WO2024204819A1 - Wire rod, steel wire, and machine component - Google Patents
Wire rod, steel wire, and machine component Download PDFInfo
- Publication number
- WO2024204819A1 WO2024204819A1 PCT/JP2024/013327 JP2024013327W WO2024204819A1 WO 2024204819 A1 WO2024204819 A1 WO 2024204819A1 JP 2024013327 W JP2024013327 W JP 2024013327W WO 2024204819 A1 WO2024204819 A1 WO 2024204819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- wire
- tensile strength
- content
- ratio
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 82
- 239000010959 steel Substances 0.000 title claims description 82
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000012535 impurity Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 abstract description 31
- 239000000126 substance Substances 0.000 abstract description 29
- 230000035882 stress Effects 0.000 description 48
- 230000007423 decrease Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 238000005491 wire drawing Methods 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000009864 tensile test Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 229910001562 pearlite Inorganic materials 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 230000002542 deteriorative effect Effects 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007542 hardness measurement Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
Definitions
- This disclosure relates to wire rods, steel wires, and machine parts.
- Patent Document 1 JP-A-2-166229
- Patent Document 2 WO 2016/121820
- Patent Document 3 WO 2017/122830
- Patent Document 4 WO 2018/008698
- Patent Document 5 JP-A-2021-183710
- Patent Document 6 JP-A-3-6325
- Non-tempered bolts are made by forming steel wire whose strength has been increased by wire drawing. As the strength of the steel wire increases, damage and wear to the mold during forming, or the product is more likely to crack during processing, making it difficult to apply this to high-strength bolts.
- conventional non-tempered bolts have a high dislocation density, which means that the bolt's 0.2% yield strength is low, resulting in a problem of large permanent elongation of the bolt. To improve this, it is necessary to add a bluing process in which the bolt is held at 300 to 400°C after being formed into a mechanical part such as a bolt.
- a mechanical part including a shaft portion In mass percent, C: 0.08-0.80%, Si: 0.03 to 1.50%, Mn: 0.50-2.00%, P: 0.050% or less, S: 0.050% or less, Al: 0.005-0.080%, N: 0.0010-0.0150%, O: 0.003% or less, Ti: 0 to 0.050%, B: 0 to 0.0050%, Cr: 0-1.50%, Mo: 0 to 0.50%, Nb: 0 to 0.050%, V: 0 to 0.20%, Cu: 0 to 0.50%, Ni: 0 to 0.70%, Sn: 0 to 0.30%, Sb: 0 to 0.005% and Ca: 0 to 0.0050%, and the balance being Fe and impurity elements, When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion having a depth of 1/4 dm from a surface of the shaft portion in a cross section perpendicular to a longitudinal direction of the
- a wire rod and steel wire for obtaining mechanical parts that have excellent strength and formability, and that have high 0.2% yield strength and reduced permanent elongation even when the bluing process after molding into the mechanical parts is omitted, as well as mechanical parts.
- FIG. 2 is a diagram showing an example of an SEM photograph mainly of a bainite structure.
- FIG. 13 is a diagram showing another example of an SEM photograph mainly of a bainite structure.
- a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower and upper limits. However, when the numerical values before and after “to” are followed by “more than” or “less than,” the numerical range does not include these numerical values as the lower or upper limit.
- the content of an element in a chemical composition may be expressed by adding “amount” to the element symbol (for example, C amount, Si amount, etc.). With regard to the contents of elements in chemical compositions, “%” means “mass %”. When the content of an element in a chemical composition is described as “0-”, this means that the element does not necessarily need to be contained.
- process includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
- surface of a wire means the “outer peripheral surface.”
- central axis of a wire means an imaginary line that passes through the center point of a cross section perpendicular to the longitudinal direction of the wire and extends in the longitudinal direction (axial direction).
- “1/4D” is synonymous with "D/4".
- the inventors of the present disclosure have studied the effects of the structure and mechanical properties of the wire on the properties of steel wire and machine parts after wire drawing, and have found that by setting the composition of the wire within a specific range, making the structure of the wire mainly bainite with the area ratios of ferrite, pearlite, and martensite suppressed, setting the ratio of the tensile strength and 0.05% yield strength of the wire, i.e., 0.05% yield strength/tensile strength (hereinafter referred to as the "0.05% yield strength ratio of the wire") within a specific range, and reducing the standard deviation of the hardness of the wire, it is possible to obtain a steel wire with excellent strength and formability after wire drawing, and a high 0.2% yield strength ratio (0.2% yield strength/tensile strength) and suppression of permanent elongation of the bolt after processing into a non-tempered bolt.
- the ratio of the tensile strength and 0.05% yield strength of the wire i.e., 0.05% yield strength/tensile strength
- Non-tempered bolts have a high dislocation density because their strength is imparted by wire drawing. If there are many mobile dislocations, they will undergo plastic deformation with small strains, lowering the elastic limit and, as a result, reducing the yield strength. In order to increase the yield strength of steel with high dislocation density, it is effective to fix the solute carbon and nitrogen contained in the steel to the dislocations and suppress their movement.
- Non-tempered bolts use a heat treatment called bluing, in which the bolt is held at 300 to 400°C to fix carbon to the dislocations, suppressing their movement and increasing the bolt's 0.2% yield strength.
- the inventors of the present disclosure have found that by making the structure of the wire rod mainly bainite and setting the 0.05% proof stress ratio of the wire rod within a specific range, the 0.2% proof stress ratio of the non-tempered bolt is increased even without bluing.
- Wire rods with normal bainite structure have a high mobile dislocation density and therefore a low elastic limit. When solute carbon is fixed to mobile dislocations, the movement of dislocations is suppressed and the elastic limit is increased.
- the martensite fraction of the wire is high, it may break during drawing, or cracks may occur during forming, and the 0.2% yield strength ratio of the bolt may decrease. Even if the wire has a bainite-based structure, if the 0.05% yield strength ratio of the wire is low, the 0.2% yield strength ratio of the bolt may decrease. The reason for this is that in order to increase the 0.2% yield strength ratio of the bolt, a sufficient amount of solute carbon is required to fix mobile dislocations after drawing, but when the 0.05% yield strength ratio of the wire is low, the 0.2% yield strength ratio of the bolt decreases due to a lack of solute carbon.
- a bainite-based structure reduces work hardening, which is suppressed in high-strain processing such as bolt head processing, reducing the load on the die. Furthermore, the cementite in the bainite structure is fragmented and has high ductility, so work cracks can be suppressed.
- the chemical composition of the wire according to the present disclosure is, as essential elements, in mass %, C: 0.08-0.80%, Si: 0.03 to 1.50%, Mn: 0.50-2.00%, P: 0.050% or less, S: 0.050% or less, Al: 0.005 to 0.080%, and N: 0.0010 to 0.0150%, O: Contains 0.003% or less, with the balance being Fe and impurity elements.
- the wire according to the present disclosure may contain other optional elements as necessary.
- C 0.08-0.80% C is contained to ensure the strength required for mechanical parts. If the C content is less than 0.08%, it is difficult to ensure the necessary strength for mechanical parts. If the C content exceeds 0.08%, the ductility, toughness, and cold forgeability are deteriorated. Therefore, the C content is set to 0.08 to 0.80%.
- the lower limit of the C content is 0.08%, preferably 0.15%
- the upper limit of the C content is 0.80%, preferably 0.75%, and more preferably 0.70%.
- the C content is preferably 0.15 to 0.75%, and more preferably 0.20 to 0.70%.
- Si 0.03 ⁇ 1.50% Silicon functions as a deoxidizing element and is an effective element for imparting the necessary strength to mechanical parts. If the amount of silicon is less than 0.03%, these effects are insufficient. If it exceeds 50%, the ductility and toughness of the machine parts will deteriorate, and the deformation resistance of the steel wire will increase, deteriorating the cold forgeability. Therefore, the Si content is set to 0.03 to 1.50%. The Si content is preferably 0.05 to 1.00%, and more preferably 0.10 to 0.60%.
- Mn 0.50-2.00%
- Mn is an element necessary for imparting the necessary strength to mechanical parts. If the Mn content is less than 0.50%, the effect is insufficient. If the Mn content exceeds 2.00%, the mechanical parts The toughness is deteriorated, and the deformation resistance of the steel wire is increased, deteriorating the cold forgeability. Therefore, the Mn content is set to 0.50 to 2.00%.
- the preferable Mn content is 0.70 to 1. 50%, and more preferably 0.90 to 1.20%.
- P 0.050% or less P is contained in the wire rod as an impurity. P segregates at the grain boundaries of mechanical parts and deteriorates toughness, so it is desirable to reduce the P content. For this reason, the upper limit of the P content is set to 0.050%. A preferable upper limit of the P content is 0.020%, and a more preferable upper limit is 0.015% or less. The lower limit of the P content is preferably 0% (i.e., no P is contained), but from the viewpoint of reducing the dephosphorization cost, it may be more than 0% (or 0.0001% or more).
- S 0.050% or less S is contained in the wire rod as sulfides such as MnS. If the S content exceeds 0.050%, the cold heading property of the steel wire is deteriorated and the toughness of the mechanical parts is deteriorated. Therefore, the upper limit of the S content is set to 0.050%. A preferable upper limit of the S content is 0.030%. A more preferable upper limit is 0.015%. Note that the lower limit of the S content may be more than 0% (or 0.001% or more) from the viewpoint of reducing the desulfurization cost.
- Al 0.005-0.080%
- Al functions as a deoxidizing element, and also has the effect of forming AlN to refine crystal grains and improve the toughness of machine parts. It also fixes solute N to suppress dynamic strain aging, It has the effect of reducing deformation resistance. If the Al content is less than 0.005%, these effects are insufficient. If the Al content exceeds 0.080%, the effects are saturated and manufacturability may decrease. Therefore, the Al content is set to 0.005 to 0.080%, preferably 0.010 to 0.065%, and more preferably 0.020 to 0.055%.
- N 0.0010-0.0150% N forms nitrides with Al, Ti, Nb, V, etc., refines crystal grains, and has the effect of improving the toughness of machine parts. If the N content is less than 0.0010%, the amount of nitrides precipitated is If the N content exceeds 0.0150%, the deformation resistance of the steel wire increases due to dynamic strain aging caused by the solute N, and the workability deteriorates.
- the N content is preferably 0.0020 to 0.0100%, and more preferably 0.0025 to 0.0060%.
- O 0.003% or less O is an impurity and is inevitably contained in steel. If the O content exceeds 0.003%, coarse oxides are formed, which may reduce fatigue strength, so the O content is limited to 0.003% or less. The preferred upper limit of the O content is 0.002%.
- the balance Fe and impurity elements
- the balance is Fe and impurity elements (which may be referred to as "impurities" as appropriate in the present disclosure).
- impurities refers to components contained in raw materials or components mixed in during the manufacturing process and not intentionally added.
- impurities also include components that are intentionally added but are contained in an amount that does not affect the performance of the steel wire obtained by drawing the wire rod according to the present disclosure.
- the wire rod according to the present disclosure may contain, in mass %, one or more elements selected from the group consisting of the following groups A to D, in place of a portion of the Fe. Note that the elements in the following groups A to D are optional elements, and these elements may not be included, i.e., may be 0%.
- Group A One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less
- Ti 0.050% or less Ti functions as a deoxidizing element and is effective in facilitating the formation of bainite. If the Ti content exceeds 0.050%, these effects become saturated and coarse oxides or nitrides are formed, which may deteriorate the fatigue strength of the mechanical parts. Therefore, if Ti is contained, the Ti content should be 0.002 to 0.050%. The preferred Ti content is 0.003 to 0.050%, and more preferably 0.007 to 0.040%.
- B 0.0050% or less B has the effect of facilitating the formation of bainite. If the B content exceeds 0.0050%, carbides are formed at grain boundaries, which may deteriorate wiredrawability. Therefore, when B is contained, the B content should be 0.0002 to 0.0050%.
- the preferred B content is 0.0003 to 0.0050%, and more preferably 0.0008 to 0.0030%.
- Cr 1.50% or less Cr is an element necessary for imparting the necessary strength to mechanical parts. If the Cr content exceeds 1.50%, the martensite fraction of the wire increases, deteriorating wiredrawability, and the deformation resistance of the steel wire increases, deteriorating cold forgeability. Therefore, the Cr content is set to 1.50% or less.
- the preferred Cr content is 0.02 to 0.80%, and more preferably 0.10 to 0.50%.
- Mo 0.50% or less Mo has the effect of imparting the necessary strength to mechanical parts. If the Mo content exceeds 0.50%, the alloy cost increases, and the deformation resistance of the steel wire increases, deteriorating the cold forgeability. Therefore, when Mo is contained, the Mo content is preferably 0.02 to 0.50%. The preferred Mo content is 0.03 to 0.35%, and more preferably 0.05 to 0.25%. The Mo content may be 0.15% or less.
- Nb 0.050% or less Nb has the effect of increasing the strength of machine parts by precipitating carbides and nitrides, the effect of improving toughness by refining crystal grains, the effect of reducing solute N and reducing deformation resistance, etc. If the Nb content exceeds 0.050%, the effect is saturated and the cold forgeability may deteriorate. Therefore, when Nb is contained, the Nb content is preferably 0.002 to 0.050%. The preferred Nb content is 0.001 to 0.040%. The more preferred Nb content is 0.005 to 0.030%.
- V 0.20% or less V has the effect of precipitating carbides and nitrides to increase the strength of mechanical parts. If the V content exceeds 0.20%, the alloy cost increases. Therefore, if V is contained, the V content should be 0.02 to 0.20%. The preferred V content range is 0.01 to 0.15%.
- Cu 0.50% or less Cu precipitates finely to impart the necessary strength to mechanical parts and improve corrosion resistance. If the Cu content exceeds 0.50%, hot ductility deteriorates and surface defects are likely to occur. Therefore, if Cu is contained, the Cu content should be 0.02 to 0.50%. The preferred Cu content is 0.02 to 0.30%.
- Ni 0.70% or less Ni has the effect of improving corrosion resistance. If the Ni content exceeds 0.70%, the alloy cost increases. Therefore, if Ni is contained, the Ni content is preferably 0.02 to 0.70%. The Ni content is preferably 0.02 to 0.50%, and more preferably 0.05 to 0.30%.
- Sn 0.30% or less Sn has the effect of improving corrosion resistance.
- the Sn content is preferably 0.002% or more.
- the Sn content is limited to 0.30% or less.
- the preferred upper limit of the Sn content is 0.20%.
- Sb 0.005% or less Sb has the effect of improving corrosion resistance.
- the Sb content is preferably 0.001% or more. However, if the Sb content exceeds 0.005%, the ductility decreases and the cold workability deteriorates, so the Sb content is limited to 0.005% or less.
- the preferred upper limit of the Sb content is 0.004%, and the more preferred upper limit is 0.003%.
- Ca 0.0050% or less Ca is contained as a deoxidizing element. Ca has the effect of making oxides fine and improving fatigue strength. If the Ca content exceeds 0.0050%, ductility decreases and cold workability deteriorates, so it is limited to 0.0050% or less.
- the preferred upper limit of the Ca content is 0.0040%, and the more preferred upper limit is 0.0030%.
- the area ratio of bainite at a depth of 1/4D from the surface (outer peripheral surface) of the wire rod in a cross section (C cross section) perpendicular to the longitudinal direction of the wire rod is 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and the workability deteriorates.
- the bainite area ratio is preferably 80% or more, and more preferably 90% or more.
- the microstructure observation was performed by taking two samples from positions 50 mm apart in the axial direction of the wire, mirror-polishing a cross section (C cross section) perpendicular to the central axis of each wire sample, etching it with picral, and observing the 1 ⁇ 4 D portion.
- the C-section of the wire to be measured is mirror-polished and then etched with picral (a solution of 5% picric acid and 95% ethanol) to reveal the structure.
- the metal structure may contain bainite, pearlite, martensite, and ferrite. Of these, martensite and ferrite do not contain carbides within the grains.
- the pearlite structure is a structure in which cementite and ferrite are arranged alternately and almost parallel to one another. Therefore, structures other than bainite (structures that do not contain carbides within the grains, pearlite structures) in the photographed structure are visually marked, and the area of the regions of structures other than bainite is determined by image analysis (software name: Nireco's small general-purpose image processing analysis system LUZEX_AP). Note that this operation is performed by measuring and calculating two samples, averaging these values, and subtracting the area percentage of structures other than bainite from the total area (100%) to determine the area percentage of bainite in this disclosure.
- the tensile test of the wire rod is carried out using JIS Z2241:2011 No. 14A test piece and following the test method of JIS Z2241:2011 to measure the tensile strength (TS), 0.05% yield strength, and reduction in area.
- the 0.05% yield strength is the stress at which the plastic elongation becomes 0.05% of the extensometer gauge length according to the offset method defined in JIS Z2241:2011.
- the tensile test piece is machined and taken from the wire rod immediately after straightening. The tensile test is carried out on three samples and the average value is used.
- the wire rod according to the present disclosure has a value obtained by dividing the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the length direction of the wire rod by the average value of the Vickers hardness of 0.150 or less.
- This value is 0.150 or less, the 0.2% proof stress ratio of a mechanical part manufactured from the steel wire through wire drawing is high.
- the workability when forming into a mechanical part is improved.
- the value is preferably 0.100 or less, more preferably 0.050 or less.
- the hardness test was carried out by mirror-polishing the C-section of the wire and using a Vickers hardness tester to measure a total of nine points: four points at a depth of 1.0 mm from the surface of the wire, rotated at 90° intervals around the wire, four points at a depth of D/4 (where D is the diameter of the wire), rotated at 90° intervals around the wire, and one point at the center, and then calculating the average value and standard deviation.
- the measured values are x1 , x2 , ..., xn
- the average value Xave and standard deviation s were calculated from the following formula.
- the wire diameter D of the wire according to the present disclosure is not particularly limited, but is preferably 3.0 to 25.0 mm, and more preferably 5.0 to 18.0 mm.
- a steel slab made of predetermined components that satisfy the above-mentioned chemical composition is heated to 1100 to 1250°C and held in the furnace for 90 minutes or more. Thereafter, the slab is hot-rolled at an entry temperature of 750 to 800°C for finish rolling, and then coiled into a ring shape at 780 to 820°C. After coiling, the wire is primarily cooled to 750° C. at an average cooling rate of 2 to 15° C./s. Thereafter, secondary cooling is performed from 750° C. to 500° C. at an average cooling rate of 25° C./s or more. Next, the tertiary cooling is performed from 500° C.
- the wire is then held at 420-440°C for 30-100 seconds (primary holding), heated from 490°C to 550°C at an average heating rate of 10°C/s or more, held at 580-620°C for 60-200 seconds (secondary holding), and then water-cooled to obtain the wire.
- the heating temperature is less than 1100°C or the heating time is less than 90 minutes, the carbide is insufficiently dissolved, and the 0.05% yield strength ratio of the wire rod decreases. If the heating temperature exceeds 1250°C, the surface hardness of the wire rod decreases due to decarburization. If the entry temperature of the finish rolling exceeds 800° C., the gamma grains (austenite grains) become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If the entry temperature is less than 750° C., the gamma grain size becomes non-uniform, and the standard deviation of the hardness of the wire rod increases.
- the coiling temperature exceeds 820° C., the gamma grains become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If the coiling temperature is less than 780° C., the area ratio of bainite decreases, and the 0.05% proof stress ratio of the wire rod decreases. If the primary average cooling rate to 750°C after coiling is less than 2°C/s, the gamma grains become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If it exceeds 15°C/s, the recovery and recrystallization of the gamma grains are delayed, resulting in mixed grains.
- the gamma grain size becomes non-uniform, the standard deviation of the hardness of the wire rod increases, and the 0.2% proof stress ratio and permanent elongation of the mechanical parts deteriorate.
- the secondary average cooling rate from 750° C. to 500° C. is less than 25° C./s, the area ratio of ferrite and pearlite increases, and the 0.05% yield strength ratio of the wire rod decreases.
- the tertiary average cooling rate from 500°C to 450°C exceeds 20°C/s, the standard deviation of the hardness of the wire becomes large, and the formability of the bolt after drawing deteriorates, as well as the 0.2% yield strength ratio and permanent elongation of the bolt deteriorate.
- the hardness of the wire will vary widely, and the 0.2% yield strength ratio and permanent elongation of the mechanical parts will deteriorate. If the first holding time exceeds 100 seconds, the 0.05% yield strength ratio of the wire will decrease. If the average heating rate from 490°C to 550°C is less than 10°C/s, the 0.05% yield strength ratio of the wire rod will be low, and the 0.2% yield strength ratio and permanent elongation of the mechanical parts will be deteriorated. If the secondary holding temperature is less than 580°C, the 0.2% yield strength ratio and permanent elongation of the mechanical parts will be deteriorated, and if it exceeds 620°C, the strength will be reduced. If the secondary holding time is less than 60 seconds, the 0.05% yield strength ratio of the wire rod will be reduced. If the secondary holding time exceeds 200 seconds, the carbides will coarsen, and the reduction in area of the steel wire after drawing will be reduced.
- the wire rod according to the present disclosure is drawn with an area reduction rate of 15 to 50% to produce steel wire, which is then cold heading and rolling processed into the shape of a mechanical part such as a bolt. If the area reduction rate of the wire drawing is less than 15%, the yield strength ratio of the mechanical part decreases and the permanent elongation increases. If the area reduction rate of the wire drawing is 50% or more, the workability of the mechanical part deteriorates. After the wire drawing, zinc plating and baking treatment are performed as necessary.
- the steel wire manufactured using the wire rod of the present disclosure has high strength and drawing ability, and is excellent in strength and formability of the bolt.
- a non-tempered bolt manufactured using such a steel wire has a high bolt 0.2% yield strength ratio and excellent permanent elongation even if the bluing treatment after forming is omitted.
- the steel wire and the machine component according to the present disclosure will be described below. Note that the chemical composition of the steel wire and the machine component according to the present disclosure is the same as that of the wire rod described above, and therefore will not be described below.
- the metal structure at a 1/4d portion which is 1/4d deep from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire, contains bainite with an area ratio of 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and the workability deteriorates.
- the bainite area ratio is preferably 80% or more, and more preferably 90% or more.
- the metal structure of the steel wire can be measured in the same manner as the metal structure of the wire rod described above.
- the tensile strength is 640 + 900 x (C%) MPa or more
- the reduction in area is 66 - 32 x (C%)% or more
- the tensile strength (MPa) x reduction in area (%) is 53,000 or more
- the 0.2% yield strength ratio is 0.990 - 0.083 x (C%) or more.
- the tensile strength, 0.2% yield strength ratio, and reduction in area of the steel wire disclosed herein can be measured in the same manner as in the tensile test of the wire rod described above, using a JIS Z2241:2011 No. 14A test piece and following the test method of JIS Z2241:2011.
- the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the longitudinal direction of the steel wire is divided by the average Vickers hardness of 0.150 or less. If this value is 0.150 or less, the workability when forming into a mechanical part is improved, and the 0.2% proof stress ratio of the mechanical part is increased.
- the value is preferably 0.100 or less, and more preferably 0.050 or less.
- the hardness test of the steel wire can be carried out in the same manner as the hardness test of the wire rod described above, and the average value and standard deviation can be calculated in the same manner.
- the wire diameter d of the steel wire according to the present disclosure is not particularly limited, but may be, for example, 2.0 to 23.0 mm, or 4.0 to 18.0 mm.
- the mechanical part according to the present disclosure is obtained by performing cold heading and rolling on the above-mentioned steel wire and processing it into the shape of a mechanical part such as a bolt.
- the mechanical part according to the present disclosure includes a shaft portion, and the shaft portion has the following metal structure and mechanical properties.
- the metal structure at a 1/4 dm portion which is 1/4 dm deep from the surface of the shaft portion in a cross section (C cross section) perpendicular to the longitudinal direction of the shaft portion, contains bainite with an area ratio of 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and workability deteriorates.
- the bainite area ratio is preferably 80% or more, and more preferably 90% or more.
- the metal structure of the shaft portion can be measured in the same manner as the metal structure of the wire rod described above.
- the mechanical component according to the present disclosure has a ratio of 0.2% yield strength to the tensile strength of the shaft portion (0.2% yield strength/tensile strength) of 0.90 or more.
- the mechanical component according to the present disclosure can obtain a high 0.2% yield strength ratio of 0.90 or more even without bluing treatment.
- the 0.2% yield strength/tensile strength is preferably 0.92 or more.
- the tensile test can be performed using a linear test piece with the shaft cut off, in the same manner as the tensile test of wire material described above, using a JIS Z2241:2011 No. 14A test piece, in accordance with the test method of JIS Z2241:2011.
- the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the longitudinal direction of the shaft portion is divided by the average value of the Vickers hardness to be 0.150 or less.
- the 0.2% proof stress ratio of the mechanical component manufactured from the steel wire through wire drawing is high.
- the processability when forming into the mechanical component is improved. It is preferably 0.100 or less, more preferably 0.050 or less.
- the hardness test of the shaft portion can be carried out in the same manner as the hardness test of the wire rod described above, and the average value and standard deviation can be calculated in the same manner.
- the diameter dm of the shaft portion of the mechanical component according to the present disclosure is not particularly limited, but may be, for example, 2.0 to 23.0 mm, or 4.0 to 18.0 mm.
- the mechanical component according to the present disclosure has a high 0.2% yield strength and is suppressed from permanent elongation.
- the shaft of the machine part is machined or rolled to form a coarse thread shape.
- the machine part is fitted with an adapter as described in JIS B1051:2014 so that the length of the play thread is equal to the outer diameter of the thread.
- the tensile stress is 440 MPa, when the tensile strength is 700 MPa or more and less than 800 MPa, the tensile stress is 515 MPa, when the tensile strength is 800 MPa or more and less than 900 MPa, the tensile stress is 650 MPa, when the tensile strength is 1000 MPa or more and less than 1100 MPa, the tensile stress is 830 MPa, when the tensile strength is 1100 MPa or more and less than 1200 MPa, the tensile stress is 910 MPa, when the tensile strength is 1200 MPa or more and less than 1300 MPa, the tensile stress is 970 MPa, and when the tensile strength is 1300 MPa or more and less than 1400 MPa, the tensile stress is 1050 MPa.
- the difference (L1-L0) between the total length L1 of the mechanical part after unloading and the total length L0 of the mechanical part before the test is defined as the permanent elongation.
- the total length L1 of the mechanical part after unloading and the total length L0 of the mechanical part before the test were measured using a micrometer.
- wire material according to this disclosure will be described in more detail with reference to examples. However, these examples do not limit the wire material according to this disclosure.
- the obtained wire was used for structural observation, tensile testing, and hardness measurement using the methods described above.
- Table 3 shows the structure and mechanical properties of the wire for each test number.
- F in the remaining structure stands for ferrite, P for pearlite, and M for martensite.
- Test numbers 1 and 13 had threads of M5 and shank lengths of 100 mm
- test numbers 10 and 17 had threads of M6 and shank lengths of 100 mm
- test numbers 2 to 9, 11, 12, 14 to 16, 18 to 20, and 22 to 25 had threads of M8 and shank lengths of 100 mm.
- Test number 21 cracked during bolt processing and could not be processed into a bolt shape. From the shaft of the obtained bolt, a JIS Z2241:2011 No.
- 14A test piece was obtained by machining, and was measured according to the test method of JIS Z2241:2011.
- the diameter of the parallel part of the tensile test piece was 4 mm for the bolt with thread part M5, 5 mm for the bolt with thread part M6, and 7 mm for the bolt with thread part M8.
- the tensile test piece was taken, and the structure observation, hardness measurement, and tensile test were performed by the above-mentioned method, and the tensile strength (TS) and 0.2% proof strength were measured.
- the 0.2% proof strength ratio of the bolt was obtained by dividing the 0.2% proof strength by the tensile strength.
- the obtained bolt was also used to measure the permanent elongation by the above-mentioned method.
- Table 5 shows the TS of each bolt, the 0.2% proof strength ratio of the bolt, and the permanent elongation. It was judged as good when TS was 580 + 900 ⁇ (C%) MPa or more, 0.2% proof stress ratio (bolt proof stress ratio) was 0.90 or more, the value obtained by dividing the standard deviation of Vickers hardness by the average value of Vickers hardness was 0.150 or less, and permanent elongation was 1 ⁇ m or less.
- a metal structure at a 1/4D portion having a depth of 1/4D from the surface of the wire in a cross section perpendicular to the longitudinal direction of the wire contains bainite at an area ratio of 70% or more,
- the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40 ⁇ (C%) or more;
- ⁇ 4> The wire according to ⁇ 2> or ⁇ 3>, having a chemical composition including, by mass%, the group B.
- ⁇ 5> The wire according to any one of ⁇ 2> to ⁇ 4>, having a chemical composition including, by mass%, the group C.
- ⁇ 6> The wire according to any one of ⁇ 2> to ⁇ 5>, having a chemical composition including, by mass%, the D group.
- the chemical composition is, in mass%, C: 0.08-0.80%, Si: 0.03 to 1.50%, Mn: 0.50-2.00%, P: 0.050% or less, S: 0.050% or less, Al: 0.005-0.080%, N: 0.0010-0.0150%, O: 0.003% or less, with the balance being Fe and impurity elements;
- a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more
- the C content in mass% is (C%)
- the tensile strength is 610+900 ⁇ (C%) MPa or more
- the reduction in area is 62 ⁇ 32 ⁇ (C%)% or more
- the tensile strength (MPa) ⁇ reduction in area (%) is 52,000 or more
- the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is
- a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more
- the C content in mass% is (C%)
- the tensile strength is 610+900 ⁇ (C%) MPa or more
- the reduction in area is 62 ⁇ 32 ⁇ (C%)% or more
- the tensile strength (MPa) ⁇ reduction in area (%) is 52,000 or more
- the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985 ⁇ 0.083 ⁇ (C%) or more
- a steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less.
- a mechanical part including a shaft portion The chemical composition, in mass%, is C: 0.08-0.80%, Si: 0.03 to 1.50%, Mn: 0.50-2.00%, P: 0.050% or less, S: 0.050% or less, Al: 0.005-0.080%, N: 0.0010-0.0150%, O: 0.003% or less, with the balance being Fe and impurity elements;
- a metal structure at a 1/4 dm portion having a depth of 1/4 dm from a surface of the shaft portion in a cross section perpendicular to a longitudinal direction of the shaft portion contains bainite in an area ratio of 70% or more
- the tensile strength of the shaft portion is 580 + 900 ⁇ (C%) MPa or more
- the ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
- a mechanical part including a shaft portion The chemical composition, in mass%, is C: 0.08-0.80%, Si: 0.03 to 1.50%, Mn: 0.50-2.00%, P: 0.050% or less, S: 0.050% or less, Al: 0.005-0.080%, N: 0.0010-0.0150%, O: Contains 0.003% or less, and further contains one or more selected from the group consisting of the following A group to D group, with the balance being Fe and impurity elements; [Group A] One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less [Group B] Cr: 1.50% or less, Mo: 0.50% or less, One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less [Group C] Cu: 0.50% or less, Ni: 0.70% or less, One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less [Group D] Ca: 0.0050
- a metal structure at a 1/4 dm portion that is 1/4 dm deep from the surface of the shaft portion in a cross section perpendicular to the longitudinal direction of the shaft portion contains bainite at an area ratio of 70% or more
- the tensile strength of the shaft portion is 580 + 900 ⁇ (C%) MPa or more
- the ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more
- a mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
- ⁇ 15> The mechanical component according to ⁇ 14>, having a chemical composition including the A group in mass %.
- ⁇ 16> The mechanical part according to ⁇ 14> or ⁇ 15>, having a chemical composition including the B group in mass%.
- ⁇ 17> The mechanical component according to any one of ⁇ 14> to ⁇ 16>, having a chemical composition including, by mass%, the C group.
- ⁇ 18> The mechanical component according to any one of ⁇ 14> to ⁇ 17>, having a chemical composition including, by mass%, the D group.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
This wire rod has a predetermined chemical composition, in which: when the diameter of the wire rod is noted as D, the metal structure in a 1/4 D part, which is a part found in a cross section taken perpendicular to the length direction of the wire rod, at the depth of 1/4 D from the surface of the wire rod, includes bainite which accounts for an area ratio of 70% or more; the ratio of 0.05% yield strength to tensile strength (0.05% yield strength/tensile strength) is 0.72-0.40 × (C%) or more, where (C%) is the content of C in mass%; and a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the length direction of the wire rod by the average value of Vickers hardness is 0.150 or less.
Description
本開示は、線材、鋼線、及び機械部品に関する。
This disclosure relates to wire rods, steel wires, and machine parts.
鋼製のボルトやねじ等の機械部品は、軽量化や小型化を目的に高強度材料が求められている。従来、これらの機械部品は、CやMn、Cr、Moなどを含有した機械構造用鋼線材に球状化焼鈍を行って軟質化し、その後、冷間圧造や転造を行って所定形状に成形し、その後、焼き入れ焼き戻しを行って強度を付与して製造されている。
For machine parts such as steel bolts and screws, high-strength materials are required to reduce weight and size. Traditionally, these machine parts have been manufactured by softening machine structural steel wire rods containing C, Mn, Cr, Mo, etc. through spheroidizing annealing, then forming them into the desired shape through cold heading and rolling, and then quenching and tempering to impart strength.
球状化焼鈍や焼き入れ焼き戻しの熱処理は製造コストやCO2排出量を増加させるため、これらの熱処理を省略し、成分調整や急速冷却で強度を高めた線材に伸線加工を行って強度を付与して製造する非調質ボルトが知られている。
非調質ボルト等の機械部品を製造するための線材及び鋼線が、種々提案されている(例えば、特許文献1~6参照)。 Because the heat treatments of spheroidizing annealing and quenching and tempering increase manufacturing costs and CO2 emissions, a non-tempered bolt is known that omits these heat treatments and instead manufactures wire rod whose strength has been increased by adjusting the composition and rapid cooling, and then performs wire drawing to impart strength to the wire rod.
Various wire rods and steel wires for manufacturing mechanical parts such as non-heat treated bolts have been proposed (for example, see Patent Documents 1 to 6).
非調質ボルト等の機械部品を製造するための線材及び鋼線が、種々提案されている(例えば、特許文献1~6参照)。 Because the heat treatments of spheroidizing annealing and quenching and tempering increase manufacturing costs and CO2 emissions, a non-tempered bolt is known that omits these heat treatments and instead manufactures wire rod whose strength has been increased by adjusting the composition and rapid cooling, and then performs wire drawing to impart strength to the wire rod.
Various wire rods and steel wires for manufacturing mechanical parts such as non-heat treated bolts have been proposed (for example, see Patent Documents 1 to 6).
特許文献1:特開平2-166229号公報
特許文献2:国際公開2016/121820号
特許文献3:国際公開2017/122830号
特許文献4:国際公開2018/008698号
特許文献5:特開2021-183710号公報
特許文献6:特開平3-6325号公報 Patent Document 1: JP-A-2-166229 Patent Document 2: WO 2016/121820 Patent Document 3: WO 2017/122830 Patent Document 4: WO 2018/008698 Patent Document 5: JP-A-2021-183710 Patent Document 6: JP-A-3-6325
特許文献2:国際公開2016/121820号
特許文献3:国際公開2017/122830号
特許文献4:国際公開2018/008698号
特許文献5:特開2021-183710号公報
特許文献6:特開平3-6325号公報 Patent Document 1: JP-A-2-166229 Patent Document 2: WO 2016/121820 Patent Document 3: WO 2017/122830 Patent Document 4: WO 2018/008698 Patent Document 5: JP-A-2021-183710 Patent Document 6: JP-A-3-6325
非調質ボルトは伸線加工で強度を高めた鋼線を成形することから、鋼線の強度が高くなると成形の際に金型の損傷や摩耗、あるいは製品の加工割れが発生しやすくなり、高強度ボルトへの適用が困難であった。
また、従来の非調質ボルトは、転位密度が大きいため、ボルトの0.2%耐力が低く、この結果、ボルトの永久伸びが大きい課題かあった。この改善のため、ボルト等の機械部品に成形した後に300~400℃に保持するブルーイング処理を追加する必要がある。 Non-tempered bolts are made by forming steel wire whose strength has been increased by wire drawing. As the strength of the steel wire increases, damage and wear to the mold during forming, or the product is more likely to crack during processing, making it difficult to apply this to high-strength bolts.
In addition, conventional non-tempered bolts have a high dislocation density, which means that the bolt's 0.2% yield strength is low, resulting in a problem of large permanent elongation of the bolt. To improve this, it is necessary to add a bluing process in which the bolt is held at 300 to 400°C after being formed into a mechanical part such as a bolt.
また、従来の非調質ボルトは、転位密度が大きいため、ボルトの0.2%耐力が低く、この結果、ボルトの永久伸びが大きい課題かあった。この改善のため、ボルト等の機械部品に成形した後に300~400℃に保持するブルーイング処理を追加する必要がある。 Non-tempered bolts are made by forming steel wire whose strength has been increased by wire drawing. As the strength of the steel wire increases, damage and wear to the mold during forming, or the product is more likely to crack during processing, making it difficult to apply this to high-strength bolts.
In addition, conventional non-tempered bolts have a high dislocation density, which means that the bolt's 0.2% yield strength is low, resulting in a problem of large permanent elongation of the bolt. To improve this, it is necessary to add a bluing process in which the bolt is held at 300 to 400°C after being formed into a mechanical part such as a bolt.
本開示は、強度と成形性に優れ、機械部品に成形した後のブルーイング処理を省略しても高い機械部品の0.2%耐力と永久伸びの抑制が得られる機械部品を得るための線材及び鋼線、並びに機械部品を提供することを目的とする。
The present disclosure aims to provide wire rod and steel wire for obtaining mechanical parts that have excellent strength and formability, and that have high 0.2% yield strength and reduced permanent elongation even if the bluing process after molding into the mechanical parts is omitted, as well as the mechanical parts.
上記課題は、以下の手段により解決される。
<1> 質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
線材の直径をDとするとき、前記線材の長さ方向に垂直な断面において前記線材の表面から深さが1/4Dである1/4D部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上であり、
前記線材の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、線材。
<2> 質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
鋼線の直径をdとするとき、前記鋼線の長さ方向に垂直な断面において前記鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さが、610+900×(C%)MPa以上、絞りが、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上であり、
前記鋼線の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、鋼線。
<3> 軸部を含む機械部品であって、
質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
前記軸部の直径をdmとするとき、前記軸部の長さ方向に垂直な断面において前記軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、前記軸部の引張強さが、580+900×(C%)MPa以上であり、
前記引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が0.90以上であり、
前記軸部の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、機械部品。 The above problems are solved by the following means.
<1> In mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0-0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When a diameter of the wire is D, a metal structure at a 1/4D portion having a depth of 1/4D from a surface of the wire in a cross section perpendicular to a longitudinal direction of the wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more;
A wire having a standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the wire divided by an average value of the Vickers hardness of the wire, the standard deviation being 0.150 or less.
<2> In mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0-0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When the diameter of the steel wire is d, a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the tensile strength is 610+900×(C%) MPa or more, the reduction in area is 62−32×(C%)% or more, the tensile strength (MPa)×reduction in area (%) is 52,000 or more, and the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985−0.083×(C%) or more,
A steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less.
<3> A mechanical part including a shaft portion,
In mass percent,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0 to 0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion having a depth of 1/4 dm from a surface of the shaft portion in a cross section perpendicular to a longitudinal direction of the shaft portion contains bainite in an area ratio of 70% or more,
When the content of C in mass% is (C%), the tensile strength of the shaft portion is 580 + 900 × (C%) MPa or more;
The ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
A mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
<1> 質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
線材の直径をDとするとき、前記線材の長さ方向に垂直な断面において前記線材の表面から深さが1/4Dである1/4D部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上であり、
前記線材の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、線材。
<2> 質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
鋼線の直径をdとするとき、前記鋼線の長さ方向に垂直な断面において前記鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さが、610+900×(C%)MPa以上、絞りが、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上であり、
前記鋼線の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、鋼線。
<3> 軸部を含む機械部品であって、
質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
前記軸部の直径をdmとするとき、前記軸部の長さ方向に垂直な断面において前記軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、前記軸部の引張強さが、580+900×(C%)MPa以上であり、
前記引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が0.90以上であり、
前記軸部の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、機械部品。 The above problems are solved by the following means.
<1> In mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0-0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When a diameter of the wire is D, a metal structure at a 1/4D portion having a depth of 1/4D from a surface of the wire in a cross section perpendicular to a longitudinal direction of the wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more;
A wire having a standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the wire divided by an average value of the Vickers hardness of the wire, the standard deviation being 0.150 or less.
<2> In mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0-0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When the diameter of the steel wire is d, a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the tensile strength is 610+900×(C%) MPa or more, the reduction in area is 62−32×(C%)% or more, the tensile strength (MPa)×reduction in area (%) is 52,000 or more, and the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985−0.083×(C%) or more,
A steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less.
<3> A mechanical part including a shaft portion,
In mass percent,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0 to 0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion having a depth of 1/4 dm from a surface of the shaft portion in a cross section perpendicular to a longitudinal direction of the shaft portion contains bainite in an area ratio of 70% or more,
When the content of C in mass% is (C%), the tensile strength of the shaft portion is 580 + 900 × (C%) MPa or more;
The ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
A mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
本開示によれば、強度と成形性に優れ、機械部品に成形した後のブルーイング処理を省略しても高い機械部品の0.2%耐力と永久伸びの抑制が得られる機械部品を得るための線材及び鋼線、並びに機械部品が提供される。
According to the present disclosure, there is provided a wire rod and steel wire for obtaining mechanical parts that have excellent strength and formability, and that have high 0.2% yield strength and reduced permanent elongation even when the bluing process after molding into the mechanical parts is omitted, as well as mechanical parts.
本開示に係る線材について説明する。
なお、本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。ただし、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これら数値を下限値又は上限値として含まない範囲を意味する。
化学組成の元素の含有量は、元素記号に「量」を付して(例えば、C量、Si量等)表記する場合がある。
化学組成の元素の含有量について、「%」は「質量%」を意味する。
化学組成の元素の含有量について「0~」と記載している場合は、その元素を含まなくてもよいことを意味する。
「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
線材の「表面」とは「外周面」を意味する。
線材の「中心軸」とは、線材の長手方向に垂直な断面の中心点を通り、長手方向(軸方向)に延びる仮想線を意味する。
「1/4D」は「D/4」と同義である。 The wire according to the present disclosure will now be described.
In this disclosure, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits. However, when the numerical values before and after "to" are followed by "more than" or "less than," the numerical range does not include these numerical values as the lower or upper limit.
The content of an element in a chemical composition may be expressed by adding "amount" to the element symbol (for example, C amount, Si amount, etc.).
With regard to the contents of elements in chemical compositions, "%" means "mass %".
When the content of an element in a chemical composition is described as "0-", this means that the element does not necessarily need to be contained.
The term "process" includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
The "surface" of a wire means the "outer peripheral surface."
The "central axis" of a wire means an imaginary line that passes through the center point of a cross section perpendicular to the longitudinal direction of the wire and extends in the longitudinal direction (axial direction).
"1/4D" is synonymous with "D/4".
なお、本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。ただし、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これら数値を下限値又は上限値として含まない範囲を意味する。
化学組成の元素の含有量は、元素記号に「量」を付して(例えば、C量、Si量等)表記する場合がある。
化学組成の元素の含有量について、「%」は「質量%」を意味する。
化学組成の元素の含有量について「0~」と記載している場合は、その元素を含まなくてもよいことを意味する。
「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
線材の「表面」とは「外周面」を意味する。
線材の「中心軸」とは、線材の長手方向に垂直な断面の中心点を通り、長手方向(軸方向)に延びる仮想線を意味する。
「1/4D」は「D/4」と同義である。 The wire according to the present disclosure will now be described.
In this disclosure, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits. However, when the numerical values before and after "to" are followed by "more than" or "less than," the numerical range does not include these numerical values as the lower or upper limit.
The content of an element in a chemical composition may be expressed by adding "amount" to the element symbol (for example, C amount, Si amount, etc.).
With regard to the contents of elements in chemical compositions, "%" means "mass %".
When the content of an element in a chemical composition is described as "0-", this means that the element does not necessarily need to be contained.
The term "process" includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
The "surface" of a wire means the "outer peripheral surface."
The "central axis" of a wire means an imaginary line that passes through the center point of a cross section perpendicular to the longitudinal direction of the wire and extends in the longitudinal direction (axial direction).
"1/4D" is synonymous with "D/4".
本開示の発明者らは、線材の組織と機械的性質が伸線加工後の鋼線や機械部品の特性に及ぼす影響を検討し、線材の成分を特定の範囲として、かつ線材の組織をベイナイト主体で、フェライトやパーライト、マルテンサイトの面積率を抑制した組織として、さらに線材の引張強さと0.05%耐力の比、すなわち、0.05%耐力/引張強さ(以下「線材の0.05%耐力比」と記す。)を特定の範囲とし、さらに線材の硬さの標準偏差を小さくすることで、伸線加工後の鋼線の強度と成形性に優れ、かつ非調質ボルトに加工後に高いボルトの0.2%耐力比(0.2%耐力/引張強さ)と永久伸びの抑制を得ることが可能となることを見出した。
The inventors of the present disclosure have studied the effects of the structure and mechanical properties of the wire on the properties of steel wire and machine parts after wire drawing, and have found that by setting the composition of the wire within a specific range, making the structure of the wire mainly bainite with the area ratios of ferrite, pearlite, and martensite suppressed, setting the ratio of the tensile strength and 0.05% yield strength of the wire, i.e., 0.05% yield strength/tensile strength (hereinafter referred to as the "0.05% yield strength ratio of the wire") within a specific range, and reducing the standard deviation of the hardness of the wire, it is possible to obtain a steel wire with excellent strength and formability after wire drawing, and a high 0.2% yield strength ratio (0.2% yield strength/tensile strength) and suppression of permanent elongation of the bolt after processing into a non-tempered bolt.
線材の組織がフェライトやパーライトが主体の場合、ボルトの0.2%耐力比が小さくなる。非調質ボルトは伸線加工で強度を付与するため、転位密度が高い。可動転位を多く含むと小さいひずみで塑性変形するため弾性限が低くなり、その結果、耐力が小さくなる。転位密度が高い鋼の耐力を高めるためには、鋼中に含有される固溶炭素や固溶窒素を転位に固着させて転位の動きを抑制することが有効である。
When the wire structure is mainly ferrite or pearlite, the 0.2% yield strength ratio of the bolt is small. Non-tempered bolts have a high dislocation density because their strength is imparted by wire drawing. If there are many mobile dislocations, they will undergo plastic deformation with small strains, lowering the elastic limit and, as a result, reducing the yield strength. In order to increase the yield strength of steel with high dislocation density, it is effective to fix the solute carbon and nitrogen contained in the steel to the dislocations and suppress their movement.
従来の非調質ボルトは、ブルーイングと呼ばれる300~400℃に保持する熱処理を行って、転位に炭素を固着させることで転位の動きを抑制し、ボルトの0.2%耐力を高める技術が用いられている。
本開示の発明者らは、線材の組織をベイナイト主体として、線材の0.05%耐力比を特定の範囲にすることで、ブルーイング処理を行わなくても、非調質ボルトの0.2%耐力比が高くなることを見出した。通常のベイナイト組織の線材は可動転位密度が高いため、弾性限が低い。固溶炭素が可動転位に固着すると転位の動きが抑制されて弾性限が高くなる。一般に用いられる0.2%耐力は、塑性変形の影響を受けるため、本開示ではより弾性限に近い値を示す0.05%耐力を用いた。0.05%耐力が高いベイナイト組織の線材は、転位に固着した固溶炭素量が多い。伸線加工により、固溶炭素は転位の固着から外されるため、0.05%耐力が高いベイナイト組織の線材を伸線した鋼線は固溶炭素濃度が高いと考えられる。固溶炭素量が高いと、ブルーイング処理温度の300~400℃に加熱しなくても可動転位に炭素が固着し、転位の動きを抑制できるため、ボルトの0.2%耐力比が高くなると推察される。 Conventional non-tempered bolts use a heat treatment called bluing, in which the bolt is held at 300 to 400°C to fix carbon to the dislocations, suppressing their movement and increasing the bolt's 0.2% yield strength.
The inventors of the present disclosure have found that by making the structure of the wire rod mainly bainite and setting the 0.05% proof stress ratio of the wire rod within a specific range, the 0.2% proof stress ratio of the non-tempered bolt is increased even without bluing. Wire rods with normal bainite structure have a high mobile dislocation density and therefore a low elastic limit. When solute carbon is fixed to mobile dislocations, the movement of dislocations is suppressed and the elastic limit is increased. The commonly used 0.2% proof stress is affected by plastic deformation, so in this disclosure, 0.05% proof stress, which shows a value closer to the elastic limit, is used. Wire rods with bainite structure having a high 0.05% proof stress have a large amount of solute carbon fixed to dislocations. Since solute carbon is removed from the fixation of dislocations by wire drawing, it is considered that a steel wire drawn from a wire rod with bainite structure having a high 0.05% proof stress has a high solute carbon concentration. It is presumed that a high amount of dissolved carbon fixes carbon to mobile dislocations and suppresses dislocation movement without the need to heat to the bluing treatment temperature of 300 to 400°C, thereby increasing the 0.2% yield strength ratio of the bolt.
本開示の発明者らは、線材の組織をベイナイト主体として、線材の0.05%耐力比を特定の範囲にすることで、ブルーイング処理を行わなくても、非調質ボルトの0.2%耐力比が高くなることを見出した。通常のベイナイト組織の線材は可動転位密度が高いため、弾性限が低い。固溶炭素が可動転位に固着すると転位の動きが抑制されて弾性限が高くなる。一般に用いられる0.2%耐力は、塑性変形の影響を受けるため、本開示ではより弾性限に近い値を示す0.05%耐力を用いた。0.05%耐力が高いベイナイト組織の線材は、転位に固着した固溶炭素量が多い。伸線加工により、固溶炭素は転位の固着から外されるため、0.05%耐力が高いベイナイト組織の線材を伸線した鋼線は固溶炭素濃度が高いと考えられる。固溶炭素量が高いと、ブルーイング処理温度の300~400℃に加熱しなくても可動転位に炭素が固着し、転位の動きを抑制できるため、ボルトの0.2%耐力比が高くなると推察される。 Conventional non-tempered bolts use a heat treatment called bluing, in which the bolt is held at 300 to 400°C to fix carbon to the dislocations, suppressing their movement and increasing the bolt's 0.2% yield strength.
The inventors of the present disclosure have found that by making the structure of the wire rod mainly bainite and setting the 0.05% proof stress ratio of the wire rod within a specific range, the 0.2% proof stress ratio of the non-tempered bolt is increased even without bluing. Wire rods with normal bainite structure have a high mobile dislocation density and therefore a low elastic limit. When solute carbon is fixed to mobile dislocations, the movement of dislocations is suppressed and the elastic limit is increased. The commonly used 0.2% proof stress is affected by plastic deformation, so in this disclosure, 0.05% proof stress, which shows a value closer to the elastic limit, is used. Wire rods with bainite structure having a high 0.05% proof stress have a large amount of solute carbon fixed to dislocations. Since solute carbon is removed from the fixation of dislocations by wire drawing, it is considered that a steel wire drawn from a wire rod with bainite structure having a high 0.05% proof stress has a high solute carbon concentration. It is presumed that a high amount of dissolved carbon fixes carbon to mobile dislocations and suppresses dislocation movement without the need to heat to the bluing treatment temperature of 300 to 400°C, thereby increasing the 0.2% yield strength ratio of the bolt.
線材のマルテンサイト分率が高いと伸線中に断線したり、成形の際に加工割れが発生するとともに、ボルトの0.2%耐力比が低くなる。ベイナイト主体組織であっても、線材の0.05%耐力比が低いと、ボルトの0.2%耐力比が低くなる。この理由は、ボルトの0.2%耐力比を高くするためには、伸線後に可動転位を固着することができる十分な量の固溶炭素が必要であるが、線材の0.05%耐力比が低いときには、固溶炭素の不足により、ボルトの0.2%耐力比が低下するためと推察される。また、ベイナイト主体組織は、加工硬化が小さくなり、ボルトの頭部加工のように高ひずみの加工において加工硬化が抑制され、金型への負荷が低減される。さらにベイナイト組織はセメンタイトが分断しており、延性が高いため、加工割れが抑制できる。
If the martensite fraction of the wire is high, it may break during drawing, or cracks may occur during forming, and the 0.2% yield strength ratio of the bolt may decrease. Even if the wire has a bainite-based structure, if the 0.05% yield strength ratio of the wire is low, the 0.2% yield strength ratio of the bolt may decrease. The reason for this is that in order to increase the 0.2% yield strength ratio of the bolt, a sufficient amount of solute carbon is required to fix mobile dislocations after drawing, but when the 0.05% yield strength ratio of the wire is low, the 0.2% yield strength ratio of the bolt decreases due to a lack of solute carbon. In addition, a bainite-based structure reduces work hardening, which is suppressed in high-strain processing such as bolt head processing, reducing the load on the die. Furthermore, the cementite in the bainite structure is fragmented and has high ductility, so work cracks can be suppressed.
線材の硬さのばらつきが大きいと、成形後のボルトの0.2%耐力比が低下する。また、ボルト成形の際に加工割れが発生しやすくなる。この理由は、伸線により変形が不均一になることにより転位の分布が不均一になるためと推定される。
If the hardness of the wire varies widely, the 0.2% yield strength ratio of the bolt after forming decreases. In addition, processing cracks are more likely to occur during bolt forming. The reason for this is presumably because the deformation caused by wire drawing becomes uneven, which in turn causes the distribution of dislocations to become uneven.
<線材>
本開示に係る線材は、上記知見に基づいて見出されたものである。以下、本開示に係る線材の化学組成、金属組織、機械特性、製造方法などについて説明する。 <Wire rod>
The wire rod according to the present disclosure has been discovered based on the above findings. The chemical composition, metal structure, mechanical properties, and manufacturing method of the wire rod according to the present disclosure will be described below.
本開示に係る線材は、上記知見に基づいて見出されたものである。以下、本開示に係る線材の化学組成、金属組織、機械特性、製造方法などについて説明する。 <Wire rod>
The wire rod according to the present disclosure has been discovered based on the above findings. The chemical composition, metal structure, mechanical properties, and manufacturing method of the wire rod according to the present disclosure will be described below.
[化学組成]
本開示に係る線材の化学組成は、必須元素として、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、及び
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなる。
本開示に係る線材は、必要に応じて他の任意元素を含んでもよい。 [Chemical composition]
The chemical composition of the wire according to the present disclosure is, as essential elements, in mass %,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005 to 0.080%, and N: 0.0010 to 0.0150%,
O: Contains 0.003% or less, with the balance being Fe and impurity elements.
The wire according to the present disclosure may contain other optional elements as necessary.
本開示に係る線材の化学組成は、必須元素として、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、及び
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなる。
本開示に係る線材は、必要に応じて他の任意元素を含んでもよい。 [Chemical composition]
The chemical composition of the wire according to the present disclosure is, as essential elements, in mass %,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005 to 0.080%, and N: 0.0010 to 0.0150%,
O: Contains 0.003% or less, with the balance being Fe and impurity elements.
The wire according to the present disclosure may contain other optional elements as necessary.
C:0.08~0.80%
Cは、機械部品としての強度を確保するため含有される。C量が0.08%未満では機械部品としての必要な強度を確保することが困難である。一方、C量が0.80%を超えると延性、靱性、及び冷間鍛造性が劣化する。そのため、C量は、0.08~0.80%とする。C量の下限は0.08%、好ましくは0.15%、さらに好ましくは0.20%であり、C量の上限は0.80%、好ましくは0.75%、さらに好ましくは0.70%である。高強度と延性、靱性、冷間加工性を両立する好ましいC量は、0.15~0.75%であり、より好ましくは、0.20~0.70%である。 C: 0.08-0.80%
C is contained to ensure the strength required for mechanical parts. If the C content is less than 0.08%, it is difficult to ensure the necessary strength for mechanical parts. If the C content exceeds 0.08%, the ductility, toughness, and cold forgeability are deteriorated. Therefore, the C content is set to 0.08 to 0.80%. The lower limit of the C content is 0.08%, preferably 0.15%, The upper limit of the C content is 0.80%, preferably 0.75%, and more preferably 0.70%. The C content is preferably 0.15 to 0.75%, and more preferably 0.20 to 0.70%.
Cは、機械部品としての強度を確保するため含有される。C量が0.08%未満では機械部品としての必要な強度を確保することが困難である。一方、C量が0.80%を超えると延性、靱性、及び冷間鍛造性が劣化する。そのため、C量は、0.08~0.80%とする。C量の下限は0.08%、好ましくは0.15%、さらに好ましくは0.20%であり、C量の上限は0.80%、好ましくは0.75%、さらに好ましくは0.70%である。高強度と延性、靱性、冷間加工性を両立する好ましいC量は、0.15~0.75%であり、より好ましくは、0.20~0.70%である。 C: 0.08-0.80%
C is contained to ensure the strength required for mechanical parts. If the C content is less than 0.08%, it is difficult to ensure the necessary strength for mechanical parts. If the C content exceeds 0.08%, the ductility, toughness, and cold forgeability are deteriorated. Therefore, the C content is set to 0.08 to 0.80%. The lower limit of the C content is 0.08%, preferably 0.15%, The upper limit of the C content is 0.80%, preferably 0.75%, and more preferably 0.70%. The C content is preferably 0.15 to 0.75%, and more preferably 0.20 to 0.70%.
Si:0.03~1.50%
Siは、脱酸元素として機能するとともに、機械部品に必要な強度を付与するのに有効な元素である。Si量が0.03%未満ではこれらの効果が不十分である。Si量が1.50%を超えると、機械部品の延性、靱性が劣化するとともに、鋼線の変形抵抗を上昇させて冷間鍛造性を劣化させる。そのため、Si量は、0.03~1.50%とする。好ましいSi量は0.05~1.00%であり、より好ましくは、0.10~0.60%である。 Si: 0.03~1.50%
Silicon functions as a deoxidizing element and is an effective element for imparting the necessary strength to mechanical parts. If the amount of silicon is less than 0.03%, these effects are insufficient. If it exceeds 50%, the ductility and toughness of the machine parts will deteriorate, and the deformation resistance of the steel wire will increase, deteriorating the cold forgeability. Therefore, the Si content is set to 0.03 to 1.50%. The Si content is preferably 0.05 to 1.00%, and more preferably 0.10 to 0.60%.
Siは、脱酸元素として機能するとともに、機械部品に必要な強度を付与するのに有効な元素である。Si量が0.03%未満ではこれらの効果が不十分である。Si量が1.50%を超えると、機械部品の延性、靱性が劣化するとともに、鋼線の変形抵抗を上昇させて冷間鍛造性を劣化させる。そのため、Si量は、0.03~1.50%とする。好ましいSi量は0.05~1.00%であり、より好ましくは、0.10~0.60%である。 Si: 0.03~1.50%
Silicon functions as a deoxidizing element and is an effective element for imparting the necessary strength to mechanical parts. If the amount of silicon is less than 0.03%, these effects are insufficient. If it exceeds 50%, the ductility and toughness of the machine parts will deteriorate, and the deformation resistance of the steel wire will increase, deteriorating the cold forgeability. Therefore, the Si content is set to 0.03 to 1.50%. The Si content is preferably 0.05 to 1.00%, and more preferably 0.10 to 0.60%.
Mn:0.50~2.00%
Mnは、機械部品に必要な強度を付与するのに必要な元素である。Mn量が0.50%未満では効果が不十分である。Mn量が2.00%を超えると、機械部品の靱性が劣化するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Mn量は、0.50~2.00%%とする。好ましいMn量は0.70~1.50%であり、より好ましくは、0.90~1.20%である。 Mn: 0.50-2.00%
Mn is an element necessary for imparting the necessary strength to mechanical parts. If the Mn content is less than 0.50%, the effect is insufficient. If the Mn content exceeds 2.00%, the mechanical parts The toughness is deteriorated, and the deformation resistance of the steel wire is increased, deteriorating the cold forgeability. Therefore, the Mn content is set to 0.50 to 2.00%. The preferable Mn content is 0.70 to 1. 50%, and more preferably 0.90 to 1.20%.
Mnは、機械部品に必要な強度を付与するのに必要な元素である。Mn量が0.50%未満では効果が不十分である。Mn量が2.00%を超えると、機械部品の靱性が劣化するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Mn量は、0.50~2.00%%とする。好ましいMn量は0.70~1.50%であり、より好ましくは、0.90~1.20%である。 Mn: 0.50-2.00%
Mn is an element necessary for imparting the necessary strength to mechanical parts. If the Mn content is less than 0.50%, the effect is insufficient. If the Mn content exceeds 2.00%, the mechanical parts The toughness is deteriorated, and the deformation resistance of the steel wire is increased, deteriorating the cold forgeability. Therefore, the Mn content is set to 0.50 to 2.00%. The preferable Mn content is 0.70 to 1. 50%, and more preferably 0.90 to 1.20%.
P:0.050%以下
Pは、不純物として線材に含有される。Pは機械部品の結晶粒界に偏析し、靱性を劣化させるため低減することが望ましい。このため、P量の上限は、0.050%とする。P量の好ましい上限は、0.020%であり、より好ましい上限は0.015%以下である。なお、P量の下限は、0%(つまり含まないこと)がよいが、脱Pコストを低減する観点から、0%超え(又は0.0001%以上)であってもよい。 P: 0.050% or less P is contained in the wire rod as an impurity. P segregates at the grain boundaries of mechanical parts and deteriorates toughness, so it is desirable to reduce the P content. For this reason, the upper limit of the P content is set to 0.050%. A preferable upper limit of the P content is 0.020%, and a more preferable upper limit is 0.015% or less. The lower limit of the P content is preferably 0% (i.e., no P is contained), but from the viewpoint of reducing the dephosphorization cost, it may be more than 0% (or 0.0001% or more).
Pは、不純物として線材に含有される。Pは機械部品の結晶粒界に偏析し、靱性を劣化させるため低減することが望ましい。このため、P量の上限は、0.050%とする。P量の好ましい上限は、0.020%であり、より好ましい上限は0.015%以下である。なお、P量の下限は、0%(つまり含まないこと)がよいが、脱Pコストを低減する観点から、0%超え(又は0.0001%以上)であってもよい。 P: 0.050% or less P is contained in the wire rod as an impurity. P segregates at the grain boundaries of mechanical parts and deteriorates toughness, so it is desirable to reduce the P content. For this reason, the upper limit of the P content is set to 0.050%. A preferable upper limit of the P content is 0.020%, and a more preferable upper limit is 0.015% or less. The lower limit of the P content is preferably 0% (i.e., no P is contained), but from the viewpoint of reducing the dephosphorization cost, it may be more than 0% (or 0.0001% or more).
S:0.050%以下
Sは、MnS等の硫化物として線材に含有される。S量が0.050%を超えると鋼線の冷間圧造性を劣化させるとともに、機械部品の靱性を劣化させる。このため、S量の上限は0.050%とする。S量の好ましい上限は、0.030%である。より好ましい上限は、0.015%である。なお、S量の下限は、脱Sコストを低減する観点から、0%超え(又は0.001%以上)であってもよい。 S: 0.050% or less S is contained in the wire rod as sulfides such as MnS. If the S content exceeds 0.050%, the cold heading property of the steel wire is deteriorated and the toughness of the mechanical parts is deteriorated. Therefore, the upper limit of the S content is set to 0.050%. A preferable upper limit of the S content is 0.030%. A more preferable upper limit is 0.015%. Note that the lower limit of the S content may be more than 0% (or 0.001% or more) from the viewpoint of reducing the desulfurization cost.
Sは、MnS等の硫化物として線材に含有される。S量が0.050%を超えると鋼線の冷間圧造性を劣化させるとともに、機械部品の靱性を劣化させる。このため、S量の上限は0.050%とする。S量の好ましい上限は、0.030%である。より好ましい上限は、0.015%である。なお、S量の下限は、脱Sコストを低減する観点から、0%超え(又は0.001%以上)であってもよい。 S: 0.050% or less S is contained in the wire rod as sulfides such as MnS. If the S content exceeds 0.050%, the cold heading property of the steel wire is deteriorated and the toughness of the mechanical parts is deteriorated. Therefore, the upper limit of the S content is set to 0.050%. A preferable upper limit of the S content is 0.030%. A more preferable upper limit is 0.015%. Note that the lower limit of the S content may be more than 0% (or 0.001% or more) from the viewpoint of reducing the desulfurization cost.
Al:0.005~0.080%
Alは、脱酸元素として機能するとともに、AlNを形成し結晶粒を細粒化し、機械部品の靱性を向上させる効果がある。また、固溶Nを固定して動的ひずみ時効を抑制し、変形抵抗を低減する効果がある。Al量が0.005%未満ではこれらの効果が不十分である。Al量が0.080%を超えると効果が飽和するとともに製造性を低下させることがある。そのため、Al量は0.005~0.080%とする。好ましいAl量は0.010~0.065%であり、より好ましくは、0.020~0.055%である。 Al: 0.005-0.080%
Al functions as a deoxidizing element, and also has the effect of forming AlN to refine crystal grains and improve the toughness of machine parts. It also fixes solute N to suppress dynamic strain aging, It has the effect of reducing deformation resistance. If the Al content is less than 0.005%, these effects are insufficient. If the Al content exceeds 0.080%, the effects are saturated and manufacturability may decrease. Therefore, the Al content is set to 0.005 to 0.080%, preferably 0.010 to 0.065%, and more preferably 0.020 to 0.055%.
Alは、脱酸元素として機能するとともに、AlNを形成し結晶粒を細粒化し、機械部品の靱性を向上させる効果がある。また、固溶Nを固定して動的ひずみ時効を抑制し、変形抵抗を低減する効果がある。Al量が0.005%未満ではこれらの効果が不十分である。Al量が0.080%を超えると効果が飽和するとともに製造性を低下させることがある。そのため、Al量は0.005~0.080%とする。好ましいAl量は0.010~0.065%であり、より好ましくは、0.020~0.055%である。 Al: 0.005-0.080%
Al functions as a deoxidizing element, and also has the effect of forming AlN to refine crystal grains and improve the toughness of machine parts. It also fixes solute N to suppress dynamic strain aging, It has the effect of reducing deformation resistance. If the Al content is less than 0.005%, these effects are insufficient. If the Al content exceeds 0.080%, the effects are saturated and manufacturability may decrease. Therefore, the Al content is set to 0.005 to 0.080%, preferably 0.010 to 0.065%, and more preferably 0.020 to 0.055%.
N:0.0010~0.0150%
Nは、Al、Ti、Nb、V等と窒化物を形成し、結晶粒を細粒化し、機械部品の靱性を向上させる効果がある。N量が0.0010%未満では窒化物の析出量が不足し、効果が得られない。N量が0.0150%を超えると固溶Nによる動的ひずみ時効により鋼線の変形抵抗が高くなり加工性を劣化させる。そのため、N量は、0.0010~0.0150%とする。好ましいN量は0.0020~0.0100%であり、より好ましくは、0.0025~0.0060%である。 N: 0.0010-0.0150%
N forms nitrides with Al, Ti, Nb, V, etc., refines crystal grains, and has the effect of improving the toughness of machine parts. If the N content is less than 0.0010%, the amount of nitrides precipitated is If the N content exceeds 0.0150%, the deformation resistance of the steel wire increases due to dynamic strain aging caused by the solute N, and the workability deteriorates. The N content is preferably 0.0020 to 0.0100%, and more preferably 0.0025 to 0.0060%.
Nは、Al、Ti、Nb、V等と窒化物を形成し、結晶粒を細粒化し、機械部品の靱性を向上させる効果がある。N量が0.0010%未満では窒化物の析出量が不足し、効果が得られない。N量が0.0150%を超えると固溶Nによる動的ひずみ時効により鋼線の変形抵抗が高くなり加工性を劣化させる。そのため、N量は、0.0010~0.0150%とする。好ましいN量は0.0020~0.0100%であり、より好ましくは、0.0025~0.0060%である。 N: 0.0010-0.0150%
N forms nitrides with Al, Ti, Nb, V, etc., refines crystal grains, and has the effect of improving the toughness of machine parts. If the N content is less than 0.0010%, the amount of nitrides precipitated is If the N content exceeds 0.0150%, the deformation resistance of the steel wire increases due to dynamic strain aging caused by the solute N, and the workability deteriorates. The N content is preferably 0.0020 to 0.0100%, and more preferably 0.0025 to 0.0060%.
O:0.003%以下
Oは不純物であり、不可避的に鋼中に含有される。O量が0.003%を超えると、粗大な酸化物を形成し、疲労強度を低下させる場合があるため、0.003%以下に制限する。O量の好ましい上限は0.002%である。 O: 0.003% or less O is an impurity and is inevitably contained in steel. If the O content exceeds 0.003%, coarse oxides are formed, which may reduce fatigue strength, so the O content is limited to 0.003% or less. The preferred upper limit of the O content is 0.002%.
Oは不純物であり、不可避的に鋼中に含有される。O量が0.003%を超えると、粗大な酸化物を形成し、疲労強度を低下させる場合があるため、0.003%以下に制限する。O量の好ましい上限は0.002%である。 O: 0.003% or less O is an impurity and is inevitably contained in steel. If the O content exceeds 0.003%, coarse oxides are formed, which may reduce fatigue strength, so the O content is limited to 0.003% or less. The preferred upper limit of the O content is 0.002%.
残部:Fe及び不純物元素
本開示に係る線材の化学組成において、残部は、Fe及び不純物元素(本開示において適宜「不純物」と記載する場合がある。)である。
ここで、不純物とは、原材料に含まれる成分、又は、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。さらに、不純物は、意図的に含有させた成分であっても、本開示に係る線材を伸線加工した鋼線の性能に影響を与えない範囲の量で含有する成分も含む。 Balance: Fe and impurity elements In the chemical composition of the wire according to the present disclosure, the balance is Fe and impurity elements (which may be referred to as "impurities" as appropriate in the present disclosure).
Here, the term "impurities" refers to components contained in raw materials or components mixed in during the manufacturing process and not intentionally added. Furthermore, impurities also include components that are intentionally added but are contained in an amount that does not affect the performance of the steel wire obtained by drawing the wire rod according to the present disclosure.
本開示に係る線材の化学組成において、残部は、Fe及び不純物元素(本開示において適宜「不純物」と記載する場合がある。)である。
ここで、不純物とは、原材料に含まれる成分、又は、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。さらに、不純物は、意図的に含有させた成分であっても、本開示に係る線材を伸線加工した鋼線の性能に影響を与えない範囲の量で含有する成分も含む。 Balance: Fe and impurity elements In the chemical composition of the wire according to the present disclosure, the balance is Fe and impurity elements (which may be referred to as "impurities" as appropriate in the present disclosure).
Here, the term "impurities" refers to components contained in raw materials or components mixed in during the manufacturing process and not intentionally added. Furthermore, impurities also include components that are intentionally added but are contained in an amount that does not affect the performance of the steel wire obtained by drawing the wire rod according to the present disclosure.
また、本開示に係る線材は、Feの一部に代えて、質量%で、下記A群~D群からなる群より選ばれる1種又は2種以上を含有してもよい。なお、下記A群~D群の元素は任意元素であり、これらの元素は含まれない、すなわち0%でもよい。
In addition, the wire rod according to the present disclosure may contain, in mass %, one or more elements selected from the group consisting of the following groups A to D, in place of a portion of the Fe. Note that the elements in the following groups A to D are optional elements, and these elements may not be included, i.e., may be 0%.
[A群]
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種 [Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種 [Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less
Ti:0.050%以下
Tiは、脱酸元素として機能するとともに、ベイナイトを生成し易く効果がある。Ti量が0.050%を超えるとこれらの効果が飽和するとともに粗大な酸化物又は窒化物が生成して、機械部品の疲労強度を劣化させることがある。そのため、Tiを含む場合、Ti量は0.002~0.050%とすることがよい。好ましいTi量は0.003~0.050%であり、より好ましくは0.007~0.040%である。 Ti: 0.050% or less Ti functions as a deoxidizing element and is effective in facilitating the formation of bainite. If the Ti content exceeds 0.050%, these effects become saturated and coarse oxides or nitrides are formed, which may deteriorate the fatigue strength of the mechanical parts. Therefore, if Ti is contained, the Ti content should be 0.002 to 0.050%. The preferred Ti content is 0.003 to 0.050%, and more preferably 0.007 to 0.040%.
Tiは、脱酸元素として機能するとともに、ベイナイトを生成し易く効果がある。Ti量が0.050%を超えるとこれらの効果が飽和するとともに粗大な酸化物又は窒化物が生成して、機械部品の疲労強度を劣化させることがある。そのため、Tiを含む場合、Ti量は0.002~0.050%とすることがよい。好ましいTi量は0.003~0.050%であり、より好ましくは0.007~0.040%である。 Ti: 0.050% or less Ti functions as a deoxidizing element and is effective in facilitating the formation of bainite. If the Ti content exceeds 0.050%, these effects become saturated and coarse oxides or nitrides are formed, which may deteriorate the fatigue strength of the mechanical parts. Therefore, if Ti is contained, the Ti content should be 0.002 to 0.050%. The preferred Ti content is 0.003 to 0.050%, and more preferably 0.007 to 0.040%.
B:0.0050%以下
Bは、ベイナイトを生成し易くする効果がある。B量が0.0050%を超えると粒界に炭化物を生成して伸線加工性を劣化させることがある。そのため、Bを含む場合、B量は0.0002~0.0050%とすることがよい。好ましいB量は0.0003~0.0050%であり、より好ましくは0.0008~0.0030%である。 B: 0.0050% or less B has the effect of facilitating the formation of bainite. If the B content exceeds 0.0050%, carbides are formed at grain boundaries, which may deteriorate wiredrawability. Therefore, when B is contained, the B content should be 0.0002 to 0.0050%. The preferred B content is 0.0003 to 0.0050%, and more preferably 0.0008 to 0.0030%.
Bは、ベイナイトを生成し易くする効果がある。B量が0.0050%を超えると粒界に炭化物を生成して伸線加工性を劣化させることがある。そのため、Bを含む場合、B量は0.0002~0.0050%とすることがよい。好ましいB量は0.0003~0.0050%であり、より好ましくは0.0008~0.0030%である。 B: 0.0050% or less B has the effect of facilitating the formation of bainite. If the B content exceeds 0.0050%, carbides are formed at grain boundaries, which may deteriorate wiredrawability. Therefore, when B is contained, the B content should be 0.0002 to 0.0050%. The preferred B content is 0.0003 to 0.0050%, and more preferably 0.0008 to 0.0030%.
[B群]
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上 [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上 [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less
Cr:1.50%以下
Crは、機械部品に必要な強度を付与するのに必要な元素である。Cr量が1.50%を超えると、線材のマルテンサイト分率が高くなり、伸線加工性が劣化するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Cr量は、1.50%以下とする。好ましいCr量は、0.02~0.80%であり、より好ましくは0.10~0.50%である。 Cr: 1.50% or less Cr is an element necessary for imparting the necessary strength to mechanical parts. If the Cr content exceeds 1.50%, the martensite fraction of the wire increases, deteriorating wiredrawability, and the deformation resistance of the steel wire increases, deteriorating cold forgeability. Therefore, the Cr content is set to 1.50% or less. The preferred Cr content is 0.02 to 0.80%, and more preferably 0.10 to 0.50%.
Crは、機械部品に必要な強度を付与するのに必要な元素である。Cr量が1.50%を超えると、線材のマルテンサイト分率が高くなり、伸線加工性が劣化するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Cr量は、1.50%以下とする。好ましいCr量は、0.02~0.80%であり、より好ましくは0.10~0.50%である。 Cr: 1.50% or less Cr is an element necessary for imparting the necessary strength to mechanical parts. If the Cr content exceeds 1.50%, the martensite fraction of the wire increases, deteriorating wiredrawability, and the deformation resistance of the steel wire increases, deteriorating cold forgeability. Therefore, the Cr content is set to 1.50% or less. The preferred Cr content is 0.02 to 0.80%, and more preferably 0.10 to 0.50%.
Mo:0.50%以下
Moは、機械部品に必要な強度を付与する効果がある。Mo量が0.50%を超えると、合金コストが増加するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Moを含む場合、Mo量は、0.02~0.50%とすることがよい。好ましいMo量は0.03~0.35%であり、より好ましくは0.05~0.25%である。Mo量は0.15%以下でもよい。 Mo: 0.50% or less Mo has the effect of imparting the necessary strength to mechanical parts. If the Mo content exceeds 0.50%, the alloy cost increases, and the deformation resistance of the steel wire increases, deteriorating the cold forgeability. Therefore, when Mo is contained, the Mo content is preferably 0.02 to 0.50%. The preferred Mo content is 0.03 to 0.35%, and more preferably 0.05 to 0.25%. The Mo content may be 0.15% or less.
Moは、機械部品に必要な強度を付与する効果がある。Mo量が0.50%を超えると、合金コストが増加するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Moを含む場合、Mo量は、0.02~0.50%とすることがよい。好ましいMo量は0.03~0.35%であり、より好ましくは0.05~0.25%である。Mo量は0.15%以下でもよい。 Mo: 0.50% or less Mo has the effect of imparting the necessary strength to mechanical parts. If the Mo content exceeds 0.50%, the alloy cost increases, and the deformation resistance of the steel wire increases, deteriorating the cold forgeability. Therefore, when Mo is contained, the Mo content is preferably 0.02 to 0.50%. The preferred Mo content is 0.03 to 0.35%, and more preferably 0.05 to 0.25%. The Mo content may be 0.15% or less.
Nb:0.050%以下
Nbは、炭化物や窒化物を析出させて、機械部品の強度を高める効果、結晶粒を細粒化して靱性を向上させる効果、固溶Nを低減して、変形抵抗を低減する効果等がある。Nb量が0.050%を超えると効果が飽和するとともに冷間鍛造性を劣化させることがある。そのため、Nbを含む場合、Nb量は0.002~0.050%とすることがよい。好ましいNb量は0.001~0.040%である。より好ましいNb量は0.005~0.030%である。 Nb: 0.050% or less Nb has the effect of increasing the strength of machine parts by precipitating carbides and nitrides, the effect of improving toughness by refining crystal grains, the effect of reducing solute N and reducing deformation resistance, etc. If the Nb content exceeds 0.050%, the effect is saturated and the cold forgeability may deteriorate. Therefore, when Nb is contained, the Nb content is preferably 0.002 to 0.050%. The preferred Nb content is 0.001 to 0.040%. The more preferred Nb content is 0.005 to 0.030%.
Nbは、炭化物や窒化物を析出させて、機械部品の強度を高める効果、結晶粒を細粒化して靱性を向上させる効果、固溶Nを低減して、変形抵抗を低減する効果等がある。Nb量が0.050%を超えると効果が飽和するとともに冷間鍛造性を劣化させることがある。そのため、Nbを含む場合、Nb量は0.002~0.050%とすることがよい。好ましいNb量は0.001~0.040%である。より好ましいNb量は0.005~0.030%である。 Nb: 0.050% or less Nb has the effect of increasing the strength of machine parts by precipitating carbides and nitrides, the effect of improving toughness by refining crystal grains, the effect of reducing solute N and reducing deformation resistance, etc. If the Nb content exceeds 0.050%, the effect is saturated and the cold forgeability may deteriorate. Therefore, when Nb is contained, the Nb content is preferably 0.002 to 0.050%. The preferred Nb content is 0.001 to 0.040%. The more preferred Nb content is 0.005 to 0.030%.
V:0.20%以下
Vは、炭化物や窒化物を析出させて、機械部品の強度を高める効果がある。V量が0.20%を超えて含有すると合金コストが増加する。そのため、Vを含む場合、V量は0.02~0.20%とすることがよい。好ましいV量の範囲は0.01~0.15%である。 V: 0.20% or less V has the effect of precipitating carbides and nitrides to increase the strength of mechanical parts. If the V content exceeds 0.20%, the alloy cost increases. Therefore, if V is contained, the V content should be 0.02 to 0.20%. The preferred V content range is 0.01 to 0.15%.
Vは、炭化物や窒化物を析出させて、機械部品の強度を高める効果がある。V量が0.20%を超えて含有すると合金コストが増加する。そのため、Vを含む場合、V量は0.02~0.20%とすることがよい。好ましいV量の範囲は0.01~0.15%である。 V: 0.20% or less V has the effect of precipitating carbides and nitrides to increase the strength of mechanical parts. If the V content exceeds 0.20%, the alloy cost increases. Therefore, if V is contained, the V content should be 0.02 to 0.20%. The preferred V content range is 0.01 to 0.15%.
[C群]
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上 [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上 [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less
Cu:0.50%以下
Cuは、微細に析出して、機械部品に必要な強度を付与するとともに耐食性を向上させる効果がある。Cu量が0.50%を超えると熱間延性が劣化し表面に疵が発生しやすくなる。そのため、Cuを含む場合、Cu量は0.02~0.50%とすることがよい。好ましいCu量は0.02~0.30%とすることがよい。 Cu: 0.50% or less Cu precipitates finely to impart the necessary strength to mechanical parts and improve corrosion resistance. If the Cu content exceeds 0.50%, hot ductility deteriorates and surface defects are likely to occur. Therefore, if Cu is contained, the Cu content should be 0.02 to 0.50%. The preferred Cu content is 0.02 to 0.30%.
Cuは、微細に析出して、機械部品に必要な強度を付与するとともに耐食性を向上させる効果がある。Cu量が0.50%を超えると熱間延性が劣化し表面に疵が発生しやすくなる。そのため、Cuを含む場合、Cu量は0.02~0.50%とすることがよい。好ましいCu量は0.02~0.30%とすることがよい。 Cu: 0.50% or less Cu precipitates finely to impart the necessary strength to mechanical parts and improve corrosion resistance. If the Cu content exceeds 0.50%, hot ductility deteriorates and surface defects are likely to occur. Therefore, if Cu is contained, the Cu content should be 0.02 to 0.50%. The preferred Cu content is 0.02 to 0.30%.
Ni:0.70%以下
Niは、耐食性を向上させる効果がある。Ni量が0.70%を超えると合金コストが増加する。そのため、Niを含む場合、Ni量は0.02~0.70%とすることがよい。好ましいNi量は0.02~0.50%であり、より好ましくは0.05~0.30%である。 Ni: 0.70% or less Ni has the effect of improving corrosion resistance. If the Ni content exceeds 0.70%, the alloy cost increases. Therefore, if Ni is contained, the Ni content is preferably 0.02 to 0.70%. The Ni content is preferably 0.02 to 0.50%, and more preferably 0.05 to 0.30%.
Niは、耐食性を向上させる効果がある。Ni量が0.70%を超えると合金コストが増加する。そのため、Niを含む場合、Ni量は0.02~0.70%とすることがよい。好ましいNi量は0.02~0.50%であり、より好ましくは0.05~0.30%である。 Ni: 0.70% or less Ni has the effect of improving corrosion resistance. If the Ni content exceeds 0.70%, the alloy cost increases. Therefore, if Ni is contained, the Ni content is preferably 0.02 to 0.70%. The Ni content is preferably 0.02 to 0.50%, and more preferably 0.05 to 0.30%.
Sn:0.30%以下
Snは耐食性を向上させる効果がある。Snを含む場合、Sn量は0.002%以上とすることがよい。ただし、Sn量が0.30%を超えると、延性が低下し冷間加工性を劣化させるため、0.30%以下に制限する。Sn量の好ましい上限は0.20%である。 Sn: 0.30% or less Sn has the effect of improving corrosion resistance. When Sn is contained, the Sn content is preferably 0.002% or more. However, if the Sn content exceeds 0.30%, the ductility decreases and the cold workability deteriorates, so the Sn content is limited to 0.30% or less. The preferred upper limit of the Sn content is 0.20%.
Snは耐食性を向上させる効果がある。Snを含む場合、Sn量は0.002%以上とすることがよい。ただし、Sn量が0.30%を超えると、延性が低下し冷間加工性を劣化させるため、0.30%以下に制限する。Sn量の好ましい上限は0.20%である。 Sn: 0.30% or less Sn has the effect of improving corrosion resistance. When Sn is contained, the Sn content is preferably 0.002% or more. However, if the Sn content exceeds 0.30%, the ductility decreases and the cold workability deteriorates, so the Sn content is limited to 0.30% or less. The preferred upper limit of the Sn content is 0.20%.
Sb:0.005%以下
Sbは耐食性を向上させる効果がある。Sbを含む場合、Sb量は0.001%以上とすることがよい。ただし、Sb量が0.005%を超えると、延性が低下し冷間加工性を劣化させるため、0.005%以下に制限する。Sb量の好ましい上限は0.004%であり、より好ましい上限は0.003%である。 Sb: 0.005% or less Sb has the effect of improving corrosion resistance. When Sb is contained, the Sb content is preferably 0.001% or more. However, if the Sb content exceeds 0.005%, the ductility decreases and the cold workability deteriorates, so the Sb content is limited to 0.005% or less. The preferred upper limit of the Sb content is 0.004%, and the more preferred upper limit is 0.003%.
Sbは耐食性を向上させる効果がある。Sbを含む場合、Sb量は0.001%以上とすることがよい。ただし、Sb量が0.005%を超えると、延性が低下し冷間加工性を劣化させるため、0.005%以下に制限する。Sb量の好ましい上限は0.004%であり、より好ましい上限は0.003%である。 Sb: 0.005% or less Sb has the effect of improving corrosion resistance. When Sb is contained, the Sb content is preferably 0.001% or more. However, if the Sb content exceeds 0.005%, the ductility decreases and the cold workability deteriorates, so the Sb content is limited to 0.005% or less. The preferred upper limit of the Sb content is 0.004%, and the more preferred upper limit is 0.003%.
[D群]
Ca:0.0050%以下
Caは、脱酸元素を目的に含有される。Caは酸化物を微細にして疲労強度を向上させる効果がある。Ca量が0.0050%を超えると、延性が低下し冷間加工性を劣化させるため、0.0050%以下に制限する。Ca量の好ましい上限は0.0040%であり、より好ましい上限は0.0030%である。 [Group D]
Ca: 0.0050% or less Ca is contained as a deoxidizing element. Ca has the effect of making oxides fine and improving fatigue strength. If the Ca content exceeds 0.0050%, ductility decreases and cold workability deteriorates, so it is limited to 0.0050% or less. The preferred upper limit of the Ca content is 0.0040%, and the more preferred upper limit is 0.0030%.
Ca:0.0050%以下
Caは、脱酸元素を目的に含有される。Caは酸化物を微細にして疲労強度を向上させる効果がある。Ca量が0.0050%を超えると、延性が低下し冷間加工性を劣化させるため、0.0050%以下に制限する。Ca量の好ましい上限は0.0040%であり、より好ましい上限は0.0030%である。 [Group D]
Ca: 0.0050% or less Ca is contained as a deoxidizing element. Ca has the effect of making oxides fine and improving fatigue strength. If the Ca content exceeds 0.0050%, ductility decreases and cold workability deteriorates, so it is limited to 0.0050% or less. The preferred upper limit of the Ca content is 0.0040%, and the more preferred upper limit is 0.0030%.
[線材の金属組織]
次に、本開示に係る線材の金属組織について説明する。
本開示に係る線材の金属組織は、線材の長さ方向に垂直な断面(C断面)において線材の表面(外周面)から深さが1/4D部でのベイナイトの面積率が70%以上である。ベイナイト面積率が70%未満では、機械部品の0.2%耐力比が低くなるとともに加工性が劣化する。ベイナイト面積率は80%以上が好ましく、より好ましくは90%以上である。 [Metal structure of wire]
Next, the metal structure of the wire according to the present disclosure will be described.
In the metal structure of the wire rod according to the present disclosure, the area ratio of bainite at a depth of 1/4D from the surface (outer peripheral surface) of the wire rod in a cross section (C cross section) perpendicular to the longitudinal direction of the wire rod is 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and the workability deteriorates. The bainite area ratio is preferably 80% or more, and more preferably 90% or more.
次に、本開示に係る線材の金属組織について説明する。
本開示に係る線材の金属組織は、線材の長さ方向に垂直な断面(C断面)において線材の表面(外周面)から深さが1/4D部でのベイナイトの面積率が70%以上である。ベイナイト面積率が70%未満では、機械部品の0.2%耐力比が低くなるとともに加工性が劣化する。ベイナイト面積率は80%以上が好ましく、より好ましくは90%以上である。 [Metal structure of wire]
Next, the metal structure of the wire according to the present disclosure will be described.
In the metal structure of the wire rod according to the present disclosure, the area ratio of bainite at a depth of 1/4D from the surface (outer peripheral surface) of the wire rod in a cross section (C cross section) perpendicular to the longitudinal direction of the wire rod is 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and the workability deteriorates. The bainite area ratio is preferably 80% or more, and more preferably 90% or more.
(線材の金属組織の測定方法)
組織観察は、線材の軸方向に50mm離れた位置から2個のサンプルを採取し、各線材サンプルの中心軸に垂直な断面(C断面)を鏡面研磨し、ピクラールで腐食を行い、1/4D部を観察して行う。
まず、測定対象とする線材のC断面を鏡面研磨した後、ピクラール(5%ピクリン酸+95%エタノール溶液)でエッチングして組織を現出させる。
次に、1/4D部において周方向に90°おきに4箇所において、1箇所における20μm×20μm以上の領域を電解放射型走査型電子顕微鏡(FE-SEM)を用いて倍率5000倍の組織写真を撮影する。図1A及び図1Bにベイナイト組織の例をそれぞれ示す。 (Method of measuring metal structure of wire rod)
The microstructure observation was performed by taking two samples from positions 50 mm apart in the axial direction of the wire, mirror-polishing a cross section (C cross section) perpendicular to the central axis of each wire sample, etching it with picral, and observing the ¼ D portion.
First, the C-section of the wire to be measured is mirror-polished and then etched with picral (a solution of 5% picric acid and 95% ethanol) to reveal the structure.
Next, in the 1/4D portion, a region of 20 μm×20 μm or more in one of four locations spaced 90° apart in the circumferential direction is photographed at a magnification of 5000 times using a field emission scanning electron microscope (FE-SEM). Examples of the bainite structure are shown in FIG. 1A and FIG. 1B.
組織観察は、線材の軸方向に50mm離れた位置から2個のサンプルを採取し、各線材サンプルの中心軸に垂直な断面(C断面)を鏡面研磨し、ピクラールで腐食を行い、1/4D部を観察して行う。
まず、測定対象とする線材のC断面を鏡面研磨した後、ピクラール(5%ピクリン酸+95%エタノール溶液)でエッチングして組織を現出させる。
次に、1/4D部において周方向に90°おきに4箇所において、1箇所における20μm×20μm以上の領域を電解放射型走査型電子顕微鏡(FE-SEM)を用いて倍率5000倍の組織写真を撮影する。図1A及び図1Bにベイナイト組織の例をそれぞれ示す。 (Method of measuring metal structure of wire rod)
The microstructure observation was performed by taking two samples from positions 50 mm apart in the axial direction of the wire, mirror-polishing a cross section (C cross section) perpendicular to the central axis of each wire sample, etching it with picral, and observing the ¼ D portion.
First, the C-section of the wire to be measured is mirror-polished and then etched with picral (a solution of 5% picric acid and 95% ethanol) to reveal the structure.
Next, in the 1/4D portion, a region of 20 μm×20 μm or more in one of four locations spaced 90° apart in the circumferential direction is photographed at a magnification of 5000 times using a field emission scanning electron microscope (FE-SEM). Examples of the bainite structure are shown in FIG. 1A and FIG. 1B.
金属組織にはベイナイト、パーライト、マルテンサイト、フェライトを含む可能性がある。この内、マルテンサイトとフェライトは粒内に炭化物を含まない。パーライト組織はセメンタイトとフェライトが交互にほぼ平行に並んだ組織である。そのため、撮影された組織写真中のベイナイト以外の組織(粒内に炭化物を含まない組織、パーライト組織)を目視でマーキングし、ベイナイト以外の組織の領域の面積を画像解析(ソフト名:ニレコ製小型汎用画像処理解析システムLUZEX_AP)により求める。なお、この操作は2個のサンプルについて測定、算出し、それらの平均値を求め、総領域(100%)からベイナイト以外の組織の面積%を減ずることで、本開示におけるベイナイトの面積%を求める。
The metal structure may contain bainite, pearlite, martensite, and ferrite. Of these, martensite and ferrite do not contain carbides within the grains. The pearlite structure is a structure in which cementite and ferrite are arranged alternately and almost parallel to one another. Therefore, structures other than bainite (structures that do not contain carbides within the grains, pearlite structures) in the photographed structure are visually marked, and the area of the regions of structures other than bainite is determined by image analysis (software name: Nireco's small general-purpose image processing analysis system LUZEX_AP). Note that this operation is performed by measuring and calculating two samples, averaging these values, and subtracting the area percentage of structures other than bainite from the total area (100%) to determine the area percentage of bainite in this disclosure.
[線材の機械特性]
0.05%耐力/引張強さ:0.72-0.40×(C%)以上
本開示に係る線材は、質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上である。0.05%耐力/引張強さが、0.72-0.40×(C%)以上であることで機械部品に成形後、ブルーイング処理を行わなくても高い0.2%耐力比が得られる。0.05%耐力/引張強さは、好ましくは、0.78-0.40×(C%)以上である。 [Mechanical properties of wire]
0.05% proof stress/tensile strength: 0.72-0.40×(C%) or more In the wire rod according to the present disclosure, when the C content in mass % is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more. When the 0.05% proof stress/tensile strength is 0.72-0.40×(C%) or more, a high 0.2% proof stress ratio can be obtained after molding into a mechanical part without performing a bluing treatment. The 0.05% proof stress/tensile strength is preferably 0.78-0.40×(C%) or more.
0.05%耐力/引張強さ:0.72-0.40×(C%)以上
本開示に係る線材は、質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上である。0.05%耐力/引張強さが、0.72-0.40×(C%)以上であることで機械部品に成形後、ブルーイング処理を行わなくても高い0.2%耐力比が得られる。0.05%耐力/引張強さは、好ましくは、0.78-0.40×(C%)以上である。 [Mechanical properties of wire]
0.05% proof stress/tensile strength: 0.72-0.40×(C%) or more In the wire rod according to the present disclosure, when the C content in mass % is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more. When the 0.05% proof stress/tensile strength is 0.72-0.40×(C%) or more, a high 0.2% proof stress ratio can be obtained after molding into a mechanical part without performing a bluing treatment. The 0.05% proof stress/tensile strength is preferably 0.78-0.40×(C%) or more.
線材の引張試験は、JIS Z2241:2011の14A号試験片を用い、JIS Z2241:2011の試験方法に従って行い、引張強さ(TS)、0.05%耐力、絞りを測定する。0.05%耐力は、JIS Z2241:2011に定められたオフセット法により、塑性伸びが、伸び計標点距離に対して0.05%となった時の応力とした。引張試験片は、線材を矯直後、機械加工して採取した。引張試験は3本のサンプルで行い、その平均値を用いる。
The tensile test of the wire rod is carried out using JIS Z2241:2011 No. 14A test piece and following the test method of JIS Z2241:2011 to measure the tensile strength (TS), 0.05% yield strength, and reduction in area. The 0.05% yield strength is the stress at which the plastic elongation becomes 0.05% of the extensometer gauge length according to the offset method defined in JIS Z2241:2011. The tensile test piece is machined and taken from the wire rod immediately after straightening. The tensile test is carried out on three samples and the average value is used.
(線材のビッカース硬さ)
本開示に係る線材は、線材の長さ方向に垂直な断面(C断面)おけるビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である。かかる値が0.150以下であると、伸線加工を経て鋼線から製造される機械部品の0.2%耐力比が高くなる。また、機械部品に成形の際の加工性が向上する。好ましくは0.100以下、より好ましくは0.050以下である。 (Vickers hardness of wire)
The wire rod according to the present disclosure has a value obtained by dividing the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the length direction of the wire rod by the average value of the Vickers hardness of 0.150 or less. When this value is 0.150 or less, the 0.2% proof stress ratio of a mechanical part manufactured from the steel wire through wire drawing is high. In addition, the workability when forming into a mechanical part is improved. The value is preferably 0.100 or less, more preferably 0.050 or less.
本開示に係る線材は、線材の長さ方向に垂直な断面(C断面)おけるビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である。かかる値が0.150以下であると、伸線加工を経て鋼線から製造される機械部品の0.2%耐力比が高くなる。また、機械部品に成形の際の加工性が向上する。好ましくは0.100以下、より好ましくは0.050以下である。 (Vickers hardness of wire)
The wire rod according to the present disclosure has a value obtained by dividing the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the length direction of the wire rod by the average value of the Vickers hardness of 0.150 or less. When this value is 0.150 or less, the 0.2% proof stress ratio of a mechanical part manufactured from the steel wire through wire drawing is high. In addition, the workability when forming into a mechanical part is improved. The value is preferably 0.100 or less, more preferably 0.050 or less.
硬さ試験は、線材のC断面を鏡面研磨し、ビッカース硬度計を用いて、線材の表面から1.0mmの深さの位置にて、線材の周方向に90°間隔で回転させた4箇所、線材の直径をDとしたとき、D/4の深さの位置にて、線材の周方向に90°間隔で回転させた4箇所、中心部1箇所の計9点を測定し、その平均値と標準偏差を求める。各測定値をx1、x2、・・・xnとしたとき、平均値Xaveと標準偏差sは下式から求めた。
Xave=(1/n)×Σxn
s=((1/n)×Σ(xn-Xave)2)(1/2)
ビッカース硬さ測定の際の試験力は9.8Nとして、JIS Z2244-1:2020の方法で測定する。 The hardness test was carried out by mirror-polishing the C-section of the wire and using a Vickers hardness tester to measure a total of nine points: four points at a depth of 1.0 mm from the surface of the wire, rotated at 90° intervals around the wire, four points at a depth of D/4 (where D is the diameter of the wire), rotated at 90° intervals around the wire, and one point at the center, and then calculating the average value and standard deviation. When the measured values are x1 , x2 , ..., xn , the average value Xave and standard deviation s were calculated from the following formula.
X ave = (1/n)×Σx n
s=((1/n)×Σ(x n −X ave ) 2 ) (1/2)
The test force for measuring Vickers hardness is 9.8 N, and the measurement is performed according to the method of JIS Z2244-1:2020.
Xave=(1/n)×Σxn
s=((1/n)×Σ(xn-Xave)2)(1/2)
ビッカース硬さ測定の際の試験力は9.8Nとして、JIS Z2244-1:2020の方法で測定する。 The hardness test was carried out by mirror-polishing the C-section of the wire and using a Vickers hardness tester to measure a total of nine points: four points at a depth of 1.0 mm from the surface of the wire, rotated at 90° intervals around the wire, four points at a depth of D/4 (where D is the diameter of the wire), rotated at 90° intervals around the wire, and one point at the center, and then calculating the average value and standard deviation. When the measured values are x1 , x2 , ..., xn , the average value Xave and standard deviation s were calculated from the following formula.
X ave = (1/n)×Σx n
s=((1/n)×Σ(x n −X ave ) 2 ) (1/2)
The test force for measuring Vickers hardness is 9.8 N, and the measurement is performed according to the method of JIS Z2244-1:2020.
(線材の直径)
本開示に係る線材の線径Dは特に限定されないが、好ましくは3.0~25.0mmであり、より好ましくは5.0~18.0mmである。 (Wire diameter)
The wire diameter D of the wire according to the present disclosure is not particularly limited, but is preferably 3.0 to 25.0 mm, and more preferably 5.0 to 18.0 mm.
本開示に係る線材の線径Dは特に限定されないが、好ましくは3.0~25.0mmであり、より好ましくは5.0~18.0mmである。 (Wire diameter)
The wire diameter D of the wire according to the present disclosure is not particularly limited, but is preferably 3.0 to 25.0 mm, and more preferably 5.0 to 18.0 mm.
[線材の製造方法]
本開示に係る線材の製造方法の一例について説明する。
前述した化学組成を満たす所定の成分からなる鋼片を、1100~1250℃に加熱し、在炉時間で90分以上保持した後、仕上げ圧延の入側温度750~800℃で熱間圧延を行い、780~820℃でリング状に巻き取る。
巻取り後、750℃までを2~15℃/sの平均冷却速度で1次冷却する。
その後、750℃から500℃までを25℃/s以上の平均冷却速度で2次冷却する。
次いで、500℃から450℃までを20℃/s以下の平均冷却速度で3次冷却する。
その後、420~440℃で30~100秒保持(1次保定)を行い、490℃から550℃まで平均昇温速度10℃/s以上で昇温し、580~620℃で60~200秒保持(2次保定)を行い、その後水冷して線材を得る。 [Wire rod manufacturing method]
An example of a method for producing a wire according to the present disclosure will be described.
A steel slab made of predetermined components that satisfy the above-mentioned chemical composition is heated to 1100 to 1250°C and held in the furnace for 90 minutes or more. Thereafter, the slab is hot-rolled at an entry temperature of 750 to 800°C for finish rolling, and then coiled into a ring shape at 780 to 820°C.
After coiling, the wire is primarily cooled to 750° C. at an average cooling rate of 2 to 15° C./s.
Thereafter, secondary cooling is performed from 750° C. to 500° C. at an average cooling rate of 25° C./s or more.
Next, the tertiary cooling is performed from 500° C. to 450° C. at an average cooling rate of 20° C./s or less.
The wire is then held at 420-440°C for 30-100 seconds (primary holding), heated from 490°C to 550°C at an average heating rate of 10°C/s or more, held at 580-620°C for 60-200 seconds (secondary holding), and then water-cooled to obtain the wire.
本開示に係る線材の製造方法の一例について説明する。
前述した化学組成を満たす所定の成分からなる鋼片を、1100~1250℃に加熱し、在炉時間で90分以上保持した後、仕上げ圧延の入側温度750~800℃で熱間圧延を行い、780~820℃でリング状に巻き取る。
巻取り後、750℃までを2~15℃/sの平均冷却速度で1次冷却する。
その後、750℃から500℃までを25℃/s以上の平均冷却速度で2次冷却する。
次いで、500℃から450℃までを20℃/s以下の平均冷却速度で3次冷却する。
その後、420~440℃で30~100秒保持(1次保定)を行い、490℃から550℃まで平均昇温速度10℃/s以上で昇温し、580~620℃で60~200秒保持(2次保定)を行い、その後水冷して線材を得る。 [Wire rod manufacturing method]
An example of a method for producing a wire according to the present disclosure will be described.
A steel slab made of predetermined components that satisfy the above-mentioned chemical composition is heated to 1100 to 1250°C and held in the furnace for 90 minutes or more. Thereafter, the slab is hot-rolled at an entry temperature of 750 to 800°C for finish rolling, and then coiled into a ring shape at 780 to 820°C.
After coiling, the wire is primarily cooled to 750° C. at an average cooling rate of 2 to 15° C./s.
Thereafter, secondary cooling is performed from 750° C. to 500° C. at an average cooling rate of 25° C./s or more.
Next, the tertiary cooling is performed from 500° C. to 450° C. at an average cooling rate of 20° C./s or less.
The wire is then held at 420-440°C for 30-100 seconds (primary holding), heated from 490°C to 550°C at an average heating rate of 10°C/s or more, held at 580-620°C for 60-200 seconds (secondary holding), and then water-cooled to obtain the wire.
加熱温度が1100℃未満、あるいは加熱時の在炉時間が90分未満では、炭化物の固溶が不十分となり、線材の0.05%耐力比が低下する。加熱温度が1250℃を超えると脱炭により線材の表面硬度が低下する。
仕上げ圧延の入側温度が800℃を超えると、γ粒(オーステナイト粒)が粗大になり線材の延性が低下し、加工性が劣化する。入側温度が750℃未満では、γ粒径が不均一となり、線材の硬さの標準偏差が大きくなる。
巻取り温度が820℃を超えると、γ粒が粗大になり線材の延性が低下し、加工性が劣化する。巻取り温度が780℃未満では、ベイナイトの面積率が低下し、線材の0.05%耐力比が低下する。
巻取り後、750℃までの1次平均冷却速度が、2℃/s未満では、γ粒が粗大になり線材の延性が低下し、加工性が劣化する。15℃/sを超えるとγ粒の回復、再結晶が遅延し混粒となる。そのためγ粒径が不均一となり、線材の硬さの標準偏差が大きくなり、機械部品の0.2%耐力比や永久伸びが劣化する。
750℃から500℃までの2次平均冷却速度が25℃/s未満では、フェライトやパーライトの面積率が高くなり、線材の0.05%耐力比が低下する。
500℃から450℃までの3次平均冷却速度が20℃/sを超えると、線材の硬さの標準偏差が大きくなり、伸線後にボルトの成形性が劣化するとともにボルトの0.2%耐力比や永久伸びが劣化する。
420~440℃の1次保定時間が30秒未満では、線材の硬さばらつきが大きくなり、機械部品の0.2%耐力比や永久伸びが劣化する。1次保持時間が100秒を超えると、線材の0.05%耐力比が低下する。
490℃から550℃までの平均昇温速度が10℃/s未満では線材の0.05%耐力比が低くなり、機械部品の0.2%耐力比や永久伸びが劣化する。2次保定温度が580℃未満では、機械部品の0.2%耐力比や永久伸びが劣化し、620℃を超えると強度が低下する。2次保定時間が60秒未満では、線材の0.05%耐力比が低下する。2次保定時間が200秒を超えると炭化物が粗大化し、伸線後の鋼線の絞りが低下する。 If the heating temperature is less than 1100°C or the heating time is less than 90 minutes, the carbide is insufficiently dissolved, and the 0.05% yield strength ratio of the wire rod decreases. If the heating temperature exceeds 1250°C, the surface hardness of the wire rod decreases due to decarburization.
If the entry temperature of the finish rolling exceeds 800° C., the gamma grains (austenite grains) become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If the entry temperature is less than 750° C., the gamma grain size becomes non-uniform, and the standard deviation of the hardness of the wire rod increases.
If the coiling temperature exceeds 820° C., the gamma grains become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If the coiling temperature is less than 780° C., the area ratio of bainite decreases, and the 0.05% proof stress ratio of the wire rod decreases.
If the primary average cooling rate to 750°C after coiling is less than 2°C/s, the gamma grains become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If it exceeds 15°C/s, the recovery and recrystallization of the gamma grains are delayed, resulting in mixed grains. As a result, the gamma grain size becomes non-uniform, the standard deviation of the hardness of the wire rod increases, and the 0.2% proof stress ratio and permanent elongation of the mechanical parts deteriorate.
If the secondary average cooling rate from 750° C. to 500° C. is less than 25° C./s, the area ratio of ferrite and pearlite increases, and the 0.05% yield strength ratio of the wire rod decreases.
If the tertiary average cooling rate from 500°C to 450°C exceeds 20°C/s, the standard deviation of the hardness of the wire becomes large, and the formability of the bolt after drawing deteriorates, as well as the 0.2% yield strength ratio and permanent elongation of the bolt deteriorate.
If the first holding time at 420 to 440°C is less than 30 seconds, the hardness of the wire will vary widely, and the 0.2% yield strength ratio and permanent elongation of the mechanical parts will deteriorate. If the first holding time exceeds 100 seconds, the 0.05% yield strength ratio of the wire will decrease.
If the average heating rate from 490°C to 550°C is less than 10°C/s, the 0.05% yield strength ratio of the wire rod will be low, and the 0.2% yield strength ratio and permanent elongation of the mechanical parts will be deteriorated. If the secondary holding temperature is less than 580°C, the 0.2% yield strength ratio and permanent elongation of the mechanical parts will be deteriorated, and if it exceeds 620°C, the strength will be reduced. If the secondary holding time is less than 60 seconds, the 0.05% yield strength ratio of the wire rod will be reduced. If the secondary holding time exceeds 200 seconds, the carbides will coarsen, and the reduction in area of the steel wire after drawing will be reduced.
仕上げ圧延の入側温度が800℃を超えると、γ粒(オーステナイト粒)が粗大になり線材の延性が低下し、加工性が劣化する。入側温度が750℃未満では、γ粒径が不均一となり、線材の硬さの標準偏差が大きくなる。
巻取り温度が820℃を超えると、γ粒が粗大になり線材の延性が低下し、加工性が劣化する。巻取り温度が780℃未満では、ベイナイトの面積率が低下し、線材の0.05%耐力比が低下する。
巻取り後、750℃までの1次平均冷却速度が、2℃/s未満では、γ粒が粗大になり線材の延性が低下し、加工性が劣化する。15℃/sを超えるとγ粒の回復、再結晶が遅延し混粒となる。そのためγ粒径が不均一となり、線材の硬さの標準偏差が大きくなり、機械部品の0.2%耐力比や永久伸びが劣化する。
750℃から500℃までの2次平均冷却速度が25℃/s未満では、フェライトやパーライトの面積率が高くなり、線材の0.05%耐力比が低下する。
500℃から450℃までの3次平均冷却速度が20℃/sを超えると、線材の硬さの標準偏差が大きくなり、伸線後にボルトの成形性が劣化するとともにボルトの0.2%耐力比や永久伸びが劣化する。
420~440℃の1次保定時間が30秒未満では、線材の硬さばらつきが大きくなり、機械部品の0.2%耐力比や永久伸びが劣化する。1次保持時間が100秒を超えると、線材の0.05%耐力比が低下する。
490℃から550℃までの平均昇温速度が10℃/s未満では線材の0.05%耐力比が低くなり、機械部品の0.2%耐力比や永久伸びが劣化する。2次保定温度が580℃未満では、機械部品の0.2%耐力比や永久伸びが劣化し、620℃を超えると強度が低下する。2次保定時間が60秒未満では、線材の0.05%耐力比が低下する。2次保定時間が200秒を超えると炭化物が粗大化し、伸線後の鋼線の絞りが低下する。 If the heating temperature is less than 1100°C or the heating time is less than 90 minutes, the carbide is insufficiently dissolved, and the 0.05% yield strength ratio of the wire rod decreases. If the heating temperature exceeds 1250°C, the surface hardness of the wire rod decreases due to decarburization.
If the entry temperature of the finish rolling exceeds 800° C., the gamma grains (austenite grains) become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If the entry temperature is less than 750° C., the gamma grain size becomes non-uniform, and the standard deviation of the hardness of the wire rod increases.
If the coiling temperature exceeds 820° C., the gamma grains become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If the coiling temperature is less than 780° C., the area ratio of bainite decreases, and the 0.05% proof stress ratio of the wire rod decreases.
If the primary average cooling rate to 750°C after coiling is less than 2°C/s, the gamma grains become coarse, the ductility of the wire rod decreases, and the workability deteriorates. If it exceeds 15°C/s, the recovery and recrystallization of the gamma grains are delayed, resulting in mixed grains. As a result, the gamma grain size becomes non-uniform, the standard deviation of the hardness of the wire rod increases, and the 0.2% proof stress ratio and permanent elongation of the mechanical parts deteriorate.
If the secondary average cooling rate from 750° C. to 500° C. is less than 25° C./s, the area ratio of ferrite and pearlite increases, and the 0.05% yield strength ratio of the wire rod decreases.
If the tertiary average cooling rate from 500°C to 450°C exceeds 20°C/s, the standard deviation of the hardness of the wire becomes large, and the formability of the bolt after drawing deteriorates, as well as the 0.2% yield strength ratio and permanent elongation of the bolt deteriorate.
If the first holding time at 420 to 440°C is less than 30 seconds, the hardness of the wire will vary widely, and the 0.2% yield strength ratio and permanent elongation of the mechanical parts will deteriorate. If the first holding time exceeds 100 seconds, the 0.05% yield strength ratio of the wire will decrease.
If the average heating rate from 490°C to 550°C is less than 10°C/s, the 0.05% yield strength ratio of the wire rod will be low, and the 0.2% yield strength ratio and permanent elongation of the mechanical parts will be deteriorated. If the secondary holding temperature is less than 580°C, the 0.2% yield strength ratio and permanent elongation of the mechanical parts will be deteriorated, and if it exceeds 620°C, the strength will be reduced. If the secondary holding time is less than 60 seconds, the 0.05% yield strength ratio of the wire rod will be reduced. If the secondary holding time exceeds 200 seconds, the carbides will coarsen, and the reduction in area of the steel wire after drawing will be reduced.
本開示に係る線材を15~50%の減面率で伸線加工して鋼線とし、さらに冷間圧造と転造を行いボルト等の機械部品の形状に加工する。伸線減面率が15%未満では、機械部品の耐力比が低下し、永久伸びが大きくなる。伸線減面率が50%以上では、機械部品の加工性が劣化する。伸線後に必要に応じて、亜鉛めっきとベーキング処理を行う。
The wire rod according to the present disclosure is drawn with an area reduction rate of 15 to 50% to produce steel wire, which is then cold heading and rolling processed into the shape of a mechanical part such as a bolt. If the area reduction rate of the wire drawing is less than 15%, the yield strength ratio of the mechanical part decreases and the permanent elongation increases. If the area reduction rate of the wire drawing is 50% or more, the workability of the mechanical part deteriorates. After the wire drawing, zinc plating and baking treatment are performed as necessary.
本開示の線材を用いて製造される鋼線は、強度と絞りが高く、ボルトの高強度化と成形性に優れる。かかる鋼線を用いて製造した非調質ボルトは、成形後のブルーイング処理を省略しても、高いボルトの0.2%耐力比と優れた永久伸びが得られる。
以下、本開示に係る鋼線及び機械部品について説明する。なお、本開示に係る鋼線及び機械部品の化学組成は、前述した線材の化学組成と同様であり、以下の説明では省略する。 The steel wire manufactured using the wire rod of the present disclosure has high strength and drawing ability, and is excellent in strength and formability of the bolt. A non-tempered bolt manufactured using such a steel wire has a high bolt 0.2% yield strength ratio and excellent permanent elongation even if the bluing treatment after forming is omitted.
The steel wire and the machine component according to the present disclosure will be described below. Note that the chemical composition of the steel wire and the machine component according to the present disclosure is the same as that of the wire rod described above, and therefore will not be described below.
以下、本開示に係る鋼線及び機械部品について説明する。なお、本開示に係る鋼線及び機械部品の化学組成は、前述した線材の化学組成と同様であり、以下の説明では省略する。 The steel wire manufactured using the wire rod of the present disclosure has high strength and drawing ability, and is excellent in strength and formability of the bolt. A non-tempered bolt manufactured using such a steel wire has a high bolt 0.2% yield strength ratio and excellent permanent elongation even if the bluing treatment after forming is omitted.
The steel wire and the machine component according to the present disclosure will be described below. Note that the chemical composition of the steel wire and the machine component according to the present disclosure is the same as that of the wire rod described above, and therefore will not be described below.
<鋼線>
本開示に係る鋼線は、上記線材を伸線加工したものであり、鋼線の縦断面の表層に塑性流動が観察される。本開示に係る鋼線の金属組織及び機械特性について説明する。 <Steel wire>
The steel wire according to the present disclosure is obtained by drawing the above wire rod, and plastic flow is observed in the surface layer of the longitudinal cross section of the steel wire. The metal structure and mechanical properties of the steel wire according to the present disclosure will be described.
本開示に係る鋼線は、上記線材を伸線加工したものであり、鋼線の縦断面の表層に塑性流動が観察される。本開示に係る鋼線の金属組織及び機械特性について説明する。 <Steel wire>
The steel wire according to the present disclosure is obtained by drawing the above wire rod, and plastic flow is observed in the surface layer of the longitudinal cross section of the steel wire. The metal structure and mechanical properties of the steel wire according to the present disclosure will be described.
[鋼線の金属組織]
本開示に係る鋼線は、鋼線の直径をdとするとき、鋼線の長さ方向に垂直な断面において鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含む。ベイナイト面積率が70%未満では、機械部品の0.2%耐力比が低くなるとともに加工性が劣化する。ベイナイト面積率は80%以上が好ましく、より好ましくは90%以上である。
鋼線の金属組織は、前述した線材の金属組織と同様の方法で測定することができる。 [Metal structure of steel wire]
In the steel wire according to the present disclosure, when the diameter of the steel wire is d, the metal structure at a 1/4d portion, which is 1/4d deep from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire, contains bainite with an area ratio of 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and the workability deteriorates. The bainite area ratio is preferably 80% or more, and more preferably 90% or more.
The metal structure of the steel wire can be measured in the same manner as the metal structure of the wire rod described above.
本開示に係る鋼線は、鋼線の直径をdとするとき、鋼線の長さ方向に垂直な断面において鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含む。ベイナイト面積率が70%未満では、機械部品の0.2%耐力比が低くなるとともに加工性が劣化する。ベイナイト面積率は80%以上が好ましく、より好ましくは90%以上である。
鋼線の金属組織は、前述した線材の金属組織と同様の方法で測定することができる。 [Metal structure of steel wire]
In the steel wire according to the present disclosure, when the diameter of the steel wire is d, the metal structure at a 1/4d portion, which is 1/4d deep from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire, contains bainite with an area ratio of 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and the workability deteriorates. The bainite area ratio is preferably 80% or more, and more preferably 90% or more.
The metal structure of the steel wire can be measured in the same manner as the metal structure of the wire rod described above.
[鋼線の機械特性]
引張強さ:610+900×(C%)MPa以上
絞り:62-32×(C%)%以上
引張強さ(MPa)×絞り(%):52000以上
0.2%耐力比(0.2%耐力/引張強さ):0.985-0.083×(C%)以上
本開示に係る鋼線は、質量%でのCの含有量を(C%)とするとき、引張強さが610+900×(C%)MPa以上であり、絞りは、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、0.2%耐力比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上である。
鋼線の引張強さ、絞り、及び0.2%耐力比が上記関係を満たすことで、この鋼線から非調質の機械部品を製造する場合に、冷間加工性が向上し、かつ、機械部品として十分な強度が得られる。 [Mechanical properties of steel wire]
Tensile strength: 610+900×(C%)MPa or more Reduction of area: 62-32×(C%)% or more Tensile strength (MPa)×reduction of area (%): 52,000 or more 0.2% yield strength ratio (0.2% yield strength/tensile strength): 0.985-0.083×(C%) or more When the C content in mass % is (C%), the steel wire according to the present disclosure has a tensile strength of 610+900×(C%)MPa or more, a reduction of area of 62-32×(C%)% or more, a tensile strength (MPa)×reduction of area (%) of 52,000 or more, and a 0.2% yield strength ratio (0.2% yield strength/tensile strength) of 0.985-0.083×(C%) or more.
When the tensile strength, reduction in area, and 0.2% yield strength ratio of the steel wire satisfy the above-mentioned relationships, when a non-tempered mechanical part is manufactured from this steel wire, the cold workability is improved and sufficient strength for the mechanical part is obtained.
引張強さ:610+900×(C%)MPa以上
絞り:62-32×(C%)%以上
引張強さ(MPa)×絞り(%):52000以上
0.2%耐力比(0.2%耐力/引張強さ):0.985-0.083×(C%)以上
本開示に係る鋼線は、質量%でのCの含有量を(C%)とするとき、引張強さが610+900×(C%)MPa以上であり、絞りは、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、0.2%耐力比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上である。
鋼線の引張強さ、絞り、及び0.2%耐力比が上記関係を満たすことで、この鋼線から非調質の機械部品を製造する場合に、冷間加工性が向上し、かつ、機械部品として十分な強度が得られる。 [Mechanical properties of steel wire]
Tensile strength: 610+900×(C%)MPa or more Reduction of area: 62-32×(C%)% or more Tensile strength (MPa)×reduction of area (%): 52,000 or more 0.2% yield strength ratio (0.2% yield strength/tensile strength): 0.985-0.083×(C%) or more When the C content in mass % is (C%), the steel wire according to the present disclosure has a tensile strength of 610+900×(C%)MPa or more, a reduction of area of 62-32×(C%)% or more, a tensile strength (MPa)×reduction of area (%) of 52,000 or more, and a 0.2% yield strength ratio (0.2% yield strength/tensile strength) of 0.985-0.083×(C%) or more.
When the tensile strength, reduction in area, and 0.2% yield strength ratio of the steel wire satisfy the above-mentioned relationships, when a non-tempered mechanical part is manufactured from this steel wire, the cold workability is improved and sufficient strength for the mechanical part is obtained.
冷間加工性と機械部品としたときの引張強さを両立させる観点から、引張強さは640+900×(C%)MPa以上であり、絞りは66-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)は53000以上であり、0.2%耐力比が、0.990-0.083×(C%)以上であることが好ましい。
From the viewpoint of achieving both cold workability and tensile strength when made into a mechanical part, it is preferable that the tensile strength is 640 + 900 x (C%) MPa or more, the reduction in area is 66 - 32 x (C%)% or more, the tensile strength (MPa) x reduction in area (%) is 53,000 or more, and the 0.2% yield strength ratio is 0.990 - 0.083 x (C%) or more.
本開示に係る鋼線の引張強さ、0.2%耐力比、及び絞りは、前述した線材の引張試験と同様に、JIS Z2241:2011の14A号試験片を用いて、JIS Z2241:2011の試験方法に従って測定することができる。
The tensile strength, 0.2% yield strength ratio, and reduction in area of the steel wire disclosed herein can be measured in the same manner as in the tensile test of the wire rod described above, using a JIS Z2241:2011 No. 14A test piece and following the test method of JIS Z2241:2011.
(鋼線のビッカース硬さ)
本開示に係る鋼線は、鋼線の長さ方向に垂直な断面(C断面)におけるビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である。かかる値が0.150以下であると、機械部品に成形の際の加工性が向上し、また、機械部品の0.2%耐力比が高くなる。好ましくは0.100以下、より好ましくは0.050以下である。
鋼線の硬さ試験は、前述した線材の硬さ試験と同様に行うことができ、平均値と標準偏差の求め方も同様である。 (Vickers hardness of steel wire)
In the steel wire according to the present disclosure, the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the longitudinal direction of the steel wire is divided by the average Vickers hardness of 0.150 or less. If this value is 0.150 or less, the workability when forming into a mechanical part is improved, and the 0.2% proof stress ratio of the mechanical part is increased. The value is preferably 0.100 or less, and more preferably 0.050 or less.
The hardness test of the steel wire can be carried out in the same manner as the hardness test of the wire rod described above, and the average value and standard deviation can be calculated in the same manner.
本開示に係る鋼線は、鋼線の長さ方向に垂直な断面(C断面)におけるビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である。かかる値が0.150以下であると、機械部品に成形の際の加工性が向上し、また、機械部品の0.2%耐力比が高くなる。好ましくは0.100以下、より好ましくは0.050以下である。
鋼線の硬さ試験は、前述した線材の硬さ試験と同様に行うことができ、平均値と標準偏差の求め方も同様である。 (Vickers hardness of steel wire)
In the steel wire according to the present disclosure, the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the longitudinal direction of the steel wire is divided by the average Vickers hardness of 0.150 or less. If this value is 0.150 or less, the workability when forming into a mechanical part is improved, and the 0.2% proof stress ratio of the mechanical part is increased. The value is preferably 0.100 or less, and more preferably 0.050 or less.
The hardness test of the steel wire can be carried out in the same manner as the hardness test of the wire rod described above, and the average value and standard deviation can be calculated in the same manner.
(鋼線の直径)
本開示に係る鋼線の線径dは特に限定されないが、例えば2.0~23.0mmであり、4.0~18.0mmであってもよい。 (Steel wire diameter)
The wire diameter d of the steel wire according to the present disclosure is not particularly limited, but may be, for example, 2.0 to 23.0 mm, or 4.0 to 18.0 mm.
本開示に係る鋼線の線径dは特に限定されないが、例えば2.0~23.0mmであり、4.0~18.0mmであってもよい。 (Steel wire diameter)
The wire diameter d of the steel wire according to the present disclosure is not particularly limited, but may be, for example, 2.0 to 23.0 mm, or 4.0 to 18.0 mm.
<機械部品>
本開示に係る機械部品は、上記鋼線に冷間圧造と転造を行い、ボルト等の機械部品の形状に加工したものである。本開示に係る機械部品は軸部を含み、軸部が下記の金属組織及び機械特性を有する。 <Machine parts>
The mechanical part according to the present disclosure is obtained by performing cold heading and rolling on the above-mentioned steel wire and processing it into the shape of a mechanical part such as a bolt. The mechanical part according to the present disclosure includes a shaft portion, and the shaft portion has the following metal structure and mechanical properties.
本開示に係る機械部品は、上記鋼線に冷間圧造と転造を行い、ボルト等の機械部品の形状に加工したものである。本開示に係る機械部品は軸部を含み、軸部が下記の金属組織及び機械特性を有する。 <Machine parts>
The mechanical part according to the present disclosure is obtained by performing cold heading and rolling on the above-mentioned steel wire and processing it into the shape of a mechanical part such as a bolt. The mechanical part according to the present disclosure includes a shaft portion, and the shaft portion has the following metal structure and mechanical properties.
[軸部の金属組織]
軸部の直径をdmとするとき、軸部の長さ方向に垂直な断面(C断面)において軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含む。ベイナイト面積率が70%未満では、機械部品の0.2%耐力比が低くなるとともに加工性が劣化する。ベイナイト面積率は80%以上が好ましく、より好ましくは90%以上である。
軸部の金属組織は、前述した線材の金属組織と同様の方法で測定することができる。 [Metal structure of shaft]
When the diameter of the shaft portion is dm, the metal structure at a 1/4 dm portion, which is 1/4 dm deep from the surface of the shaft portion in a cross section (C cross section) perpendicular to the longitudinal direction of the shaft portion, contains bainite with an area ratio of 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and workability deteriorates. The bainite area ratio is preferably 80% or more, and more preferably 90% or more.
The metal structure of the shaft portion can be measured in the same manner as the metal structure of the wire rod described above.
軸部の直径をdmとするとき、軸部の長さ方向に垂直な断面(C断面)において軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含む。ベイナイト面積率が70%未満では、機械部品の0.2%耐力比が低くなるとともに加工性が劣化する。ベイナイト面積率は80%以上が好ましく、より好ましくは90%以上である。
軸部の金属組織は、前述した線材の金属組織と同様の方法で測定することができる。 [Metal structure of shaft]
When the diameter of the shaft portion is dm, the metal structure at a 1/4 dm portion, which is 1/4 dm deep from the surface of the shaft portion in a cross section (C cross section) perpendicular to the longitudinal direction of the shaft portion, contains bainite with an area ratio of 70% or more. If the bainite area ratio is less than 70%, the 0.2% proof stress ratio of the mechanical component decreases and workability deteriorates. The bainite area ratio is preferably 80% or more, and more preferably 90% or more.
The metal structure of the shaft portion can be measured in the same manner as the metal structure of the wire rod described above.
[軸部の機械特性]
軸部の引張強さ:580+900×(C%)MPa以上
本開示に係る機械部品は、質量%でのCの含有量を(C%)とするとき、軸部の引張強さが580+900×(C%)MPa以上である。このような引張強さを有することで機械部品として高い強度を発揮する。 [Mechanical properties of shaft]
Tensile strength of shaft portion: 580+900×(C%) MPa or more In the mechanical component according to the present disclosure, the tensile strength of the shaft portion is 580+900×(C%) MPa or more, where the C content in mass % is (C%). By having such a tensile strength, the mechanical component exhibits high strength.
軸部の引張強さ:580+900×(C%)MPa以上
本開示に係る機械部品は、質量%でのCの含有量を(C%)とするとき、軸部の引張強さが580+900×(C%)MPa以上である。このような引張強さを有することで機械部品として高い強度を発揮する。 [Mechanical properties of shaft]
Tensile strength of shaft portion: 580+900×(C%) MPa or more In the mechanical component according to the present disclosure, the tensile strength of the shaft portion is 580+900×(C%) MPa or more, where the C content in mass % is (C%). By having such a tensile strength, the mechanical component exhibits high strength.
0.2%耐力/引張強さ:0.90以上
本開示に係る機械部品は、軸部の引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.90以上である。本開示に係る機械部品は、ブルーイング処理が行われなくても、0.90以上の高い0.2%耐力比が得られる。0.2%耐力/引張強さは、好ましくは、0.92以上である。 0.2% Yield Strength/Tensile Strength: 0.90 or More The mechanical component according to the present disclosure has a ratio of 0.2% yield strength to the tensile strength of the shaft portion (0.2% yield strength/tensile strength) of 0.90 or more. The mechanical component according to the present disclosure can obtain a high 0.2% yield strength ratio of 0.90 or more even without bluing treatment. The 0.2% yield strength/tensile strength is preferably 0.92 or more.
本開示に係る機械部品は、軸部の引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.90以上である。本開示に係る機械部品は、ブルーイング処理が行われなくても、0.90以上の高い0.2%耐力比が得られる。0.2%耐力/引張強さは、好ましくは、0.92以上である。 0.2% Yield Strength/Tensile Strength: 0.90 or More The mechanical component according to the present disclosure has a ratio of 0.2% yield strength to the tensile strength of the shaft portion (0.2% yield strength/tensile strength) of 0.90 or more. The mechanical component according to the present disclosure can obtain a high 0.2% yield strength ratio of 0.90 or more even without bluing treatment. The 0.2% yield strength/tensile strength is preferably 0.92 or more.
引張試験は、軸部を切断した線状の試験片を用いて、前述した線材の引張試験と同様にJIS Z2241:2011の14A号試験片を用い、JIS Z2241:2011の試験方法に従って行うことができる。
The tensile test can be performed using a linear test piece with the shaft cut off, in the same manner as the tensile test of wire material described above, using a JIS Z2241:2011 No. 14A test piece, in accordance with the test method of JIS Z2241:2011.
(軸部のビッカース硬さ)
本開示に係る機械部品は、軸部の長さ方向に垂直な断面(C断面)におけるビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である。かかる値が0.150以下であると、伸線加工を経て鋼線から製造される機械部品の0.2%耐力比が高くなる。また、機械部品に成形の際の加工性が向上する。好ましくは0.100以下、より好ましくは0.050以下である。
軸部の硬さ試験は、前述した線材の硬さ試験と同様に行うことができ、平均値と標準偏差の求め方も同様である。 (Vickers hardness of shaft)
In the mechanical component according to the present disclosure, the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the longitudinal direction of the shaft portion is divided by the average value of the Vickers hardness to be 0.150 or less. When this value is 0.150 or less, the 0.2% proof stress ratio of the mechanical component manufactured from the steel wire through wire drawing is high. In addition, the processability when forming into the mechanical component is improved. It is preferably 0.100 or less, more preferably 0.050 or less.
The hardness test of the shaft portion can be carried out in the same manner as the hardness test of the wire rod described above, and the average value and standard deviation can be calculated in the same manner.
本開示に係る機械部品は、軸部の長さ方向に垂直な断面(C断面)におけるビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である。かかる値が0.150以下であると、伸線加工を経て鋼線から製造される機械部品の0.2%耐力比が高くなる。また、機械部品に成形の際の加工性が向上する。好ましくは0.100以下、より好ましくは0.050以下である。
軸部の硬さ試験は、前述した線材の硬さ試験と同様に行うことができ、平均値と標準偏差の求め方も同様である。 (Vickers hardness of shaft)
In the mechanical component according to the present disclosure, the standard deviation of the Vickers hardness in a cross section (C cross section) perpendicular to the longitudinal direction of the shaft portion is divided by the average value of the Vickers hardness to be 0.150 or less. When this value is 0.150 or less, the 0.2% proof stress ratio of the mechanical component manufactured from the steel wire through wire drawing is high. In addition, the processability when forming into the mechanical component is improved. It is preferably 0.100 or less, more preferably 0.050 or less.
The hardness test of the shaft portion can be carried out in the same manner as the hardness test of the wire rod described above, and the average value and standard deviation can be calculated in the same manner.
(軸部の直径)
本開示に係る機械部品の軸部の直径dmは特に限定されないが、例えば2.0~23.0mmであり、4.0~18.0mmであってもよい。 (shaft diameter)
The diameter dm of the shaft portion of the mechanical component according to the present disclosure is not particularly limited, but may be, for example, 2.0 to 23.0 mm, or 4.0 to 18.0 mm.
本開示に係る機械部品の軸部の直径dmは特に限定されないが、例えば2.0~23.0mmであり、4.0~18.0mmであってもよい。 (shaft diameter)
The diameter dm of the shaft portion of the mechanical component according to the present disclosure is not particularly limited, but may be, for example, 2.0 to 23.0 mm, or 4.0 to 18.0 mm.
(永久伸び)
本開示に係る機械部品は、高い0.2%耐力を有し、かつ、永久伸びが抑制される。
永久伸びは、機械部品の軸部を転造または機械加工により、並目ねじ形状に加工する。ねじ加工後の機械部品を、遊びねじ部の長さがねじの外径と等しくなるように、JIS B1051:2014 に記載されたアダプタを取り付ける。機械部品の引張強さが、600MPa以上700MPa未満のときは440MPa、700MPa以上800MPa未満のときは515MPa、800MPa以上900MPa未満のときは580MPa、900MPa以上1000MPa未満のときは650MPa、1000MPa以上1100MPa未満のときは830MPa、1100MPa以上1200MPa未満のときは910MPa、1200MPa以上1300MPa未満のときは970MPa、1300MPa以上1400MPa未満のときは1050MPaの引張応力を軸方向に15秒間付与する。除荷後の機械部品の全長L1と試験前の機械部品の全長L0の差(L1-L0)を永久伸びとする。除荷後の機械部品の全長L1と試験前の機械部品の全長L0は、マイクロメーターを用いて測定を行った。 (permanent set)
The mechanical component according to the present disclosure has a high 0.2% yield strength and is suppressed from permanent elongation.
For permanent elongation, the shaft of the machine part is machined or rolled to form a coarse thread shape. After threading, the machine part is fitted with an adapter as described in JIS B1051:2014 so that the length of the play thread is equal to the outer diameter of the thread. When the tensile strength of the mechanical part is 600 MPa or more and less than 700 MPa, the tensile stress is 440 MPa, when the tensile strength is 700 MPa or more and less than 800 MPa, the tensile stress is 515 MPa, when the tensile strength is 800 MPa or more and less than 900 MPa, the tensile stress is 650 MPa, when the tensile strength is 1000 MPa or more and less than 1100 MPa, the tensile stress is 830 MPa, when the tensile strength is 1100 MPa or more and less than 1200 MPa, the tensile stress is 910 MPa, when the tensile strength is 1200 MPa or more and less than 1300 MPa, the tensile stress is 970 MPa, and when the tensile strength is 1300 MPa or more and less than 1400 MPa, the tensile stress is 1050 MPa. The difference (L1-L0) between the total length L1 of the mechanical part after unloading and the total length L0 of the mechanical part before the test is defined as the permanent elongation. The total length L1 of the mechanical part after unloading and the total length L0 of the mechanical part before the test were measured using a micrometer.
本開示に係る機械部品は、高い0.2%耐力を有し、かつ、永久伸びが抑制される。
永久伸びは、機械部品の軸部を転造または機械加工により、並目ねじ形状に加工する。ねじ加工後の機械部品を、遊びねじ部の長さがねじの外径と等しくなるように、JIS B1051:2014 に記載されたアダプタを取り付ける。機械部品の引張強さが、600MPa以上700MPa未満のときは440MPa、700MPa以上800MPa未満のときは515MPa、800MPa以上900MPa未満のときは580MPa、900MPa以上1000MPa未満のときは650MPa、1000MPa以上1100MPa未満のときは830MPa、1100MPa以上1200MPa未満のときは910MPa、1200MPa以上1300MPa未満のときは970MPa、1300MPa以上1400MPa未満のときは1050MPaの引張応力を軸方向に15秒間付与する。除荷後の機械部品の全長L1と試験前の機械部品の全長L0の差(L1-L0)を永久伸びとする。除荷後の機械部品の全長L1と試験前の機械部品の全長L0は、マイクロメーターを用いて測定を行った。 (permanent set)
The mechanical component according to the present disclosure has a high 0.2% yield strength and is suppressed from permanent elongation.
For permanent elongation, the shaft of the machine part is machined or rolled to form a coarse thread shape. After threading, the machine part is fitted with an adapter as described in JIS B1051:2014 so that the length of the play thread is equal to the outer diameter of the thread. When the tensile strength of the mechanical part is 600 MPa or more and less than 700 MPa, the tensile stress is 440 MPa, when the tensile strength is 700 MPa or more and less than 800 MPa, the tensile stress is 515 MPa, when the tensile strength is 800 MPa or more and less than 900 MPa, the tensile stress is 650 MPa, when the tensile strength is 1000 MPa or more and less than 1100 MPa, the tensile stress is 830 MPa, when the tensile strength is 1100 MPa or more and less than 1200 MPa, the tensile stress is 910 MPa, when the tensile strength is 1200 MPa or more and less than 1300 MPa, the tensile stress is 970 MPa, and when the tensile strength is 1300 MPa or more and less than 1400 MPa, the tensile stress is 1050 MPa. The difference (L1-L0) between the total length L1 of the mechanical part after unloading and the total length L0 of the mechanical part before the test is defined as the permanent elongation. The total length L1 of the mechanical part after unloading and the total length L0 of the mechanical part before the test were measured using a micrometer.
以下、本開示に係る線材について実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本開示に係る線材を制限するものではない。
Below, the wire material according to this disclosure will be described in more detail with reference to examples. However, these examples do not limit the wire material according to this disclosure.
<線材の製造及び評価>
表1に示す化学組成の鋼A~Uを用いて、表2に示した条件で加熱し熱間圧延と冷却と保定を行い、線材を製造した。表1において空欄はその元素を含まないことを意味し、残部はFe及び不純物である。また、各表において下線は、本開示の範囲外であることを意味する。 <Wire rod production and evaluation>
Steels A to U having the chemical compositions shown in Table 1 were used to manufacture wire rods by heating, hot rolling, cooling, and holding under the conditions shown in Table 2. In Table 1, blanks mean that the element is not included, and the balance is Fe and impurities. In each table, underlines mean that the element is outside the scope of the present disclosure.
表1に示す化学組成の鋼A~Uを用いて、表2に示した条件で加熱し熱間圧延と冷却と保定を行い、線材を製造した。表1において空欄はその元素を含まないことを意味し、残部はFe及び不純物である。また、各表において下線は、本開示の範囲外であることを意味する。 <Wire rod production and evaluation>
Steels A to U having the chemical compositions shown in Table 1 were used to manufacture wire rods by heating, hot rolling, cooling, and holding under the conditions shown in Table 2. In Table 1, blanks mean that the element is not included, and the balance is Fe and impurities. In each table, underlines mean that the element is outside the scope of the present disclosure.
得られた線材を用いて、前述した方法により、組織観察、引張試験、硬さ測定を行った。表3に各試験番号の線材の組織と、機械的性質を示す。表3において、残部組織のFはフェライト、Pはパーライト、Mはマルテンサイトを意味する。
The obtained wire was used for structural observation, tensile testing, and hardness measurement using the methods described above. Table 3 shows the structure and mechanical properties of the wire for each test number. In Table 3, F in the remaining structure stands for ferrite, P for pearlite, and M for martensite.
<鋼線の製造>
表3の線材を用いて、表4に示した減面率で伸線加工を行い、鋼線を得た。得られた鋼線を用いて、前述した方法により、組織観察、硬さ測定、及び室温大気中で引張試験を行い、引張強さ(TS)と絞り(RA)を測定した。TS×RAが52000以上、TSが610+900×(C%)MPa以上、RAが62-32×(C%)%以上、0.2%耐力比が0.985-0.083×(C%)以上であり、かつビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である鋼線を強度と成形性と耐力が良と判定した。 <Steel wire manufacturing>
The wire rods in Table 3 were used for drawing at the area reduction rates shown in Table 4 to obtain steel wires. The obtained steel wires were used for structure observation, hardness measurement, and tensile testing in air at room temperature by the above-mentioned methods to measure tensile strength (TS) and reduction of area (RA). Steel wires in which TS×RA was 52000 or more, TS was 610+900×(C%)MPa or more, RA was 62−32×(C%)% or more, 0.2% yield strength ratio was 0.985−0.083×(C%) or more, and the value obtained by dividing the standard deviation of Vickers hardness by the average value of Vickers hardness was 0.150 or less were judged to have good strength, formability, and yield strength.
表3の線材を用いて、表4に示した減面率で伸線加工を行い、鋼線を得た。得られた鋼線を用いて、前述した方法により、組織観察、硬さ測定、及び室温大気中で引張試験を行い、引張強さ(TS)と絞り(RA)を測定した。TS×RAが52000以上、TSが610+900×(C%)MPa以上、RAが62-32×(C%)%以上、0.2%耐力比が0.985-0.083×(C%)以上であり、かつビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下である鋼線を強度と成形性と耐力が良と判定した。 <Steel wire manufacturing>
The wire rods in Table 3 were used for drawing at the area reduction rates shown in Table 4 to obtain steel wires. The obtained steel wires were used for structure observation, hardness measurement, and tensile testing in air at room temperature by the above-mentioned methods to measure tensile strength (TS) and reduction of area (RA). Steel wires in which TS×RA was 52000 or more, TS was 610+900×(C%)MPa or more, RA was 62−32×(C%)% or more, 0.2% yield strength ratio was 0.985−0.083×(C%) or more, and the value obtained by dividing the standard deviation of Vickers hardness by the average value of Vickers hardness was 0.150 or less were judged to have good strength, formability, and yield strength.
<ボルトの製造>
表4の鋼線を用いて、冷間圧造と転造を行いボルト形状に加工した。試験番号1、13はねじ部M5、軸部長さ100mm、試験番号10、17はねじ部M6、軸部長さ100mm、試験番号2~9、11、12、14~16、18~20、22~25はねじ部M8、軸部長さ100mmのボルト形状に加工し、電気亜鉛めっきを行い、めっき後に200℃にて120分保持してベーキング処理を行ってボルトを得た。試験番号21は、ボルト加工中に割れが発生し、ボルト形状に加工できなかった。
得られたボルトの軸部からJIS Z2241:2011の14A号試験片を機械加工により得て、JIS Z2241:2011の試験方法に従って測定した。なお、引張試験片の平行部の径は、ねじ部M5のボルトは平行部径4mm、ねじ部M6のボルトは平行部径5mm、ねじ部M8のボルトは平行部径7mmとした。引張試験片を採取して、前述した方法により、組織観察、硬さ測定、及び引張試験を行い、引張強さ(TS)と0.2%耐力を測定した。ボルトの0.2%耐力比は0.2%耐力を引張強さで除することにより求めた。また、得られたボルトを用いて、前述した方法により永久伸びを測定した。表5に各ボルトのTSとボルトの0.2%耐力比と永久伸びを示す。TSが580+900×(C%)MPa以上、0.2%耐力比(ボルトの耐力比)が0.90以上で、ビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下であり、かつ永久伸びが1μm以下のとき、良と判定した。 <Bolt manufacturing>
The steel wires in Table 4 were used and processed into bolt shapes by cold heading and rolling. Test numbers 1 and 13 had threads of M5 and shank lengths of 100 mm, test numbers 10 and 17 had threads of M6 and shank lengths of 100 mm, and test numbers 2 to 9, 11, 12, 14 to 16, 18 to 20, and 22 to 25 had threads of M8 and shank lengths of 100 mm. These were then electrogalvanized, and after plating, the bolts were baked at 200°C for 120 minutes to obtain bolts. Test number 21 cracked during bolt processing and could not be processed into a bolt shape.
From the shaft of the obtained bolt, a JIS Z2241:2011 No. 14A test piece was obtained by machining, and was measured according to the test method of JIS Z2241:2011. The diameter of the parallel part of the tensile test piece was 4 mm for the bolt with thread part M5, 5 mm for the bolt with thread part M6, and 7 mm for the bolt with thread part M8. The tensile test piece was taken, and the structure observation, hardness measurement, and tensile test were performed by the above-mentioned method, and the tensile strength (TS) and 0.2% proof strength were measured. The 0.2% proof strength ratio of the bolt was obtained by dividing the 0.2% proof strength by the tensile strength. The obtained bolt was also used to measure the permanent elongation by the above-mentioned method. Table 5 shows the TS of each bolt, the 0.2% proof strength ratio of the bolt, and the permanent elongation. It was judged as good when TS was 580 + 900 × (C%) MPa or more, 0.2% proof stress ratio (bolt proof stress ratio) was 0.90 or more, the value obtained by dividing the standard deviation of Vickers hardness by the average value of Vickers hardness was 0.150 or less, and permanent elongation was 1 μm or less.
表4の鋼線を用いて、冷間圧造と転造を行いボルト形状に加工した。試験番号1、13はねじ部M5、軸部長さ100mm、試験番号10、17はねじ部M6、軸部長さ100mm、試験番号2~9、11、12、14~16、18~20、22~25はねじ部M8、軸部長さ100mmのボルト形状に加工し、電気亜鉛めっきを行い、めっき後に200℃にて120分保持してベーキング処理を行ってボルトを得た。試験番号21は、ボルト加工中に割れが発生し、ボルト形状に加工できなかった。
得られたボルトの軸部からJIS Z2241:2011の14A号試験片を機械加工により得て、JIS Z2241:2011の試験方法に従って測定した。なお、引張試験片の平行部の径は、ねじ部M5のボルトは平行部径4mm、ねじ部M6のボルトは平行部径5mm、ねじ部M8のボルトは平行部径7mmとした。引張試験片を採取して、前述した方法により、組織観察、硬さ測定、及び引張試験を行い、引張強さ(TS)と0.2%耐力を測定した。ボルトの0.2%耐力比は0.2%耐力を引張強さで除することにより求めた。また、得られたボルトを用いて、前述した方法により永久伸びを測定した。表5に各ボルトのTSとボルトの0.2%耐力比と永久伸びを示す。TSが580+900×(C%)MPa以上、0.2%耐力比(ボルトの耐力比)が0.90以上で、ビッカース硬さの標準偏差をビッカース硬さの平均値で除した値が0.150以下であり、かつ永久伸びが1μm以下のとき、良と判定した。 <Bolt manufacturing>
The steel wires in Table 4 were used and processed into bolt shapes by cold heading and rolling. Test numbers 1 and 13 had threads of M5 and shank lengths of 100 mm, test numbers 10 and 17 had threads of M6 and shank lengths of 100 mm, and test numbers 2 to 9, 11, 12, 14 to 16, 18 to 20, and 22 to 25 had threads of M8 and shank lengths of 100 mm. These were then electrogalvanized, and after plating, the bolts were baked at 200°C for 120 minutes to obtain bolts. Test number 21 cracked during bolt processing and could not be processed into a bolt shape.
From the shaft of the obtained bolt, a JIS Z2241:2011 No. 14A test piece was obtained by machining, and was measured according to the test method of JIS Z2241:2011. The diameter of the parallel part of the tensile test piece was 4 mm for the bolt with thread part M5, 5 mm for the bolt with thread part M6, and 7 mm for the bolt with thread part M8. The tensile test piece was taken, and the structure observation, hardness measurement, and tensile test were performed by the above-mentioned method, and the tensile strength (TS) and 0.2% proof strength were measured. The 0.2% proof strength ratio of the bolt was obtained by dividing the 0.2% proof strength by the tensile strength. The obtained bolt was also used to measure the permanent elongation by the above-mentioned method. Table 5 shows the TS of each bolt, the 0.2% proof strength ratio of the bolt, and the permanent elongation. It was judged as good when TS was 580 + 900 × (C%) MPa or more, 0.2% proof stress ratio (bolt proof stress ratio) was 0.90 or more, the value obtained by dividing the standard deviation of Vickers hardness by the average value of Vickers hardness was 0.150 or less, and permanent elongation was 1 μm or less.
上記結果より、本開示の要件を満たす試験番号1~19の線材、及び鋼線は、ボルト加工の際に成形性に優れ、ボルト加工後のブルーイング処理を行わなくても高い0.2%耐力比が得られた。
The above results show that the wire rods and steel wires of test numbers 1 to 19 that meet the requirements of this disclosure have excellent formability during bolt processing, and a high 0.2% yield strength ratio was obtained even without performing a bluing process after bolt processing.
(付記)
本開示には、下記の態様が含まれる。
<1> 化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなり、
線材の直径をDとするとき、前記線材の長さ方向に垂直な断面において前記線材の表面から深さが1/4Dである1/4D部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上であり、
前記線材の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、線材。
<2> 化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、さらに、下記A群~D群からなる群より選ばれる1種又は2種以上を含有し、残部がFe及び不純物元素からなり、
[A群]
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種
[B群]
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上
[C群]
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上
[D群]
Ca:0.0050%以下
線材の直径をDとするとき、前記線材の長さ方向に垂直な断面において前記線材の表面から深さが1/4Dである1/4D部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上であり、
前記線材の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、線材。
<3> 質量%で、前記A群を含む化学組成を有する、<2>に記載の線材。
<4> 質量%で、前記B群を含む化学組成を有する、<2>又は<3>に記載の線材。<5> 質量%で、前記C群を含む化学組成を有する、<2>~<4>のいずれか1つに記載の線材。
<6> 質量%で、前記D群を含む化学組成を有する、<2>~<5>のいずれか1つに記載の線材。 (Additional Note)
The present disclosure includes the following aspects.
<1> Chemical composition, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less, with the balance being Fe and impurity elements;
When a diameter of the wire is D, a metal structure at a 1/4D portion having a depth of 1/4D from a surface of the wire in a cross section perpendicular to a longitudinal direction of the wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more;
A wire having a standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the wire divided by an average value of the Vickers hardness of the wire, the standard deviation being 0.150 or less.
<2> Chemical composition, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: Contains 0.003% or less, and further contains one or more selected from the group consisting of the following A group to D group, with the balance being Fe and impurity elements;
[Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less [Group D]
Ca: 0.0050% or less. When the diameter of the wire is D, a metal structure at a 1/4D portion having a depth of 1/4D from the surface of the wire in a cross section perpendicular to the longitudinal direction of the wire contains bainite at an area ratio of 70% or more,
When the C content in mass% is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more;
A wire having a standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the wire divided by an average value of the Vickers hardness of the wire, the standard deviation being 0.150 or less.
<3> The wire according to <2>, having a chemical composition including, by mass%, the A group.
<4> The wire according to <2> or <3>, having a chemical composition including, by mass%, the group B. <5> The wire according to any one of <2> to <4>, having a chemical composition including, by mass%, the group C.
<6> The wire according to any one of <2> to <5>, having a chemical composition including, by mass%, the D group.
本開示には、下記の態様が含まれる。
<1> 化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなり、
線材の直径をDとするとき、前記線材の長さ方向に垂直な断面において前記線材の表面から深さが1/4Dである1/4D部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上であり、
前記線材の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、線材。
<2> 化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、さらに、下記A群~D群からなる群より選ばれる1種又は2種以上を含有し、残部がFe及び不純物元素からなり、
[A群]
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種
[B群]
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上
[C群]
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上
[D群]
Ca:0.0050%以下
線材の直径をDとするとき、前記線材の長さ方向に垂直な断面において前記線材の表面から深さが1/4Dである1/4D部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上であり、
前記線材の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、線材。
<3> 質量%で、前記A群を含む化学組成を有する、<2>に記載の線材。
<4> 質量%で、前記B群を含む化学組成を有する、<2>又は<3>に記載の線材。<5> 質量%で、前記C群を含む化学組成を有する、<2>~<4>のいずれか1つに記載の線材。
<6> 質量%で、前記D群を含む化学組成を有する、<2>~<5>のいずれか1つに記載の線材。 (Additional Note)
The present disclosure includes the following aspects.
<1> Chemical composition, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less, with the balance being Fe and impurity elements;
When a diameter of the wire is D, a metal structure at a 1/4D portion having a depth of 1/4D from a surface of the wire in a cross section perpendicular to a longitudinal direction of the wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more;
A wire having a standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the wire divided by an average value of the Vickers hardness of the wire, the standard deviation being 0.150 or less.
<2> Chemical composition, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: Contains 0.003% or less, and further contains one or more selected from the group consisting of the following A group to D group, with the balance being Fe and impurity elements;
[Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less [Group D]
Ca: 0.0050% or less. When the diameter of the wire is D, a metal structure at a 1/4D portion having a depth of 1/4D from the surface of the wire in a cross section perpendicular to the longitudinal direction of the wire contains bainite at an area ratio of 70% or more,
When the C content in mass% is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more;
A wire having a standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the wire divided by an average value of the Vickers hardness of the wire, the standard deviation being 0.150 or less.
<3> The wire according to <2>, having a chemical composition including, by mass%, the A group.
<4> The wire according to <2> or <3>, having a chemical composition including, by mass%, the group B. <5> The wire according to any one of <2> to <4>, having a chemical composition including, by mass%, the group C.
<6> The wire according to any one of <2> to <5>, having a chemical composition including, by mass%, the D group.
<7> 化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなり、
鋼線の直径をdとするとき、前記鋼線の長さ方向に垂直な断面において前記鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さが、610+900×(C%)MPa以上、絞りが、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上であり、
前記鋼線の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、鋼線。
<8> 化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、さらに、下記A群~D群からなる群より選ばれる1種又は2種以上を含有し、残部がFe及び不純物元素からなり、
[A群]
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種
[B群]
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上
[C群]
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上
[D群]
Ca:0.0050%以下
鋼線の直径をdとするとき、前記鋼線の長さ方向に垂直な断面において前記鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さが、610+900×(C%)MPa以上、絞りが、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上であり、
前記鋼線の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、鋼線。
<9> 質量%で、前記A群を含む化学組成を有する、<8>に記載の鋼線。
<10> 質量%で、前記B群を含む化学組成を有する、<8>又は<9>に記載の鋼線。
<11> 質量%で、前記C群を含む化学組成を有する、<8>~<10>のいずれか1つに記載の鋼線。
<12> 質量%で、前記D群を含む化学組成を有する、<8>~<11>のいずれか1つに記載の鋼線。 <7> The chemical composition is, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less, with the balance being Fe and impurity elements;
When the diameter of the steel wire is d, a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the tensile strength is 610+900×(C%) MPa or more, the reduction in area is 62−32×(C%)% or more, the tensile strength (MPa)×reduction in area (%) is 52,000 or more, and the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985−0.083×(C%) or more,
A steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less.
<8> Chemical composition, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: Contains 0.003% or less, and further contains one or more selected from the group consisting of the following A group to D group, with the balance being Fe and impurity elements;
[Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less [Group D]
Ca: 0.0050% or less. When the diameter of a steel wire is d, a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the tensile strength is 610+900×(C%) MPa or more, the reduction in area is 62−32×(C%)% or more, the tensile strength (MPa)×reduction in area (%) is 52,000 or more, and the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985−0.083×(C%) or more,
A steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less.
<9> The steel wire according to <8>, having a chemical composition including, by mass%, the Group A.
<10> The steel wire according to <8> or <9>, having a chemical composition including, by mass%, the B group.
<11> The steel wire according to any one of <8> to <10>, having a chemical composition including, by mass%, the C group.
<12> The steel wire according to any one of <8> to <11>, having a chemical composition including, by mass%, the D group.
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなり、
鋼線の直径をdとするとき、前記鋼線の長さ方向に垂直な断面において前記鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さが、610+900×(C%)MPa以上、絞りが、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上であり、
前記鋼線の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、鋼線。
<8> 化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、さらに、下記A群~D群からなる群より選ばれる1種又は2種以上を含有し、残部がFe及び不純物元素からなり、
[A群]
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種
[B群]
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上
[C群]
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上
[D群]
Ca:0.0050%以下
鋼線の直径をdとするとき、前記鋼線の長さ方向に垂直な断面において前記鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さが、610+900×(C%)MPa以上、絞りが、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上であり、
前記鋼線の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、鋼線。
<9> 質量%で、前記A群を含む化学組成を有する、<8>に記載の鋼線。
<10> 質量%で、前記B群を含む化学組成を有する、<8>又は<9>に記載の鋼線。
<11> 質量%で、前記C群を含む化学組成を有する、<8>~<10>のいずれか1つに記載の鋼線。
<12> 質量%で、前記D群を含む化学組成を有する、<8>~<11>のいずれか1つに記載の鋼線。 <7> The chemical composition is, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less, with the balance being Fe and impurity elements;
When the diameter of the steel wire is d, a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the tensile strength is 610+900×(C%) MPa or more, the reduction in area is 62−32×(C%)% or more, the tensile strength (MPa)×reduction in area (%) is 52,000 or more, and the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985−0.083×(C%) or more,
A steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less.
<8> Chemical composition, in mass%,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: Contains 0.003% or less, and further contains one or more selected from the group consisting of the following A group to D group, with the balance being Fe and impurity elements;
[Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less [Group D]
Ca: 0.0050% or less. When the diameter of a steel wire is d, a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the tensile strength is 610+900×(C%) MPa or more, the reduction in area is 62−32×(C%)% or more, the tensile strength (MPa)×reduction in area (%) is 52,000 or more, and the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985−0.083×(C%) or more,
A steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less.
<9> The steel wire according to <8>, having a chemical composition including, by mass%, the Group A.
<10> The steel wire according to <8> or <9>, having a chemical composition including, by mass%, the B group.
<11> The steel wire according to any one of <8> to <10>, having a chemical composition including, by mass%, the C group.
<12> The steel wire according to any one of <8> to <11>, having a chemical composition including, by mass%, the D group.
<13> 軸部を含む機械部品であって、
化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなり、
前記軸部の直径をdmとするとき、前記軸部の長さ方向に垂直な断面において前記軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、前記軸部の引張強さが、580+900×(C%)MPa以上であり、
前記引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が0.90以上であり、
前記軸部の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、機械部品。
<14> 軸部を含む機械部品であって、
化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、さらに、下記A群~D群からなる群より選ばれる1種又は2種以上を含有し、残部がFe及び不純物元素からなり、
[A群]
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種
[B群]
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上
[C群]
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上
[D群]
Ca:0.0050%以下
前記軸部の直径をdmとするとき、前記軸部の長さ方向に垂直な断面において前記軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、前記軸部の引張強さが、580+900×(C%)MPa以上であり、
前記引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が0.90以上であり、
前記軸部の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、機械部品。
<15> 質量%で、前記A群を含む化学組成を有する、<14>に記載の機械部品。
<16> 質量%で、前記B群を含む化学組成を有する、<14>又は<15>に記載の機械部品。
<17> 質量%で、前記C群を含む化学組成を有する、<14>~<16>のいずれか1つに記載の機械部品。
<18> 質量%で、前記D群を含む化学組成を有する、<14>~<17>のいずれか1つに記載の機械部品。 <13> A mechanical part including a shaft portion,
The chemical composition, in mass%, is
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less, with the balance being Fe and impurity elements;
When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion having a depth of 1/4 dm from a surface of the shaft portion in a cross section perpendicular to a longitudinal direction of the shaft portion contains bainite in an area ratio of 70% or more,
When the content of C in mass% is (C%), the tensile strength of the shaft portion is 580 + 900 × (C%) MPa or more;
The ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
A mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
<14> A mechanical part including a shaft portion,
The chemical composition, in mass%, is
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: Contains 0.003% or less, and further contains one or more selected from the group consisting of the following A group to D group, with the balance being Fe and impurity elements;
[Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less [Group D]
Ca: 0.0050% or less. When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion that is 1/4 dm deep from the surface of the shaft portion in a cross section perpendicular to the longitudinal direction of the shaft portion contains bainite at an area ratio of 70% or more,
When the content of C in mass% is (C%), the tensile strength of the shaft portion is 580 + 900 × (C%) MPa or more;
The ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
A mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
<15> The mechanical component according to <14>, having a chemical composition including the A group in mass %.
<16> The mechanical part according to <14> or <15>, having a chemical composition including the B group in mass%.
<17> The mechanical component according to any one of <14> to <16>, having a chemical composition including, by mass%, the C group.
<18> The mechanical component according to any one of <14> to <17>, having a chemical composition including, by mass%, the D group.
化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、残部がFe及び不純物元素からなり、
前記軸部の直径をdmとするとき、前記軸部の長さ方向に垂直な断面において前記軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、前記軸部の引張強さが、580+900×(C%)MPa以上であり、
前記引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が0.90以上であり、
前記軸部の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、機械部品。
<14> 軸部を含む機械部品であって、
化学組成が、質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下を含有し、さらに、下記A群~D群からなる群より選ばれる1種又は2種以上を含有し、残部がFe及び不純物元素からなり、
[A群]
Ti:0.050%以下、及び
B :0.0050%以下からなる群から選ばれる1種又は2種
[B群]
Cr:1.50%以下、
Mo:0.50%以下、
Nb:0.050%以下、及び
V :0.20%以下からなる群から選ばれる1種又は2種以上
[C群]
Cu:0.50%以下、
Ni:0.70%以下、
Sn:0.30%以下、及び
Sb:0.005%以下からなる群から選ばれる1種又は2種以上
[D群]
Ca:0.0050%以下
前記軸部の直径をdmとするとき、前記軸部の長さ方向に垂直な断面において前記軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、前記軸部の引張強さが、580+900×(C%)MPa以上であり、
前記引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が0.90以上であり、
前記軸部の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、機械部品。
<15> 質量%で、前記A群を含む化学組成を有する、<14>に記載の機械部品。
<16> 質量%で、前記B群を含む化学組成を有する、<14>又は<15>に記載の機械部品。
<17> 質量%で、前記C群を含む化学組成を有する、<14>~<16>のいずれか1つに記載の機械部品。
<18> 質量%で、前記D群を含む化学組成を有する、<14>~<17>のいずれか1つに記載の機械部品。 <13> A mechanical part including a shaft portion,
The chemical composition, in mass%, is
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less, with the balance being Fe and impurity elements;
When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion having a depth of 1/4 dm from a surface of the shaft portion in a cross section perpendicular to a longitudinal direction of the shaft portion contains bainite in an area ratio of 70% or more,
When the content of C in mass% is (C%), the tensile strength of the shaft portion is 580 + 900 × (C%) MPa or more;
The ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
A mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
<14> A mechanical part including a shaft portion,
The chemical composition, in mass%, is
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: Contains 0.003% or less, and further contains one or more selected from the group consisting of the following A group to D group, with the balance being Fe and impurity elements;
[Group A]
One or two selected from the group consisting of Ti: 0.050% or less and B: 0.0050% or less [Group B]
Cr: 1.50% or less,
Mo: 0.50% or less,
One or more selected from the group consisting of Nb: 0.050% or less and V: 0.20% or less [Group C]
Cu: 0.50% or less,
Ni: 0.70% or less,
One or more selected from the group consisting of Sn: 0.30% or less and Sb: 0.005% or less [Group D]
Ca: 0.0050% or less. When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion that is 1/4 dm deep from the surface of the shaft portion in a cross section perpendicular to the longitudinal direction of the shaft portion contains bainite at an area ratio of 70% or more,
When the content of C in mass% is (C%), the tensile strength of the shaft portion is 580 + 900 × (C%) MPa or more;
The ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
A mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
<15> The mechanical component according to <14>, having a chemical composition including the A group in mass %.
<16> The mechanical part according to <14> or <15>, having a chemical composition including the B group in mass%.
<17> The mechanical component according to any one of <14> to <16>, having a chemical composition including, by mass%, the C group.
<18> The mechanical component according to any one of <14> to <17>, having a chemical composition including, by mass%, the D group.
2023年3月31日に出願された日本特許出願2023-059430の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2023-059430, filed on March 31, 2023, is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are incorporated herein by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated.
Claims (3)
- 質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
線材の直径をDとするとき、前記線材の長さ方向に垂直な断面において前記線材の表面から深さが1/4Dである1/4D部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さに対する0.05%耐力の比(0.05%耐力/引張強さ)が、0.72-0.40×(C%)以上であり、
前記線材の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、線材。 In mass percent,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0 to 0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When a diameter of the wire is D, a metal structure at a 1/4D portion having a depth of 1/4D from a surface of the wire in a cross section perpendicular to a longitudinal direction of the wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the ratio of 0.05% proof stress to tensile strength (0.05% proof stress/tensile strength) is 0.72-0.40×(C%) or more;
A wire having a standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the wire divided by an average value of the Vickers hardness of the wire, the standard deviation being 0.150 or less. - 質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
鋼線の直径をdとするとき、前記鋼線の長さ方向に垂直な断面において前記鋼線の表面から深さが1/4dである1/4d部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、引張強さが、610+900×(C%)MPa以上、絞りが、62-32×(C%)%以上であり、引張強さ(MPa)×絞り(%)が52000以上であり、引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が、0.985-0.083×(C%)以上であり、
前記鋼線の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、鋼線。 In mass percent,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0 to 0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When the diameter of the steel wire is d, a metal structure at a 1/4d part having a depth of 1/4d from the surface of the steel wire in a cross section perpendicular to the longitudinal direction of the steel wire contains bainite in an area ratio of 70% or more,
When the C content in mass% is (C%), the tensile strength is 610+900×(C%) MPa or more, the reduction in area is 62−32×(C%)% or more, the tensile strength (MPa)×reduction in area (%) is 52,000 or more, and the ratio of 0.2% proof stress to tensile strength (0.2% proof stress/tensile strength) is 0.985−0.083×(C%) or more,
A steel wire, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the steel wire by the average value of the Vickers hardness is 0.150 or less. - 軸部を含む機械部品であって、
質量%で、
C :0.08~0.80%、
Si:0.03~1.50%、
Mn:0.50~2.00%、
P :0.050%以下、
S :0.050%以下、
Al:0.005~0.080%、
N :0.0010~0.0150%、
O :0.003%以下、
Ti:0~0.050%、
B :0~0.0050%、
Cr:0~1.50%、
Mo:0~0.50%、
Nb:0~0.050%、
V :0~0.20%、
Cu:0~0.50%、
Ni:0~0.70%、
Sn:0~0.30%、
Sb:0~0.005%、及び
Ca:0~0.0050%、
であり、残部がFe及び不純物元素からなる化学組成を有し、
前記軸部の直径をdmとするとき、前記軸部の長さ方向に垂直な断面において前記軸部の表面から深さが1/4dmである1/4dm部での金属組織が、面積率で70%以上のベイナイトを含み、
質量%でのCの含有量を(C%)とするとき、前記軸部の引張強さが、580+900×(C%)MPa以上であり、
前記引張強さに対する0.2%耐力の比(0.2%耐力/引張強さ)が0.90以上であり、
前記軸部の長さ方向に垂直な断面におけるビッカース硬さの標準偏差を前記ビッカース硬さの平均値で除した値が0.150以下である、機械部品。 A mechanical part including a shaft portion,
In mass percent,
C: 0.08-0.80%,
Si: 0.03 to 1.50%,
Mn: 0.50-2.00%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.005-0.080%,
N: 0.0010-0.0150%,
O: 0.003% or less,
Ti: 0 to 0.050%,
B: 0 to 0.0050%,
Cr: 0-1.50%,
Mo: 0 to 0.50%,
Nb: 0 to 0.050%,
V: 0 to 0.20%,
Cu: 0 to 0.50%,
Ni: 0 to 0.70%,
Sn: 0 to 0.30%,
Sb: 0 to 0.005% and Ca: 0 to 0.0050%,
and the balance being Fe and impurity elements,
When the diameter of the shaft portion is dm, a metal structure at a 1/4 dm portion having a depth of 1/4 dm from a surface of the shaft portion in a cross section perpendicular to a longitudinal direction of the shaft portion contains bainite in an area ratio of 70% or more,
When the content of C in mass% is (C%), the tensile strength of the shaft portion is 580 + 900 × (C%) MPa or more;
The ratio of 0.2% proof stress to the tensile strength (0.2% proof stress/tensile strength) is 0.90 or more,
A mechanical component, wherein a value obtained by dividing the standard deviation of Vickers hardness in a cross section perpendicular to the longitudinal direction of the shaft portion by the average value of the Vickers hardness is 0.150 or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023059430 | 2023-03-31 | ||
JP2023-059430 | 2023-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204819A1 true WO2024204819A1 (en) | 2024-10-03 |
Family
ID=92906175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/013327 WO2024204819A1 (en) | 2023-03-31 | 2024-03-29 | Wire rod, steel wire, and machine component |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204819A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031640A1 (en) * | 2011-08-26 | 2013-03-07 | 新日鐵住金株式会社 | Wire material for non-refined machine component; steel wire for non-refined machine component; non-refined machine component; and method for manufacturing wire material for non-refined machine component, steel wire for non-refined machine component, and non-refined machine component |
JP2015190002A (en) * | 2014-03-28 | 2015-11-02 | Jfe条鋼株式会社 | Non-refined steel material for weld bolt and method for producing the same |
WO2016121820A1 (en) * | 2015-01-27 | 2016-08-04 | 新日鐵住金株式会社 | Rod material for non-tempered machine component, steel rod for non-tempered machine component, and non-tempered machine component |
WO2017122830A1 (en) * | 2016-01-15 | 2017-07-20 | 新日鐵住金株式会社 | Steel wire for non-thermal-refined machine component, and non-thermal-refined machine component |
WO2018008698A1 (en) * | 2016-07-05 | 2018-01-11 | 新日鐵住金株式会社 | Wire rod, steel wire, and part |
JP2021183710A (en) * | 2020-05-21 | 2021-12-02 | 日本製鉄株式会社 | Steel wire, wire for non-heat-treated mechanical components, and non-heat-treated mechanical component |
-
2024
- 2024-03-29 WO PCT/JP2024/013327 patent/WO2024204819A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031640A1 (en) * | 2011-08-26 | 2013-03-07 | 新日鐵住金株式会社 | Wire material for non-refined machine component; steel wire for non-refined machine component; non-refined machine component; and method for manufacturing wire material for non-refined machine component, steel wire for non-refined machine component, and non-refined machine component |
JP2015190002A (en) * | 2014-03-28 | 2015-11-02 | Jfe条鋼株式会社 | Non-refined steel material for weld bolt and method for producing the same |
WO2016121820A1 (en) * | 2015-01-27 | 2016-08-04 | 新日鐵住金株式会社 | Rod material for non-tempered machine component, steel rod for non-tempered machine component, and non-tempered machine component |
WO2017122830A1 (en) * | 2016-01-15 | 2017-07-20 | 新日鐵住金株式会社 | Steel wire for non-thermal-refined machine component, and non-thermal-refined machine component |
WO2018008698A1 (en) * | 2016-07-05 | 2018-01-11 | 新日鐵住金株式会社 | Wire rod, steel wire, and part |
JP2021183710A (en) * | 2020-05-21 | 2021-12-02 | 日本製鉄株式会社 | Steel wire, wire for non-heat-treated mechanical components, and non-heat-treated mechanical component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9097306B2 (en) | Steel wire rod for high-strength spring excellent in wire drawability, manufacturing method therefor, and high-strength spring | |
WO2013151009A1 (en) | Steel wire rod or steel bar having excellent cold forgeability | |
JP6528860B2 (en) | Steel wire for non-heat treatment machine parts and non-heat treatment machine parts | |
WO2013161538A1 (en) | Steel for mechanical structure for cold working, and method for manufacturing same | |
US20180066344A1 (en) | Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt | |
JP6384626B2 (en) | Induction hardening steel | |
EP1801255A1 (en) | Cold formable spring steel wire excellent in cold cutting capability and fatigue properties and manufacturing process thereof | |
JP7247078B2 (en) | Mechanical structural steel for cold working and its manufacturing method | |
KR20080034958A (en) | Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof | |
CN110621799A (en) | Wire rod, steel wire, and method for manufacturing steel wire | |
JP6838873B2 (en) | Machine structural steel for cold working and its manufacturing method | |
JP6679935B2 (en) | Steel for cold work parts | |
TWI595101B (en) | Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts | |
JP7469643B2 (en) | Steel wire, wire rods for non-tempered machine parts, and non-tempered machine parts | |
JP7151885B2 (en) | steel wire | |
JPWO2018061101A1 (en) | steel | |
US10808305B2 (en) | High-strength PC steel wire | |
US20210115966A1 (en) | Induction-hardened crankshaft and method of manufacturing roughly shaped material for induction-hardened crankshaft | |
WO2024204819A1 (en) | Wire rod, steel wire, and machine component | |
EP3483293B1 (en) | Rolled wire rod | |
JP7226083B2 (en) | wire and steel wire | |
WO2024204820A1 (en) | Steel wire and machine component | |
JPS6137953A (en) | Nonmagnetic steel wire rod and its manufacture | |
WO2023190994A1 (en) | Wire rod | |
WO2020158368A1 (en) | Steel for cold working machine structures, and method for producing same |