Nothing Special   »   [go: up one dir, main page]

WO2024204825A1 - Analysis method for automated analysis device, and automated analysis device - Google Patents

Analysis method for automated analysis device, and automated analysis device Download PDF

Info

Publication number
WO2024204825A1
WO2024204825A1 PCT/JP2024/013337 JP2024013337W WO2024204825A1 WO 2024204825 A1 WO2024204825 A1 WO 2024204825A1 JP 2024013337 W JP2024013337 W JP 2024013337W WO 2024204825 A1 WO2024204825 A1 WO 2024204825A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
automatic analyzer
calibrator
calibration curve
measurement
Prior art date
Application number
PCT/JP2024/013337
Other languages
French (fr)
Japanese (ja)
Inventor
清一郎 石岡
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Publication of WO2024204825A1 publication Critical patent/WO2024204825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automatic analyzer and an analytical method that can obtain measurement information for various test items by reacting test objects such as blood, urine, and other specimens and standard samples (calibrators) with various reagents and measuring the reaction process, reaction progress, reaction results, etc., and in particular to an automatic analyzer and an analytical method that can contribute to improving the accuracy of measurements using electrochemiluminescence.
  • Automatic analyzers such as blood coagulation analyzers and analyzers using immunoassays, are known in various forms that can obtain measurement information for various test items by reacting the test object (specimen) containing the components to be measured, such as blood or urine, with various reagents and measuring the reaction process and reaction results.
  • test object containing the components to be measured, such as blood or urine
  • reagents such as glucose, glucose, and glucose.
  • Such automatic analyzers dispense the test object (specimen) from a specimen container into a reaction container, and then dispense and mix the dispensed specimen with a reagent according to the test item to perform various measurements and analyses.
  • an automatic analyzer for clinical testing dispenses a fixed amount of the test object and reagent to react with each other, and then measures the amount of luminescence or absorbance of this reaction liquid within or after a fixed time, and obtains test values such as the concentration and activity value of the substance to be measured based on the measurement results (photometric results).
  • Measurement by electrochemiluminescence is known as a method for measuring the amount of luminescence from a reaction solution (containing the object to be measured).
  • a reagent containing a labeling substance is reacted with the object to be tested, a complex containing the object to be measured and the labeling substance is captured, and electrochemiluminescence of the labeling substance is generated, and the number of photons is measured with a photometer to qualitatively or quantitatively measure the object to be measured (the component to be measured).
  • the calibration curve for converting the measurement value (photometric value) of the photometric device into the concentration of the substance to be measured is adjusted to output the correct concentration value, reflecting the state of the device and reagent at the time of measurement, and this calibration curve data is generally stored for each reagent bottle set (or each lot of reagent bottles).
  • Figure 4 shows the calibration curve for a reagent system that is expected to change in a way that has a linear region S where the measurement value (count, which is a photometric value) increases with increasing concentration (amount of incident light), and a convergence region (plateau region) P where the measurement value does not change even with increasing concentration.
  • the solid line shows the calibration curve using a high-sensitivity reagent
  • the two-dot chain line shows the calibration curve using a low-sensitivity reagent.
  • the measurement value in the convergence region is a unique value that depends on the capabilities of the measuring device used, so the measurement value in the convergence region P will be the same whether a high-sensitivity reagent or a low-sensitivity reagent is used.
  • Figure 5 shows an example of a case where a master calibration curve L1, which serves as the calibration standard, is calibrated using a conventional calibration method that uses only two calibrator measurement values on the linear range S of the calibration curve as calibration points.
  • the two calibration points on the linear range S are two measurement positions on the linear range S that have predetermined concentrations (calibrator concentrations) selected to reflect the characteristics of the change in the calibration curve.
  • the calibration curve L1 before correction and the calibration curve L2 after correction are shown with thick solid lines.
  • the calibration curve L1 before correction (the reference calibration curve: the master calibration curve) is changed (calibrated) to the calibration curve L2 after calibration uniformly in the entire concentration range shown in Fig. 5 in accordance with the rate of decrease in the calibrator measurement value (the calibration curve is uniformly corrected). Therefore, the value of the convergence range P of the calibration curve also decreases according to the rate of decrease in the calibrator measurement value.
  • the photometric value (count) in the convergence region P is a device-specific value determined by the measurement capabilities (individual differences) of the measuring device, and the measurement value (count) in the convergence region in the high concentration region should not change even if the reagent deteriorates and becomes a low-sensitivity reagent.
  • the measurement value (upper limit) of the convergence region P which is a plateau portion that should not actually change, changes and shifts as the convergence region P is approached. If a calibration curve L2 calibrated in this way is used, a concentration value that is different from the actual one will be calculated in the high concentration region, and it will be converted into a concentration value with a large error. Therefore, calibration using conventional methods can only construct a narrow range calibration curve that can be used only in the linear region S.
  • the present invention was made with a focus on the above-mentioned problems, and aims to provide an automatic analysis method and automatic analysis device that can construct a highly accurate calibration curve that can be used over a wide range, up to high concentration ranges, with a small number of calibration points.
  • an analysis method for an automatic analyzer is an automatic analysis method that converts measurement results obtained from the automatic analyzer into concentration values by reacting a sample with a reagent corresponding to the analysis item using a calibration curve calibrated by calibration using a calibrator adjusted to a known concentration in advance, and analyzes the components to be measured contained in the sample, the calibration curve having a linear region in which the measured value increases with increasing concentration and a convergence region in which the measured value does not change even if the concentration increases, the calibration of the calibration curve by the calibration is performed using two or more calibrator measurement values located in the linear region and one or more unique calibrator measurement values located in the convergence region, and at least one of the unique calibrator measurement values located in the convergence region used in the calibration is a value unique to each automatic analyzer, and is read and used from a value stored in advance within each automatic analyzer or in a location other than each automatic analyzer.
  • the calibration curve is created using two or more calibrator measurement values located in the linear region, as well as one or more unique calibrator measurement values (maximum output value specific to the device) located in the convergence region, which is a device-specific value that is determined in advance by the individual differences of the photometric system of the measurement unit of the automatic analyzer.
  • the maximum output value specific to the automatic analyzer is also used, as well as the unique calibrator measurement value corresponding to the concentration value in the convergence region, so that the movement of the convergence region P (L1 ⁇ L2) as shown in Figure 5 described above does not occur during calibration.
  • the unique calibrator measurement values can be used.
  • at least one of the unique calibrator measurement values can be the maximum saturation light value measured by each automatic analyzer, or can be within the range of 95% to 100% of the maximum saturation light value measured by each automatic analyzer.
  • At least one device-specific calibrator measurement value located in the convergence region is measured in advance before delivery of the device and stored in advance in the analytical device itself or in a memory unit external to the device in a state where it can be accessed when needed. Therefore, there is no need to acquire a specific calibrator measurement value located in the convergence region during calibration. Therefore, only the calibrator measurement value in the linear region needs to be acquired during calibration, and a highly accurate calibration curve that can be used over a wide range up to the high concentration region can be constructed with a small number of calibration points. As a result, it is possible to reduce the reagent costs required for calibration and simplify the measurement operation.
  • An automatic analyzer is an automatic analyzer that converts a measurement result obtained by reacting a reagent corresponding to an analysis item with a specimen into a concentration value using a calibration curve calibrated by calibration using a calibrator previously adjusted to a known concentration, and analyzes a component to be measured contained in the specimen
  • the automatic analyzer comprising: an introduction unit that receives the specimen and the reagent containing a labeling substance; a measurement unit that measures the amount of light obtained from the labeling substance and measures the component to be measured contained in the specimen qualitatively or quantitatively using the calibrated calibration curve based on the measured value; and a calibration curve calibration unit that calibrates the calibration curve by calibration in cooperation with the measurement unit;
  • the calibration curve has a linear region where the measured value increases with increasing concentration and a convergence region where the measured value does not change even if the concentration increases, and the calibration curve calibration unit creates the calibration curve using two or more calibrator measurement values located in the linear region and one or more specific calibrator measurement values located in the convergence region specific to the
  • the automatic analysis method and automatic analyzer of the present invention by storing specific calibrator measurement values in a convergence range specific to each automatic analyzer, either internally or externally, and using these to perform calibration, it is possible to construct a highly accurate calibration curve that can be used over a wide range, even up to high concentration ranges, with a small number of calibration points. Therefore, highly accurate measurements and analysis according to each automatic analyzer are possible.
  • FIG. 1 is a schematic diagram of a main configuration of an automatic analyzer according to one embodiment of the present invention.
  • FIG. 13 is a diagram showing a calibration curve having a linear region and a convergence region according to the present embodiment, which is created using two or more calibrator measurement values located in a linear region and one or more calibrator measurement values and concentration values located in a convergence region (the solid line shows the calibration curve using a high-sensitivity reagent, and the two-dot dashed line shows the calibration curve using a low-sensitivity reagent).
  • FIG. 11 is a schematic diagram showing an example of how a calibration curve is constructed when multiple calibrator measurements are used in a convergence region.
  • FIG. 1 shows calibration curves having a linear range and a convergence range, which were prepared using a high-sensitivity reagent and a low-sensitivity reagent, respectively.
  • FIG. 1 shows a calibration curve created by a conventional method in which calibration is performed using only two calibration points in the linear range.
  • 2 is a functional block diagram showing an example of a control unit of the automatic analyzer 1 and a configuration for performing calibration.
  • the automatic analyzer 1 of the present embodiment shown in Fig. 1 is not shown in its entirety, but includes a reaction unit that holds a reaction vessel into which a specimen such as blood or urine collected from a person is dispensed, and a reagent supply unit that supplies the reagent in the reagent vessel to the reaction vessel.
  • the automatic analyzer 1 obtains measurement information for a predetermined test item by reacting the reagent supplied from the reagent supply unit to the reaction vessel with the specimen and measuring the reaction process (measuring the reaction liquid obtained by mixing the reagent and the specimen).
  • the automatic analyzer 1 of the present embodiment measures, as an example, the amount of luminescence of the measurement object obtained from the reaction liquid after a certain time, and obtains test values such as the concentration and activity value of the measurement object based on the photometric result.
  • the electrochemiluminescence method is used to measure the amount of luminescence of the object to be measured.
  • a reaction liquid (hence a liquid containing a complex containing the labeling substance, the object to be measured, and the solid phase carrier) in which a reagent containing a magnetic solid phase carrier (magnetic particles in this embodiment) and a reagent containing a specimen and a labeling substance are mixed is poured into the flow path of the flow cell constituting the measurement section.
  • the complex is then captured in a part of the flow path by a magnetic field.
  • the magnetic field is generated by contacting a magnet with the outer wall of the flow path at the electrode section consisting of a working electrode and a counter electrode facing each other across the flow path of the flow cell. Then, the magnetic particles that have captured the object to be measured are captured and remain on the electrode section due to the magnetic attraction force of this magnet. Then, after removing the magnetic field, for example by removing the magnet in this captured state, a voltage is applied to the electrode section to generate electrochemiluminescence of the labeling substance (the labeling substance that forms a complex with the magnetic particles and the object to be measured emits light), and the number of photons is measured to qualitatively or quantitatively measure the object to be measured (the component to be measured).
  • the labeling substance the labeling substance that forms a complex with the magnetic particles and the object to be measured emits light
  • the automatic analyzer 1 includes a heating unit 50 for heating the liquid required for measurement to a desired temperature using a heater 24, an introduction nozzle (an introduction unit that receives a reagent containing the test object and a labeling substance) 99 as an introduction tube for injecting the above-mentioned reaction liquid into the liquid required for measurement heated by the heating unit 50 to produce a liquid containing the object to be measured, and a measurement unit 60 for magnetically capturing a complex formed by the object to be measured and the labeling substance bound to magnetic particles from the liquid containing the object to be measured using an electrode unit 70 and measuring the complex using an electrochemiluminescence method.
  • the measurement unit 60 constitutes a flow cell and is kept at a constant temperature by a heater (not shown), and obtains measurement information related to a specified analysis item of the object to be measured.
  • liquid containing the object to be measured refers to any physical form that should be supplied to the measurement unit 60 in a state required to measure the specimen for a specified analysis item, such as a mixture (reaction liquid) of a biological sample (specimen) and a reagent (calibration liquid).
  • object to be measured refers to the substance to be measured by the measurement unit 60, and refers to the specimen itself or a substance contained in the specimen, or a component to be measured that is contained in the test object.
  • Test subject refers to a liquid containing the component to be measured, and refers to a biological sample (specimen) such as blood or urine, or a liquid (calibrator) adjusted to show a known concentration or brightness, such as a control reagent or calibration reagent.
  • the liquids required for measurement are a cleaning liquid (CC liquid) that cleans the introduction nozzle 99 and washes away substances not required for measurement and substances after measurement, and a luminescent electrolyte (EB liquid) used in measurement by electrochemiluminescence method, and therefore the automatic analyzer 1 of this embodiment has a liquid supply unit 20 for supplying CC liquid and a liquid supply unit 22 for supplying EB liquid.
  • the heating unit 50 is made up of a temperature control block equipped with a coiled tube 35 through which the liquid required for the measurement flows, and the liquid required for the measurement in the coiled tube 35 is heated by heating the coiled tube 35 with a heater 24.
  • the liquid supply units 20 and 22 are connected to the coiled tube 35 of the heating unit 50 via the supply flow paths 26 and 27.
  • a connecting trough 34 with a four-way solenoid valve 33 is interposed between the heating section 50 and the introduction nozzle 99.
  • the four-way solenoid valve 33 has a first port 33a connected to an air intake pipe (not shown) that communicates with the outside air, a second port 33b connected to a communication pipe 31 that communicates with the liquid supply section 20 for the CC liquid via a serpentine 35, and a third port 33c connected to a communication pipe 32 that communicates with the liquid supply section 22 for the EB liquid via a serpentine 35.
  • the introduction nozzle 99 is joined to the combination trough 34 except when it is moved to the installation location of the reaction liquid containing the measurement target to aspirate the reaction liquid.
  • a flow path is formed that flows the liquid necessary for measurement from the heating unit 50 and the reaction liquid (liquid containing the measurement target) introduced by the introduction nozzle 99 into the flow path 60a of the measurement unit 60 via the connection flow path 40.
  • the "liquid necessary for measurement” moves inside the introduction nozzle 99 and mixes with the reaction liquid to become the "liquid containing the measurement target.”
  • the measurement unit 60 constituting the flow cell is constructed by protecting the periphery of a metal box with a thermal insulating material, and includes a flow path 60a through which a liquid containing the object to be measured flows, an optical sensor 60b (an optical device including a light receiving element: for example, a photomultiplier tube) that measures the amount of light emitted, and an electrode unit 70 that magnetically captures a complex formed by binding the object to be measured and the labeling substance to the magnetic particles.
  • an optical sensor 60b an optical device including a light receiving element: for example, a photomultiplier tube
  • the electrode unit 70 is composed of a working electrode 71 and a counter electrode 72 that face each other across the flow path 60a, and has a magnet 73 that generates a magnetic field when brought close to (or in contact with) the outer wall of the flow path 60a on the working electrode 71 side.
  • the magnetic attraction force of this magnet 73 causes the magnetic particles containing the object to be measured (i.e., the complex) to be captured and remain on the working electrode 71.
  • the magnetic field is removed, for example by removing the magnet 73, and a voltage is applied to the electrode section 70 to generate electrochemiluminescence of the labeled substance that forms the complex (the labeled substance that forms a complex with the magnetic particles and the object to be measured emits light), and the number of photons is counted to qualitatively or quantitatively measure the object to be measured (the component to be measured).
  • the measuring unit 60 is provided with a temperature sensor 75 that detects the temperature of the liquid containing the object to be measured.
  • a pump (e.g., a peristaltic pump) 49 is inserted downstream of the flow path extending from the measuring unit 60, and is driven to supply the liquid required for measurement from the liquid supply units 20, 22 to the measuring unit 60 via the heating unit 50.
  • a tank 74 is provided to collect the liquid containing the object to be measured after it has been measured as waste liquid.
  • the automated analyzer 1 of this embodiment also includes a control unit 10 that controls the operation of the introduction nozzle 99, the electrode unit 70, and the pump 49.
  • the electrical connection lines between the control unit 10 and each unit are indicated by dashed arrows.
  • the working and counter electrodes 71, 72 of the measurement unit 60, the temperature sensor 75, the magnet drive unit (not shown) that drives the magnet 73, and the like are also electrically connected to the control unit 10, but the connection lines have been omitted in FIG. 1 for simplification.
  • FIG. 6 shows an example of a functional block diagram illustrating the main functions of the control unit 10. The following description will be given with reference to FIG. 1 and FIG. 6.
  • calibration is performed at a predetermined timing using a calibrator (standard reagent) that has been adjusted to a known concentration in advance.
  • calibrator standard reagent
  • the measurement results obtained by reacting the sample with a reagent corresponding to the analysis item as described above are converted into concentration values, and the components to be measured contained in the sample are analyzed.
  • the calibration curve (master calibration curve) that serves as the basis for calibration is prepared in advance by the reagent manufacturer using many sample specimens (standard specimens) of different concentrations, and then supplied.
  • the master calibration curve L1 as shown in FIG. 5 may be prepared when the reagent is manufactured and stored in the automatic analyzer 1 or in an external memory unit, or the corresponding calibration curve may be supplied together with the reagent when the reagent is replaced (supplied).
  • the unique calibrator measurement value at the calibration point of the convergence range of the automatic analyzer 1 is measured by the calibration curve calibration unit 17 in the device 1 before delivery of the automatic analyzer 1.
  • the unique measurement data of the measured convergence range and the corresponding device-specific data such as concentration are stored, for example, in the calibration data storage unit 16b of the device 1 or in an external storage unit 116b (including USB, etc.) other than the automatic analyzer 1, together with the measured calibrator concentration and other related data.
  • the storage location of the device-specific convergence range data is not limited to the calibration data storage unit 16b, and may be any storage unit that can be freely read out when performing calibration. Here, it is possible to perform calibration using two or more unique calibrator measurement values.
  • the unique calibrator measurement values are stored as many as the number used for calibration. Also, at least one of the unique calibrator measurement values can be the maximum saturation light value measured by each automatic analyzer, or can be within the range of 95% to 100% of the maximum saturation light value measured by each automatic analyzer.
  • the control unit 10 of the automatic analyzer 1 includes an input/output interface 11 for inputting and outputting data to and from each part of the automatic analyzer, a main control unit 12 that controls the entire device, an operation control unit 15 that controls the operation of the nozzle, valve, heater, and other parts, a measurement control unit 16 that controls digital measurement by the measurement unit 60, and a calibration curve calibration unit 17 that calibrates the calibration curve.
  • the calibration curve calibration unit 17 of the control unit 10 drives the introduction nozzle 99, the four-way nozzle 33, and the measurement unit 60 via the operation control unit 15 to introduce a mixture of the calibrator of the reagent corresponding to the calibration points C0 and C1 and the liquid required for various measurements into the measurement unit 60. After that, it waits for the reaction of the mixture and performs the measurements required for calibration under the control of the measurement control unit 16.
  • the measurement results of these two points and the measurement values and concentrations of the convergence zone specific to the automatic analyzer stored in the calibration data storage units 16b, 116b, etc. are read out, and calibration is performed using the three calibration points.
  • Figure 2 shows a calibration curve calibrated using the calibration method of the present invention.
  • the solid line shows the calibration curve using a high-sensitivity reagent
  • the two-dot chain line shows the calibration curve using a low-sensitivity reagent calibrated using the calibration method of the present invention.
  • Calibration is performed by the measurement unit 60 of the automatic analyzer 1 by itself or in cooperation with the measurement control unit (or measurement calculation circuit) of the control unit 10. As shown in FIG. 2, calibration uses calibrator measurement values (shown as calibration points C0, C1, and Cp in the figure) at two points in the linear region S of the calibration curve where the measurement value (count, which is the photometric value) increases with increasing concentration (amount of incident light) and at a convergence region P of the calibration curve where the measurement value does not change even with increasing concentration. Calibrators for calibration may be stored in the automatic analyzer beforehand, or may be set in the automatic analyzer when making measurements.
  • the measurement unit 60 calibrates the calibration curve using two or more calibrator measurement values (here, as an example, two calibrator measurement values (two calibration points C0 and C1)) located in the linear region S of the calibration curve and one or more calibrator measurement values (here, as an example, a calibration point Cp which is one calibrator measurement value) located in the convergence region P, and a concentration value (incident light amount).
  • calibrator measurement values here, as an example, two calibrator measurement values (two calibration points C0 and C1) located in the linear region S of the calibration curve and one or more calibrator measurement values (here, as an example, a calibration point Cp which is one calibrator measurement value) located in the convergence region P, and a concentration value (incident light amount).
  • at least one unique calibrator measurement value one unique calibrator measurement value Cp as an example located in the convergence region P is held in advance by the automatic analyzer 1 itself (in other words, stored as a unique value by the automatic analyzer 1).
  • an ultra-high brightness standard reagent (calibrator) is measured and the unique calibrator measurement value at the calibration point Cp is stored inside or outside the automatic analyzer 1. Then, when a new reagent or a new lot of reagent is installed in the device 1, calibration is performed. In calibration, for example, the concentration value of the calibrator is measured at calibration points C0 and C1. Next, when calibrating the calibration curve, the numerical values of C0, C1, and Cp can be used to obtain the coefficients of the calibration curve by the least squares method or other means.
  • the concentration of the substance to be measured becomes very high and the amount of light received by the photometric system becomes very large, the photometric system becomes saturated and the output value (count value) stops changing despite the increase in concentration. This appears on the calibration curve as the convergence region P.
  • the output value at this time is determined by the individual differences of the light receiving elements that make up the photometric system in the measurement unit 60 and the circuit that measures the light receiving element output. Therefore, in this embodiment, this characteristic is utilized to determine the maximum output value (maximum device output value) by measuring a high concentration calibrator, and this value is stored outside the device 1 or automatic analyzer 1 as a virtual calibrator measurement value or a unique calibration measurement value (measurement value at calibration point Cp).
  • this unique calibrator measurement value Cp is a value determined by individual differences in the photometric system of the device, it is not possible to have this information stored in containers or racks containing each reagent, as it is not known which device it will be used in. For this reason, it is preferable to store it in each individual device 1.
  • the storage location is not limited to the measurement unit, and it may be stored anywhere within the device as long as it is accessible for use as a device-specific value, or it may be stored outside the device. For example, if it can be obtained by a communication means, it may be stored on a server or external storage unit. Furthermore, it may be stored in other storage units that are easily removable, such as USB.
  • the number of calibrator measurement values (calibration points) used to create the calibration curve is not limited to the number mentioned above.
  • the position of the inflection point IP of the calibration curve can also be controlled by changing the number of calibrator measurement values. For example, as shown in (a) and (b) of FIG. 3, by increasing the number of calibration points C near the inflection point IP, that is, by increasing the information weight of the part where no change in the photometric value occurs near high luminance, it is possible to determine the curvature of the curve connecting the calibration curve in the linear region of the low to medium luminance region and the calibration curve in the convergence region.
  • the present invention is not limited to the above-described embodiment, and can be modified in various ways without departing from the gist of the present invention.
  • the configuration of the measurement unit, etc. is not limited to the above-described configuration.
  • some or all of the above-described embodiments may be combined, or part of the configuration may be omitted from one of the above-described embodiments, without departing from the gist of the present invention.
  • Control unit 16 Measurement control unit 16b, 116b Calibration data storage unit 17 Calibration curve calibration unit 60 Measurement unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Provided are an analysis method for an automated analysis device, and the automated analysis device, with which it is possible to construct a highly accurate calibration curve that can be used over a wide range up to a high concentration region, using a small number of calibration points. An analysis method for an automated analysis device according to the present invention uses a calibration curve created by calibration performed using a calibrator adjusted in advance to a known concentration, to convert a measurement result, obtained from the analysis device by reacting a reagent corresponding to an analysis item with a specimen, into a concentration value, in order to analyze a component to be measured contained in the specimen. The calibration curve is created using two or more calibrator measurement values C0, C1 located in a linear region S and one or more unique calibrator measurement values CP located in a convergence region P, and a concentration value. In this case, the unique calibrator measurement value Cp located in the convergence region P is one that is held in advance by the analysis device.

Description

自動分析装置の分析方法及び自動分析装置Analysis method for automatic analyzer and automatic analyzer
 本発明は、血液や尿などの検体や標準試料(キャリブレータ)などの検査対象物を種々の試薬と反応させてその反応過程、反応経過、反応結果等を測定することにより様々な検査項目に関して測定情報を得ることができる自動分析装置の分析方法、及び自動分析装置に関し、特に、電気化学発光法による測定の精度向上に寄与し得る自動分析装置の分析方法及び自動分析装置に関する。 The present invention relates to an automatic analyzer and an analytical method that can obtain measurement information for various test items by reacting test objects such as blood, urine, and other specimens and standard samples (calibrators) with various reagents and measuring the reaction process, reaction progress, reaction results, etc., and in particular to an automatic analyzer and an analytical method that can contribute to improving the accuracy of measurements using electrochemiluminescence.
 血液凝固分析装置や、免疫測定法を用いた分析装置など、血液や尿などの測定対象となる成分を含む検査対象物(検体)を種々の試薬と反応させてその反応過程や反応結果を測定することにより様々な検査項目に関して測定情報を得ることができる自動分析装置は、従来から様々な形態のものが知られている。例えば、そのような自動分析装置は、検査対象物としての検体を検体容器から反応容器に分注し、その分注した検体に検査項目に応じた試薬を分注混合させて各種の測定及び分析を行なう。具体的には、例えば、臨床検査用の自動分析装置では、検査対象物と試薬とを一定量分注して反応させた後、この反応液の一定時間内又は一定時間後の発光量や吸光度を測定し、測定結果(測光結果)に基づき測定対象物質の濃度や活性値等の検査値を求める。 Automatic analyzers, such as blood coagulation analyzers and analyzers using immunoassays, are known in various forms that can obtain measurement information for various test items by reacting the test object (specimen) containing the components to be measured, such as blood or urine, with various reagents and measuring the reaction process and reaction results. For example, such automatic analyzers dispense the test object (specimen) from a specimen container into a reaction container, and then dispense and mix the dispensed specimen with a reagent according to the test item to perform various measurements and analyses. Specifically, for example, an automatic analyzer for clinical testing dispenses a fixed amount of the test object and reagent to react with each other, and then measures the amount of luminescence or absorbance of this reaction liquid within or after a fixed time, and obtains test values such as the concentration and activity value of the substance to be measured based on the measurement results (photometric results).
 反応液(測定対象物を含む)の発光量の測定に関しては、電気化学発光法による測定が知られている。この方法では、標識物質を含有する試薬と検査対象物とを反応させ、測定対象物と標識物質を含む複合体を捕捉し、標識物質の電気化学発光を発生させることにより、光子の数を測光装置により計測するなどして、測定対象物(測定対象成分)を定性的又は定量的に測定する。  Measurement by electrochemiluminescence is known as a method for measuring the amount of luminescence from a reaction solution (containing the object to be measured). In this method, a reagent containing a labeling substance is reacted with the object to be tested, a complex containing the object to be measured and the labeling substance is captured, and electrochemiluminescence of the labeling substance is generated, and the number of photons is measured with a photometer to qualitatively or quantitatively measure the object to be measured (the component to be measured).
 そのような定性的又は定量的な分析を行なうためには、予め複数の既知の濃度に調整した標準液試料(以下、「キャリブレータ」と称する)を、試薬ボトルセットごとに、該当する試薬を使用して分析し、濃度と吸光度との関係式又は濃度と発光量との関係式(以下、「検量線」と称する)を求めておく必要がある(例えば、特許文献1参照)。そして、分析項目ごとに行なうこのようなキャリブレーション分析によって作成した検量線を使用することによって測光結果を濃度値に変換する。このように、測光装置の測定値(測光値)を測定対象物質の濃度に変換するための検量線を、測定時の装置、試薬の状態を反映して、正しい濃度値を出力するために調整することをキャリブレーション(又は校正)といい、こうした検量線のデータは一般に試薬ボトルセット(又は試薬ボトルのロット単位)ごとに記憶される。 In order to perform such qualitative or quantitative analysis, it is necessary to analyze standard solution samples (hereinafter referred to as "calibrators") that have been adjusted to multiple known concentrations in advance for each reagent bottle set using the corresponding reagent, and to obtain a relationship equation between concentration and absorbance or a relationship equation between concentration and luminescence (hereinafter referred to as a "calibration curve") (see, for example, Patent Document 1). Then, the photometric results are converted into concentration values by using the calibration curve created by such calibration analysis performed for each analysis item. In this way, the calibration curve for converting the measurement value (photometric value) of the photometric device into the concentration of the substance to be measured is adjusted to output the correct concentration value, reflecting the state of the device and reagent at the time of measurement, and this calibration curve data is generally stored for each reagent bottle set (or each lot of reagent bottles).
特開2022-034183号公報JP 2022-034183 A
 前述した自動分析装置のキャリブレーションでは、実際の検査対象物を測定する前に、濃度が既知のキャリブレータ(標準液試料)を用いて所定のキャリブレーションポイントを計測し、計測したキャリブレータの測光値を用いてその計測装置の検量線を変更(校正)する。このキャリブレーションにおける従来技術の問題点について、図4及び図5を用いて説明する。 In the calibration of the automatic analyzer described above, a calibrator (standard liquid sample) with a known concentration is used to measure a specified calibration point before measuring the actual test object, and the photometric value of the measured calibrator is used to change (calibrate) the calibration curve of the measuring device. The problems with this type of calibration in the conventional technology are explained using Figures 4 and 5.
 図4は、濃度(入射光量)の増大に応じて測定値(測光値であるカウント)が増大する直線域Sと、濃度が増大しても測定値が変化しなくなる収束域(プラトー域)Pとを有するような変化が想定される系の試薬の検量線を示す。図4中、実線は高感度試薬を用いた検量線、二点鎖線は低感度試薬を用いた検量線を示している。なお収束域の測定値は、測定する計測装置の能力に依存する固有の値であるから、収束域Pの測定値は、高感度試薬であっても低感度試薬であっても同じ測定値となる。 Figure 4 shows the calibration curve for a reagent system that is expected to change in a way that has a linear region S where the measurement value (count, which is a photometric value) increases with increasing concentration (amount of incident light), and a convergence region (plateau region) P where the measurement value does not change even with increasing concentration. In Figure 4, the solid line shows the calibration curve using a high-sensitivity reagent, and the two-dot chain line shows the calibration curve using a low-sensitivity reagent. Note that the measurement value in the convergence region is a unique value that depends on the capabilities of the measuring device used, so the measurement value in the convergence region P will be the same whether a high-sensitivity reagent or a low-sensitivity reagent is used.
 図5は、キャリブレーションポイントとして検量線の直線域S上の2点のキャリブレータ測定値のみを用いる従来のキャリブレーション方法により、キャリブレーションの基準となるマスタ検量線L1を校正する場合を例示している。ここで、直線域S上の2点のキャリブレーションポイントとは、検量線の変化の特徴を反映するために選ばれる所定の濃度(キャリブレータの濃度)を有する直線域S上の2点の測定位置である。なお、図5では、補正前の検量線L1と補正後の検量線L2とを太い実線で示している。 Figure 5 shows an example of a case where a master calibration curve L1, which serves as the calibration standard, is calibrated using a conventional calibration method that uses only two calibrator measurement values on the linear range S of the calibration curve as calibration points. Here, the two calibration points on the linear range S are two measurement positions on the linear range S that have predetermined concentrations (calibrator concentrations) selected to reflect the characteristics of the change in the calibration curve. In Figure 5, the calibration curve L1 before correction and the calibration curve L2 after correction are shown with thick solid lines.
 このように、直線域S上の2点のキャリブレーションポイントのみを用いてキャリブレーションを行う従来の方法では、図5から明らかなように、以下のような問題が生じる。
 すなわち、直線域S上の2つのキャリブレーションポイントC0(原点),C1のみを用いて低感度試薬のキャリブレーションを行うと、キャリブレータ測定値の低下の割合に倣って、図5に示される全濃度領域で一律に、補正前の検量線L1(基準となる検量線:マスタ検量線)からキャリブレーション後の検量線L2に変更(校正)される(検量線が一律に補正される)。そのため、検量線の収束域Pの値も、キャリブレータの減衰割合に応じて収束域Pの値(測定値)も減衰したものとなってしまう。
In this way, in the conventional method of performing calibration using only two calibration points on the linear range S, as is clear from FIG. 5, the following problems arise.
That is, when the calibration of the low-sensitivity reagent is performed using only the two calibration points C0 (origin) and C1 on the linear range S, the calibration curve L1 before correction (the reference calibration curve: the master calibration curve) is changed (calibrated) to the calibration curve L2 after calibration uniformly in the entire concentration range shown in Fig. 5 in accordance with the rate of decrease in the calibrator measurement value (the calibration curve is uniformly corrected). Therefore, the value of the convergence range P of the calibration curve also decreases according to the rate of decrease in the calibrator measurement value.
 しかし、収束域Pの測光値(カウント)は、上述の通り、当該計測装置の計測能力(個体差)により定まる装置固有の値であり、試薬が劣化して低感度の試薬となったとしても高濃度領域における収束領域の計測値(カウント)は、変化しないはずである。にもかかわらず従来のキャリブレーションによる校正後の検量線L1では、収束域Pに近づくにつれ、実際には変化しないはずのプラトー部分である収束域Pの測定値(上限部分)が変化してずれてしまう。このように校正された検量線L2を使用すると、高濃度域では実際とは異なる濃度値を算出する結果となり、誤差の大きい濃度値に換算してしまう。したがって、従来の方法によるキャリブレーションでは、実質的に直線域Sでしか使用できない狭い範囲の検量線しか構築できなくなる。 However, as mentioned above, the photometric value (count) in the convergence region P is a device-specific value determined by the measurement capabilities (individual differences) of the measuring device, and the measurement value (count) in the convergence region in the high concentration region should not change even if the reagent deteriorates and becomes a low-sensitivity reagent. Despite this, in the calibration curve L1 after conventional calibration, the measurement value (upper limit) of the convergence region P, which is a plateau portion that should not actually change, changes and shifts as the convergence region P is approached. If a calibration curve L2 calibrated in this way is used, a concentration value that is different from the actual one will be calculated in the high concentration region, and it will be converted into a concentration value with a large error. Therefore, calibration using conventional methods can only construct a narrow range calibration curve that can be used only in the linear region S.
 そのため、検量線の変化の特徴を反映するためのキャリブレーションポイントを増やすことも考えられるが、キャリブレーションポイントが増えれば、キャリブレーションに関与する試薬のランニングコストも引き上げてしまう。キャリブレーションにかかる試薬コストの抑制、測定操作の簡素化が求められている自動分析装置の昨今の現状を考えると、特に入射光量(濃度)とカウント値との関係(検量線)が直線域と収束域とを有する場合において、少ないキャリブレーションポイント数で、高濃度域にまで至る広い範囲で使用できる高精度な検量線の構築を可能にする新たな手法が早急に望まれる。 For this reason, it may be possible to increase the number of calibration points to reflect the characteristics of the changes in the calibration curve, but increasing the number of calibration points would also increase the running costs of the reagents involved in the calibration. Considering the current situation of automated analyzers, which require reduction in reagent costs for calibration and simplification of measurement operations, there is an urgent need for a new method that enables the construction of a highly accurate calibration curve that can be used over a wide range, up to high concentration ranges, with a small number of calibration points, especially when the relationship between the incident light amount (concentration) and the count value (calibration curve) has a linear region and a convergence region.
 本発明は上記した問題に着目してなされたものであり、少ないキャリブレーションポイント数で、高濃度域にまで至る広い範囲で使用できる高精度な検量線の構築が可能な、自動分析方法及び自動分析装置を提供することを目的とする。 The present invention was made with a focus on the above-mentioned problems, and aims to provide an automatic analysis method and automatic analysis device that can construct a highly accurate calibration curve that can be used over a wide range, up to high concentration ranges, with a small number of calibration points.
 上記した目的を達成するために、本発明の一態様による自動分析装置の分析方法は、予め既知の濃度に調整したキャリブレータを用いて行なうキャリブレーションによって校正した検量線を使用して、分析項目に応じた試薬と検体とを反応させることにより自動分析装置から得られる測定結果を濃度値に変換し、検体中に含まれる測定対象成分の分析を行なう自動分析方法であって、前記検量線は、濃度の増大に応じて測定値が増大する直線域と、濃度が増大しても測定値が変化しなくなる収束域とを有し、前記キャリブレーションによる前記検量線の校正は、前記直線域に位置する2つ以上のキャリブレータ測定値、及び前記収束域に位置する1つ以上の固有のキャリブレータ測定値を用いて行われ、前記キャリブレーションで使用する前記収束域に位置する少なくとも1つの前記固有のキャリブレータ測定値は、個々の自動分析装置に固有の値であって、予め前記個々の自動分析装置内又は前記個々の自動分析装置以外の場所に記憶しているものを読み出して使用することを特徴とする。 In order to achieve the above-mentioned object, an analysis method for an automatic analyzer according to one aspect of the present invention is an automatic analysis method that converts measurement results obtained from the automatic analyzer into concentration values by reacting a sample with a reagent corresponding to the analysis item using a calibration curve calibrated by calibration using a calibrator adjusted to a known concentration in advance, and analyzes the components to be measured contained in the sample, the calibration curve having a linear region in which the measured value increases with increasing concentration and a convergence region in which the measured value does not change even if the concentration increases, the calibration of the calibration curve by the calibration is performed using two or more calibrator measurement values located in the linear region and one or more unique calibrator measurement values located in the convergence region, and at least one of the unique calibrator measurement values located in the convergence region used in the calibration is a value unique to each automatic analyzer, and is read and used from a value stored in advance within each automatic analyzer or in a location other than each automatic analyzer.
 上記構成の自動分析装置の分析方法によれば、検量線の作成は、直線域に位置する2つ以上のキャリブレータ測定値に加え、自動分析装置の計測部の測光系の個体差により定まる、予め記憶している装置固有の値である収束域に位置する1つ以上の固有のキャリブレータ測定値(装置固有の最大出力値)を用いる。このように直線域の2つ以上のキャリブレータ測定値に加えて、自動装置固有の最大出力値を、収束域の濃度値に対応する固有のキャリブレータ測定値も使用して、キャリブレーションを行うため、キャリブレーションに際して前述した図5に示されるような収束域Pの動き(L1→L2)を生じさせることがない。したがって、高濃度域にまで至る広い範囲で使用できる高精度な検量線の構築が可能になる。固有のキャリブレータ測定値として、2個使用することが可能である。また、固有のキャリブレータ測定値の少なくとも一つを、個々の自動分析装置で測定した最大飽和光量値とすること、または、個々の自動分析装置で測定した最大飽和光量値の95%~100%の範囲内とすることもできる。  According to the analysis method of the automatic analyzer having the above configuration, the calibration curve is created using two or more calibrator measurement values located in the linear region, as well as one or more unique calibrator measurement values (maximum output value specific to the device) located in the convergence region, which is a device-specific value that is determined in advance by the individual differences of the photometric system of the measurement unit of the automatic analyzer. In this way, in addition to two or more calibrator measurement values in the linear region, the maximum output value specific to the automatic analyzer is also used, as well as the unique calibrator measurement value corresponding to the concentration value in the convergence region, so that the movement of the convergence region P (L1 → L2) as shown in Figure 5 described above does not occur during calibration. Therefore, it is possible to construct a highly accurate calibration curve that can be used in a wide range up to the high concentration region. Two unique calibrator measurement values can be used. In addition, at least one of the unique calibrator measurement values can be the maximum saturation light value measured by each automatic analyzer, or can be within the range of 95% to 100% of the maximum saturation light value measured by each automatic analyzer.
 収束域に位置する少なくとも1つの装置固有のキャリブレータ測定値は、装置の納品前に予め測定して、必要な時にアクセス可能な状態で、分析装置自体又は装置外の記憶部に予め記憶しておくだけで良い。そのため、キャリブレーション時に収束域に位置する固有のキャリブレータ測定値を取得する必要がない。従って、キャリブレーション時には直線域のキャリブレータ測定値のみを取得すれば済み、少ないキャリブレーションポイント数で、高濃度域にまで至る広い範囲で使用できる高精度な検量線の構築が可能である。その結果、キャリブレーションにかかる試薬コストの抑制、測定操作の簡素化が可能となる。 At least one device-specific calibrator measurement value located in the convergence region is measured in advance before delivery of the device and stored in advance in the analytical device itself or in a memory unit external to the device in a state where it can be accessed when needed. Therefore, there is no need to acquire a specific calibrator measurement value located in the convergence region during calibration. Therefore, only the calibrator measurement value in the linear region needs to be acquired during calibration, and a highly accurate calibration curve that can be used over a wide range up to the high concentration region can be constructed with a small number of calibration points. As a result, it is possible to reduce the reagent costs required for calibration and simplify the measurement operation.
 また、本発明の一態様に係る自動分析装置は、予め既知の濃度に調整したキャリブレータを用いて行なうキャリブレーションによって校正した検量線を使用して、分析項目に応じた試薬と検体とを反応させることにより得られる測定結果を濃度値に変換し、検体中に含まれる測定対象成分の分析を行なう自動分析装置であって、前記検体及び標識物質を含む前記試薬を受け入れる導入部と、前記標識物質から得られる光量を計測し、該計測した計測値に基づいて前記校正後の検量線を用いて前記検体中に含まれる測定対象成分を定性的又は定量的に測定する測定部と、前記測定部と協働してキャリブレーションにより前記検量線を校正する検量線校正部と、を備え、
 前記検量線は、濃度の増大に応じて測定値が増大する直線域と、濃度が増大しても測定値が変化しなくなる収束域とを有し、前記検量線校正部は、前記直線域に位置する2つ以上のキャリブレータ測定値、及び前記自動分析装置固有の前記収束域に位置する1つ以上の固有のキャリブレータ測定値であって予め前記自動分析装置内又は該自動分析装置以外に記憶しているものを用いて前記検量線を作成する、ことを特徴とする。ここで、前記固有のキャリブレータ測定値は、個々の自動分析装置で測定した最大飽和光量値とすることができる。または、個々の自動分析装置で測定した最大飽和光量値の95%~100%の範囲内とすることもできる。
An automatic analyzer according to one aspect of the present invention is an automatic analyzer that converts a measurement result obtained by reacting a reagent corresponding to an analysis item with a specimen into a concentration value using a calibration curve calibrated by calibration using a calibrator previously adjusted to a known concentration, and analyzes a component to be measured contained in the specimen, the automatic analyzer comprising: an introduction unit that receives the specimen and the reagent containing a labeling substance; a measurement unit that measures the amount of light obtained from the labeling substance and measures the component to be measured contained in the specimen qualitatively or quantitatively using the calibrated calibration curve based on the measured value; and a calibration curve calibration unit that calibrates the calibration curve by calibration in cooperation with the measurement unit;
The calibration curve has a linear region where the measured value increases with increasing concentration and a convergence region where the measured value does not change even if the concentration increases, and the calibration curve calibration unit creates the calibration curve using two or more calibrator measurement values located in the linear region and one or more specific calibrator measurement values located in the convergence region specific to the automatic analyzer and stored in advance inside the automatic analyzer or outside the automatic analyzer. Here, the specific calibrator measurement values can be maximum saturation light intensity values measured by each automatic analyzer. Alternatively, they can be within a range of 95% to 100% of the maximum saturation light intensity values measured by each automatic analyzer.
 本発明の自動分析方法及び自動分析装置によれば、自己または外部に記憶した個々の自動分析装置に固有の収束域の固有のキャリブレータ測定値を記憶しておき、これを用いてキャリブレーションを行うことにより、少ないキャリブレーションポイント数で、高濃度域にまで至る広い範囲で使用できる高精度な検量線の構築が可能となる。したがって、各自動分析装置に応じた高精度の測定、分析が可能となる。  According to the automatic analysis method and automatic analyzer of the present invention, by storing specific calibrator measurement values in a convergence range specific to each automatic analyzer, either internally or externally, and using these to perform calibration, it is possible to construct a highly accurate calibration curve that can be used over a wide range, even up to high concentration ranges, with a small number of calibration points. Therefore, highly accurate measurements and analysis according to each automatic analyzer are possible.
本発明の一実施形態に係る自動分析装置の要部構成の概略図である。1 is a schematic diagram of a main configuration of an automatic analyzer according to one embodiment of the present invention. 直線域に位置する2つ以上のキャリブレータ測定値及び収束域に位置する1つ以上のキャリブレータ測定値と濃度値とを用いて作成された、本実施形態に係る直線域と収束域とを有する検量線(実線が高感度試薬を用いた検量線、二点鎖線が低感度試薬を用いた検量線を示す)を示す図である。FIG. 13 is a diagram showing a calibration curve having a linear region and a convergence region according to the present embodiment, which is created using two or more calibrator measurement values located in a linear region and one or more calibrator measurement values and concentration values located in a convergence region (the solid line shows the calibration curve using a high-sensitivity reagent, and the two-dot dashed line shows the calibration curve using a low-sensitivity reagent). 収束域で複数のキャリブレータ測定値を用いる場合の検量線の構築態様の一例を示す概略線図である。FIG. 11 is a schematic diagram showing an example of how a calibration curve is constructed when multiple calibrator measurements are used in a convergence region. 高感度試薬及び低感度試薬をそれぞれ用いて作成された、直線域と収束域とを有する検量線を示す図である。FIG. 1 shows calibration curves having a linear range and a convergence range, which were prepared using a high-sensitivity reagent and a low-sensitivity reagent, respectively. 直線域上の2つのキャリブレーションポイントのみを用いてキャリブレーションする従来の方法によって作成された検量線を示す図である。FIG. 1 shows a calibration curve created by a conventional method in which calibration is performed using only two calibration points in the linear range. 自動分析装置1の制御部及びキャリブレーションを実行するための構成の一例を示す機能ブロック図である。2 is a functional block diagram showing an example of a control unit of the automatic analyzer 1 and a configuration for performing calibration. FIG.
 以下、図面を参照しながら本発明の実施形態について説明する。
 図1に示される本実施形態の自動分析装置1は、その全体を図示しないが、例えば、血液や尿などの人から採取した検体が分注された反応容器を保持する反応部と、試薬容器内の試薬を反応容器に供給する試薬供給部とを備える。そして、この自動分析装置1は、試薬供給部から反応容器に供給される試薬を検体と反応させて反応過程を測定する(試薬と検体とを混合して反応させた反応液を測定する)ことにより所定の検査項目に関して測定情報を得る。具体的には、本実施形態の自動分析装置1は、一例として、反応液から得られる測定対象物の一定時間後の発光量を測定し、測光結果に基づき測定対象物質の濃度や活性値等の検査値を求める。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The automatic analyzer 1 of the present embodiment shown in Fig. 1 is not shown in its entirety, but includes a reaction unit that holds a reaction vessel into which a specimen such as blood or urine collected from a person is dispensed, and a reagent supply unit that supplies the reagent in the reagent vessel to the reaction vessel. The automatic analyzer 1 obtains measurement information for a predetermined test item by reacting the reagent supplied from the reagent supply unit to the reaction vessel with the specimen and measuring the reaction process (measuring the reaction liquid obtained by mixing the reagent and the specimen). Specifically, the automatic analyzer 1 of the present embodiment measures, as an example, the amount of luminescence of the measurement object obtained from the reaction liquid after a certain time, and obtains test values such as the concentration and activity value of the measurement object based on the photometric result.
 測定対象物の発光量の測定に関しては、電気化学発光法を用いる。この方法では、磁性を有する固相担体(本実施形態では磁性粒子)を含む試薬と検体及び標識物質を含む試薬とを混合した反応液(したがって、標識物質と測定対象物及び固相担体を含む複合体を含有する液体)を、測定部を構成するフローセルの流路に流し込む。その後、磁場により流路の一部に複合体を捕捉する。この場合、磁場は、フローセルの流路を挟んで対向する作用電極と対向電極とから成る電極部の部位で、流路の外壁に磁石を接触させることにより発生される。そして、この磁石による磁気的な吸引力により、測定対象物を捉えた磁性粒子が電極部に捕捉されて残る。その後、この捕捉状態で例えば磁石を離脱させることにより磁場を除去した後、電極部に電圧を印加して標識物質の電気化学発光が発生する(磁性粒子及び測定対象物と複合体を形成する標識物質が発光する)ことにより、光子の数を計測して、測定対象物(測定対象成分)を定性的又は定量的に測定する。 The electrochemiluminescence method is used to measure the amount of luminescence of the object to be measured. In this method, a reaction liquid (hence a liquid containing a complex containing the labeling substance, the object to be measured, and the solid phase carrier) in which a reagent containing a magnetic solid phase carrier (magnetic particles in this embodiment) and a reagent containing a specimen and a labeling substance are mixed is poured into the flow path of the flow cell constituting the measurement section. The complex is then captured in a part of the flow path by a magnetic field. In this case, the magnetic field is generated by contacting a magnet with the outer wall of the flow path at the electrode section consisting of a working electrode and a counter electrode facing each other across the flow path of the flow cell. Then, the magnetic particles that have captured the object to be measured are captured and remain on the electrode section due to the magnetic attraction force of this magnet. Then, after removing the magnetic field, for example by removing the magnet in this captured state, a voltage is applied to the electrode section to generate electrochemiluminescence of the labeling substance (the labeling substance that forms a complex with the magnetic particles and the object to be measured emits light), and the number of photons is measured to qualitatively or quantitatively measure the object to be measured (the component to be measured).
 次に、このような電気化学発光法を用いた測定を実現し得る本実施形態の自動分析装置1の構成について図1を参照して簡単に説明する。 Next, the configuration of the automated analyzer 1 of this embodiment, which can perform measurements using such electrochemiluminescence, will be briefly described with reference to FIG. 1.
 図1に示されるように、本実施形態に係る自動分析装置1は、測定に必要な液体をヒータ24により所望の温度に加温するための加温部50と、加温部50で加温された測定に必要な液体に前述した反応液を注入して測定対象物を含んだ液体とする導入管としての導入ノズル(検査対象物及び標識物質を含む試薬を受け入れる導入部)99と、測定対象物を含む液体から、磁性粒子に測定対象物及び標識物質が結合されて成る複合体を、電極部70により磁気的に捕捉して、複合体に対して電気化学発光法を用いた測定を行なう測定部60とを備える。測定部60は、フローセルを構成するとともに図示しないヒータによって一定の温度に保たれるようになっており、測定対象物の所定の分析項目に関する測定情報を得る。 As shown in FIG. 1, the automatic analyzer 1 according to this embodiment includes a heating unit 50 for heating the liquid required for measurement to a desired temperature using a heater 24, an introduction nozzle (an introduction unit that receives a reagent containing the test object and a labeling substance) 99 as an introduction tube for injecting the above-mentioned reaction liquid into the liquid required for measurement heated by the heating unit 50 to produce a liquid containing the object to be measured, and a measurement unit 60 for magnetically capturing a complex formed by the object to be measured and the labeling substance bound to magnetic particles from the liquid containing the object to be measured using an electrode unit 70 and measuring the complex using an electrochemiluminescence method. The measurement unit 60 constitutes a flow cell and is kept at a constant temperature by a heater (not shown), and obtains measurement information related to a specified analysis item of the object to be measured.
 ここで、「測定対象物を含んだ液体」とは、例えば、生体試料(検体)と試薬(校正液)等との混合物(反応液)など、検体を所定の分析項目に関して測定するために必要な状態で測定部60に供給されるべき物性形態のもの全てを指す。また、「測定対象物」とは、測定部60で測定されるべき物質のことであり、検体それ自体又は検体に含まれる物質、又は検査対象物に含まれる測定対象となる成分を指す。 Here, "liquid containing the object to be measured" refers to any physical form that should be supplied to the measurement unit 60 in a state required to measure the specimen for a specified analysis item, such as a mixture (reaction liquid) of a biological sample (specimen) and a reagent (calibration liquid). Also, "object to be measured" refers to the substance to be measured by the measurement unit 60, and refers to the specimen itself or a substance contained in the specimen, or a component to be measured that is contained in the test object.
 「検査対象物(検体又はキャリブレータ)」とは、測定対象となる成分を含む液体を指し、血液や尿などの生体試料(検体)又は、コントロール試薬やキャリブレーション試薬など、既知の濃度、輝度を示すよう調整した液体(キャリブレータ)を指す。また、本実施形態では、測定に必要な液体(検体を含まない)として、導入ノズル99を洗浄するとともに測定に不要な物質や測定後の物質を洗い流す洗浄液(CC液)と、電気化学発光法による測定で用いられる発光電解液(EB液)とが使用され、したがって、本実施形態の自動分析装置1は、CC液を供給するための液体供給部20と、EB液を供給するための液体供給部22とを有する。 "Test subject (specimen or calibrator)" refers to a liquid containing the component to be measured, and refers to a biological sample (specimen) such as blood or urine, or a liquid (calibrator) adjusted to show a known concentration or brightness, such as a control reagent or calibration reagent. In this embodiment, the liquids required for measurement (not including the specimen) are a cleaning liquid (CC liquid) that cleans the introduction nozzle 99 and washes away substances not required for measurement and substances after measurement, and a luminescent electrolyte (EB liquid) used in measurement by electrochemiluminescence method, and therefore the automatic analyzer 1 of this embodiment has a liquid supply unit 20 for supplying CC liquid and a liquid supply unit 22 for supplying EB liquid.
 本実施形態において、加温部50は、測定に必要な液体が流通する蛇管35を備える温調ブロックから成り、蛇管35をヒータ24により加熱することによって蛇管35内の測定に必要な液体を加温するようになっている。また、この加温部50の蛇管35には供給流路26,27を介して液体供給部20,22が接続されている。 In this embodiment, the heating unit 50 is made up of a temperature control block equipped with a coiled tube 35 through which the liquid required for the measurement flows, and the liquid required for the measurement in the coiled tube 35 is heated by heating the coiled tube 35 with a heater 24. In addition, the liquid supply units 20 and 22 are connected to the coiled tube 35 of the heating unit 50 via the supply flow paths 26 and 27.
 また、加温部50と導入ノズル99との間には、4方電磁弁33を伴う結合トラフ34が介挿されている。この場合、4方電磁弁33は、外気に連通するエア取り込み管(図示せず)が接続する第1のポート33aと、蛇管35を経由してCC液用の液体供給部20に連通する連通管31が接続する第2のポート33bと、蛇管35を経由してEB液用の液体供給部22に連通する連通管32が接続する第3のポート33cとを有する。 A connecting trough 34 with a four-way solenoid valve 33 is interposed between the heating section 50 and the introduction nozzle 99. In this case, the four-way solenoid valve 33 has a first port 33a connected to an air intake pipe (not shown) that communicates with the outside air, a second port 33b connected to a communication pipe 31 that communicates with the liquid supply section 20 for the CC liquid via a serpentine 35, and a third port 33c connected to a communication pipe 32 that communicates with the liquid supply section 22 for the EB liquid via a serpentine 35.
 導入ノズル99は、測定対象物を含む反応液の設置箇所に移動して反応液を吸引するとき以外は、結合トラフ34に接合しており、導入ノズル99が結合トラフ34に接合(接続)されることにより、加温部50からの測定に必要な液体と導入ノズル99により導入される反応液(測定対象物を含んだ液体)とを接続流路40を介して測定部60の流路60aへ流し込む流通路が形成される。そして、反応液(したがって、測定対象物)を吸引した導入ノズル99が結合トラフ34に接合した後に、「測定に必要な液体」が導入ノズル99内を移動することにより反応液と混合して「測定対象物を含んだ液体」となる。 The introduction nozzle 99 is joined to the combination trough 34 except when it is moved to the installation location of the reaction liquid containing the measurement target to aspirate the reaction liquid. By joining (connecting) the introduction nozzle 99 to the combination trough 34, a flow path is formed that flows the liquid necessary for measurement from the heating unit 50 and the reaction liquid (liquid containing the measurement target) introduced by the introduction nozzle 99 into the flow path 60a of the measurement unit 60 via the connection flow path 40. Then, after the introduction nozzle 99, which has aspirated the reaction liquid (and therefore the measurement target), is joined to the combination trough 34, the "liquid necessary for measurement" moves inside the introduction nozzle 99 and mixes with the reaction liquid to become the "liquid containing the measurement target."
 また、本実施形態において、フローセルを構成する測定部60は、金属ボックスの周囲を断熱材で保護して構成され、測定対象物を含んだ液体が流通される流路60a、発光量を測定する光学センサ60b(受光素子を含む光学装置:例えば、光電子増倍管など)、磁性粒子に測定対象物及び標識物質が結合されて成る複合体を磁気的に捕捉する電極部70等を有する。電極部70は、流路60aを挟んで対向する作用電極71と対向電極72とから成るとともに、作用電極71の側で流路60aの外壁に近接(又は接触)されることにより磁場を発生する磁石73を有する。この磁石73による磁気的な吸引力により、測定対象物を含む磁性粒子(すなわち、複合体)が作用電極71に捕捉されて残る。 In this embodiment, the measurement unit 60 constituting the flow cell is constructed by protecting the periphery of a metal box with a thermal insulating material, and includes a flow path 60a through which a liquid containing the object to be measured flows, an optical sensor 60b (an optical device including a light receiving element: for example, a photomultiplier tube) that measures the amount of light emitted, and an electrode unit 70 that magnetically captures a complex formed by binding the object to be measured and the labeling substance to the magnetic particles. The electrode unit 70 is composed of a working electrode 71 and a counter electrode 72 that face each other across the flow path 60a, and has a magnet 73 that generates a magnetic field when brought close to (or in contact with) the outer wall of the flow path 60a on the working electrode 71 side. The magnetic attraction force of this magnet 73 causes the magnetic particles containing the object to be measured (i.e., the complex) to be captured and remain on the working electrode 71.
 その後、この捕捉状態で例えば磁石73を離脱させることにより磁場を除去した後、電極部70に電圧を印加して複合体を形成する標識物質の電気化学発光を発生させる(磁性粒子及び測定対象物と複合体を形成する標識物質が発光する)ことにより、光子の数を計測して、測定対象物(測定対象成分)を定性的又は定量的に測定する。  Then, in this captured state, the magnetic field is removed, for example by removing the magnet 73, and a voltage is applied to the electrode section 70 to generate electrochemiluminescence of the labeled substance that forms the complex (the labeled substance that forms a complex with the magnetic particles and the object to be measured emits light), and the number of photons is counted to qualitatively or quantitatively measure the object to be measured (the component to be measured).
 なお、測定部60には、測定対象物を含んだ液体の温度を検出する温度センサ75が設けられる。また、測定部60から延びる流路の下流側には、液体供給部20,22から測定に必要な液体を、加温部50を通じて測定部60に供給するべく駆動するポンプ(例えばペリスタポンプ)49が介挿されており、その下流側端部には、測定済みの測定対象物を含んだ液体等を廃液として回収するタンク74が設けられている。 The measuring unit 60 is provided with a temperature sensor 75 that detects the temperature of the liquid containing the object to be measured. A pump (e.g., a peristaltic pump) 49 is inserted downstream of the flow path extending from the measuring unit 60, and is driven to supply the liquid required for measurement from the liquid supply units 20, 22 to the measuring unit 60 via the heating unit 50. At the downstream end of the flow path, a tank 74 is provided to collect the liquid containing the object to be measured after it has been measured as waste liquid.
 また、本実施形態の自動分析装置1は、導入ノズル99、電極部70及びポンプ49の動作を制御する制御部10を備える。図1においては、制御部10と各部の電気的な接続線を破線の矢印で示している。なお、測定部60の作用電極・対向電極71、72、温度センサ75、磁石73を駆動する磁石駆動部(図示せず)等も、制御部10と電気的に接続されているが、図1では簡略化のために接続線を省略している。図6に、制御部10の主要な機能を示す機能ブロック図を例示している。以下、図1と図6を参照して説明する。 The automated analyzer 1 of this embodiment also includes a control unit 10 that controls the operation of the introduction nozzle 99, the electrode unit 70, and the pump 49. In FIG. 1, the electrical connection lines between the control unit 10 and each unit are indicated by dashed arrows. The working and counter electrodes 71, 72 of the measurement unit 60, the temperature sensor 75, the magnet drive unit (not shown) that drives the magnet 73, and the like are also electrically connected to the control unit 10, but the connection lines have been omitted in FIG. 1 for simplification. FIG. 6 shows an example of a functional block diagram illustrating the main functions of the control unit 10. The following description will be given with reference to FIG. 1 and FIG. 6.
 上記構成を備える本実施形態の自動分析装置1及びその分析方法では、所定のタイミングで、予め既知の濃度に調整したキャリブレータ(標準試薬)を用いてキャリブレーションを行っている。キャリブレーションにより校正した検量線を使用して、前述したように分析項目に応じた試薬と検体とを反応させることにより得られる測定結果を濃度値に変換し、検体中に含まれる測定対象成分の分析を行なう。 In the automated analyzer 1 and analysis method of this embodiment having the above configuration, calibration is performed at a predetermined timing using a calibrator (standard reagent) that has been adjusted to a known concentration in advance. Using the calibration curve, the measurement results obtained by reacting the sample with a reagent corresponding to the analysis item as described above are converted into concentration values, and the components to be measured contained in the sample are analyzed.
 なお、キャリブレーション(校正)の基準となる検量線(マスタ検量線)は、あらかじめ試薬メーカにより濃度の異なる多くのサンプル試料(標準試料)を使用して作成されて、供給される。例えば図5に例示するようなマスタ検量線L1は、試薬製造時に作成されて自動分析装置1内、又は外部記憶部に記憶する構成としても、試薬の交換時(供給時)に試薬と共に対応する検量線を供給するように構成しても良い。 The calibration curve (master calibration curve) that serves as the basis for calibration is prepared in advance by the reagent manufacturer using many sample specimens (standard specimens) of different concentrations, and then supplied. For example, the master calibration curve L1 as shown in FIG. 5 may be prepared when the reagent is manufactured and stored in the automatic analyzer 1 or in an external memory unit, or the corresponding calibration curve may be supplied together with the reagent when the reagent is replaced (supplied).
 また、自動分析装置1の収束域のキャリブレーションポイントにおける固有のキャリブレータ測定値は、自動分析装置1の納品の前に、装置1内の検量線校正部17などにより測定される。測定された収束域の固有の測定データ及びそれに対応する濃度などの装置固有のデータは、例えば装置1の校正データ記憶部16b内、又は自動分析装置1以外の外部の記憶部116b等(USB等を含む)に、測定したキャリブレータの濃度その他の関連データ等とともに記憶される。装置固有の収束域のデータの記憶場所は、校正データ記憶部16bに限定されず、キャリブレーションを行う際に、自由に読み出せる記憶部であれば、どこでも良い。ここで、固有のキャリブレータ測定値を2個又は2個以上使用して、キャリブレーションを行うことが可能である。その場合、キャリブレーションに使用する数だけ、固有のキャリブレータ測定値が記憶される。また、固有のキャリブレータ測定値の少なくとも一つを、個々の自動分析装置で測定した最大飽和光量値とすること、または、個々の自動分析装置で測定した最大飽和光量値の95%~100%の範囲内とすることもできる。 Also, the unique calibrator measurement value at the calibration point of the convergence range of the automatic analyzer 1 is measured by the calibration curve calibration unit 17 in the device 1 before delivery of the automatic analyzer 1. The unique measurement data of the measured convergence range and the corresponding device-specific data such as concentration are stored, for example, in the calibration data storage unit 16b of the device 1 or in an external storage unit 116b (including USB, etc.) other than the automatic analyzer 1, together with the measured calibrator concentration and other related data. The storage location of the device-specific convergence range data is not limited to the calibration data storage unit 16b, and may be any storage unit that can be freely read out when performing calibration. Here, it is possible to perform calibration using two or more unique calibrator measurement values. In that case, the unique calibrator measurement values are stored as many as the number used for calibration. Also, at least one of the unique calibrator measurement values can be the maximum saturation light value measured by each automatic analyzer, or can be within the range of 95% to 100% of the maximum saturation light value measured by each automatic analyzer.
 キャリブレーションは、試薬ボトルセットが交換されるタイミング(製品ロットが変わるタイミング等)の所定のタイミングで行われる。自動分析装置内に保管されているキャリブレータを使用して、キャリブレーションポイントC0,C1の測定を行う。自動分析装置1の制御部10は、自動分析装置各部とのデータの入出力ための入出力インターフェース11と、装置全体を制御する主制御部12、ノズル、弁、ヒータ、その他の各部の動作を制御する動作制御部15,測定部60によるデジタル計測を制御する測定制御部16、検量線を校正する検量線校正部17を備えている。 Calibration is performed at a specified timing when the reagent bottle set is replaced (when the product lot changes, etc.). Calibrators stored in the automatic analyzer are used to measure calibration points C0 and C1. The control unit 10 of the automatic analyzer 1 includes an input/output interface 11 for inputting and outputting data to and from each part of the automatic analyzer, a main control unit 12 that controls the entire device, an operation control unit 15 that controls the operation of the nozzle, valve, heater, and other parts, a measurement control unit 16 that controls digital measurement by the measurement unit 60, and a calibration curve calibration unit 17 that calibrates the calibration curve.
 制御部10の検量線校正部17は動作制御部15を介して、導入ノズル99、4方便33、測定部60を駆動して、キャリブレーションポイントC0,C1に相当する試薬のキャリブレータと各種測定に必要な液体の混合液を測定部60に導入する。その後混合液の反応を待って、測定制御部16の制御の下、キャリブレーションに必要な測定を行う。この2点の測定結果と、校正データ記憶部16b,116b等に記憶している自動分析装置に固有の収束域の測定値と濃度を読み出して、3点のキャリブレーションポイントを用いて、キャリブレーションを行う。 The calibration curve calibration unit 17 of the control unit 10 drives the introduction nozzle 99, the four-way nozzle 33, and the measurement unit 60 via the operation control unit 15 to introduce a mixture of the calibrator of the reagent corresponding to the calibration points C0 and C1 and the liquid required for various measurements into the measurement unit 60. After that, it waits for the reaction of the mixture and performs the measurements required for calibration under the control of the measurement control unit 16. The measurement results of these two points and the measurement values and concentrations of the convergence zone specific to the automatic analyzer stored in the calibration data storage units 16b, 116b, etc. are read out, and calibration is performed using the three calibration points.
 図2に、本発明のキャリブレーション方法によりキャリブレーションして校正した検量線を示す。図2において、実線は、高感度試薬を用いた検量線を示し、二点鎖線は、低感度試薬を本発明のキャリブレーション方法によりキャリブレーションした検量線を示している。 Figure 2 shows a calibration curve calibrated using the calibration method of the present invention. In Figure 2, the solid line shows the calibration curve using a high-sensitivity reagent, and the two-dot chain line shows the calibration curve using a low-sensitivity reagent calibrated using the calibration method of the present invention.
 キャリブレーションは、自動分析装置1の測定部60は、それ自体で或いは制御部10の測定制御部(又は計測演算回路)との協働により、実行される。キャリブレーションでは、図2に示されるように、濃度(入射光量)の増大に応じて測定値(測光値であるカウント)が増大する検量線の直線域Sの領域の2点及び濃度が増大しても測定値が変化しなくなる検量線の収束域Pのキャリブレータ測定値(図中にキャリブレーションポイントC0,C1,Cpとして示される)が用いられる。キャリブレーション用のキャリブレータは、自動分析装置内にあらかじめ保管されていてもよいし、測定の際に自動分析装置にセットしてもよい。 Calibration is performed by the measurement unit 60 of the automatic analyzer 1 by itself or in cooperation with the measurement control unit (or measurement calculation circuit) of the control unit 10. As shown in FIG. 2, calibration uses calibrator measurement values (shown as calibration points C0, C1, and Cp in the figure) at two points in the linear region S of the calibration curve where the measurement value (count, which is the photometric value) increases with increasing concentration (amount of incident light) and at a convergence region P of the calibration curve where the measurement value does not change even with increasing concentration. Calibrators for calibration may be stored in the automatic analyzer beforehand, or may be set in the automatic analyzer when making measurements.
 具体的に、本実施形態において、測定部60は、検量線の直線域Sに位置する2つ以上のキャリブレータ測定値(ここでは、一例として2つのキャリブレータ測定値(2つのキャリブレーションポイントC0,C1))及び収束域Pに位置する1つ以上のキャリブレータ測定値(ここでは、一例として1つのキャリブレータ測定値であるキャリブレーションポイントCp)と濃度値(入射光量)とを用いて検量線を校正する。このうち収束域Pに位置する少なくとも1つの固有のキャリブレータ測定値(一例として1つの固有のキャリブレータ測定値Cp)は、自動分析装置1自体が予め保有している(言い換えると、自動分析装置1が固有の値として記憶している)ものを使用する。 Specifically, in this embodiment, the measurement unit 60 calibrates the calibration curve using two or more calibrator measurement values (here, as an example, two calibrator measurement values (two calibration points C0 and C1)) located in the linear region S of the calibration curve and one or more calibrator measurement values (here, as an example, a calibration point Cp which is one calibrator measurement value) located in the convergence region P, and a concentration value (incident light amount). Of these, at least one unique calibrator measurement value (one unique calibrator measurement value Cp as an example) located in the convergence region P is held in advance by the automatic analyzer 1 itself (in other words, stored as a unique value by the automatic analyzer 1).
 より具体的には、自動分析装置1の製造時又は設置時までに、超高輝度の標準試薬(キャリブレータ)を測定してキャリブレーションポイントCpにおける固有のキャリブレータ測定値を自動分析装置1内又は外部に記憶する。その後、新たな試薬又は新たなロットの試薬を装置1に設置した際に、キャリブレーションを行なう。キャリブレーションでは、例えば、キャリブレーションポイントC0,C1でキャリブレータの濃度値の測定を行う。次いで、検量線を校正する際にC0,C1,Cpの数値を用いて、最小二乗法又はその他の手段により検量線の係数を取得することができる。 More specifically, before the automatic analyzer 1 is manufactured or installed, an ultra-high brightness standard reagent (calibrator) is measured and the unique calibrator measurement value at the calibration point Cp is stored inside or outside the automatic analyzer 1. Then, when a new reagent or a new lot of reagent is installed in the device 1, calibration is performed. In calibration, for example, the concentration value of the calibrator is measured at calibration points C0 and C1. Next, when calibrating the calibration curve, the numerical values of C0, C1, and Cp can be used to obtain the coefficients of the calibration curve by the least squares method or other means.
 一般に、測定対象物質の濃度が非常に高くなり、測光系の受光量が非常に多くなった場合、測光系が飽和し、濃度が上昇しているにもかかわらず、出力値(カウント値)が変化しなくなる。これが収束域Pとして検量線に現れる。この時の出力値は、測定部60における測光系を構成する受光素子や、受光素子出力を計測する回路等の個体差により決まる。したがって、本実施形態では、この特性を生かし、高濃度のキャリブレータを測定することで最大出力値(装置最大出力値)を確定し、この値を仮想のキャリブレータ測定値又は固有のキャリブレーション測定値(キャリブレーションポイントCpにおける測定値)として装置1又は自動分析装置1の外に記憶させる。 Generally, when the concentration of the substance to be measured becomes very high and the amount of light received by the photometric system becomes very large, the photometric system becomes saturated and the output value (count value) stops changing despite the increase in concentration. This appears on the calibration curve as the convergence region P. The output value at this time is determined by the individual differences of the light receiving elements that make up the photometric system in the measurement unit 60 and the circuit that measures the light receiving element output. Therefore, in this embodiment, this characteristic is utilized to determine the maximum output value (maximum device output value) by measuring a high concentration calibrator, and this value is stored outside the device 1 or automatic analyzer 1 as a virtual calibrator measurement value or a unique calibration measurement value (measurement value at calibration point Cp).
 この固有のキャリブレータ測定値Cpは装置の測光系の個体差により決まる値であることから、どの装置で使用されるか分からない各試薬の入った容器やラック等にこの情報を持たせることはできない。そのため、個々の装置1に記憶することが好ましい。しかし記憶場所は測定部に限定されず、装置固有の値として使用するためにアクセスできる場所であれば装置内のどこに記憶しても良く、装置外に記憶しても良い。例えば、通信手段で取得可能であれば、サーバや外部記憶部に記憶しても良い。さらに、例えばUSB等のような簡易に脱着可能なその他の記憶部に記憶しても良い。 Since this unique calibrator measurement value Cp is a value determined by individual differences in the photometric system of the device, it is not possible to have this information stored in containers or racks containing each reagent, as it is not known which device it will be used in. For this reason, it is preferable to store it in each individual device 1. However, the storage location is not limited to the measurement unit, and it may be stored anywhere within the device as long as it is accessible for use as a device-specific value, or it may be stored outside the device. For example, if it can be obtained by a communication means, it may be stored on a server or external storage unit. Furthermore, it may be stored in other storage units that are easily removable, such as USB.
 なお、検量線の作成に用いられるキャリブレータ測定値(キャリブレーションポイント)の数は、前述した数に限らない。キャリブレータ測定値の数を変えることで検量線の変曲点IPの位置の制御を行なうこともできる。例えば、図3の(a)(b)にそれぞれ示されるように、変曲点IP付近でキャリブレーションポイントCを増やすことにより、すなわち、高輝度付近で測光値の変化が起こらない部分の情報的な重みを増やすことにより、低輝度領域~中輝度領域の直線域の検量線と収束域の検量線とを繋ぐ曲線の曲がり方を決めることができる。キャリブレーションポイントCの数が少ないと、検量線は変動する余地があるが、高濃度側(高輝度側)でキャリブレーションポイントCの数を増やすことにより検量線の特徴をより反映することができるようになり、検量線の変動の余地を減らすことができる。 The number of calibrator measurement values (calibration points) used to create the calibration curve is not limited to the number mentioned above. The position of the inflection point IP of the calibration curve can also be controlled by changing the number of calibrator measurement values. For example, as shown in (a) and (b) of FIG. 3, by increasing the number of calibration points C near the inflection point IP, that is, by increasing the information weight of the part where no change in the photometric value occurs near high luminance, it is possible to determine the curvature of the curve connecting the calibration curve in the linear region of the low to medium luminance region and the calibration curve in the convergence region. If the number of calibration points C is small, there is room for the calibration curve to fluctuate, but by increasing the number of calibration points C on the high concentration side (high luminance side), it becomes possible to better reflect the characteristics of the calibration curve and reduce the room for fluctuation of the calibration curve.
 以上、本発明を一実施形態について説明してきたが、本発明は、前述した実施形態に限定されず、その要旨を逸脱しない範囲で種々変形して実施できる。例えば、本発明において、測定部等の構成は前述した構成に限定されない。また、本発明の要旨を逸脱しない範囲内において、前述した実施の形態の一部または全部を組み合わせてもよく、あるいは、前述した実施の形態のうちの1つから構成の一部が省かれてもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be modified in various ways without departing from the gist of the present invention. For example, in the present invention, the configuration of the measurement unit, etc. is not limited to the above-described configuration. Furthermore, some or all of the above-described embodiments may be combined, or part of the configuration may be omitted from one of the above-described embodiments, without departing from the gist of the present invention.
1 自動分析装置
10 制御部
16 測定制御部
16b、116b 校正データ記憶部
17 検量線校正部
60 測定部
 
 
1 Automatic analysis device 10 Control unit 16 Measurement control unit 16b, 116b Calibration data storage unit 17 Calibration curve calibration unit 60 Measurement unit

Claims (8)

  1.  予め既知の濃度に調整したキャリブレータを用いて行なうキャリブレーションによって校正した検量線を使用して、分析項目に応じた試薬と検体とを反応させることにより自動分析装置から得られる測定結果を濃度値に変換し、検体中に含まれる測定対象成分の分析を行なう自動分析装置の分析方法であって、
     前記検量線は、濃度の増大に応じて測定値が増大する直線域と、濃度が増大しても測定値が変化しなくなる収束域とを有し、
     前記キャリブレーションによる前記検量線の校正は、前記直線域に位置する2つ以上のキャリブレータ測定値、及び前記収束域に位置する1つ以上の固有のキャリブレータ測定値を用いて行われ、
     前記キャリブレーションで使用する前記収束域に位置する少なくとも1つの前記固有のキャリブレータ測定値は、個々の自動分析装置に固有の値であって、予め前記個々の自動分析装置内又は前記個々の自動分析装置以外の場所に記憶しているものを読み出して使用することを特徴とする自動分析装置の分析方法。
    An analysis method for an automatic analyzer, which converts a measurement result obtained from the automatic analyzer into a concentration value by reacting a sample with a reagent corresponding to an analysis item using a calibration curve calibrated by calibration using a calibrator previously adjusted to a known concentration, and analyzes a measurement target component contained in the sample, comprising:
    The calibration curve has a linear region where the measured value increases with increasing concentration, and a convergence region where the measured value does not change even if the concentration increases,
    The calibration of the standard curve by the calibration is performed using two or more calibrator measurement values located in the linear region and one or more unique calibrator measurement values located in the convergence region;
    An analysis method for an automatic analyzer, characterized in that at least one of the unique calibrator measurement values located in the convergence zone used in the calibration is a value unique to each individual automatic analyzer, and is read and used from a value stored in advance within each individual automatic analyzer or in a location other than each individual automatic analyzer.
  2.  前記直線域に位置する2つ以上の前記キャリブレータ測定値と、前記収束域に位置する前記固有のキャリブレータ測定値を2個用いてキャリブレーションすることを特徴とする請求項1記載の自動分析装置の分析方法。 The analysis method for an automatic analyzer according to claim 1, characterized in that calibration is performed using two or more of the calibrator measurement values located in the linear region and two of the unique calibrator measurement values located in the convergence region.
  3.  前記固有のキャリブレータ測定値は、個々の自動分析装置で測定した最大飽和光量値であることを特徴とする請求項1又は2に記載の自動分析装置の分析方法。 The analysis method for an automatic analyzer according to claim 1 or 2, characterized in that the unique calibrator measurement value is a maximum saturation light intensity value measured by each automatic analyzer.
  4.  前記固有のキャリブレータ測定値は、個々の自動分析装置で測定した最大飽和光量値の95%~100%の範囲内であることを特徴とする請求項1又は2に記載の自動分析装置の分析方法。 The analysis method for an automatic analyzer according to claim 1 or 2, characterized in that the unique calibrator measurement value is within the range of 95% to 100% of the maximum saturated light intensity value measured by each individual automatic analyzer.
  5.  予め既知の濃度に調整したキャリブレータを用いて行なうキャリブレーションによって校正した検量線を使用して、分析項目に応じた試薬と検体とを反応させることにより得られる測定結果を濃度値に変換し、検体中に含まれる測定対象成分の分析を行なう自動分析装置であって、
     前記検体及び標識物質を含む前記試薬を受け入れる導入部と、
     前記標識物質から得られる光量を計測し、該計測した計測値に基づいて前記校正後の検量線を用いて前記検体中に含まれる測定対象成分を定性的又は定量的に測定する測定部と、
     前記測定部と協働してキャリブレーションにより前記検量線を校正する検量線校正部と、
     を備え、
     前記検量線は、濃度の増大に応じて測定値が増大する直線域と、濃度が増大しても測定値が変化しなくなる収束域とを有し、
     前記検量線校正部は、前記直線域に位置する2つ以上のキャリブレータ測定値、及び前記自動分析装置固有の前記収束域に位置する1つ以上の固有のキャリブレータ測定値であって予め前記自動分析装置内又は該自動分析装置以外に記憶しているものを用いて前記検量線を作成する、
     ことを特徴とする自動分析装置。
    An automatic analyzer that converts a measurement result obtained by reacting a sample with a reagent corresponding to an analysis item into a concentration value using a calibration curve calibrated by calibration using a calibrator previously adjusted to a known concentration, and analyzes a measurement target component contained in the sample,
    an introduction section for receiving the sample and the reagent containing a labeling substance;
    a measurement unit that measures the amount of light obtained from the labeling substance and measures the measurement target component contained in the sample qualitatively or quantitatively based on the measured value and using the calibrated calibration curve;
    a calibration curve calibration unit that calibrates the calibration curve by calibration in cooperation with the measurement unit;
    Equipped with
    The calibration curve has a linear region where the measured value increases with increasing concentration, and a convergence region where the measured value does not change even if the concentration increases,
    the calibration curve calibration unit creates the calibration curve using two or more calibrator measurement values located in the linear region and one or more specific calibrator measurement values located in the convergence region specific to the automatic analyzer, the specific calibrator measurement values being stored in advance in the automatic analyzer or outside the automatic analyzer.
    An automatic analyzer characterized by:
  6.  前記直線域に位置する2つ以上の前記キャリブレータ測定値と、前記収束域に位置する前記固有のキャリブレータ測定値を2個用いてキャリブレーションすることを特徴とする請求項5記載の自動分析装置。 The automatic analyzer according to claim 5, characterized in that calibration is performed using two or more of the calibrator measurement values located in the linear region and two of the unique calibrator measurement values located in the convergence region.
  7.  前記固有のキャリブレータ測定値の少なくとも1つは、前記個々の自動分析装置で測定した最大飽和光量値であることを特徴とする請求項5又は6に記載の自動分析装置。 The automated analyzer according to claim 5 or 6, characterized in that at least one of the unique calibrator measurement values is a maximum saturation light intensity value measured by the individual automated analyzer.
  8.  前記固有のキャリブレータ測定値の少なくとも1つは、前記個々の自動分析装置で測定した最大飽和光量値の95%~100%の範囲内であることを特徴とする請求項5又は6に記載の自動分析装置。  The automated analyzer according to claim 5 or 6, characterized in that at least one of the unique calibrator measurement values is within a range of 95% to 100% of the maximum saturated light intensity value measured by the individual automated analyzer.
PCT/JP2024/013337 2023-03-30 2024-03-29 Analysis method for automated analysis device, and automated analysis device WO2024204825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-055407 2023-03-30
JP2023055407 2023-03-30

Publications (1)

Publication Number Publication Date
WO2024204825A1 true WO2024204825A1 (en) 2024-10-03

Family

ID=92906083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/013337 WO2024204825A1 (en) 2023-03-30 2024-03-29 Analysis method for automated analysis device, and automated analysis device

Country Status (1)

Country Link
WO (1) WO2024204825A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770154U (en) * 1980-10-15 1982-04-27
JP4887319B2 (en) * 2008-03-17 2012-02-29 株式会社日立ハイテクノロジーズ Analysis system using automatic analyzer and photomultiplier tube
JP4897838B2 (en) * 2007-02-09 2012-03-14 テルモ株式会社 Component measuring device
JP6211382B2 (en) * 2013-10-18 2017-10-11 株式会社日立ハイテクノロジーズ Automatic analyzer
JP6889520B2 (en) * 2014-07-17 2021-06-18 シスメックス株式会社 Diagnostic analyzer related information aggregation method and aggregation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770154U (en) * 1980-10-15 1982-04-27
JP4897838B2 (en) * 2007-02-09 2012-03-14 テルモ株式会社 Component measuring device
JP4887319B2 (en) * 2008-03-17 2012-02-29 株式会社日立ハイテクノロジーズ Analysis system using automatic analyzer and photomultiplier tube
JP6211382B2 (en) * 2013-10-18 2017-10-11 株式会社日立ハイテクノロジーズ Automatic analyzer
JP6889520B2 (en) * 2014-07-17 2021-06-18 シスメックス株式会社 Diagnostic analyzer related information aggregation method and aggregation system

Similar Documents

Publication Publication Date Title
CN103189750B (en) Automatic analysis device
US9915594B2 (en) Sample analyzer and a sample analyzing method
JP7315749B2 (en) automatic analyzer
WO2015098473A1 (en) Automatic analysis device and analysis method
US10690688B2 (en) Automatic analyzer
EP2667182B1 (en) Automatic analysis device taking into account thermal drift
JP2010133870A (en) Automatic analyzer and precision management method of automatic analyzer
WO2007119785A1 (en) Method for controlling quality of analysis support liquid for automatic analyzer, and automatic analyzer
CN110869769A (en) Test kit, test method, and dispensing device
JP5835924B2 (en) Automatic analyzer verification method
JP4801542B2 (en) Automatic analyzer
WO2024204825A1 (en) Analysis method for automated analysis device, and automated analysis device
JPH06308131A (en) Data processing apparatus
JP2010261823A (en) Automatic analyzer
JP4838086B2 (en) Chemiluminescence measuring device
CN113391078B (en) Automatic analysis device and analysis method
WO2024204729A1 (en) Automatic analysis method, light calibration curve creation method, and automatic analysis device
WO2020116058A1 (en) Analyzer and analysis method
JPH07110333A (en) Automatic analyzer
JP2008261802A (en) System and method for automatically analyzing concentration of analyte sample
US20210033630A1 (en) Method for testing, verifying, calibrating or adjusting an automatic analysis apparatus
WO2020261656A1 (en) Automatic analysis device
CN117805424A (en) Sample analyzer and control method for sample analyzer
CN117295955A (en) Automatic analyzer and sample analysis method
JPH02223859A (en) Biochemical analysis