WO2024204625A1 - Photocurable composition, three-dimensional molded article, dental product, (meth)acrylate, and monomer composition - Google Patents
Photocurable composition, three-dimensional molded article, dental product, (meth)acrylate, and monomer composition Download PDFInfo
- Publication number
- WO2024204625A1 WO2024204625A1 PCT/JP2024/012851 JP2024012851W WO2024204625A1 WO 2024204625 A1 WO2024204625 A1 WO 2024204625A1 JP 2024012851 W JP2024012851 W JP 2024012851W WO 2024204625 A1 WO2024204625 A1 WO 2024204625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- acrylate
- photocurable composition
- group
- organic group
- Prior art date
Links
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 title claims abstract description 191
- 239000000203 mixture Substances 0.000 title claims abstract description 136
- 239000000178 monomer Substances 0.000 title claims description 19
- 229940023487 dental product Drugs 0.000 title claims description 12
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims abstract description 26
- 239000003999 initiator Substances 0.000 claims abstract description 17
- 125000000962 organic group Chemical group 0.000 claims description 89
- 238000012360 testing method Methods 0.000 claims description 37
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 21
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 2
- 238000000206 photolithography Methods 0.000 claims 2
- -1 methacryloyl Chemical group 0.000 description 62
- 238000006243 chemical reaction Methods 0.000 description 45
- 238000005452 bending Methods 0.000 description 44
- 125000004432 carbon atom Chemical group C* 0.000 description 36
- 150000002430 hydrocarbons Chemical group 0.000 description 36
- 150000001875 compounds Chemical class 0.000 description 30
- 238000000034 method Methods 0.000 description 29
- 125000002947 alkylene group Chemical group 0.000 description 16
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 14
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- 238000001308 synthesis method Methods 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- 239000012948 isocyanate Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 150000002513 isocyanates Chemical class 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 5
- 125000002723 alicyclic group Chemical group 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical group C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 210000000214 mouth Anatomy 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229940125904 compound 1 Drugs 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000007656 fracture toughness test Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 101100215666 Urtica dioica UDA1 gene Proteins 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 125000005574 norbornylene group Chemical group 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- KQWGXHWJMSMDJJ-UHFFFAOYSA-N cyclohexyl isocyanate Chemical compound O=C=NC1CCCCC1 KQWGXHWJMSMDJJ-UHFFFAOYSA-N 0.000 description 2
- 239000005548 dental material Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- HHQAGBQXOWLTLL-UHFFFAOYSA-N (2-hydroxy-3-phenoxypropyl) prop-2-enoate Chemical compound C=CC(=O)OCC(O)COC1=CC=CC=C1 HHQAGBQXOWLTLL-UHFFFAOYSA-N 0.000 description 1
- KGANAERDZBAECK-UHFFFAOYSA-N (3-phenoxyphenyl)methanol Chemical compound OCC1=CC=CC(OC=2C=CC=CC=2)=C1 KGANAERDZBAECK-UHFFFAOYSA-N 0.000 description 1
- BXSPZNVFEYWSLZ-UHFFFAOYSA-N (3-phenoxyphenyl)methyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 BXSPZNVFEYWSLZ-UHFFFAOYSA-N 0.000 description 1
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- WEERVPDNCOGWJF-UHFFFAOYSA-N 1,4-bis(ethenyl)benzene Chemical group C=CC1=CC=C(C=C)C=C1 WEERVPDNCOGWJF-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- RSJWKIDVVZWYTD-UHFFFAOYSA-N 1-(2-isocyanatopropan-2-yl)-2-prop-1-en-2-ylbenzene Chemical compound CC(=C)C1=CC=CC=C1C(C)(C)N=C=O RSJWKIDVVZWYTD-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical class ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 description 1
- HLIQLHSBZXDKLV-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-phenoxyethanol Chemical compound OCCOCC(O)OC1=CC=CC=C1 HLIQLHSBZXDKLV-UHFFFAOYSA-N 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical class OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- DPNXHTDWGGVXID-UHFFFAOYSA-N 2-isocyanatoethyl prop-2-enoate Chemical compound C=CC(=O)OCCN=C=O DPNXHTDWGGVXID-UHFFFAOYSA-N 0.000 description 1
- HEBTZZBBPUFAFE-UHFFFAOYSA-N 2-methyl-n-(oxomethylidene)benzenesulfonamide Chemical compound CC1=CC=CC=C1S(=O)(=O)N=C=O HEBTZZBBPUFAFE-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- MILSYCKGLDDVLM-UHFFFAOYSA-N 2-phenylpropan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 MILSYCKGLDDVLM-UHFFFAOYSA-N 0.000 description 1
- BYPFICORERPGJY-UHFFFAOYSA-N 3,4-diisocyanatobicyclo[2.2.1]hept-2-ene Chemical compound C1CC2(N=C=O)C(N=C=O)=CC1C2 BYPFICORERPGJY-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- 101000720524 Gordonia sp. (strain TY-5) Acetone monooxygenase (methyl acetate-forming) Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical group C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 125000005571 adamantylene group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 125000005325 aryloxy aryl group Chemical group 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical class C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical group OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical group C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004976 cyclobutylene group Chemical group 0.000 description 1
- 125000004977 cycloheptylene group Chemical group 0.000 description 1
- 125000005725 cyclohexenylene group Chemical group 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000004978 cyclooctylene group Chemical group 0.000 description 1
- KOMDZQSPRDYARS-UHFFFAOYSA-N cyclopenta-1,3-diene titanium Chemical class [Ti].C1C=CC=C1.C1C=CC=C1 KOMDZQSPRDYARS-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004980 cyclopropylene group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 125000004855 decalinyl group Chemical group C1(CCCC2CCCCC12)* 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical group C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- QILSFLSDHQAZET-UHFFFAOYSA-N diphenylmethanol Chemical compound C=1C=CC=CC=1C(O)C1=CC=CC=C1 QILSFLSDHQAZET-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920006130 high-performance polyamide Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000006838 isophorone group Chemical group 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical group C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical class OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- 125000004344 phenylpropyl group Chemical group 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 125000005147 toluenesulfonyl group Chemical group C=1(C(=CC=CC1)S(=O)(=O)*)C 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/60—Preparations for dentistry comprising organic or organo-metallic additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/60—Preparations for dentistry comprising organic or organo-metallic additives
- A61K6/62—Photochemical radical initiators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
Definitions
- the present invention relates to a photocurable composition, a three-dimensional object, a dental product, a (meth)acrylate, and a monomer composition.
- a composition containing a (meth)acrylate as a photopolymerizable component has attracted attention as a material that can be used in stereolithography (i.e., is photocurable) and can form a three-dimensional object with physical properties suitable for dental products.
- Patent document 1 Patent No. 4160311
- the physical properties suitable for dental products include a moderate range of toughness.
- One method for increasing the toughness of a three-dimensional object made of a composition containing a (meth)acrylate as a photocurable component is to blend a monofunctional (meth)acrylate into the composition.
- the three-dimensional object obtained by this method does not fully achieve the level of toughness desired for dental products, and there is room for further improvement.
- an object of one aspect of the present disclosure is to provide a photocurable composition suitable for obtaining a three-dimensional object having excellent toughness, a three-dimensional object obtained from this photocurable composition, and a dental product including this three-dimensional object. It is an object of another aspect of the present disclosure to provide novel (meth)acrylates and monomer compositions containing the same.
- the photocurable composition includes a (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and a (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups.
- ⁇ 6> The photocurable composition according to any one of ⁇ 1> to ⁇ 5>, wherein the (meth)acrylate (B) has a molecular weight of 400 to 1,000.
- ⁇ 7> The photocurable composition according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the (meth)acrylate (A) is 5% by mass to 70% by mass of the total photopolymerizable component.
- ⁇ 8> The photocurable composition according to any one of ⁇ 1> to ⁇ 7>, wherein a total content of the (meth)acrylate (A) and the (meth)acrylate (B) is 50 mass% or more of the total photopolymerizable components.
- ⁇ 9> The photocurable composition according to any one of ⁇ 1> to ⁇ 8>, having a viscosity of 5 mPa ⁇ s to 50,000 mPa ⁇ s as measured with an E-type viscometer at 25°C and 5 rpm.
- the total work of fracture as measured using a test piece having a length of 39 mm, a width of 8 mm and a thickness of 4 mm is 250 J/ m2 or more
- the test piece was prepared by irradiating a photocurable composition with visible light having a wavelength of 405 nm at an irradiation dose of 11 mJ/ cm2 to form a cured layer having a thickness of 50 ⁇ m, and laminating the cured layer in the thickness direction to form a shaped object having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm.
- ⁇ 11> The photocurable composition according to any one of ⁇ 1> to ⁇ 10>, which is for use in stereolithography.
- ⁇ 12> The photocurable composition according to any one of ⁇ 1> to ⁇ 11>, which is used for producing a dental product.
- ⁇ 13> A three-dimensional object which is a cured product of the photocurable composition according to ⁇ 1>.
- ⁇ 14> A dental product comprising the three-dimensional object according to ⁇ 13>.
- X 1A and X 2A are urethane bonds
- R 1A is a monovalent organic group
- R 2A and R 3A are each independently a divalent organic group
- R 4A is a methyl group or a hydrogen atom
- n A is 0 or 1.
- n A is 0, at least one of R 1A or R 3A has a ring structure, and when n A is 1, at least one of R 1A , R 2A or R 3A has a ring structure.
- the (meth)acrylate according to ⁇ 15> which is represented by the following general formula (A-1a-1):
- R 1A2 is a monovalent organic group
- R 2A2 and R 3A2 are each independently a divalent organic group
- R 4A2 is a methyl group or a hydrogen atom
- at least one of R 1A2 , R 2A2 and R 3A2 has a ring structure.
- a monomer composition comprising the (meth)acrylate according to ⁇ 15> or ⁇ 16>.
- ⁇ 18> The monomer composition according to ⁇ 17>, which is for use in stereolithography.
- ⁇ 19> The monomer composition according to ⁇ 17> or ⁇ 18>, which is used for producing a dental product.
- a photocurable composition suitable for obtaining a three-dimensional object having excellent toughness, a three-dimensional object obtained from this photocurable composition, and a dental product including the three-dimensional object.
- a novel (meth)acrylate and a monomer composition containing the same are provided.
- FIG. 2 is a diagram showing the shape of a test piece used in a fastening/detachment test in the examples.
- a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower and upper limits.
- (meth)acrylic is a concept that includes both acrylic and methacrylic
- (meth)acryloyl is a concept that includes both acryloyl and methacryloyl
- (meth)acrylate is a concept that includes both acrylate and methacrylate.
- urethane bond refers to a bond represented by --NHC(.dbd.O)O--.
- the photocurable composition according to the present disclosure includes a photopolymerizable component and a photopolymerization initiator,
- the photopolymerizable component includes a (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and a (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups.
- a three-dimensional object formed using the photocurable composition of the present disclosure which contains, as photopolymerizable components, a (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and a (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups, exhibits superior toughness compared to a three-dimensional object formed using a photocurable composition that does not satisfy the above conditions.
- a three-dimensional object formed using the photocurable composition of the present disclosure exhibits excellent toughness while maintaining good bending strength and bending modulus of elasticity.
- the (meth)acrylate (A) contained in the photocurable composition of the present disclosure is not particularly limited as long as it is a compound having one or more urethane bonds and one (meth)acryloyl group.
- the number of urethane bonds contained in the (meth)acrylate (A) is not particularly limited as long as it is 1 or more. From the viewpoint of improving the toughness of the three-dimensional object, the number of urethane bonds contained in the (meth)acrylate (A) is preferably 1 or more.
- the number of urethane bonds contained in the (meth)acrylate (A) is preferably 3 or less, and more preferably 2 or less.
- the (meth)acrylate (A) preferably contains at least one ring structure.
- the number of ring structures may be selected from 1 to 5, and is preferably 1 to 3. Examples of the ring structure include an alicyclic structure and an aromatic ring structure.
- the (meth)acrylate (A) may be a compound represented by the following general formula (A-1):
- X 1A and X 2A are urethane bonds
- R 1A is a monovalent organic group
- R 2A and R 3A are each independently a divalent organic group
- R 4A is a methyl group or a hydrogen atom
- n A is 0 or 1.
- the orientation of the urethane bonds represented by X1A and X2A is not particularly limited. That is, the nitrogen atom constituting the urethane bond represented by X1A may be bonded to R1A or to R2A .
- the nitrogen atom constituting the urethane bond represented by X2A may be bonded to R1A or R2A , or to R3A .
- the number of carbon atoms in the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A is not particularly limited. From the viewpoint of improving the toughness of the three-dimensionally shaped object, it is preferable that the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A each independently have 2 or more carbon atoms. From the viewpoint of maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the number of carbon atoms in the monovalent or divalent organic groups represented by R 1A , R 2A, and R 3A is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less.
- the above number of carbon atoms is the total number of carbon atoms contained in the two or more hydrocarbon groups.
- the above number of carbon atoms includes the number of carbon atoms contained in the substituent.
- the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A may or may not contain an unsaturated double bond.
- the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A include groups consisting only of hydrocarbons (monovalent or divalent hydrocarbon groups) and groups consisting of hydrocarbons and a linking group.
- the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A may or may not contain a ring structure.
- Examples of the ring structure contained in the monovalent or divalent organic group represented by R 1A , R 2A and R 3A include an aromatic ring structure and an alicyclic structure.
- Specific examples of the aromatic ring structure include a benzene ring, a naphthalene ring, and a heterocycle.
- Specific examples of the alicyclic structure include a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, an isobornane structure, a norbornane structure, an adamantane structure, and a decahydronaphthalene structure.
- the ring structure may be a structure in which two or more rings are bonded via a single bond or a linking group, such as a biphenyl structure, a 2,2-diphenylpropane (bisphenol A) structure, a diphenylmethane (bisphenol F) structure, a diphenyl ether structure, or a structure in which the benzene ring contained in these structures is replaced with another ring structure.
- a linking group such as a biphenyl structure, a 2,2-diphenylpropane (bisphenol A) structure, a diphenylmethane (bisphenol F) structure, a diphenyl ether structure, or a structure in which the benzene ring contained in these structures is replaced with another ring structure.
- the ring structure contained in the monovalent or divalent organic group represented by R 1A , R 2A , and R 3A may or may not have a substituent.
- substituents include monovalent hydrocarbon groups such as a methyl group, an ethyl group, and an isopropenyl group.
- the monovalent or divalent organic group represented by R 1A , R 2A , and R 3A may contain a linear or branched hydrocarbon group and a hydrocarbon group containing a ring structure.
- a hydrocarbon group containing a ring structure may be bonded directly or via a linker as a branched chain of a linear hydrocarbon group.
- the organic group may be linear or branched.
- Examples of the organic group not containing a ring structure include monovalent or divalent hydrocarbon groups (alkyl groups or alkylene groups).
- R 1A Specific examples of the monovalent organic group represented by R 1A include aryl groups such as a phenyl group; arylalkyl groups such as a phenylmethyl (benzyl) group, a diphenylmethyl (benzhydryl) group, a phenylethyl group, a phenylpropyl group, and an isopropenyl-dimethylbenzyl group; aryloxyaryl groups such as a phenoxyphenyl group, and aryloxyarylalkyl groups such as a phenoxybenzyl group, a phenoxyethyl group, and a 2-phenoxy-3-phenoxypropyl group; arylsulfonyl groups such as a phenylsulfonyl group and a toluenesulfonyl group; and cycloalkyl groups such as a cyclohexyl group.
- aryl groups such as a phenyl group
- the monovalent organic group represented by R 1A is preferably a group represented by the following formula: In the formula, * indicates the bonding position.
- divalent organic group represented by R 2A examples include an alkylene group, an alkylenearylene group, an alkylenearylenealkylene group, an alkylarylene group, a cycloalkylene group, an alkylenecycloalkylene group, and an alkylenecycloalkylenealkylene group.
- More specific examples include a hexylene group, a 2,4,4-trimethylhexylene group, a 2,2,4-trimethylhexylene group, a 1,3- or 1,4-phenylene group, a 1,3- or 1,4-phenylenedimethylene group, a 1,3- or 1,4-phenylenediethylene group, a norbornylene group, an isobornylene group, an isophorone group, and a (1,4-cyclohexanediyl)bismethylene group.
- the divalent organic group represented by R 2A preferably contains a ring structure, and more preferably has a structure in which an alkylene group, a ring structure, and an alkylene group are bonded in this order.
- the divalent organic group represented by R 2A is preferably a divalent hydrocarbon group represented by the following formulae (a-1) to (a-7), in which * indicates the bonding position.
- divalent organic group represented by R3A examples include alkylene groups such as a dimethylene group, a trimethylene group, and a tetramethylene group; and alkylene groups having a monovalent organic group as a substituent, such as a phenoxyethyl group and a 3-phenoxypropyl group.
- At least one of the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A preferably contains a ring structure, and it is preferable that at least the monovalent organic group represented by R 1A contains a ring structure.
- n A is 0 or 1, and is preferably 1 in that the three-dimensionally shaped object has an excellent balance of bending strength, bending modulus, and toughness.
- the (meth)acrylate (A) may be a compound represented by the following general formula (A-1-1) or general formula (A-1-2).
- R 1A1 is a monovalent organic group
- R 3A1 is a divalent organic group
- R 4A1 is a methyl group or a hydrogen atom.
- R 1A2 is a monovalent organic group
- R 2A2 and R 3A2 are each independently a divalent organic group
- R 4A2 is a methyl group or a hydrogen atom
- n A2 is 0 or 1.
- R 1A1 and R 1A2 in formulae (A-1-1) and (A-1-2) are the same as the preferred aspects and specific examples of R 1A in formula (A-1).
- Preferred aspects and specific examples of R 3A1 and R 3A2 in formulae (A-1-1) and (A-1-2) are the same as the preferred aspects and specific examples of R 3A in formula (A-1).
- the preferred aspects and specific examples of R 2A2 in formula (A-1-2) are the same as the preferred aspects and specific examples of R 2A in formula (A-1).
- the molecular weight of the (meth)acrylate (A) is not particularly limited. From the viewpoint of improving the toughness of the three-dimensional object, the molecular weight of the (meth)acrylate (A) is preferably 200 or more, more preferably 210 or more, and even more preferably 230 or more. From the viewpoint of maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the molecular weight of the (meth)acrylate (A) is preferably 800 or less, more preferably 700 or less, and even more preferably 600 or less.
- the content of the (meth)acrylate (A) in the photocurable composition is not particularly limited. From the viewpoint of improving the toughness of a three-dimensional object, the content of the (meth)acrylate (A) in the photocurable composition is preferably 5 mass% or more, more preferably 6 mass% or more, and even more preferably 8 mass% or more, based on the total photopolymerizable composition.
- the content of (meth)acrylate (A) in the photocurable composition is preferably 70% by mass or less of the total photopolymerizable composition, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
- the molecular structure of the (meth)acrylate (A) can be changed by selecting the type of monomer used in the synthesis of the (meth)acrylate (A).
- Examples of the synthesis method of the (meth)acrylate (A) include the following synthesis method 1, synthesis method 2, and synthesis method 3.
- Synthesis method 1 A method of reacting a compound having a monovalent organic group represented by R 1A1 and one hydroxyl group (hereinafter also referred to as alcohol compound 1) with a compound having a divalent organic group represented by R 3A1 , one (meth)acryloyl group, and one isocyanate group (hereinafter also referred to as isocyanate compound 1). According to this method, a (meth)acrylate (A) having a structure represented by general formula (A-1-1) can be synthesized.
- Synthesis method 2 A method of reacting a compound having a divalent organic group represented by R 3A2 , one (meth)acryloyl group, and one hydroxyl group (hereinafter also referred to as alcohol compound 2) with a compound having a monovalent organic group represented by R 1A2 and one isocyanate group (hereinafter also referred to as isocyanate compound 2).
- a (meth)acrylate (A) having a structure in which n is 0 in general formula (A-1-2) can be synthesized.
- Synthesis method 3 A method of reacting a compound having a divalent organic group represented by R 3A2 , one (meth)acryloyl group, and one hydroxyl group (hereinafter also referred to as alcohol compound 3-1), a compound having a monovalent organic group represented by R 1A2 and one hydroxyl group (hereinafter also referred to as alcohol compound 3-2), and a compound having a divalent organic group represented by R 2A2 and two isocyanate groups (hereinafter also referred to as isocyanate compound 3).
- a (meth)acrylate (A) having a structure in which n is 1 in general formula (A-1-2) can be synthesized.
- the (meth)acrylate (A) obtained by Synthesis Method 3 may be in the form of a mixture of a compound having a monovalent organic group represented by two R 1A2 , a divalent organic group represented by one R 2A2 , and two urethane bonds, and a compound having a divalent organic group represented by two R 3A2 , a divalent organic group represented by one R 2A2 , two urethane bonds, and two (meth)acryloyl groups.
- the photocurable composition may contain a (meth)acrylate (A) having a structure in which n is 1 in general formula (A-1-2), a compound having a monovalent organic group represented by two R 1A2 , a divalent organic group represented by one R 2A2 , and two urethane bonds, and a compound having a divalent organic group represented by two R 3A2 , a divalent organic group represented by one R 2A2 , two urethane bonds, and two (meth)acryloyl groups.
- A methacrylate
- the (meth)acrylate (B) contained in the photocurable composition of the present disclosure is not particularly limited as long as it is a compound having two or more urethane bonds and two (meth)acryloyl groups.
- the (meth)acrylate (B) in the photocurable composition of the present disclosure the bending strength and bending modulus of the three-dimensional object can be well maintained. Furthermore, the decrease in toughness after cleaning with a solvent after stereolithography can be suppressed.
- the number of urethane bonds contained in the (meth)acrylate (B) is not particularly limited as long as it is 2 or more. From the viewpoint of maintaining the bending strength and bending modulus of elasticity of the three-dimensional object in a good condition, the number of urethane bonds contained in the (meth)acrylate (B) is preferably 2 to 4, more preferably 2 to 3, and even more preferably 2. From the viewpoint of preventing a decrease in toughness after cleaning with a solvent after stereolithography while maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, it is preferable that the (meth)acrylate (B) contains at least one ring structure. When the (meth)acrylate (B) contains at least one ring structure, the number of ring structures may be selected from 1 to 5, or may be selected from 1 to 3.
- the (meth)acrylate (B) may be a compound represented by the following general formula (B-1):
- R 1B is a divalent organic group
- R 2B and R 3B are each independently a divalent organic group
- R 4B and R 5B are each independently a methyl group or a hydrogen atom.
- the number of carbon atoms of the divalent organic group represented by R 1B in formula (B-1) is not particularly limited. From the viewpoint of improving the bending strength and bending modulus of elasticity of the three-dimensional object while preventing a decrease in toughness after cleaning with a solvent after stereolithography, it is preferable that the total number of carbon atoms in the divalent organic groups represented by R 1B is independently 5 to 20.
- the monovalent organic group represented by R 1B in formula (B-1) may or may not contain an unsaturated double bond.
- the monovalent organic group for R 1B in formula (B-1) is preferably a divalent hydrocarbon group having 5 to 20 carbon atoms, more preferably a divalent chain hydrocarbon group having 5 to 10 carbon atoms or a divalent hydrocarbon group having 6 to 18 carbon atoms and a cyclic structure, and even more preferably a divalent hydrocarbon group having 8 to 16 carbon atoms and a cyclic structure.
- divalent chain hydrocarbon groups having 5 to 10 carbon atoms examples include pentylene, hexylene, heptylene, octylene, nonylene, and decylene groups.
- cyclic structures include aromatic ring structures and alicyclic structures. Cyclic structures also include combinations of aromatic ring structures with other linking groups (e.g., divalent hydrocarbon groups), such as bisphenol A structures.
- linking groups e.g., divalent hydrocarbon groups
- Aromatic ring structures include benzene rings, naphthalene rings, bisphenol A structures, phenylphenol structures, phenoxybenzyl structures, phenylalkylene structures, and ⁇ -hydroxyphenyl structures.
- Examples of alicyclic structures include cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclohexenylene, cycloheptylene, cyclooctylene, cyclononylene, cyclodecylene, cycloundecylene, cyclododecylene, cyclotridecylene, cyclotetradecylene, cyclopentadecylene, cyclooctadecylene, cycloicosylene, bicyclohexylene, norbornylene, isobornylene, and adamantylene. Of these, norbornylene and isobornylene are preferred.
- Specific examples and preferred embodiments of the divalent organic group represented by R 1B in formula (B-1) may be the same as the specific examples and preferred embodiments of the divalent organic group represented by R 2A and R 3A in formula (A-1) described above.
- the divalent organic group represented by R 1B preferably contains a ring structure, and more preferably has a structure in which an alkylene group, a ring structure, and an alkylene group are bonded in this order.
- the divalent organic group represented by R 1B is preferably a divalent hydrocarbon group represented by the following formulae (a-1) to (a-7), in which * indicates the bonding position.
- the divalent organic groups represented by R 2B and R 3B in formula (B-1) are each preferably an alkylene group which may have a substituent, preferably an alkylene group having 4 to 10 carbon atoms, more preferably an alkylene group having 4 to 8 carbon atoms, and more preferably an alkylene group having 4 carbon atoms.
- alkylene group having 4 to 10 carbon atoms examples include a 1,4-butanediyl group, a 1,2-dimethyl-1,2-ethanediyl group, a 2-methyl-1,3-propanediyl group, a 1,5-pentanediyl group, a 1,6-hexanediyl group, a 1,7-heptanediyl group, a 1,8-octanediyl group, a 1,9-nonanediyl group, a 1,10-decanediyl group, and a 2,4,4-trimethylhexylene group.
- substituent include a phenoxy group.
- the molecular weight of the (meth)acrylate (B) is not particularly limited. From the viewpoint of preventing a decrease in toughness after cleaning with a solvent following stereolithography while maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the molecular weight of the (meth)acrylate (B) is preferably 400 to 1,000, more preferably 420 to 800, and even more preferably 450 to 700 or more.
- the content of the (meth)acrylate (B) in the photocurable composition is not particularly limited. From the viewpoint of preventing a decrease in toughness after cleaning with a solvent after photofabrication while maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the content of the (meth)acrylate (B) in the photocurable composition is preferably 10% by mass to 95% by mass, more preferably 20% by mass to 90% by mass, and even more preferably 35% by mass to 85% by mass, based on the total amount of the photopolymerizable components.
- the photocurable composition may contain only (meth)acrylate (A) and (meth)acrylate (B) as photopolymerizable components, or may further contain a photopolymerizable component other than (meth)acrylate (A) and (meth)acrylate (B).
- the photocurable composition may contain (meth)acrylate (C) other than (meth)acrylate (A) and (meth)acrylate (B).
- Examples of the (meth)acrylate (C) include (meth)acrylate (C-1) having two (meth)acryloyl groups and (meth)acrylate (C-2) having one (meth)acryloyl group. From the viewpoint of the balance between the toughness of the three-dimensional object and the bending strength and bending modulus, (meth)acrylate (C-2) is preferred.
- R3 represents a monovalent hydrocarbon group having 1 to 40 carbon atoms or a group in which a portion of the carbon atoms of the hydrocarbon group has been substituted with an oxygen atom or a nitrogen atom
- R4 and R5 each independently represent a hydrogen atom or a methyl group.
- the hydrocarbon group having 1 to 40 carbon atoms represented by R3 may or may not contain an unsaturated double bond.
- Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R3 or the group in which a part of the carbon atoms of the hydrocarbon group is substituted with an oxygen atom or a nitrogen atom include an alkylene group, an arylene group, an alkylene oxide group, and combinations thereof having 1 to 40 carbon atoms.
- Examples of the alkylene group include linear, branched, or cyclic alkyl groups.
- the number of carbon atoms in the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R3 is preferably 1 to 22, more preferably 1 to 16, and even more preferably 4 to 12.
- the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R3 may be unsubstituted or may have a substituent.
- substituents include a halogen atom, an amino group, a hydroxyl group, a carboxy group, and an epoxy group. When the substituent contains a carbon atom, this is not included in the carbon number of the hydrocarbon group.
- compounds represented by general formula (2) include propoxylated (2) neopentyl glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, glycerin di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, dimethylol-tricyclodecane di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, dioxane glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, ethoxylated hydrogenated bisphenol A di(meth)acrylate, 2-hydroxy-3-acryloyloxypropyl (meth)acrylate, polyethylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate.
- Examples of (meth)acrylates (C-2) having one (meth)acryloyl group include compounds represented by the following general formula (3) and (meth)acryloylmorpholine.
- R 1 represents a monovalent hydrocarbon group having 1 to 40 carbon atoms or a group in which some of the carbon atoms of the hydrocarbon group have been substituted with oxygen atoms or nitrogen atoms
- R 2 represents a hydrogen atom or a methyl group.
- the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 may or may not contain an unsaturated double bond.
- Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 or the group in which a part of the carbon atoms of the hydrocarbon group is substituted with an oxygen atom or a nitrogen atom include an alkyl group having 1 to 40 carbon atoms, an aryl group, a group derived from a cyclic ether compound, a group having a urethane bond, and combinations thereof.
- the alkyl group may be linear, branched, or cyclic.
- the hydrocarbon group preferably has a cyclic structure.
- the number of carbon atoms of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 is preferably 1 to 22, and more preferably 4 to 12.
- the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R1 may be unsubstituted or may have a substituent.
- substituents include a halogen atom, an amino group, a hydroxyl group, a carboxy group, and an epoxy group. When the substituent contains a carbon atom, this is not included in the carbon number of the hydrocarbon group.
- compounds represented by general formula (3) include m-phenoxybenzyl acrylate, ethoxylated-o-phenylphenol acrylate, phenoxyethyl (meth)acrylate, phenoxydiethylene glycol (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, isobornyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, tetrahydro Examples include furfuryl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, lauryl (meth)acrylate, 4-hydroxybutyl (meth)
- the content of the (meth)acrylate (C) in the photocurable composition is not particularly limited, but is preferably 1% by mass to 40% by mass, more preferably 3% by mass to 30% by mass, and even more preferably 4% by mass to 25% by mass of the entire photocurable composition.
- the total proportion of (meth)acrylate (A) and (meth)acrylate (B) is preferably 50% by mass or more of the total photopolymerizable components, more preferably 60% by mass or more, and even more preferably 70% by mass or more.
- the total proportion of (meth)acrylate (A) and (meth)acrylate (B) is preferably 50% by mass or more of the total (meth)acrylate components, more preferably 60% by mass or more, and even more preferably 70% by mass or more.
- the total proportion of (meth)acrylate (A), (meth)acrylate (B) and (meth)acrylate (C) is preferably 50% by mass or more of the total photopolymerizable components, more preferably 80% by mass or more, even more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
- the total proportion of (meth)acrylate (A), (meth)acrylate (B) and (meth)acrylate (C) is preferably 50% by mass or more of the total (meth)acrylate components, more preferably 80% by mass or more, even more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
- the photocurable composition contains a photopolymerization initiator.
- the photopolymerization initiator is not particularly limited as long as it generates radicals when irradiated with light, but it is preferable that the photopolymerization initiator generates radicals at the wavelength of light used in stereolithography.
- the wavelength of light used in stereolithography is generally 365 nm to 500 nm, preferably 365 nm to 430 nm in practical use, and more preferably 365 nm to 420 nm.
- the photopolymerization initiator include alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, ⁇ -acyloxime ester compounds, phenylglyoxylate compounds, benzyl compounds, azo compounds, diphenyl sulfide compounds, organic dye compounds, iron-phthalocyanine compounds, benzoin ether compounds, and anthraquinone compounds.
- alkylphenone compounds and acylphosphine oxide compounds are preferred.
- alkylphenone compound is 1-hydroxy-cyclohexyl-phenyl-ketone (Omnirad 184: manufactured by IGM resins).
- acylphosphine oxide compound include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Omnirad 819: manufactured by IGM resins) and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Omnirad TPO: manufactured by IGM resins).
- the photocurable composition may contain only one type of photopolymerization initiator, or may contain two or more types.
- the content of the photopolymerization initiator in the photocurable composition (total content when there are two or more types) is preferably 0.1% by mass to 10% by mass, more preferably 0.2% by mass to 5% by mass, and even more preferably 0.3% by mass to 3% by mass, of the entire photocurable composition.
- the photocurable composition may contain a compound that contains a urethane bond but does not contain a (meth)acryloyl group or a hydroxyl group (hereinafter also referred to as a urethane compound).
- the urethane compound includes a compound represented by the following general formula (U-1).
- R 1U is a divalent organic group
- R 2U and R 3U are each independently a monovalent organic group.
- Specific examples and preferred embodiments of the divalent organic group represented by R 1U are the same as the specific examples and preferred embodiments of the divalent organic group represented by R 2A in the above formula (A-1).
- Specific examples and preferred embodiments of the monovalent organic group represented by R 2U and R 3U are the same as the specific examples and preferred embodiments of the monovalent organic group represented by R 1A in formula (A-1) described above.
- the photocurable composition contains a urethane compound
- its content is preferably 0.1% by mass to 20% by mass, more preferably 0.2% by mass to 10% by mass, and even more preferably 1% by mass to 5% by mass, of the entire photocurable composition.
- the inclusion of a urethane compound in the photocurable composition can impart plasticity to the three-dimensional object.
- the content of the urethane compound is preferably 20% by mass or less of the entire photocurable composition, more preferably 10% by mass or less, even more preferably 5% by mass or less, and particularly preferably 0% by mass (no urethane compound).
- the photocurable composition may contain components (other components) other than the photopolymerizable component, the photopolymerization initiator, and the urethane compound.
- other components include additives such as coloring materials, coupling agents, rubber agents, ion trapping agents, ion exchange agents, leveling agents, plasticizers, and antifoaming agents, and thermal polymerization initiators.
- the content thereof (the total content if there are two or more types) is preferably 0.1% by mass to 10% by mass, more preferably 0.2% by mass to 5% by mass, and even more preferably 0.3% by mass to 3% by mass of the entire photocurable composition.
- the total mass of the (meth)acrylate (A), the (meth)acrylic monomer (B) and the photopolymerization initiator is preferably 30 mass% or more, more preferably 50 mass% or more, and even more preferably 70 mass% or more, based on the total amount of the photocurable composition.
- the total mass of the (meth)acrylate (A), the (meth)acrylic monomer (B), the (meth)acrylate (C) and the photopolymerization initiator is more preferably 50 mass% or more, even more preferably 70 mass% or more, even more preferably 80 mass% or more, and even more preferably 90 mass% or more, based on the total amount of the photocurable composition.
- the photocurable composition of the present disclosure preferably has a total work of fracture of 250 J/m2 or more, as measured using a test piece made from the photocurable composition and having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm.
- a three-dimensional object made from the photocurable composition can be evaluated as exhibiting excellent toughness.
- the total work of fracture is preferably 300 J/m 2 or more, more preferably 400 J/m 2 or more, and even more preferably 500 J/m 2 or more.
- the total work of fracture may be less than or equal to 2000 J/ m2 .
- the test piece used for measuring the total work of fracture was prepared by irradiating a photocurable composition with visible light having a wavelength of 405 nm at an irradiation dose of 11 mJ/ cm2 to form a cured layer having a thickness of 50 ⁇ m, which was then laminated in the thickness direction to form a 39 mm long, 8 mm wide and 4 mm thick object.
- the object is irradiated with ultraviolet light having a wavelength of 365 nm at an irradiation dose of 10 J/ cm2 .
- the total work of fracture is measured by a fracture toughness test using a bending test in accordance with ISO 20795-1:2013. Specifically, it is measured using the method described in the Examples.
- the photocurable composition of the present disclosure preferably has a viscosity (hereinafter also simply referred to as "viscosity") measured with an E-type viscometer at 25°C and 5 rpm of 5 mPa ⁇ s to 50,000 mPa ⁇ s.
- rpm means revolutions per minute.
- the viscosity of the photocurable composition is more preferably 10 mPa ⁇ s to 30,000 mPa ⁇ s, even more preferably 20 mPa ⁇ s to 25,000 mPa ⁇ s, and even more preferably 100 mPa ⁇ s to 15,000 mPa ⁇ s.
- the photocurable composition can be suitably used in a method for producing a three-dimensional object by stereolithography.
- stereolithography is one type of three-dimensional modeling method using a 3D printer.
- the photocurable composition can be suitably used for producing dental products, and preferably can be suitably used for instruments to be worn in the oral cavity, dental models (such as dental surgery models), dental materials (such as dental restorative materials), etc. Examples of instruments to be worn in the oral cavity are described below.
- the three-dimensional object of the present disclosure is a three-dimensional object made of the photocurable composition of the present disclosure described above. More specifically, the three-dimensional object of the present disclosure is a cured product obtained by irradiating the photocurable composition with light and curing it.
- the method for producing a three-dimensional object from the photocurable composition is not particularly limited, and can be selected from known stereolithography methods.
- Stereolithography methods include liquid tank type stereolithography methods such as the SLA (Stereo Lithography Apparatus) method and the DLP (Digital Light Processing) method, and inkjet methods.
- SLA method is a method in which a photocurable composition is irradiated with spot-shaped light to form a cured product, and layers of the cured product are laminated to obtain a three-dimensional object.
- DLP method is a method in which a photocurable composition is irradiated with planar light to form a cured product, and layers of the cured product are laminated to obtain a three-dimensional object.
- An example of the inkjet method is a method in which droplets of a photocurable composition are continuously discharged from an inkjet nozzle onto a substrate, and the droplets attached to the substrate are irradiated with light to obtain a three-dimensional object.
- the method is not particularly limited.
- the three-dimensional object may be completely hardened by irradiating light using an LED lamp or the like.
- the physical properties of the three-dimensional object are not particularly limited and can be selected according to the application.
- the bending strength of the three-dimensional object is preferably 50 MPa or more, more preferably 60 MPa or more, and even more preferably 65 MPa or more.
- the flexural modulus of elasticity of the three-dimensional object is preferably 1500 MPa or more, more preferably 1700 MPa or more, and further preferably 2000 MPa or more. The bending strength and bending modulus of elasticity of the three-dimensional object are measured by the methods described in the Examples section below.
- the dental product of the present disclosure includes the three-dimensional object of the present disclosure.
- the type of dental product is not particularly limited. Specific examples include instruments to be attached to the oral cavity, dental models (such as models for dental surgery), and dental materials (such as dental restorative materials). Specific examples of devices that are worn in the oral cavity include dentures, lining materials, mouthpieces, mouthguards, splints, etc.
- the dental product of the present disclosure includes the three-dimensionally shaped object of the present disclosure, which has excellent toughness, and therefore provides an excellent fit in the user's oral cavity and excellent durability, therapeutic effect, protection from impact, and the like according to the intended use of the dental product.
- the (meth)acrylate of the present disclosure is a (meth)acrylate represented by the following general formula (A-1a).
- X 1A and X 2A are urethane bonds
- R 1A is a monovalent organic group
- R 2A and R 3A are each independently a divalent organic group
- R 4A is a methyl group or a hydrogen atom
- n A is 0 or 1.
- n A is 0, at least one of R 1A or R 3A has a ring structure, and when n A is 1, at least one of R 1A , R 2A or R 3A has a ring structure.
- the (meth)acrylate having the above structure is useful, for example, as a photopolymerizable component contained in a material for stereolithography.
- a three-dimensional object obtained using a composition containing a (meth)acrylate having the above structure exhibits superior toughness compared to a three-dimensional object obtained using a composition not containing a (meth)acrylate having the above structure.
- R 1A , R 2A and R 3A in formula (A-1a) are the same as the specific examples and preferred embodiments of R 1A , R 2A and R 3A in formula (A-1).
- the (meth)acrylate of the present disclosure may be a compound represented by the general formula (A-1a-1).
- R 1A2 is a monovalent organic group
- R 2A2 and R 3A2 are each independently a divalent organic group
- R 4A2 is a methyl group or a hydrogen atom
- at least one of R 1A2 , R 2A2 and R 3A2 has a ring structure.
- R 1A2 , R 2A2 and R 3A2 in formula (A-1a-1) are the same as the specific examples and preferred embodiments of R 1A , R 2A and R 3A in formula (A-1).
- the monomer composition of the present disclosure includes the (meth)acrylate of the present disclosure described above.
- the monomer composition can be suitably used in a method for producing a three-dimensional object by stereolithography.
- the monomer composition is suitable for use in the manufacture of dental products.
- the content of the (meth)acrylate of the present disclosure described above is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, relative to the total monomer composition, and may be 99% by mass or less.
- V216 (Meth)acrylate with the following structure (manufactured by Osaka Organic Chemical Industry Co., Ltd.), molecular weight: 215.25
- POB-A (meth)acrylate with the following structure (manufactured by Kyoeisha Chemical), molecular weight: 254.28
- A-LEN-10 (meth)acrylate with the following structure (manufactured by Shin-Nakamura Chemical Co., Ltd.), molecular weight: 268.31
- ACMO (meth)acrylate with the following structure (acryloylmorpholine, manufactured by KJ Chemicals), molecular weight: 141.17
- DA-2 Urethane compound with the following structure, molecular weight: 460.57
- DA-3 Urethane compound with the following structure, molecular weight: 422.53
- DA-4 Urethane compound with the following structure, molecular weight: 644.77
- DA-5 Urethane compound with the following structure, molecular weight: 520.63
- Omnirad 184 Photopolymerization initiator with the following structure
- OmniradTPO Photopolymerization initiator with the following structure
- the obtained photocurable composition was shaped into a size of 64 mm x 10 mm x 3.3 mm using a 3D printer (Kulzer, Cara Print 4.0) to obtain a molded object P2 (irradiation conditions: wavelength 405 nm, irradiation amount 11 mJ/cm 2 , DLP method).
- the obtained molded object P2 was immersed in isopropanol and washed for 5 minutes using an ultrasonic cleaner with an output of 60 W.
- the molded object P2 After drying the washed molded object P2 with an air blower, the molded object P2 was irradiated with ultraviolet light having a wavelength of 365 nm at an irradiation amount of 10 J/cm 2 to be fully cured. Through the above steps, a rectangular plate-shaped test piece P2 having a length of 64 mm, a width of 10 mm, and a thickness of 3.3 mm was obtained.
- the obtained photocurable composition was shaped into a size of 39 mm x 8 mm x 4 mm using a 3D printer (Kulzer, Cara Print 4.0) to obtain a molded object P1 (irradiation conditions: wavelength 405 nm, irradiation amount 11 mJ/cm 2 , DLP method).
- the obtained molded object P1 was immersed in isopropanol and washed for 5 minutes using an ultrasonic cleaner with an output of 60 W. After drying the washed molded object P1 with an air blower, the molded object P1 was irradiated with ultraviolet light having a wavelength of 365 nm at an irradiation amount of 10 J/cm 2 to be fully cured.
- a rectangular plate-shaped test piece P1 with a length of 39 mm, a width of 8 mm, and a thickness of 4 mm was obtained.
- Viscosity of Photocurable Composition The viscosity of the photocurable composition was measured using an E-type viscometer at 25° C. and 5 rpm.
- Test piece P2 (Bending strength and bending modulus of elasticity of stereolithography) Test piece P2 (hereinafter referred to as "test piece") was stored in a thermostatic water bath at 37 ⁇ 1° C. for 50 ⁇ 2 hours. Thereafter, the test piece was removed from the thermostatic water bath, and the flexural strength and flexural modulus of the removed test piece were measured in accordance with ISO20795-1:2013. These measurements were performed using a tensile tester (manufactured by Intesco Corporation) at a tensile speed of 5 ⁇ 1 mm/min.
- a bending strength of 65 MPa or more was evaluated as "AA”
- a bending strength of 50 MPa or more but less than 65 MPa was evaluated as "A”
- a bending strength of less than 50 MPa was evaluated as "B”.
- the flexural modulus was evaluated as "AA” when it was 2000 MPa or more, "A” when it was 1500 MPa or more and less than 2000 MPa, and "B” when it was less than 1500 MPa.
- test piece P1 total work of fracture in fracture toughness test by bending test
- the fracture toughness test by bending test (i.e., measurement of the total work of fracture) was performed using a tensile tester (manufactured by Intesco Corporation) at a pressing speed of 1.0 ⁇ 0.2 mm/min.
- the total work of fracture (J/ m2 ) obtained was rated as "AA” if it was 1000 or more, "A” if it was 500 or more but less than 1000, "B” if it was 400 or more but less than 500, "C” if it was 250 or more but less than 400, “D” if it was 150 or more but less than 250, and "E” if it was less than 150.
- the photocurable composition was used in a 3D printer (Kulzer, Cara Print 4.0) to obtain a molded object having the shape shown in Fig. 1 (irradiation conditions: wavelength 405 nm, irradiation dose 11 mJ/ cm2 , DLP method).
- the obtained molded object was irradiated with ultraviolet light having a wavelength of 365 nm at 10 J/ cm2 for full curing, and a test piece for the attachment/detachment test was obtained.
- FIG. 1 is a plan view of a test piece 10 used in a mounting/dismounting test and a metal member 20 arranged on a support 30.
- the test piece 10 has a main body 10A for gripping a metal member and a handle 10B for moving the test piece in the direction of the arrow.
- the depth of the test piece 10 is 10 mm.
- the metal member 20 is formed by cutting a cylinder made of SUS304 and having a diameter of 10 mm, and has a shape such that the cut portion is in contact with the support body 30.
- the depth of the metal member 20 is 10 mm.
- the test piece 10 was started from a state where it gripped the metal member 20, and was moved back and forth 10,000 times over a distance of 10 mm along the direction of the arrow.
- the test piece 10 was moved using a tensile testing device (manufactured by Intesco Corporation) at a moving speed of 120.0 ⁇ 2.0 mm/min. After 10,000 reciprocating movements, the test piece 10 was observed. Evaluation was performed according to the following criteria: if there was no change in the shape of the test piece and no cracks, it was marked as " ⁇ ”, if there was no crack but there was a change in the shape of the test piece, it was marked as " ⁇ ”, and if there was a crack, it was marked as " ⁇ ".
- the three-dimensional object exhibited superior toughness and good attachment/detachment evaluation compared to the comparative examples in which the photocurable resin contains (meth)acrylate (B) but not (meth)acrylate (A).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Polymers & Plastics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、光硬化性組成物、立体造形物、歯科用製品、(メタ)アクリレート及びモノマー組成物に関する。 The present invention relates to a photocurable composition, a three-dimensional object, a dental product, a (meth)acrylate, and a monomer composition.
近年、歯科用補綴物、マウスピースのような歯科用製品を3Dプリンタを用いた光造形法によって製造する技術が検討されている(例えば、特許文献1参照)。そこで、光造形法に使用可能であり(すなわち、光硬化性であり)、かつ歯科用製品に適した物理的特性をもつ立体造形物を形成できる材料として、(メタ)アクリレートを光重合性成分として含む組成物が注目されている。 In recent years, technology has been developed to manufacture dental products such as dental prostheses and mouthpieces by stereolithography using a 3D printer (see, for example, Patent Document 1). As a result, a composition containing a (meth)acrylate as a photopolymerizable component has attracted attention as a material that can be used in stereolithography (i.e., is photocurable) and can form a three-dimensional object with physical properties suitable for dental products.
特許文献1:特許第4160311号 Patent document 1: Patent No. 4160311
歯科用製品に適した物理的特性には、適度な範囲の靭性が含まれる。光硬化性成分として(メタ)アクリレートを含む組成物からなる立体造形物の靭性を高める手法としては、組成物に単官能の(メタ)アクリレートを配合することが考えられる。しかしながら、この手法で得られる立体造形物では歯科用製品として望ましい水準の靭性が充分に達成されておらず、さらなる改善の余地がある。 The physical properties suitable for dental products include a moderate range of toughness. One method for increasing the toughness of a three-dimensional object made of a composition containing a (meth)acrylate as a photocurable component is to blend a monofunctional (meth)acrylate into the composition. However, the three-dimensional object obtained by this method does not fully achieve the level of toughness desired for dental products, and there is room for further improvement.
上記事情に鑑み、本開示の一態様の目的は、靭性に優れる立体造形物を得るのに適した光硬化性組成物、この光硬化性組成物から得られる立体造形物、及びこの立体造形物を含む歯科用製品を提供することである。
本開示の別の一態様の目的は、新規な(メタ)アクリレート及びこれを含むモノマー組成物を提供することである。
In view of the above circumstances, an object of one aspect of the present disclosure is to provide a photocurable composition suitable for obtaining a three-dimensional object having excellent toughness, a three-dimensional object obtained from this photocurable composition, and a dental product including this three-dimensional object.
It is an object of another aspect of the present disclosure to provide novel (meth)acrylates and monomer compositions containing the same.
前記課題を解決するための具体的手段は以下のとおりである。
<1>光重合性成分及び光重合開始剤を含み、
前記光重合性成分は、1つ以上のウレタン結合及び1つの(メタ)アクリロイル基を有する(メタ)アクリレート(A)と、2つ以上のウレタン結合及び2つの(メタ)アクリロイル基を有する(メタ)アクリレート(B)と、を含む、光硬化性組成物。
<2>前記(メタ)アクリレート(A)が、以下の一般式(A-1)で表される、<1>に記載の光硬化性組成物。
式(A-1)中、X1A及びX2Aはウレタン結合であり、R1Aは1価の有機基であり、R2A及びR3Aはそれぞれ独立に2価の有機基であり、R4Aはメチル基又は水素原子であり、nAは0又は1である。
<3>前記(メタ)アクリレート(A)が、以下の一般式(A-1-1)又は一般式(A-1-2)で表される、<1>又は<2>に記載の光硬化性組成物。
式(A-1-1)中、R1A1は1価の有機基であり、R3A1は2価の有機基であり、R4A1はメチル基又は水素原子である。
式(A-1-2)中、R1A2は1価の有機基であり、R2A2は及びR3A2はそれぞれ独立に2価の有機基であり、R4A2はメチル基又は水素原子であり、nA2は0又は1である。
<4>前記(メタ)アクリレート(A)の分子量が、200~800である、<1>~<3>のいずれか1項に記載の光硬化性組成物。
<5>前記(メタ)アクリレート(B)が、以下の一般式(B-1)で表される、<1>~<4>のいずれか1項に記載の光硬化性組成物。
式(B-1)中、R1Bは2価の有機基であり、R2B及びR3Bはそれぞれ独立に2価の有機基であり、R4B及びR5Bはそれぞれ独立にメチル基又は水素原子である。
<6>前記(メタ)アクリレート(B)の分子量が、400~1000である、<1>~<5>のいずれか1項に記載の光硬化性組成物。
<7>前記(メタ)アクリレート(A)の含有量が、前記光重合性成分全体の5質量%~70質量%である、<1>~<6>のいずれか1項に記載の光硬化性組成物。
<8>前記(メタ)アクリレート(A)と前記(メタ)アクリレート(B)との合計含有量が、前記光重合性成分全体の50質量%以上である、<1>~<7>のいずれか1項に記載の光硬化性組成物。
<9>E型粘度計により25℃及び5rpmの条件で測定される粘度が、5mPa・s~50000mPa・sである、<1>~<8>のいずれか1項に記載の光硬化性組成物。<10>長さ39mm、幅8mm及び厚み4mmの試験片を用いて測定される全破壊仕事が250J/m2以上であり、
前記試験片は、波長405nmの可視光を照射量11mJ/cm2にて光硬化性組成物に照射して形成される厚み50μmの硬化層を厚み方向に積層させることによって長さ39mm、幅8mm及び厚み4mmの造形物を形成することと、
前記造形物に対して波長365nmの紫外線を照射量10J/cm2にて照射することと、を実施して作製される、<1>~<9>のいずれか1項に記載の光硬化性組成物。
<11>光造形用である、<1>~<10>のいずれか1項に記載の光硬化性組成物。
<12>歯科用製品の製造に用いられる、<1>~<11>のいずれか1項に記載の光硬化性組成物。
<13><1>に記載の光硬化性組成物の硬化物である、立体造形物。
<14><13>に記載の立体造形物を含む歯科用製品。
<15>以下の一般式(A-1a)で示される、(メタ)アクリレート。
式(A-1a)中、X1A及びX2Aはウレタン結合であり、R1Aは1価の有機基であり、R2A及びR3Aはそれぞれ独立に2価の有機基であり、R4Aはメチル基又は水素原子であり、nAは0又は1である。nAが0である場合、R1A又はR3Aの少なくとも1つは環構造を有し、nAが1である場合、R1A、R2A又はR3Aの少なくとも1つは環構造を有する。
<16>以下の一般式(A-1a-1)で示される、<15>に記載の(メタ)アクリレート。
式(A-1a-1)中、R1A2は1価の有機基であり、R2A2及びR3A2はそれぞれ独立に2価の有機基であり、R4A2はメチル基又は水素原子であり、R1A2、R2A2又はR3A2の少なくとも1つは環構造を有する。
<17><15>又は<16>に記載の(メタ)アクリレートを含む、モノマー組成物。<18>光造形用である、<17>に記載のモノマー組成物。
<19>歯科用製品の製造に用いられる、<17>又は<18>に記載のモノマー組成物。
Specific means for solving the above problems are as follows.
<1> A photopolymerizable component and a photopolymerization initiator are included,
The photocurable composition includes a (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and a (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups.
<2> The photocurable composition according to <1>, wherein the (meth)acrylate (A) is represented by the following general formula (A-1):
In formula (A-1), X 1A and X 2A are urethane bonds, R 1A is a monovalent organic group, R 2A and R 3A are each independently a divalent organic group, R 4A is a methyl group or a hydrogen atom, and n A is 0 or 1.
<3> The photocurable composition according to <1> or <2>, wherein the (meth)acrylate (A) is represented by the following general formula (A-1-1) or general formula (A-1-2):
In formula (A-1-1), R 1A1 is a monovalent organic group, R 3A1 is a divalent organic group, and R 4A1 is a methyl group or a hydrogen atom.
In formula (A-1-2), R 1A2 is a monovalent organic group, R 2A2 and R 3A2 are each independently a divalent organic group, R 4A2 is a methyl group or a hydrogen atom, and n A2 is 0 or 1.
<4> The photocurable composition according to any one of <1> to <3>, wherein the (meth)acrylate (A) has a molecular weight of 200 to 800.
<5> The photocurable composition according to any one of <1> to <4>, wherein the (meth)acrylate (B) is represented by the following general formula (B-1):
In formula (B-1), R 1B is a divalent organic group, R 2B and R 3B are each independently a divalent organic group, and R 4B and R 5B are each independently a methyl group or a hydrogen atom.
<6> The photocurable composition according to any one of <1> to <5>, wherein the (meth)acrylate (B) has a molecular weight of 400 to 1,000.
<7> The photocurable composition according to any one of <1> to <6>, wherein the content of the (meth)acrylate (A) is 5% by mass to 70% by mass of the total photopolymerizable component.
<8> The photocurable composition according to any one of <1> to <7>, wherein a total content of the (meth)acrylate (A) and the (meth)acrylate (B) is 50 mass% or more of the total photopolymerizable components.
<9> The photocurable composition according to any one of <1> to <8>, having a viscosity of 5 mPa·s to 50,000 mPa·s as measured with an E-type viscometer at 25°C and 5 rpm. <10> The total work of fracture as measured using a test piece having a length of 39 mm, a width of 8 mm and a thickness of 4 mm is 250 J/ m2 or more,
The test piece was prepared by irradiating a photocurable composition with visible light having a wavelength of 405 nm at an irradiation dose of 11 mJ/ cm2 to form a cured layer having a thickness of 50 μm, and laminating the cured layer in the thickness direction to form a shaped object having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm.
and irradiating the shaped object with ultraviolet light having a wavelength of 365 nm at an irradiation dose of 10 J/ cm2 .
<11> The photocurable composition according to any one of <1> to <10>, which is for use in stereolithography.
<12> The photocurable composition according to any one of <1> to <11>, which is used for producing a dental product.
<13> A three-dimensional object which is a cured product of the photocurable composition according to <1>.
<14> A dental product comprising the three-dimensional object according to <13>.
<15> (Meth)acrylate represented by the following general formula (A-1a):
In formula (A-1a), X 1A and X 2A are urethane bonds, R 1A is a monovalent organic group, R 2A and R 3A are each independently a divalent organic group, R 4A is a methyl group or a hydrogen atom, and n A is 0 or 1. When n A is 0, at least one of R 1A or R 3A has a ring structure, and when n A is 1, at least one of R 1A , R 2A or R 3A has a ring structure.
<16> The (meth)acrylate according to <15>, which is represented by the following general formula (A-1a-1):
In formula (A-1a-1), R 1A2 is a monovalent organic group, R 2A2 and R 3A2 are each independently a divalent organic group, R 4A2 is a methyl group or a hydrogen atom, and at least one of R 1A2 , R 2A2 and R 3A2 has a ring structure.
<17> A monomer composition comprising the (meth)acrylate according to <15> or <16>. <18> The monomer composition according to <17>, which is for use in stereolithography.
<19> The monomer composition according to <17> or <18>, which is used for producing a dental product.
本開示の一態様によれば、靭性に優れる立体造形物を得るのに適した光硬化性組成物、この光硬化性組成物から得られる立体造形物、及びこの立体造形物を含む歯科用製品が提供される。
本開示の別の一態様によれば、新規な(メタ)アクリレート及びこれを含むモノマー組成物が提供される。
According to one aspect of the present disclosure, there is provided a photocurable composition suitable for obtaining a three-dimensional object having excellent toughness, a three-dimensional object obtained from this photocurable composition, and a dental product including the three-dimensional object.
According to another aspect of the present disclosure, there is provided a novel (meth)acrylate and a monomer composition containing the same.
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念であり、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念である。
本明細書において「ウレタン結合」は-NHC(=O)O-で表される結合を指す。
In this specification, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits.
In this specification, "(meth)acrylic" is a concept that includes both acrylic and methacrylic, "(meth)acryloyl" is a concept that includes both acryloyl and methacryloyl, and "(meth)acrylate" is a concept that includes both acrylate and methacrylate.
In this specification, the term "urethane bond" refers to a bond represented by --NHC(.dbd.O)O--.
<光硬化性組成物>
本開示に係る光硬化性組成物は、光重合性成分及び光重合開始剤を含み、
前記光重合性成分は、1つ以上のウレタン結合及び1つの(メタ)アクリロイル基を有する(メタ)アクリレート(A)と、2つ以上のウレタン結合及び2つの(メタ)アクリロイル基を有する(メタ)アクリレート(B)と、を含む。
<Photocurable composition>
The photocurable composition according to the present disclosure includes a photopolymerizable component and a photopolymerization initiator,
The photopolymerizable component includes a (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and a (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups.
後述する実施例に示すように、光重合性成分として1つ以上のウレタン結合及び1つの(メタ)アクリロイル基を有する(メタ)アクリレート(A)と、2つ以上のウレタン結合及び2つの(メタ)アクリロイル基を有する(メタ)アクリレート(B)と、を含む本開示の光硬化性組成物を用いて形成した立体造形物は、上記条件を満たさない光硬化性組成物を用いて形成した立体造形物に比べて優れた靭性を示す。さらに、光硬化性組成物を用いて得られる立体造形物の靭性が向上すると曲げ強度及び曲げ弾性率が低下する傾向にあるが、本開示に係る光硬化性組成物を用いて形成した立体造形物は、曲げ強度及び曲げ弾性率を良好に維持しつつ、優れた靭性を示す。 As shown in the examples described below, a three-dimensional object formed using the photocurable composition of the present disclosure, which contains, as photopolymerizable components, a (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and a (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups, exhibits superior toughness compared to a three-dimensional object formed using a photocurable composition that does not satisfy the above conditions. Furthermore, while there is a tendency for the bending strength and bending modulus of elasticity of a three-dimensional object obtained using a photocurable composition to decrease as the toughness of the three-dimensional object improves, a three-dimensional object formed using the photocurable composition of the present disclosure exhibits excellent toughness while maintaining good bending strength and bending modulus of elasticity.
((メタ)アクリレート(A))
本開示の光硬化性組成物に含まれる(メタ)アクリレート(A)は、1つ以上のウレタン結合及び1つの(メタ)アクリロイル基を有する化合物であれば特に制限されない。
(メタ)アクリレート(A)に含まれるウレタン結合の数は、1以上であれば特に制限されない。
立体造形物の靭性を向上させる観点からは、(メタ)アクリレート(A)に含まれるウレタン結合の数は1以上であることが好ましい。
立体造形物の曲げ強度及び曲げ弾性率を良好に維持する観点からは、(メタ)アクリレート(A)に含まれるウレタン結合の数は3以下であることが好ましく、2以下であることがより好ましい。
立体造形物の靭性を向上させる観点からは、(メタ)アクリレート(A)は少なくとも1つの環構造を含むことが好ましい。(メタ)アクリレート(A)が少なくとも1つの環構造を含む場合、環構造の数は1~5から選択してもよく、1~3であることが好ましい。環構造としては脂環構造、芳香環構造が挙げられる。
((Meth)acrylate (A))
The (meth)acrylate (A) contained in the photocurable composition of the present disclosure is not particularly limited as long as it is a compound having one or more urethane bonds and one (meth)acryloyl group.
The number of urethane bonds contained in the (meth)acrylate (A) is not particularly limited as long as it is 1 or more.
From the viewpoint of improving the toughness of the three-dimensional object, the number of urethane bonds contained in the (meth)acrylate (A) is preferably 1 or more.
From the viewpoint of maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the number of urethane bonds contained in the (meth)acrylate (A) is preferably 3 or less, and more preferably 2 or less.
From the viewpoint of improving the toughness of the three-dimensional object, the (meth)acrylate (A) preferably contains at least one ring structure. When the (meth)acrylate (A) contains at least one ring structure, the number of ring structures may be selected from 1 to 5, and is preferably 1 to 3. Examples of the ring structure include an alicyclic structure and an aromatic ring structure.
(メタ)アクリレート(A)は、以下の一般式(A-1)で表される化合物であってもよい。 The (meth)acrylate (A) may be a compound represented by the following general formula (A-1):
式(A-1)中、X1A及びX2Aはウレタン結合であり、R1Aは1価の有機基であり、R2A及びR3Aはそれぞれ独立に2価の有機基であり、R4Aはメチル基又は水素原子であり、nAは0又は1である。 In formula (A-1), X 1A and X 2A are urethane bonds, R 1A is a monovalent organic group, R 2A and R 3A are each independently a divalent organic group, R 4A is a methyl group or a hydrogen atom, and n A is 0 or 1.
X1A及びX2Aで表されるウレタン結合の向きは、特に制限されない。すなわち、X1Aで表されるウレタン結合を構成する窒素原子は、R1Aと結合していても、R2Aと結合していてもよい。X2Aで表されるウレタン結合を構成する窒素原子は、R1A又はR2Aと結合していても、R3Aと結合していてもよい。 The orientation of the urethane bonds represented by X1A and X2A is not particularly limited. That is, the nitrogen atom constituting the urethane bond represented by X1A may be bonded to R1A or to R2A . The nitrogen atom constituting the urethane bond represented by X2A may be bonded to R1A or R2A , or to R3A .
R1A、R2A及びR3Aで表される1価又は2価の有機基の炭素原子数は、特に制限されない。
立体造形物の靭性を向上させる観点からは、R1A、R2A及びR3Aで表される1価又は2価の有機基の炭素原子数は、それぞれ独立に、2以上であることが好ましい。
立体造形物の曲げ強度及び曲げ弾性率を良好に維持する観点からは、R1A、R2A及びR3Aで表される1価又は2価の有機基の炭素原子数は、それぞれ独立に、30以下であることが好ましく、20以下であることがより好ましく、15以下であることがさらに好ましい。
R1A、R2A及びR3Aで表される1価又は2価の有機基が2つ以上の炭化水素基を含む場合、上記炭素原子数は2つ以上の炭化水素基に含まれる炭素原子数の合計である。
R1A、R2A及びR3Aで表される1価又は2価の有機基が置換基を有する場合、上記炭素原子数は置換基に含まれる炭素原子数を含む。
R1A、R2A及びR3Aで表される1価又は2価の有機基は、不飽和二重結合を含んでいてもよく、不飽和二重結合を含んでいなくてもよい。
The number of carbon atoms in the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A is not particularly limited.
From the viewpoint of improving the toughness of the three-dimensionally shaped object, it is preferable that the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A each independently have 2 or more carbon atoms.
From the viewpoint of maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the number of carbon atoms in the monovalent or divalent organic groups represented by R 1A , R 2A, and R 3A is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less.
When the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A contain two or more hydrocarbon groups, the above number of carbon atoms is the total number of carbon atoms contained in the two or more hydrocarbon groups.
When the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A have a substituent, the above number of carbon atoms includes the number of carbon atoms contained in the substituent.
The monovalent or divalent organic groups represented by R 1A , R 2A and R 3A may or may not contain an unsaturated double bond.
R1A、R2A及びR3Aで表される1価又は2価の有機基としては、炭化水素のみからなる基(1価又は2価の炭化水素基)、及び、炭化水素と連結基とからなる基が挙げられる。
連結基としてはエーテル基(-O-)、スルホニル基(-SO2-)、エステル基(-C(=O)O-)、カルボニル基(-C(=O)-)等が挙げられ、エーテル基が好ましい。
R1A、R2A及びR3Aで表される1価又は2価の有機基は、環構造を含んでいても、環構造を含んでいなくてもよい。
The monovalent or divalent organic groups represented by R 1A , R 2A and R 3A include groups consisting only of hydrocarbons (monovalent or divalent hydrocarbon groups) and groups consisting of hydrocarbons and a linking group.
Examples of the linking group include an ether group (-O-), a sulfonyl group (-SO 2 -), an ester group (-C(=O)O-), a carbonyl group (-C(=O)-), etc., with the ether group being preferred.
The monovalent or divalent organic groups represented by R 1A , R 2A and R 3A may or may not contain a ring structure.
R1A、R2A及びR3Aで表される1価又は2価の有機基に含まれる環構造としては、芳香環構造及び脂環構造が挙げられる。
芳香環構造として具体的には、ベンゼン環、ナフタレン環、複素環等が挙げられる。
脂環構造等として具体的にはシクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、イソボルナン構造、ノルボルナン構造、アダマンタン構造、デカヒドロナフタレン構造等が挙げられる。
環構造は、ビフェニル構造、2,2-ジフェニルプロパン(ビスフェノールA)構造、ジフェニルメタン(ビスフェノールF)構造、ジフェニルエーテル構造、これらに含まれるベンゼン環を他の環構造に置き換えた構造のような、2つ以上の環が単結合又は連結基を介して結合した状態であってもよい。
Examples of the ring structure contained in the monovalent or divalent organic group represented by R 1A , R 2A and R 3A include an aromatic ring structure and an alicyclic structure.
Specific examples of the aromatic ring structure include a benzene ring, a naphthalene ring, and a heterocycle.
Specific examples of the alicyclic structure include a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, an isobornane structure, a norbornane structure, an adamantane structure, and a decahydronaphthalene structure.
The ring structure may be a structure in which two or more rings are bonded via a single bond or a linking group, such as a biphenyl structure, a 2,2-diphenylpropane (bisphenol A) structure, a diphenylmethane (bisphenol F) structure, a diphenyl ether structure, or a structure in which the benzene ring contained in these structures is replaced with another ring structure.
R1A、R2A及びR3Aで表される1価又は2価の有機基に含まれる環構造は、置換基を有していても、有していなくてもよい。置換基として具体的には、メチル基、エチル基、イソプロペニル基等の1価の炭化水素基が挙げられる。 The ring structure contained in the monovalent or divalent organic group represented by R 1A , R 2A , and R 3A may or may not have a substituent. Specific examples of the substituent include monovalent hydrocarbon groups such as a methyl group, an ethyl group, and an isopropenyl group.
R1A、R2A及びR3Aで表される1価又は2価の有機基は、直鎖状又は分岐鎖状の炭化水素基と環構造を含む炭化水素基とを含んでもよい。例えば、直鎖状の炭化水素基の分岐鎖として環構造を含む炭化水素基が直接又は連結器を介して結合していてもよい。 The monovalent or divalent organic group represented by R 1A , R 2A , and R 3A may contain a linear or branched hydrocarbon group and a hydrocarbon group containing a ring structure. For example, a hydrocarbon group containing a ring structure may be bonded directly or via a linker as a branched chain of a linear hydrocarbon group.
R1A、R2A及びR3Aで表される1価又は2価の有機基が環構造を含まない場合、有機基は直鎖状であっても分岐していてもよい。環構造を含まない有機基としては、1価又は2価の炭化水素基(アルキル基又はアルキレン基)が挙げられる。 When the monovalent or divalent organic groups represented by R 1A , R 2A, and R 3A do not contain a ring structure, the organic group may be linear or branched. Examples of the organic group not containing a ring structure include monovalent or divalent hydrocarbon groups (alkyl groups or alkylene groups).
R1Aで表される1価の有機基として具体的には、フェニル基等のアリール基;フェニルメチル(ベンジル)基、ジフェニルメチル(ベンズヒドリル)基、フェニルエチル基、フェニルプロピル基、イソプロペニル-ジメチルベンジル基等のアリールアルキル基;フェノキシフェニル基等のアリールオキシアリール基、フェノキシベンジル基、フェノキシエチル基、2-フェノキシ-3-フェノキシプロピル基等のアリールオキシアリールアルキル基;フェニルスルホニル基、トルエンスルホニル基等のアリールスルホニル基;及びシクロヘキシル基等のシクロアルキル基が挙げられる。 Specific examples of the monovalent organic group represented by R 1A include aryl groups such as a phenyl group; arylalkyl groups such as a phenylmethyl (benzyl) group, a diphenylmethyl (benzhydryl) group, a phenylethyl group, a phenylpropyl group, and an isopropenyl-dimethylbenzyl group; aryloxyaryl groups such as a phenoxyphenyl group, and aryloxyarylalkyl groups such as a phenoxybenzyl group, a phenoxyethyl group, and a 2-phenoxy-3-phenoxypropyl group; arylsulfonyl groups such as a phenylsulfonyl group and a toluenesulfonyl group; and cycloalkyl groups such as a cyclohexyl group.
R1Aで表される1価の有機基としては、以下の式で示される基が好ましい。式中の*は結合位置を示す。 The monovalent organic group represented by R 1A is preferably a group represented by the following formula: In the formula, * indicates the bonding position.
R2Aで表される2価の有機基として具体的には、アルキレン基、アルキレンアリーレン基、アルキレンアリーレンアルキレン基、アルキルアリーレン基、シクロアルキレン基、アルキレンシクロアルキレン基、アルキレンシクロアルキレンアルキレン基等が挙げられる。より具体的には、ヘキシレン基、2,4,4-トリメチルヘキシレン基、2,2,4-トリメチルヘキシレン基、1,3-又は1,4-フェニレン基、1,3-又は1,4-フェニレンジメチレン基、1,3-又は1,4-フェニレンジエチレン基、ノルボルニレン基、イソボルニレン基、イソホロン基、(1,4-シクロヘキサンジイル)ビスメチレン基等が挙げられる。R2Aで表される2価の有機基としては、環構造を含むことが好ましく、アルキレン基、環構造及びアルキレン基がこの順に結合した構造であることがより好ましい。 Specific examples of the divalent organic group represented by R 2A include an alkylene group, an alkylenearylene group, an alkylenearylenealkylene group, an alkylarylene group, a cycloalkylene group, an alkylenecycloalkylene group, and an alkylenecycloalkylenealkylene group. More specific examples include a hexylene group, a 2,4,4-trimethylhexylene group, a 2,2,4-trimethylhexylene group, a 1,3- or 1,4-phenylene group, a 1,3- or 1,4-phenylenedimethylene group, a 1,3- or 1,4-phenylenediethylene group, a norbornylene group, an isobornylene group, an isophorone group, and a (1,4-cyclohexanediyl)bismethylene group. The divalent organic group represented by R 2A preferably contains a ring structure, and more preferably has a structure in which an alkylene group, a ring structure, and an alkylene group are bonded in this order.
R2Aで表される2価の有機基としては、下記式(a-1)~(a-7)で表される2価の炭化水素基以下の式で示される基が好ましい。式中の*は結合位置を示す。 The divalent organic group represented by R 2A is preferably a divalent hydrocarbon group represented by the following formulae (a-1) to (a-7), in which * indicates the bonding position.
R3Aで表される2価の有機基として具体的には、ジメチレン基、トリメチレン基、テトラメチレン基等のアルキレン基;及びフェノキシエチル基、3-フェノキシプロピル基等の1価の有機基を置換基として有するアルキレン基が挙げられる。 Specific examples of the divalent organic group represented by R3A include alkylene groups such as a dimethylene group, a trimethylene group, and a tetramethylene group; and alkylene groups having a monovalent organic group as a substituent, such as a phenoxyethyl group and a 3-phenoxypropyl group.
R1A、R2A及びR3Aで表される1価又は2価の有機基のうち、少なくとも1つは環構造を含むことが好ましく、少なくともR1Aで表される1価の有機基が環構造を含むことが好ましい。
式(A-1)中、nAは0又は1であるが、立体造形物の曲げ強度、曲げ弾性率、靭性のバランスに優れることから、nAは1であることが好ましい。
At least one of the monovalent or divalent organic groups represented by R 1A , R 2A and R 3A preferably contains a ring structure, and it is preferable that at least the monovalent organic group represented by R 1A contains a ring structure.
In formula (A-1), n A is 0 or 1, and is preferably 1 in that the three-dimensionally shaped object has an excellent balance of bending strength, bending modulus, and toughness.
(メタ)アクリレート(A)は、以下の一般式(A-1-1)又は一般式(A-1-2)で表される化合物であってもよい。 The (meth)acrylate (A) may be a compound represented by the following general formula (A-1-1) or general formula (A-1-2).
式(A-1-1)中、R1A1は1価の有機基であり、R3A1は2価の有機基であり、R4A1はメチル基又は水素原子である。 In formula (A-1-1), R 1A1 is a monovalent organic group, R 3A1 is a divalent organic group, and R 4A1 is a methyl group or a hydrogen atom.
式(A-1-2)中、R1A2は1価の有機基であり、R2A2は及びR3A2はそれぞれ独立に2価の有機基であり、R4A2はメチル基又は水素原子であり、nA2は0又は1である。 In formula (A-1-2), R 1A2 is a monovalent organic group, R 2A2 and R 3A2 are each independently a divalent organic group, R 4A2 is a methyl group or a hydrogen atom, and n A2 is 0 or 1.
一般式(A-1-1)及び一般式(A-1-2)におけるR1A1及びR1A2の好ましい態様及び具体例は、一般式(A-1)におけるR1Aの好ましい態様及び具体例と同様である。
一般式(A-1-1)及び一般式(A-1-2)におけるR3A1及びR3A2の好ましい態様及び具体例は、一般式(A-1)におけるR3Aの好ましい態様及び具体例と同様である。
一般式(A-1-2)におけるR2A2の好ましい態様及び具体例は、一般式(A-1)におけるR2Aの好ましい態様及び具体例と同様である。
Preferred aspects and specific examples of R 1A1 and R 1A2 in formulae (A-1-1) and (A-1-2) are the same as the preferred aspects and specific examples of R 1A in formula (A-1).
Preferred aspects and specific examples of R 3A1 and R 3A2 in formulae (A-1-1) and (A-1-2) are the same as the preferred aspects and specific examples of R 3A in formula (A-1).
The preferred aspects and specific examples of R 2A2 in formula (A-1-2) are the same as the preferred aspects and specific examples of R 2A in formula (A-1).
(メタ)アクリレート(A)の分子量は、特に制限されない。
立体造形物の靭性を向上させる観点からは、(メタ)アクリレート(A)の分子量は200以上であることが好ましく、210以上であることがより好ましく、230以上であることがさらに好ましい。
立体造形物の曲げ強度及び曲げ弾性率を良好に維持する観点からは、(メタ)アクリレート(A)の分子量は800以下であることが好ましく、700以下であることがより好ましく、600以下であることがさらに好ましい。
The molecular weight of the (meth)acrylate (A) is not particularly limited.
From the viewpoint of improving the toughness of the three-dimensional object, the molecular weight of the (meth)acrylate (A) is preferably 200 or more, more preferably 210 or more, and even more preferably 230 or more.
From the viewpoint of maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the molecular weight of the (meth)acrylate (A) is preferably 800 or less, more preferably 700 or less, and even more preferably 600 or less.
光硬化性組成物中の(メタ)アクリレート(A)の含有量は、特に制限されない。
立体造形物の靭性を向上させる観点からは、光硬化性組成物中の(メタ)アクリレート(A)の含有量は、光重合性全体に対して5質量%以上であることが好ましく、6質量%以上であることがより好ましく、8質量%以上であることがさらに好ましい。
The content of the (meth)acrylate (A) in the photocurable composition is not particularly limited.
From the viewpoint of improving the toughness of a three-dimensional object, the content of the (meth)acrylate (A) in the photocurable composition is preferably 5 mass% or more, more preferably 6 mass% or more, and even more preferably 8 mass% or more, based on the total photopolymerizable composition.
立体造形物の曲げ強度及び曲げ弾性率を良好に維持する観点からは、光硬化性組成物中の(メタ)アクリレート(A)の含有量は、光重合性全体の70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。 From the viewpoint of maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the content of (meth)acrylate (A) in the photocurable composition is preferably 70% by mass or less of the total photopolymerizable composition, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
((メタ)アクリレート(A)の合成方法)
(メタ)アクリレート(A)の分子構造は、(メタ)アクリレート(A)の合成に使用するモノマーの種類を選択することによって変更することができる。(メタ)アクリレート(A)の合成方法としては、下記の合成方法1、合成方法2及び合成方法3が挙げられる。
(Method of synthesizing (meth)acrylate (A))
The molecular structure of the (meth)acrylate (A) can be changed by selecting the type of monomer used in the synthesis of the (meth)acrylate (A). Examples of the synthesis method of the (meth)acrylate (A) include the following synthesis method 1, synthesis method 2, and synthesis method 3.
合成方法1:R1A1で表される1価の有機基及び1つの水酸基を有する化合物(以下、アルコール化合物1ともいう)と、R3A1で表される2価の有機基、1つの(メタ)アクリロイル基及び1つのイソシアネート基を有する化合物(以下、イソシアネート化合
物1ともいう)と、を反応させる方法。この方法によれば、一般式(A-1-1)で表される構造の(メタ)アクリレート(A)を合成することができる。
Synthesis method 1: A method of reacting a compound having a monovalent organic group represented by R 1A1 and one hydroxyl group (hereinafter also referred to as alcohol compound 1) with a compound having a divalent organic group represented by R 3A1 , one (meth)acryloyl group, and one isocyanate group (hereinafter also referred to as isocyanate compound 1). According to this method, a (meth)acrylate (A) having a structure represented by general formula (A-1-1) can be synthesized.
合成方法2:R3A2で表される2価の有機基、1つの(メタ)アクリロイル基及び1つの水酸基を有する化合物(以下、アルコール化合物2ともいう)と、R1A2で表される1価の有機基及び1つのイソシアネート基を有する化合物(以下、イソシアネート化合物2ともいう)と、を反応させる方法。この方法によれば、一般式(A-1-2)においてnが0である構造の(メタ)アクリレート(A)を合成することができる。 Synthesis method 2: A method of reacting a compound having a divalent organic group represented by R 3A2 , one (meth)acryloyl group, and one hydroxyl group (hereinafter also referred to as alcohol compound 2) with a compound having a monovalent organic group represented by R 1A2 and one isocyanate group (hereinafter also referred to as isocyanate compound 2). According to this method, a (meth)acrylate (A) having a structure in which n is 0 in general formula (A-1-2) can be synthesized.
合成方法3:R3A2で表される2価の有機基、1つの(メタ)アクリロイル基及び1つの水酸基を有する化合物(以下、アルコール化合物3-1ともいう)、R1A2で表される1価の有機基及び1つの水酸基を有する化合物(以下、アルコール化合物3-2ともいう)と、R2A2で表される2価の有機基及び2つのイソシアネート基を有する化合物(以下、イソシアネート化合物3ともいう)と、と、を反応させる方法。この方法によれば、一般式(A-1-2)においてnが1である構造の(メタ)アクリレート(A)を合成することができる。 Synthesis method 3: A method of reacting a compound having a divalent organic group represented by R 3A2 , one (meth)acryloyl group, and one hydroxyl group (hereinafter also referred to as alcohol compound 3-1), a compound having a monovalent organic group represented by R 1A2 and one hydroxyl group (hereinafter also referred to as alcohol compound 3-2), and a compound having a divalent organic group represented by R 2A2 and two isocyanate groups (hereinafter also referred to as isocyanate compound 3). According to this method, a (meth)acrylate (A) having a structure in which n is 1 in general formula (A-1-2) can be synthesized.
合成方法3で得られる(メタ)アクリレート(A)は、2つのR1A2で表される1価の有機基、1つのR2A2で表される2価の有機基、及び2つのウレタン結合を有する化合物と、2つのR3A2で表される2価の有機基、1つのR2A2で表される2価の有機基、2つのウレタン結合及び2つの(メタ)アクリロイル基を有する化合物と、の混合物の状態であってもよい。 The (meth)acrylate (A) obtained by Synthesis Method 3 may be in the form of a mixture of a compound having a monovalent organic group represented by two R 1A2 , a divalent organic group represented by one R 2A2 , and two urethane bonds, and a compound having a divalent organic group represented by two R 3A2 , a divalent organic group represented by one R 2A2 , two urethane bonds, and two (meth)acryloyl groups.
すなわち、光硬化性組成物は、一般式(A-1-2)においてnが1である構造の(メタ)アクリレート(A)と、2つのR1A2で表される1価の有機基、1つのR2A2で表される2価の有機基、及び2つのウレタン結合を有する化合物と、2つのR3A2で表される2価の有機基、1つのR2A2で表される2価の有機基、2つのウレタン結合及び2つの(メタ)アクリロイル基を有する化合物と、を含んでいてもよい。 That is, the photocurable composition may contain a (meth)acrylate (A) having a structure in which n is 1 in general formula (A-1-2), a compound having a monovalent organic group represented by two R 1A2 , a divalent organic group represented by one R 2A2 , and two urethane bonds, and a compound having a divalent organic group represented by two R 3A2 , a divalent organic group represented by one R 2A2 , two urethane bonds, and two (meth)acryloyl groups.
合成方法1で使用されるアルコール化合物1及びイソシアネート化合物1と、合成される(メタ)アクリレート(A)の具体例を下記に示す。 Specific examples of the alcohol compound 1 and isocyanate compound 1 used in synthesis method 1 and the (meth)acrylate (A) synthesized are shown below.
合成方法2で使用されるアルコール化合物2及びイソシアネート化合物2と、合成される(メタ)アクリレート(A)の具体例を下記に示す。 Specific examples of the alcohol compound 2 and isocyanate compound 2 used in synthesis method 2 and the (meth)acrylate (A) synthesized are shown below.
合成方法3で使用されるアルコール化合物3-1、アルコール化合物3-2及びイソシアネート化合物3と、合成される(メタ)アクリレート(A)の具体例を下記に示す。 Specific examples of the alcohol compound 3-1, alcohol compound 3-2, and isocyanate compound 3 used in synthesis method 3, and the (meth)acrylate (A) synthesized are shown below.
((メタ)アクリレート(B))
本開示の光硬化性組成物に含まれる(メタ)アクリレート(B)は、2つ以上のウレタン結合及び2つの(メタ)アクリロイル基を有する化合物であれば特に制限されない。
本開示の光硬化性組成物に(メタ)アクリレート(B)が含まれることで、立体造形物の曲げ強度及び曲げ弾性率を良好に維持することができる。さらに、光造形後の溶媒による洗浄後の靭性低下も抑制することができる。
((Meth)acrylate (B))
The (meth)acrylate (B) contained in the photocurable composition of the present disclosure is not particularly limited as long as it is a compound having two or more urethane bonds and two (meth)acryloyl groups.
By including the (meth)acrylate (B) in the photocurable composition of the present disclosure, the bending strength and bending modulus of the three-dimensional object can be well maintained. Furthermore, the decrease in toughness after cleaning with a solvent after stereolithography can be suppressed.
(メタ)アクリレート(B)に含まれるウレタン結合の数は、2以上であれば特に制限されない。
立体造形物の曲げ強度及び曲げ弾性率を良好に維持する観点からは、(メタ)アクリレート(B)に含まれるウレタン結合の数は2~4であることが好ましく、2~3であることがより好ましく、2であることがさらに好ましい。
立体造形物の曲げ強度及び曲げ弾性率を良好に維持しつつ、光造形後の溶媒による洗浄後の靭性低下を防ぐ観点からは、(メタ)アクリレート(B)は少なくとも1つの環構造を含むことが好ましい。(メタ)アクリレート(B)が少なくとも1つの環構造を含む場合、環構造の数は1~5から選択してもよく、1~3から選択してもよい。
The number of urethane bonds contained in the (meth)acrylate (B) is not particularly limited as long as it is 2 or more.
From the viewpoint of maintaining the bending strength and bending modulus of elasticity of the three-dimensional object in a good condition, the number of urethane bonds contained in the (meth)acrylate (B) is preferably 2 to 4, more preferably 2 to 3, and even more preferably 2.
From the viewpoint of preventing a decrease in toughness after cleaning with a solvent after stereolithography while maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, it is preferable that the (meth)acrylate (B) contains at least one ring structure. When the (meth)acrylate (B) contains at least one ring structure, the number of ring structures may be selected from 1 to 5, or may be selected from 1 to 3.
(メタ)アクリレート(B)は、以下の一般式(B-1)で表される化合物であってもよい。
式(B-1)中、R1Bは2価の有機基であり、R2B及びR3Bはそれぞれ独立に2価の2価の有機基であり、R4B及びR5Bはそれぞれ独立にメチル基又は水素原子である。 In formula (B-1), R 1B is a divalent organic group, R 2B and R 3B are each independently a divalent organic group, and R 4B and R 5B are each independently a methyl group or a hydrogen atom.
式(B-1)中のR1Bで表される2価の有機基の炭素原子数は、特に制限されない。
立体造形物の曲げ強度及び曲げ弾性率を向上させつつ、光造形後の溶媒による洗浄後の靭性低下を防ぐ観点からは、R1Bで表される2価の有機基の合計炭素原子数は、それぞれ独立に、5~20であることが好ましい。
式(B-1)中のR1Bで表される1価の有機基は、不飽和二重結合を含んでいてもよく、不飽和二重結合を含んでいなくてもよい。
The number of carbon atoms of the divalent organic group represented by R 1B in formula (B-1) is not particularly limited.
From the viewpoint of improving the bending strength and bending modulus of elasticity of the three-dimensional object while preventing a decrease in toughness after cleaning with a solvent after stereolithography, it is preferable that the total number of carbon atoms in the divalent organic groups represented by R 1B is independently 5 to 20.
The monovalent organic group represented by R 1B in formula (B-1) may or may not contain an unsaturated double bond.
式(B-1)中のR1Bにおける1価の有機基は、炭素数5~20の2価の炭化水素基であることが好ましく、炭素数5~10の2価の鎖式炭化水素基、環状構造を有する炭素数6~18の2価の炭化水素基であることがより好ましく、環状構造を有する炭素数8~16の2価の炭化水素基であることがさらに好ましい。 The monovalent organic group for R 1B in formula (B-1) is preferably a divalent hydrocarbon group having 5 to 20 carbon atoms, more preferably a divalent chain hydrocarbon group having 5 to 10 carbon atoms or a divalent hydrocarbon group having 6 to 18 carbon atoms and a cyclic structure, and even more preferably a divalent hydrocarbon group having 8 to 16 carbon atoms and a cyclic structure.
炭素数5~10の2価の鎖式炭化水素基としては、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。 Examples of divalent chain hydrocarbon groups having 5 to 10 carbon atoms include pentylene, hexylene, heptylene, octylene, nonylene, and decylene groups.
環状構造としては、芳香環構造、脂環式構造等が挙げられる。環状構造は、ビスフェノールA構造等のように、芳香環構造と他の連結基(例えば、2価の炭化水素基)との組み合わせも包含する。 Examples of cyclic structures include aromatic ring structures and alicyclic structures. Cyclic structures also include combinations of aromatic ring structures with other linking groups (e.g., divalent hydrocarbon groups), such as bisphenol A structures.
芳香環構造としては、ベンゼン環、ナフタレン環、ビスフェノールA構造、フェニルフェノール構造、フェノキシベンジル構造、フェニルアルキレン構造、α-ヒドロキシフェニル構造等が挙げられる。 Aromatic ring structures include benzene rings, naphthalene rings, bisphenol A structures, phenylphenol structures, phenoxybenzyl structures, phenylalkylene structures, and α-hydroxyphenyl structures.
脂環式構造としては、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロヘキセニレン基、シクロヘプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロウンデシレン基、シクロドデシレン基、シクロトリデシレン基、シクロテトラデシレン基、シクロペンタデシレン基、シクロオクタデシレン基、シクロイコシレン基、ビシクロへキシレン基、ノルボルニレン基、イソボルニレン基、アダマンチレン基を挙げることができる。これらのうち、ノルボルニレン基及びイソボルニレン基が好ましい。 Examples of alicyclic structures include cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclohexenylene, cycloheptylene, cyclooctylene, cyclononylene, cyclodecylene, cycloundecylene, cyclododecylene, cyclotridecylene, cyclotetradecylene, cyclopentadecylene, cyclooctadecylene, cycloicosylene, bicyclohexylene, norbornylene, isobornylene, and adamantylene. Of these, norbornylene and isobornylene are preferred.
式(B-1)中のR1Bで表される2価の有機基の具体例及び好ましい態様は、上述した式(A-1)におけるR2A及びR3Aで表される2価の有機基の具体例及び好ましい態様と同様であってもよい。 Specific examples and preferred embodiments of the divalent organic group represented by R 1B in formula (B-1) may be the same as the specific examples and preferred embodiments of the divalent organic group represented by R 2A and R 3A in formula (A-1) described above.
式(B-1)中、R1Bで表される2価の有機基は環構造を含むことが好ましく、アルキレン基、環構造及びアルキレン基がこの順に結合した構造であることがより好ましい。 In formula (B-1), the divalent organic group represented by R 1B preferably contains a ring structure, and more preferably has a structure in which an alkylene group, a ring structure, and an alkylene group are bonded in this order.
R1Bで表される2価の有機基としては、下記式(a-1)~(a-7)で表される2価の炭化水素基以下の式で示される基が好ましい。式中の*は結合位置を示す。 The divalent organic group represented by R 1B is preferably a divalent hydrocarbon group represented by the following formulae (a-1) to (a-7), in which * indicates the bonding position.
式(B-1)中のR2B及びR3Bで表される2価の有機基は、それぞれ独立に、置換基を有してもよいアルキレン基であることが好ましく、炭素数4~10のアルキレン基であることが好ましく、炭素数4~8のアルキレン基であることが好ましく、炭素数4のアルキレン基であることがより好ましい。炭素数4~10のアルキレン基としては、1,4-ブタンジイル基、1,2-ジメチル-1,2-エタンジイル基、2-メチル-1,3-プロパンジイル基、1,5-ペンタンジイル基、1,6-ヘキサンジイル基、1,7-ヘプタンジイル基、1,8-オクタンジイル基、1,9-ノナンジイル基、1,10-デカンジイル基、2,4,4-トリメチルヘキシレン基等が挙げられる。置換基としては、フェノキシ基が挙げられる。 The divalent organic groups represented by R 2B and R 3B in formula (B-1) are each preferably an alkylene group which may have a substituent, preferably an alkylene group having 4 to 10 carbon atoms, more preferably an alkylene group having 4 to 8 carbon atoms, and more preferably an alkylene group having 4 carbon atoms. Examples of the alkylene group having 4 to 10 carbon atoms include a 1,4-butanediyl group, a 1,2-dimethyl-1,2-ethanediyl group, a 2-methyl-1,3-propanediyl group, a 1,5-pentanediyl group, a 1,6-hexanediyl group, a 1,7-heptanediyl group, a 1,8-octanediyl group, a 1,9-nonanediyl group, a 1,10-decanediyl group, and a 2,4,4-trimethylhexylene group. Examples of the substituent include a phenoxy group.
(メタ)アクリレート(B)の分子量は、特に制限されない。
立体造形物の曲げ強度及び曲げ弾性率を良好に維持しつつ、光造形後の溶媒による洗浄後の靭性低下を防ぐ観点からは、(メタ)アクリレート(B)の分子量は400~1000であることが好ましく、420~800であることがより好ましく、450~700以上であることがさらに好ましい。
The molecular weight of the (meth)acrylate (B) is not particularly limited.
From the viewpoint of preventing a decrease in toughness after cleaning with a solvent following stereolithography while maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the molecular weight of the (meth)acrylate (B) is preferably 400 to 1,000, more preferably 420 to 800, and even more preferably 450 to 700 or more.
光硬化性組成物中の(メタ)アクリレート(B)の含有量は、特に制限されない。
立体造形物の曲げ強度及び曲げ弾性率を良好に維持しつつ、光造形後の溶媒による洗浄後の靭性低下を防ぐ観点からは、光硬化性組成物中の(メタ)アクリレート(B)の含有量は、光重合性成分全体に対して10質量%~95質量%であることが好ましく、20質量%~90質量%であることがより好ましく、35質量~85%質量%であることがさらに好ましい。
The content of the (meth)acrylate (B) in the photocurable composition is not particularly limited.
From the viewpoint of preventing a decrease in toughness after cleaning with a solvent after photofabrication while maintaining good bending strength and bending modulus of elasticity of the three-dimensional object, the content of the (meth)acrylate (B) in the photocurable composition is preferably 10% by mass to 95% by mass, more preferably 20% by mass to 90% by mass, and even more preferably 35% by mass to 85% by mass, based on the total amount of the photopolymerizable components.
(その他の光重合性成分)
光硬化性組成物は、光重合性成分として(メタ)アクリレート(A)及び(メタ)アクリレート(B)のみを含んでいても、(メタ)アクリレート(A)及び(メタ)アクリレート(B)に該当しない光重合性成分をさらに含んでいてもよい。例えば、光硬化性組成物は(メタ)アクリレート(A)及び(メタ)アクリレート(B)に該当しない(メタ)アクリレート(C)を含んでいてもよい。
(Other Photopolymerizable Components)
The photocurable composition may contain only (meth)acrylate (A) and (meth)acrylate (B) as photopolymerizable components, or may further contain a photopolymerizable component other than (meth)acrylate (A) and (meth)acrylate (B). For example, the photocurable composition may contain (meth)acrylate (C) other than (meth)acrylate (A) and (meth)acrylate (B).
(メタ)アクリレート(C)としては、2つの(メタ)アクリロイル基を有する(メタ)アクリレート(C-1)及び1つの(メタ)アクリロイル基を有する(メタ)アクリレート(C-2)が挙げられる。立体造形物の靭性と、曲げ強度及び曲げ弾性率とのバランスの観点からは、(メタ)アクリレート(C-2)が好ましい。 Examples of the (meth)acrylate (C) include (meth)acrylate (C-1) having two (meth)acryloyl groups and (meth)acrylate (C-2) having one (meth)acryloyl group. From the viewpoint of the balance between the toughness of the three-dimensional object and the bending strength and bending modulus, (meth)acrylate (C-2) is preferred.
2つの(メタ)アクリロイル基を有する(メタ)アクリレート(C-1)としては、下記一般式(2)で表される(メタ)アクリレートが挙げられる。 An example of a (meth)acrylate (C-1) having two (meth)acryloyl groups is a (meth)acrylate represented by the following general formula (2).
上記一般式(2)中、R3は炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基を表し、R4及びR5はそれぞれ独立に、水素原子又はメチル基を表す。
R3で表される炭素数1~40の炭化水素基は、不飽和二重結合を含んでいても、含んでいなくてもよい。
In the above general formula (2), R3 represents a monovalent hydrocarbon group having 1 to 40 carbon atoms or a group in which a portion of the carbon atoms of the hydrocarbon group has been substituted with an oxygen atom or a nitrogen atom, and R4 and R5 each independently represent a hydrogen atom or a methyl group.
The hydrocarbon group having 1 to 40 carbon atoms represented by R3 may or may not contain an unsaturated double bond.
R3で表される炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基としては、炭素数1~40のアルキレン基、アリーレン基、アルキレンオキシド基、これらの組み合わせ等が挙げられる。アルキレン基としては直鎖状、分岐状又は環状のアルキル基が挙げられる。R3で表される炭素数1~40の1価の炭化水素基の炭素数は、1~22が好ましく、1~16がより好ましく、4~12がさらに好ましい。 Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R3 or the group in which a part of the carbon atoms of the hydrocarbon group is substituted with an oxygen atom or a nitrogen atom include an alkylene group, an arylene group, an alkylene oxide group, and combinations thereof having 1 to 40 carbon atoms. Examples of the alkylene group include linear, branched, or cyclic alkyl groups. The number of carbon atoms in the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R3 is preferably 1 to 22, more preferably 1 to 16, and even more preferably 4 to 12.
R3で表される炭素数1~40の1価の炭化水素基は、無置換であっても置換基を有していてもよい。置換基としてはハロゲン原子、アミノ基、水酸基、カルボキシ基、エポキシ基等が挙げられる。置換基が炭素原子を含む場合、炭化水素基の炭素数にはこれを含まないものとする。 The monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R3 may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom, an amino group, a hydroxyl group, a carboxy group, and an epoxy group. When the substituent contains a carbon atom, this is not included in the carbon number of the hydrocarbon group.
一般式(2)で表される化合物の具体例としては、プロポキシ化(2)ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコージ(メタ)アクリレート等が挙げられる。 Specific examples of compounds represented by general formula (2) include propoxylated (2) neopentyl glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, glycerin di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, dimethylol-tricyclodecane di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, dioxane glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, ethoxylated hydrogenated bisphenol A di(meth)acrylate, 2-hydroxy-3-acryloyloxypropyl (meth)acrylate, polyethylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate.
1つの(メタ)アクリロイル基を有する(メタ)アクリレート(C-2)としては、下記一般式(3)で表される化合物、及び(メタ)アクリロイルモルホリンが挙げられる。 Examples of (meth)acrylates (C-2) having one (meth)acryloyl group include compounds represented by the following general formula (3) and (meth)acryloylmorpholine.
一般式(3)中、R1は炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基を表し、R2は水素原子又はメチル基を表す。
R1で表される炭素数1~40の1価の炭化水素基は、不飽和二重結合を含んでいても、含んでいなくてもよい。
In formula (3), R 1 represents a monovalent hydrocarbon group having 1 to 40 carbon atoms or a group in which some of the carbon atoms of the hydrocarbon group have been substituted with oxygen atoms or nitrogen atoms, and R 2 represents a hydrogen atom or a methyl group.
The monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 may or may not contain an unsaturated double bond.
R1で表される炭素数1~40の1価の炭化水素基又は前記炭化水素基の炭素原子の一部が酸素原子もしくは窒素原子に置換した基としては、炭素数1~40のアルキル基、アリール基、環状エーテル化合物に由来する基、ウレタン結合を有する基、これらの組み合わせ等が挙げられる。アルキル基は直鎖状、分岐状又は環状のいずれであってもよい。炭化水素基は、環状構造を有することが好ましい。R1で表される炭素数1~40の1価の炭化水素基の炭素数は、1~22が好ましく、4~12がより好ましい。 Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 or the group in which a part of the carbon atoms of the hydrocarbon group is substituted with an oxygen atom or a nitrogen atom include an alkyl group having 1 to 40 carbon atoms, an aryl group, a group derived from a cyclic ether compound, a group having a urethane bond, and combinations thereof. The alkyl group may be linear, branched, or cyclic. The hydrocarbon group preferably has a cyclic structure. The number of carbon atoms of the monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R 1 is preferably 1 to 22, and more preferably 4 to 12.
R1で表される炭素数1~40の1価の炭化水素基は、無置換であっても置換基を有していてもよい。置換基としてはハロゲン原子、アミノ基、水酸基、カルボキシ基、エポキシ基等が挙げられる。置換基が炭素原子を含む場合、炭化水素基の炭素数にはこれを含まないものとする。 The monovalent hydrocarbon group having 1 to 40 carbon atoms represented by R1 may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom, an amino group, a hydroxyl group, a carboxy group, and an epoxy group. When the substituent contains a carbon atom, this is not included in the carbon number of the hydrocarbon group.
一般式(3)で表される化合物の具体例としては、m-フェノキシベンジルアクリレート、エトキシ化-o-フェニルフェノールアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ラウリル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ドデシル-1-ヘキサデカニル(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-コハク酸、2-[[(ブチルアミノ)カルボニル]オキシ]エチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート等が挙げられる。 Specific examples of compounds represented by general formula (3) include m-phenoxybenzyl acrylate, ethoxylated-o-phenylphenol acrylate, phenoxyethyl (meth)acrylate, phenoxydiethylene glycol (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, isobornyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, tetrahydro Examples include furfuryl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, lauryl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-dodecyl-1-hexadecanyl (meth)acrylate, 2-(meth)acryloyloxyethyl-succinic acid, 2-[[(butylamino)carbonyl]oxy]ethyl (meth)acrylate, and 2-(2-ethoxyethoxy)ethyl (meth)acrylate.
光硬化性組成物が(メタ)アクリレート(C)を含む場合、光硬化性組成物中の(メタ)アクリレート(C)の含有量は、特に制限されないが、光硬化性組成物全体の1質量%~40質量%であることが好ましく、3質量%~30質量%であることが好ましく、4質量%~25質量%であることが好ましい。 When the photocurable composition contains a (meth)acrylate (C), the content of the (meth)acrylate (C) in the photocurable composition is not particularly limited, but is preferably 1% by mass to 40% by mass, more preferably 3% by mass to 30% by mass, and even more preferably 4% by mass to 25% by mass of the entire photocurable composition.
光硬化性組成物が(メタ)アクリレート(A)及び(メタ)アクリレート(B)に該当しない光重合性成分を含む場合、(メタ)アクリレート(A)及び(メタ)アクリレート(B)の合計の割合が光重合性成分全体の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 When the photocurable composition contains a photopolymerizable component that does not fall under (meth)acrylate (A) and (meth)acrylate (B), the total proportion of (meth)acrylate (A) and (meth)acrylate (B) is preferably 50% by mass or more of the total photopolymerizable components, more preferably 60% by mass or more, and even more preferably 70% by mass or more.
光硬化性組成物が(メタ)アクリレート(A)及び(メタ)アクリレート(B)に該当しない(メタ)アクリレート成分を含む場合、(メタ)アクリレート(A)及び(メタ)アクリレート(B)の合計の割合が(メタ)アクリレート成分全体の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 When the photocurable composition contains a (meth)acrylate component that does not fall under (meth)acrylate (A) or (meth)acrylate (B), the total proportion of (meth)acrylate (A) and (meth)acrylate (B) is preferably 50% by mass or more of the total (meth)acrylate components, more preferably 60% by mass or more, and even more preferably 70% by mass or more.
光硬化性組成物中に(メタ)アクリレート(C)を含む場合、(メタ)アクリレート(A)、(メタ)アクリレート(B)及び(メタ)アクリレート(C)の合計の割合が光重合性成分全体の50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。 When the photocurable composition contains (meth)acrylate (C), the total proportion of (meth)acrylate (A), (meth)acrylate (B) and (meth)acrylate (C) is preferably 50% by mass or more of the total photopolymerizable components, more preferably 80% by mass or more, even more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
光硬化性組成物中に(メタ)アクリレート(C)を含む場合、(メタ)アクリレート(A)、(メタ)アクリレート(B)及び(メタ)アクリレート(C)の合計の割合が(メタ)アクリレート成分全体の50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。 When the photocurable composition contains (meth)acrylate (C), the total proportion of (meth)acrylate (A), (meth)acrylate (B) and (meth)acrylate (C) is preferably 50% by mass or more of the total (meth)acrylate components, more preferably 80% by mass or more, even more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
(光重合開始剤)
光硬化性組成物は、光重合開始剤を含有する。
光重合開始剤は、光を照射することでラジカルを発生するものであれば特に限定されないが、光造形の際に用いる光の波長でラジカルを発生するものであることが好ましい。
光造形の際に用いる光の波長としては、一般的には365nm~500nmが挙げられ、実用上好ましくは365nm~430nmであり、より好ましくは365nm~420nmである。
(Photopolymerization initiator)
The photocurable composition contains a photopolymerization initiator.
The photopolymerization initiator is not particularly limited as long as it generates radicals when irradiated with light, but it is preferable that the photopolymerization initiator generates radicals at the wavelength of light used in stereolithography.
The wavelength of light used in stereolithography is generally 365 nm to 500 nm, preferably 365 nm to 430 nm in practical use, and more preferably 365 nm to 420 nm.
光重合開始剤として具体的には、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾイン系化合物、アセトフェノン系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、α-アシロキシムエステル系化合物、フェニルグリオキシレート系化合物、ベンジル系化合物、アゾ系化合物、ジフェニルスルフィド系化合物、有機色素系化合物、鉄-フタロシアニン系化合物、ベンゾインエーテル系化合物、アントラキノン系化合物等が挙げられる。
これらのうち、反応性等の観点から、アルキルフェノン系化合物及びアシルフォスフィンオキサイド系化合物が好ましい。
Specific examples of the photopolymerization initiator include alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, α-acyloxime ester compounds, phenylglyoxylate compounds, benzyl compounds, azo compounds, diphenyl sulfide compounds, organic dye compounds, iron-phthalocyanine compounds, benzoin ether compounds, and anthraquinone compounds.
Among these, from the viewpoint of reactivity and the like, alkylphenone compounds and acylphosphine oxide compounds are preferred.
アルキルフェノン系化合物として具体的には、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(Omnirad184:IGMresins社製)が挙げられる。
アシルフォスフィンオキサイド系化合物として具体的には、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(Omnirad819:IGMresins社製)、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(OmniradTPO:IGMresins社製)が挙げられる。
A specific example of the alkylphenone compound is 1-hydroxy-cyclohexyl-phenyl-ketone (Omnirad 184: manufactured by IGM resins).
Specific examples of the acylphosphine oxide compound include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Omnirad 819: manufactured by IGM resins) and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Omnirad TPO: manufactured by IGM resins).
光硬化性組成物は、光重合開始剤を1種のみ含有していてもよく、2種以上含有していてもよい。 The photocurable composition may contain only one type of photopolymerization initiator, or may contain two or more types.
光硬化性組成物中における光重合開始剤の含有量(2種以上である場合には総含有量)は、光硬化性組成物全体の0.1質量%~10質量%であることが好ましく、0.2質量%~5質量%であることがより好ましく、0.3質量%~3質量%であることがさらに好ましい。 The content of the photopolymerization initiator in the photocurable composition (total content when there are two or more types) is preferably 0.1% by mass to 10% by mass, more preferably 0.2% by mass to 5% by mass, and even more preferably 0.3% by mass to 3% by mass, of the entire photocurable composition.
(ウレタン化合物)
光硬化性組成物は、ウレタン結合を含み(メタ)アクリロイル基又は水酸基を含まない化合物(以下、ウレタン化合物ともいう)を含んでもよい。
ウレタン化合物としては、下記一般式(U-1)で表される化合物が挙げられる。
(Urethane compounds)
The photocurable composition may contain a compound that contains a urethane bond but does not contain a (meth)acryloyl group or a hydroxyl group (hereinafter also referred to as a urethane compound).
The urethane compound includes a compound represented by the following general formula (U-1).
式(U-1)中、R1Uは2価の有機基であり、R2U及びR3Uは、それぞれ独立に、1価の有機基である。 In formula (U-1), R 1U is a divalent organic group, and R 2U and R 3U are each independently a monovalent organic group.
R1Uで表される2価の有機基の具体例及び好ましい態様は、上述した式(A-1)におけるR2Aで表される2価の有機基の具体例及び好ましい態様と同様である。
R2U及びR3Uで表される1価の有機基の具体例及び好ましい態様は、上述した式(A-1)におけるR1Aで表される1価の有機基の具体例及び好ましい態様と同様である。
Specific examples and preferred embodiments of the divalent organic group represented by R 1U are the same as the specific examples and preferred embodiments of the divalent organic group represented by R 2A in the above formula (A-1).
Specific examples and preferred embodiments of the monovalent organic group represented by R 2U and R 3U are the same as the specific examples and preferred embodiments of the monovalent organic group represented by R 1A in formula (A-1) described above.
光硬化性組成物がウレタン化合物を含む場合、その含有率は、光硬化性組成物全体の0.1質量%~20質量%であることが好ましく、0.2質量%~10質量%であることがより好ましく、1質量~5質量%であることがさらに好ましい。 When the photocurable composition contains a urethane compound, its content is preferably 0.1% by mass to 20% by mass, more preferably 0.2% by mass to 10% by mass, and even more preferably 1% by mass to 5% by mass, of the entire photocurable composition.
光硬化性組成物がウレタン化合物を含むことで、立体造形物に可塑性を付与できる。一方で、ウレタン化合物の含有量が多すぎると立体造形物の曲げ物性及び曲げ弾性率が低下する可能性がある。そのため、曲げ物性及び曲げ弾性率の低下を抑制する観点からは、ウレタン化合物の含有率は光硬化性組成物全体の20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましく、0質量%である(ウレタン化合物を含まない)ことが特に好ましい。 The inclusion of a urethane compound in the photocurable composition can impart plasticity to the three-dimensional object. On the other hand, if the content of the urethane compound is too high, the bending properties and bending modulus of the three-dimensional object may decrease. Therefore, from the viewpoint of suppressing the decrease in bending properties and bending modulus of elasticity, the content of the urethane compound is preferably 20% by mass or less of the entire photocurable composition, more preferably 10% by mass or less, even more preferably 5% by mass or less, and particularly preferably 0% by mass (no urethane compound).
(その他の成分)
必要に応じ、光硬化性組成物は、光重合性成分、光重合開始剤及びウレタン化合物以外の成分(その他の成分)を含んでもよい。
その他の成分として具体的には、色材、カップリング剤、ゴム剤、イオントラップ剤、イオン交換剤、レベリング剤、可塑剤、消泡剤等の添加剤、熱重合開始剤等が挙げられる。
(Other ingredients)
If necessary, the photocurable composition may contain components (other components) other than the photopolymerizable component, the photopolymerization initiator, and the urethane compound.
Specific examples of other components include additives such as coloring materials, coupling agents, rubber agents, ion trapping agents, ion exchange agents, leveling agents, plasticizers, and antifoaming agents, and thermal polymerization initiators.
光硬化性組成物がその他の成分を含む場合、その含有量(2種以上である場合には総含有量)は、光硬化性組成物全体の0.1質量%~10質量%であることが好ましく、0.2質量%~5質量%であることがより好ましく、0.3質量%~3質量%であることがさらに好ましい。 If the photocurable composition contains other components, the content thereof (the total content if there are two or more types) is preferably 0.1% by mass to 10% by mass, more preferably 0.2% by mass to 5% by mass, and even more preferably 0.3% by mass to 3% by mass of the entire photocurable composition.
光硬化性組成物が、その他の成分を含む場合、(メタ)アクリレート(A)、(メタ)アクリルモノマー(B)及び光重合開始剤の合計質量は、光硬化性組成物の全量に対し、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。
光硬化性組成物が、(メタ)アクリレート(C)を含む場合、(メタ)アクリレート(A)、(メタ)アクリルモノマー(B)、(メタ)アクリレート(C)及び光重合開始剤の合計質量は、光硬化性組成物の全量に対し、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることがさらに好ましい。
When the photocurable composition contains other components, the total mass of the (meth)acrylate (A), the (meth)acrylic monomer (B) and the photopolymerization initiator is preferably 30 mass% or more, more preferably 50 mass% or more, and even more preferably 70 mass% or more, based on the total amount of the photocurable composition.
When the photocurable composition contains a (meth)acrylate (C), the total mass of the (meth)acrylate (A), the (meth)acrylic monomer (B), the (meth)acrylate (C) and the photopolymerization initiator is more preferably 50 mass% or more, even more preferably 70 mass% or more, even more preferably 80 mass% or more, and even more preferably 90 mass% or more, based on the total amount of the photocurable composition.
(全破壊仕事)
本開示の光硬化性組成物は、光硬化性組成物から作製した長さ39mm、幅8mm及び厚み4mmの試験片を用いて測定される全破壊仕事が250J/m2以上であることが好ましい。全破壊仕事が250J/m2以上であると、光硬化性組成物の立体造形物が優れた靭性を示すと評価できる。
(Total Destruction Job)
The photocurable composition of the present disclosure preferably has a total work of fracture of 250 J/m2 or more, as measured using a test piece made from the photocurable composition and having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm. When the total work of fracture is 250 J/m2 or more , a three-dimensional object made from the photocurable composition can be evaluated as exhibiting excellent toughness.
充分な靭性を確保する観点からは、上記全破壊仕事は300J/m2以上であることが好ましく、400J/m2以上であることがより好ましく、500J/m2以上であることがさらに好ましい。
上記全破壊仕事は2000J/m2以下であってもよい。
From the viewpoint of ensuring sufficient toughness, the total work of fracture is preferably 300 J/m 2 or more, more preferably 400 J/m 2 or more, and even more preferably 500 J/m 2 or more.
The total work of fracture may be less than or equal to 2000 J/ m2 .
全破壊仕事の測定に使用する試験片は、波長405nmの可視光を照射量11mJ/cm2にて光硬化性組成物に照射して形成される厚み50μmの硬化層を厚み方向に積層させることによって長さ39mm、幅8mm及び厚み4mmの造形物を形成することと、
前記造形物に対して波長365nmの紫外線を照射量10J/cm2にて照射することと、を実施して作製される。
The test piece used for measuring the total work of fracture was prepared by irradiating a photocurable composition with visible light having a wavelength of 405 nm at an irradiation dose of 11 mJ/ cm2 to form a cured layer having a thickness of 50 μm, which was then laminated in the thickness direction to form a 39 mm long, 8 mm wide and 4 mm thick object.
The object is irradiated with ultraviolet light having a wavelength of 365 nm at an irradiation dose of 10 J/ cm2 .
全破壊仕事の測定は、ISO20795-1:2013に準拠して、曲げ試験による破壊靱性試験により測定する。具体的には、実施例に記載した方法で測定する。 The total work of fracture is measured by a fracture toughness test using a bending test in accordance with ISO 20795-1:2013. Specifically, it is measured using the method described in the Examples.
(粘度)
本開示の光硬化性組成物は、E型粘度計により25℃及び5rpmの条件で測定される粘度(以下、単に「粘度」ともいう)が、5mPa・s~50000mPa・sであることが好ましい。
ここで、rpmは、revolutions per minute(回転毎分)を意味する。
光硬化性組成物の粘度が上記範囲内であると、光造形によって立体造形物を製造する際の光硬化性組成物の取り扱い性に優れる。
(viscosity)
The photocurable composition of the present disclosure preferably has a viscosity (hereinafter also simply referred to as "viscosity") measured with an E-type viscometer at 25°C and 5 rpm of 5 mPa·s to 50,000 mPa·s.
Here, rpm means revolutions per minute.
When the viscosity of the photocurable composition is within the above range, the photocurable composition has excellent handleability when a three-dimensional object is produced by stereolithography.
光硬化性組成物の粘度は10mPa・s~30000mPa・sであることがより好ましく、20mPa・s~25000mPa・sであることがさらに好ましく、100mPa・s~15000mPa・sであることがさらに好ましい。 The viscosity of the photocurable composition is more preferably 10 mPa·s to 30,000 mPa·s, even more preferably 20 mPa·s to 25,000 mPa·s, and even more preferably 100 mPa·s to 15,000 mPa·s.
(光硬化性組成物の用途)
光硬化性組成物は、光造形によって立体造形物を製造する方法に好適に使用できる。
本開示において「光造形」は、3Dプリンタを用いた三次元造形方法のうちの1種である。
光硬化性組成物は、歯科用製品の製造に好適に使用でき、好ましくは、口腔内に装着される器具、歯科用モデル(歯科手術用モデル等)、歯科材料(歯科用修復材等)などに好適に使用できる。口腔内に装着される器具の例は、後述のとおりである。
(Uses of the photocurable composition)
The photocurable composition can be suitably used in a method for producing a three-dimensional object by stereolithography.
In this disclosure, "stereolithography" is one type of three-dimensional modeling method using a 3D printer.
The photocurable composition can be suitably used for producing dental products, and preferably can be suitably used for instruments to be worn in the oral cavity, dental models (such as dental surgery models), dental materials (such as dental restorative materials), etc. Examples of instruments to be worn in the oral cavity are described below.
<立体造形物>
本開示の立体造形物は、上述した本開示の光硬化性組成物の立体造形物である。より具体的には、本開示の立体造形物は、光硬化性組成物に光を照射して硬化させて得られる硬化物からなる。
光硬化性組成物から立体造形物を製造する方法は特に制限されず、公知の光造形法から選択できる。
<Three-dimensional objects>
The three-dimensional object of the present disclosure is a three-dimensional object made of the photocurable composition of the present disclosure described above. More specifically, the three-dimensional object of the present disclosure is a cured product obtained by irradiating the photocurable composition with light and curing it.
The method for producing a three-dimensional object from the photocurable composition is not particularly limited, and can be selected from known stereolithography methods.
代表的な光造形法としては、SLA(Stereo Lithography Apparatus)方式、DLP(Digital Light Processing)方式等の液槽方式の光造形方式、インクジェット方式などが挙げられる。
SLA方式としては、スポット状の光を光硬化性組成物に照射して形成される硬化物の層を積層して立体造形物を得る方式が挙げられる。
DLP方式としては、面状の光を光硬化性組成物に照射して形成される硬化物の層を積層して立体造形物を得る方式が挙げられる。
インクジェット方式としては、インクジェットノズルから光硬化性組成物の液滴を基材に連続的に吐出し、基材に付着した液滴に光を照射することにより立体造形物を得る方式が挙げられる。
Representative stereolithography methods include liquid tank type stereolithography methods such as the SLA (Stereo Lithography Apparatus) method and the DLP (Digital Light Processing) method, and inkjet methods.
An example of the SLA method is a method in which a photocurable composition is irradiated with spot-shaped light to form a cured product, and layers of the cured product are laminated to obtain a three-dimensional object.
An example of the DLP method is a method in which a photocurable composition is irradiated with planar light to form a cured product, and layers of the cured product are laminated to obtain a three-dimensional object.
An example of the inkjet method is a method in which droplets of a photocurable composition are continuously discharged from an inkjet nozzle onto a substrate, and the droplets attached to the substrate are irradiated with light to obtain a three-dimensional object.
光造形により得られた立体造形物を完全に硬化させるための光照射を行う場合、その方法は特に制限されない。例えば、LEDランプ等を用いて光を照射して立体造形物を完全に硬化させてもよい。 When irradiating light to completely harden a three-dimensional object obtained by photopolymerization, the method is not particularly limited. For example, the three-dimensional object may be completely hardened by irradiating light using an LED lamp or the like.
立体造形物の物理的特性は特に制限されず、用途に応じて選択できる。
例えば、立体造形物の曲げ強度が50MPa以上であることが好ましく、60MPa以上であることがより好ましく、65MPa以上であることが更に好ましい。
例えば、立体造形物の曲げ弾性率が1500MPa以上であることが好ましく、1700MPa以上であることが好ましく、2000MPa以上であることがさらに好ましい。
立体造形物の曲げ強度及び曲げ弾性率は、それぞれ後述する実施例に記載した方法で測定される。
The physical properties of the three-dimensional object are not particularly limited and can be selected according to the application.
For example, the bending strength of the three-dimensional object is preferably 50 MPa or more, more preferably 60 MPa or more, and even more preferably 65 MPa or more.
For example, the flexural modulus of elasticity of the three-dimensional object is preferably 1500 MPa or more, more preferably 1700 MPa or more, and further preferably 2000 MPa or more.
The bending strength and bending modulus of elasticity of the three-dimensional object are measured by the methods described in the Examples section below.
<歯科用製品>
本開示の歯科用製品は、本開示の立体造形物を含む。
歯科用製品の種類は特に制限されない。具体的には、口腔内に装着される器具、歯科用モデル(歯科手術用モデル等)、歯科材料(歯科用修復材等)が挙げられる。
口腔内に装着される器具として具体的には、義歯床、裏装材、マウスピース、マウスガード、スプリント等が挙げられる。
<Dental products>
The dental product of the present disclosure includes the three-dimensional object of the present disclosure.
The type of dental product is not particularly limited. Specific examples include instruments to be attached to the oral cavity, dental models (such as models for dental surgery), and dental materials (such as dental restorative materials).
Specific examples of devices that are worn in the oral cavity include dentures, lining materials, mouthpieces, mouthguards, splints, etc.
本開示の歯科用製品は、靭性に優れる本開示の立体造形物を含む。このため、使用者の口腔内への装着感に優れるとともに、歯科用製品の用途に応じた優れた耐久性、治療効果
、衝撃からの保護効果などを発揮する。
The dental product of the present disclosure includes the three-dimensionally shaped object of the present disclosure, which has excellent toughness, and therefore provides an excellent fit in the user's oral cavity and excellent durability, therapeutic effect, protection from impact, and the like according to the intended use of the dental product.
<(メタ)アクリレート>
本開示の(メタ)アクリレートは、以下の一般式(A-1a)で表される(メタ)アクリレートである。
<(Meth)acrylate>
The (meth)acrylate of the present disclosure is a (meth)acrylate represented by the following general formula (A-1a).
式(A-1a)中、X1A及びX2Aはウレタン結合であり、R1Aは1価の有機基であり、R2A及びR3Aはそれぞれ独立に2価の有機基であり、R4Aはメチル基又は水素原子であり、nAは0又は1である。nAが0である場合、R1A又はR3Aの少なくとも一つは環構造を有し、nAが1である場合、R1A、R2A又はR3Aの少なくとも一つは環構造を有する。 In formula (A-1a), X 1A and X 2A are urethane bonds, R 1A is a monovalent organic group, R 2A and R 3A are each independently a divalent organic group, R 4A is a methyl group or a hydrogen atom, and n A is 0 or 1. When n A is 0, at least one of R 1A or R 3A has a ring structure, and when n A is 1, at least one of R 1A , R 2A or R 3A has a ring structure.
上記構造の(メタ)アクリレートは、例えば、光造形用の材料に含まれる光重合成分として有用である。
後述する実施例に示すように、上記構造の(メタ)アクリレートを含む組成物を用いて得られる立体造形物は、上記構造の(メタ)アクリレートを含まない組成物を用いて得られる立体造形物に比べて優れた靭性を示す。
The (meth)acrylate having the above structure is useful, for example, as a photopolymerizable component contained in a material for stereolithography.
As shown in the examples described later, a three-dimensional object obtained using a composition containing a (meth)acrylate having the above structure exhibits superior toughness compared to a three-dimensional object obtained using a composition not containing a (meth)acrylate having the above structure.
式(A-1a)におけるR1A、R2A及びR3Aの具体例及び好ましい態様は、式(A-1)におけるR1A、R2A及びR3Aの具体例及び好ましい態様と同様である。 Specific examples and preferred embodiments of R 1A , R 2A and R 3A in formula (A-1a) are the same as the specific examples and preferred embodiments of R 1A , R 2A and R 3A in formula (A-1).
本開示の(メタ)アクリレートは、一般式(A-1a-1)で示される化合物であってもよい。 The (meth)acrylate of the present disclosure may be a compound represented by the general formula (A-1a-1).
式(A-1a-1)中、R1A2は1価の有機基であり、R2A2及びR3A2はそれぞれ独立に2価の有機基であり、R4A2はメチル基又は水素原子であり、R1A2、R2A2又はR3A2の少なくとも1つは環構造を有する。 In formula (A-1a-1), R 1A2 is a monovalent organic group, R 2A2 and R 3A2 are each independently a divalent organic group, R 4A2 is a methyl group or a hydrogen atom, and at least one of R 1A2 , R 2A2 and R 3A2 has a ring structure.
式(A-1a-1)におけるR1A2、R2A2及びR3A2の具体例及び好ましい態様は、式(A-1)におけるR1A、R2A及びR3Aの具体例及び好ましい態様と同様である。 Specific examples and preferred embodiments of R 1A2 , R 2A2 and R 3A2 in formula (A-1a-1) are the same as the specific examples and preferred embodiments of R 1A , R 2A and R 3A in formula (A-1).
<モノマー組成物>
本開示のモノマー組成物は、上述した本開示の(メタ)アクリレートを含む。
モノマー組成物は、光造形によって立体造形物を製造する方法に好適に使用できる。
モノマー組成物は、歯科用製品の製造に好適に使用できる。
<Monomer Composition>
The monomer composition of the present disclosure includes the (meth)acrylate of the present disclosure described above.
The monomer composition can be suitably used in a method for producing a three-dimensional object by stereolithography.
The monomer composition is suitable for use in the manufacture of dental products.
本開示のモノマー組成物において、上述した本開示の(メタ)アクリレートの含有量は、モノマー組成物全体に対して70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、99質量%以下であってもよい。 In the monomer composition of the present disclosure, the content of the (meth)acrylate of the present disclosure described above is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, relative to the total monomer composition, and may be 99% by mass or less.
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものでない。 The present invention will be specifically explained below based on examples, but the present invention is not limited to these examples.
<光硬化性組成物の調製>
表2~5に示す材料を用いて、比較例1~3及び実施例1~42の光硬化性組成物を調製した。表2~5に示す材料の詳細は、下記の通りである。
<Preparation of Photocurable Composition>
Photocurable compositions of Comparative Examples 1 to 3 and Examples 1 to 42 were prepared using the materials shown in Tables 2 to 5. Details of the materials shown in Tables 2 to 5 are as follows.
UA-A1:下記構造の(メタ)アクリレート、分子量:249.27 UA-A1: (meth)acrylate with the following structure, molecular weight: 249.27
UA-A2:下記構造の(メタ)アクリレート、分子量:341.36 UA-A2: (meth)acrylate with the following structure, molecular weight: 341.36
UA-A3:下記構造の(メタ)アクリレート、分子量:279.29 UA-A3: (Meth)acrylate with the following structure, molecular weight: 279.29
UA-A4:下記構造の(メタ)アクリレート、分子量:325.36 UA-A4: (Meth)acrylate with the following structure, molecular weight: 325.36
UA-4B1:下記構造の(メタ)アクリレート、分子量:263.29 UA-4B1: (meth)acrylate with the following structure, molecular weight: 263.29
UA-4B2:下記構造の(メタ)アクリレート、分子量:269.34 UA-4B2: (meth)acrylate with the following structure, molecular weight: 269.34
UA-4B3:下記構造の(メタ)アクリレート、分子量:277.32 UA-4B3: (meth)acrylate with the following structure, molecular weight: 277.32
UA-4B4:下記構造の(メタ)アクリレート、分子量:341.38 UA-4B4: (Meth)acrylate with the following structure, molecular weight: 341.38
UA-4B5:下記構造の(メタ)アクリレート、分子量:345.44 UA-4B5: (meth)acrylate with the following structure, molecular weight: 345.44
UA-P1:下記構造の(メタ)アクリレート、分子量:341.36 UA-P1: (meth)acrylate with the following structure, molecular weight: 341.36
UA-P2:下記構造の(メタ)アクリレート、分子量:347.41 UA-P2: (meth)acrylate with the following structure, molecular weight: 347.41
UA-P3:下記構造の(メタ)アクリレート、分子量:355.39 UA-P3: (meth)acrylate with the following structure, molecular weight: 355.39
UA-P4:下記構造の(メタ)アクリレート、分子量:419.45 UA-P4: (meth)acrylate with the following structure, molecular weight: 419.45
UA-2:下記構造の(メタ)アクリレート、分子量:496.60 UA-2: (meth)acrylate with the following structure, molecular weight: 496.60
UA-3:下記構造の(メタ)アクリレート、分子量:458.56 UA-3: (Meth)acrylate with the following structure, molecular weight: 458.56
UA-4:下記構造の(メタ)アクリレート、分子量:588.70 UA-4: (Meth)acrylate with the following structure, molecular weight: 588.70
UA-5:下記構造の(メタ)アクリレート、分子量:526.63 UA-5: (Meth)acrylate with the following structure, molecular weight: 526.63
V216:下記構造の(メタ)アクリレート(大阪有機化学工業製)、分子量:215.25 V216: (Meth)acrylate with the following structure (manufactured by Osaka Organic Chemical Industry Co., Ltd.), molecular weight: 215.25
UDA1:下記構造の(メタ)アクリレート、分子量:476.53 UDA1: (meth)acrylate with the following structure, molecular weight: 476.53
UDA2:下記構造の(メタ)アクリレート、分子量:532.63 UDA2: (Meth)acrylate with the following structure, molecular weight: 532.63
UDA3:下記構造の(メタ)アクリレート、分子量:494.59 UDA3: (Meth)acrylate with the following structure, molecular weight: 494.59
UDA4:下記構造の(メタ)アクリレート、分子量:632.67 UDA4: (Meth)acrylate with the following structure, molecular weight: 632.67
POB-A:下記構造の(メタ)アクリレート(共栄社化学製)、分子量:254.28 POB-A: (meth)acrylate with the following structure (manufactured by Kyoeisha Chemical), molecular weight: 254.28
A-LEN-10:下記構造の(メタ)アクリレート(新中村化学工業製)、分子量:268.31 A-LEN-10: (meth)acrylate with the following structure (manufactured by Shin-Nakamura Chemical Co., Ltd.), molecular weight: 268.31
ACMO:下記構造の(メタ)アクリレート(アクリロイルモルホリン、KJケミカルズ製)、分子量:141.17 ACMO: (meth)acrylate with the following structure (acryloylmorpholine, manufactured by KJ Chemicals), molecular weight: 141.17
DA-2:下記構造のウレタン化合物、分子量:460.57 DA-2: Urethane compound with the following structure, molecular weight: 460.57
DA-3:下記構造のウレタン化合物、分子量:422.53 DA-3: Urethane compound with the following structure, molecular weight: 422.53
DA-4:下記構造のウレタン化合物、分子量:644.77 DA-4: Urethane compound with the following structure, molecular weight: 644.77
DA-5:下記構造のウレタン化合物、分子量:520.63 DA-5: Urethane compound with the following structure, molecular weight: 520.63
Omnirad819:下記構造の光重合開始剤 Omnirad 819: Photopolymerization initiator with the following structure
Omnirad184:下記構造の光重合開始剤 Omnirad 184: Photopolymerization initiator with the following structure
OmniradTPO:下記構造の光重合開始剤 OmniradTPO: Photopolymerization initiator with the following structure
以下、光硬化性組成物の調製に使用した化合物の製造例を記載する。製造例における略号は下記の通りである。
4HBA:4-ヒドロキシブチルアクリレート
DBTDL:ジラウリン酸ジブチルすず
MEHQ:4-メトキシフェノール
TMXDI:1,3-テトラメチルキシリレンジイソシアネート
XDI:m-キシリレンジイソシアネート
NBDI:ノルボルネンジイソシアネート
PHI:フェニルイソシアネート
CHI:シクロヘキシルイソシアネート
TOI:トリルイソシアネート
TSI:トルエンスルホニルイソシアネート
IPDBI:イソプロペニル-ジメチルベンジルイソシアネート
AOI:2-イソシアナトエチルアクリラート
HPPA:2-ヒドロキシ-3-フェノキシプロピルアクリレート
BZ-OH:ベンジルアルコール
POB-OH:m-フェノキシベンジルアルコール
PH-OH:2-フェノキシエタノール
BHR-OH:ベンズヒドロール
The following describes examples of the preparation of compounds used in the preparation of photocurable compositions. The abbreviations in the examples are as follows.
4HBA: 4-hydroxybutyl acrylate DBTDL: dibutyltin dilaurate MEHQ: 4-methoxyphenol TMXDI: 1,3-tetramethylxylylene diisocyanate XDI: m-xylylene diisocyanate NBDI: norbornene diisocyanate PHI: phenyl isocyanate CHI: cyclohexyl isocyanate TOI: tolyl isocyanate TSI: toluenesulfonyl isocyanate IPDBI: isopropenyl-dimethylbenzyl isocyanate AOI: 2-isocyanatoethyl acrylate HPPA: 2-hydroxy-3-phenoxypropyl acrylate BZ-OH: benzyl alcohol POB-OH: m-phenoxybenzyl alcohol PH-OH: 2-phenoxyethanol BHR-OH: benzhydrol
(UA-A1の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、アルコール化合物としてBZ-OH216g(2.00モル)、DBTDL0.53g(BZ-OHとAOIの合計重量に対して0.1重量%)、及びMEHQ0.27g(BZ-OHとAOIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、イソシアネート化合物としてAOI314g(2.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UA-A1)530gを得た。25℃における粘度は80mPa・sであった。
(Production Example of UA-A1)
In a 1-liter four-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 216 g (2.00 mol) of BZ-OH as an alcohol compound, 0.53 g (0.1 wt % relative to the total weight of BZ-OH and AOI), and 0.27 g (0.05 wt % relative to the total weight of BZ-OH and AOI) were added, stirred until homogenized, and then heated to 60°C. Subsequently, 314 g (2.00 mol) of AOI as an isocyanate compound was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to reaction heat, so the amount of dropwise addition was controlled so that the temperature was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 530 g of urethane acrylate (UA-A1) was obtained. The viscosity at 25° C. was 80 mPa·s.
(UA-A2、UA-A2、UA-A3、UA-A4、UA-4B1、UA-4B2、 UA-4B3、UA-4B4、UA-4B5、UA-P1、UA-P2、UA-P3及びUA-P4の製造例)
UA-A1の製造例におけるイソシアネート化合物及びアルコール化合物の種類を表1に記載のものに変更し、各成分の仕込み量を表1に記載のとおりに変更した点以外は、UA-A1の製造例と同様の方法により、上記(メタ)アクリレートを製造した。製造された(メタ)アクリレートの生成量と65℃又は25℃における粘度を表1に示す。
(UA-A2, UA-A2, UA-A3, UA-A4, UA-4B1, UA-4B2, UA-4B3, UA-4B4, UA-4B5, UA-P1, UA-P2, UA-P3 and UA - Manufacturing example of P4)
The same procedure as in Production Example UA-A1 was repeated except that the types of isocyanate compound and alcohol compound in Production Example UA-A1 were changed to those shown in Table 1 and the amounts of each component were changed to those shown in Table 1. The above (meth)acrylate was produced in the same manner as in Example 1. The yield of the produced (meth)acrylate and its viscosity at 65° C. or 25° C. are shown in Table 1.
(UDA2/UA-2/DA-2混合物の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、4HBA231g(1.60モル)、BZ-OH43g(0.40モル)、DBTDL0.52g(4HBA、BZ-OHとTMXDIの合計重量に対して0.1重量%)、及びMEHQ0.26g(4HBA、BZ-OHとTMXDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、TMXDI244g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA2/UA-2/DA-2混合物)490gを得た。65℃における粘度は1300mPa・sであった。また、UDA2/UA-2/DA-2の構成比率は、65.78wt%/30.67wt%/3.55wt%であった。
(Production Example of UDA2/UA-2/DA-2 Mixture)
In a 1-liter four-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 231 g (1.60 mol) of 4HBA, 43 g (0.40 mol) of BZ-OH, 0.52 g (0.1 wt % relative to the total weight of 4HBA, BZ-OH and TMXDI), and 0.26 g (0.05 wt % relative to the total weight of 4HBA, BZ-OH and TMXDI) were added, stirred until homogeneous, and then heated to 60°C. Subsequently, 244 g (1.00 mol) of TMXDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the heat of reaction, so the amount of dropwise addition was controlled so that it was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. The product was discharged from the reactor to obtain 490 g of urethane acrylate (UDA2/UA-2/DA-2 mixture). The viscosity at 65° C. was 1300 mPa·s. The composition ratio of UDA2/UA-2/DA-2 was 65.78 wt %/30.67 wt %/3.55 wt %.
(UDA3/UA-3/DA-3混合物の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、4HBA231g(1.60モル)、BZ-OH43g(0.40モル)、DBTDL0.48g(4HBA、BZ-OHとNBDIの合計重量に対して0.1重量%)、及びMEHQ0.24g(4HBA、BZ-OHとNBDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、NBDI206g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA3/UA-3/DA-3混合物)450gを得た。65℃における粘度は400mPa・sであった。また、UDA3/UA-3/DA-3の構成比率は、65.92wt%/30.56wt%/3.52wt%であった。
(Production Example of UDA3/UA-3/DA-3 Mixture)
In a 1-liter four-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 231 g (1.60 mol) of 4HBA, 43 g (0.40 mol) of BZ-OH, 0.48 g of DBTDL (0.1% by weight relative to the total weight of 4HBA, BZ-OH and NBDI), and 0.24 g of MEHQ (0.05% by weight relative to the total weight of 4HBA, BZ-OH and NBDI) were added, stirred until homogeneous, and then heated to 60°C. Subsequently, 206 g (1.00 mol) of NBDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the reaction heat, so the amount of dropwise addition was controlled so that it was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. The product was discharged from the reactor to obtain 450 g of urethane acrylate (UDA3/UA-3/DA-3 mixture). The viscosity at 65° C. was 400 mPa·s. The composition ratio of UDA3/UA-3/DA-3 was 65.92 wt %/30.56 wt %/3.52 wt %.
(UDA2/UA-4/DA-4混合物の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、4HBA231g(1.60モル)、POB-OH80g(0.40モル)、DBTDL0.56g(4HBA、POB-OHとTMXDIの合計重量に対して0.1重量%)、及びMEHQ0.28g(4HBA、POB-OHとTMXDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、TMXDI244g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA2/UA-4/DA-4混合物)520gを得た。65℃における粘度は2800mPa・sであった。また、UDA2/UA-4/DA-4の構成比率は、61.41wt%/33.94wt%/4.65wt%であった。
(Production Example of UDA2/UA-4/DA-4 Mixture)
In a 1-liter four-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 231 g (1.60 mol) of 4HBA, 80 g (0.40 mol) of POB-OH, 0.56 g of DBTDL (0.1% by weight based on the total weight of 4HBA, POB-OH and TMXDI), and 0.28 g of MEHQ (0.05% by weight based on the total weight of 4HBA, POB-OH and TMXDI) were added, stirred until homogenous, and then heated to 60°C. Subsequently, 244 g (1.00 mol) of TMXDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the heat of reaction, so the amount of dropwise addition was controlled so that it was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. The product was discharged from the reactor to obtain 520 g of urethane acrylate (UDA2/UA-4/DA-4 mixture). The viscosity at 65° C. was 2800 mPa·s. The composition ratio of UDA2/UA-4/DA-4 was 61.41 wt %/33.94 wt %/4.65 wt %.
(UDA2/UA-5/DA-5混合物の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、4HBA231g(1.60モル)、PH-OH55g(0.40モル)、DBTDL0.53g(4HBA、PH-OHとTMXDIの合計重量に対して0.1重量%)、及びMEHQ0.27g(4HBA、PH-OHとTMXDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、TMXDI244g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA2/UA-5/DA-5混合物)500gを得た。65℃における粘度は2400mPa・sであった。また、UDA2/UA-5/DA-5の構成比率は、64.29wt%/31.78wt%/3.93wt%であった。
(Production Example of UDA2/UA-5/DA-5 Mixture)
In a 1-liter four-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 231 g (1.60 mol) of 4HBA, 55 g (0.40 mol) of PH-OH, 0.53 g (0.1 wt % relative to the total weight of 4HBA, PH-OH and TMXDI), and 0.27 g (0.05 wt % relative to the total weight of 4HBA, PH-OH and TMXDI) were added, stirred until homogenous, and then heated to 60°C. Subsequently, 244 g (1.00 mol) of TMXDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the reaction heat, so the amount of dropwise addition was controlled so that it was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. The product was discharged from the reactor to obtain 500 g of urethane acrylate (UDA2/UA-5/DA-5 mixture). The viscosity at 65° C. was 2400 mPa·s. The composition ratio of UDA2/UA-5/DA-5 was 64.29 wt %/31.78 wt %/3.93 wt %.
(UDA1の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、4HBA288g(2.00モル)、DBTDL0.48g(4HBAとXDIの合計重量に対して0.1重量%)、及びMEHQ0.24g(4HBAとXDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、XDI188g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA1)445gを得た。65℃における粘度は430mPa・sであった。
(Production Example of UDA1)
In a 1-liter 4-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 288 g (2.00 mol) of 4HBA, 0.48 g (0.1 wt % relative to the total weight of 4HBA and XDI), and 0.24 g (0.05 wt % relative to the total weight of 4HBA and XDI) were added, stirred until homogeneous, and then heated to 60°C. Subsequently, 188 g (1.00 mol) of XDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the reaction heat, so the amount of dropwise addition was controlled so that it was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 445 g of urethane acrylate (UDA1) was obtained. The viscosity at 65°C was 430 mPa·s.
(UDA2の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、4HBA288g(2.00モル)、DBTDL0.53g(4HBAとTMXDIの合計重量に対して0.1重量%)、及びMEHQ0.27g(4HBAとTMXDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、TMXDI244g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA2)510gを得た。65℃における粘度は1600mPa・sであった。
(Production Example of UDA2)
In a 1-liter 4-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 288 g (2.00 mol) of 4HBA, 0.53 g (0.1 wt % relative to the total weight of 4HBA and TMXDI), and 0.27 g (0.05 wt % relative to the total weight of 4HBA and TMXDI) were added, stirred until homogeneous, and then heated to 60°C. Subsequently, 244 g (1.00 mol) of TMXDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the reaction heat, so the amount of dropwise addition was controlled so that it was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 510 g of urethane acrylate (UDA2) was obtained. The viscosity at 65° C. was 1600 mPa·s.
(UDA3の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、4HBA390g(2.70モル)、DBTDL0.67g(4HBAとNBDIの合計重量に対して0.1重量%)、及びMEHQ0.34g(4HBAとNBDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、NBDI278g(1.35モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA3)630gを得た。65℃における粘度は360mPa・sであった。
(Production Example of UDA3)
In a 1-liter 4-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 390 g (2.70 mol) of 4HBA, 0.67 g (0.1 wt % relative to the total weight of 4HBA and NBDI), and 0.34 g (0.05 wt % relative to the total weight of 4HBA and NBDI) were added, stirred until homogeneous, and then heated to 60°C. Then, 278 g (1.35 mol) of NBDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the reaction heat, so the amount of dropwise addition was controlled so that it was 80°C or less. After the entire amount was added dropwise, the reaction temperature was kept at 80°C and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 630 g of urethane acrylate (UDA3) was obtained. The viscosity at 65°C was 360 mPa·s.
(UDA4の製造例)
十分に乾燥させた攪拌羽根、及び温度計を備えた1リットル4ツ口フラスコ内に、M5700を444g(2.00モル)、DBTDL0.63g(M5700とXDIの合計重量に対して0.1重量%)、及びMEHQ0.32g(M5700とXDIの合計重量に対して0.05重量%)を添加し、均一となるまで撹拌した後、60℃に昇温した。続いて、XDI188g(1.00モル)を1時間かけて滴下した。滴下中に反応熱により内温が上昇したので、80℃以下となるように滴下量をコントロールした。全量滴下後反応温度を80℃に保って、10時間反応を行った。この際、HPLC分析で反応の進行を追跡して、反応の終点を確認した。反応器から生成物を排出することにより、ウレタンアクリレート(UDA4)600gを得た。65℃における粘度は6210mPa・sであった。
(Production Example of UDA4)
In a 1-liter 4-neck flask equipped with a thoroughly dried stirring blade and a thermometer, 444 g (2.00 mol) of M5700, 0.63 g of DBTDL (0.1 wt % relative to the total weight of M5700 and XDI), and 0.32 g of MEHQ (0.05 wt % relative to the total weight of M5700 and XDI) were added, stirred until homogeneous, and then heated to 60 ° C. Then, 188 g (1.00 mol) of XDI was added dropwise over 1 hour. During the dropwise addition, the internal temperature rose due to the reaction heat, so the amount of dropwise addition was controlled so that it was 80 ° C. or less. After the entire amount was added dropwise, the reaction temperature was kept at 80 ° C. and the reaction was carried out for 10 hours. At this time, the progress of the reaction was tracked by HPLC analysis to confirm the end point of the reaction. By discharging the product from the reactor, 600 g of urethane acrylate (UDA4) was obtained. The viscosity at 65° C. was 6,210 mPa·s.
<測定及び評価>
得られた光硬化性組成物を用い、以下の測定及び評価を行った。結果を表2~5に示す。
<Measurement and Evaluation>
The photocurable compositions thus obtained were subjected to the following measurements and evaluations. The results are shown in Tables 2 to 5.
(試験片の作製)
得られた光硬化性組成物を、3Dプリンタ(Kulzer社、Cara Print4.0)を用い、64mm×10mm×3.3mmの大きさに造形し、造形物P2を得た(照射条件:波長405nm、照射量11mJ/cm2、DLP方式)。得られた造形物P2をイソプロパノールに浸漬し、出力60Wの超音波洗浄機を用いて5分間洗浄した。洗浄した造形物P2をエアーブローにて乾燥させた後、造形物P2に対し、波長365nmの紫外線を照射量10J/cm2にて照射して本硬化させた。以上の工程により、長さ64mm、幅10mm、厚み3.3mmの矩形板形状の試験片P2を得た。
同様に、得られた光硬化性組成物を、3Dプリンタ(Kulzer社、Cara Print4.0)を用い、39mm×8mm×厚さ4mmの大きさに造形し、造形物P1を得た(照射条件:波長405nm、照射量11mJ/cm2、DLP方式)。得られた造形物P1をイソプロパノールに浸漬し、出力60Wの超音波洗浄機を用いて5分間洗浄した。洗浄した造形物P1をエアーブローにて乾燥させた後、造形物P1に対し、波長365nmの紫外線を照射量10J/cm2にて照射して本硬化させた。以上の工程により長さ39mm、幅8mm、厚み4mmの矩形板形状の試験片P1を得た。
(Preparation of test specimens)
The obtained photocurable composition was shaped into a size of 64 mm x 10 mm x 3.3 mm using a 3D printer (Kulzer, Cara Print 4.0) to obtain a molded object P2 (irradiation conditions: wavelength 405 nm, irradiation amount 11 mJ/cm 2 , DLP method). The obtained molded object P2 was immersed in isopropanol and washed for 5 minutes using an ultrasonic cleaner with an output of 60 W. After drying the washed molded object P2 with an air blower, the molded object P2 was irradiated with ultraviolet light having a wavelength of 365 nm at an irradiation amount of 10 J/cm 2 to be fully cured. Through the above steps, a rectangular plate-shaped test piece P2 having a length of 64 mm, a width of 10 mm, and a thickness of 3.3 mm was obtained.
Similarly, the obtained photocurable composition was shaped into a size of 39 mm x 8 mm x 4 mm using a 3D printer (Kulzer, Cara Print 4.0) to obtain a molded object P1 (irradiation conditions: wavelength 405 nm, irradiation amount 11 mJ/cm 2 , DLP method). The obtained molded object P1 was immersed in isopropanol and washed for 5 minutes using an ultrasonic cleaner with an output of 60 W. After drying the washed molded object P1 with an air blower, the molded object P1 was irradiated with ultraviolet light having a wavelength of 365 nm at an irradiation amount of 10 J/cm 2 to be fully cured. Through the above steps, a rectangular plate-shaped test piece P1 with a length of 39 mm, a width of 8 mm, and a thickness of 4 mm was obtained.
(光硬化性組成物の粘度)
光硬化性組成物の粘度を、E型粘度計により、25℃、5rpmの条件で測定した。
(Viscosity of Photocurable Composition)
The viscosity of the photocurable composition was measured using an E-type viscometer at 25° C. and 5 rpm.
(光造形物の曲げ強度及び曲げ弾性率)
試験片P2(以下「試験片」という)を、37±1℃の恒温水槽にて50±2時間保管した。その後、試験片を恒温水槽から取り出し、取り出した試験片の曲げ強度及び曲げ弾性率を、それぞれ、ISO20795-1:2013に準拠して測定した。これらの測定は、引張り試験装置((株)インテスコ製)を用い、引張り速度5±1mm/分の条件で行った。
曲げ強度が65MPa以上である場合を「AA」、50MPa以上65MPa未満である場合を「A」、50MPa未満である場合を「B」として評価した。
曲げ弾性率が2000MPa以上である場合を「AA」、1500MPa以上2000MPa未満である場合を「A」、1500MPa未満である場合を「B」として評価した。
(Bending strength and bending modulus of elasticity of stereolithography)
Test piece P2 (hereinafter referred to as "test piece") was stored in a thermostatic water bath at 37±1° C. for 50±2 hours. Thereafter, the test piece was removed from the thermostatic water bath, and the flexural strength and flexural modulus of the removed test piece were measured in accordance with ISO20795-1:2013. These measurements were performed using a tensile tester (manufactured by Intesco Corporation) at a tensile speed of 5±1 mm/min.
A bending strength of 65 MPa or more was evaluated as "AA", a bending strength of 50 MPa or more but less than 65 MPa was evaluated as "A", and a bending strength of less than 50 MPa was evaluated as "B".
The flexural modulus was evaluated as "AA" when it was 2000 MPa or more, "A" when it was 1500 MPa or more and less than 2000 MPa, and "B" when it was less than 1500 MPa.
(曲げ試験による破壊靱性試験での全破壊仕事)
試験片P1(以下「試験片」という)に対し、ISO20795-1:2013に準拠して、ノッチ加工を施した。その後、試験片を37±1℃の恒温水槽にて7日間±2時間保管した。
その後、試験片を恒温水槽から取り出し、取り出した試験片について、ISO20795-1:2013に準拠して、曲げ試験による破壊靱性試験を行い、全破壊仕事(J/m2)を測定した。曲げ試験による破壊靱性試験(即ち、全破壊仕事の測定)は、引張り試験装置((株)インテスコ製)を用い、押込み速度1.0±0.2mm/分の条件で行った。
得られた全破壊仕事(J/m2)が1000以上である場合を「AA」、500以上1000未満である場合を「A」、400以上500未満である場合を「B」、250以上400未満である場合を「C」、150以上250未満である場合を「D」、150未満である場合を「E」として評価した。
(Total work of fracture in fracture toughness test by bending test)
A notch was applied to the test piece P1 (hereinafter referred to as the "test piece") in accordance with ISO 20795-1: 2013. Thereafter, the test piece was stored in a constant temperature water bath at 37±1° C. for 7 days±2 hours.
Thereafter, the test piece was removed from the thermostatic water bath, and a fracture toughness test was performed by bending test in accordance with ISO 20795-1: 2013 to measure the total work of fracture (J/m 2 ). The fracture toughness test by bending test (i.e., measurement of the total work of fracture) was performed using a tensile tester (manufactured by Intesco Corporation) at a pressing speed of 1.0±0.2 mm/min.
The total work of fracture (J/ m2 ) obtained was rated as "AA" if it was 1000 or more, "A" if it was 500 or more but less than 1000, "B" if it was 400 or more but less than 500, "C" if it was 250 or more but less than 400, "D" if it was 150 or more but less than 250, and "E" if it was less than 150.
(立体造形物の着脱試験)
光硬化性組成物を、3Dプリンタ(Kulzer社、Cara Print4.0)を用い、図1に示す形状の造形物を得た(照射条件:波長405nm、照射量11mJ/cm2、DLP方式)。得られた造形物に対し、波長365nmの紫外線を10J/cm2の条件で照射して本硬化させて、着脱試験用の試験片を得た。
(Attachment and detachment test of three-dimensional objects)
The photocurable composition was used in a 3D printer (Kulzer, Cara Print 4.0) to obtain a molded object having the shape shown in Fig. 1 (irradiation conditions: wavelength 405 nm, irradiation dose 11 mJ/ cm2 , DLP method). The obtained molded object was irradiated with ultraviolet light having a wavelength of 365 nm at 10 J/ cm2 for full curing, and a test piece for the attachment/detachment test was obtained.
図1は着脱試験に使用する試験片10と、金属部材20とを支持体30の上に配置した状態の平面図である。
試験片10は、金属部材を把持する本体部10Aと、試験片を矢印方向に移動させるための持ち手部10Bと、を有している。試験片10の奥行は10mmである。
金属部材20はSUS304製の直径10mmの円柱を切断し、切断部が支持体30と接するような形状を有している。金属部材20の奥行は10mmである。
着脱試験では、試験片10が金属部材20を把持した状態から開始し、矢印方向に沿った10mmの距離を10000回往復移動させた。試験片10の移動は引張り試験装置((株)インテスコ製)を用い、移動速度120.0±2.0mm/分の条件で行った。
10,000回の往復移動後に、試験片10を観察した。試験片の形状に変化がなく、かつ割れが生じていない場合を「○」、割れは生じていないが試験片の形状に変化ありの場合を「△」、割れが生じた場合を「×」と評価する基準により評価した。
FIG. 1 is a plan view of a test piece 10 used in a mounting/dismounting test and a metal member 20 arranged on a support 30. As shown in FIG.
The test piece 10 has a main body 10A for gripping a metal member and a handle 10B for moving the test piece in the direction of the arrow. The depth of the test piece 10 is 10 mm.
The metal member 20 is formed by cutting a cylinder made of SUS304 and having a diameter of 10 mm, and has a shape such that the cut portion is in contact with the support body 30. The depth of the metal member 20 is 10 mm.
In the attachment/detachment test, the test piece 10 was started from a state where it gripped the metal member 20, and was moved back and forth 10,000 times over a distance of 10 mm along the direction of the arrow. The test piece 10 was moved using a tensile testing device (manufactured by Intesco Corporation) at a moving speed of 120.0±2.0 mm/min.
After 10,000 reciprocating movements, the test piece 10 was observed. Evaluation was performed according to the following criteria: if there was no change in the shape of the test piece and no cracks, it was marked as "○", if there was no crack but there was a change in the shape of the test piece, it was marked as "△", and if there was a crack, it was marked as "×".
表2~5に示すように、光硬化性樹脂が1つ以上のウレタン結合及び1つの(メタ)アクリロイル基を有する(メタ)アクリレート(A)と、2つ以上のウレタン結合及び2つの(メタ)アクリロイル基を有する(メタ)アクリレート(B)と、を含む実施例は、光硬化性樹脂が(メタ)アクリレート(B)を含むが(メタ)アクリレート(A)を含まない比較例に比べて立体造形物が優れた靭性を示し、着脱評価が良好であった。 As shown in Tables 2 to 5, in the examples in which the photocurable resin contains (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups, the three-dimensional object exhibited superior toughness and good attachment/detachment evaluation compared to the comparative examples in which the photocurable resin contains (meth)acrylate (B) but not (meth)acrylate (A).
日本国特許出願第2023-059315号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2023-059315 is incorporated herein by reference in its entirety.
All publications, patent applications, and standards mentioned in this specification are incorporated by reference into this specification to the same extent as if each individual publication, patent application, and standard was specifically and individually indicated to be incorporated by reference.
Claims (19)
前記光重合性成分は、1つ以上のウレタン結合及び1つの(メタ)アクリロイル基を有する(メタ)アクリレート(A)と、2つ以上のウレタン結合及び2つの(メタ)アクリロイル基を有する(メタ)アクリレート(B)と、を含む、光硬化性組成物。 Contains a photopolymerizable component and a photopolymerization initiator,
The photocurable composition includes a (meth)acrylate (A) having one or more urethane bonds and one (meth)acryloyl group, and a (meth)acrylate (B) having two or more urethane bonds and two (meth)acryloyl groups.
式(A-1)中、X1A及びX2Aはウレタン結合であり、R1Aは1価の有機基であり、R2A及びR3Aはそれぞれ独立に2価の有機基であり、R4Aはメチル基又は水素原子であり、nAは0又は1である。 The photocurable composition according to claim 1, wherein the (meth)acrylate (A) is represented by the following general formula (A-1):
In formula (A-1), X 1A and X 2A are urethane bonds, R 1A is a monovalent organic group, R 2A and R 3A are each independently a divalent organic group, R 4A is a methyl group or a hydrogen atom, and n A is 0 or 1.
式(A-1-1)中、R1A1は1価の有機基であり、R3A1は2価の有機基であり、R4A1はメチル基又は水素原子である。
式(A-1-2)中、R1A2は1価の有機基であり、R2A2は及びR3A2はそれぞれ独立に2価の有機基であり、R4A2はメチル基又は水素原子であり、nA2は0又は1である。 The photocurable composition according to claim 1, wherein the (meth)acrylate (A) is represented by the following general formula (A-1-1) or general formula (A-1-2):
In formula (A-1-1), R 1A1 is a monovalent organic group, R 3A1 is a divalent organic group, and R 4A1 is a methyl group or a hydrogen atom.
In formula (A-1-2), R 1A2 is a monovalent organic group, R 2A2 and R 3A2 are each independently a divalent organic group, R 4A2 is a methyl group or a hydrogen atom, and n A2 is 0 or 1.
式(B-1)中、R1Bは2価の有機基であり、R2B及びR3Bはそれぞれ独立に2価の有機基であり、R4B及びR5Bはそれぞれ独立にメチル基又は水素原子である。 The photocurable composition according to claim 1, wherein the (meth)acrylate (B) is represented by the following general formula (B-1):
In formula (B-1), R 1B is a divalent organic group, R 2B and R 3B are each independently a divalent organic group, and R 4B and R 5B are each independently a methyl group or a hydrogen atom.
前記試験片は、波長405nmの可視光を照射量11mJ/cm2にて光硬化性組成物に照射して形成される厚み50μmの硬化層を厚み方向に積層させることによって長さ39mm、幅8mm及び厚み4mmの造形物を形成することと、
前記造形物に対して波長365nmの紫外線を照射量10J/cm2にて照射することと、を実施して作製される、請求項1に記載の光硬化性組成物。 The total work of fracture measured using a test specimen having a length of 39 mm, a width of 8 mm and a thickness of 4 mm is 250 J/ m2 or more;
The test piece was prepared by irradiating a photocurable composition with visible light having a wavelength of 405 nm at an irradiation dose of 11 mJ/ cm2 to form a cured layer having a thickness of 50 μm, and laminating the cured layer in the thickness direction to form a shaped object having a length of 39 mm, a width of 8 mm, and a thickness of 4 mm.
The photocurable composition according to claim 1 , which is produced by irradiating the shaped object with ultraviolet light having a wavelength of 365 nm at an irradiation dose of 10 J/cm 2 .
式(A-1a)中、X1A及びX2Aはウレタン結合であり、R1Aは1価の有機基であり、R2A及びR3Aはそれぞれ独立に2価の有機基であり、R4Aはメチル基又は水素原子であり、nAは0又は1である。nAが0である場合、R1A又はR3Aの少なくとも1つは環構造を有し、nAが1である場合、R1A、R2A又はR3Aの少なくとも1つは環構造を有する。 A (meth)acrylate represented by the following general formula (A-1a):
In formula (A-1a), X 1A and X 2A are urethane bonds, R 1A is a monovalent organic group, R 2A and R 3A are each independently a divalent organic group, R 4A is a methyl group or a hydrogen atom, and n A is 0 or 1. When n A is 0, at least one of R 1A or R 3A has a ring structure, and when n A is 1, at least one of R 1A , R 2A or R 3A has a ring structure.
式(A-1a-1)中、R1A2は1価の有機基であり、R2A2及びR3A2はそれぞれ独立に2価の有機基であり、R4A2はメチル基又は水素原子であり、R1A2、R2A2又はR3A2の少なくとも1つは環構造を有する。 The (meth)acrylate according to claim 15, represented by the following general formula (A-1a-1):
In formula (A-1a-1), R 1A2 is a monovalent organic group, R 2A2 and R 3A2 are each independently a divalent organic group, R 4A2 is a methyl group or a hydrogen atom, and at least one of R 1A2 , R 2A2 and R 3A2 has a ring structure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023059315 | 2023-03-31 | ||
JP2023-059315 | 2023-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204625A1 true WO2024204625A1 (en) | 2024-10-03 |
Family
ID=92906839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/012851 WO2024204625A1 (en) | 2023-03-31 | 2024-03-28 | Photocurable composition, three-dimensional molded article, dental product, (meth)acrylate, and monomer composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204625A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017193665A (en) * | 2016-04-21 | 2017-10-26 | 株式会社リコー | Ink, production method thereof, ink container, image forming method, image forming apparatus, and image formation product |
JP2018039957A (en) * | 2016-09-09 | 2018-03-15 | 株式会社リコー | Ink, method for producing the same, ink storage container, inkjet recording method, inkjet recording device, and record |
WO2020203981A1 (en) * | 2019-03-29 | 2020-10-08 | 三井化学株式会社 | Photocurable composition, cured product, and dental product |
WO2021193527A1 (en) * | 2020-03-27 | 2021-09-30 | 三井化学株式会社 | Photocurable composition, cured product, and dental product |
-
2024
- 2024-03-28 WO PCT/JP2024/012851 patent/WO2024204625A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017193665A (en) * | 2016-04-21 | 2017-10-26 | 株式会社リコー | Ink, production method thereof, ink container, image forming method, image forming apparatus, and image formation product |
JP2018039957A (en) * | 2016-09-09 | 2018-03-15 | 株式会社リコー | Ink, method for producing the same, ink storage container, inkjet recording method, inkjet recording device, and record |
WO2020203981A1 (en) * | 2019-03-29 | 2020-10-08 | 三井化学株式会社 | Photocurable composition, cured product, and dental product |
WO2021193527A1 (en) * | 2020-03-27 | 2021-09-30 | 三井化学株式会社 | Photocurable composition, cured product, and dental product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102302706B1 (en) | Photopolymerizable compositions, articles, and methods comprising polyurethane methacrylate polymers prepared using polycarbonate diols | |
US20250009479A1 (en) | Orthodontic Articles and Methods of Making and Postprocessing Same | |
JP7010455B2 (en) | Orthodontic articles prepared using polycarbonate diol and its manufacturing method | |
US20240417501A1 (en) | Photopolymerizable Compositions Including A Polypropylene Oxide Component, Articles, and Methods | |
JP2020528479A (en) | Photopolymerizable compositions, articles, and methods comprising urethane components and reactive diluents. | |
JP6426712B2 (en) | Polymerizable monomer composition for dental materials | |
JP2021523259A (en) | A method for producing a curable composition and a crosslinked polymer from the curable composition for use in a photolithography process based on high temperature lithography. | |
EP3883521A1 (en) | Orthodontic articles comprising polyester urethane (meth)acrylate polymer and monofunctional (meth)acrylate monomer, methods, and polymerizable compositions | |
KR101517628B1 (en) | Materials for deriving improved dental composites and dental composites made therefrom | |
JP2024050851A (en) | Photocurable composition, cured product, and dental product | |
WO2020234775A1 (en) | Orthodontic articles comprising polymerized composition with pendent cyclic moieties, methods, and polymerizable compositions | |
JP7352627B2 (en) | Resin composition for stereolithography | |
JP7412535B2 (en) | Photocurable compositions, cured products, and dental products | |
WO2024204625A1 (en) | Photocurable composition, three-dimensional molded article, dental product, (meth)acrylate, and monomer composition | |
US20230355352A1 (en) | Articles, methods and compositions comprising polymerizable dicarbonyl polymers | |
JP7249420B2 (en) | Method for producing monomer composition, raw material composition, monomer composition, curable composition, and molded article | |
WO2023189780A1 (en) | Photocurable composition, three-dimensional shaped object, and tool to be fit inside oral cavity | |
US20220275125A1 (en) | Urethane allyl compound, monomer composition, molded body, composition for dental material, and dental material | |
EP4403131A1 (en) | Photopolymerizable composition for 3d printer containing polymerizable monomer having allophanate bond |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24780724 Country of ref document: EP Kind code of ref document: A1 |