Nothing Special   »   [go: up one dir, main page]

WO2024216738A1 - Method, device and computer program product for wireless communication - Google Patents

Method, device and computer program product for wireless communication Download PDF

Info

Publication number
WO2024216738A1
WO2024216738A1 PCT/CN2023/100749 CN2023100749W WO2024216738A1 WO 2024216738 A1 WO2024216738 A1 WO 2024216738A1 CN 2023100749 W CN2023100749 W CN 2023100749W WO 2024216738 A1 WO2024216738 A1 WO 2024216738A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
group
antenna
wireless communication
array
Prior art date
Application number
PCT/CN2023/100749
Other languages
French (fr)
Inventor
Yihua Ma
Zhifeng Yuan
Shuqiang Xia
Chen BAI
Zhongbin WANG
Yuxin Wang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2023/100749 priority Critical patent/WO2024216738A1/en
Publication of WO2024216738A1 publication Critical patent/WO2024216738A1/en

Links

Definitions

  • This document is directed generally to wireless communications, and in particular to 5 th generation (5G) communications or 6 th generation (6G) communications.
  • ISAC Integrated Sensing and Communication
  • the antenna resource of the ISAC is still a topic to be discussed.
  • This document relates to methods, systems, and computer program products for a wireless communication.
  • the wireless communication apparatus includes: a first group of antennas operable to transmit a sensing signal in a sensing mode; a second group of antennas operable to receive an echo signal in the sensing mode; wherein the first and second group of antennas are operable to perform a wireless communication in a communication mode, and wherein the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
  • the wireless communication method includes: utilizing a first group of antennas to transmit a sensing signal in a sensing mode; utilizing a second group of antennas to receive an echo signal in the sensing mode; and utilizing the first and second group of antennas to perform a wireless communication in a communication mode; wherein the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
  • the first group of antennas is arranged in a dimension with a first antenna spacing therebetween
  • the second group of antennas is arranged in the dimension with a second antenna spacing therebetween
  • the first antenna spacing and the second antenna spacing are different.
  • one of the first and second groups of antennas has a uniform antenna spacing, and another one of the first and second groups of antennas has a non-uniform antenna spacing.
  • the first group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array
  • the second group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array, and antenna arrangements of the first and second groups of antennas are different.
  • a first radio frequency chain realization of the first group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware
  • a second radio frequency chain realization of the second group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware
  • the first and second radio frequency chain realizations are different.
  • direction ranges of the first and second groups of antennas are different.
  • the wireless communication apparatus further comprises a third group of antennas operable to perform the wireless communication in the communication mode and neither used to transmit the sensing signal nor receive the echo signal in the sensing mode.
  • the first and second group of antennas form a 2-level nested antenna array.
  • the first and second group of antennas are arranged on an antenna array, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
  • the antenna array is a rectangular antenna array, and the first group of antennas is arranged at one or more corners of the rectangular antenna array.
  • the first and second group of antennas are arranged on different antenna arrays, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
  • the first group of antennas is arranged at one or more corners of a rectangular antenna array.
  • the first group of antennas forms one or more antenna arrays on one or more first antenna panels and the second group of antennas is arranged on one or more second antenna panels.
  • the first group of antennas is controlled by a hybrid beamforming circuit
  • the second group of antennas is controlled by a digital beamforming circuit.
  • one of the first and second groups of antennas is arranged on an antenna panel and another one of the first and second groups of antennas is arranged on a radio stripe.
  • the present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of foregoing methods.
  • the present disclosure is not limited to the exemplary embodiments and applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
  • FIG. 1 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 2 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 3 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 5 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 9 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 10 a flowchart of wireless communication method according to an embodiment of the present disclosure.
  • Integrated sensing and communication is expected to provide enormous additional value to the communication system in the 6G era.
  • the communication schemes are designed primarily for communication purposes.
  • radar sensing operates in a different mode compared to communication. Incorporating radar sensing into existing communication schemes may result in performance losses. For instance, if two half-wavelength antenna arrays are used to implement a MIMO (Multiple-Input Multiple-Output) radar, the virtual antennas created by the MIMO radar may have many redundant elements (e.g., repetitive virtual antennas (represented as O in FIG. 1) ) . This can be considered a waste of antenna resources.
  • MIMO Multiple-Input Multiple-Output
  • full-duplex MIMO communication may be used for an ISAC system, and both the transmit and receive antenna arrays have half-wavelength spacing.
  • such a configuration may be suitable for wireless communication, but not well-suited for MIMO radar sensing.
  • a wireless communication apparatus e.g., an ISAC apparatus or system
  • the transmitter (TX) antennas and receiver (RX) antennas are different in at least one of antenna spacing, radio frequency (RF) , chain realization, antenna type, or antenna arrangement.
  • RF radio frequency
  • the wireless communication apparatus may have multiple antennas. In some embodiments, in the communication mode, the wireless communication apparatus may utilize the antennas for the wireless communication, such as transmitting information to or receiving information from another wireless communication apparatus.
  • the wireless communication apparatus may use a part of the antennas (referred to as the first group of antennas or TX antenna (s) in the present disclosure) as the transceiver antenna (s) for transmitting a sensing signal.
  • the wireless communication apparatus may use another part of the antennas (referred to as the second group of antennas or RX antenna (s) in the present disclosure) as the receiver antenna (s) for receiving an echo signal.
  • the echo signal may correspond to the sensing signal transmitted from the wireless communication apparatus or transmitted from another wireless communication apparatus.
  • each TX antenna and each RX antenna may pair with each other to form a virtual antenna for the sensing function.
  • Different virtual antennas form by different TX antennas and different RX antennas may have different characteristics.
  • the communication mode has 8 antennas with a uniform antenna spacing, which is convenient for beamforming.
  • the first 4 antennas are used to transmit and the last 4 antennas are used to receive.
  • TX and RX antennas having the same antenna spacing the majority of the virtual antennas are repetitive virtual antennas (represented as O) , and few are non-repetitive virtual antennas (represented as N) .
  • the wireless communication apparatus includes multiple antennas (e.g., 10 antennas) (represented as X) .
  • the multiple antennas e.g., 10 antennas
  • the multiple antennas are arranged in the same dimension.
  • the wireless communication apparatus may use the antennas (e.g., 10 antennas) for the wireless communication.
  • the antennas e.g., 10 antennas
  • the antenna array may be a half-wavelength array (i.e., the distance d1 between two adjacent antennas is equal to half of the wavelength of the antennas) .
  • partial antennas e.g., 6 antennas
  • the other antennas e.g., 4 antennas
  • the other antennas e.g., 4 antennas
  • the sensing function e.g., only used for the wireless communication
  • two antennas represented as T
  • four antennas represented as R
  • the TX antennas and the RX antennas are arranged in the same dimension.
  • the antenna spacing d2 of the TX antennas may be two-wavelength (i.e., the distance d2 between two adjacent TX antennas is two times of the wavelength of the antennas) .
  • the antenna spacing d1 of the RX antennas may be half-wavelength (i.e., the distance d1 between two adjacent RX antennas is half of the wavelength of the antennas) .
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the two TX antennas with the two-wavelength antenna spacing and receive the echo signal (s) using the four RX antennas with the half-wavelength antenna spacing.
  • the pairing between each TX antenna and each RX antenna may form 8 non-repetitive virtual antennas. With the virtual antennas which are not repetitive, it can be ensured that the time-frequency resources would not be wasted.
  • RX antennas Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
  • the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
  • the wireless communication apparatus includes multiple antennas (e.g., 6 antennas) (represented as X) .
  • the multiple antennas e.g., 6 antennas
  • the multiple antennas are arranged in the same dimension.
  • the wireless communication apparatus may use the antennas (e.g., 6 antennas) for the wireless communication.
  • the antennas e.g., 6 antennas
  • the antenna array may be a 2-level nested array.
  • the level-1 array g1 has 3 antennas with an interval e1.
  • the level-2 array g2 has 3 antennas with an interval e2.
  • the interval e1 may be half of the wavelength of the antennas.
  • the interval e2 may be two times of the wavelength of the antennas.
  • the level 1 array and level 2 array can form virtual antennas (e.g., 9 virtual antennas) for angle estimation.
  • part of the antennas e.g., 2 antennas
  • part of the antennas e.g., 4 antennas
  • the TX antennas and the RX antennas are arranged in the same dimension.
  • the antenna spacing e2 of the TX antennas may be two-wavelength (i.e., the distance e2 between two adjacent TX antennas is two times of the wavelength of the antennas) .
  • the antenna spacing e1 of the RX antennas may be half-wavelength (i.e., the distance e1 between two adjacent RX antennas is half of the wavelength of the antennas) .
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the two TX antennas with the two-wavelength antenna spacing and receive the echo signal (s) using the four RX antennas with the half-wavelength antenna spacing.
  • the pairing between each TX antenna and each RX antenna may form 8 non-repetitive virtual antennas. With such a configuration, virtual antennas for both communication mode and sensing mode can be formed, and the antenna resources can be saved.
  • the present disclosure is not limited to the embodiments described above.
  • one of the antennas in the level-2 array g2 e.g., the closest antenna to the level-1 array g1 in the communication mode may be used as the TX antenna in the sensing mode.
  • RX antennas Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
  • the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
  • the wireless communication apparatus includes multiple antennas (e.g., 16 antennas) (represented as X) .
  • the multiple antennas e.g., 16 antennas
  • the multiple antennas are arranged on a panel, but is not limited thereto.
  • the wireless communication apparatus may use the antennas (e.g., 16 antennas) for the wireless communication.
  • the antennas e.g., 16 antennas
  • the antennas may form an antenna array for the wireless communication.
  • the array may be a uniform rectangular array.
  • the horizontal and vertical antenna spacings of the antennas can be the same or different.
  • the horizontal antenna spacing f1 may be half-wavelength (i.e., the distance f1 between two adjacent antennas in the horizontal direction is half of the wavelength of the antennas)
  • the vertical antenna spacing f2 may be 1.5-wavelength (i.e., the distance f2 between two adjacent antennas in the vertical direction is 1.5 times of the wavelength of the antennas)
  • both of the horizontal and vertical antenna spacings f1 and f2 are half-wavelength.
  • part of the antennas e.g., 4 antennas
  • part of the antennas e.g., 12 antennas
  • R part of the antennas
  • the TX antennas are arranged at one or more corners of the antenna array.
  • the antenna spacings of the TX and RX antennas are different.
  • the horizontal and vertical antenna spacings of the TX antennas can be the same or different.
  • the horizontal and vertical antenna spacings of the RX antennas can be the same or different.
  • the antenna spacing f4 of the TX antennas in the vertical direction may be 4.5-wavelength (i.e., the distance f4 between two adjacent TX antennas in the vertical direction is 4.5 times of the wavelength of the antennas) .
  • the antenna spacing f3 of the TX antennas in the horizontal direction may be 1.5-wavelength (i.e., the distance f3 between two adjacent TX antennas in the horizontal is 1.5 times of the wavelength of the antennas) .
  • both of the horizontal and vertical antenna spacings f3 and f4 are 1.5-wavelength.
  • the antenna spacing f2 of the RX antennas in the vertical direction may be 1.5-wavelength (i.e., the distance f2 between two adjacent RX antennas in the vertical direction is 1.5 times of the wavelength of the antennas) .
  • the antenna spacing f1 of the RX antennas in the horizontal direction may be half-wavelength (i.e., the distance f1 between two adjacent RX antennas in the horizontal is half of the wavelength of the antennas) .
  • both of the horizontal and vertical antenna spacings f1 and f2 are half-wavelength.
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
  • the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas.
  • the wireless communication apparatus sends the sensing signal (s) through the TX antennas by using digital beamforming and receives the echo signal (s) through the RX antennas.
  • the wireless communication apparatus in this scheme may reuse the panel antennas.
  • TX antennas different antennas in the wireless communication apparatus may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above.
  • an antenna in the middle of the antenna array may be taken as the TX antennas.
  • RX antennas Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
  • an antenna in a corner of the antenna array may be taken as the RX antennas.
  • the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
  • the wireless communication apparatus includes multiple antennas (e.g., 32 antennas) (represented as X) .
  • the multiple antennas e.g., 32 antennas
  • the multiple antennas are arranged in two arrays.
  • the multiple antennas are arranged on two panels p1, p2, but is not limited thereto.
  • the wireless communication apparatus may use the antennas (e.g., 32 antennas) for the wireless communication.
  • the antennas e.g., 32 antennas
  • the antennas may form two arrays for the wireless communication.
  • each of the arrays may be a uniform rectangular array, but is not limited thereto.
  • a uniform linear array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array may also be used herein.
  • the arrays may be separately deployed on different panels.
  • the horizontal and vertical antenna spacings of the antennas can be the same or different.
  • the horizontal antenna spacing i1 is half-wavelength (i.e., the distance i1 between two adjacent antennas in the horizontal direction is half of the wavelength of the antennas)
  • the vertical antenna spacing i2 is 1.5-wavelength (i.e., the distance i2 between two adjacent antennas in the vertical direction is 1.5 times of the wavelength of the antennas)
  • both of the horizontal and vertical antenna spacings i1 and i2 are half-wavelength.
  • partial antennas e.g., 20 antennas
  • the other antennas e.g., 12 antennas
  • the other antennas e.g., 12 antennas
  • part of the antennas e.g., 4 antennas
  • part of the antennas e.g., 16 antennas
  • part of the antennas e.g., 16 antennas
  • the TX antennas are arranged at the corners of the second antenna array.
  • the RX antennas are the antennas of the first antenna array.
  • the antenna spacings of the TX and RX antennas are different.
  • the horizontal and vertical antenna spacings of the TX antennas can be the same or different.
  • the horizontal and vertical antenna spacings of the RX antennas can be the same or different.
  • the antenna spacing i4 of the TX antennas in the vertical direction may be 4.5-wavelength (i.e., the distance i4 between two adjacent TX antennas in the vertical direction is 4.5 times of the wavelength of the antennas) .
  • the antenna spacing i3 of the TX antennas in the horizontal direction may be 1.5-wavelength (i.e., the distance i3 between two adjacent TX antennas in the horizontal is 1.5 times of the wavelength of the antennas) .
  • both of the horizontal and vertical antenna spacings i3 and i4 are 1.5-wavelength.
  • the antenna spacing i2 of the RX antennas in the vertical direction may be 1.5-wavelength (i.e., the distance i2 between two adjacent RX antennas in the vertical direction is 1.5 times of the wavelength of the antennas) .
  • the antenna spacing i1 of the RX antennas in the horizontal direction may be half -wavelength (i.e., the distance i1 between two adjacent RX antennas in the horizontal is half of the wavelength of the antennas) .
  • both of the horizontal and vertical antenna spacings i1 and i2 are half-wavelength.
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
  • the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas.
  • the wireless communication apparatus sends the sensing signal (s) through the TX antennas by using digital beamforming and receiving the echo signal (s) through the RX antennas.
  • the wireless communication apparatus in this scheme may reus the panel antennas.
  • TX antennas may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above.
  • an antenna in the middle of the second antenna array may be taken as the TX antennas.
  • RX antennas Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
  • the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
  • the wireless communication apparatus includes multiple antennas (e.g., 64 antennas) (represented as X) .
  • the multiple antennas e.g., 64 antennas
  • the multiple antennas are arranged in four arrays.
  • the multiple antennas are arranged on four panels n1, n2, n3, n4, but is not limited thereto.
  • the wireless communication apparatus may use the antennas (e.g., 64 antennas) for the wireless communication.
  • the antennas e.g., 64 antennas
  • the antennas may form four arrays (i.e., the first, second, third, and fourth arrays) for the wireless communication.
  • each of the arrays may be a uniform rectangular array, but is not limited thereto.
  • a uniform linear array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array may also be used herein.
  • the first, second, third, and fourth arrays may be respectively deployed on different panels n1, n2, n3, n4.
  • the horizontal and vertical antenna spacings of the antennas can be the same or different.
  • the antennas in each array have an analog beamforming hardware (e.g., an analog beamforming circuit)
  • each array has a digitally-controlled beamforming hardware (e.g., a digitally-controlled beamforming circuit)
  • the antennas in each array use hybrid beamforming hardware (i.e., a combination of both analog beamforming hardware and digitally-controlled beamforming hardware) for wireless communication.
  • partial antennas e.g., 34 antennas
  • the other antennas e.g., 30 antennas
  • the other antennas e.g., 30 antennas
  • part of the antennas e.g., 32 antennas
  • T part of the antennas
  • part of the antennas e.g., 2 antennas
  • R part of the antennas
  • one of the antennas on each of the panels n3, n4 may be taken as the RX antennas.
  • the TX antennas are the antennas of the antenna array on the panels n1, n2.
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
  • the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas.
  • the wireless communication apparatus sends the sensing signal (s) through the TX antennas by using hybrid beamforming and receives the echo signal (s) through the RX antennas by using digital beamforming.
  • the RX antennas may be controlled by the digital beamforming hardware (e.g., digital beamforming circuits) .
  • the TX antennas may be controlled by the hybrid beamforming hardware (e.g., hybrid beamforming circuits) .
  • the wireless communication apparatus in this scheme may reus the panel antennas.
  • RX antennas Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
  • an antenna in the middle of the third or fourth antenna array may be taken as the RX antennas.
  • the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
  • the wireless communication apparatus includes multiple antennas (e.g., 20 antennas) (represented as X) .
  • the multiple antennas e.g., 20 antennas
  • the radio-stripe antennas may improve the channel rank and thus are beneficial for the coverage and the multiplexing.
  • the wireless communication apparatus may use the antennas (e.g., 20 antennas) for the wireless communication.
  • part of the antennas (e.g., 4 antennas) (represented as T) arranged on the radio stripe are used to transmit the sensing signal and part of the antennas (e.g., 16 antennas) (represented as R) arranged on the panel are used to receive the echo signal.
  • the TX antennas are the antennas of the antenna array on the radio stripe.
  • the RX antennas are the antennas of the antenna array on the panel.
  • the antenna spacings of the RX antennas are uniform. In some embodiments, the antenna spacings of the TX antennas are uniform or non-uniform. For example, the antenna spacings t1, t2, t3 may have the same value or have different values.
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
  • the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas.
  • the wireless communication apparatus may send the sensing signal (s) through the TX antennas on the radio stripe and receive the echo signal (s) through the RX antennas on the panel by using digital beamforming.
  • the RX antennas may be controlled by a digital beamforming hardware (e.g., a digital beamforming circuit) .
  • a digital beamforming hardware e.g., a digital beamforming circuit
  • part of the antennas e.g., 16 antennas (represented as T) arranged on the panel are used to transmit the sensing signal and part of the antennas (e.g., 4 antennas) (represented as R) arranged on the radio stripe are used to receive the echo signal.
  • the TX antennas are the antennas of the antenna array on the panel.
  • the RX antennas are the antennas of the antenna array on the radio stripe.
  • the antenna spacings of the TX antennas are uniform. In some embodiments, the antenna spacings of the RX antennas are uniform or non-uniform. For example, the antenna spacings r1, r2, r3 may have the same value or different values.
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
  • the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas.
  • the wireless communication apparatus may send the sensing signal (s) through the TX antennas on the panel by using analog or hybrid beamforming and receive the echo signal (s) through the RX antennas on the radio.
  • the TX antennas may be controlled by an analog or hybrid beamforming hardware (e.g., an analog or hybrid beamforming circuits) .
  • RX antennas Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
  • the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
  • the wireless communication apparatus includes multiple antennas (e.g., 20 antennas) (represented as X) .
  • the multiple antennas e.g., 20 antennas
  • the multiple antennas are arranged in two groups.
  • two groups of the antennas may form different antenna arrays.
  • one group of the antennas may form a rectangular array, and another group of the antennas may form a linear array.
  • the wireless communication apparatus may use the antennas (e.g., 20 antennas) for the wireless communication.
  • the two groups of antennas may have different directional coverage ranges (also referred to as direction ranges) .
  • the first group of antennas may have a relatively wider (e.g., 120 degrees) coverage range
  • the second group of antennas may have a relatively narrower (e.g., 60 degrees) coverage range.
  • part of the antennas e.g., 4 antennas
  • T part of the antennas
  • R part of the antennas
  • a relatively wider coverage range are used to receive the echo signal.
  • the antenna spacings of the RX antennas are uniform. In some embodiments, the antenna spacings of the TX antennas are uniform or non-uniform.
  • the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
  • the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas.
  • the wireless communication apparatus may send the sensing signal (s) through the TX antennas with a relatively narrower (e.g., 60 degrees) coverage range and receive the echo signal (s) through the RX antennas with a relatively wider (e.g., 120 degrees) .
  • the sensing signal can be transmitted towards specific directions of interest, effectively avoiding clutter reflections that are outside the desired range.
  • an ISAC system has a plurality of antennas is provided. Among the antennas, a first group of the antennas are used to transmit sensing signals, and a second group of the antennas are used to receive echo signals.
  • the two groups of the antennas are used by the communication.
  • the first group of the antennas and the second group of the antennas has different features.
  • the different features contain at least one difference in terms of antenna spacing, RF (radio frequency) chain realization (e.g., different beamforming) , antenna types (e.g., panel antenna or radio-stripe antenna) , or antenna arrangement (e.g., arranged in the rectangular array or in a linear array) .
  • RF radio frequency
  • one of the two antenna groups has one antenna spacing in one dimension, and another has another spacing in this dimension.
  • one of the two antenna groups has a uniform spacing, and another has non-uniform spacing.
  • one of the two antenna groups uses panel antennas, and another uses radio-stripe antennas.
  • the two antenna groups have different antenna arrangements containing the uniform linear array, the uniform rectangular array, the uniform circular array, the minimum redundancy array, and the nested array or irregular array.
  • the two antenna groups have different RF chain realizations supporting two of digital, analog, and hybrid beamforming hardware.
  • the two antenna groups have different directional coverage ranges.
  • FIG. 9 relates to a diagram of a wireless communication apparatus 30 according to an embodiment of the present disclosure.
  • the wireless communication apparatus 30 may be a tag, a mobile phone, a laptop, a tablet computer, an electronic book, a portable computer system, a base station (BS) , a network entity, or a communication node in the core network (CN) and is not limited herein.
  • the wireless communication apparatus 30 may be used to implement the wireless communication apparatus or ISAC system described in this disclosure.
  • the wireless communication apparatus 30 may include a processor 300 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 310 and a communication unit 320.
  • the storage unit 310 may be any data storage device that stores a program code 312, which is accessed and executed by the processor 300.
  • Embodiments of the storage code 312 include but are not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device.
  • SIM subscriber identity module
  • ROM read-only memory
  • RAM random-access memory
  • the communication unit 320 may a transceiver and is used to transmit and receive signals (e.g., messages or packets) according to processing results of the processor 300. In an embodiment, the communication unit 320 transmits and receives the signals via at least one antenna 322.
  • the storage unit 310 and the program code 312 may be omitted and the processor 300 may include a storage unit with stored program code.
  • the processor 300 may implement any one of the steps in exemplified embodiments on the wireless communication apparatus 30, e.g., by executing the program code 312.
  • the communication unit 320 may be a transceiver.
  • the communication unit 320 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from another wireless communication apparatus.
  • the communication unit 320 may comprise the antennas described above.
  • the communication unit 320 may comprise the beamforming hardware described above.
  • the wireless communication apparatus 30 may be used to perform the operations of the wireless communication apparatus described in this disclosure.
  • the processor 300 and the communication unit 320 collaboratively perform the operations described in this disclosure. For example, the processor 300 performs operations and transmit or receive signals, message, and/or information through the communication unit 320.
  • a wireless communication method is also provided according to an embodiment of the present disclosure.
  • the wireless communication method may be performed by using a wireless communication apparatus or an ISAC system.
  • the wireless communication apparatus or ISAC system may be implemented by using the wireless communication apparatus 30 described in this disclosure, but is not limited thereto.
  • the wireless communication method includes: utilizing a first group of antennas to transmit a sensing signal in a sensing mode; utilizing a second group of antennas to receive an echo signal in the sensing mode; and utilizing the first and second group of antennas to perform a wireless communication in a communication mode.
  • the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
  • a and/or B and/or C includes any and all combinations of one or more of A, B, and C, including A, B, C, A and B, A and C, B and C, and a combination of A and B and C.
  • A/B/C includes any and all combinations of one or more of A, B, and C, including A, B, C, A and B, A and C, B and C, and a combination of A and B and C.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any one of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a “software unit” ) , or any combination of these techniques.
  • a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein.
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general-purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • unit refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according to embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A wireless communication method is disclosed. The method comprises utilizing a first group of antennas to transmit a sensing signal in a sensing mode; utilizing a second group of antennas to receive an echo signal in the sensing mode; and utilizing the first and second group of antennas to perform a wireless communication in a communication mode; wherein the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.

Description

Method, Device and Computer Program Product for Wireless Communication
This document is directed generally to wireless communications, and in particular to 5th generation (5G) communications or 6th generation (6G) communications.
ISAC (Integrated Sensing and Communication) combines sensing and communication technologies to enable seamless data gathering, analysis, and sharing. It integrates sensors and communication devices for real-time monitoring and efficient information exchange, empowering timely decision-making and enhancing operational efficiency in various domains. However, the antenna resource of the ISAC is still a topic to be discussed.
This document relates to methods, systems, and computer program products for a wireless communication.
One aspect of the present disclosure relates to a wireless communication apparatus. In an embodiment, the wireless communication apparatus includes: a first group of antennas operable to transmit a sensing signal in a sensing mode; a second group of antennas operable to receive an echo signal in the sensing mode; wherein the first and second group of antennas are operable to perform a wireless communication in a communication mode, and wherein the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
Another aspect of the present disclosure relates to a wireless communication method. In an embodiment, the wireless communication method includes: utilizing a first group of antennas to transmit a sensing signal in a sensing mode; utilizing a second group of antennas to receive an echo signal in the sensing mode; and utilizing the first and second group of antennas to perform a wireless communication in a communication mode; wherein the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
Various embodiments may preferably implement the following features:
Preferably, the first group of antennas is arranged in a dimension with a first antenna spacing therebetween, the second group of antennas is arranged in the dimension with a second antenna spacing therebetween, and the first antenna spacing and the second antenna spacing are different.
Preferably, one of the first and second groups of antennas has a uniform antenna spacing, and another one of the first and second groups of antennas has a non-uniform antenna spacing.
Preferably, the first group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array, the second group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array, and antenna arrangements of the first and second groups of antennas are different.
Preferably, a first radio frequency chain realization of the first group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware, a second radio frequency chain realization of the second group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware, and the first and second radio frequency chain realizations are different.
Preferably, direction ranges of the first and second groups of antennas are different.
Preferably, the wireless communication apparatus further comprises a third group of antennas operable to perform the wireless communication in the communication mode and neither used to transmit the sensing signal nor receive the echo signal in the sensing mode.
Preferably, the first and second group of antennas form a 2-level nested antenna array.
Preferably, the first and second group of antennas are arranged on an antenna array, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
Preferably, the antenna array is a rectangular antenna array, and the first group of antennas is arranged at one or more corners of the rectangular antenna array.
Preferably, the first and second group of antennas are arranged on different antenna arrays, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
Preferably, the first group of antennas is arranged at one or more corners of a rectangular antenna array.
Preferably, the first group of antennas forms one or more antenna arrays on one or more first antenna panels and the second group of antennas is arranged on one or more second antenna panels.
Preferably, the first group of antennas is controlled by a hybrid beamforming circuit, and the second group of antennas is controlled by a digital beamforming circuit.
Preferably, one of the first and second groups of antennas is arranged on an antenna panel and another one of the first and second groups of antennas is arranged on a radio stripe.
The present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of foregoing methods.
The exemplary embodiments disclosed herein are directed to providing features that will become readily apparent by reference to the following description when taken in conjunction with the accompany drawings. In accordance with various embodiments, exemplary systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the present disclosure.
Thus, the present disclosure is not limited to the exemplary embodiments and  applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
FIG. 1 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 2 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 3 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 4 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 5 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 6 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 7 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 8 shows a schematic diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
FIG. 9 shows a schematic diagram of a wireless communication apparatus according to  an embodiment of the present disclosure.
FIG. 10 a flowchart of wireless communication method according to an embodiment of the present disclosure.
Integrated sensing and communication (ISAC) is expected to provide enormous additional value to the communication system in the 6G era. In some embodiments, the communication schemes are designed primarily for communication purposes. However, radar sensing operates in a different mode compared to communication. Incorporating radar sensing into existing communication schemes may result in performance losses. For instance, if two half-wavelength antenna arrays are used to implement a MIMO (Multiple-Input Multiple-Output) radar, the virtual antennas created by the MIMO radar may have many redundant elements (e.g., repetitive virtual antennas (represented as O in FIG. 1) ) . This can be considered a waste of antenna resources.
In some embodiments, full-duplex MIMO communication may be used for an ISAC system, and both the transmit and receive antenna arrays have half-wavelength spacing. In some embodiments, such a configuration may be suitable for wireless communication, but not well-suited for MIMO radar sensing.
In some embodiments of the present disclosure, a wireless communication apparatus (e.g., an ISAC apparatus or system) may be provided, in which in the sensing mode, the transmitter (TX) antennas and receiver (RX) antennas are different in at least one of antenna spacing, radio frequency (RF) , chain realization, antenna type, or antenna arrangement. With such a configuration, repetitive virtual antennas in the sensing mode can be reduced or avoided, and a waste of antenna resources can also be reduced or avoided.
In some embodiments of the present disclosure, the wireless communication apparatus may have multiple antennas. In some embodiments, in the communication mode, the wireless communication apparatus may utilize the antennas for the wireless communication, such as transmitting information to or receiving information from another wireless communication  apparatus.
In some embodiments in the sensing mode, the wireless communication apparatus may use a part of the antennas (referred to as the first group of antennas or TX antenna (s) in the present disclosure) as the transceiver antenna (s) for transmitting a sensing signal. In some embodiments in the sensing mode, the wireless communication apparatus may use another part of the antennas (referred to as the second group of antennas or RX antenna (s) in the present disclosure) as the receiver antenna (s) for receiving an echo signal. In some embodiments, the echo signal may correspond to the sensing signal transmitted from the wireless communication apparatus or transmitted from another wireless communication apparatus.
In some embodiments, each TX antenna and each RX antenna may pair with each other to form a virtual antenna for the sensing function. Different virtual antennas form by different TX antennas and different RX antennas may have different characteristics.
Referring to FIG. 1, in some embodiments, the communication mode has 8 antennas with a uniform antenna spacing, which is convenient for beamforming. In the sensing mode, the first 4 antennas are used to transmit and the last 4 antennas are used to receive. As TX and RX antennas having the same antenna spacing, the majority of the virtual antennas are repetitive virtual antennas (represented as O) , and few are non-repetitive virtual antennas (represented as N) .
In the paragraphs below, details of embodiments of the present disclosure will be provided, but the present disclosure is not limited thereto.
Aspect 1:
Reference is made to FIG. 2, in which an example of a dual-functional (e.g., wireless communication and radar sensing) scheme is provided. In some embodiments, the wireless communication apparatus includes multiple antennas (e.g., 10 antennas) (represented as X) . In some embodiments, the multiple antennas (e.g., 10 antennas) are arranged in the same dimension.
In some embodiments, in the communication mode, the wireless communication  apparatus may use the antennas (e.g., 10 antennas) for the wireless communication. In some embodiments, in the communication mode, the antennas (e.g., 10 antennas) may form an antenna array for the wireless communication. In some embodiments, the antenna array may be a half-wavelength array (i.e., the distance d1 between two adjacent antennas is equal to half of the wavelength of the antennas) .
In some embodiments, in the sensing mode, partial antennas (e.g., 6 antennas) may be used for the sensing function, and the other antennas (e.g., 4 antennas) may not be used for sensing function (e.g., only used for the wireless communication) . For example, as illustrated in FIG. 2, in the sensing mode, two antennas (represented as T) are used to transmit the sensing signal and four antennas (represented as R) are used to receive the echo signal. In some embodiments, the TX antennas and the RX antennas are arranged in the same dimension. In some embodiments, the antenna spacing d2 of the TX antennas may be two-wavelength (i.e., the distance d2 between two adjacent TX antennas is two times of the wavelength of the antennas) . In some embodiments, the antenna spacing d1 of the RX antennas may be half-wavelength (i.e., the distance d1 between two adjacent RX antennas is half of the wavelength of the antennas) .
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the two TX antennas with the two-wavelength antenna spacing and receive the echo signal (s) using the four RX antennas with the half-wavelength antenna spacing.
In some embodiments, the pairing between each TX antenna and each RX antenna may form 8 non-repetitive virtual antennas. With the virtual antennas which are not repetitive, it can be ensured that the time-frequency resources would not be wasted.
It is understood that different antennas in the wireless communication apparatus may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above.
Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
Also, the number of antennas for wireless communication, the TX antennas, the RX  antennas may be varied, and the present disclosure is not limited to the embodiments described above.
Aspect 2:
Reference is made to FIG. 3, in which an example of a dual-functional scheme is provided. In some embodiments, the wireless communication apparatus includes multiple antennas (e.g., 6 antennas) (represented as X) . In some embodiments, the multiple antennas (e.g., 6 antennas) are arranged in the same dimension.
In some embodiments, in the communication mode, the wireless communication apparatus may use the antennas (e.g., 6 antennas) for the wireless communication. In some embodiments, in the communication mode, the antennas (e.g., 6 antennas) may form an antenna array for the wireless communication. In some embodiments, the antenna array may be a 2-level nested array. The level-1 array g1 has 3 antennas with an interval e1. The level-2 array g2 has 3 antennas with an interval e2. In some embodiments, the interval e1 may be half of the wavelength of the antennas. In some embodiments, the interval e2 may be two times of the wavelength of the antennas. The level 1 array and level 2 array can form virtual antennas (e.g., 9 virtual antennas) for angle estimation.
In some embodiments, in the sensing mode, part of the antennas (e.g., 2 antennas) (represented as T) are used to transmit the sensing signal and part of the antennas (e.g., 4 antennas) (represented as R) are used to receive the echo signal. In some embodiments, the TX antennas and the RX antennas are arranged in the same dimension. In some embodiments, the antenna spacing e2 of the TX antennas may be two-wavelength (i.e., the distance e2 between two adjacent TX antennas is two times of the wavelength of the antennas) . In some embodiments, the antenna spacing e1 of the RX antennas may be half-wavelength (i.e., the distance e1 between two adjacent RX antennas is half of the wavelength of the antennas) .
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the two TX antennas with the two-wavelength antenna spacing and  receive the echo signal (s) using the four RX antennas with the half-wavelength antenna spacing.
In some embodiments, the pairing between each TX antenna and each RX antenna may form 8 non-repetitive virtual antennas. With such a configuration, virtual antennas for both communication mode and sensing mode can be formed, and the antenna resources can be saved.
It is understood that different antennas in the wireless communication apparatus may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above. For example, one of the antennas in the level-2 array g2 (e.g., the closest antenna to the level-1 array g1) in the communication mode may be used as the TX antenna in the sensing mode.
Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
Also, the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
Aspect 3:
Reference is made to FIG. 4, in which an example of a dual-functional scheme is provided. In some embodiments, the wireless communication apparatus includes multiple antennas (e.g., 16 antennas) (represented as X) . In some embodiments, the multiple antennas (e.g., 16 antennas) are arranged on a panel, but is not limited thereto.
In some embodiments, in the communication mode, the wireless communication apparatus may use the antennas (e.g., 16 antennas) for the wireless communication. In some embodiments, in the communication mode, the antennas (e.g., 16 antennas) may form an antenna array for the wireless communication. In some embodiments, the array may be a uniform rectangular array. In some embodiments, the horizontal and vertical antenna spacings of the antennas can be the same or different. For example, the horizontal antenna spacing f1 may be half-wavelength (i.e., the distance f1 between two adjacent antennas in the horizontal direction is  half of the wavelength of the antennas) , and the vertical antenna spacing f2 may be 1.5-wavelength (i.e., the distance f2 between two adjacent antennas in the vertical direction is 1.5 times of the wavelength of the antennas) . As another example, both of the horizontal and vertical antenna spacings f1 and f2 are half-wavelength.
In some embodiments, in the sensing mode, part of the antennas (e.g., 4 antennas) (represented as T) are used to transmit the sensing signal and part of the antennas (e.g., 12 antennas) (represented as R) are used to receive the echo signal. In some embodiments, the TX antennas are arranged at one or more corners of the antenna array.
In some embodiments, the antenna spacings of the TX and RX antennas are different. In some embodiments, the horizontal and vertical antenna spacings of the TX antennas can be the same or different. In some embodiments, the horizontal and vertical antenna spacings of the RX antennas can be the same or different. For example, the antenna spacing f4 of the TX antennas in the vertical direction may be 4.5-wavelength (i.e., the distance f4 between two adjacent TX antennas in the vertical direction is 4.5 times of the wavelength of the antennas) . In some embodiments, the antenna spacing f3 of the TX antennas in the horizontal direction may be 1.5-wavelength (i.e., the distance f3 between two adjacent TX antennas in the horizontal is 1.5 times of the wavelength of the antennas) . As another example, both of the horizontal and vertical antenna spacings f3 and f4 are 1.5-wavelength. In some embodiments, the antenna spacing f2 of the RX antennas in the vertical direction may be 1.5-wavelength (i.e., the distance f2 between two adjacent RX antennas in the vertical direction is 1.5 times of the wavelength of the antennas) . In some embodiments, the antenna spacing f1 of the RX antennas in the horizontal direction may be half-wavelength (i.e., the distance f1 between two adjacent RX antennas in the horizontal is half of the wavelength of the antennas) . As another example, both of the horizontal and vertical antenna spacings f1 and f2 are half-wavelength.
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
In some embodiments, the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas. In some embodiments, the wireless  communication apparatus sends the sensing signal (s) through the TX antennas by using digital beamforming and receives the echo signal (s) through the RX antennas.
In some embodiments, the wireless communication apparatus in this scheme may reuse the panel antennas.
It is understood that different antennas in the wireless communication apparatus may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above. For example, an antenna in the middle of the antenna array may be taken as the TX antennas.
Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above. For example, an antenna in a corner of the antenna array may be taken as the RX antennas.
Also, the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
Aspect 4:
Reference is made to FIG. 5, in which an example of a dual-functional scheme is provided. In some embodiments, the wireless communication apparatus includes multiple antennas (e.g., 32 antennas) (represented as X) . In some embodiments, the multiple antennas (e.g., 32 antennas) are arranged in two arrays. In some embodiments, the multiple antennas (e.g., 32 antennas) are arranged on two panels p1, p2, but is not limited thereto.
In some embodiments, in the communication mode, the wireless communication apparatus may use the antennas (e.g., 32 antennas) for the wireless communication. In some embodiments, in the communication mode, the antennas (e.g., 32 antennas) may form two arrays for the wireless communication. In some embodiments, each of the arrays may be a uniform rectangular array, but is not limited thereto. A uniform linear array, a uniform circular array, a  minimum redundancy array, a nested array, or an irregular array may also be used herein. In some embodiments, the arrays may be separately deployed on different panels.
In some embodiments, the horizontal and vertical antenna spacings of the antennas can be the same or different. For example, the horizontal antenna spacing i1 is half-wavelength (i.e., the distance i1 between two adjacent antennas in the horizontal direction is half of the wavelength of the antennas) , and the vertical antenna spacing i2 is 1.5-wavelength (i.e., the distance i2 between two adjacent antennas in the vertical direction is 1.5 times of the wavelength of the antennas) . As another example, both of the horizontal and vertical antenna spacings i1 and i2 are half-wavelength.
In some embodiments, in the sensing mode, partial antennas (e.g., 20 antennas) may be used for the sensing function, and the other antennas (e.g., 12 antennas) may not be used for sensing function (e.g., only used for the wireless communication) . For example, as illustrated in FIG. 5, in the sensing mode, part of the antennas (e.g., 4 antennas) (represented as T) arranged in a second array (e.g., on the second panel p2) are used to transmit the sensing signal and part of the antennas (e.g., 16 antennas) (represented as R) arranged in a first array (e.g., on the first panel p1) are used to receive the echo signal. In some embodiments, the TX antennas are arranged at the corners of the second antenna array. In some embodiments, the RX antennas are the antennas of the first antenna array.
In some embodiments, the antenna spacings of the TX and RX antennas are different. In some embodiments, the horizontal and vertical antenna spacings of the TX antennas can be the same or different. In some embodiments, the horizontal and vertical antenna spacings of the RX antennas can be the same or different. For example, the antenna spacing i4 of the TX antennas in the vertical direction may be 4.5-wavelength (i.e., the distance i4 between two adjacent TX antennas in the vertical direction is 4.5 times of the wavelength of the antennas) . In some embodiments, the antenna spacing i3 of the TX antennas in the horizontal direction may be 1.5-wavelength (i.e., the distance i3 between two adjacent TX antennas in the horizontal is 1.5 times of the wavelength of the antennas) . As another example, both of the horizontal and vertical antenna spacings i3 and i4 are 1.5-wavelength. In some embodiments, the antenna spacing i2 of the  RX antennas in the vertical direction may be 1.5-wavelength (i.e., the distance i2 between two adjacent RX antennas in the vertical direction is 1.5 times of the wavelength of the antennas) . In some embodiments, the antenna spacing i1 of the RX antennas in the horizontal direction may be half -wavelength (i.e., the distance i1 between two adjacent RX antennas in the horizontal is half of the wavelength of the antennas) . As another example, both of the horizontal and vertical antenna spacings i1 and i2 are half-wavelength.
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
In some embodiments, the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas. In some embodiments, the wireless communication apparatus sends the sensing signal (s) through the TX antennas by using digital beamforming and receiving the echo signal (s) through the RX antennas.
In some embodiments, the wireless communication apparatus in this scheme may reus the panel antennas.
It is understood that different antennas in the wireless communication apparatus may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above. For example, an antenna in the middle of the second antenna array may be taken as the TX antennas.
Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
Also, the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
Aspect 5:
Reference is made to FIG. 6, in which an example of a dual-functional scheme is  provided. In some embodiments, the wireless communication apparatus includes multiple antennas (e.g., 64 antennas) (represented as X) . In some embodiments, the multiple antennas (e.g., 64 antennas) are arranged in four arrays. In some embodiments, the multiple antennas (e.g., 32 antennas) are arranged on four panels n1, n2, n3, n4, but is not limited thereto.
In some embodiments, in the communication mode, the wireless communication apparatus may use the antennas (e.g., 64 antennas) for the wireless communication. In some embodiments, in the communication mode, the antennas (e.g., 64 antennas) may form four arrays (i.e., the first, second, third, and fourth arrays) for the wireless communication. In some embodiments, each of the arrays may be a uniform rectangular array, but is not limited thereto. A uniform linear array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array may also be used herein. In some embodiments, the first, second, third, and fourth arrays may be respectively deployed on different panels n1, n2, n3, n4.
In some embodiments, the horizontal and vertical antenna spacings of the antennas can be the same or different. In some embodiments, the antennas in each array have an analog beamforming hardware (e.g., an analog beamforming circuit) , and each array has a digitally-controlled beamforming hardware (e.g., a digitally-controlled beamforming circuit) . In some embodiments, the antennas in each array use hybrid beamforming hardware (i.e., a combination of both analog beamforming hardware and digitally-controlled beamforming hardware) for wireless communication.
In some embodiments, in the sensing mode, partial antennas (e.g., 34 antennas) may be used for the sensing function, and the other antennas (e.g., 30 antennas) may not be used for sensing function (e.g., only used for the wireless communication) . For example, as illustrated in FIG. 6, in the sensing mode, part of the antennas (e.g., 32 antennas) (represented as T) arranged in the first and second arrays are used to transmit the sensing signal and part of the antennas (e.g., 2 antennas) (represented as R) arranged in the third and fourth arrays are used to receive the echo signal. In some embodiments, one of the antennas on each of the panels n3, n4 may be taken as the RX antennas. In some embodiments, the TX antennas are the antennas of the antenna array on the panels n1, n2.
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
In some embodiments, the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas. In some embodiments, the wireless communication apparatus sends the sensing signal (s) through the TX antennas by using hybrid beamforming and receives the echo signal (s) through the RX antennas by using digital beamforming.
In some embodiments, the RX antennas may be controlled by the digital beamforming hardware (e.g., digital beamforming circuits) .
In some embodiments, the TX antennas may be controlled by the hybrid beamforming hardware (e.g., hybrid beamforming circuits) .
In some embodiments, the wireless communication apparatus in this scheme may reus the panel antennas.
It is understood that different antennas in the wireless communication apparatus may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above.
Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above. For example, an antenna in the middle of the third or fourth antenna array may be taken as the RX antennas.
Also, the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
Aspect 6:
Reference is made to FIG. 7, in which an example of a dual-functional scheme is  provided. In some embodiments, the wireless communication apparatus includes multiple antennas (e.g., 20 antennas) (represented as X) . In some embodiments, the multiple antennas (e.g., 20 antennas) are arranged on a panel and a radio stripe, but is not limited thereto. In some embodiments, the radio-stripe antennas may improve the channel rank and thus are beneficial for the coverage and the multiplexing.
In some embodiments, in the communication mode, the wireless communication apparatus may use the antennas (e.g., 20 antennas) for the wireless communication.
In some embodiments, in the sensing mode (Option A) , part of the antennas (e.g., 4 antennas) (represented as T) arranged on the radio stripe are used to transmit the sensing signal and part of the antennas (e.g., 16 antennas) (represented as R) arranged on the panel are used to receive the echo signal. In some embodiments, the TX antennas are the antennas of the antenna array on the radio stripe. In some embodiments, the RX antennas are the antennas of the antenna array on the panel.
In some embodiments, the antenna spacings of the RX antennas are uniform. In some embodiments, the antenna spacings of the TX antennas are uniform or non-uniform. For example, the antenna spacings t1, t2, t3 may have the same value or have different values.
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
In some embodiments, the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas. In some embodiments, the wireless communication apparatus may send the sensing signal (s) through the TX antennas on the radio stripe and receive the echo signal (s) through the RX antennas on the panel by using digital beamforming.
In some embodiments, the RX antennas may be controlled by a digital beamforming hardware (e.g., a digital beamforming circuit) .
In some embodiments, in the sensing mode (Option B) , part of the antennas (e.g., 16 antennas) (represented as T) arranged on the panel are used to transmit the sensing signal and part  of the antennas (e.g., 4 antennas) (represented as R) arranged on the radio stripe are used to receive the echo signal. In some embodiments, the TX antennas are the antennas of the antenna array on the panel. In some embodiments, the RX antennas are the antennas of the antenna array on the radio stripe.
In some embodiments, the antenna spacings of the TX antennas are uniform. In some embodiments, the antenna spacings of the RX antennas are uniform or non-uniform. For example, the antenna spacings r1, r2, r3 may have the same value or different values.
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
In some embodiments, the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas. In some embodiments, the wireless communication apparatus may send the sensing signal (s) through the TX antennas on the panel by using analog or hybrid beamforming and receive the echo signal (s) through the RX antennas on the radio.
In some embodiments, the TX antennas may be controlled by an analog or hybrid beamforming hardware (e.g., an analog or hybrid beamforming circuits) .
It is understood that different antennas in the wireless communication apparatus may be taken as the TX antennas, and the present disclosure is not limited to the embodiments described above.
Similar, different antennas in the wireless communication apparatus may be taken as the RX antennas, and the present disclosure is not limited to the embodiments described above.
Also, the number of antennas for wireless communication, the TX antennas, the RX antennas may be varied, and the present disclosure is not limited to the embodiments described above.
Aspect 7:
Reference is made to FIG. 8, in which an example of a dual-functional scheme is provided. In some embodiments, the wireless communication apparatus includes multiple antennas (e.g., 20 antennas) (represented as X) . In some embodiments, the multiple antennas (e.g., 20 antennas) are arranged in two groups. In some embodiments, two groups of the antennas may form different antenna arrays. In some embodiments, one group of the antennas may form a rectangular array, and another group of the antennas may form a linear array.
In some embodiments, in the communication mode, the wireless communication apparatus may use the antennas (e.g., 20 antennas) for the wireless communication. In some embodiments, in the communication mode, the two groups of antennas may have different directional coverage ranges (also referred to as direction ranges) . For example, the first group of antennas may have a relatively wider (e.g., 120 degrees) coverage range, and the second group of antennas may have a relatively narrower (e.g., 60 degrees) coverage range.
In some embodiments, in the sensing mode, part of the antennas (e.g., 4 antennas) (represented as T) with a relatively narrower (e.g., 60 degrees) coverage range are used to transmit the sensing signal and part of the antennas (e.g., 16 antennas) (represented as R) with a relatively wider (e.g., 120 degrees) coverage range are used to receive the echo signal.
In some embodiments, the antenna spacings of the RX antennas are uniform. In some embodiments, the antenna spacings of the TX antennas are uniform or non-uniform.
In some embodiments, the wireless communication apparatus may send the orthogonal sensing signal (s) through the TX antennas and receive the echo signal (s) using the RX antennas.
In some embodiments, the pairing between each TX antenna and each RX antenna forms a virtual aperture consisting of virtual antennas. In some embodiments, the wireless communication apparatus may send the sensing signal (s) through the TX antennas with a relatively narrower (e.g., 60 degrees) coverage range and receive the echo signal (s) through the RX antennas with a relatively wider (e.g., 120 degrees) . In such configuration, the sensing signal can be transmitted towards specific directions of interest, effectively avoiding clutter reflections that are outside the desired range.
In some embodiments of the present disclosure, an ISAC system has a plurality of antennas is provided. Among the antennas, a first group of the antennas are used to transmit sensing signals, and a second group of the antennas are used to receive echo signals.
In some embodiments of the present disclosure, the two groups of the antennas are used by the communication.
In some embodiments of the present disclosure, the first group of the antennas and the second group of the antennas has different features.
In some embodiments of the present disclosure, the different features contain at least one difference in terms of antenna spacing, RF (radio frequency) chain realization (e.g., different beamforming) , antenna types (e.g., panel antenna or radio-stripe antenna) , or antenna arrangement (e.g., arranged in the rectangular array or in a linear array) .
In some embodiments of the present disclosure, one of the two antenna groups has one antenna spacing in one dimension, and another has another spacing in this dimension.
In some embodiments of the present disclosure, one of the two antenna groups has a uniform spacing, and another has non-uniform spacing.
In some embodiments of the present disclosure, one of the two antenna groups uses panel antennas, and another uses radio-stripe antennas.
In some embodiments of the present disclosure, the two antenna groups have different antenna arrangements containing the uniform linear array, the uniform rectangular array, the uniform circular array, the minimum redundancy array, and the nested array or irregular array.
In some embodiments of the present disclosure, the two antenna groups have different RF chain realizations supporting two of digital, analog, and hybrid beamforming hardware.
In some embodiments of the present disclosure, the two antenna groups have different directional coverage ranges.
In the paragraphs below, details will be described along with some examples, but the present disclosure is not limited to the example below.
FIG. 9 relates to a diagram of a wireless communication apparatus 30 according to an embodiment of the present disclosure. The wireless communication apparatus 30 may be a tag, a mobile phone, a laptop, a tablet computer, an electronic book, a portable computer system, a base station (BS) , a network entity, or a communication node in the core network (CN) and is not limited herein. The wireless communication apparatus 30 may be used to implement the wireless communication apparatus or ISAC system described in this disclosure. The wireless communication apparatus 30 may include a processor 300 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 310 and a communication unit 320. The storage unit 310 may be any data storage device that stores a program code 312, which is accessed and executed by the processor 300. Embodiments of the storage code 312 include but are not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device. The communication unit 320 may a transceiver and is used to transmit and receive signals (e.g., messages or packets) according to processing results of the processor 300. In an embodiment, the communication unit 320 transmits and receives the signals via at least one antenna 322.
In an embodiment, the storage unit 310 and the program code 312 may be omitted and the processor 300 may include a storage unit with stored program code.
The processor 300 may implement any one of the steps in exemplified embodiments on the wireless communication apparatus 30, e.g., by executing the program code 312.
The communication unit 320 may be a transceiver. The communication unit 320 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from another wireless communication apparatus. In some embodiments, the communication unit 320 may comprise the antennas described above. In some embodiments, the communication unit 320 may comprise the beamforming hardware described above.
In some embodiments, the wireless communication apparatus 30 may be used to perform the operations of the wireless communication apparatus described in this disclosure. In some embodiments, the processor 300 and the communication unit 320 collaboratively perform the  operations described in this disclosure. For example, the processor 300 performs operations and transmit or receive signals, message, and/or information through the communication unit 320.
A wireless communication method is also provided according to an embodiment of the present disclosure. In an embodiment, the wireless communication method may be performed by using a wireless communication apparatus or an ISAC system. In an embodiment, the wireless communication apparatus or ISAC system may be implemented by using the wireless communication apparatus 30 described in this disclosure, but is not limited thereto.
Referring to FIG. 10, in an embodiment, the wireless communication method includes: utilizing a first group of antennas to transmit a sensing signal in a sensing mode; utilizing a second group of antennas to receive an echo signal in the sensing mode; and utilizing the first and second group of antennas to perform a wireless communication in a communication mode.
In some embodiments, the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
Details in this regard can be ascertained with reference to the paragraphs above, and will not be repeated herein.
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand exemplary features and functions of the present disclosure. Such persons would understand, however, that the present disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any one of the above-described exemplary embodiments.
It is understood that, in the present disclosure, the term “and/or” or symbol “/” may include any and all combinations of one or more of the associated listed items. For example, A and/or B and/or C includes any and all combinations of one or more of A, B, and C, including A, B, C, A and B, A and C, B and C, and a combination of A and B and C. Likewise, A/B/C includes any and all combinations of one or more of A, B, and C, including A, B, C, A and B, A and C, B and C, and a combination of A and B and C.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any one of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A skilled person would further appreciate that any one of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software unit” ) , or any combination of these techniques.
To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, units, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design  constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure. In accordance with various embodiments, a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein. The term “configured to” or “configured for” as used herein with respect to a specified operation or function refers to a processor, device, component, circuit, structure, machine, unit, etc. that is physically constructed, programmed and/or arranged to perform the specified operation or function.
Furthermore, a skilled person would understand that various illustrative logical blocks, units, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general-purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "unit" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according to embodiments of the present disclosure.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present disclosure. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present disclosure with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of the claims. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (31)

  1. A wireless communication apparatus comprising:
    a first group of antennas operable to transmit a sensing signal in a sensing mode;
    a second group of antennas operable to receive an echo signal in the sensing mode;
    wherein the first and second group of antennas are operable to perform a wireless communication in a communication mode, and
    wherein the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
  2. The wireless communication apparatus of claim 1, wherein the first group of antennas is arranged in a dimension with a first antenna spacing therebetween, the second group of antennas is arranged in the dimension with a second antenna spacing therebetween, and the first antenna spacing and the second antenna spacing are different.
  3. The wireless communication apparatus of claim 1 or 2, wherein one of the first and second groups of antennas has a uniform antenna spacing, and another one of the first and second groups of antennas has a non-uniform antenna spacing.
  4. The wireless communication apparatus of any of claims 1 to 3, wherein the first group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array, the second group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array, and antenna arrangements of the first and second groups of antennas are  different.
  5. The wireless communication apparatus of any of claims 1 to 4, wherein a first radio frequency chain realization of the first group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware, a second radio frequency chain realization of the second group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware, and the first and second radio frequency chain realizations are different.
  6. The wireless communication apparatus of claim any of claims 1 to 5, wherein direction ranges of the first and second groups of antennas are different.
  7. The wireless communication apparatus of any of claims 1 to 6, wherein the wireless communication apparatus further comprises a third group of antennas operable to perform the wireless communication in the communication mode and neither used to transmit the sensing signal nor receive the echo signal in the sensing mode.
  8. The wireless communication apparatus of any of claims 1 to 7, wherein the first and second group of antennas form a 2-level nested antenna array.
  9. The wireless communication apparatus of any of claims 1 to 7, wherein the first and second group of antennas are arranged on an antenna array, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
  10. The wireless communication apparatus of claim 9, wherein the antenna array is a rectangular antenna array, and the first group of antennas is arranged at one or more corners of the rectangular antenna array.
  11. The wireless communication apparatus of any of claims 1 to 7, wherein the first and second group of antennas are arranged on different antenna arrays, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
  12. The wireless communication apparatus of claim 11, wherein the first group of antennas is arranged at one or more corners of a rectangular antenna array.
  13. The wireless communication apparatus of claim 11, wherein the first group of antennas forms one or more antenna arrays on one or more first antenna panels and the second group of antennas is arranged on one or more second antenna panels.
  14. The wireless communication apparatus of claim 11 or 13, wherein the first group of antennas is controlled by a hybrid beamforming circuit, and the second group of antennas is controlled by a digital beamforming circuit.
  15. The wireless communication apparatus of any of claims 1 to 7, wherein one of the first and second groups of antennas is arranged on an antenna panel and another one of the first and second groups of antennas is arranged on a radio stripe.
  16. A wireless communication method comprising:
    utilizing a first group of antennas to transmit a sensing signal in a sensing mode;
    utilizing a second group of antennas to receive an echo signal in the sensing mode; and
    utilizing the first and second group of antennas to perform a wireless communication in a communication mode;
    wherein the first group of antennas and the second group of antennas are different in at least one of antenna spacing, radio frequency, RF, chain realization, antenna type, or antenna arrangement.
  17. The wireless communication method of claim 16, wherein the first group of antennas is arranged in a dimension with a first antenna spacing therebetween, the second group of antennas is arranged in the dimension with a second antenna spacing therebetween, and the first antenna spacing and the second antenna spacing are different.
  18. The wireless communication method of claim 16 or 17, wherein one of the first and second groups of antennas has a uniform antenna spacing, and another one of the first and second groups of antennas has a non-uniform antenna spacing.
  19. The wireless communication method of any of claims 16 to 18, wherein the first group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array, the second group of antennas is arranged in a uniform linear array, a uniform rectangular array, a uniform circular array, a minimum redundancy array, a nested array, or an irregular array, and antenna arrangements of the first and second groups of antennas are different.
  20. The wireless communication method of any of claims 16 to 19, wherein a first radio frequency chain realization of the first group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware, a second radio frequency chain realization of the second group of antennas is perform by a digital beamforming hardware, an analog beamforming hardware, or a hybrid beamforming hardware, and the first and second radio frequency chain realizations are different.
  21. The wireless communication method of claim any of claims 16 to 20, wherein direction ranges of the first and second groups of antennas are different.
  22. The wireless communication method of any of claims 16 to 21, wherein the wireless communication apparatus further comprises a third group of antennas operable to perform the wireless communication in the communication mode and neither used to transmit the sensing signal nor receive the echo signal in the sensing mode.
  23. The wireless communication method of any of claims 16 to 22, wherein the first and second group of antennas form a 2-level nested antenna array.
  24. The wireless communication method of any of claims 16 to 23, wherein the first and second group of antennas are arranged on an antenna array, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
  25. The wireless communication method of claim 24, wherein the antenna array is a rectangular antenna array, and the first group of antennas is arranged at one or more corners of the rectangular antenna array.
  26. The wireless communication method of any of claims 16 to 22, wherein the first and second group of antennas are arranged on different antenna arrays, and a first antenna spacing between the first group of antennas is different from a second antenna spacing between the second group of antennas.
  27. The wireless communication method of claim 26, wherein the first group of antennas is arranged at one or more corners of a rectangular antenna array.
  28. The wireless communication method of claim 26, wherein the first group of antennas forms one or more antenna arrays on one or more first antenna panels and the second group of antennas is arranged on one or more second antenna panels.
  29. The wireless communication method of claim 26 or 28, wherein the first group of antennas is controlled by a hybrid beamforming circuit, and the second group of antennas is controlled by a digital beamforming circuit.
  30. The wireless communication method of any of claims 16 to 22, wherein one of the first and second groups of antennas is arranged on an antenna panel and another one of the first and second groups of antennas is arranged on a radio stripe.
  31. A computer program product comprising a computer-readable program medium code  stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of claims 16 to 30.
PCT/CN2023/100749 2023-06-16 2023-06-16 Method, device and computer program product for wireless communication WO2024216738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/100749 WO2024216738A1 (en) 2023-06-16 2023-06-16 Method, device and computer program product for wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/100749 WO2024216738A1 (en) 2023-06-16 2023-06-16 Method, device and computer program product for wireless communication

Publications (1)

Publication Number Publication Date
WO2024216738A1 true WO2024216738A1 (en) 2024-10-24

Family

ID=93151869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100749 WO2024216738A1 (en) 2023-06-16 2023-06-16 Method, device and computer program product for wireless communication

Country Status (1)

Country Link
WO (1) WO2024216738A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120958A (en) * 2016-11-28 2018-06-05 株式会社万都 Radar installations with multi-input/output antenna
CN108120957A (en) * 2016-11-28 2018-06-05 株式会社万都 Radar installations and its antenna assembly
CN110361738A (en) * 2018-04-09 2019-10-22 株式会社万都 Radar equipment and its antenna equipment
US20210239788A1 (en) * 2020-02-05 2021-08-05 Alps Alpine Co., Ltd. Radar with virtual planar array (vpa) antenna
CN113805164A (en) * 2020-05-29 2021-12-17 恩智浦有限公司 Radar apparatus and method
CN114371448A (en) * 2020-10-15 2022-04-19 松下知识产权经营株式会社 Radar apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120958A (en) * 2016-11-28 2018-06-05 株式会社万都 Radar installations with multi-input/output antenna
CN108120957A (en) * 2016-11-28 2018-06-05 株式会社万都 Radar installations and its antenna assembly
CN110361738A (en) * 2018-04-09 2019-10-22 株式会社万都 Radar equipment and its antenna equipment
US20210239788A1 (en) * 2020-02-05 2021-08-05 Alps Alpine Co., Ltd. Radar with virtual planar array (vpa) antenna
CN113805164A (en) * 2020-05-29 2021-12-17 恩智浦有限公司 Radar apparatus and method
CN114371448A (en) * 2020-10-15 2022-04-19 松下知识产权经营株式会社 Radar apparatus

Similar Documents

Publication Publication Date Title
WO2020164601A1 (en) Transmission configuration index state indication method, and communication apparatus
CN110536456B (en) Communication method, terminal equipment and network equipment
CN114900891A (en) Method and communication device for signal transmission
WO2022016506A1 (en) Method for measuring and reporting associated with group information
CN104584451A (en) Method of using zoning map for beam searching, tracking and refinement
CN110971359B (en) Method and equipment for indicating beam information in wireless communication network
CN114448586A (en) Method, device and equipment for indicating working mode
CN105359424A (en) Downtilt selection in a full dimensional multiple-input multiple-output system
WO2022016504A1 (en) Method for uplink transmission associated with antenna port and panel switching
CN110913477B (en) Method and communication device for managing resources
US20230028119A1 (en) Wireless communication method for determining spatial relation and power control parameter for uplink signals
WO2021017739A1 (en) Measurement reporting method and apparatus
WO2023082276A1 (en) Beam capability reporting method and apparatus, device, and storage medium
EP3830975A1 (en) Beam reporting from a communication device
WO2024216738A1 (en) Method, device and computer program product for wireless communication
US12009601B2 (en) Terminal method and device for switching antenna in real-time
WO2023010520A1 (en) Systems and methods for uplink transmission in multi-transmission reception points and multi-panel scenarios
AU2021464873A1 (en) Systems, methods, and non-transitory processor-readable media for determining precoding information for uplink transmissions
US11165403B2 (en) Antenna module using transmission line length and electronic device including the same
WO2023184054A1 (en) Hybrid transmission and reception scheme for integrated sensing and communication
WO2024011604A1 (en) Method, device and computer program product for wireless communication
WO2023138523A1 (en) Coding method, device and readable storage medium
CN118946823A (en) Hybrid transmit and receive scheme for integrated sensing and communication
Liu et al. Performance Analysis of IRS-Assisted Networks with Product-Distance
CN117319263A (en) Method and device for determining time delay compensation value and computer readable storage medium