Nothing Special   »   [go: up one dir, main page]

WO2024204787A1 - Braking control device - Google Patents

Braking control device Download PDF

Info

Publication number
WO2024204787A1
WO2024204787A1 PCT/JP2024/013234 JP2024013234W WO2024204787A1 WO 2024204787 A1 WO2024204787 A1 WO 2024204787A1 JP 2024013234 W JP2024013234 W JP 2024013234W WO 2024204787 A1 WO2024204787 A1 WO 2024204787A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
vehicle
target
braking
pitch angle
Prior art date
Application number
PCT/JP2024/013234
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 丹山
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2024204787A1 publication Critical patent/WO2024204787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve

Definitions

  • the present invention relates to a braking control device that controls the braking force applied to a vehicle.
  • Patent Document 1 discloses an attitude control device that controls the acceleration in the longitudinal direction of a vehicle so that the pitch angle of the vehicle becomes a target pitch angle corresponding to the roll angle of the vehicle. This attitude control device sets the target pitch angle so that the angle becomes larger as the roll angle of the vehicle becomes larger.
  • the target pitch angle changes in conjunction with the fluctuation in the roll angle, causing the longitudinal acceleration of the vehicle to fluctuate while turning. This fluctuation in the longitudinal acceleration of the vehicle while turning may cause discomfort to the vehicle occupants.
  • a braking control device for solving the above problem includes a first braking unit that applies a first braking force to a vehicle and a second braking unit that applies a second braking force to the vehicle, and is applied to a vehicle in which the pitch behavior of the vehicle in the pitch direction associated with application of a desired amount of the first braking force to the vehicle by the first braking unit is different from the pitch behavior of the vehicle in the pitch direction associated with application of the desired amount of the second braking force to the vehicle by the second braking unit.
  • the braking control device includes a target pitch angle acquisition unit that acquires a target pitch angle that is a target for the pitch angle of the vehicle when the vehicle turns, and a control unit that operates the first braking unit and the second braking unit so that a required braking force that is a required value of the braking force to be applied to the vehicle is distributed between the first braking force and the second braking force in accordance with the target pitch angle when the vehicle is braked.
  • the braking control device has the effect of adjusting the pitch angle of the vehicle while suppressing fluctuations in the longitudinal acceleration of the vehicle while the vehicle is turning.
  • FIG. 1 is a schematic diagram showing a brake control device according to a first embodiment and a vehicle to which the brake control device is applied.
  • FIG. 2 is a schematic diagram illustrating forces acting on a vehicle when a braking force is applied.
  • FIG. 3 is a flowchart showing a flow of processing executed by a processing circuit included in the brake control device of the first embodiment.
  • FIG. 4 is a graph showing the relationship between the front wheel friction braking force and the rear wheel friction braking force.
  • FIG. 5 is a timing chart when a vehicle turns during braking.
  • FIG. 6 is a block diagram showing a part of the functional configuration of a processing circuit provided in the brake control device of the second embodiment.
  • FIG. 1 illustrates a vehicle 10 equipped with a brake control device 50.
  • the vehicle 10 is equipped with a brake operating member 11, a steering member 12, a plurality of friction brakes 20, and a braking device 30.
  • the brake operating member 11 is a member that is operated by the driver when applying a braking force to the vehicle 10.
  • An example of the brake operating member 11 is a brake pedal.
  • the steering member 12 is a member that is operated by the driver when turning the vehicle 10.
  • An example of the steering member 12 is a steering wheel.
  • the vehicle 10 has a left front wheel 14 and a right front wheel 15 as front wheels, and a left rear wheel 16 and a right rear wheel 17 as rear wheels.
  • the plurality of friction brakes 20 apply frictional braking force to the corresponding wheels.
  • the friction brakes 20 have a wheel cylinder 21, a rotating body 22, and a friction portion 23. Since the rotating body 22 rotates integrally with the wheel, the friction portion 23 is pressed against the rotating body 22 to apply frictional braking force to the wheel.
  • the force pressing the friction portion 23 against the rotating body 22 increases as the wheel hydraulic pressure, which is the hydraulic pressure in the wheel cylinder 21, increases. Therefore, the friction brake 20 can apply a larger frictional braking force to the wheel as the wheel hydraulic pressure increases.
  • the frictional braking force applied to the front wheels 14, 15 is referred to as the "front wheel frictional braking force”
  • the frictional braking force applied to the rear wheels 16, 17 is referred to as the "rear wheel frictional braking force”.
  • the front wheel friction braking force corresponds to the "first braking force”
  • the rear wheel friction braking force corresponds to the “second braking force.” Therefore, the friction brake 20 for the front wheels corresponds to the "first braking unit,” and the friction brake 20 for the rear wheels corresponds to the "second braking unit.”
  • the braking device 30 controls the frictional braking force applied to the wheels 14, 15 by controlling the wheel hydraulic pressures in the multiple wheel cylinders 21.
  • the braking device 30 has a pressure source that supplies brake fluid to the multiple wheel cylinders 21.
  • the pressure source is, for example, an electric pump and an electric cylinder.
  • the braking device 30 can individually adjust the wheel hydraulic pressures in the wheel cylinders 21 for the front wheels and the wheel hydraulic pressures in the wheel cylinders 21 for the rear wheels.
  • Fig. 2 shows the center of gravity GC of the vehicle 10.
  • first distance Lf the horizontal distance between the center of gravity GC of the vehicle 10 and the axles of the front wheels 14, 15 in the longitudinal direction of the vehicle 10
  • second distance Lr the horizontal distance between the center of gravity GC of the vehicle 10 and the axles of the rear wheels 16, 17 in the longitudinal direction of the vehicle 10
  • the sum of the first distance Lf and the second distance Lr corresponds to the "wheelbase L of the vehicle 10".
  • a pitching moment My is generated around the vehicle center of gravity GC as shown by the arrow in Figure 2.
  • the vehicle 10 pitches toward the nose dive side. Nose dive is a behavior of the vehicle 10 that displaces the front of the body 19 of the vehicle 10 downward and the rear of the body 19 upward.
  • a behavior of the vehicle 10 that displaces the front of the body 19 upward and the rear of the body 19 downward is called "nose lift".
  • the pitch angle ⁇ becomes smaller.
  • the front wheel friction braking force of the left front wheel 14 is shown as “front wheel friction braking force Fxflb”
  • the rear wheel friction braking force of the left rear wheel 16 is shown as “rear wheel friction braking force Fxrlb.”
  • the friction braking forces act on the contact points between the wheels and the road surface.
  • the contact point where the front wheel friction braking force Fxflb acts is shown as the first contact point PA1
  • the contact point where the rear wheel friction braking force Fxrlb acts is shown as the second contact point PA2.
  • the instantaneous rotation center of the wheels is shown.
  • the instantaneous rotation center of the left front wheel 14 when the vehicle is braking is shown as the front wheel rotation center Cf.
  • the angle between the road surface 100 and the straight line connecting the first application point PA1 and the front wheel rotation center Cf is shown as the first angle ⁇ fb.
  • the instantaneous rotation center of the left rear wheel 16 when the vehicle is braking is shown as the rear wheel rotation center Cr.
  • the angle between the road surface 100 and the straight line connecting the second application point PA2 and the rear wheel rotation center Cr is shown as the second angle ⁇ rb.
  • the positions of the multiple instantaneous rotation centers are each determined by the characteristics of the suspension device.
  • the positions of the multiple instantaneous rotation centers shown in FIG. 2 are only an example, and do not represent the actual positions of the instantaneous rotation centers. Therefore, the magnitudes of the first angle ⁇ fb and the second angle ⁇ rb do not represent the actual angle magnitudes.
  • an anti-dive force FAD acts on the front of the vehicle 10 by the front wheel suspension device.
  • an anti-lift force FAL acts on the rear of the vehicle 10 by the rear wheel suspension device.
  • the anti-dive force FAD is a force that acts when a braking force is applied to the front wheels 14, 15.
  • the anti-dive force FAD is a force that prevents the front of the vehicle body from sinking.
  • the direction in which the anti-dive force FAD acts is a direction that displaces the front of the vehicle body away from the road surface 100.
  • the anti-lift force FAL is a force that acts when a braking force is applied to the rear wheels 16, 17.
  • the anti-lift force FAL is a force that prevents the rear of the vehicle body from lifting up.
  • the direction in which the anti-lift force FAL acts is a direction that displaces the rear of the vehicle body so as to move it closer to the road surface 100.
  • the anti-dive force FAD can be expressed as the following relational expression (F1).
  • relational expression (F1) “Fxfb” is the sum of the front wheel frictional braking force Fxflb of the left front wheel 14 and the front wheel frictional braking force Fxfrb of the right front wheel 15.
  • the anti-lift force FAL can be expressed as the following relational expression (F2).
  • relational expression (F2) “Fxrb” is the sum of the rear wheel frictional braking force Fxrlb of the left rear wheel 16 and the rear wheel frictional braking force Fxrrb of the right rear wheel 17.
  • relational expression (F1) the greater the front wheel frictional braking force Fxfb, the greater the anti-dive force FAD.
  • relational expression (F2) the greater the rear wheel frictional braking force Fxrb, the greater the anti-lift force FAL.
  • the vehicle 10 is a vehicle in which the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of the front wheel friction braking force Fxfb to the vehicle 10 is different from the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of the rear wheel friction braking force Fxrb to the vehicle 10.
  • the vehicle 10 is configured so that the attitude change of the vehicle 10 can be suppressed as the braking ratio, which is the ratio of the rear wheel friction braking force Fxrb to the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb, increases.
  • the vehicle 10 is configured so that the pitching suppression force increases as the braking ratio increases.
  • the pitching suppression force is the sum of the anti-dive force FAD and the anti-lift force FAL. Therefore, under the condition that the total braking force is the same, the pitch angle ⁇ is suppressed from increasing as the rear wheel friction braking force Fxrb increases, and the increasing speed of the pitch angle ⁇ decreases.
  • a detection signal is input from the detection system to the braking control device 50.
  • the detection system has a plurality of sensors.
  • the plurality of sensors includes a brake sensor 101, a steering angle sensor 102, a plurality of wheel speed sensors 103, a longitudinal acceleration sensor 104, and a lateral acceleration sensor 105.
  • the brake sensor 101 detects information related to the driver's operation of the brake operating member 11.
  • the brake sensor 101 can be a sensor that detects the amount of operation of the brake operating member 11 by the driver, and a sensor that detects the operating force of the brake operating member 11 by the driver.
  • the steering angle sensor 102 outputs a detection signal corresponding to the steering angle of the steering member 12.
  • the steering angle based on the detection signal of the steering angle sensor 102 is referred to as a "steering angle STR.”
  • a wheel speed sensor 103 is provided for each of the wheels 14 to 17.
  • the wheel speed sensors 103 output detection signals corresponding to the rotation speeds of the corresponding wheels.
  • the rotation speeds of the wheels based on the detection signals of the wheel speed sensors 103 are referred to as "wheel speeds VW.”
  • the longitudinal acceleration sensor 104 outputs a detection signal corresponding to the longitudinal acceleration of the vehicle 10 among the accelerations acting on the vehicle 10.
  • the lateral acceleration sensor 105 outputs a detection signal corresponding to the lateral acceleration of the vehicle 10 among the accelerations acting on the vehicle 10.
  • the longitudinal acceleration of the vehicle 10 based on the detection signal of the longitudinal acceleration sensor 104 is referred to as "longitudinal acceleration Gx.”
  • the lateral acceleration of the vehicle 10 based on the detection signal of the lateral acceleration sensor 105 is referred to as "lateral acceleration Gy.”
  • the braking control device 50 includes a processing circuit 51.
  • the processing circuit 51 is an electronic control device.
  • the processing circuit 51 includes a CPU 52 and a memory 53.
  • the memory 53 stores a control program executed by the CPU 52.
  • the processing circuit 51 controls the braking device 30 to activate the multiple friction brakes 20.
  • the processing circuit 51 can adjust the braking force Fx applied to the vehicle 10 by activating the multiple friction brakes 20.
  • the processing circuit 51 functions as a required braking force acquisition unit M11, a roll angle acquisition unit M13, a target pitch angle acquisition unit M15, a target pitch moment acquisition unit M17, a target allocation ratio setting unit M19, and a control unit M21 by the CPU 52 executing a control program.
  • the target pitch moment acquisition unit M17 will be referred to as a "target PM acquisition unit M17.”
  • the required braking force acquisition unit M11 acquires a required braking force FxRq, which is a required value of the braking force Fx to be applied to the vehicle 10.
  • the required braking force acquisition unit M11 acquires a braking force corresponding to the detection signal of the brake sensor 101 as the required braking force FxRq.
  • deceleration of the vehicle 10 may be requested from another control device.
  • the required braking force acquisition unit M11 acquires a braking force corresponding to the deceleration of the vehicle 10 requested by the other control device as the required braking force FxRq.
  • the roll angle acquisition unit M13 acquires the roll angle ⁇ of the vehicle 10. For example, the roll angle acquisition unit M13 estimates and calculates the roll angle ⁇ based on the lateral acceleration of the vehicle 10.
  • the lateral acceleration used in the estimation of the roll angle ⁇ may be the lateral acceleration Gy detected by the lateral acceleration sensor 105, or a calculated value of the lateral acceleration derived based on the vehicle speed VS and steering angle STR of the vehicle 10.
  • the roll angle ⁇ is an example of a parameter whose magnitude changes when the vehicle 10 turns. Therefore, the roll angle acquisition unit M13 can be said to be an example of a "parameter acquisition unit" that acquires the parameter.
  • the target pitch angle acquisition unit M15 acquires a target pitch angle ⁇ Tr, which is a target for the pitch angle ⁇ of the vehicle 10.
  • the target pitch angle acquisition unit M15 acquires a pitch angle corresponding to a parameter whose value changes when the vehicle 10 turns, as the target pitch angle ⁇ Tr.
  • the target pitch angle acquisition unit M15 acquires a larger pitch angle as the target pitch angle ⁇ Tr as the roll angle ⁇ increases.
  • the predetermined conversion gain ⁇ 1 is a gain for converting the roll angle into a pitch angle, and is set based on the specifications of the vehicle 10. A value greater than 0 (zero) and less than 1 is set as the conversion gain ⁇ 1.
  • the target PM acquisition unit M17 acquires the pitching moment My corresponding to the target pitch angle ⁇ Tr as the target pitching moment MyTr.
  • the target PM acquisition unit M17 can derive the target pitching moment MyTr using the following relational expression (F3).
  • the pitch stiffness Ky of the vehicle 10 in relational expression (F3) can be calculated using the following relational expression (F4).
  • "Ksf” is the wheel rate of the front wheels 14, 15, and "Ksr” is the wheel rate of the rear wheels 16, 17.
  • the first angle ⁇ fb and the second angle ⁇ rb are the angles shown in FIG. 2 and are angles determined from the specifications of the vehicle 10.
  • the target PM acquisition unit M17 can acquire a target pitching moment MyTr that is a larger value as the target pitch angle ⁇ Tr is larger.
  • the target allocation ratio setting unit M19 sets a target allocation ratio DfTr, which is a target of the allocation ratio, which is the ratio of the front wheel friction braking force Fxfb to the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb.
  • the allocation ratio is the value obtained by dividing the front wheel friction braking force Fxfb by the total braking force.
  • the total braking force is equal to the required braking force FxRq.
  • the control unit M21 When braking the vehicle, the control unit M21 activates the friction brakes 20 for the front wheels and the friction brakes 20 for the rear wheels so that the required braking force FxRq is distributed to the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb in accordance with the target pitch angle ⁇ Tr. This enables the control unit M21 to set the distribution ratio Df to the target distribution ratio DfTr. Specifically, the control unit M21 controls the braking device 30 so that both the braking force Fx applied to the vehicle 10 is equal to the required braking force FxRq and the distribution ratio Df is equal to the target distribution ratio DfTr.
  • the control unit M21 increases the front wheel friction braking force Fxfb as the target distribution ratio DfTr increases. In other words, the control unit M21 distributes the required braking force FxRq between the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb by setting the distribution amount to the front wheel friction braking force Fxfb and the distribution amount to the rear wheel friction braking force Fxrb based on the target distribution ratio DfTr.
  • Fig. 3 is a flowchart showing the setting process.
  • the CPU 52 executes a control program in the memory 53, and the processing circuit 51 repeatedly executes the setting process.
  • the processing circuit 51 functions as the target allocation ratio setting unit M19, and sequentially executes a number of steps S11 to S19 constituting the setting process.
  • step S11 the processing circuit 51 acquires a base distribution ratio DfB, which is a base value of the distribution ratio.
  • a distribution ratio that makes the front wheel friction braking force Fxfb equal to the rear wheel friction braking force Fxrb is set as the base distribution ratio DfB.
  • the base distribution ratio DfB may be set to a corrected ideal distribution ratio, which is a front/rear braking force distribution that can prevent the rear wheel friction braking force Fxrb from becoming larger than the ideal braking distribution.
  • the processing circuit 51 derives an allocation ratio correction amount ⁇ Df, which is a correction amount for the above-mentioned allocation ratio.
  • the processing circuit 51 can derive the allocation ratio correction amount ⁇ Df using the following relational expression (F5). Note that the constant T in the relational expression (F5) can be expressed by the relational expression (F6).
  • the processing circuit 51 can derive, as the distribution ratio correction amount ⁇ Df, a value that is larger as the required braking force FxRq becomes smaller.
  • the multiple dashed lines shown in Figure 4 are contour lines of the braking force Fx applied to the vehicle 10.
  • the thick solid line is the ideal distribution line L1 indicating the ideal braking force distribution
  • the thick dotted line is the same-pressure distribution line L2 indicating the same-pressure braking force distribution.
  • the thick dashed line is the corrected ideal distribution line L3 indicating the corrected ideal braking force distribution.
  • Same-pressure braking force distribution is the front and rear braking force distribution when the wheel hydraulic pressure for the front wheels and the wheel hydraulic pressure for the rear wheels are the same.
  • the corrected ideal braking force distribution is a front and rear braking force distribution that is close to the ideal braking force distribution, but is a front and rear braking force distribution that can prevent the rear wheel friction braking force Fxrb from becoming larger than the ideal braking force distribution.
  • the corrected ideal braking force distribution is set to satisfy the following two points.
  • the rear wheel friction braking force Fxrb based on the corrected ideal braking force distribution is greater than the rear wheel friction braking force Fxrb based on the equal pressure braking force distribution.
  • the rear wheel friction braking force Fxrb based on the corrected ideal braking force distribution is equal to or less than the rear wheel friction braking force Fxrb based on the equal pressure braking force distribution.
  • the processing circuit 51 obtains the intersection of the contour line of the required braking force FxRq and the equal pressure distribution line L2 as the first intersection.
  • the processing circuit 51 derives the distribution ratio corresponding to the first intersection as the upper limit distribution ratio DfLu. This allows the processing circuit 51 to set the upper limit distribution ratio DfLu so that the greater the required braking force FxRq, the greater the front wheel friction braking force Fxfb.
  • the distribution ratio corresponding to the intersection is the ratio of the front wheel friction braking force Fxfb to the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb at the intersection.
  • Fig. 5 The operation and effect of the brake control device 50 will be described with reference to Fig. 5.
  • the example shown in Fig. 5 is a case where the vehicle 10 is decelerated by braking, and the vehicle 10 turns by steering the steering member 12 by the driver.
  • the vehicle 10 is equipped with a friction brake 20 for the front wheels and a friction brake 20 for the rear wheels such that when the wheel hydraulic pressure for the front wheels is the same as the wheel hydraulic pressure for the rear wheels, the front wheel friction braking force Fxfb is greater than the rear wheel friction braking force Fxrb.
  • the required braking force FxRq is maintained.
  • the driver starts to operate the steering member 12, and the vehicle 10 starts to turn.
  • the steering angle STR increases as shown in FIG. 5A
  • the lateral acceleration Gy of the vehicle 10 increases as shown in FIG. 5B
  • the roll angle ⁇ of the vehicle 10 increases as shown in FIG. 5E.
  • the pitching suppression force is reduced by increasing the front wheel friction braking force Fxfb.
  • the pitching suppression force is increased by increasing the rear wheel friction braking force Fxrb. This reduces the pitch angle ⁇ toward the target pitch angle ⁇ Tr.
  • the brake control device 50 can control the pitch angle ⁇ without changing the deceleration of the vehicle 10. Therefore, when the vehicle 10 is turning, the pitch angle ⁇ of the vehicle 10 can be controlled without causing the driver to feel uncomfortable as described above.
  • the processing circuit 51 obtains a braking force based on the command value for the deceleration as a required braking force FxRq.
  • the processing circuit 51 controls the brake device 30 based on the required braking force FxRq. If the brake control device 50 varies the deceleration of the vehicle to control the pitch angle ⁇ at this time, the actual deceleration of the vehicle 10 will deviate from the command value for the deceleration. In this regard, the brake control device 50 can control the pitch angle ⁇ without changing the deceleration of the vehicle 10. Therefore, when the vehicle 10 is turning, the pitch angle ⁇ of the vehicle 10 can be controlled while suppressing the actual deceleration of the vehicle 10 from deviating from the command value for the deceleration.
  • the following effects can be further obtained.
  • (1-1) In the braking control device 50, the larger the roll angle ⁇ , the larger the pitch angle set as the target pitch angle ⁇ Tr. This makes it possible to increase the correlation between the roll angle ⁇ and the pitch angle ⁇ while the vehicle 10 is turning. In particular, when the vehicle 10 is being driven by the driver's manual operation, the drivability of the driver can be improved.
  • a predetermined distribution ratio region is set in the braking control device 50. Then, the processing circuit 51 sets the distribution ratio included in the distribution ratio region as the target distribution ratio DfTr. This allows the braking control device 50 to control the pitch angle ⁇ of the vehicle 10 while ensuring the stability of the behavior of the vehicle 10 during cornering.
  • the lower limit distribution ratio DfLd and the upper limit distribution ratio DfLu of the specified distribution ratio range can be set to distribution ratios according to the required braking force FxRq at that time. Therefore, the brake control device 50 can improve compatibility between ensuring the stability of the behavior of the vehicle 10 during turning and controlling the pitch angle ⁇ of the vehicle 10.
  • Second Embodiment A second embodiment of the brake control device will be described with reference to Fig. 6.
  • the second embodiment differs from the first embodiment in that the distribution ratio between the front wheel friction braking force and the rear wheel friction braking force can be adjusted without deriving a target distribution ratio.
  • the differences from the first embodiment will be mainly described, and the same reference numerals will be used to designate the same members as those in the first embodiment, and repeated description will be omitted.
  • FIG. 6 shows part of the functional configuration of the processing circuit 51 in the braking control device 50 of this embodiment.
  • the processing circuit 51 functions as a braking force correction amount derivation unit M31, four calculation units M33, M34, M35, M36, and a guard processing unit M38.
  • the braking force correction amount derivation unit M31 derives the braking force correction amount ⁇ Fx based on the target pitching moment MyTr acquired by the target PM acquisition unit M17.
  • the braking force correction amount derivation unit M31 derives a larger value as the braking force correction amount ⁇ Fx as the target pitching moment MyTr increases.
  • the braking force correction amount derivation unit M31 can derive a value corresponding to the target pitching moment MyTr as the braking force correction amount ⁇ Fx by using the following relational expression (F7).
  • the constant T in relational expression (F7) can be expressed by the above relational expression (F6).
  • the calculation unit M33 derives the sum of a front wheel friction braking force base value FxflbB, which is a base value of the front wheel friction braking force Fxflb of the left front wheel 14, and the braking force correction amount ⁇ Fx, as a provisional value FxflbA of the front wheel friction braking force Fxflb of the left front wheel 14.
  • the front wheel friction braking force base value FxflbB is the front wheel friction braking force of the left front wheel 14 when the braking forces applied to the multiple wheels 14-17 are made the same.
  • Calculation unit M34 derives the sum of front wheel friction braking force base value FxfrbB, which is the base value of the front wheel friction braking force Fxfrb of the right front wheel 15, and the braking force correction amount ⁇ Fx as a provisional value FxfrbA of the front wheel friction braking force Fxfrb of the right front wheel 15.
  • the front wheel friction braking force base value FxfrbB is the front wheel friction braking force of the right front wheel 15 when the same braking force is applied to the multiple wheels 14 to 17.
  • Calculation unit M35 derives the difference between rear wheel friction braking force base value FxrlbB, which is the base value of the rear wheel friction braking force Fxrlb of the left rear wheel 16, and the braking force correction amount ⁇ Fx as a provisional value FxrlbA of the rear wheel friction braking force Fxrlb of the left rear wheel 16.
  • the rear wheel friction braking force base value FxrlbB is the rear wheel friction braking force of the left rear wheel 16 when the same braking force is applied to the multiple wheels 14 to 17.
  • Calculation unit M36 derives the difference between rear wheel friction braking force base value FxrrbB, which is the base value of the rear wheel friction braking force Fxrrb of the right rear wheel 17, and the braking force correction amount ⁇ Fx as a provisional value FxrrbA of the rear wheel friction braking force Fxrrb of the right rear wheel 17.
  • the rear wheel friction braking force base value FxrrbB is the rear wheel friction braking force of the right rear wheel 17 when the same braking force is applied to the multiple wheels 14 to 17.
  • the guard processing unit M38 derives the sum of the provisional value FxflbA of the front wheel friction braking force of the left front wheel 14 and the provisional value FxfrbA of the front wheel friction braking force of the right front wheel 15 as the provisional value FxfbA of the front wheel friction braking force.
  • the guard processing unit M38 derives the sum of the provisional value FxrlbA of the rear wheel friction braking force of the left rear wheel 16 and the provisional value FxrrbA of the rear wheel friction braking force of the right rear wheel 17 as the provisional value FxrbA of the rear wheel friction braking force.
  • the guard processing unit M38 then corrects the multiple friction braking forces so that the distribution ratio Df falls within a predetermined distribution ratio region, thereby deriving the four friction braking forces Fxflb, Fxfrb, Fxrlb, Fxrrb.
  • the control unit M21 operates the braking device 30 based on the four friction braking forces Fxflb, Fxfrb, Fxrlb, and Fxrrb derived by the guard processing unit M38.
  • the control unit M21 can operate the front wheel friction brakes 20 and the rear wheel friction brakes 20 so that the required braking force FxRq is distributed to the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb in accordance with the target pitch angle ⁇ Tr.
  • the distribution ratio Df becomes the distribution ratio that corresponds to the target pitch angle ⁇ Tr.
  • the brake control device 50 of this embodiment can obtain the same effects as the brake control device 50 of the first embodiment.
  • Example of change The above-described embodiments may be modified as follows: The above-described embodiments and the following modifications may be combined with each other to the extent that they are not technically inconsistent.
  • the processing circuit 51 may set, as the lower limit allocation ratio DfLd of the specified allocation ratio region, an allocation ratio different from the allocation ratio corresponding to the intersection between the contour line of the required braking force FxRq at that time and the corrected ideal allocation line L3.
  • the processing circuit 51 may set, as the lower limit allocation ratio DfLd, an allocation ratio corresponding to the intersection between the contour line of the required braking force FxRq at that time and the ideal allocation line L1.
  • the processing circuit 51 may set the upper limit distribution ratio DfLu of the specified distribution ratio region to a distribution ratio different from the distribution ratio corresponding to the intersection of the contour line of the required braking force FxRq at that time and the distribution line L2 at equal pressure.
  • the processing circuit 51 when setting the target allocation ratio DfTr, the processing circuit 51 does not need to impose limitations using the upper limit allocation ratio DfLu and the lower limit allocation ratio DfLd.
  • the target pitch angle ⁇ Tr is changed in conjunction with the increase in the roll angle ⁇ .
  • the processing circuit 51 may derive the product of the roll angle ⁇ , the conversion gain ⁇ 1, and the compensation gain ⁇ 2 as the target pitch angle ⁇ Tr.
  • a value of 1 or more is set as the compensation gain ⁇ 2. Furthermore, the processing circuit 51 sets a value greater than 1 as the compensation gain ⁇ 2 immediately after the roll angle ⁇ increases, and then gradually reduces the compensation gain ⁇ 2 to 1 as time passes. This allows the brake control device to improve the controllability of the pitch angle ⁇ of the vehicle 10 when the roll angle ⁇ increases.
  • the vehicle to which the brake control device is applied may be a vehicle in which the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of rear wheel friction braking force Fxrb to the vehicle 10 is different from the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of front wheel friction braking force Fxfb to the vehicle 10.
  • the vehicle may be a vehicle configured so that the greater the proportion of the front wheel friction braking force Fxfb in the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb, the more the attitude change of the vehicle 10 can be suppressed.
  • the rear wheel friction braking force Fxrb corresponds to the first braking force
  • the front wheel friction braking force Fxfb corresponds to the second braking force
  • the friction brake 20 for the rear wheels corresponds to the first braking unit
  • the friction brake 20 for the front wheels corresponds to the second braking unit.
  • the processing circuit 51 sets an allocation ratio included in the predetermined allocation ratio region as the target allocation ratio. Furthermore, it is preferable that the upper limit allocation ratio of the predetermined allocation ratio region is set so that the rear wheel friction braking force Fxrb can be increased as the required braking force FxRq increases. Furthermore, it is preferable that the lower limit allocation ratio of the predetermined allocation ratio region is set according to the ideal braking force allocation.
  • the brake control device can also be applied to a vehicle that can apply regenerative braking force in addition to friction braking force.
  • a vehicle that can apply regenerative braking force in addition to friction braking force.
  • the pitch angle ⁇ of the vehicle can be changed by adjusting the distribution between the front wheel regenerative braking force and the front wheel friction braking force.
  • the greater the proportion of the front wheel friction braking force in the total front wheel braking force, which is the sum of the front wheel regenerative braking force and the front wheel friction braking force the more the attitude change of the vehicle 10 can be suppressed.
  • the distribution ratio which is the ratio of the front wheel regenerative braking force to the total front wheel braking force
  • the front wheel regenerative braking force corresponds to the first braking force
  • the front wheel friction braking force corresponds to the second braking force
  • the generator that generates the front wheel regenerative braking force corresponds to the first braking unit
  • the friction brake 20 for the front wheels corresponds to the second braking unit.
  • the regenerative braking force applied to the rear wheels 16, 17 corresponds to the first braking force
  • the rear wheel friction braking force corresponds to the second braking force
  • the generator that adjusts the regenerative braking force applied to the rear wheels 16, 17 corresponds to the first braking unit
  • the friction brake 20 for the rear wheels corresponds to the second braking unit.
  • the process of controlling the pitch angle ⁇ of the vehicle 10 by adjusting the distribution of the regenerative braking force and the frictional braking force is preferably performed when the regenerative braking force applied to the vehicle is relatively large.
  • the vehicle to which the brake control device is applied may be a vehicle in which the regenerative braking force applied to the front wheels 14, 15 and the regenerative braking force applied to the rear wheels 16, 17 can be adjusted separately.
  • the pitch behavior of the vehicle in the pitch direction associated with the application of a desired amount of front wheel regenerative braking force to the vehicle differs from the pitch behavior of the vehicle in the pitch direction associated with the application of a desired amount of rear wheel regenerative braking force to the vehicle.
  • the front wheel regenerative braking force is the first braking force
  • the rear wheel regenerative braking force is the second braking force.
  • the brake control device sets a target distribution ratio, which is a target ratio of the front wheel regenerative braking force to the total braking force, which is the sum of the front wheel regenerative braking force and the rear wheel regenerative braking force, based on the target pitch angle ⁇ Tr. Then, the brake control device adjusts the front wheel regenerative braking force and the rear wheel regenerative braking force based on the target pitch angle ⁇ Tr.
  • a vehicle to which the brake control device is applied may be a vehicle in which the regenerative braking force applied to the front wheels 14, 15 and the regenerative braking force applied to the rear wheels 16, 17 can be adjusted separately.
  • the front wheel braking force which is the sum of the front wheel friction braking force and the front wheel regenerative braking force
  • the rear wheel braking force which is the sum of the rear wheel friction braking force and the rear wheel regenerative braking force
  • the second braking force which is the sum of the rear wheel friction braking force and the rear wheel regenerative braking force
  • the brake control device sets a target distribution ratio, which is a target for the ratio of the front wheel braking force to the total braking force, which is the sum of the front wheel braking force and the rear wheel braking force, based on the target pitch angle ⁇ Tr. Then, the brake control device adjusts the front wheel friction braking force, front wheel regenerative braking force, rear wheel friction braking force, and rear wheel regenerative braking force based on the target pitch angle ⁇ Tr.
  • the brake control device can adjust the front wheel friction braking force when the target pitch angle ⁇ Tr cannot be achieved by adjusting only the front wheel regenerative braking force, and can adjust the rear wheel friction braking force when the target pitch angle ⁇ Tr cannot be achieved by adjusting only the rear wheel regenerative braking force.
  • Processing circuitry 51 may be configured as a circuit including one or more processors operating according to a computer program, one or more dedicated hardware circuits such as dedicated hardware for executing at least some of the various processes, or a combination of these.
  • An example of dedicated hardware is an ASIC, which is an application specific integrated circuit.
  • the processor includes a CPU and memory such as RAM and ROM.
  • the memory stores program code or instructions configured to cause the CPU to execute processes.
  • the memory i.e., storage medium, includes any available medium accessible by a general purpose or dedicated computer.
  • the distribution ratio region is set so that the first braking force can be made larger than in a case where the first braking force and the second braking force are set according to an ideal braking force distribution of the vehicle.
  • the target pitch angle derivation unit derives, as the target pitch angle, a value according to a parameter whose magnitude changes when the vehicle turns.
  • the present invention is applied to a vehicle including a first braking unit that applies a first braking force to a vehicle and a second braking unit that applies a second braking force to the vehicle, wherein a pitch behavior of the vehicle in a pitch direction caused by application of a desired amount of the first braking force by the first braking unit to the vehicle is different from a pitch behavior of the vehicle in the pitch direction caused by application of the desired amount of the second braking force by the second braking unit to the vehicle, a parameter acquisition unit that acquires a parameter whose magnitude changes when the vehicle turns; a target PM acquisition unit that sets a pitching moment according to the parameters acquired by the parameter acquisition unit as a target pitching moment that is a target of the pitching moment; a control unit that operates the first braking unit and the second braking unit so that a
  • the expression “at least one” used in this specification means “one or more” of the desired options.
  • the expression “at least one” used in this specification means “only one option” or “both of two options” if the number of options is two.
  • the expression “at least one” used in this specification means “only one option” or “any combination of two or more options” if the number of options is three or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

A vehicle 10 to which a braking control device 50 is applied comprises: friction brakes 20 for applying front-wheel friction braking force; and friction brakes 20 for applying rear-wheel friction braking force. A processing circuit 51 of the braking control device 50 functions as: a target pitch angle acquisition unit M15 for acquiring a target pitch angle during turning of the vehicle 10; and a control unit M21 for operating the friction brakes 20 and the friction brakes 20 such that request braking force is distributed, during braking of the vehicle 10, to the front-wheel friction braking force and the rear-wheel friction braking force according to the target pitch angle.

Description

制動制御装置Brake Control Device
 本発明は、車両に付与する制動力を制御する制動制御装置に関する。 The present invention relates to a braking control device that controls the braking force applied to a vehicle.
 特許文献1は、車両のピッチ角が車両のロール角に応じた目標ピッチ角となるように、車両の前後方向の加速度を制御する姿勢制御装置を開示している。当該姿勢制御装置は、車両のロール角が大きいほど角度が大きくなるように目標ピッチ角を設定している。 Patent Document 1 discloses an attitude control device that controls the acceleration in the longitudinal direction of a vehicle so that the pitch angle of the vehicle becomes a target pitch angle corresponding to the roll angle of the vehicle. This attitude control device sets the target pitch angle so that the angle becomes larger as the roll angle of the vehicle becomes larger.
特開2007-237933号公報JP 2007-237933 A
 車両が旋回している場合、車両のロール角が大きくなったり、ロール角が小さくなったりする。そのため、上記姿勢制御装置を備える車両では、ロール角の変動に連動して目標ピッチ角が変わるため、旋回中に車両の前後加速度が変動することになる。このように車両の旋回中に車両の前後加速度が変動することに対して車両の乗員が不快に感じるおそれがある。 When a vehicle is turning, the roll angle of the vehicle increases or decreases. Therefore, in a vehicle equipped with the above-mentioned attitude control device, the target pitch angle changes in conjunction with the fluctuation in the roll angle, causing the longitudinal acceleration of the vehicle to fluctuate while turning. This fluctuation in the longitudinal acceleration of the vehicle while turning may cause discomfort to the vehicle occupants.
 上記課題を解決するための制動制御装置は、第1制動力を車両に付与する第1制動部と第2制動力を前記車両に付与する第2制動部とを備え、前記第1制動部による所望量の前記第1制動力の前記車両への付与に伴う前記車両のピッチ方向のピッチ挙動が、前記第2制動部による前記所望量の前記第2制動力の前記車両への付与に伴う前記車両のピッチ方向の前記車両のピッチ挙動が異なる前記車両に適用される。当該制動制御装置は、前記車両の旋回時に、前記車両のピッチ角の目標である目標ピッチ角を取得する目標ピッチ角取得部と、前記車両の制動時には、当該車両に付与する制動力の要求値である要求制動力が、前記目標ピッチ角に応じて前記第1制動力と前記第2制動力とに分配されるように、前記第1制動部及び前記第2制動部を作動させる制御部と、を備える。 A braking control device for solving the above problem includes a first braking unit that applies a first braking force to a vehicle and a second braking unit that applies a second braking force to the vehicle, and is applied to a vehicle in which the pitch behavior of the vehicle in the pitch direction associated with application of a desired amount of the first braking force to the vehicle by the first braking unit is different from the pitch behavior of the vehicle in the pitch direction associated with application of the desired amount of the second braking force to the vehicle by the second braking unit. The braking control device includes a target pitch angle acquisition unit that acquires a target pitch angle that is a target for the pitch angle of the vehicle when the vehicle turns, and a control unit that operates the first braking unit and the second braking unit so that a required braking force that is a required value of the braking force to be applied to the vehicle is distributed between the first braking force and the second braking force in accordance with the target pitch angle when the vehicle is braked.
 上記制動制御装置は、車両の旋回中において、車両の前後加速度の変動を抑えつつ車両のピッチ角を調整できるという効果を奏する。 The braking control device has the effect of adjusting the pitch angle of the vehicle while suppressing fluctuations in the longitudinal acceleration of the vehicle while the vehicle is turning.
図1は、第1実施形態の制動制御装置と、当該制動制御装置が適用される車両とを示す概略の構成図である。FIG. 1 is a schematic diagram showing a brake control device according to a first embodiment and a vehicle to which the brake control device is applied. 図2は、制動力を付与することによって車両に作用する力を説明する模式図である。FIG. 2 is a schematic diagram illustrating forces acting on a vehicle when a braking force is applied. 図3は、第1実施形態の制動制御装置が備える処理回路が実行する処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing a flow of processing executed by a processing circuit included in the brake control device of the first embodiment. 図4は、前輪摩擦制動力と後輪摩擦制動力との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the front wheel friction braking force and the rear wheel friction braking force. 図5は、制動中の車両が旋回する際のタイミングチャートである。FIG. 5 is a timing chart when a vehicle turns during braking. 図6は、第2実施形態の制動制御装置が備える処理回路の機能構成の一部を示すブロック図である。FIG. 6 is a block diagram showing a part of the functional configuration of a processing circuit provided in the brake control device of the second embodiment.
 以下、制動制御装置の一実施形態を図1から図5に従って説明する。
 図1は、制動制御装置50を備える車両10を図示している。車両10は、制動操作部材11と、操舵部材12と、複数の摩擦ブレーキ20と、制動装置30とを備えている。制動操作部材11は、車両10に制動力を付与する際に運転者が操作する部材である。制動操作部材11の一例はブレーキペダルである。操舵部材12は、車両10を旋回させる際に運転者が操作する部材である。操舵部材12の一例はステアリングホイールである。
An embodiment of a brake control device will be described below with reference to Figs.
1 illustrates a vehicle 10 equipped with a brake control device 50. The vehicle 10 is equipped with a brake operating member 11, a steering member 12, a plurality of friction brakes 20, and a braking device 30. The brake operating member 11 is a member that is operated by the driver when applying a braking force to the vehicle 10. An example of the brake operating member 11 is a brake pedal. The steering member 12 is a member that is operated by the driver when turning the vehicle 10. An example of the steering member 12 is a steering wheel.
 車両10は、前輪として左前輪14及び右前輪15を備えているとともに、後輪として左後輪16及び右後輪17を備えている。
 <摩擦ブレーキ>
 複数の摩擦ブレーキ20は、対応する車輪に摩擦制動力を付与する。摩擦ブレーキ20は、ホイールシリンダ21と回転体22と摩擦部23とを有している。回転体22は車輪と一体に回転するため、摩擦部23を回転体22に押し付けることにより、車輪に摩擦制動力が付与される。回転体22に摩擦部23を押し付ける力は、ホイールシリンダ21内の液圧であるホイール液圧が高いほど大きくなる。そのため、摩擦ブレーキ20は、ホイール液圧が高いほど大きい摩擦制動力を車輪に付与できる。なお、前輪14,15に付与される摩擦制動力を「前輪摩擦制動力」といい、後輪16,17に付与される摩擦制動力を「後輪摩擦制動力」という。
The vehicle 10 has a left front wheel 14 and a right front wheel 15 as front wheels, and a left rear wheel 16 and a right rear wheel 17 as rear wheels.
<Friction brake>
The plurality of friction brakes 20 apply frictional braking force to the corresponding wheels. The friction brakes 20 have a wheel cylinder 21, a rotating body 22, and a friction portion 23. Since the rotating body 22 rotates integrally with the wheel, the friction portion 23 is pressed against the rotating body 22 to apply frictional braking force to the wheel. The force pressing the friction portion 23 against the rotating body 22 increases as the wheel hydraulic pressure, which is the hydraulic pressure in the wheel cylinder 21, increases. Therefore, the friction brake 20 can apply a larger frictional braking force to the wheel as the wheel hydraulic pressure increases. The frictional braking force applied to the front wheels 14, 15 is referred to as the "front wheel frictional braking force", and the frictional braking force applied to the rear wheels 16, 17 is referred to as the "rear wheel frictional braking force".
 本実施形態では、前輪摩擦制動力が「第1制動力」に対応するとともに、後輪摩擦制動力が「第2制動力」に対応する。そのため、前輪用の摩擦ブレーキ20が「第1制動部」に対応するとともに、後輪用の摩擦ブレーキ20が「第2制動部」に対応する。 In this embodiment, the front wheel friction braking force corresponds to the "first braking force," and the rear wheel friction braking force corresponds to the "second braking force." Therefore, the friction brake 20 for the front wheels corresponds to the "first braking unit," and the friction brake 20 for the rear wheels corresponds to the "second braking unit."
 <制動装置>
 制動装置30は、複数のホイールシリンダ21のホイール液圧を制御することによって、車輪14,15に付与する摩擦制動力を制御する。例えば、制動装置30は、複数のホイールシリンダ21にブレーキ液を供給する加圧源を有している。加圧源は、例えば、電動ポンプ及び電動シリンダである。制動装置30は、前輪用のホイールシリンダ21のホイール液圧と後輪用のホイールシリンダ21のホイール液圧とを個別に調整できる。
<Braking device>
The braking device 30 controls the frictional braking force applied to the wheels 14, 15 by controlling the wheel hydraulic pressures in the multiple wheel cylinders 21. For example, the braking device 30 has a pressure source that supplies brake fluid to the multiple wheel cylinders 21. The pressure source is, for example, an electric pump and an electric cylinder. The braking device 30 can individually adjust the wheel hydraulic pressures in the wheel cylinders 21 for the front wheels and the wheel hydraulic pressures in the wheel cylinders 21 for the rear wheels.
 以降の記載では、複数の車輪14~17に付与される制動力の総和を、「車両10に付与する制動力Fx」ともいう。
 <車両制動時の姿勢の変化>
 図2を参照し、車両制動時に車両10に作用する力と、車両10におけるばね上の運動について説明する。図2には、車両10の車両重心GCを表示している。図2には、車両10の前後方向における車両重心GCと前輪14,15の車軸との間の水平距離が第1距離Lfとして示されているとともに、車両10の前後方向における車両重心GCと後輪16,17の車軸との間の水平距離が「第2距離Lr」として示されている。第1距離Lfと第2距離Lrとの和が「車両10のホイールベースL」に相当する。
In the following description, the sum of the braking forces applied to the multiple wheels 14 to 17 will also be referred to as the "braking force Fx applied to the vehicle 10."
<Changes in vehicle posture when braking>
The forces acting on the vehicle 10 during vehicle braking and the sprung motion of the vehicle 10 will be described with reference to Fig. 2. Fig. 2 shows the center of gravity GC of the vehicle 10. In Fig. 2, the horizontal distance between the center of gravity GC of the vehicle 10 and the axles of the front wheels 14, 15 in the longitudinal direction of the vehicle 10 is shown as a first distance Lf, and the horizontal distance between the center of gravity GC of the vehicle 10 and the axles of the rear wheels 16, 17 in the longitudinal direction of the vehicle 10 is shown as a "second distance Lr". The sum of the first distance Lf and the second distance Lr corresponds to the "wheelbase L of the vehicle 10".
 車両制動時には、図2に矢印で示すようなピッチングモーメントMyが車両重心GCの回りに発生する。ピッチングモーメントMyが車両10に発生すると、ノーズダイブ側に車両10がピッチング運動する。ノーズダイブとは、車両10の車体19の前部を下方に変位させるとともに車体19の後部を上方に変位させる車両10の挙動である。一方、車体19の前部を上方に変位させるとともに車体19の後部を下方に変位させる車両10の挙動を「ノーズリフト」という。ピッチングモーメントMyの大きさが大きいほど、ピッチ角θが大きくなったり、ピッチ角θの増大速度が大きくなったりする。その一方で、ノーズリフト側に車両10の姿勢が変化すると、ピッチ角θが小さくなる。 When the vehicle brakes, a pitching moment My is generated around the vehicle center of gravity GC as shown by the arrow in Figure 2. When pitching moment My is generated in the vehicle 10, the vehicle 10 pitches toward the nose dive side. Nose dive is a behavior of the vehicle 10 that displaces the front of the body 19 of the vehicle 10 downward and the rear of the body 19 upward. On the other hand, a behavior of the vehicle 10 that displaces the front of the body 19 upward and the rear of the body 19 downward is called "nose lift". The larger the magnitude of the pitching moment My, the larger the pitch angle θ becomes, and the faster the rate at which the pitch angle θ increases becomes. On the other hand, when the attitude of the vehicle 10 changes toward the nose lift side, the pitch angle θ becomes smaller.
 図2には、左前輪14の前輪摩擦制動力が「前輪摩擦制動力Fxflb」として示されているとともに、左後輪16の後輪摩擦制動力が「後輪摩擦制動力Fxrlb」として示されている。摩擦制動力は、車輪と路面との接地点に作用する。図2には、前輪摩擦制動力Fxflbが作用する接地点が第1作用点PA1として示されているとともに、後輪摩擦制動力Fxrlbが作用する接地点が第2作用点PA2として示されている。 In FIG. 2, the front wheel friction braking force of the left front wheel 14 is shown as "front wheel friction braking force Fxflb," and the rear wheel friction braking force of the left rear wheel 16 is shown as "rear wheel friction braking force Fxrlb." The friction braking forces act on the contact points between the wheels and the road surface. In FIG. 2, the contact point where the front wheel friction braking force Fxflb acts is shown as the first contact point PA1, and the contact point where the rear wheel friction braking force Fxrlb acts is shown as the second contact point PA2.
 図2には、車輪の瞬間回転中心が図示されている。車両制動時における左前輪14の瞬間回転中心が前輪回転中心Cfとして示されている。第1作用点PA1と前輪回転中心Cfとを繋ぐ直線と路面100とがなす角度が、第1角度θfbとして示されている。同様に、車両制動時における左後輪16の瞬間回転中心が後輪回転中心Crとして示されている。第2作用点PA2と後輪回転中心Crとを繋ぐ直線と路面100とがなす角度が、第2角度θrbとして示されている。 In Figure 2, the instantaneous rotation center of the wheels is shown. The instantaneous rotation center of the left front wheel 14 when the vehicle is braking is shown as the front wheel rotation center Cf. The angle between the road surface 100 and the straight line connecting the first application point PA1 and the front wheel rotation center Cf is shown as the first angle θfb. Similarly, the instantaneous rotation center of the left rear wheel 16 when the vehicle is braking is shown as the rear wheel rotation center Cr. The angle between the road surface 100 and the straight line connecting the second application point PA2 and the rear wheel rotation center Cr is shown as the second angle θrb.
 なお、複数の瞬間回転中心の位置は、サスペンション装置の特性によってそれぞれ定まる。図2に示した複数の瞬間回転中心の位置は、一例であり、実際の瞬間回転中心の位置を表すものではない。このため、第1角度θfb及び第2角度θrbの大きさについても、実際の角度の大きさを示すものではない。 The positions of the multiple instantaneous rotation centers are each determined by the characteristics of the suspension device. The positions of the multiple instantaneous rotation centers shown in FIG. 2 are only an example, and do not represent the actual positions of the instantaneous rotation centers. Therefore, the magnitudes of the first angle θfb and the second angle θrb do not represent the actual angle magnitudes.
 図2に白抜き矢印で示すように、車両制動時には、前輪用のサスペンション装置によってアンチダイブ力FADが車両10の前部に作用する。また、車両制動時には、後輪用のサスペンション装置によってアンチリフト力FALが車両10の後部に作用する。 As shown by the white arrows in FIG. 2, when the vehicle is braking, an anti-dive force FAD acts on the front of the vehicle 10 by the front wheel suspension device. Also, when the vehicle is braking, an anti-lift force FAL acts on the rear of the vehicle 10 by the rear wheel suspension device.
 アンチダイブ力FADは、前輪14,15に制動力が付与されることによって作用する力である。アンチダイブ力FADは、車体前部が沈み込むことを抑制する力である。アンチダイブ力FADが作用する方向は、車体前部を路面100から離すように変位させる方向である。 The anti-dive force FAD is a force that acts when a braking force is applied to the front wheels 14, 15. The anti-dive force FAD is a force that prevents the front of the vehicle body from sinking. The direction in which the anti-dive force FAD acts is a direction that displaces the front of the vehicle body away from the road surface 100.
 アンチリフト力FALは、後輪16,17に制動力が付与されることによって作用する力である。アンチリフト力FALは、車体後部が浮き上がることを抑制する力である。アンチリフト力FALが作用する方向は、車体後部を路面100に近づけるように変位させる方向である。 The anti-lift force FAL is a force that acts when a braking force is applied to the rear wheels 16, 17. The anti-lift force FAL is a force that prevents the rear of the vehicle body from lifting up. The direction in which the anti-lift force FAL acts is a direction that displaces the rear of the vehicle body so as to move it closer to the road surface 100.
 アンチダイブ力FADは、下記の関係式(F1)として表すことができる。関係式(F1)における「Fxfb」は、左前輪14の前輪摩擦制動力Fxflbと右前輪15の前輪摩擦制動力Fxfrbとの和である。アンチリフト力FALは、下記の関係式(F2)として表すことができる。関係式(F2)における「Fxrb」は、左後輪16の後輪摩擦制動力Fxrlbと右後輪17の後輪摩擦制動力Fxrrbとの和である。関係式(F1)でも明らかなように、前輪摩擦制動力Fxfbが大きいほどアンチダイブ力FADが大きくなる。関係式(F2)でも明らかなように、後輪摩擦制動力Fxrbが大きいほどアンチリフト力FALが大きくなる。 The anti-dive force FAD can be expressed as the following relational expression (F1). In relational expression (F1), "Fxfb" is the sum of the front wheel frictional braking force Fxflb of the left front wheel 14 and the front wheel frictional braking force Fxfrb of the right front wheel 15. The anti-lift force FAL can be expressed as the following relational expression (F2). In relational expression (F2), "Fxrb" is the sum of the rear wheel frictional braking force Fxrlb of the left rear wheel 16 and the rear wheel frictional braking force Fxrrb of the right rear wheel 17. As is clear from relational expression (F1), the greater the front wheel frictional braking force Fxfb, the greater the anti-dive force FAD. As is clear from relational expression (F2), the greater the rear wheel frictional braking force Fxrb, the greater the anti-lift force FAL.
 車両10は、所望量の前輪摩擦制動力Fxfbの車両10への付与に伴う車両10のピッチ方向のピッチ挙動が、所望量の後輪摩擦制動力Fxrbの車両10への付与に伴う車両10のピッチ方向の車両10のピッチ挙動が異なる車両である。例えば、車両10は、前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとの和である合計制動力のうち、後輪摩擦制動力Fxrbの占める割合である制動割合が大きいほど車両10の姿勢変化を抑えることができるように構成されている。すなわち、制動割合が大きいほど、ピッチング抑制力が大きくなるように、車両10が構成されている。ピッチング抑制力とは、アンチダイブ力FADとアンチリフト力FALとの和である。そのため、合計制動力が同じという条件下にあっては、後輪摩擦制動力Fxrbが大きいほどピッチ角θが大きくなることが抑制されたり、ピッチ角θの増大速度が小さくなったりする。 The vehicle 10 is a vehicle in which the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of the front wheel friction braking force Fxfb to the vehicle 10 is different from the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of the rear wheel friction braking force Fxrb to the vehicle 10. For example, the vehicle 10 is configured so that the attitude change of the vehicle 10 can be suppressed as the braking ratio, which is the ratio of the rear wheel friction braking force Fxrb to the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb, increases. In other words, the vehicle 10 is configured so that the pitching suppression force increases as the braking ratio increases. The pitching suppression force is the sum of the anti-dive force FAD and the anti-lift force FAL. Therefore, under the condition that the total braking force is the same, the pitch angle θ is suppressed from increasing as the rear wheel friction braking force Fxrb increases, and the increasing speed of the pitch angle θ decreases.
 <検出系>
 図1を参照し、車両10の検出系について説明する。制動制御装置50には検出系から検出信号が入力される。検出系は複数のセンサを有している。複数のセンサは、ブレーキセンサ101と、操舵角センサ102と、複数の車輪速センサ103と、前後加速度センサ104と、横加速度センサ105とを含んでいる。
<Detection system>
The detection system of the vehicle 10 will be described with reference to Fig. 1. A detection signal is input from the detection system to the braking control device 50. The detection system has a plurality of sensors. The plurality of sensors includes a brake sensor 101, a steering angle sensor 102, a plurality of wheel speed sensors 103, a longitudinal acceleration sensor 104, and a lateral acceleration sensor 105.
 ブレーキセンサ101は、運転者による制動操作部材11の操作に関連する情報を検出する。例えば、ブレーキセンサ101としては、運転者の制動操作部材11の操作量を検出するセンサと、運転者の制動操作部材11の操作力を検出するセンサとを挙げることができる。 The brake sensor 101 detects information related to the driver's operation of the brake operating member 11. For example, the brake sensor 101 can be a sensor that detects the amount of operation of the brake operating member 11 by the driver, and a sensor that detects the operating force of the brake operating member 11 by the driver.
 操舵角センサ102は、操舵部材12の操舵角に応じた検出信号を出力する。操舵角センサ102の検出信号に基づいた操舵角を「操舵角STR」という。
 車輪速センサ103は、複数の車輪14~17の各々に対して設けられている。複数の車輪速センサ103は、対応する車輪の回転速度に応じた検出信号を出力する。車輪速センサ103の検出信号に基づいた車輪の回転速度を「車輪速度VW」という。
The steering angle sensor 102 outputs a detection signal corresponding to the steering angle of the steering member 12. The steering angle based on the detection signal of the steering angle sensor 102 is referred to as a "steering angle STR."
A wheel speed sensor 103 is provided for each of the wheels 14 to 17. The wheel speed sensors 103 output detection signals corresponding to the rotation speeds of the corresponding wheels. The rotation speeds of the wheels based on the detection signals of the wheel speed sensors 103 are referred to as "wheel speeds VW."
 前後加速度センサ104は、車両10に作用する加速度のうち、車両10の前後方向の加速度に応じた検出信号を出力する。横加速度センサ105は、車両10に作用する加速度のうち、車両10の横方向の加速度に応じた検出信号を出力する。前後加速度センサ104の検出信号に基づいた車両10の前後方向の加速度を「前後加速度Gx」という。横加速度センサ105の検出信号に基づいた車両10の横方向の加速度を「横加速度Gy」という。 The longitudinal acceleration sensor 104 outputs a detection signal corresponding to the longitudinal acceleration of the vehicle 10 among the accelerations acting on the vehicle 10. The lateral acceleration sensor 105 outputs a detection signal corresponding to the lateral acceleration of the vehicle 10 among the accelerations acting on the vehicle 10. The longitudinal acceleration of the vehicle 10 based on the detection signal of the longitudinal acceleration sensor 104 is referred to as "longitudinal acceleration Gx." The lateral acceleration of the vehicle 10 based on the detection signal of the lateral acceleration sensor 105 is referred to as "lateral acceleration Gy."
 <制動制御装置>
 図1に示すように、制動制御装置50は処理回路51を備えている。例えば、処理回路51は電子制御装置である。この場合、処理回路51はCPU52及びメモリ53を有している。メモリ53は、CPU52によって実行される制御プログラムを記憶している。CPU52が当該制御プログラムを実行することにより、処理回路51は、制動装置30を制御して複数の摩擦ブレーキ20を作動させる。すなわち、処理回路51は、複数の摩擦ブレーキ20を作動させることによって、車両10に付与する制動力Fxを調整できる。
<Brake control device>
As shown in Fig. 1, the braking control device 50 includes a processing circuit 51. For example, the processing circuit 51 is an electronic control device. In this case, the processing circuit 51 includes a CPU 52 and a memory 53. The memory 53 stores a control program executed by the CPU 52. When the CPU 52 executes the control program, the processing circuit 51 controls the braking device 30 to activate the multiple friction brakes 20. In other words, the processing circuit 51 can adjust the braking force Fx applied to the vehicle 10 by activating the multiple friction brakes 20.
 <処理回路の機能構成>
 図1に示すように、処理回路51は、CPU52が制御プログラムを実行することにより、要求制動力取得部M11、ロール角取得部M13、目標ピッチ角取得部M15、目標ピッチモーメント取得部M17、目標配分比率設定部M19及び制御部M21として機能する。以降では、目標ピッチモーメント取得部M17を「目標PM取得部M17」と記載する。
<Functional configuration of the processing circuit>
1, the processing circuit 51 functions as a required braking force acquisition unit M11, a roll angle acquisition unit M13, a target pitch angle acquisition unit M15, a target pitch moment acquisition unit M17, a target allocation ratio setting unit M19, and a control unit M21 by the CPU 52 executing a control program. Hereinafter, the target pitch moment acquisition unit M17 will be referred to as a "target PM acquisition unit M17."
 要求制動力取得部M11は、車両10に付与する制動力Fxの要求値である要求制動力FxRqを取得する。運転者が制動操作部材11を操作している場合、要求制動力取得部M11は、ブレーキセンサ101の検出信号に応じた制動力を要求制動力FxRqとして取得する。自動運転によって車両10が自律的に走行しているような場合には他の制御装置から車両10の減速が要求されることがある。この場合、要求制動力取得部M11は、他の制御装置から要求された車両10の減速度に応じた制動力を要求制動力FxRqとして取得する。 The required braking force acquisition unit M11 acquires a required braking force FxRq, which is a required value of the braking force Fx to be applied to the vehicle 10. When the driver is operating the brake operating member 11, the required braking force acquisition unit M11 acquires a braking force corresponding to the detection signal of the brake sensor 101 as the required braking force FxRq. When the vehicle 10 is traveling autonomously through automatic driving, deceleration of the vehicle 10 may be requested from another control device. In this case, the required braking force acquisition unit M11 acquires a braking force corresponding to the deceleration of the vehicle 10 requested by the other control device as the required braking force FxRq.
 ロール角取得部M13は車両10のロール角φを取得する。例えば、ロール角取得部M13は、車両10の横加速度を基にロール角φを推定演算する。ロール角φの推定演算に用いる横加速度は、横加速度センサ105の検出値である横加速度Gyを採用してもよいし、車両10の車体速度VSと操舵角STRとを基に導出した横加速度の演算値を採用してもよい。なお、ロール角φは、車両10が旋回する際に大きさが変化するパラメータの一例である。そのため、ロール角取得部M13は、当該パラメータを取得する「パラメータ取得部」の一例であると云える。 The roll angle acquisition unit M13 acquires the roll angle φ of the vehicle 10. For example, the roll angle acquisition unit M13 estimates and calculates the roll angle φ based on the lateral acceleration of the vehicle 10. The lateral acceleration used in the estimation of the roll angle φ may be the lateral acceleration Gy detected by the lateral acceleration sensor 105, or a calculated value of the lateral acceleration derived based on the vehicle speed VS and steering angle STR of the vehicle 10. The roll angle φ is an example of a parameter whose magnitude changes when the vehicle 10 turns. Therefore, the roll angle acquisition unit M13 can be said to be an example of a "parameter acquisition unit" that acquires the parameter.
 目標ピッチ角取得部M15は、車両10のピッチ角θの目標である目標ピッチ角θTrを取得する。目標ピッチ角取得部M15は、車両10が旋回する際に値が変化するパラメータに応じたピッチ角を目標ピッチ角θTrとして取得する。当該パラメータとしてロール角φを採用した場合、目標ピッチ角取得部M15は、ロール角φが大きいほど大きいピッチ角を目標ピッチ角θTrとして取得する。この際、目標ピッチ角取得部M15は、ロール角φと所定の変換ゲインα1との積を目標ピッチ角θTrとして取得するとよい。これにより、車両10が旋回しているためにロール角φが0(零)よりも大きい場合に、目標ピッチ角取得部M15は目標ピッチ角θTrを取得できる。 The target pitch angle acquisition unit M15 acquires a target pitch angle θTr, which is a target for the pitch angle θ of the vehicle 10. The target pitch angle acquisition unit M15 acquires a pitch angle corresponding to a parameter whose value changes when the vehicle 10 turns, as the target pitch angle θTr. When a roll angle φ is used as the parameter, the target pitch angle acquisition unit M15 acquires a larger pitch angle as the target pitch angle θTr as the roll angle φ increases. In this case, it is preferable for the target pitch angle acquisition unit M15 to acquire the product of the roll angle φ and a predetermined conversion gain α1 as the target pitch angle θTr. This allows the target pitch angle acquisition unit M15 to acquire the target pitch angle θTr when the roll angle φ is greater than 0 (zero) because the vehicle 10 is turning.
 所定の変換ゲインα1は、ロール角をピッチ角に変換するためのゲインであって、車両10の諸元に基づいて設定されている。変換ゲインα1として、0(零)よりも大きく且つ1未満の値が設定されている。 The predetermined conversion gain α1 is a gain for converting the roll angle into a pitch angle, and is set based on the specifications of the vehicle 10. A value greater than 0 (zero) and less than 1 is set as the conversion gain α1.
 目標PM取得部M17は、目標ピッチ角θTrに応じたピッチングモーメントMyを目標ピッチングモーメントMyTrとして取得する。例えば、目標PM取得部M17は、以下の関係式(F3)を用いて目標ピッチングモーメントMyTrを導出できる。関係式(F3)における車両10のピッチ剛性Kyは、以下の関係式(F4)を用いて算出できる。関係式(F4)において、「Ksf」は前輪14,15のホイールレートであり、「Ksr」は後輪16,17のホイールレートである。第1角度θfb及び第2角度θrbは、図2に示した角度であり、車両10の諸元から定まる角度である。目標PM取得部M17は、関係式(F3)を用いることによって、目標ピッチ角θTrが大きいほど大きい値を目標ピッチングモーメントMyTrとして取得できる。 The target PM acquisition unit M17 acquires the pitching moment My corresponding to the target pitch angle θTr as the target pitching moment MyTr. For example, the target PM acquisition unit M17 can derive the target pitching moment MyTr using the following relational expression (F3). The pitch stiffness Ky of the vehicle 10 in relational expression (F3) can be calculated using the following relational expression (F4). In relational expression (F4), "Ksf" is the wheel rate of the front wheels 14, 15, and "Ksr" is the wheel rate of the rear wheels 16, 17. The first angle θfb and the second angle θrb are the angles shown in FIG. 2 and are angles determined from the specifications of the vehicle 10. By using relational expression (F3), the target PM acquisition unit M17 can acquire a target pitching moment MyTr that is a larger value as the target pitch angle θTr is larger.
 目標配分比率設定部M19は、前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとの和である合計制動力に対する前輪摩擦制動力Fxfbの比率である配分比率の目標である目標配分比率DfTrを設定する。すなわち、前輪摩擦制動力Fxfbを合計制動力で割った値が配分比率である。本実施形態では、当該合計制動力は要求制動力FxRqと等しい。目標配分比率DfTrの設定処理については後述する。 The target allocation ratio setting unit M19 sets a target allocation ratio DfTr, which is a target of the allocation ratio, which is the ratio of the front wheel friction braking force Fxfb to the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb. In other words, the allocation ratio is the value obtained by dividing the front wheel friction braking force Fxfb by the total braking force. In this embodiment, the total braking force is equal to the required braking force FxRq. The process of setting the target allocation ratio DfTr will be described later.
 制御部M21は、車両制動時には、要求制動力FxRqが、目標ピッチ角θTrに応じて前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとに分配されるように、前輪用の摩擦ブレーキ20及び後輪用の摩擦ブレーキ20を作動させる。これにより、制御部M21は、配分比率Dfを目標配分比率DfTrにできる。具体的には、制御部M21は、車両10に付与する制動力Fxが要求制動力FxRqと等しいこと、及び、配分比率Dfが目標配分比率DfTrと等しいことの何れをも満たすように、制動装置30を制御する。そのため、制御部M21は、目標配分比率DfTrが大きいほど、前輪摩擦制動力Fxfbを大きくする。つまり、制御部M21は、目標配分比率DfTrに基づいて、前輪摩擦制動力Fxfbへの分配量及び後輪摩擦制動力Fxrbへの分配量を設定することにより、要求制動力FxRqを前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとに分配する。 When braking the vehicle, the control unit M21 activates the friction brakes 20 for the front wheels and the friction brakes 20 for the rear wheels so that the required braking force FxRq is distributed to the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb in accordance with the target pitch angle θTr. This enables the control unit M21 to set the distribution ratio Df to the target distribution ratio DfTr. Specifically, the control unit M21 controls the braking device 30 so that both the braking force Fx applied to the vehicle 10 is equal to the required braking force FxRq and the distribution ratio Df is equal to the target distribution ratio DfTr. Therefore, the control unit M21 increases the front wheel friction braking force Fxfb as the target distribution ratio DfTr increases. In other words, the control unit M21 distributes the required braking force FxRq between the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb by setting the distribution amount to the front wheel friction braking force Fxfb and the distribution amount to the rear wheel friction braking force Fxrb based on the target distribution ratio DfTr.
 <目標配分比率の設定処理>
 図3及び図4を参照し、目標配分比率DfTrの設定処理について説明する。図3は、当該設定処理を示すフローチャートである。CPU52がメモリ53の制御プログラムを実行することにより、処理回路51が当該設定処理を繰り返し実行する。なお、処理回路51は、目標配分比率設定部M19として機能することにより、当該設定処理を構成する複数のステップS11~S19を順番に実行する。
<Target Allocation Ratio Setting Process>
The process of setting the target allocation ratio DfTr will be described with reference to Fig. 3 and Fig. 4. Fig. 3 is a flowchart showing the setting process. The CPU 52 executes a control program in the memory 53, and the processing circuit 51 repeatedly executes the setting process. The processing circuit 51 functions as the target allocation ratio setting unit M19, and sequentially executes a number of steps S11 to S19 constituting the setting process.
 ステップS11において、処理回路51は、上記配分比率のベース値であるベース配分比率DfBを取得する。例えば、前輪摩擦制動力Fxfbを後輪摩擦制動力Fxrbと等しくする配分比率が、ベース配分比率DfBとして設定されている。なお、ベース配分比率DfBは、理想制動配分よりも後輪摩擦制動力Fxrbが大きくなることを抑制できる前後制動力配分である補正理想配分比率を設定してもよい。 In step S11, the processing circuit 51 acquires a base distribution ratio DfB, which is a base value of the distribution ratio. For example, a distribution ratio that makes the front wheel friction braking force Fxfb equal to the rear wheel friction braking force Fxrb is set as the base distribution ratio DfB. Note that the base distribution ratio DfB may be set to a corrected ideal distribution ratio, which is a front/rear braking force distribution that can prevent the rear wheel friction braking force Fxrb from becoming larger than the ideal braking distribution.
 続くステップS13において、処理回路51は、上記配分比率の補正量である配分比率補正量ΔDfを導出する。処理回路51は、目標ピッチングモーメントMyTrが大きいほど大きい値を配分比率補正量ΔDfとして導出する。また処理回路51は、要求制動力FxRqが小さいほど大きい値を配分比率補正量ΔDfとして導出する。例えば、処理回路51は、下記の関係式(F5)を用いて配分比率補正量ΔDfを導出できる。なお、関係式(F5)における定数Tは、関係式(F6)で表すことができる。 In the next step S13, the processing circuit 51 derives an allocation ratio correction amount ΔDf, which is a correction amount for the above-mentioned allocation ratio. The larger the target pitching moment MyTr is, the larger the value that the processing circuit 51 derives as the allocation ratio correction amount ΔDf. Furthermore, the smaller the required braking force FxRq is, the larger the value that the processing circuit 51 derives as the allocation ratio correction amount ΔDf. For example, the processing circuit 51 can derive the allocation ratio correction amount ΔDf using the following relational expression (F5). Note that the constant T in the relational expression (F5) can be expressed by the relational expression (F6).
 上述したように目標ピッチ角θTrが大きいほど、目標ピッチングモーメントMyTrが大きくなる。そのため、目標ピッチ角θTrが大きいほど、配分比率補正量ΔDfは大きくなる。要求制動力FxRqが小さいほど、ピッチングモーメントMyが小さい。ピッチングモーメントMyが小さいほど、車両10のピッチ角θが大きくなりにくい。ピッチングモーメントMyが比較的小さくてもピッチ角θを大きくするためには、ピッチングモーメントMyと相関する要求制動力FxRqが小さいほど、配分比率Dfを大きくする必要がある。そこで、処理回路51は、上記関係式(F5)を用いることにより、要求制動力FxRqが小さいほど大きい値を配分比率補正量ΔDfとして導出できる。 As described above, the larger the target pitch angle θTr, the larger the target pitching moment MyTr. Therefore, the larger the target pitch angle θTr, the larger the distribution ratio correction amount ΔDf. The smaller the required braking force FxRq, the smaller the pitching moment My. The smaller the pitching moment My, the less likely it is that the pitch angle θ of the vehicle 10 will become large. In order to increase the pitch angle θ even when the pitching moment My is relatively small, it is necessary to increase the distribution ratio Df as the required braking force FxRq correlated with the pitching moment My becomes smaller. Therefore, by using the above relational expression (F5), the processing circuit 51 can derive, as the distribution ratio correction amount ΔDf, a value that is larger as the required braking force FxRq becomes smaller.
 処理回路51は、配分比率補正量ΔDfを導出すると、処理をステップS15に移行する。
 ステップS15において、処理回路51は、ベース配分比率DfBと配分比率補正量ΔDfとの和を、目標配分比率の仮値DfTrAとして導出する。次のステップS17において、処理回路51は、下限配分比率DfLd及び上限配分比率DfLuを導出する。車両10の挙動の安定性を確保するための配分比率Dfの領域を、所定の「配分比率領域」とする。このとき、下限配分比率DfLdは配分比率領域の下限の配分比率に相当する一方、上限配分比率DfLuは配分比率領域の上限の配分比率に相当する。
After deriving the distribution ratio correction amount ΔDf, the processing circuit 51 transitions to step S15.
In step S15, the processing circuit 51 derives the sum of the base allocation ratio DfB and the allocation ratio correction amount ΔDf as a provisional value DfTrA of the target allocation ratio. In the next step S17, the processing circuit 51 derives a lower limit allocation ratio DfLd and an upper limit allocation ratio DfLu. The region of the allocation ratio Df for ensuring the stability of the behavior of the vehicle 10 is set as a predetermined "allocation ratio region." At this time, the lower limit allocation ratio DfLd corresponds to the lower limit allocation ratio of the allocation ratio region, while the upper limit allocation ratio DfLu corresponds to the upper limit allocation ratio of the allocation ratio region.
 図4を参照し、下限配分比率DfLd及び上限配分比率DfLuの導出について説明する。図4に示す複数の破線は、車両10に付与する制動力Fxの等高線である。図4において、太い実線は理想制動力配分を示す理想配分線L1であり、太い一点鎖線は同圧時制動力配分を示す同圧時配分線L2である。また、太い破線は補正理想制動力配分を示す補正理想配分線L3である。同圧時制動力配分とは、前輪用のホイール液圧と後輪用のホイール液圧とが同一である場合の前後制動力配分である。補正理想制動力配分は、理想制動力配分に近い前後制動力配分ではあるものの、理想制動配分よりも後輪摩擦制動力Fxrbが大きくなることを抑制できる前後制動力配分である。補正理想配分線L3と同圧時配分線L2との交点が示す前輪摩擦制動力Fxfbを所定の制動力Fxfb1としたとき、補正理想制動力配分は、以下の2点を満たすように設定されている。 With reference to Figure 4, the derivation of the lower limit distribution ratio DfLd and the upper limit distribution ratio DfLu will be explained. The multiple dashed lines shown in Figure 4 are contour lines of the braking force Fx applied to the vehicle 10. In Figure 4, the thick solid line is the ideal distribution line L1 indicating the ideal braking force distribution, and the thick dotted line is the same-pressure distribution line L2 indicating the same-pressure braking force distribution. In addition, the thick dashed line is the corrected ideal distribution line L3 indicating the corrected ideal braking force distribution. Same-pressure braking force distribution is the front and rear braking force distribution when the wheel hydraulic pressure for the front wheels and the wheel hydraulic pressure for the rear wheels are the same. The corrected ideal braking force distribution is a front and rear braking force distribution that is close to the ideal braking force distribution, but is a front and rear braking force distribution that can prevent the rear wheel friction braking force Fxrb from becoming larger than the ideal braking force distribution. When the front wheel friction braking force Fxfb indicated by the intersection of the corrected ideal distribution line L3 and the same pressure distribution line L2 is set as a predetermined braking force Fxfb1, the corrected ideal braking force distribution is set to satisfy the following two points.
 ・前輪摩擦制動力Fxfbが所定の制動力Fxfb1未満である場合には補正理想制動力配分に基づいた後輪摩擦制動力Fxrbが同圧時制動力配分に基づいた後輪摩擦制動力Fxrbよりも大きくなること。 - When the front wheel friction braking force Fxfb is less than a predetermined braking force Fxfb1, the rear wheel friction braking force Fxrb based on the corrected ideal braking force distribution is greater than the rear wheel friction braking force Fxrb based on the equal pressure braking force distribution.
 ・前輪摩擦制動力Fxfbが所定の制動力Fxfb1以上である場合には補正理想制動力配分に基づいた後輪摩擦制動力Fxrbが同圧時制動力配分に基づいた後輪摩擦制動力Fxrb以下となること。 - When the front wheel friction braking force Fxfb is equal to or greater than a predetermined braking force Fxfb1, the rear wheel friction braking force Fxrb based on the corrected ideal braking force distribution is equal to or less than the rear wheel friction braking force Fxrb based on the equal pressure braking force distribution.
 例えば、処理回路51は、要求制動力FxRqの等高線と同圧時配分線L2との交点を第1交点として取得する。処理回路51は、第1交点に対応する配分比率を上限配分比率DfLuとして導出する。これにより、処理回路51は、要求制動力FxRqが大きいほど、前輪摩擦制動力Fxfbを大きくできるように上限配分比率DfLuを設定できる。 For example, the processing circuit 51 obtains the intersection of the contour line of the required braking force FxRq and the equal pressure distribution line L2 as the first intersection. The processing circuit 51 derives the distribution ratio corresponding to the first intersection as the upper limit distribution ratio DfLu. This allows the processing circuit 51 to set the upper limit distribution ratio DfLu so that the greater the required braking force FxRq, the greater the front wheel friction braking force Fxfb.
 処理回路51は、要求制動力FxRqの等高線と補正理想配分線L3との交点を第2交点として取得する。処理回路51は、第2交点に対応する配分比率を下限配分比率DfLdとして導出する。これにより、処理回路51は、車両10の理想制動力配分に応じて上限配分比率DfLuを設定できる。 The processing circuit 51 obtains the intersection of the contour line of the required braking force FxRq and the corrected ideal allocation line L3 as the second intersection. The processing circuit 51 derives the allocation ratio corresponding to the second intersection as the lower limit allocation ratio DfLd. This allows the processing circuit 51 to set the upper limit allocation ratio DfLu according to the ideal braking force allocation of the vehicle 10.
 なお、交点に対応する配分比率は、交点における前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとの和である合計制動力に対する当該前輪摩擦制動力Fxfbの比率である。 The distribution ratio corresponding to the intersection is the ratio of the front wheel friction braking force Fxfb to the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb at the intersection.
 図3に戻り、処理回路51は、下限配分比率DfLd及び上限配分比率DfLuを導出すると、処理をステップS19に移行する。
 ステップS19において、処理回路51は、目標配分比率の仮値DfTrAと下限配分比率DfLdと上限配分比率DfLuとに基づいて、目標配分比率DfTrを設定する。具体的には、処理回路51は、仮値DfTrAと下限配分比率DfLdと上限配分比率DfLuとのうち、2番目に大きい配分比率を目標配分比率DfTrとして設定する。その後、処理回路51は目標配分比率DfTrの設定処理を一旦終了する。
Returning to FIG. 3, after deriving the lower limit allocation ratio DfLd and the upper limit allocation ratio DfLu, the processing circuit 51 transitions to step S19.
In step S19, the processing circuit 51 sets the target allocation ratio DfTr based on the provisional value DfTrA of the target allocation ratio, the lower limit allocation ratio DfLd, and the upper limit allocation ratio DfLu. Specifically, the processing circuit 51 sets the second largest allocation ratio among the provisional value DfTrA, the lower limit allocation ratio DfLd, and the upper limit allocation ratio DfLu as the target allocation ratio DfTr. After that, the processing circuit 51 temporarily ends the process of setting the target allocation ratio DfTr.
 <本実施形態の作用及効果>
 図5を参照し、制動制御装置50の作用及び効果について説明する。図5に示す例は、制動によって車両10が減速している場合に、運転者による操舵部材12の操舵によって車両10が旋回する場合である。
<Actions and Effects of the Present Embodiment>
The operation and effect of the brake control device 50 will be described with reference to Fig. 5. The example shown in Fig. 5 is a case where the vehicle 10 is decelerated by braking, and the vehicle 10 turns by steering the steering member 12 by the driver.
 図5の(C)及び(D)に示すように車両10が走行している最中のタイミングt11で、運転者が制動操作部材11を操作し始めるなどして車両10の減速が要求される。すると、処理回路51は、要求制動力FxRqを取得した上で当該要求制動力FxRqに基づいて制動装置30を作動させる。これにより、車両10に制動力Fxが付与されるようになるため、車両10の車体速度VSが低下し始める。また、車両10に制動力Fxが付与されると、車両10にピッチングモーメントMyが発生する。そのため、車両10がノーズダイブ状態になるため、図5の(F)に示すように車両10のピッチ角θが大きくなる。 As shown in (C) and (D) of FIG. 5, at timing t11 while the vehicle 10 is traveling, the driver begins to operate the brake operating member 11, etc., requesting deceleration of the vehicle 10. The processing circuit 51 then acquires the required braking force FxRq and operates the braking device 30 based on the required braking force FxRq. As a result, a braking force Fx is applied to the vehicle 10, and the vehicle speed VS of the vehicle 10 begins to decrease. In addition, when the braking force Fx is applied to the vehicle 10, a pitching moment My is generated in the vehicle 10. As a result, the vehicle 10 goes into a nose dive state, and the pitch angle θ of the vehicle 10 increases, as shown in (F) of FIG. 5.
 ここで、車両10は、前輪用のホイール液圧が後輪用のホイール液圧と同圧である場合には、前輪摩擦制動力Fxfbが後輪摩擦制動力Fxrbよりも大きくなるような、前輪用の摩擦ブレーキ20及び後輪用の摩擦ブレーキ20を備えている。 Here, the vehicle 10 is equipped with a friction brake 20 for the front wheels and a friction brake 20 for the rear wheels such that when the wheel hydraulic pressure for the front wheels is the same as the wheel hydraulic pressure for the rear wheels, the front wheel friction braking force Fxfb is greater than the rear wheel friction braking force Fxrb.
 そのため、処理回路51が、前輪用のホイール液圧が後輪用のホイール液圧と等しくなるように前輪摩擦制動力Fxfb及び後輪摩擦制動力Fxrbを調整すると、図5の(I)に示すように前輪摩擦制動力Fxfbの増大速度が後輪摩擦制動力Fxrbの増大速度よりも大きくなる。 Therefore, when the processing circuit 51 adjusts the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb so that the wheel hydraulic pressure for the front wheels is equal to the wheel hydraulic pressure for the rear wheels, the rate of increase of the front wheel friction braking force Fxfb becomes greater than the rate of increase of the rear wheel friction braking force Fxrb, as shown in FIG. 5 (I).
 タイミングt12からは要求制動力FxRqが保持される。図5の(A)に示すようにその後のタイミングt13から運転者が操舵部材12の操作を開始するため、車両10が旋回し始める。図5の(A)に示すように操舵角STRが大きくなると、図5の(B)に示すように車両10の横加速度Gyが大きくなるとともに、図5の(E)に示すように車両10のロール角φが大きくなる。 From timing t12, the required braking force FxRq is maintained. As shown in FIG. 5A, from timing t13 thereafter, the driver starts to operate the steering member 12, and the vehicle 10 starts to turn. When the steering angle STR increases as shown in FIG. 5A, the lateral acceleration Gy of the vehicle 10 increases as shown in FIG. 5B, and the roll angle φ of the vehicle 10 increases as shown in FIG. 5E.
 このように車両10が旋回し始めてロール角φが0(零)よりも大きくなると、処理回路51は、0(零)よりも大きい値を目標ピッチ角θTrとして設定する。処理回路51は、車両10のピッチ角θを目標ピッチ角θTrとするためのピッチングモーメントMyを目標ピッチングモーメントMyTrとして導出する。処理回路51は、目標ピッチングモーメントMyTrに応じた配分比率Dfを、目標配分比率DfTrとして設定する。具体的には、図5の(G)及び(H)に示すように、目標ピッチングモーメントMyTrが大きいほど目標配分比率DfTrが大きくなる。そして、処理回路51は、配分比率Dfが目標配分比率DfTrとなるように、前輪用の摩擦ブレーキ20及び後輪用の摩擦ブレーキ20を作動させる。 In this way, when the vehicle 10 starts to turn and the roll angle φ becomes greater than 0 (zero), the processing circuit 51 sets a value greater than 0 (zero) as the target pitch angle θTr. The processing circuit 51 derives the pitching moment My for setting the pitch angle θ of the vehicle 10 to the target pitch angle θTr as the target pitching moment MyTr. The processing circuit 51 sets the distribution ratio Df according to the target pitching moment MyTr as the target distribution ratio DfTr. Specifically, as shown in (G) and (H) of FIG. 5, the larger the target pitching moment MyTr, the larger the target distribution ratio DfTr becomes. Then, the processing circuit 51 activates the front wheel friction brakes 20 and the rear wheel friction brakes 20 so that the distribution ratio Df becomes the target distribution ratio DfTr.
 配分比率Dfが大きいほど、前輪摩擦制動力Fxfbが大きくなる。そのため、図5の(H)及び(I)に示すように、目標配分比率DfTrが大きいほど、前輪摩擦制動力Fxfbが大きくなる一方で、後輪摩擦制動力Fxrbが小さくなる。このように後輪摩擦制動力Fxrbが小さくなると、アンチダイブ力FADとアンチリフト力FALとの和である上記ピッチング抑制力が小さくなる。その結果、車両10のピッチ角θが目標ピッチ角θTrに向けて大きくなる。 The larger the distribution ratio Df, the larger the front wheel friction braking force Fxfb. Therefore, as shown in (H) and (I) of FIG. 5, the larger the target distribution ratio DfTr, the larger the front wheel friction braking force Fxfb becomes, while the rear wheel friction braking force Fxrb becomes smaller. When the rear wheel friction braking force Fxrb becomes smaller in this way, the pitching suppression force, which is the sum of the anti-dive force FAD and the anti-lift force FAL, becomes smaller. As a result, the pitch angle θ of the vehicle 10 increases toward the target pitch angle θTr.
 なお、図5に示す例では、ピッチ角θが目標ピッチ角θTrよりも小さいため、前輪摩擦制動力Fxfbを大きくすることによってピッチング抑制力が減少される。しかし、ピッチ角θが目標ピッチ角θTrよりも大きい場合もある。この場合では、後輪摩擦制動力Fxrbを大きくすることによってピッチング抑制力が増大される。これにより、ピッチ角θが目標ピッチ角θTrに向けて減少される。 In the example shown in FIG. 5, since the pitch angle θ is smaller than the target pitch angle θTr, the pitching suppression force is reduced by increasing the front wheel friction braking force Fxfb. However, there are also cases where the pitch angle θ is greater than the target pitch angle θTr. In this case, the pitching suppression force is increased by increasing the rear wheel friction braking force Fxrb. This reduces the pitch angle θ toward the target pitch angle θTr.
 制動制御装置50は、車両10に付与する制動力Fxを変更することなく、車両10のピッチ角θを調整できる。したがって、制動制御装置50は、制動によって車両10が減速している最中に車両10が旋回する場合には、車両10の減速度を変更することなく、車両10のピッチ角θを制御できる。すなわち、ピッチ角θを調整していても車両10の減速度が変動しないため、車両10の乗員が不快に感じにくい。 The brake control device 50 can adjust the pitch angle θ of the vehicle 10 without changing the braking force Fx applied to the vehicle 10. Therefore, when the vehicle 10 turns while the vehicle 10 is decelerating due to braking, the brake control device 50 can control the pitch angle θ of the vehicle 10 without changing the deceleration of the vehicle 10. In other words, even if the pitch angle θ is adjusted, the deceleration of the vehicle 10 does not change, so the occupants of the vehicle 10 are less likely to feel uncomfortable.
 運転者が制動操作部材11を操作することによって制動力Fxが車両10に付与されている場合、運転者の制動操作部材11の操作量が変わっていないにも拘わらず、ピッチ角θを制御するために車両10の減速度が変わると、減速度が変化することに対して運転者が違和感を覚えるおそれがある。この点、制動制御装置50では、車両10の減速度を変更することなくピッチ角θを制御できる。このため、車両10の旋回時にあっては、運転者に上記のような違和感を抱かせることなく、車両10のピッチ角θを制御できる。 When a braking force Fx is applied to the vehicle 10 by the driver operating the brake operating member 11, if the deceleration of the vehicle 10 changes to control the pitch angle θ even though the amount of operation of the brake operating member 11 by the driver has not changed, the driver may feel uncomfortable about the change in deceleration. In this regard, the brake control device 50 can control the pitch angle θ without changing the deceleration of the vehicle 10. Therefore, when the vehicle 10 is turning, the pitch angle θ of the vehicle 10 can be controlled without causing the driver to feel uncomfortable as described above.
 また、自動運転によって車両10が自律的に走行している場合、車両10の減速度の指令値が制動制御装置50に入力されると、処理回路51は、減速度の指令値に基づいた制動力を要求制動力FxRqとして取得する。そして処理回路51は、当該要求制動力FxRqに基づいて制動装置30を制御する。このときにピッチ角θを制御するために制動制御装置50が車両の減速度を可変させると、車両10の減速度の実値が減速度の指令値から乖離してしまう。この点、制動制御装置50は、車両10の減速度を変更することなくピッチ角θを制御できる。このため、車両10の旋回時にあっては、車両10の減速度の実値が減速度の指令値から乖離することを抑制しつつ、車両10のピッチ角θを制御できる。 In addition, when the vehicle 10 is traveling autonomously through automatic driving, when a command value for the deceleration of the vehicle 10 is input to the brake control device 50, the processing circuit 51 obtains a braking force based on the command value for the deceleration as a required braking force FxRq. The processing circuit 51 then controls the brake device 30 based on the required braking force FxRq. If the brake control device 50 varies the deceleration of the vehicle to control the pitch angle θ at this time, the actual deceleration of the vehicle 10 will deviate from the command value for the deceleration. In this regard, the brake control device 50 can control the pitch angle θ without changing the deceleration of the vehicle 10. Therefore, when the vehicle 10 is turning, the pitch angle θ of the vehicle 10 can be controlled while suppressing the actual deceleration of the vehicle 10 from deviating from the command value for the deceleration.
 図5に示す例では、車両制動中のタイミングt14で車両10の旋回が終了する。すると、車両10のロール角φが0(零)となるため、処理回路51は、前輪用のホイール液圧が後輪用のホイール液圧と等しくなるように前輪摩擦制動力Fxfb及び後輪摩擦制動力Fxrbを調整する。 In the example shown in FIG. 5, turning of the vehicle 10 ends at timing t14 during vehicle braking. Then, the roll angle φ of the vehicle 10 becomes 0 (zero), so the processing circuit 51 adjusts the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb so that the wheel hydraulic pressure for the front wheels is equal to the wheel hydraulic pressure for the rear wheels.
 本実施形態では、以下の効果をさらに得ることができる。
 (1-1)制動制御装置50では、ロール角φが大きいほど大きいピッチ角が目標ピッチ角θTrとして設定される。これにより、車両10の旋回中におけるロール角φとピッチ角θとの相関性を高くできる。特に運転者の手動操作によって車両10が走行している場合には、運転者のドライバビリティを高くできる。
In this embodiment, the following effects can be further obtained.
(1-1) In the braking control device 50, the larger the roll angle φ, the larger the pitch angle set as the target pitch angle θTr. This makes it possible to increase the correlation between the roll angle φ and the pitch angle θ while the vehicle 10 is turning. In particular, when the vehicle 10 is being driven by the driver's manual operation, the drivability of the driver can be improved.
 (1-2)制動制御装置50では、所定の配分比率領域が設定されている。そして、処理回路51は、配分比率領域に含まれる配分比率を目標配分比率DfTrとして設定する。これにより、制動制御装置50は、旋回中の車両10の挙動の安定性を確保しつつ、車両10のピッチ角θを制御できる。 (1-2) A predetermined distribution ratio region is set in the braking control device 50. Then, the processing circuit 51 sets the distribution ratio included in the distribution ratio region as the target distribution ratio DfTr. This allows the braking control device 50 to control the pitch angle θ of the vehicle 10 while ensuring the stability of the behavior of the vehicle 10 during cornering.
 (1-3)所定の配分比率領域の下限配分比率DfLd及び上限配分比率DfLuは、そのときの要求制動力FxRqに応じた配分比率にそれぞれ設定できる。そのため、制動制御装置50は、旋回中の車両10の挙動の安定性を確保することと、車両10のピッチ角θを制御することとの両立性をより高くできる。 (1-3) The lower limit distribution ratio DfLd and the upper limit distribution ratio DfLu of the specified distribution ratio range can be set to distribution ratios according to the required braking force FxRq at that time. Therefore, the brake control device 50 can improve compatibility between ensuring the stability of the behavior of the vehicle 10 during turning and controlling the pitch angle θ of the vehicle 10.
 (第2実施形態)
 制動制御装置の第2実施形態を図6に従って説明する。なお、第2実施形態では、目標配分比率を導出することなく前輪摩擦制動力と後輪摩擦制動力との配分比率を調整できる点などが第1実施形態と異なっている。以下の説明においては、第1実施形態と相違する部分について主に説明するものとし、第1実施形態と同一の部材構成には同一符号を付して重複説明を省略するものとする。
Second Embodiment
A second embodiment of the brake control device will be described with reference to Fig. 6. The second embodiment differs from the first embodiment in that the distribution ratio between the front wheel friction braking force and the rear wheel friction braking force can be adjusted without deriving a target distribution ratio. In the following description, the differences from the first embodiment will be mainly described, and the same reference numerals will be used to designate the same members as those in the first embodiment, and repeated description will be omitted.
 図6は、本実施形態の制動制御装置50における処理回路51の機能構成の一部を示している。CPU52がメモリ53の制御プログラムを実行することにより、処理回路51は、制動力補正量導出部M31と、4つの演算部M33,M34,M35,M36と、ガード処理部M38として機能する。 FIG. 6 shows part of the functional configuration of the processing circuit 51 in the braking control device 50 of this embodiment. When the CPU 52 executes the control program in the memory 53, the processing circuit 51 functions as a braking force correction amount derivation unit M31, four calculation units M33, M34, M35, M36, and a guard processing unit M38.
 制動力補正量導出部M31は、目標PM取得部M17によって取得された目標ピッチングモーメントMyTrを基に、制動力補正量ΔFxを導出する。制動力補正量導出部M31は、目標ピッチングモーメントMyTrが大きいほど大きい値を制動力補正量ΔFxとして導出する。例えば、制動力補正量導出部M31は、以下の関係式(F7)を用いることにより、目標ピッチングモーメントMyTrに応じた値を制動力補正量ΔFxとして導出できる。関係式(F7)における定数Tは、上記関係式(F6)で表すことができる。 The braking force correction amount derivation unit M31 derives the braking force correction amount ΔFx based on the target pitching moment MyTr acquired by the target PM acquisition unit M17. The braking force correction amount derivation unit M31 derives a larger value as the braking force correction amount ΔFx as the target pitching moment MyTr increases. For example, the braking force correction amount derivation unit M31 can derive a value corresponding to the target pitching moment MyTr as the braking force correction amount ΔFx by using the following relational expression (F7). The constant T in relational expression (F7) can be expressed by the above relational expression (F6).
 演算部M33は、左前輪14の前輪摩擦制動力Fxflbの基礎値である前輪摩擦制動力基礎値FxflbBと制動力補正量ΔFxとの和を、左前輪14の前輪摩擦制動力Fxflbの仮値FxflbAとして導出する。前輪摩擦制動力基礎値FxflbBは、複数の車輪14~17に付与する制動力を同じにした場合の左前輪14の前輪摩擦制動力である。 The calculation unit M33 derives the sum of a front wheel friction braking force base value FxflbB, which is a base value of the front wheel friction braking force Fxflb of the left front wheel 14, and the braking force correction amount ΔFx, as a provisional value FxflbA of the front wheel friction braking force Fxflb of the left front wheel 14. The front wheel friction braking force base value FxflbB is the front wheel friction braking force of the left front wheel 14 when the braking forces applied to the multiple wheels 14-17 are made the same.
 演算部M34は、右前輪15の前輪摩擦制動力Fxfrbの基礎値である前輪摩擦制動力基礎値FxfrbBと制動力補正量ΔFxとの和を、右前輪15の前輪摩擦制動力Fxfrbの仮値FxfrbAとして導出する。前輪摩擦制動力基礎値FxfrbBは、複数の車輪14~17に付与する制動力を同じにした場合の右前輪15の前輪摩擦制動力である。 Calculation unit M34 derives the sum of front wheel friction braking force base value FxfrbB, which is the base value of the front wheel friction braking force Fxfrb of the right front wheel 15, and the braking force correction amount ΔFx as a provisional value FxfrbA of the front wheel friction braking force Fxfrb of the right front wheel 15. The front wheel friction braking force base value FxfrbB is the front wheel friction braking force of the right front wheel 15 when the same braking force is applied to the multiple wheels 14 to 17.
 演算部M35は、左後輪16の後輪摩擦制動力Fxrlbの基礎値である後輪摩擦制動力基礎値FxrlbBと制動力補正量ΔFxとの差を、左後輪16の後輪摩擦制動力Fxrlbの仮値FxrlbAとして導出する。後輪摩擦制動力基礎値FxrlbBは、複数の車輪14~17に付与する制動力を同じにした場合の左後輪16の後輪摩擦制動力である。 Calculation unit M35 derives the difference between rear wheel friction braking force base value FxrlbB, which is the base value of the rear wheel friction braking force Fxrlb of the left rear wheel 16, and the braking force correction amount ΔFx as a provisional value FxrlbA of the rear wheel friction braking force Fxrlb of the left rear wheel 16. The rear wheel friction braking force base value FxrlbB is the rear wheel friction braking force of the left rear wheel 16 when the same braking force is applied to the multiple wheels 14 to 17.
 演算部M36は、右後輪17の後輪摩擦制動力Fxrrbの基礎値である後輪摩擦制動力基礎値FxrrbBと制動力補正量ΔFxとの差を、右後輪17の後輪摩擦制動力Fxrrbの仮値FxrrbAとして導出する。後輪摩擦制動力基礎値FxrrbBは、複数の車輪14~17に付与する制動力を同じにした場合の右後輪17の後輪摩擦制動力である。 Calculation unit M36 derives the difference between rear wheel friction braking force base value FxrrbB, which is the base value of the rear wheel friction braking force Fxrrb of the right rear wheel 17, and the braking force correction amount ΔFx as a provisional value FxrrbA of the rear wheel friction braking force Fxrrb of the right rear wheel 17. The rear wheel friction braking force base value FxrrbB is the rear wheel friction braking force of the right rear wheel 17 when the same braking force is applied to the multiple wheels 14 to 17.
 ガード処理部M38は、左前輪14の前輪摩擦制動力の仮値FxflbAと右前輪15の前輪摩擦制動力の仮値FxfrbAとの和を、前輪摩擦制動力の仮値FxfbAとして導出する。ガード処理部M38は、左後輪16の後輪摩擦制動力の仮値FxrlbAと右後輪17の後輪摩擦制動力の仮値FxrrbAとの和を、後輪摩擦制動力の仮値FxrbAとして導出する。そして、ガード処理部M38は、上記配分比率Dfが、所定の配分比率領域に含まれるように複数の摩擦制動力を補正することにより、4つの摩擦制動力Fxflb,Fxfrb,Fxrlb,Fxrrbを導出する。 The guard processing unit M38 derives the sum of the provisional value FxflbA of the front wheel friction braking force of the left front wheel 14 and the provisional value FxfrbA of the front wheel friction braking force of the right front wheel 15 as the provisional value FxfbA of the front wheel friction braking force. The guard processing unit M38 derives the sum of the provisional value FxrlbA of the rear wheel friction braking force of the left rear wheel 16 and the provisional value FxrrbA of the rear wheel friction braking force of the right rear wheel 17 as the provisional value FxrbA of the rear wheel friction braking force. The guard processing unit M38 then corrects the multiple friction braking forces so that the distribution ratio Df falls within a predetermined distribution ratio region, thereby deriving the four friction braking forces Fxflb, Fxfrb, Fxrlb, Fxrrb.
 制御部M21は、ガード処理部M38によって導出された4つの摩擦制動力Fxflb,Fxfrb,Fxrlb,Fxrrbに基づいて、制動装置30を作動させる。これにより、制御部M21は、車両制動時には、要求制動力FxRqが、目標ピッチ角θTrに応じて前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとに分配されるように、前輪用の摩擦ブレーキ20及び後輪用の摩擦ブレーキ20を作動させることができる。その結果、配分比率Dfが、目標ピッチ角θTrに対応する配分比率になる。 The control unit M21 operates the braking device 30 based on the four friction braking forces Fxflb, Fxfrb, Fxrlb, and Fxrrb derived by the guard processing unit M38. As a result, when braking the vehicle, the control unit M21 can operate the front wheel friction brakes 20 and the rear wheel friction brakes 20 so that the required braking force FxRq is distributed to the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb in accordance with the target pitch angle θTr. As a result, the distribution ratio Df becomes the distribution ratio that corresponds to the target pitch angle θTr.
 本実施形態の制動制御装置50は、第1実施形態の制動制御装置50と同等の効果を得ることができる。
 (変更例)
 上記複数の実施形態は、以下のように変更して実施することができる。上記複数の実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
The brake control device 50 of this embodiment can obtain the same effects as the brake control device 50 of the first embodiment.
(Example of change)
The above-described embodiments may be modified as follows: The above-described embodiments and the following modifications may be combined with each other to the extent that they are not technically inconsistent.
 ・第1実施形態において、処理回路51は、所定の配分比率領域の下限配分比率DfLdとして、そのときの要求制動力FxRqの等高線と補正理想配分線L3との交点に対応する配分比率とは異なる配分比率を設定してもよい。例えば、処理回路51は、下限配分比率DfLdとして、そのときの要求制動力FxRqの等高線と理想配分線L1との交点に対応する配分比率を設定してもよい。 - In the first embodiment, the processing circuit 51 may set, as the lower limit allocation ratio DfLd of the specified allocation ratio region, an allocation ratio different from the allocation ratio corresponding to the intersection between the contour line of the required braking force FxRq at that time and the corrected ideal allocation line L3. For example, the processing circuit 51 may set, as the lower limit allocation ratio DfLd, an allocation ratio corresponding to the intersection between the contour line of the required braking force FxRq at that time and the ideal allocation line L1.
 ・第1実施形態において、処理回路51は、所定の配分比率領域の上限配分比率DfLuとして、そのときの要求制動力FxRqの等高線と同圧時配分線L2との交点に対応する配分比率とは異なる配分比率を設定してもよい。 - In the first embodiment, the processing circuit 51 may set the upper limit distribution ratio DfLu of the specified distribution ratio region to a distribution ratio different from the distribution ratio corresponding to the intersection of the contour line of the required braking force FxRq at that time and the distribution line L2 at equal pressure.
 ・第1実施形態において、処理回路51は、目標配分比率DfTrを設定する際に、上限配分比率DfLu及び下限配分比率DfLdによって制限を設けなくてもよい。
 ・車両10のロール角φが増大する場合、ロール角φの増大に連動して目標ピッチ角θTrが変更される。しかし、当該目標ピッチ角θTrに応じて配分比率Dfが調整されても、ロール角φの増大に対して車両10の実際のピッチ角の増大が遅延する可能性がある。そこで、処理回路51は、ロール角φと変換ゲインα1と補償ゲインα2との積を、目標ピッチ角θTrとして導出してもよい。この場合、補償ゲインα2として、1以上の値が設定される。さらに、処理回路51は、ロール角φが増大した直後には1よりも大きい値を補償ゲインα2として設定し、その後、時間の経過に応じて補償ゲインα2を1まで徐々に減少させる。これにより、制動制御装置は、ロール角φが増大している場合における車両10のピッチ角θの制御性をより高くできる。
In the first embodiment, when setting the target allocation ratio DfTr, the processing circuit 51 does not need to impose limitations using the upper limit allocation ratio DfLu and the lower limit allocation ratio DfLd.
When the roll angle φ of the vehicle 10 increases, the target pitch angle θTr is changed in conjunction with the increase in the roll angle φ. However, even if the distribution ratio Df is adjusted according to the target pitch angle θTr, there is a possibility that the increase in the actual pitch angle of the vehicle 10 is delayed with respect to the increase in the roll angle φ. Therefore, the processing circuit 51 may derive the product of the roll angle φ, the conversion gain α1, and the compensation gain α2 as the target pitch angle θTr. In this case, a value of 1 or more is set as the compensation gain α2. Furthermore, the processing circuit 51 sets a value greater than 1 as the compensation gain α2 immediately after the roll angle φ increases, and then gradually reduces the compensation gain α2 to 1 as time passes. This allows the brake control device to improve the controllability of the pitch angle θ of the vehicle 10 when the roll angle φ increases.
 ・制動制御装置が適用される車両は、所望量の後輪摩擦制動力Fxrbの車両10への付与に伴う車両10のピッチ方向のピッチ挙動が、所望量の前輪摩擦制動力Fxfbの車両10への付与に伴う車両10のピッチ方向の車両10のピッチ挙動が異なる車両であってもよい。具体的には、車両は、前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとの和である合計制動力のうち、前輪摩擦制動力Fxfbの占める割合が大きいほど車両10の姿勢変化を抑えることができるように構成された車両であってもよい。この場合、後輪摩擦制動力Fxrbが第1制動力に対応するとともに、前輪摩擦制動力Fxfbが第2制動力に対応することになる。また、後輪用の摩擦ブレーキ20が第1制動部に対応するとともに、前輪用の摩擦ブレーキ20が第2制動部に対応する。 The vehicle to which the brake control device is applied may be a vehicle in which the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of rear wheel friction braking force Fxrb to the vehicle 10 is different from the pitch behavior of the vehicle 10 in the pitch direction caused by the application of a desired amount of front wheel friction braking force Fxfb to the vehicle 10. Specifically, the vehicle may be a vehicle configured so that the greater the proportion of the front wheel friction braking force Fxfb in the total braking force, which is the sum of the front wheel friction braking force Fxfb and the rear wheel friction braking force Fxrb, the more the attitude change of the vehicle 10 can be suppressed. In this case, the rear wheel friction braking force Fxrb corresponds to the first braking force, and the front wheel friction braking force Fxfb corresponds to the second braking force. Also, the friction brake 20 for the rear wheels corresponds to the first braking unit, and the friction brake 20 for the front wheels corresponds to the second braking unit.
 この場合であっても、処理回路51は、所定の配分比率領域に含まれる配分比率を目標配分比率として設定することが好ましい。さらに、所定の配分比率領域の上限配分比率は、要求制動力FxRqが大きいほど、後輪摩擦制動力Fxrbを大きくできるように設定されるとよい。また、所定の配分比率領域の下限配分比率は、理想制動力配分に応じて設定されるとよい。 Even in this case, it is preferable that the processing circuit 51 sets an allocation ratio included in the predetermined allocation ratio region as the target allocation ratio. Furthermore, it is preferable that the upper limit allocation ratio of the predetermined allocation ratio region is set so that the rear wheel friction braking force Fxrb can be increased as the required braking force FxRq increases. Furthermore, it is preferable that the lower limit allocation ratio of the predetermined allocation ratio region is set according to the ideal braking force allocation.
 ・摩擦制動力に加えて回生制動力も付与できる車両に、制動制御装置を適用することもできる。例えば、前輪14,15に付与する回生制動力を前輪回生制動力としたとき、当該車両では、前輪回生制動力と前輪摩擦制動力との配分を調整することにより、車両のピッチ角θを変更できる。すなわち、前輪回生制動力と前輪摩擦制動力との和である合計前輪制動力のうち、前輪摩擦制動力の占める割合が大きいほど、車両10の姿勢変化を抑えることができる。これは、回生制動力の作用点は車輪の車軸であるため、摩擦制動力と回生制動力とでは制動力の作用点が異なるためである。こうした車両に適用される制動制御装置では、上記合計前輪制動力に対する前輪回生制動力の比率である配分比率を、そのときの目標ピッチ角θTrに対応する目標配分比率DfTrとすればよい。この場合、前輪回生制動力が第1制動力に対応し、前輪摩擦制動力が第2制動力に対応する。また、前輪回生制動力を発生する発電機が第1制動部に対応し、前輪用の摩擦ブレーキ20が第2制動部に対応する。 - The brake control device can also be applied to a vehicle that can apply regenerative braking force in addition to friction braking force. For example, when the regenerative braking force applied to the front wheels 14, 15 is a front wheel regenerative braking force, the pitch angle θ of the vehicle can be changed by adjusting the distribution between the front wheel regenerative braking force and the front wheel friction braking force. In other words, the greater the proportion of the front wheel friction braking force in the total front wheel braking force, which is the sum of the front wheel regenerative braking force and the front wheel friction braking force, the more the attitude change of the vehicle 10 can be suppressed. This is because the point of application of the regenerative braking force is the axle of the wheel, and therefore the point of application of the friction braking force and the regenerative braking force are different. In a brake control device applied to such a vehicle, the distribution ratio, which is the ratio of the front wheel regenerative braking force to the total front wheel braking force, can be set to the target distribution ratio DfTr corresponding to the target pitch angle θTr at that time. In this case, the front wheel regenerative braking force corresponds to the first braking force, and the front wheel friction braking force corresponds to the second braking force. In addition, the generator that generates the front wheel regenerative braking force corresponds to the first braking unit, and the friction brake 20 for the front wheels corresponds to the second braking unit.
 後輪16,17に回生制動力を付与できる車両においても同様である。この場合、後輪16,17に付与する回生制動力が第1制動力に対応し、後輪摩擦制動力が第2制動力に対応することになる。また、後輪16,17に付与する回生制動力を調整する発電機が第1制動部に対応し、後輪用の摩擦ブレーキ20が第2制動部に対応する。 The same applies to vehicles that can apply regenerative braking force to the rear wheels 16, 17. In this case, the regenerative braking force applied to the rear wheels 16, 17 corresponds to the first braking force, and the rear wheel friction braking force corresponds to the second braking force. Also, the generator that adjusts the regenerative braking force applied to the rear wheels 16, 17 corresponds to the first braking unit, and the friction brake 20 for the rear wheels corresponds to the second braking unit.
 なお、回生制動力と摩擦制動力との配分を調整して車両10のピッチ角θを制御する処理は、車両に付与されている回生制動力がある程度大きい状態で行うことが好ましい。つまり、車両に付与されている回生制動力が比較的小さい場合には、上記複数の実施形態で説明したように、前輪摩擦制動力Fxfbと後輪摩擦制動力Fxrbとの配分を調整してピッチ角θを制御することが好ましい。 Note that the process of controlling the pitch angle θ of the vehicle 10 by adjusting the distribution of the regenerative braking force and the frictional braking force is preferably performed when the regenerative braking force applied to the vehicle is relatively large. In other words, when the regenerative braking force applied to the vehicle is relatively small, it is preferable to control the pitch angle θ by adjusting the distribution of the front wheel frictional braking force Fxfb and the rear wheel frictional braking force Fxrb, as described in the above multiple embodiments.
 ・制動制御装置を適用する車両は、前輪14,15に付与する回生制動力と、後輪16,17に付与する回生制動力を個別に調整できる車両であってもよい。当該車両では、前輪14,15及び後輪16,17の何れにおいても回生制動力が付与されている場合、所望量の前輪回生制動力の車両への付与に伴う車両のピッチ方向のピッチ挙動が、所望量の後輪回生制動力の車両への付与に伴う車両のピッチ方向の車両のピッチ挙動が異なる。この場合、例えば、前輪回生制動力を第1制動力とするとともに、後輪回生制動力を第2制動力とする。この場合、制動制御装置は、前輪回生制動力と後輪回生制動力との和である合計制動力に対する前輪回生制動力の比率の目標である目標配分比率を、目標ピッチ角θTrに基づいて設定する。そして、制動制御装置は、当該目標ピッチ角θTrに基づいて前輪回生制動力及び後輪回生制動力を調整する。 - The vehicle to which the brake control device is applied may be a vehicle in which the regenerative braking force applied to the front wheels 14, 15 and the regenerative braking force applied to the rear wheels 16, 17 can be adjusted separately. In this vehicle, when regenerative braking force is applied to both the front wheels 14, 15 and the rear wheels 16, 17, the pitch behavior of the vehicle in the pitch direction associated with the application of a desired amount of front wheel regenerative braking force to the vehicle differs from the pitch behavior of the vehicle in the pitch direction associated with the application of a desired amount of rear wheel regenerative braking force to the vehicle. In this case, for example, the front wheel regenerative braking force is the first braking force, and the rear wheel regenerative braking force is the second braking force. In this case, the brake control device sets a target distribution ratio, which is a target ratio of the front wheel regenerative braking force to the total braking force, which is the sum of the front wheel regenerative braking force and the rear wheel regenerative braking force, based on the target pitch angle θTr. Then, the brake control device adjusts the front wheel regenerative braking force and the rear wheel regenerative braking force based on the target pitch angle θTr.
 ・制動制御装置を適用する車両は、前輪14,15に付与する回生制動力と、後輪16,17に付与する回生制動力を個別に調整できる車両であってもよい。当該車両では、前輪摩擦制動力と前輪回生制動力との和である前輪制動力を第1制動力とするとともに、後輪摩擦制動力と後輪回生制動力との和である後輪制動力を第2制動力とするようにしてもよい。この場合、制動制御装置は、前輪制動力と後輪制動力との和である合計制動力に対する前輪制動力の比率の目標である目標配分比率を、目標ピッチ角θTrに基づいて設定する。そして、制動制御装置は、当該目標ピッチ角θTrに基づいて、前輪摩擦制動力、前輪回生制動力、後輪摩擦制動力及び後輪回生制動力を調整する。例えば、制動制御装置は、前輪回生制動力の調整だけでは目標ピッチ角θTrを実現できない場合に、前輪摩擦制動力を調整し、後輪回生制動力の調整だけでは目標ピッチ角θTrを実現できない場合に、後輪摩擦制動力を調整することができる。 - A vehicle to which the brake control device is applied may be a vehicle in which the regenerative braking force applied to the front wheels 14, 15 and the regenerative braking force applied to the rear wheels 16, 17 can be adjusted separately. In such a vehicle, the front wheel braking force, which is the sum of the front wheel friction braking force and the front wheel regenerative braking force, may be set as the first braking force, and the rear wheel braking force, which is the sum of the rear wheel friction braking force and the rear wheel regenerative braking force, may be set as the second braking force. In this case, the brake control device sets a target distribution ratio, which is a target for the ratio of the front wheel braking force to the total braking force, which is the sum of the front wheel braking force and the rear wheel braking force, based on the target pitch angle θTr. Then, the brake control device adjusts the front wheel friction braking force, front wheel regenerative braking force, rear wheel friction braking force, and rear wheel regenerative braking force based on the target pitch angle θTr. For example, the brake control device can adjust the front wheel friction braking force when the target pitch angle θTr cannot be achieved by adjusting only the front wheel regenerative braking force, and can adjust the rear wheel friction braking force when the target pitch angle θTr cannot be achieved by adjusting only the rear wheel regenerative braking force.
 ・処理回路51は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、各種処理のうち少なくとも一部の処理を実行する専用のハードウェアなどの1つ以上の専用のハードウェア回路又はこれらの組み合わせを含む回路として構成し得る。専用のハードウェアとしては、例えば、特定用途向け集積回路であるASICを挙げることができる。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含む。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわち記憶媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。 - Processing circuitry 51 may be configured as a circuit including one or more processors operating according to a computer program, one or more dedicated hardware circuits such as dedicated hardware for executing at least some of the various processes, or a combination of these. An example of dedicated hardware is an ASIC, which is an application specific integrated circuit. The processor includes a CPU and memory such as RAM and ROM. The memory stores program code or instructions configured to cause the CPU to execute processes. The memory, i.e., storage medium, includes any available medium accessible by a general purpose or dedicated computer.
 <他の技術的思想>
 次に、上記複数の実施形態及び変更例から把握できる技術的思想について記載する。
 (付記1)前記配分比率領域は、前記車両の理想制動力配分に従って前記第1制動力及び前記第2制動力を設定する場合よりも前記第1制動力を大きくできるように設定されていることが好ましい。
<Other technical ideas>
Next, the technical ideas that can be understood from the above-described embodiments and modified examples will be described.
(Additional Note 1) It is preferable that the distribution ratio region is set so that the first braking force can be made larger than in a case where the first braking force and the second braking force are set according to an ideal braking force distribution of the vehicle.
 (付記2)前記目標ピッチ角導出部は、前記車両が旋回する際に大きさが変化するパラメータに応じた値を前記目標ピッチ角として導出することが好ましい。
 (付記3)第1制動力を車両に付与する第1制動部と第2制動力を前記車両に付与する第2制動部とを備え、前記第1制動部による所望量の前記第1制動力の前記車両への付与に伴う前記車両のピッチ方向のピッチ挙動が、前記第2制動部による前記所望量の前記第2制動力の前記車両への付与に伴う前記車両のピッチ方向の前記車両のピッチ挙動が異なる前記車両に適用され、
 前記車両が旋回する際に大きさが変化するパラメータを取得するパラメータ取得部と、
 ピッチングモーメントの目標である目標ピッチングモーメントとして、前記パラメータ取得部によって取得された前記パラメータに応じたピッチングモーメントを設定する目標PM取得部と、
 前記車両の制動時には、当該車両に付与する制動力の要求値である要求制動力が、前記目標ピッチングモーメントに応じて前記第1制動力と前記第2制動力とに分配されるように、前記第1制動部及び前記第2制動部を作動させる制御部と、を備える制動制御装置。
(Additional Note 2) It is preferable that the target pitch angle derivation unit derives, as the target pitch angle, a value according to a parameter whose magnitude changes when the vehicle turns.
(Additional Note 3) The present invention is applied to a vehicle including a first braking unit that applies a first braking force to a vehicle and a second braking unit that applies a second braking force to the vehicle, wherein a pitch behavior of the vehicle in a pitch direction caused by application of a desired amount of the first braking force by the first braking unit to the vehicle is different from a pitch behavior of the vehicle in the pitch direction caused by application of the desired amount of the second braking force by the second braking unit to the vehicle,
a parameter acquisition unit that acquires a parameter whose magnitude changes when the vehicle turns;
a target PM acquisition unit that sets a pitching moment according to the parameters acquired by the parameter acquisition unit as a target pitching moment that is a target of the pitching moment;
a control unit that operates the first braking unit and the second braking unit so that a required braking force, which is a required value of the braking force to be applied to the vehicle, is distributed between the first braking force and the second braking force in accordance with the target pitching moment when the vehicle is braked.
 なお、本明細書において使用される「少なくとも1つ」という表現は、所望の選択肢の「1つ以上」を意味する。一例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が2つであれば「1つの選択肢のみ」又は「2つの選択肢の双方」を意味する。他の例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が3つ以上であれば「1つの選択肢のみ」又は「2つ以上の任意の選択肢の組み合わせ」を意味する。 The expression "at least one" used in this specification means "one or more" of the desired options. As an example, the expression "at least one" used in this specification means "only one option" or "both of two options" if the number of options is two. As another example, the expression "at least one" used in this specification means "only one option" or "any combination of two or more options" if the number of options is three or more.

Claims (4)

  1.  第1制動力を車両に付与する第1制動部と第2制動力を前記車両に付与する第2制動部とを備え、前記第1制動部による所望量の前記第1制動力の前記車両への付与に伴う前記車両のピッチ方向のピッチ挙動が、前記第2制動部による前記所望量の前記第2制動力の前記車両への付与に伴う前記車両のピッチ方向の前記車両のピッチ挙動が異なる前記車両に適用され、
     前記車両の旋回時に、前記車両のピッチ角の目標である目標ピッチ角を取得する目標ピッチ角取得部と、
     前記車両の制動時には、当該車両に付与する制動力の要求値である要求制動力が、前記目標ピッチ角に応じて前記第1制動力と前記第2制動力とに分配されるように、前記第1制動部及び前記第2制動部を作動させる制御部と、を備える
     制動制御装置。
    the vehicle is provided with a first braking unit that applies a first braking force to a vehicle and a second braking unit that applies a second braking force to the vehicle, and a pitch behavior of the vehicle in a pitch direction associated with application of a desired amount of the first braking force to the vehicle by the first braking unit differs from a pitch behavior of the vehicle in the pitch direction associated with application of the desired amount of the second braking force to the vehicle by the second braking unit;
    a target pitch angle acquisition unit that acquires a target pitch angle that is a target for the pitch angle of the vehicle when the vehicle is turning;
    a control unit that operates the first braking unit and the second braking unit so that a required braking force, which is a required value of a braking force to be applied to the vehicle, is distributed between the first braking force and the second braking force in accordance with the target pitch angle when braking the vehicle.
  2.  前記第1制動力と前記第2制動力との和である合計制動力に対する前記第1制動力の配分比率の目標である目標配分比率を、前記目標ピッチ角に基づいて設定する目標配分比率設定部を備え、
     前記制御部は、前記車両の制動時には、前記目標配分比率に基づいて、前記第1制動力への分配量及び前記第2制動力への分配量を設定することにより、前記要求制動力を前記第1制動力と前記第2制動力とに分配する
     請求項1に記載の制動制御装置。
    a target distribution ratio setting unit that sets a target distribution ratio, which is a target of a distribution ratio of the first braking force to a total braking force that is a sum of the first braking force and the second braking force, based on the target pitch angle,
    2. The brake control device according to claim 1, wherein, when braking the vehicle, the control unit distributes the required braking force to the first braking force and the second braking force by setting a distribution amount to the first braking force and a distribution amount to the second braking force based on the target distribution ratio.
  3.  前記目標配分比率設定部は、所定の配分比率領域に含まれる前記配分比率を前記目標配分比率として設定する
     請求項2に記載の制動制御装置。
    The brake control device according to claim 2 , wherein the target allocation ratio setting unit sets the allocation ratio included in a predetermined allocation ratio region as the target allocation ratio.
  4.  前記第1制動部は、前記第1制動力を前記車両の前輪に付与するものであり、
     前記配分比率領域の上限である上限配分比率は、前記要求制動力が大きいほど、前記第1制動力を大きくできるように設定され、
     前記配分比率領域の下限である下限配分比率は、前記車両の理想制動力配分に応じて設定される
     請求項3に記載の制動制御装置。
    the first braking unit applies the first braking force to a front wheel of the vehicle,
    an upper limit distribution ratio that is an upper limit of the distribution ratio region is set so that the first braking force can be increased as the required braking force increases,
    The brake control device according to claim 3 , wherein a lower limit distribution ratio that is a lower limit of the distribution ratio region is set according to an ideal braking force distribution of the vehicle.
PCT/JP2024/013234 2023-03-31 2024-03-29 Braking control device WO2024204787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-057145 2023-03-31
JP2023057145A JP2024144951A (en) 2023-03-31 2023-03-31 Brake Control Device

Publications (1)

Publication Number Publication Date
WO2024204787A1 true WO2024204787A1 (en) 2024-10-03

Family

ID=92906007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/013234 WO2024204787A1 (en) 2023-03-31 2024-03-29 Braking control device

Country Status (2)

Country Link
JP (1) JP2024144951A (en)
WO (1) WO2024204787A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085316A (en) * 2020-11-27 2022-06-08 株式会社アドヴィックス Control device of vehicle and control program of vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085316A (en) * 2020-11-27 2022-06-08 株式会社アドヴィックス Control device of vehicle and control program of vehicle

Also Published As

Publication number Publication date
JP2024144951A (en) 2024-10-15

Similar Documents

Publication Publication Date Title
US12109996B2 (en) Brake control device for vehicle
US10046643B2 (en) Braking force control apparatus for a vehicle
JP4631549B2 (en) Vehicle motion stabilization control device
US8108106B2 (en) Motion control system for vehicle
CN109720338B (en) Vehicle behavior control device
JP4792979B2 (en) Vehicle motion control device
JP7484667B2 (en) Braking Control Device
JP7205794B2 (en) VEHICLE CONTROL METHOD, VEHICLE SYSTEM, AND VEHICLE CONTROL DEVICE
US11260839B2 (en) Brake control apparatus for vehicle
WO2015016325A1 (en) Vehicle control device
CN115003572B (en) Brake control device
US11458940B2 (en) Braking control apparatus for vehicle
WO2024204787A1 (en) Braking control device
WO2019077973A1 (en) Brake system for vehicle
JP2018062295A (en) Vehicle braking control device
JP5122307B2 (en) Vehicle motion control device
JP2014034290A (en) Vehicle behavior control device
JP6003523B2 (en) Vehicle behavior control apparatus and vehicle behavior control method
JP2020124960A (en) Vehicular brake force control apparatus
JP6248477B2 (en) Vehicle control device
WO2021149796A1 (en) Braking control device for vehicle
WO2024204788A1 (en) Braking control device
JP2009185643A (en) Behavior control device for vehicle
JP2023152293A (en) Brake control device
JP4061630B2 (en) Brake control device for vehicle