In the case of removal using ethanol, the metal layer was rubbed several times with a wipe soaked in ethanol, and the metal layer was completely removed in all Examples, and the metal layer was removed more cleanly than by the tape peeling method described above.
 表中、金属層の厚みは、水晶振動子式膜厚計を用いて研削前の各積層体における金属層の厚みを測定した。
 軸偏位及び水平偏位の各数値は、ずれ量の絶対値を示す。
In the table, the thickness of the metal layer was measured using a quartz crystal film thickness gauge to determine the thickness of the metal layer in each laminate before grinding.
The numerical values for axial deviation and horizontal deviation indicate the absolute value of the amount of deviation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本開示の積層体を用いる場合、軸偏位及び水平偏位が小さく研削できることが確認された。
 実施例1~3の比較から、積層体の視感透過率が90%以下である場合、水平偏位をより小さくできることが確認された。積層体の視感透過率は、金属層の厚みが厚くなるほど低下する。そのため、実施例1及び2の積層体は金属層が適切な厚みであり、積層体がより固定されやすかったため、水平偏位がより優れたと推定される。
As shown in Table 1, it was confirmed that when the laminate of the present disclosure was used, grinding could be performed with small axial deviation and horizontal deviation.
From the comparison of Examples 1 to 3, it was confirmed that the horizontal deviation can be made smaller when the luminous transmittance of the laminate is 90% or less. The luminous transmittance of the laminate decreases as the thickness of the metal layer increases. Therefore, it is presumed that the laminates of Examples 1 and 2 had a metal layer with an appropriate thickness, and the laminate was more easily fixed, which resulted in better horizontal deviation.
 2:眼鏡レンズ基材
 4:反射防止層
 6:撥水層
 8:金属層
 20:接着テープ
 30:レンズロックキャップ
 51、52:レンズ加工軸
 60:固定部材
 100、200:積層体
 300:研削装置
2: Glasses lens substrate 4: Anti-reflection layer 6: Water-repellent layer 8: Metal layer 20: Adhesive tape 30: Lens lock cap 51, 52: Lens processing shaft 60: Fixing member 100, 200: Laminate 300: Grinding device

Claims (7)

  1.  眼鏡レンズ基材、撥水層及び金属層をこの順に有する、積層体であって、
     前記金属層が、アルミニウム、亜鉛、銅及びニッケルからなる群から選択される少なくとも1種を含む、積層体。
    A laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order,
    The laminate, wherein the metal layer comprises at least one selected from the group consisting of aluminum, zinc, copper, and nickel.
  2.  前記金属層が、アルミニウムを含み、
     前記アルミニウムの含有量が、前記金属層の全質量に対して、95質量%以上である、請求項1に記載の積層体。
    the metal layer comprises aluminum;
    The laminate according to claim 1 , wherein the content of the aluminum is 95 mass % or more based on the total mass of the metal layer.
  3.  更に、前記眼鏡レンズ基材と前記撥水層との間に、
     前記眼鏡レンズ基材側から、プライマー層、ハードコート層及び反射防止層をこの順に有する、請求項1又は2に記載の積層体。
    Furthermore, between the eyeglass lens substrate and the water-repellent layer,
    3. The laminate according to claim 1, comprising a primer layer, a hard coat layer, and an antireflection layer in this order from the spectacle lens substrate side.
  4.  前記金属層に固定部材を押し当てて前記積層体を固定して、研削されるために用いられる、請求項1~3のいずれか1項に記載の積層体。 The laminate described in any one of claims 1 to 3 is used for grinding by pressing a fixing member against the metal layer to fix the laminate.
  5.  眼鏡レンズ基材、撥水層及び金属層をこの順に有する積層体の前記金属層に固定部材を押し当てて前記積層体を固定して、前記積層体の周縁を研削する工程1と、
     研削された前記積層体中の前記金属層を除去する工程2とを含み、
     前記金属層が、アルミニウム、亜鉛、銅及びニッケルからなる群から選択される少なくとも1つを含む、眼鏡レンズの製造方法。
    A step 1 of pressing a fixing member against a metal layer of a laminate having a spectacle lens substrate, a water-repellent layer, and a metal layer in this order to fix the laminate, and grinding a periphery of the laminate;
    and step 2 of removing the metal layer in the ground laminate,
    The method for manufacturing a spectacle lens, wherein the metal layer includes at least one selected from the group consisting of aluminum, zinc, copper, and nickel.
  6.  前記金属層が、熱蒸着法によって形成される、請求項5に記載の眼鏡レンズの製造方法。 The method for manufacturing eyeglass lenses according to claim 5, wherein the metal layer is formed by thermal evaporation.
  7.  前記工程2において、テープ剥離により前記金属層を除去するか、又は、剥離剤を用いて前記金属層を除去する、請求項5又は6に記載の眼鏡レンズの製造方法。 The method for manufacturing eyeglass lenses according to claim 5 or 6, wherein in step 2, the metal layer is removed by tape peeling or by using a stripping agent.
PCT/JP2024/013575 2023-04-17 2024-04-02 Laminate and method for manufacturing eyeglass lens WO2024219214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023067210 2023-04-17
JP2023-067210 2023-04-17

Publications (1)

Publication Number Publication Date
WO2024219214A1 true WO2024219214A1 (en) 2024-10-24

Family

ID=93152790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/013575 WO2024219214A1 (en) 2023-04-17 2024-04-02 Laminate and method for manufacturing eyeglass lens

Country Status (1)

Country Link
WO (1) WO2024219214A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006297A (en) * 1998-06-18 2000-01-11 Dainippon Printing Co Ltd Gas barrier film and its manufacture, and laminated material in which gas barrier film is used
JP2005505427A (en) * 2001-05-17 2005-02-24 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Method for producing glass suitable for trimming, glass obtained thereby, and method for trimming the glass
JP2007156226A (en) * 2005-12-07 2007-06-21 Seiko Epson Corp Adhesive tape and lens shape processing method for spectacle lens
JP2010508541A (en) * 2006-10-31 2010-03-18 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical article having antifouling film
JP2013503456A (en) * 2009-08-31 2013-01-31 ポーラス パワー テクノロジーズ,エルエルシー Battery manufacturing using laminated assemblies
JP2013254161A (en) * 2012-06-08 2013-12-19 Nikon-Essilor Co Ltd Spectacle lens and method of processing the same
WO2022097751A1 (en) * 2020-11-09 2022-05-12 ホヤ レンズ タイランド リミテッド Spectacle lens and eyeglasses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006297A (en) * 1998-06-18 2000-01-11 Dainippon Printing Co Ltd Gas barrier film and its manufacture, and laminated material in which gas barrier film is used
JP2005505427A (en) * 2001-05-17 2005-02-24 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Method for producing glass suitable for trimming, glass obtained thereby, and method for trimming the glass
JP2007156226A (en) * 2005-12-07 2007-06-21 Seiko Epson Corp Adhesive tape and lens shape processing method for spectacle lens
JP2010508541A (en) * 2006-10-31 2010-03-18 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical article having antifouling film
JP2013503456A (en) * 2009-08-31 2013-01-31 ポーラス パワー テクノロジーズ,エルエルシー Battery manufacturing using laminated assemblies
JP2013254161A (en) * 2012-06-08 2013-12-19 Nikon-Essilor Co Ltd Spectacle lens and method of processing the same
WO2022097751A1 (en) * 2020-11-09 2022-05-12 ホヤ レンズ タイランド リミテッド Spectacle lens and eyeglasses

Similar Documents

Publication Publication Date Title
EP2718750B1 (en) Method for obtaining optical articles having superior abrasion resistant properties, and coated articles prepared according to such method
JP7210285B2 (en) Composition for forming hard coat layer, spectacle lens
JP4201603B2 (en) Method for producing glass suitable for trimming, glass obtained thereby, and method for trimming the glass
KR102246589B1 (en) Optical article with gradient photochromism
CN104884997B (en) Method for producing the optical article with improved antifouling properties
JP6257897B2 (en) Optical article and manufacturing method thereof
JP2020187188A (en) Spectacle lens
JP3834034B2 (en) Epoxy / acrylate based primer coating compositions and their use in the optical field
US20120262790A1 (en) Anti-reflective lenses and methods for manufacturing the same
CN107848229B (en) For be laminated include organic/inorganic layer interference coatings method and thus obtained article
WO2024219214A1 (en) Laminate and method for manufacturing eyeglass lens
CN106574987A (en) Optical lens comprising a protective removable film
US9625742B2 (en) Optical article comprising a precursor coating of an anti-fog coating and a temporary layer made of metal fluorides or compounds including magnesium and oxygen
JP6401184B2 (en) Edgeable ophthalmic lens comprising a hydrophobic bilayer and a temporary metal fluoride layer
JP2009109611A (en) Plastic spectacle lens with protective coat film
JP7519434B2 (en) Optical Components
JP2009106826A (en) Method of forming protective coating film
JP2005234311A (en) Optical element and method of manufacturing optical element
WO2024116961A1 (en) Method for manufacturing optical article
CN112198674B (en) Spectacle lens with different antifouling properties on both sides and method for producing the same
JPH095679A (en) Plastic lens for spectacles
WO2024142935A1 (en) Spectacle lens production method
JP2024101767A (en) Spectacle lens
JP2004287456A (en) Method for manufacturing plastic lens and plastic lens
JPH04110918A (en) Optical component