WO2024204434A1 - Layered body - Google Patents
Layered body Download PDFInfo
- Publication number
- WO2024204434A1 WO2024204434A1 PCT/JP2024/012440 JP2024012440W WO2024204434A1 WO 2024204434 A1 WO2024204434 A1 WO 2024204434A1 JP 2024012440 W JP2024012440 W JP 2024012440W WO 2024204434 A1 WO2024204434 A1 WO 2024204434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- substrate
- resin layer
- less
- mass
- Prior art date
Links
- 229920005989 resin Polymers 0.000 claims abstract description 119
- 239000011347 resin Substances 0.000 claims abstract description 119
- 239000000758 substrate Substances 0.000 claims abstract description 116
- 238000003860 storage Methods 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims description 19
- 239000010410 layer Substances 0.000 description 90
- 239000000853 adhesive Substances 0.000 description 75
- 230000001070 adhesive effect Effects 0.000 description 75
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 71
- 229920000642 polymer Polymers 0.000 description 69
- 239000000178 monomer Substances 0.000 description 63
- -1 polyethylene Polymers 0.000 description 57
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 50
- 229910052751 metal Inorganic materials 0.000 description 46
- 239000002184 metal Substances 0.000 description 46
- 239000000203 mixture Substances 0.000 description 37
- 239000003431 cross linking reagent Substances 0.000 description 26
- 238000000576 coating method Methods 0.000 description 22
- 238000002360 preparation method Methods 0.000 description 22
- 239000011248 coating agent Substances 0.000 description 21
- 125000000524 functional group Chemical group 0.000 description 16
- 239000003505 polymerization initiator Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 230000001681 protective effect Effects 0.000 description 14
- 239000012790 adhesive layer Substances 0.000 description 13
- 239000003999 initiator Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 229920001187 thermosetting polymer Polymers 0.000 description 12
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 10
- 238000001723 curing Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 6
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- 239000005056 polyisocyanate Substances 0.000 description 6
- 229920001228 polyisocyanate Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000010538 cationic polymerization reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 5
- 229940059574 pentaerithrityl Drugs 0.000 description 5
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 5
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 5
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012719 thermal polymerization Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 3
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 3
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 3
- YIJYFLXQHDOQGW-UHFFFAOYSA-N 2-[2,4,6-trioxo-3,5-bis(2-prop-2-enoyloxyethyl)-1,3,5-triazinan-1-yl]ethyl prop-2-enoate Chemical class C=CC(=O)OCCN1C(=O)N(CCOC(=O)C=C)C(=O)N(CCOC(=O)C=C)C1=O YIJYFLXQHDOQGW-UHFFFAOYSA-N 0.000 description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 244000028419 Styrax benzoin Species 0.000 description 3
- 235000000126 Styrax benzoin Nutrition 0.000 description 3
- 235000008411 Sumatra benzointree Nutrition 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229960002130 benzoin Drugs 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 3
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000012954 diazonium Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 235000019382 gum benzoic Nutrition 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 239000013034 phenoxy resin Substances 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 2
- HASUCEDGKYJBDC-UHFFFAOYSA-N 1-[3-[[bis(oxiran-2-ylmethyl)amino]methyl]cyclohexyl]-n,n-bis(oxiran-2-ylmethyl)methanamine Chemical compound C1OC1CN(CC1CC(CN(CC2OC2)CC2OC2)CCC1)CC1CO1 HASUCEDGKYJBDC-UHFFFAOYSA-N 0.000 description 2
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- FPKCTSIVDAWGFA-UHFFFAOYSA-N 2-chloroanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3C(=O)C2=C1 FPKCTSIVDAWGFA-UHFFFAOYSA-N 0.000 description 2
- KANZWHBYRHQMKZ-UHFFFAOYSA-N 2-ethenylpyrazine Chemical compound C=CC1=CN=CC=N1 KANZWHBYRHQMKZ-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 2
- BUZICZZQJDLXJN-UHFFFAOYSA-N 3-azaniumyl-4-hydroxybutanoate Chemical compound OCC(N)CC(O)=O BUZICZZQJDLXJN-UHFFFAOYSA-N 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 2
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 150000001989 diazonium salts Chemical class 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229910000856 hastalloy Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 229910000953 kanthal Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 2
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 2
- 150000004714 phosphonium salts Chemical class 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920006289 polycarbonate film Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JZDQKBZKFIWSNW-UHFFFAOYSA-N (4-methoxyphenyl)-phenyliodanium Chemical compound C1=CC(OC)=CC=C1[I+]C1=CC=CC=C1 JZDQKBZKFIWSNW-UHFFFAOYSA-N 0.000 description 1
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- HYYJOCXNESGFSB-UHFFFAOYSA-N 1-(oxiran-2-yl)-n-(oxiran-2-ylmethyl)methanamine Chemical compound C1OC1CNCC1CO1 HYYJOCXNESGFSB-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- DGPVNNMFVYYVDF-UHFFFAOYSA-N 1-prop-2-enoylpyrrolidin-2-one Chemical compound C=CC(=O)N1CCCC1=O DGPVNNMFVYYVDF-UHFFFAOYSA-N 0.000 description 1
- JTINZFQXZLCHNS-UHFFFAOYSA-N 2,2-bis(oxiran-2-ylmethoxymethyl)butan-1-ol Chemical compound C1OC1COCC(CO)(CC)COCC1CO1 JTINZFQXZLCHNS-UHFFFAOYSA-N 0.000 description 1
- CZZVAVMGKRNEAT-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;3-hydroxy-2,2-dimethylpropanoic acid Chemical compound OCC(C)(C)CO.OCC(C)(C)C(O)=O CZZVAVMGKRNEAT-UHFFFAOYSA-N 0.000 description 1
- YRTNMMLRBJMGJJ-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;hexanedioic acid Chemical compound OCC(C)(C)CO.OC(=O)CCCCC(O)=O YRTNMMLRBJMGJJ-UHFFFAOYSA-N 0.000 description 1
- LZHUBCULTHIFNO-UHFFFAOYSA-N 2,4-dihydroxy-1,5-bis[4-(2-hydroxyethoxy)phenyl]-2,4-dimethylpentan-3-one Chemical compound C=1C=C(OCCO)C=CC=1CC(C)(O)C(=O)C(O)(C)CC1=CC=C(OCCO)C=C1 LZHUBCULTHIFNO-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- PFHOSZAOXCYAGJ-UHFFFAOYSA-N 2-[(2-cyano-4-methoxy-4-methylpentan-2-yl)diazenyl]-4-methoxy-2,4-dimethylpentanenitrile Chemical compound COC(C)(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)(C)OC PFHOSZAOXCYAGJ-UHFFFAOYSA-N 0.000 description 1
- YCPMSWJCWKUXRH-UHFFFAOYSA-N 2-[4-[9-[4-(2-prop-2-enoyloxyethoxy)phenyl]fluoren-9-yl]phenoxy]ethyl prop-2-enoate Chemical compound C1=CC(OCCOC(=O)C=C)=CC=C1C1(C=2C=CC(OCCOC(=O)C=C)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 YCPMSWJCWKUXRH-UHFFFAOYSA-N 0.000 description 1
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- IGDLZDCWMRPMGL-UHFFFAOYSA-N 2-ethenylisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(C=C)C(=O)C2=C1 IGDLZDCWMRPMGL-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- FKJNJZAGYPPJKZ-UHFFFAOYSA-N 2-hydroxy-1,2-diphenylethanone;methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1.C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 FKJNJZAGYPPJKZ-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical class C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- DRKNCXJRCPVHNQ-UHFFFAOYSA-N O1CCN(CC1)C(C=C)=O.C(C=C)(=O)N1CCOCC1 Chemical compound O1CCN(CC1)C(C=C)=O.C(C=C)(=O)N1CCOCC1 DRKNCXJRCPVHNQ-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 1
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012935 ammoniumperoxodisulfate Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- CLRSZXHOSMKUIB-UHFFFAOYSA-M benzenediazonium chloride Chemical compound [Cl-].N#[N+]C1=CC=CC=C1 CLRSZXHOSMKUIB-UHFFFAOYSA-M 0.000 description 1
- CSNNWDJQKGMZPO-UHFFFAOYSA-N benzoic acid;2-hydroxy-1,2-diphenylethanone Chemical compound OC(=O)C1=CC=CC=C1.C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 CSNNWDJQKGMZPO-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- UUZYBYIOAZTMGC-UHFFFAOYSA-M benzyl(trimethyl)azanium;bromide Chemical compound [Br-].C[N+](C)(C)CC1=CC=CC=C1 UUZYBYIOAZTMGC-UHFFFAOYSA-M 0.000 description 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QRMFGEKERJAYSQ-UHFFFAOYSA-N bis(4-chlorophenyl)iodanium Chemical compound C1=CC(Cl)=CC=C1[I+]C1=CC=C(Cl)C=C1 QRMFGEKERJAYSQ-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- ADKBGLXGTKOWIU-UHFFFAOYSA-N butanediperoxoic acid Chemical compound OOC(=O)CCC(=O)OO ADKBGLXGTKOWIU-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012955 diaryliodonium Substances 0.000 description 1
- 125000005520 diaryliodonium group Chemical group 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 1
- 229950004394 ditiocarb Drugs 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 1
- SJPFBRJHYRBAGV-UHFFFAOYSA-N n-[[3-[[bis(oxiran-2-ylmethyl)amino]methyl]phenyl]methyl]-1-(oxiran-2-yl)-n-(oxiran-2-ylmethyl)methanamine Chemical compound C1OC1CN(CC=1C=C(CN(CC2OC2)CC2OC2)C=CC=1)CC1CO1 SJPFBRJHYRBAGV-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920002601 oligoester Polymers 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- NNENFOSYDBTCBO-UHFFFAOYSA-M tributyl(hexadecyl)phosphanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC NNENFOSYDBTCBO-UHFFFAOYSA-M 0.000 description 1
- QEXITCCVENILJI-UHFFFAOYSA-M tributyl(phenyl)azanium;chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)C1=CC=CC=C1 QEXITCCVENILJI-UHFFFAOYSA-M 0.000 description 1
- GLSQMJPVEVGXMZ-UHFFFAOYSA-N tributyl-(2,5-dihydroxyphenyl)phosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)C1=CC(O)=CC=C1O GLSQMJPVEVGXMZ-UHFFFAOYSA-N 0.000 description 1
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical compound C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 1
- 239000012953 triphenylsulfonium Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
Definitions
- the present invention relates to a laminate.
- Patent Document 1 discloses a wiring sheet that can be used for a sheet heater, which includes a pseudo-sheet structure in which a plurality of conductive linear members are arranged at intervals, a cured material layer that supports the pseudo-sheet structure, and a pair of electrodes in direct contact with the conductive linear members.
- the cured material layer is made of a cured product of a curable adhesive, and the storage modulus of the cured material layer at 23° C. is 5.0 ⁇ 10 Pa or more and 1.0 ⁇ 10 Pa or less.
- the wiring sheet described in Patent Document 1 can stabilize the resistance value of the wiring. However, it has been found that when the wiring sheet described in Patent Document 1 is used by placing it between two substrates with different linear expansion coefficients, cracks may occur in one of the substrates.
- the object of the present invention is to provide a laminate that can prevent cracks from occurring in the substrate.
- a laminate including a first substrate, a second substrate having a linear expansion coefficient higher than that of the first substrate, and a wiring sheet sandwiched between the first substrate and the second substrate, the wiring sheet includes a wiring body in which a plurality of conductive linear bodies are arranged at intervals, a first resin layer that directly or indirectly supports the wiring body, and a pair of electrodes that directly contact the conductive linear bodies, The first substrate or the second substrate and the wiring sheet are laminated via a second resin layer having a storage modulus lower than that of the first resin layer.
- the laminate according to [1] The laminate according to [1], The second resin layer has a storage modulus at 23° C. of 1.0 ⁇ 10 4 Pa or more and 3.0 ⁇ 10 5 Pa or less. Laminate.
- the linear expansion coefficient of the first substrate is 0.01 ⁇ 10 ⁇ 6 /° C. or more and 10 ⁇ 10 ⁇ 6 /° C. or less.
- a laminate can be provided that can prevent cracks from occurring in the substrate.
- FIG. 1 is a schematic diagram showing a laminate according to a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing the II-II cross section of FIG.
- FIG. 4 is a cross-sectional view showing a cross section of a laminate according to a second embodiment of the present invention.
- the laminate 100 of this embodiment comprises a first substrate 1, a second substrate 2 having a higher linear expansion coefficient than the first substrate 1, and a wiring sheet 10 sandwiched between the first substrate 1 and the second substrate 2.
- the wiring sheet 10 includes a wiring body 3 having a plurality of conductive linear bodies 31 arranged at intervals, a first resin layer 4 that directly or indirectly supports the wiring body 3, and a pair of electrodes 5 that are in direct contact with the conductive linear bodies 31.
- the first substrate 1 or the second substrate 2 and the wiring sheet 10 are laminated via a second resin layer 6 having a lower storage modulus than the first resin layer 4.
- the second substrate 2 and the wiring sheet 10 are laminated via the second resin layer 6.
- the second substrate 2 has two holes formed therein, and these two holes can electrically connect the pair of electrodes 5 to a power source (not shown).
- the reason why the laminate 100 according to this embodiment can prevent cracks from occurring in the substrate is as follows. That is, the reason why cracks occur in the second substrate 2 is because the linear expansion coefficients are different between the first substrate 1 and the second substrate 2. For example, when the laminate 100 becomes hot, the second substrate 2 expands more than the first substrate 1. Since the first substrate 1 and the second substrate 2 are fixed by the wiring sheet 10 sandwiched between them, distortion occurs in the second substrate 2, and cracks occur. In contrast, in this embodiment, the first substrate 1 or the second substrate 2 and the wiring sheet 10 are laminated via the second resin layer 6, which has a lower storage modulus than the first resin layer 4. The second resin layer 6 is easily deformed because of its low storage modulus. Therefore, when the laminate 100 becomes hot, the second resin layer 6 deforms, and the distortion occurring in the second substrate 2 can be alleviated. In this way, it is possible to prevent cracks from occurring in the substrate.
- First substrate 1 can directly or indirectly support wiring body 3. In addition, first substrate 1 can protect one surface of wiring sheet 10.
- the linear expansion coefficient of the first base material 1 is lower than the linear expansion coefficient of the second base material 2. Thus, even if there is a difference in the linear expansion coefficient, according to this embodiment, the occurrence of cracks in the second base material 2 can be prevented.
- the linear expansion coefficient of the first substrate 1 may be 0.01 ⁇ 10 ⁇ 6 /° C. or more, 0.1 ⁇ 10 ⁇ 6 /° C. or more, or 0.5 ⁇ 10 ⁇ 6 /° C. or more.
- the linear expansion coefficient of the first substrate 1 is preferably 20 ⁇ 10 ⁇ 6 /° C. or less, more preferably 10 ⁇ 10 ⁇ 6 /° C. or less, and particularly preferably 5 ⁇ 10 ⁇ 6 /° C. or less.
- the linear expansion coefficient can be measured by the method described in the examples below. The conditions for measuring the linear expansion coefficient are as described below.
- the material of the first substrate 1 is preferably resin, glass, or the like, from the viewpoints of strength and handling properties of the laminate.
- the thickness of the first substrate 1 is not particularly limited.
- the thickness of the first substrate 1 is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 50 ⁇ m or more.
- the thickness of the first substrate 1 is preferably 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.
- Second substrate 2 can directly or indirectly support wiring body 3. In addition, second substrate 2 can protect one surface of wiring sheet 10.
- the linear expansion coefficient of the second substrate 2 is higher than the linear expansion coefficient of the first substrate 1. Thus, even if there is a difference in the linear expansion coefficient, according to this embodiment, the occurrence of cracks in the second substrate 2 can be prevented.
- the linear expansion coefficient of the second base material 2 is preferably 30 ⁇ 10 -6 /° C. or more, more preferably 45 ⁇ 10 -6 /° C. or more, and even more preferably 60 ⁇ 10 -6 /° C. or more.
- the linear expansion coefficient of the second base material 2 is preferably 200 ⁇ 10 -6 /° C. or less, more preferably 150 ⁇ 10 -6 /° C. or less, and even more preferably 100 ⁇ 10 -6 /° C. or less.
- the method for measuring the linear expansion coefficient is as described below.
- the material of the second base material 2 is preferably a resin or the like from the viewpoints of the handleability of the laminate and suitability for production.
- the resin include polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, polyvinyl chloride, vinyl chloride copolymer, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyurethane, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-(meth)acrylic acid copolymer, polystyrene, polycarbonate, cycloolefin polymer, and polyimide.
- the thickness of the second substrate 2 is not particularly limited.
- the thickness of the second substrate 2 is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and even more preferably 50 ⁇ m or more.
- the thickness of the second substrate 2 is preferably 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.
- the wiring sheet 10 includes a wiring body 3, a first resin layer 4, and a pair of electrodes 5.
- the wiring sheet 10 is sandwiched between a first substrate 1 and a second substrate 2, and both surfaces of the wiring sheet 10 are protected by the first substrate 1 and the second substrate 2.
- the wiring body 3 has a structure in which a plurality of conductive linear bodies 31 are arranged at intervals from one another.
- the wiring body 3 also has a structure in which a plurality of conductive linear bodies 31 are arranged in parallel.
- the conductive linear body 31 may be linear in a plan view of the laminate 100, but may also be wavy. Examples of wave shapes include a sine wave, a rectangular wave, a triangular wave, and a sawtooth wave. For example, if the wiring body 3 has such a structure, breakage of the conductive linear body 31 can be suppressed when the laminate 100 is stretched in the axial direction of the conductive linear body 31.
- the volume resistivity of the conductive linear body 31 is preferably 1.0 ⁇ 10 -9 ⁇ m or more, more preferably 3.0 ⁇ 10 -9 ⁇ m or more, and even more preferably 1.0 ⁇ 10 -8 ⁇ m or more.
- the volume resistivity of the conductive linear body 31 is preferably 1.0 ⁇ 10 -3 ⁇ m or less, more preferably 1.0 ⁇ 10 -4 ⁇ m or less, and even more preferably 1.0 ⁇ 10 -5 ⁇ m or less.
- the volume resistivity of the conductive linear body 31 was measured as follows: Silver paste was applied to the ends of the conductive linear body 31 and to a portion 40 mm from the ends, and the resistance of the ends and the portion 40 mm from the ends was measured. The volume resistivity of the conductive linear body 31 was then calculated by multiplying the resistance value by the cross-sectional area (unit: m2 ) of the conductive linear body 31 and dividing the obtained value by the measured length (0.04 m).
- the cross-sectional shape of the conductive linear body 31 is not particularly limited, and may be polygonal, flat, elliptical, circular, or the like. From the standpoint of compatibility with the first resin layer 4, etc., it is preferable that the cross-sectional shape of the conductive linear body 31 is elliptical or circular.
- the diameter D (see FIG. 2) of the conductive linear body 31 is preferably 3 ⁇ m or more and 200 ⁇ m or less. From the viewpoint of suppressing an increase in sheet resistance and improving the heat generation efficiency and dielectric breakdown resistance characteristics of the laminate 100, the diameter D of the conductive linear body 31 is more preferably 4 ⁇ m or more, and even more preferably 5 ⁇ m or more.
- the diameter D of the conductive linear body 31 is more preferably 150 ⁇ m or less, even more preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less, and extremely preferably 20 ⁇ m or less.
- the cross section of the conductive linear body 31 is elliptical, it is preferable that the major axis is in the same range as the diameter D described above.
- the diameter D of the conductive linear body 31 is determined by observing the conductive linear body 31 using a digital microscope, measuring the diameter of the conductive linear body 31 at five randomly selected points, and averaging the measured values.
- the interval L (see FIG. 2 ) between the conductive linear members 31 is preferably 0.3 mm or more, more preferably 0.5 mm or more, even more preferably 0.8 mm or more, and particularly preferably 1.5 mm or more.
- the interval L between the conductive linear members 31 is preferably 50 mm or less, more preferably 30 mm or less, even more preferably 20 mm or less, and particularly preferably 5 mm or less. If the spacing between the conductive linear bodies 31 is within the above range, the conductive linear bodies are relatively densely packed, which improves the functionality of the laminate 100, such as maintaining the resistance of the wiring body 3 low.
- the distance L between the conductive linear members 31 is measured by, for example, observing the conductive linear members 31 of the wiring body 3 using a digital microscope and measuring the distance between two adjacent conductive linear members 31 .
- the interval between two adjacent conductive linear bodies 31 is the length along the direction in which the conductive linear bodies 31 are arranged, and is the length between opposing portions of the two conductive linear bodies 31 (see FIG. 2 ).
- the interval L is the average value of the intervals between all adjacent conductive linear bodies 31.
- the conductive linear body 31 may be produced by any method, such as etching, screen printing, or inkjet printing, but may be a linear body including a metal wire (hereinafter also referred to as a "metal wire linear body").
- Metal wires have high thermal conductivity, high electrical conductivity, and high handling properties.
- the metal wire linear body can greatly reduce resistance, and even if the diameter of the metal wire linear body is extremely small, it can pass a current required for heat generation of the laminate 100. This makes it possible to make the conductive linear body 31 less visible. That is, when a metal wire linear body is used as the conductive linear body 31, the resistance value of the wiring body 3 is reduced while the light transmittance is easily improved. In addition, the laminate 100 is easily able to generate heat quickly.
- examples of the conductive linear body 31 include a linear body containing a carbon nanotube and a linear body in which a conductive coating is applied to a thread, in addition to a metal wire linear body.
- the metal wire linear body may be a linear body made of a single metal wire, or may be a linear body made of a plurality of twisted metal wires.
- metal wires include wires containing metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (e.g., steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium-copper alloys, beryllium copper, iron-nickel, nichrome, nickel-titanium, Kanthal, Hastelloy, and rhenium-tungsten).
- the metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloys, or solder, or may be coated with a carbon material or polymer, which will be described later.
- wires containing one or more metals selected from tungsten and molybdenum, and alloys containing these, are preferred from the viewpoint of low volume resistivity.
- the metal wire may be a metal wire coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced, and the presence of the metal wire can be easily made less noticeable. In addition, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
- the carbon material that coats the metal wire include amorphous carbon such as carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, and carbon fiber; graphite, fullerene, graphene, and carbon nanotubes.
- the conductive linear body 31 may be a linear body having a conductive coating applied to the thread.
- the thread include threads spun from resins such as nylon or polyester.
- Other examples of the thread include threads made of metal fibers, carbon fibers, or ion-conductive polymer fibers.
- the conductive coating include coatings made of metals, conductive polymers, or carbon materials.
- the conductive coating can be formed by plating, vapor deposition, or the like.
- a linear body having a conductive coating applied to the thread can improve the conductivity of the linear body while maintaining the flexibility of the thread. In other words, it becomes easier to reduce the resistance of the wiring body 3.
- the first resin layer 4 directly or indirectly supports the wiring body 3.
- the first resin layer 4 can stabilize the resistance value of the wiring body 3. That is, the first resin layer 4 can fix the conductive linear body 31, stabilize the contact between the conductive linear body 31 and the electrode 5, and make it difficult for an increase in the resistance value to occur.
- the storage modulus of the first resin layer 4 at 23° C. is preferably 5.0 ⁇ 10 6 Pa or more and 1.0 ⁇ 10 10 Pa or less.
- the storage modulus of the first resin layer 4 at 23° C. is more preferably 5.0 ⁇ 10 7 Pa or more, and even more preferably 5.0 ⁇ 10 8 Pa or more.
- the storage modulus of the first resin layer 4 at 105° C. is preferably 5.0 ⁇ 10 7 Pa or more, and more preferably 5.0 ⁇ 10 8 Pa or more.
- the storage modulus of the first resin layer 4 at 105° C. is preferably 7.0 ⁇ 10 9 Pa or less, and more preferably 4.0 ⁇ 10 9 Pa or less.
- the storage modulus can be measured by the method described in the examples below.
- the thickness of the first resin layer 4 is not particularly limited.
- the thickness of the first resin layer 4 may be equal to or greater than the diameter D of the conductive linear body 31, or may be less than the diameter D of the conductive linear body 31. If the thickness of the first resin layer 4 is equal to or greater than the diameter D of the conductive linear body 31, the wiring body 3 can be included in the first resin layer 4. If the thickness of the first resin layer 4 is less than the diameter D of the conductive linear body 31, the wiring body 3 is exposed from the first resin layer 4. In addition, when the wiring body 3 is exposed from the first resin layer 4, the wiring body 3 may be exposed on the side of the first substrate 1 or on the side of the second substrate 2.
- the thickness of the first resin layer 4 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
- the thickness of the first resin layer 4 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
- the first resin layer 4 is preferably a layer made of a cured product of a curable adhesive.
- the curable adhesive include a thermosetting adhesive that is cured by heat, and an energy ray curable adhesive.
- the energy ray include ultraviolet rays, visible energy rays, infrared rays, and electron beams. Note that "energy ray curing” also includes heat curing by heating using energy rays.
- the curable adhesive preferably contains a thermosetting resin.
- the thermosetting resin is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, benzoxazine resin, phenoxy resin, amine-based compounds, and acid anhydride-based compounds. These can be used alone or in combination of two or more.
- epoxy resin from the viewpoint of suitability for curing using an imidazole-based curing catalyst, it is preferable to use epoxy resin, phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds, and in particular, from the viewpoint of showing excellent curing properties, it is preferable to use epoxy resin, phenol resin, a mixture thereof, or a mixture of epoxy resin and at least one selected from the group consisting of phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds, and it is preferable to use epoxy resin.
- epoxy resins cyclic ones such as aromatic epoxy resins or alicyclic epoxy resins are preferred from the viewpoint of increasing the storage modulus of the first resin layer 4.
- Epoxy resins having flexible segments such as oxyalkylene chains tend to decrease the storage modulus of the first resin layer 4.
- the energy ray curable adhesive preferably contains an energy ray curable resin.
- the energy ray curable resin include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferred.
- acrylate compounds include dicyclopentadiene diacrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
- acrylate and other linear aliphatic skeleton-containing (meth)acrylates include linear aliphatic skeleton-containing (meth)acrylates; cyclic aliphatic skeleton-containing (meth)acrylates such as dicyclopentanyl di(meth)acrylate; polyalkylene glycol (meth)acrylates such as polyethylene glycol di(meth)acrylate; oligoester (meth)acrylates, urethane (meth)acrylate oligomers, epoxy-modified (meth)acrylates, polyether (meth)acrylates other than polyalkylene glycol (meth)acrylates, and itaconic acid oligomers.
- polyalkylene glycol (meth)acrylates such as polyethylene glycol di(meth)acrylate
- oligoester (meth)acrylates, urethane (meth)acrylate oligomers epoxy-modified (meth)acrylates, polyether (meth)acrylates other than polyalkylene glycol (
- the weight average molecular weight (Mw) of the energy ray curable resin is preferably 100 or more, and more preferably 300 or more.
- the weight average molecular weight is preferably 30,000 or less, and more preferably 10,000 or less.
- the weight average molecular weight in this specification is a value calculated in terms of standard polystyrene measured by gel permeation chromatography (GPC).
- the adhesive may contain one type of energy ray curable resin, or two or more types.
- the combination and ratio of the resins may be selected arbitrarily.
- a photopolymerization initiator When using an energy ray curable resin or a thermosetting resin, it is preferable to use a photopolymerization initiator, a thermal polymerization initiator, or the like.
- a photopolymerization initiator, a thermal polymerization initiator, or the like By using a photopolymerization initiator, a thermal polymerization initiator, or the like, the polymerization reaction of the curable resin can be easily started, making it easier to control the curing reaction.
- Photopolymerization initiators include photoradical polymerization initiators such as benzophenone, acetophenone, benzoin, benzoin methyl ether, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6-trimethylbenzoyl)-phenyl-phosphine oxide.
- photoradical polymerization initiators such as benzophenone, acetophenone, benzoin, benzoin methyl ether, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthi
- photocationic polymerization initiators can also be used as photopolymerization initiators.
- Photocationic polymerization initiators are compounds that generate cationic species when irradiated with energy rays, initiating the curing reaction of cationic curable compounds, and consist of a cationic portion that absorbs energy rays and an anionic portion that serves as a source of acid generation.
- photocationic polymerization initiators include sulfonium salt compounds, iodonium salt compounds, phosphonium salt compounds, ammonium salt compounds, antimony salt compounds, diazonium salt compounds, selenium salt compounds, oxonium salt compounds, and bromine salt compounds.
- sulfonium salt compounds are preferred from the viewpoints of excellent compatibility and excellent storage stability of the resulting adhesive, and aromatic sulfonium salt compounds having an aromatic group are more preferred.
- sulfonium salt compounds include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, and triphenylsulfonium tetrakis(pentafluorophenyl)borate.
- Iodonium salt compounds include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, and (tricumyl)iodonium tetrakis(pentafluorophenyl)borate.
- Phosphonium salt compounds include tri-n-butyl(2,5-dihydroxyphenyl)phosphonium bromide and hexadecyltributylphosphonium chloride.
- ammonium salt compounds include benzyltrimethylammonium chloride, phenyltributylammonium chloride, and benzyltrimethylammonium bromide.
- antimonate compounds include triphenylsulfonium hexafluoroantimonate, p-(phenylthio)phenyldiphenylsulfonium hexafluoroantimonate, and diaryliodonium hexafluoroantimonate.
- Thermal polymerization initiators include hydrogen peroxide; peroxodisulfates such as ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate; azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobisisobutyronitrile, and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile); and thermal radical polymerization initiators such as benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, and organic peroxides such as cumene hydroperoxide.
- peroxodisulfates such as ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisul
- thermal cationic polymerization initiators can also be used as thermal polymerization initiators.
- Thermal cationic polymerization initiators are compounds that can generate cationic species that initiate polymerization when heated.
- thermal cationic polymerization initiators include sulfonium salts, quaternary ammonium salts, phosphonium salts, diazonium salts, and iodonium salts. Among these, sulfonium salts are preferred from the viewpoints of ease of availability and the ease with which products with superior adhesion and transparency can be obtained.
- Sulfonium salts include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, and triphenylsulfonium hexafluoroarsinate.
- Examples of the quaternary ammonium salt include tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and tetrabutylammonium hydrogen sulfate.
- Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
- Diazonium salts include benzenediazonium chloride, etc.
- Iodonium salts include diphenyliodonium hexafluoroarsinate, bis(4-chlorophenyl)iodonium hexafluoroarsinate, and phenyl(4-methoxyphenyl)iodonium hexafluoroarsinate, etc.
- polymerization initiators may be used alone or in combination of two or more.
- the amount used is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less, relative to 100 parts by mass of the energy ray-curable resin or the thermosetting resin.
- thermosetting resin a thermosetting resin
- a curing catalyst such as an imidazole-based curing catalyst may be used.
- the curable adhesive may contain a flexibility adjusting component together with the energy ray curable resin or thermosetting resin to facilitate maintaining the sheet shape before curing.
- a flexibility adjusting component together with the energy ray curable resin or thermosetting resin to facilitate maintaining the sheet shape before curing.
- polymers used as flexibility adjusting components include phenoxy resin, polyolefin resin or modified products thereof, polyamideimide resin, polyimide resin, rubber resin, and acrylic resin.
- flexibility adjusting ingredients can be used alone or in combination of two or more.
- the total amount of energy ray curable resin and thermosetting resin contained in the adhesive is, from the viewpoint of adjusting the storage modulus of the first resin layer 4 to the above-mentioned range, preferably 15 parts by mass or more and 300 parts by mass or less, more preferably 30 parts by mass or more and 250 parts by mass or less, and even more preferably 60 parts by mass or more and 200 parts by mass or less, per 100 parts by mass of the flexibility adjusting component.
- the adhesive contains an energy ray curable resin or a thermosetting resin but does not contain a flexibility adjusting component, the storage modulus of the first resin layer 4 tends to be too high.
- the curable adhesive does not contain a filler.
- the adhesive does not contain a filler, it is possible to prevent the storage modulus at 23° C. of the first resin layer 4 from becoming too high.
- the curable adhesive may contain a filler within a range in which the storage modulus at 23° C. of the first resin layer 4 can be adjusted to fall within the above range.
- Fillers include, for example, inorganic powders such as silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride; beads made by shaping inorganic powders into spherical shapes, single crystal fibers, and glass fibers.
- silica filler and alumina filler are preferred.
- the fillers may be used alone or in combination of two or more types.
- the curable adhesive may contain other components.
- other components include well-known additives such as organic solvents, coupling agents, flame retardants, tackifiers, UV absorbers, antioxidants, preservatives, fungicides, plasticizers, defoamers, and wettability adjusters.
- the electrodes 5 are used to supply a current to the conductive linear body 31.
- the electrodes 5 are in a pair.
- the electrodes 5 are in direct contact with the conductive linear body 31.
- the electrodes 5 are disposed so as to be electrically connected to both ends of the conductive linear body 31.
- the electrode 5 can be formed using a known electrode material. Examples of the electrode material include a conductive paste such as silver paste, a metal foil such as copper foil, and a metal wire. When the electrode material is a metal wire, the number of metal wires may be one, but is preferably two or more.
- the metal of the metal foil or metal wire examples include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals such as stainless steel, carbon steel, brass, phosphor bronze, zirconium copper alloy, beryllium copper, iron nickel, nichrome, nickel titanium, Kanthal, Hastelloy, and rhenium tungsten.
- the metal foil or metal wire may also be plated with gold, tin, zinc, silver, nickel, chromium, nickel chromium alloy, or solder.
- the width of at least one of the electrodes 5 is preferably 10 mm or less, and more preferably 3 mm or less, in a plan view of the laminate 100.
- the width of this electrode is preferably 0.1 mm or more, and more preferably 0.5 mm or more. If at least one of the electrodes is a metal wire, the width of the electrode is the diameter of the metal wire, and if two or more metal wires are used, the width of one electrode refers to the sum of the diameters of the metal wires.
- the thickness of the electrode 5 is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
- the thickness of the electrode 5 is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, and particularly preferably 25 ⁇ m or less. If the thickness of the electrode 5 is within the above range, the electrical conductivity is high and the resistance is low, and the resistance value with the pseudo sheet structure can be kept low. In addition, sufficient strength as an electrode is obtained. Note that when the electrode is a metal wire, the thickness of the electrode is the diameter of the metal wire.
- the second resin layer 6 is provided between the first substrate 1 or the second substrate 2, and the wiring sheet 10.
- the second resin layer 6 has a lower storage modulus than the first resin layer 4.
- This second resin layer 6 can prevent cracks from occurring in the second substrate 2.
- the second substrate 2 and the wiring sheet 10 are laminated with the second resin layer 6 interposed therebetween.
- the storage modulus of the second resin layer 6 at 23° C. is preferably 1.0 ⁇ 10 4 Pa or more and 3.0 ⁇ 10 5 Pa or less.
- the storage modulus of the second resin layer 6 at 23° C. is more preferably 4.0 ⁇ 10 4 Pa or more, and even more preferably 8.0 ⁇ 10 4 Pa or more.
- the storage modulus of the second resin layer 6 at 23° C. is more preferably 2.5 ⁇ 10 5 Pa or less, and even more preferably 2.0 ⁇ 10 5 Pa or less. From the same viewpoint, the storage modulus of the second resin layer 6 at 105° C. is preferably 5.0 ⁇ 10 3 Pa or more, and more preferably 1.0 ⁇ 10 4 Pa or more. The storage modulus of the second resin layer 6 at 105° C. is preferably 4.0 ⁇ 10 4 Pa or less, and more preferably 3.0 ⁇ 10 4 Pa or less. The storage modulus can be measured by the method described in the examples below.
- the thickness of the second resin layer 6 is not particularly limited.
- the thickness of the second resin layer 6 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
- the thickness of the second resin layer 6 is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and even more preferably 300 ⁇ m or less.
- the second resin layer 6 is preferably an adhesive layer as described below, from the viewpoint of excellent performance as an adhesive layer and of having a storage modulus within the above range.
- the adhesive layer can be composed of an adhesive obtained by crosslinking (thermal crosslinking) an adhesive composition (hereinafter sometimes referred to as "adhesive composition P") containing, for example, a (meth)acrylic acid ester polymer (A) and a crosslinking agent (B), or an energy ray curable component (C), or both.
- this adhesive composition P preferably further contains a photopolymerization initiator (D).
- (meth)acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms.
- copolymer is also included in "polymer.”
- the adhesive layer obtained by crosslinking the adhesive composition P has not yet been cured by energy rays at the stage of the adhesive sheet, i.e., before being attached to the adherend, and has a relatively low storage modulus. Therefore, it is possible to alleviate the stress that occurs when the adhesive layer is attached to the adherend. As a result, even when the adhesive layer is attached to the surface of the adherend that has irregularities, the adhesive layer easily follows the irregularities, and the occurrence of gaps, floating, etc. near the irregularities is suppressed, and excellent adhesion to the adherend is demonstrated.
- the (meth)acrylic acid ester polymer (A) preferably contains, as monomer units constituting this polymer, an alkyl (meth)acrylic acid ester and a monomer having a reactive functional group in the molecule (a reactive functional group-containing monomer).
- the (meth)acrylic acid ester polymer (A) can exhibit favorable adhesion by containing an alkyl (meth)acrylic acid ester as a monomer unit constituting this polymer.
- an alkyl (meth)acrylic acid ester having 1 to 20 carbon atoms is preferable.
- the alkyl group may be linear or branched, or may have a cyclic structure.
- Examples of (meth)acrylic acid alkyl esters having an alkyl group with 1 to 20 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-decyl (meth)acrylate, n-dodecyl (meth)acrylate, myristyl (meth)acrylate, palmityl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, and adamantyl (meth)acrylate. These may be used alone or in combination of two or more.
- the (meth)acrylic acid alkyl esters are preferably those having an alkyl group with 4 to 20 carbon atoms.
- the (meth)acrylic acid alkyl esters having an alkyl group with 4 to 20 carbon atoms n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, isobornyl (meth)acrylate, etc. are preferred, and from the viewpoint of obtaining excellent adhesion, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isobornyl (meth)acrylate, etc. are more preferred, and n-butyl acrylate, 2-ethylhexyl acrylate, isobornyl acrylate, etc. are particularly preferred.
- the (meth)acrylic acid ester polymer (A) preferably contains 40% by mass or more of (meth)acrylic acid alkyl ester as a monomer unit constituting this polymer, more preferably 50% by mass or more, even more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
- the (meth)acrylic acid alkyl ester is contained at 40% by mass or more, the (meth)acrylic acid ester polymer (A) can exhibit suitable adhesion.
- the (meth)acrylic acid ester polymer (A) preferably contains 99% by mass or less of (meth)acrylic acid alkyl ester as a monomer unit constituting this polymer, particularly preferably 95% by mass or less, and even more preferably 90% by mass or less.
- the (meth)acrylic acid alkyl ester 99% by mass or less other monomer components can be introduced into the (meth)acrylic acid ester polymer (A) in suitable amounts.
- the (meth)acrylic acid ester polymer (A) when the (meth)acrylic acid ester polymer (A) contains a hydroxyl group-containing monomer as a monomer constituting this polymer, the (meth)acrylic acid ester polymer (A) preferably contains 87% by mass or less, and more preferably 83% by mass or less, of (meth)acrylic acid alkyl ester as a monomer unit constituting this polymer.
- the (meth)acrylic acid ester polymer (A) contains a reactive functional group-containing monomer as a monomer unit constituting this polymer, and reacts with the crosslinking agent (B) described below via the reactive functional group derived from the reactive functional group-containing monomer, forming a crosslinked structure (three-dimensional network structure) and resulting in an adhesive with the desired cohesive strength.
- Preferred examples of reactive functional group-containing monomers contained in the (meth)acrylic acid ester polymer (A) as monomer units constituting this polymer include monomers having a hydroxyl group in the molecule (hydroxyl group-containing monomers), monomers having a carboxyl group in the molecule (carboxyl group-containing monomers), and monomers having an amino group in the molecule (amino group-containing monomers). These reactive functional group-containing monomers may be used alone or in combination of two or more.
- hydroxyl group-containing monomers or carboxyl group-containing monomers are preferred from the viewpoint of ease of adjusting the crosslink density and of obtaining an adhesive with the desired cohesive strength, and hydroxyl group-containing monomers are preferred from the viewpoint of adhesive strength and resistance to wet heat whitening.
- Hydroxyl group-containing monomers include, for example, hydroxyalkyl (meth)acrylate esters such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
- hydroxyalkyl (meth)acrylate esters having a hydroxyalkyl group with 1 to 4 carbon atoms are preferred.
- 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate are preferred, and in particular, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are preferred. These may be used alone or in combination of two or more.
- carboxyl group-containing monomers examples include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid.
- acrylic acid is preferred from the viewpoint of the cohesive strength of the resulting (meth)acrylic acid ester polymer (A). These may be used alone or in combination of two or more.
- the (meth)acrylic acid ester polymer (A) preferably contains 1% by mass or more of reactive functional group-containing monomer as a monomer unit constituting this polymer, more preferably 3% by mass or more, and even more preferably 5% by mass or more.
- the reactive functional group-containing monomer is a hydroxyl group-containing monomer, it is preferably contained 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more.
- the reactive functional group-containing monomer is a hydroxyl group-containing monomer, it is preferably contained less than 25% by mass, more preferably 20% by mass or less, and even more preferably 16% by mass or less.
- the (meth)acrylic acid ester polymer (A) is a monomer unit constituting this polymer, it is preferably contained 50% by mass or less of reactive functional group-containing monomer as a monomer unit constituting this polymer, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
- the (meth)acrylic acid ester polymer (A) contains a nitrogen atom-containing monomer as a monomer unit constituting this polymer.
- a nitrogen atom-containing monomer exists as a constituent unit in the polymer, a predetermined polarity is imparted to the adhesive, and it is possible to make it have excellent affinity even for adherends having a certain degree of polarity, such as glass.
- examples of the nitrogen atom-containing monomer include monomers having amide groups and monomers having nitrogen-containing heterocycles. Among these, from the viewpoint of imparting appropriate rigidity to the (meth)acrylic acid ester polymer (A), monomers having nitrogen-containing heterocycles are preferred.
- nitrogen atom-containing monomer examples include N-vinyl carboxylic acid amide, (meth)acrylamide, N-methyl(meth)acrylamide, N-methylol(meth)acrylamide, N-tert-butyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-ethyl(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-phenyl(meth)acrylamide, dimethylaminopropyl(meth)acrylamide, and N-vinyl caprolactam. These nitrogen atom-containing monomers may be used alone or in combination of two or more.
- Examples of monomers having a nitrogen-containing heterocycle include N-(meth)acryloylmorpholine, N-vinyl-2-pyrrolidone, N-(meth)acryloylpyrrolidone, N-(meth)acryloylpiperidine, N-(meth)acryloylpyrrolidine, N-(meth)acryloylaziridine, aziridinylethyl (meth)acrylate, 2-vinylpyridine, 4-vinylpyridine, 2-vinylpyrazine, 1-vinylimidazole, N-vinylcarbazole, and N-vinylphthalimide.
- N-(meth)acryloylmorpholine is preferred because it exhibits superior adhesive strength
- N-acryloylmorpholine (4-acryloylmorpholine) is particularly preferred.
- the (meth)acrylic acid ester polymer (A) contains a monomer having a nitrogen-containing heterocycle as a monomer unit constituting this polymer, it preferably contains 0.5 mass% or more of the nitrogen atom-containing monomer, more preferably 1 mass% or more, and even more preferably 3 mass% or more. Furthermore, the (meth)acrylic acid ester polymer (A) preferably contains 20 mass% or less of the monomer having a nitrogen-containing heterocycle as a monomer unit constituting this polymer, more preferably 15 mass% or less, and even more preferably 8 mass% or less. When the content of the monomer having a nitrogen-containing heterocycle is within the above range, the resulting adhesive can effectively exhibit excellent adhesion to adherends such as glass.
- the (meth)acrylic acid ester polymer (A) may contain other monomers as monomer units constituting this polymer, if desired.
- examples of other monomers include (meth)acrylic acid alkoxyalkyl esters such as methoxyethyl (meth)acrylate and ethoxyethyl (meth)acrylate, vinyl acetate, and styrene. These may be used alone or in combination of two or more.
- the (meth)acrylic acid ester polymer (A) is preferably a linear polymer.
- a linear polymer By using a linear polymer, entanglement of molecular chains occurs more easily, and it is expected that the cohesive strength will be improved, resulting in a superior adhesive.
- the polymerization form of the (meth)acrylic acid ester polymer (A) may be a random copolymer or a block copolymer.
- the weight average molecular weight of the (meth)acrylic acid ester polymer (A) is preferably 200,000 or more, more preferably 300,000 or more, and even more preferably 400,000 or more. If the lower limit of the weight average molecular weight of the (meth)acrylic acid ester polymer (A) is above the above limit, the second resin layer and the laminate will have excellent long-term durability.
- the weight average molecular weight of the (meth)acrylic acid ester polymer (A) is preferably 2 million or less, more preferably 1.5 million or less, even more preferably 1 million or less, and particularly preferably 800,000 or less.
- the upper limit of the weight average molecular weight of the (meth)acrylic acid ester polymer (A) is the above or less, the resulting pressure-sensitive adhesive has at least one of better adhesion and better sticking ability to the adherend.
- the (meth)acrylic acid ester polymer (A) may be used alone or in combination of two or more kinds.
- the crosslinking agent (B) crosslinks the (meth)acrylic acid ester polymer (A) by heating the adhesive composition P, making it possible to form a good three-dimensional mesh structure. This results in an adhesive with improved cohesive strength.
- the crosslinking agent (B) may be any that reacts with the reactive functional group of the (meth)acrylic acid ester polymer (A), and examples thereof include isocyanate-based crosslinking agents, epoxy-based crosslinking agents, amine-based crosslinking agents, melamine-based crosslinking agents, aziridine-based crosslinking agents, hydrazine-based crosslinking agents, aldehyde-based crosslinking agents, oxazoline-based crosslinking agents, metal alkoxide-based crosslinking agents, metal chelate-based crosslinking agents, metal salt-based crosslinking agents, and ammonium salt-based crosslinking agents.
- the reactive functional group of the (meth)acrylic acid ester polymer (A) is a hydroxyl group
- an isocyanate-based crosslinking agent that has excellent reactivity with the carboxyl group
- an epoxy-based crosslinking agent that has excellent reactivity with the carboxyl group.
- the crosslinking agent (B) may be used alone or in combination of two or more types.
- the isocyanate-based crosslinking agent contains at least a polyisocyanate compound.
- polyisocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate and hydrogenated diphenylmethane diisocyanate, and biuret and isocyanurate forms thereof, as well as adducts which are reaction products with low-molecular active hydrogen-containing compounds such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, and castor oil.
- trimethylolpropane-modified aromatic polyisocyanates are preferred from the viewpoint of reactivity with hydroxyl groups, and it is particularly preferred to use at least one of trimethylolpropane-modified tolylene diisocyanate and trimethylolpropane-modified xylylene diisocyanate.
- Epoxy crosslinking agents include 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-m-xylylenediamine, ethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, diglycidylaniline, and diglycidylamine.
- 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane is preferred from the viewpoint of reactivity with carboxy groups.
- the content of the crosslinking agent (B) in the adhesive composition P is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.1 parts by mass or more, per 100 parts by mass of the (meth)acrylic acid ester polymer (A). This content is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1 part by mass or less.
- the adhesive composition P contains the energy ray curable component (C)
- the adhesive obtained by crosslinking (thermal crosslinking) the adhesive composition P becomes an energy ray curable adhesive. It is presumed that this adhesive is cured by irradiation with energy rays after attachment to an adherend, whereby the energy ray curable components (C) polymerize with each other, and the polymerized energy ray curable components (C) become entangled in the crosslinked structure (three-dimensional network structure) of the (meth)acrylic acid ester polymer (A).
- An adhesive with such a high-order structure has high cohesive strength and exhibits high coating strength.
- the energy ray-curable component (C) is not particularly limited as long as it is a component that cures when irradiated with energy rays and provides the above-mentioned effects, and may be any of a monomer, oligomer, or polymer, or a mixture thereof.
- preferred examples include polyfunctional acrylate monomers that have excellent compatibility with the (meth)acrylic acid ester polymer (A) and the like.
- Multifunctional acrylate monomers include tricyclodecane dimethanol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, neopentyl glycol adipate di(meth)acrylate, hydroxypivalic acid neopentyl glycol di(meth)acrylate, dicyclopentanyl di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, ethylene oxide-modified phosphoric acid di(meth)acrylate, di(acryloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate, ethoxylated bisphenol A diacrylate, and 2-amino acids such as 9,9-bis[4-(2-acryloy
- trifunctional types such as trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, tris(acryloxyethyl)isocyanurate, and ⁇ -caprolactone-modified tris-(2-(meth)acryloxyethyl)isocyanurate; tetrafunctional types such as diglycerin tetra(meth)acrylate, and pentaerythritol tetra(meth)acrylate; pentafunctional types such as propionic acid-modified dipentaerythritol penta(meth)acrylate; and hexafunctional types such as dipentaerythritol hexa(meth)
- ⁇ -caprolactone-modified tris-(2-(meth)acryloxyethyl)isocyanurate and tricyclodecane dimethanol di(meth)acrylate may be used alone or in combination of two or more.
- the polyfunctional acrylate monomer has a molecular weight of less than 1000.
- the content of the energy ray curable component (C) in the adhesive composition P is preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, and particularly preferably 5 parts by mass or more, relative to 100 parts by mass of the (meth)acrylic acid ester polymer (A), from the viewpoint of making it easier to adjust the storage modulus of the resulting adhesive to the desired value.
- this content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, and particularly preferably 7.5 parts by mass or less, from the viewpoint of preventing phase separation of the energy ray curable component (C) from the (meth)acrylic acid ester polymer (A) and from the viewpoint of making it easier to adjust the storage modulus to the desired value.
- the adhesive composition P further contains a photopolymerization initiator (D).
- a photopolymerization initiator (D) By containing the photopolymerization initiator (D) in this way, the energy ray-curable component (C) can be polymerized efficiently, and the polymerization curing time and the amount of energy ray irradiation can be reduced.
- Examples of the photopolymerization initiator (D) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloroanthraquinone, 4-(2-hydroxyethoxy)-phenyl(2-hydroxy-2-propyl)ketone, 2-benzothiazole-N,N-diethyldithiocarbamate, 2,4,6-trimethylbenzoyl-dip
- the content of the photopolymerization initiator (D) in the adhesive composition P is preferably 0.1 parts by mass or more, more preferably 1.0 parts by mass or more, and even more preferably 5.0 parts by mass or more, relative to 100 parts by mass of the energy ray-curable component (C).
- This content is preferably 35 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 15 parts by mass or less.
- various additives that are commonly used in acrylic adhesives can be used in the adhesive composition P.
- various additives include silane coupling agents, antistatic agents, tackifiers, antioxidants, light stabilizers, softeners, fillers, and refractive index adjusters.
- the laminate 100 can be produced, for example, by the following steps. First, a process for producing a wiring film including the wiring body 3 is performed. In this process, a thermosetting adhesive for forming the first resin layer 4 is applied onto a release film to form a coating film. Next, the coating film is dried to produce an adhesive layer. Next, the conductive linear bodies 31 are arranged on the adhesive layer to form the wiring body 3. For example, in a state where an adhesive layer with a release film is arranged on the outer circumferential surface of a drum member, the conductive linear bodies 31 are wound spirally on the adhesive layer while rotating the drum member.
- the bundle of conductive linear bodies 31 wound spirally is cut along the axial direction of the drum member.
- This forms the wiring body 3 and places it on the adhesive layer.
- a wiring film in which the wiring body 3 is formed on the adhesive layer with a release film is obtained.
- this method for example, by moving the unwinding portion of the conductive linear bodies 31 along a direction parallel to the axis of the drum member while rotating the drum member, it is easy to adjust the interval L between adjacent conductive linear bodies 31 in the wiring body 3.
- a step of providing a pair of electrodes 5 on the first substrate 1 is performed.
- a conductive paste or the like is printed in a predetermined arrangement on the first substrate 1, and then dried, so that the pair of electrodes 5 can be provided.
- a process is performed in which a wiring film is placed on the first substrate 1 provided with the pair of electrodes 5, and the thermosetting adhesive is cured.
- the wiring film is bonded onto the first substrate 1 provided with the pair of electrodes 5 so that the pair of electrodes 5 contact both ends of the conductive linear members 31 in the wiring 3 of the wiring film.
- a predetermined heat treatment is performed on the thermosetting adhesive to form a first resin layer 4, and a wiring sheet 10 is formed on the first substrate 1.
- a process is performed to prepare a protective film including a second substrate 2 and a second resin layer 6.
- a pressure-sensitive adhesive composition P for forming the second resin layer 6 is applied onto the second substrate 2 to form a coating film, thereby preparing the protective film.
- a step is performed in which a protective film is placed on the first substrate 1 on which the wiring sheet 10 is provided, and the adhesive composition P is crosslinked.
- the protective film is attached to the first substrate 1 on which the wiring sheet 10 is provided, so that, in a plan view, two holes in the protective film overlap the pair of electrodes 5, and the coating of the adhesive composition P on the protective film contacts the wiring sheet 10.
- a predetermined energy ray is irradiated to the coating of the adhesive composition P, thereby forming a second resin layer 6, and the laminate 100 is produced.
- the second resin layer 6 is easily deformed due to its low storage modulus. Therefore, when the laminate 100 becomes hot, the second resin layer 6 deforms, thereby relaxing the distortion generated in the second base material 2. In this way, the generation of cracks in the second base material 2 can be prevented.
- the storage modulus of the second resin layer 6 at 23° C. is set to 1.0 ⁇ 10 4 Pa or more and 3.0 ⁇ 10 5 Pa or less, so that the second resin layer 6 is easily deformed and distortion generated in the second base material 2 can be alleviated.
- the first resin layer 4 can fix the conductive linear body 31, suppress deformation in the thickness direction inside the laminate 100, stabilize the contact between the conductive linear body 31 and the electrode 5, and stabilize the resistance value of the wiring body 3.
- the storage modulus of the first resin layer 4 at 23° C. is set to be 5.0 ⁇ 10 6 Pa or more and 1.0 ⁇ 10 10 Pa or less.
- the laminate 100A includes a first substrate 1, a second substrate 2 having a higher linear expansion coefficient than the first substrate 1, and a wiring sheet 10 sandwiched between the first substrate 1 and the second substrate 2.
- the wiring sheet 10 includes a wiring body 3 in which a plurality of conductive linear bodies 31 are arranged at intervals, a first resin layer 4 that directly or indirectly supports the wiring body 3, and a pair of electrodes 5 that directly contact the conductive linear bodies 31.
- the first substrate 1 and the wiring sheet 10 are laminated via a second resin layer 6 having a lower storage modulus than the first resin layer 4.
- the laminate 100 includes the film-like first substrate 1, but is not limited thereto.
- the first substrate 1 may be a substrate formed into a three-dimensional shape.
- the wiring sheet 10 can be used by being attached to the first substrate 1, which is an adherend, by the first resin layer 4 or the second resin layer 6.
- the first substrate 1 and the wiring sheet 10 are laminated via the second resin layer 6 in the cross-sectional view of the laminate 100A, but the modified examples are not limited thereto. For example, there are two other modified examples.
- One modified example is an example in which the wiring sheet 10 is turned upside down (the electrode 5 is provided on the second substrate 2 side) from the first embodiment.
- the other modified example is an example in which the wiring sheet 10 is turned upside down (the electrode 5 is provided on the second substrate 2) from the second embodiment.
- a cylindrical test sample with a diameter of 8 mm and a thickness of 1 mm was prepared from the same composition as the composition forming the layer to be measured.
- the storage modulus of the test sample was measured using a viscoelasticity measuring device (manufactured by Anton Paar, device name "MCR300”) under the conditions of a test start temperature of -20°C, a test end temperature of 150°C, a heating rate of 3°C/min, a shear strain of 0.05%, and a frequency of 1 Hz, using a parallel plate with a diameter of 8 mm as a measuring jig.
- the substrate was cut into a rectangle of 4.5 mm x 20 mm to prepare a test sample.
- the linear expansion coefficient of the test sample was measured using a thermomechanical analyzer (manufactured by Netzsch Japan, product name "TMA4000SE”) under the conditions of a tensile load of 2 g, a temperature range of 23 to 105°C, and a heating rate of 5°C/min.
- a curable adhesive was obtained by blending 100 parts by mass of a phenoxy resin (manufactured by Mitsubishi Chemical Corporation, product name "YX7200B35”) with 170 parts by mass of a polyfunctional hydrogenated bisphenol A diglycidyl ether epoxy compound (manufactured by Mitsubishi Chemical Corporation, product name "YX8000”), 0.2 parts by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., product name "KBM-4803”), 2 parts by mass of a thermal cationic polymerization initiator (manufactured by Sanshin Chemical Industry Co., Ltd., product name "SAN-AID SI-B3”), and 2 parts by mass of a thermal cationic polymerization initiator (manufactured by Sanshin Chemical Industry Co., Ltd., product name "SAN-AID SI-B7”)
- the glass transition temperature (Tg, unit: ° C.) of this (meth)acrylic acid ester polymer (A) was calculated by the FOX formula based on the glass transition temperatures (Tg) of the respective monomers constituting the (meth)acrylic acid ester polymer (A) as homopolymers, and was found to be ⁇ 36.5° C.
- [Preparation Example 3] (Preparation of adhesive composition) 100 parts by mass of the (meth)acrylic acid ester polymer (A) obtained in Preparation Example 2, 0.15 parts by mass of trimethylolpropane-modified tolylene diisocyanate as the crosslinking agent (B), 5 parts by mass of ⁇ -caprolactone-modified tris-(2-acryloxyethyl)isocyanurate as the energy ray curable component (C), 0.5 parts by mass of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide as the photopolymerization initiator (D), and 0.25 parts by mass of 3-glycidoxypropyltrimethoxysilane as the silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of an adhesive composition.
- a (meth)acrylic acid ester polymer (A) was prepared by copolymerizing 30 parts by mass of 2-ethylhexyl acrylate, 25 parts by mass of n-butyl acrylate, 5 parts by mass of 4-acryloylmorpholine, 15 parts by mass of isobornyl acrylate, and 25 parts by mass of 2-hydroxyethyl acrylate. The molecular weight of this (meth)acrylic acid ester polymer (A) was measured, and the weight average molecular weight (Mw) was 600,000.
- Example 1 (Preparation of Wiring Film)
- the curable adhesive obtained in Preparation Example 1 was applied to a 38 ⁇ m-thick release film (manufactured by Lintec Corporation, product name "SP-382150”) to a thickness of 15 ⁇ m, and cut into a rectangle of 250 mm x 320 mm to prepare an adhesive sheet.
- a gold-plated tungsten wire (diameter 10 ⁇ m, hereinafter also referred to as wire) was prepared as a conductive linear body.
- the obtained adhesive sheet was wound around a drum member with a rubber outer circumferential surface, with the surface of the pressure-sensitive adhesive layer facing outward and without wrinkles, and both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape.
- the wire wound around the bobbin was attached to the surface of the pressure-sensitive adhesive layer of the adhesive sheet located near the end of the drum member, and the wire was wound around the drum member while being unwound, and the drum member was gradually moved in a direction parallel to the drum axis so that the wire was wound around the drum member while drawing a spiral at equal intervals of 3 mm.
- a wiring body was formed with 96 wires lined up on the surface of the adhesive. Thereafter, the wires were cut, and the wiring body was removed from the drum member. The wiring body was cut to a width of 40 ⁇ 82 mm so that 12 wires could be taken out, and a wiring body film was produced.
- Silver paste was screen-printed onto a 2 mm-thick glass substrate (linear expansion coefficient 3.3 ⁇ 10 -6 /° C.) as a first substrate so that the width was 2 mm and the distance between the electrodes was 7.8 mm, and then dried at a temperature of 150° C. for 30 minutes to form strip electrodes having a thickness of 17 ⁇ m.
- the strip electrodes were then subjected to electroless plating to produce a substrate with electrodes.
- the obtained wiring film was attached to the obtained electrode-attached substrate so that the electrodes were located at both ends of the wires. Then, the substrate was heated at a temperature of 120° C. and a pressure of 0.5 MPa for 30 minutes to harden the adhesive and form a first resin layer, thereby forming a wiring sheet on the first base material.
- the storage elastic modulus of the first resin layer at 23°C was 2.2 ⁇ 10 9 Pa
- the storage elastic modulus of the first resin layer at 105°C was 1.6 ⁇ 10 9 Pa.
- the adhesive composition coating solution obtained in Preparation Example 2 was coated to a thickness of 100 ⁇ m on a cycloolefin polymer film (manufactured by Zeon Corporation, product name "ZF16") as a second substrate, and cut into a rectangle of 50 mm ⁇ 120 mm. Then, a circle with a diameter of 5 mm was cut out so that the center-to-center distance between the two circles was 7.8 mm, forming two holes to prepare a protective sheet.
- the linear expansion coefficient of the second substrate is shown in Table 1.
- the protective sheet was attached to the first substrate provided with the wiring sheet so that the electrodes of the wiring sheet and the circles of the protective sheet were aligned. Thereafter, ultraviolet light having a wavelength of 365 nm was irradiated under conditions of an illuminance of 200 mW/cm 2 and a light quantity of 1000 mJ/cm 2 to form a second resin layer, thereby obtaining a laminate.
- the laminate thus obtained was evaluated for cracks.
- Table 1 also shows the storage modulus of the second resin layer at 23° C. and 105° C.
- Example 2 A laminate was produced in the same manner as in Example 1, except that the cycloolefin polymer film (manufactured by Nippon Zeon Co., Ltd., product name "ZF16") of the protective sheet was changed to a polycarbonate film (manufactured by Teijin Limited, product name "L-100").
- Example 3 A laminate was prepared in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 3.
- Example 2 A laminate was produced in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 4, and the cycloolefin polymer film (manufactured by Zeon Corporation, product name "ZF16") was changed to a polycarbonate film (manufactured by Teijin Limited, product name "L-100").
- the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 4, and the cycloolefin polymer film (manufactured by Zeon Corporation, product name "ZF16”) was changed to a polycarbonate film (manufactured by Teijin Limited, product name "L-100").
- the laminates obtained in Examples 1 to 3 had good crack evaluation results. This confirmed that the present invention can provide a laminate that can prevent cracks from occurring in the substrate.
Landscapes
- Laminated Bodies (AREA)
Abstract
A layered body (100) comprising a first substrate (1), a second substrate (2) that has a higher coefficient of linear expansion than the first substrate (1), and a wiring sheet (10) that is sandwiched between the first substrate (1) and the second substrate (2), wherein the wiring sheet (10) comprises a wiring body (3) in which a plurality of conductive linear bodies (31) are arranged at intervals, a first resin layer (4) that directly or indirectly supports the wiring body (3), and a pair of electrodes (5) that are in direct contact with the conductive linear bodies (31), and the first substrate (1) or second substrate (2) and the wiring sheet (10) are layered with a second resin layer (6) that has a lower storage modulus than the first resin layer (4) interposed therebetween.
Description
本発明は、積層体に関する。
The present invention relates to a laminate.
面状ヒータの用途に用いることができる配線シートとして、例えば、特許文献1には、複数の導電性線状体が間隔をもって配列された疑似シート構造体と、前記疑似シート構造体を支持する硬化物層と、前記導電性線状体に直接的に接触する一対の電極とを備える配線シートが開示されている。この配線シートにおいて、前記硬化物層は、硬化性の接着剤の硬化物からなり、前記硬化物層の23℃における貯蔵弾性率が、5.0×106Pa以上1.0×1010Pa以下である。
For example, Patent Document 1 discloses a wiring sheet that can be used for a sheet heater, which includes a pseudo-sheet structure in which a plurality of conductive linear members are arranged at intervals, a cured material layer that supports the pseudo-sheet structure, and a pair of electrodes in direct contact with the conductive linear members. In this wiring sheet, the cured material layer is made of a cured product of a curable adhesive, and the storage modulus of the cured material layer at 23° C. is 5.0× 10 Pa or more and 1.0× 10 Pa or less.
特許文献1に記載の配線シートによれば、配線の抵抗値を安定化できる。しかしながら、特許文献1に記載の配線シートを、線膨張係数の異なる2つの基材の間に配置して用いる場合には、一方の基材にクラックが発生する場合があることが分かった。
The wiring sheet described in Patent Document 1 can stabilize the resistance value of the wiring. However, it has been found that when the wiring sheet described in Patent Document 1 is used by placing it between two substrates with different linear expansion coefficients, cracks may occur in one of the substrates.
本発明の目的は、基材にクラックが発生することを防止できる積層体を提供することである。
The object of the present invention is to provide a laminate that can prevent cracks from occurring in the substrate.
[1] 第一基材と、前記第一基材よりも線膨張係数の高い第二基材と、前記第一基材及び前記第二基材の間に挟持された配線シートとを備える積層体であって、
前記配線シートは、複数の導電性線状体が間隔をもって配列された配線体と、前記配線体を直接的又は間接的に支持する第一樹脂層と、前記導電性線状体に直接的に接触する一対の電極とを備え、
前記第一基材又は前記第二基材と、前記配線シートとは、前記第一樹脂層よりも貯蔵弾性率の低い第二樹脂層を介して積層されている、
積層体。 [1] A laminate including a first substrate, a second substrate having a linear expansion coefficient higher than that of the first substrate, and a wiring sheet sandwiched between the first substrate and the second substrate,
the wiring sheet includes a wiring body in which a plurality of conductive linear bodies are arranged at intervals, a first resin layer that directly or indirectly supports the wiring body, and a pair of electrodes that directly contact the conductive linear bodies,
The first substrate or the second substrate and the wiring sheet are laminated via a second resin layer having a storage modulus lower than that of the first resin layer.
Laminate.
前記配線シートは、複数の導電性線状体が間隔をもって配列された配線体と、前記配線体を直接的又は間接的に支持する第一樹脂層と、前記導電性線状体に直接的に接触する一対の電極とを備え、
前記第一基材又は前記第二基材と、前記配線シートとは、前記第一樹脂層よりも貯蔵弾性率の低い第二樹脂層を介して積層されている、
積層体。 [1] A laminate including a first substrate, a second substrate having a linear expansion coefficient higher than that of the first substrate, and a wiring sheet sandwiched between the first substrate and the second substrate,
the wiring sheet includes a wiring body in which a plurality of conductive linear bodies are arranged at intervals, a first resin layer that directly or indirectly supports the wiring body, and a pair of electrodes that directly contact the conductive linear bodies,
The first substrate or the second substrate and the wiring sheet are laminated via a second resin layer having a storage modulus lower than that of the first resin layer.
Laminate.
[2] [1]に記載の積層体において、
前記第二樹脂層の23℃における貯蔵弾性率が、1.0×104Pa以上、3.0×105Pa以下である、
積層体。 [2] The laminate according to [1],
The second resin layer has a storage modulus at 23° C. of 1.0×10 4 Pa or more and 3.0×10 5 Pa or less.
Laminate.
前記第二樹脂層の23℃における貯蔵弾性率が、1.0×104Pa以上、3.0×105Pa以下である、
積層体。 [2] The laminate according to [1],
The second resin layer has a storage modulus at 23° C. of 1.0×10 4 Pa or more and 3.0×10 5 Pa or less.
Laminate.
[3] [1]又は[2]に記載の積層体において、
前記第一樹脂層の23℃における貯蔵弾性率が、5.0×106Pa以上、1.0×1010Pa以下である、
積層体。 [3] The laminate according to [1] or [2],
The storage modulus of the first resin layer at 23° C. is 5.0×10 6 Pa or more and 1.0×10 10 Pa or less.
Laminate.
前記第一樹脂層の23℃における貯蔵弾性率が、5.0×106Pa以上、1.0×1010Pa以下である、
積層体。 [3] The laminate according to [1] or [2],
The storage modulus of the first resin layer at 23° C. is 5.0×10 6 Pa or more and 1.0×10 10 Pa or less.
Laminate.
[4] [1]から[3]のいずれかに記載の積層体において、
前記第一基材の線膨張係数が、0.01×10-6/℃以上、10×10-6/℃以下である、
積層体。 [4] The laminate according to any one of [1] to [3],
The linear expansion coefficient of the first substrate is 0.01×10 −6 /° C. or more and 10×10 −6 /° C. or less.
Laminate.
前記第一基材の線膨張係数が、0.01×10-6/℃以上、10×10-6/℃以下である、
積層体。 [4] The laminate according to any one of [1] to [3],
The linear expansion coefficient of the first substrate is 0.01×10 −6 /° C. or more and 10×10 −6 /° C. or less.
Laminate.
[5] [1]から[4]のいずれかに記載の積層体において、
前記第二基材の線膨張係数が、50×10-6/℃以上、100×10-6/℃以下である、
積層体。 [5] The laminate according to any one of [1] to [4],
The linear expansion coefficient of the second base material is 50×10 −6 /° C. or more and 100×10 −6 /° C. or less.
Laminate.
前記第二基材の線膨張係数が、50×10-6/℃以上、100×10-6/℃以下である、
積層体。 [5] The laminate according to any one of [1] to [4],
The linear expansion coefficient of the second base material is 50×10 −6 /° C. or more and 100×10 −6 /° C. or less.
Laminate.
[6] [1]から[5]のいずれかに記載の積層体において、
前記第二基材と、前記配線シートとは、前記第二樹脂層を介して積層されている、
積層体。 [6] The laminate according to any one of [1] to [5],
The second base material and the wiring sheet are laminated via the second resin layer.
Laminate.
前記第二基材と、前記配線シートとは、前記第二樹脂層を介して積層されている、
積層体。 [6] The laminate according to any one of [1] to [5],
The second base material and the wiring sheet are laminated via the second resin layer.
Laminate.
本発明の一態様によれば、基材にクラックが発生することを防止できる積層体を提供できる。
According to one aspect of the present invention, a laminate can be provided that can prevent cracks from occurring in the substrate.
[第一実施形態]
以下、本発明について実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。 [First embodiment]
Hereinafter, the present invention will be described with reference to the drawings, taking an embodiment as an example. The present invention is not limited to the contents of the embodiment. In the drawings, some parts are illustrated enlarged or reduced in size for ease of explanation.
以下、本発明について実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。 [First embodiment]
Hereinafter, the present invention will be described with reference to the drawings, taking an embodiment as an example. The present invention is not limited to the contents of the embodiment. In the drawings, some parts are illustrated enlarged or reduced in size for ease of explanation.
(積層体)
本実施形態に係る積層体100は、図1及び図2に示すように、第一基材1と、第一基材1よりも線膨張係数の高い第二基材2と、第一基材1及び第二基材2の間に挟持された配線シート10とを備えている。
そして、配線シート10は、複数の導電性線状体31が間隔をもって配列された配線体3と、配線体3を直接的又は間接的に支持する第一樹脂層4と、導電性線状体31に直接的に接触する一対の電極5とを備えている。
また、第一基材1又は第二基材2と、配線シート10とは、第一樹脂層4よりも貯蔵弾性率の低い第二樹脂層6を介して積層されている。なお、図2では、第二基材2と、配線シート10とが、第二樹脂層6を介して積層されている。
また、第二基材2には、2つの穴が設けられているが、この2つの穴により、一対の電極5と電源(図示しない)とを電気的に接続することができる。 (Laminate)
As shown in Figures 1 and 2, thelaminate 100 of this embodiment comprises a first substrate 1, a second substrate 2 having a higher linear expansion coefficient than the first substrate 1, and a wiring sheet 10 sandwiched between the first substrate 1 and the second substrate 2.
Thewiring sheet 10 includes a wiring body 3 having a plurality of conductive linear bodies 31 arranged at intervals, a first resin layer 4 that directly or indirectly supports the wiring body 3, and a pair of electrodes 5 that are in direct contact with the conductive linear bodies 31.
Moreover, thefirst substrate 1 or the second substrate 2 and the wiring sheet 10 are laminated via a second resin layer 6 having a lower storage modulus than the first resin layer 4. In Fig. 2, the second substrate 2 and the wiring sheet 10 are laminated via the second resin layer 6.
Thesecond substrate 2 has two holes formed therein, and these two holes can electrically connect the pair of electrodes 5 to a power source (not shown).
本実施形態に係る積層体100は、図1及び図2に示すように、第一基材1と、第一基材1よりも線膨張係数の高い第二基材2と、第一基材1及び第二基材2の間に挟持された配線シート10とを備えている。
そして、配線シート10は、複数の導電性線状体31が間隔をもって配列された配線体3と、配線体3を直接的又は間接的に支持する第一樹脂層4と、導電性線状体31に直接的に接触する一対の電極5とを備えている。
また、第一基材1又は第二基材2と、配線シート10とは、第一樹脂層4よりも貯蔵弾性率の低い第二樹脂層6を介して積層されている。なお、図2では、第二基材2と、配線シート10とが、第二樹脂層6を介して積層されている。
また、第二基材2には、2つの穴が設けられているが、この2つの穴により、一対の電極5と電源(図示しない)とを電気的に接続することができる。 (Laminate)
As shown in Figures 1 and 2, the
The
Moreover, the
The
本実施形態に係る積層体100により、基材にクラックが発生することを防止できる理由は、以下の通りであると本発明者らは推察する。
すなわち、第二基材2にクラックが発生する理由は、第一基材1と第二基材2との間で、線膨張係数が異なるためである。例えば、積層体100が高温になった場合に、第二基材2が、第一基材1よりも大きく膨張することになる。そして、第一基材1及び第二基材2は、これらの間に挟持された配線シート10により固定されているため、第二基材2に歪みが生じて、クラックが発生してしまう。これに対し、本実施形態においては、第一基材1又は第二基材2と、配線シート10とは、第一樹脂層4よりも貯蔵弾性率の低い第二樹脂層6を介して積層されている。そして、第二樹脂層6は、貯蔵弾性率が低いために、変形しやすい。そのため、積層体100が高温になった場合に、この第二樹脂層6が変形することで、第二基材2に生ずる歪みを緩和できる。このようにして、基材にクラックが発生することを防止できる。 The inventors surmise that the reason why thelaminate 100 according to this embodiment can prevent cracks from occurring in the substrate is as follows.
That is, the reason why cracks occur in thesecond substrate 2 is because the linear expansion coefficients are different between the first substrate 1 and the second substrate 2. For example, when the laminate 100 becomes hot, the second substrate 2 expands more than the first substrate 1. Since the first substrate 1 and the second substrate 2 are fixed by the wiring sheet 10 sandwiched between them, distortion occurs in the second substrate 2, and cracks occur. In contrast, in this embodiment, the first substrate 1 or the second substrate 2 and the wiring sheet 10 are laminated via the second resin layer 6, which has a lower storage modulus than the first resin layer 4. The second resin layer 6 is easily deformed because of its low storage modulus. Therefore, when the laminate 100 becomes hot, the second resin layer 6 deforms, and the distortion occurring in the second substrate 2 can be alleviated. In this way, it is possible to prevent cracks from occurring in the substrate.
すなわち、第二基材2にクラックが発生する理由は、第一基材1と第二基材2との間で、線膨張係数が異なるためである。例えば、積層体100が高温になった場合に、第二基材2が、第一基材1よりも大きく膨張することになる。そして、第一基材1及び第二基材2は、これらの間に挟持された配線シート10により固定されているため、第二基材2に歪みが生じて、クラックが発生してしまう。これに対し、本実施形態においては、第一基材1又は第二基材2と、配線シート10とは、第一樹脂層4よりも貯蔵弾性率の低い第二樹脂層6を介して積層されている。そして、第二樹脂層6は、貯蔵弾性率が低いために、変形しやすい。そのため、積層体100が高温になった場合に、この第二樹脂層6が変形することで、第二基材2に生ずる歪みを緩和できる。このようにして、基材にクラックが発生することを防止できる。 The inventors surmise that the reason why the
That is, the reason why cracks occur in the
(第一基材)
第一基材1は、配線体3を直接的または間接的に支持できる。また、第一基材1により、配線シート10の一方の面を保護できる。
第一基材1の線膨張係数は、第二基材2の線膨張係数よりも低い。このように、線膨張係数に違いがあるとしても、本実施形態によれば、第二基材2のクラックの発生を防止できる。
第一基材1の線膨張係数は、0.01×10-6/℃以上であってもよく、0.1×10-6/℃以上であってもよく、0.5×10-6/℃以上であってもよい。また、第一基材1の線膨張係数は、20×10-6/℃以下であることが好ましく、10×10-6/℃以下であることがより好ましく、5×10-6/℃以下であることが特に好ましい。なお、線膨張係数は、後述する実施例に記載の方法により測定できる。また、線膨張係数を測定する際の条件は、後述する通りである。 (First substrate)
First substrate 1 can directly or indirectly support wiring body 3. In addition, first substrate 1 can protect one surface of wiring sheet 10.
The linear expansion coefficient of thefirst base material 1 is lower than the linear expansion coefficient of the second base material 2. Thus, even if there is a difference in the linear expansion coefficient, according to this embodiment, the occurrence of cracks in the second base material 2 can be prevented.
The linear expansion coefficient of thefirst substrate 1 may be 0.01×10 −6 /° C. or more, 0.1×10 −6 /° C. or more, or 0.5×10 −6 /° C. or more. The linear expansion coefficient of the first substrate 1 is preferably 20×10 −6 /° C. or less, more preferably 10×10 −6 /° C. or less, and particularly preferably 5×10 −6 /° C. or less. The linear expansion coefficient can be measured by the method described in the examples below. The conditions for measuring the linear expansion coefficient are as described below.
第一基材1は、配線体3を直接的または間接的に支持できる。また、第一基材1により、配線シート10の一方の面を保護できる。
第一基材1の線膨張係数は、第二基材2の線膨張係数よりも低い。このように、線膨張係数に違いがあるとしても、本実施形態によれば、第二基材2のクラックの発生を防止できる。
第一基材1の線膨張係数は、0.01×10-6/℃以上であってもよく、0.1×10-6/℃以上であってもよく、0.5×10-6/℃以上であってもよい。また、第一基材1の線膨張係数は、20×10-6/℃以下であることが好ましく、10×10-6/℃以下であることがより好ましく、5×10-6/℃以下であることが特に好ましい。なお、線膨張係数は、後述する実施例に記載の方法により測定できる。また、線膨張係数を測定する際の条件は、後述する通りである。 (First substrate)
The linear expansion coefficient of the
The linear expansion coefficient of the
第一基材1の材質としては、積層体の強度、ハンドリング性の観点から、樹脂及びガラス等が好ましい。
第一基材1がフィルム状である場合、第一基材1の厚さは、特に限定されない。第一基材1の厚さは、10μm以上であることが好ましく、15μm以上であることがより好ましく、50μm以上であることがさらに好ましい。また、第一基材1の厚さは、10mm以下であることが好ましく、5mm以下であることがより好ましく、3mm以下であることがさらに好ましい。 The material of thefirst substrate 1 is preferably resin, glass, or the like, from the viewpoints of strength and handling properties of the laminate.
When thefirst substrate 1 is in the form of a film, the thickness of the first substrate 1 is not particularly limited. The thickness of the first substrate 1 is preferably 10 μm or more, more preferably 15 μm or more, and even more preferably 50 μm or more. The thickness of the first substrate 1 is preferably 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.
第一基材1がフィルム状である場合、第一基材1の厚さは、特に限定されない。第一基材1の厚さは、10μm以上であることが好ましく、15μm以上であることがより好ましく、50μm以上であることがさらに好ましい。また、第一基材1の厚さは、10mm以下であることが好ましく、5mm以下であることがより好ましく、3mm以下であることがさらに好ましい。 The material of the
When the
(第二基材)
第二基材2は、配線体3を直接的または間接的に支持できる。また、第二基材2により、配線シート10の一方の面を保護できる。
第二基材2の線膨張係数は、第一基材1の線膨張係数よりも高い。このように、線膨張係数に違いがあるとしても、本実施形態によれば、第二基材2のクラックの発生を防止できる。
第二基材2の線膨張係数は、30×10-6/℃以上であることが好ましく、45×10-6/℃以上であることがより好ましく、60×10-6/℃以上であることがさらに好ましい。また、第二基材2の線膨張係数は、200×10-6/℃以下であることが好ましく、150×10-6/℃以下であることがより好ましく、100×10-6/℃以下であることがさらに好ましい。なお、線膨張係数の測定方法は、後述のとおりである。 (Second substrate)
Second substrate 2 can directly or indirectly support wiring body 3. In addition, second substrate 2 can protect one surface of wiring sheet 10.
The linear expansion coefficient of thesecond substrate 2 is higher than the linear expansion coefficient of the first substrate 1. Thus, even if there is a difference in the linear expansion coefficient, according to this embodiment, the occurrence of cracks in the second substrate 2 can be prevented.
The linear expansion coefficient of thesecond base material 2 is preferably 30×10 -6 /° C. or more, more preferably 45×10 -6 /° C. or more, and even more preferably 60×10 -6 /° C. or more. The linear expansion coefficient of the second base material 2 is preferably 200×10 -6 /° C. or less, more preferably 150×10 -6 /° C. or less, and even more preferably 100×10 -6 /° C. or less. The method for measuring the linear expansion coefficient is as described below.
第二基材2は、配線体3を直接的または間接的に支持できる。また、第二基材2により、配線シート10の一方の面を保護できる。
第二基材2の線膨張係数は、第一基材1の線膨張係数よりも高い。このように、線膨張係数に違いがあるとしても、本実施形態によれば、第二基材2のクラックの発生を防止できる。
第二基材2の線膨張係数は、30×10-6/℃以上であることが好ましく、45×10-6/℃以上であることがより好ましく、60×10-6/℃以上であることがさらに好ましい。また、第二基材2の線膨張係数は、200×10-6/℃以下であることが好ましく、150×10-6/℃以下であることがより好ましく、100×10-6/℃以下であることがさらに好ましい。なお、線膨張係数の測定方法は、後述のとおりである。 (Second substrate)
The linear expansion coefficient of the
The linear expansion coefficient of the
第二基材2の材質としては、積層体のハンドリング性、及び製造適正の観点から樹脂等が好ましい。
樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ポリ塩化ビニル、塩化ビニル共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリウレタン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、ポリスチレン、ポリカーボネート、シクロオレフィンポリマー及びポリイミド等が挙げられる。 The material of thesecond base material 2 is preferably a resin or the like from the viewpoints of the handleability of the laminate and suitability for production.
Examples of the resin include polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, polyvinyl chloride, vinyl chloride copolymer, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyurethane, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-(meth)acrylic acid copolymer, polystyrene, polycarbonate, cycloolefin polymer, and polyimide.
樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ポリ塩化ビニル、塩化ビニル共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリウレタン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、ポリスチレン、ポリカーボネート、シクロオレフィンポリマー及びポリイミド等が挙げられる。 The material of the
Examples of the resin include polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, polyvinyl chloride, vinyl chloride copolymer, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyurethane, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-(meth)acrylic acid copolymer, polystyrene, polycarbonate, cycloolefin polymer, and polyimide.
第二基材2がフィルム状である場合、第二基材2の厚さは、特に限定されない。第二基材2の厚さは、10μm以上であることが好ましく、30μm以上であることがより好ましく、50μm以上であることがさらに好ましい。また、第二基材2の厚さは、10mm以下であることが好ましく、5mm以下であることがより好ましく、3mm以下であることがさらに好ましい。
When the second substrate 2 is in the form of a film, the thickness of the second substrate 2 is not particularly limited. The thickness of the second substrate 2 is preferably 10 μm or more, more preferably 30 μm or more, and even more preferably 50 μm or more. The thickness of the second substrate 2 is preferably 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.
(配線シート)
配線シート10は、配線体3と、第一樹脂層4と、一対の電極5とを備えている。この配線シート10は、第一基材1及び第二基材2の間に挟持されており、第一基材1及び第二基材2により、配線シート10の両方の面が保護されている。 (Wiring sheet)
Thewiring sheet 10 includes a wiring body 3, a first resin layer 4, and a pair of electrodes 5. The wiring sheet 10 is sandwiched between a first substrate 1 and a second substrate 2, and both surfaces of the wiring sheet 10 are protected by the first substrate 1 and the second substrate 2.
配線シート10は、配線体3と、第一樹脂層4と、一対の電極5とを備えている。この配線シート10は、第一基材1及び第二基材2の間に挟持されており、第一基材1及び第二基材2により、配線シート10の両方の面が保護されている。 (Wiring sheet)
The
(配線体)
配線体3は、複数の導電性線状体31が、互いに間隔をもって配列された構造である。また、配線体3は、導電性線状体31が、平行に複数配列された構造である。 (Wiring body)
Thewiring body 3 has a structure in which a plurality of conductive linear bodies 31 are arranged at intervals from one another. The wiring body 3 also has a structure in which a plurality of conductive linear bodies 31 are arranged in parallel.
配線体3は、複数の導電性線状体31が、互いに間隔をもって配列された構造である。また、配線体3は、導電性線状体31が、平行に複数配列された構造である。 (Wiring body)
The
導電性線状体31は、積層体100の平面視において、直線状であってもよいが、波形状を成していてもよい。波形状としては、例えば、正弦波、矩形波、三角波、及びのこぎり波等が挙げられる。例えば、配線体3が、このような構造であれば、導電性線状体31の軸方向に、積層体100を伸張した際に、導電性線状体31の断線を抑制できる。
The conductive linear body 31 may be linear in a plan view of the laminate 100, but may also be wavy. Examples of wave shapes include a sine wave, a rectangular wave, a triangular wave, and a sawtooth wave. For example, if the wiring body 3 has such a structure, breakage of the conductive linear body 31 can be suppressed when the laminate 100 is stretched in the axial direction of the conductive linear body 31.
導電性線状体31の体積抵抗率は、1.0×10-9Ω・m以上であることが好ましく、3.0×10-9Ω・m以上であることがより好ましく、1.0×10-8Ω・m以上であることがさらに好ましい。また、導電性線状体31の体積抵抗率は、1.0×10-3Ω・m以下であることが好ましく、1.0×10-4Ω・m以下であることがより好ましく、1.0×10-5Ω・m以下であることがさらに好ましい。導電性線状体31の体積抵抗率を上記範囲にすると、配線体3の面抵抗が低下しやすくなる。
導電性線状体31の体積抵抗率の測定は、次のとおりである。導電性線状体31の端部及び端部からの長さが40mmの部分に銀ペーストを塗布し、端部及び端部から長さ40mmの部分の抵抗を測定する。そして、導電性線状体31の断面積(単位:m2)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、導電性線状体31の体積抵抗率を算出する。 The volume resistivity of the conductivelinear body 31 is preferably 1.0×10 -9 Ω·m or more, more preferably 3.0×10 -9 Ω·m or more, and even more preferably 1.0×10 -8 Ω·m or more. The volume resistivity of the conductive linear body 31 is preferably 1.0×10 -3 Ω·m or less, more preferably 1.0×10 -4 Ω·m or less, and even more preferably 1.0×10 -5 Ω·m or less. When the volume resistivity of the conductive linear body 31 is in the above range, the surface resistance of the wiring body 3 is likely to decrease.
The volume resistivity of the conductivelinear body 31 was measured as follows: Silver paste was applied to the ends of the conductive linear body 31 and to a portion 40 mm from the ends, and the resistance of the ends and the portion 40 mm from the ends was measured. The volume resistivity of the conductive linear body 31 was then calculated by multiplying the resistance value by the cross-sectional area (unit: m2 ) of the conductive linear body 31 and dividing the obtained value by the measured length (0.04 m).
導電性線状体31の体積抵抗率の測定は、次のとおりである。導電性線状体31の端部及び端部からの長さが40mmの部分に銀ペーストを塗布し、端部及び端部から長さ40mmの部分の抵抗を測定する。そして、導電性線状体31の断面積(単位:m2)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、導電性線状体31の体積抵抗率を算出する。 The volume resistivity of the conductive
The volume resistivity of the conductive
導電性線状体31の断面の形状は、特に限定されず、多角形、扁平形、楕円形、又は円形等を取り得る。第一樹脂層4との馴染み等の観点から、導電性線状体31の断面の形状は、楕円形、又は円形であることが好ましい。
The cross-sectional shape of the conductive linear body 31 is not particularly limited, and may be polygonal, flat, elliptical, circular, or the like. From the standpoint of compatibility with the first resin layer 4, etc., it is preferable that the cross-sectional shape of the conductive linear body 31 is elliptical or circular.
導電性線状体31の断面が円形である場合には、導電性線状体31の直径D(図2参照)は、3μm以上、200μm以下であることが好ましい。シート抵抗の上昇抑制と、積層体100の発熱効率及び耐絶縁破壊特性の向上との観点から、導電性線状体31の直径Dは、4μm以上であることがより好ましく、5μm以上であることがさらに好ましい。導電性線状体31の直径Dは、150μm以下であることがより好ましく、100μm以下であることがさらに好ましく、50μm以下であることが特に好ましく、20μm以下であることが非常に好ましい。
導電性線状体31の断面が楕円形である場合には、長径が上記の直径Dと同様の範囲にあることが好ましい。 When the cross section of the conductivelinear body 31 is circular, the diameter D (see FIG. 2) of the conductive linear body 31 is preferably 3 μm or more and 200 μm or less. From the viewpoint of suppressing an increase in sheet resistance and improving the heat generation efficiency and dielectric breakdown resistance characteristics of the laminate 100, the diameter D of the conductive linear body 31 is more preferably 4 μm or more, and even more preferably 5 μm or more. The diameter D of the conductive linear body 31 is more preferably 150 μm or less, even more preferably 100 μm or less, particularly preferably 50 μm or less, and extremely preferably 20 μm or less.
When the cross section of the conductivelinear body 31 is elliptical, it is preferable that the major axis is in the same range as the diameter D described above.
導電性線状体31の断面が楕円形である場合には、長径が上記の直径Dと同様の範囲にあることが好ましい。 When the cross section of the conductive
When the cross section of the conductive
導電性線状体31の直径Dは、デジタル顕微鏡を用いて、導電性線状体31を観察し、無作為に選んだ5箇所で、導電性線状体31の直径を測定し、その平均値とする。
The diameter D of the conductive linear body 31 is determined by observing the conductive linear body 31 using a digital microscope, measuring the diameter of the conductive linear body 31 at five randomly selected points, and averaging the measured values.
導電性線状体31の間隔L(図2参照)は、0.3mm以上であることが好ましく、0.5mm以上であることがより好ましく、0.8mm以上であることがさらに好ましく、1.5mm以上であることが特に好ましい。また、導電性線状体31の間隔Lは、50mm以下であることが好ましく、30mm以下であることがより好ましく、20mm以下であることがさらに好ましく、5mm以下であることが特に好ましい。
導電性線状体31同士の間隔が上記範囲であれば、導電性線状体がある程度密集しているため、配線体3の抵抗を低く維持するといった積層体100の機能の向上を図ることができる。 The interval L (see FIG. 2 ) between the conductivelinear members 31 is preferably 0.3 mm or more, more preferably 0.5 mm or more, even more preferably 0.8 mm or more, and particularly preferably 1.5 mm or more. The interval L between the conductive linear members 31 is preferably 50 mm or less, more preferably 30 mm or less, even more preferably 20 mm or less, and particularly preferably 5 mm or less.
If the spacing between the conductivelinear bodies 31 is within the above range, the conductive linear bodies are relatively densely packed, which improves the functionality of the laminate 100, such as maintaining the resistance of the wiring body 3 low.
導電性線状体31同士の間隔が上記範囲であれば、導電性線状体がある程度密集しているため、配線体3の抵抗を低く維持するといった積層体100の機能の向上を図ることができる。 The interval L (see FIG. 2 ) between the conductive
If the spacing between the conductive
導電性線状体31の間隔Lは、デジタル顕微鏡を用いて、例えば、配線体3の導電性線状体31を観察し、隣り合う2つの導電性線状体31の間隔を測定する。
なお、隣り合う2つの導電性線状体31の間隔とは、導電性線状体31を配列させていった方向に沿った長さであって、2つの導電性線状体31の対向する部分間の長さである(図2参照)。間隔Lは、導電性線状体31の配列が不等間隔である場合には、全ての隣り合う導電性線状体31同士の間隔の平均値である。 The distance L between the conductivelinear members 31 is measured by, for example, observing the conductive linear members 31 of the wiring body 3 using a digital microscope and measuring the distance between two adjacent conductive linear members 31 .
The interval between two adjacent conductivelinear bodies 31 is the length along the direction in which the conductive linear bodies 31 are arranged, and is the length between opposing portions of the two conductive linear bodies 31 (see FIG. 2 ). When the conductive linear bodies 31 are arranged at uneven intervals, the interval L is the average value of the intervals between all adjacent conductive linear bodies 31.
なお、隣り合う2つの導電性線状体31の間隔とは、導電性線状体31を配列させていった方向に沿った長さであって、2つの導電性線状体31の対向する部分間の長さである(図2参照)。間隔Lは、導電性線状体31の配列が不等間隔である場合には、全ての隣り合う導電性線状体31同士の間隔の平均値である。 The distance L between the conductive
The interval between two adjacent conductive
導電性線状体31の態様は、特に制限はなく、エッチング、スクリーン印刷、インクジェットなどの方式で作製することができるが、金属ワイヤーを含む線状体(以下「金属ワイヤー線状体」とも称する)であることがよい。金属ワイヤーは高い熱伝導性、高い電気伝導性、高いハンドリング性を有する。金属ワイヤー線状体は抵抗を大きく低下させることが可能であり、金属ワイヤー線状体の直径を極めて小さくしても、積層体100の発熱に必要な電流で通電できる。これにより、導電性線状体31が視認されにくい状態にできる。すなわち、導電性線状体31として金属ワイヤー線状体を適用すると、配線体3の抵抗値を低減しつつ、光線透過性が向上しやすくなる。また、積層体100は、速やかな発熱が実現されやすくなる。さらに、上述したように直径が細い線状体を得られやすい。
なお、導電性線状体31としては、金属ワイヤー線状体の他に、カーボンナノチューブを含む線状体、及び、糸に導電性被覆が施された線状体が挙げられる。 The conductivelinear body 31 may be produced by any method, such as etching, screen printing, or inkjet printing, but may be a linear body including a metal wire (hereinafter also referred to as a "metal wire linear body"). Metal wires have high thermal conductivity, high electrical conductivity, and high handling properties. The metal wire linear body can greatly reduce resistance, and even if the diameter of the metal wire linear body is extremely small, it can pass a current required for heat generation of the laminate 100. This makes it possible to make the conductive linear body 31 less visible. That is, when a metal wire linear body is used as the conductive linear body 31, the resistance value of the wiring body 3 is reduced while the light transmittance is easily improved. In addition, the laminate 100 is easily able to generate heat quickly. Furthermore, as described above, a linear body having a small diameter is easily obtained.
In addition, examples of the conductivelinear body 31 include a linear body containing a carbon nanotube and a linear body in which a conductive coating is applied to a thread, in addition to a metal wire linear body.
なお、導電性線状体31としては、金属ワイヤー線状体の他に、カーボンナノチューブを含む線状体、及び、糸に導電性被覆が施された線状体が挙げられる。 The conductive
In addition, examples of the conductive
金属ワイヤー線状体は、1本の金属ワイヤーからなる線状体であってもよいし、複数本の金属ワイヤーを撚った線状体であってもよい。
金属ワイヤーとしては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)を含むワイヤーが挙げられる。また、金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよく、後述する炭素材料、又はポリマー等により表面が被覆されたものであってもよい。特に、タングステン及びモリブデン、並びにこれらを含む合金から選ばれる一種以上の金属を含むワイヤーが、低い体積抵抗率の観点から好ましい。
金属ワイヤーとしては、炭素材料で被覆された金属ワイヤーも挙げられる。金属ワイヤーは、炭素材料で被覆されていると、金属光沢が低減し、金属ワイヤーの存在を目立たなくすることが容易となる。また、金属ワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。
金属ワイヤーを被覆する炭素材料としては、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、及びカーボンファイバー等の非晶質炭素;グラファイト、フラーレン、グラフェン及びカーボンナノチューブ等が挙げられる。 The metal wire linear body may be a linear body made of a single metal wire, or may be a linear body made of a plurality of twisted metal wires.
Examples of metal wires include wires containing metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (e.g., steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium-copper alloys, beryllium copper, iron-nickel, nichrome, nickel-titanium, Kanthal, Hastelloy, and rhenium-tungsten). The metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloys, or solder, or may be coated with a carbon material or polymer, which will be described later. In particular, wires containing one or more metals selected from tungsten and molybdenum, and alloys containing these, are preferred from the viewpoint of low volume resistivity.
The metal wire may be a metal wire coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced, and the presence of the metal wire can be easily made less noticeable. In addition, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
Examples of the carbon material that coats the metal wire include amorphous carbon such as carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, and carbon fiber; graphite, fullerene, graphene, and carbon nanotubes.
金属ワイヤーとしては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)を含むワイヤーが挙げられる。また、金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよく、後述する炭素材料、又はポリマー等により表面が被覆されたものであってもよい。特に、タングステン及びモリブデン、並びにこれらを含む合金から選ばれる一種以上の金属を含むワイヤーが、低い体積抵抗率の観点から好ましい。
金属ワイヤーとしては、炭素材料で被覆された金属ワイヤーも挙げられる。金属ワイヤーは、炭素材料で被覆されていると、金属光沢が低減し、金属ワイヤーの存在を目立たなくすることが容易となる。また、金属ワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。
金属ワイヤーを被覆する炭素材料としては、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、及びカーボンファイバー等の非晶質炭素;グラファイト、フラーレン、グラフェン及びカーボンナノチューブ等が挙げられる。 The metal wire linear body may be a linear body made of a single metal wire, or may be a linear body made of a plurality of twisted metal wires.
Examples of metal wires include wires containing metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (e.g., steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium-copper alloys, beryllium copper, iron-nickel, nichrome, nickel-titanium, Kanthal, Hastelloy, and rhenium-tungsten). The metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloys, or solder, or may be coated with a carbon material or polymer, which will be described later. In particular, wires containing one or more metals selected from tungsten and molybdenum, and alloys containing these, are preferred from the viewpoint of low volume resistivity.
The metal wire may be a metal wire coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced, and the presence of the metal wire can be easily made less noticeable. In addition, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
Examples of the carbon material that coats the metal wire include amorphous carbon such as carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, and carbon fiber; graphite, fullerene, graphene, and carbon nanotubes.
導電性線状体31は、糸に導電性被覆が施された線状体であってもよい。糸としては、ナイロン、又はポリエステル等の樹脂から紡糸した糸等が挙げられる。また、糸としては、金属繊維、炭素繊維、又はイオン導電性ポリマーの繊維等の糸も挙げられる。導電性被覆としては、金属、導電性高分子、又は炭素材料等の被膜等が挙げられる。導電性被覆は、めっき、蒸着法等により形成することができる。糸に導電性被覆が施された線状体は、糸の柔軟性を維持しつつ、線状体の導電性を向上させることができる。つまり、配線体3の抵抗を、低下させることが容易となる。
The conductive linear body 31 may be a linear body having a conductive coating applied to the thread. Examples of the thread include threads spun from resins such as nylon or polyester. Other examples of the thread include threads made of metal fibers, carbon fibers, or ion-conductive polymer fibers. Examples of the conductive coating include coatings made of metals, conductive polymers, or carbon materials. The conductive coating can be formed by plating, vapor deposition, or the like. A linear body having a conductive coating applied to the thread can improve the conductivity of the linear body while maintaining the flexibility of the thread. In other words, it becomes easier to reduce the resistance of the wiring body 3.
(第一樹脂層)
第一樹脂層4は、配線体3を直接的又は間接的に支持する。また、この第一樹脂層4により、配線体3の抵抗値を安定化できる。すなわち、この第一樹脂層4により、導電性線状体31を固定でき、導電性線状体31と電極5との接触を安定させ、抵抗値上昇が発生しにくくできる。
配線体3の抵抗値の安定化の観点から、第一樹脂層4の23℃における貯蔵弾性率は、5.0×106Pa以上、1.0×1010Pa以下であることが好ましい。同様の観点から、第一樹脂層4の23℃における貯蔵弾性率は、5.0×107Pa以上であることがより好ましく、5.0×108Pa以上であることがさらに好ましい。第一樹脂層の23℃における貯蔵弾性率は、7.0×109Pa以下であることがより好ましく、4.0×109Pa以下であることがさらに好ましい。
また、同様の観点から、第一樹脂層4の105℃における貯蔵弾性率は、5.0×107Pa以上であることが好ましく、5.0×108Pa以上であることがより好ましい。第一樹脂層4の105℃における貯蔵弾性率は、7.0×109Pa以下であることが好ましく、4.0×109Pa以下であることがより好ましい。
なお、貯蔵弾性率は、後述する実施例に記載の方法により測定できる。 (First resin layer)
Thefirst resin layer 4 directly or indirectly supports the wiring body 3. In addition, the first resin layer 4 can stabilize the resistance value of the wiring body 3. That is, the first resin layer 4 can fix the conductive linear body 31, stabilize the contact between the conductive linear body 31 and the electrode 5, and make it difficult for an increase in the resistance value to occur.
From the viewpoint of stabilizing the resistance value of thewiring body 3, the storage modulus of the first resin layer 4 at 23° C. is preferably 5.0×10 6 Pa or more and 1.0×10 10 Pa or less. From the same viewpoint, the storage modulus of the first resin layer 4 at 23° C. is more preferably 5.0×10 7 Pa or more, and even more preferably 5.0×10 8 Pa or more. The storage modulus of the first resin layer at 23° C. is more preferably 7.0×10 9 Pa or less, and even more preferably 4.0×10 9 Pa or less.
From the same viewpoint, the storage modulus of thefirst resin layer 4 at 105° C. is preferably 5.0×10 7 Pa or more, and more preferably 5.0×10 8 Pa or more. The storage modulus of the first resin layer 4 at 105° C. is preferably 7.0×10 9 Pa or less, and more preferably 4.0×10 9 Pa or less.
The storage modulus can be measured by the method described in the examples below.
第一樹脂層4は、配線体3を直接的又は間接的に支持する。また、この第一樹脂層4により、配線体3の抵抗値を安定化できる。すなわち、この第一樹脂層4により、導電性線状体31を固定でき、導電性線状体31と電極5との接触を安定させ、抵抗値上昇が発生しにくくできる。
配線体3の抵抗値の安定化の観点から、第一樹脂層4の23℃における貯蔵弾性率は、5.0×106Pa以上、1.0×1010Pa以下であることが好ましい。同様の観点から、第一樹脂層4の23℃における貯蔵弾性率は、5.0×107Pa以上であることがより好ましく、5.0×108Pa以上であることがさらに好ましい。第一樹脂層の23℃における貯蔵弾性率は、7.0×109Pa以下であることがより好ましく、4.0×109Pa以下であることがさらに好ましい。
また、同様の観点から、第一樹脂層4の105℃における貯蔵弾性率は、5.0×107Pa以上であることが好ましく、5.0×108Pa以上であることがより好ましい。第一樹脂層4の105℃における貯蔵弾性率は、7.0×109Pa以下であることが好ましく、4.0×109Pa以下であることがより好ましい。
なお、貯蔵弾性率は、後述する実施例に記載の方法により測定できる。 (First resin layer)
The
From the viewpoint of stabilizing the resistance value of the
From the same viewpoint, the storage modulus of the
The storage modulus can be measured by the method described in the examples below.
第一樹脂層4の厚さは、特に制限されない。第一樹脂層4の厚さは、導電性線状体31の直径D以上であってもよく、導電性線状体31の直径D未満であってもよい。第一樹脂層4の厚さが導電性線状体31の直径D以上であれば、第一樹脂層4の中に、配線体3を含むことができる。第一樹脂層4の厚さが導電性線状体31の直径D未満である場合には、第一樹脂層4から配線体3が露出する。また、第一樹脂層4から配線体3が露出する場合、配線体3は、第一基材1の側に露出してもよく、第二基材2の側に露出してもよい。第一樹脂層4の厚さは、1μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。第一樹脂層4の厚さは、100μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることがさらに好ましい。
The thickness of the first resin layer 4 is not particularly limited. The thickness of the first resin layer 4 may be equal to or greater than the diameter D of the conductive linear body 31, or may be less than the diameter D of the conductive linear body 31. If the thickness of the first resin layer 4 is equal to or greater than the diameter D of the conductive linear body 31, the wiring body 3 can be included in the first resin layer 4. If the thickness of the first resin layer 4 is less than the diameter D of the conductive linear body 31, the wiring body 3 is exposed from the first resin layer 4. In addition, when the wiring body 3 is exposed from the first resin layer 4, the wiring body 3 may be exposed on the side of the first substrate 1 or on the side of the second substrate 2. The thickness of the first resin layer 4 is preferably 1 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. The thickness of the first resin layer 4 is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less.
第一樹脂層4は、貯蔵弾性率を前記範囲内とするという観点から、硬化性の接着剤の硬化物からなる層であることが好ましい。
硬化性の接着剤としては、熱により硬化する熱硬化性の接着剤、及びエネルギー線硬化性の接着剤等が挙げられる。エネルギー線としては、紫外線、可視エネルギー線、赤外線、及び電子線等が挙げられる。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。 From the viewpoint of setting the storage modulus within the above range, thefirst resin layer 4 is preferably a layer made of a cured product of a curable adhesive.
Examples of the curable adhesive include a thermosetting adhesive that is cured by heat, and an energy ray curable adhesive. Examples of the energy ray include ultraviolet rays, visible energy rays, infrared rays, and electron beams. Note that "energy ray curing" also includes heat curing by heating using energy rays.
硬化性の接着剤としては、熱により硬化する熱硬化性の接着剤、及びエネルギー線硬化性の接着剤等が挙げられる。エネルギー線としては、紫外線、可視エネルギー線、赤外線、及び電子線等が挙げられる。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。 From the viewpoint of setting the storage modulus within the above range, the
Examples of the curable adhesive include a thermosetting adhesive that is cured by heat, and an energy ray curable adhesive. Examples of the energy ray include ultraviolet rays, visible energy rays, infrared rays, and electron beams. Note that "energy ray curing" also includes heat curing by heating using energy rays.
硬化性の接着剤は、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、特に限定されず、具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂、アミン系化合物、及び酸無水物系化合物等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール系硬化触媒を使用した硬化に適するという観点から、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物を使用することが好ましく、特に、優れた硬化性を示すという観点から、エポキシ樹脂、フェノール樹脂、それらの混合物、又はエポキシ樹脂と、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物からなる群から選択される少なくとも1種との混合物を使用することが好ましく、エポキシ樹脂を使用することが好ましい。
The curable adhesive preferably contains a thermosetting resin. The thermosetting resin is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, benzoxazine resin, phenoxy resin, amine-based compounds, and acid anhydride-based compounds. These can be used alone or in combination of two or more. Among these, from the viewpoint of suitability for curing using an imidazole-based curing catalyst, it is preferable to use epoxy resin, phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds, and in particular, from the viewpoint of showing excellent curing properties, it is preferable to use epoxy resin, phenol resin, a mixture thereof, or a mixture of epoxy resin and at least one selected from the group consisting of phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds, and it is preferable to use epoxy resin.
エポキシ樹脂としては、芳香族エポキシ樹脂、又は脂環式エポキシ樹脂のように、環式のものが、第一樹脂層4の貯蔵弾性率を高くする観点で好ましい。オキシアルキレン鎖のような柔軟性のセグメントを有するエポキシ樹脂は、第一樹脂層4の貯蔵弾性率を低下させる傾向がある。
As epoxy resins, cyclic ones such as aromatic epoxy resins or alicyclic epoxy resins are preferred from the viewpoint of increasing the storage modulus of the first resin layer 4. Epoxy resins having flexible segments such as oxyalkylene chains tend to decrease the storage modulus of the first resin layer 4.
エネルギー線硬化性の接着剤は、エネルギー線硬化性樹脂を含むことが好ましい。エネルギー線硬化性樹脂としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
The energy ray curable adhesive preferably contains an energy ray curable resin. Examples of the energy ray curable resin include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferred.
アクリレート系化合物としては、例えば、ジシクロペンタジエンジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート、及びイタコン酸オリゴマー等が挙げられる。
Examples of acrylate compounds include dicyclopentadiene diacrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. ) acrylate and other linear aliphatic skeleton-containing (meth)acrylates; cyclic aliphatic skeleton-containing (meth)acrylates such as dicyclopentanyl di(meth)acrylate; polyalkylene glycol (meth)acrylates such as polyethylene glycol di(meth)acrylate; oligoester (meth)acrylates, urethane (meth)acrylate oligomers, epoxy-modified (meth)acrylates, polyether (meth)acrylates other than polyalkylene glycol (meth)acrylates, and itaconic acid oligomers.
エネルギー線硬化性樹脂の重量平均分子量(Mw)は、100以上であることが好ましく、300以上であることがより好ましい。また、この重量平均分子量は、30000以下であることが好ましく、10000以下であることがより好ましい。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。
The weight average molecular weight (Mw) of the energy ray curable resin is preferably 100 or more, and more preferably 300 or more. The weight average molecular weight is preferably 30,000 or less, and more preferably 10,000 or less. The weight average molecular weight in this specification is a value calculated in terms of standard polystyrene measured by gel permeation chromatography (GPC).
接着剤が含有するエネルギー線硬化性樹脂は、1種のみでもよいし、2種以上でもよい。エネルギー線硬化性樹脂が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The adhesive may contain one type of energy ray curable resin, or two or more types. When the adhesive contains two or more types of energy ray curable resin, the combination and ratio of the resins may be selected arbitrarily.
エネルギー線硬化性樹脂又は熱硬化性樹脂を用いる場合、光重合開始剤、及び熱重合開始剤等を用いることが好ましい。光重合開始剤及び熱重合開始剤等を用いることで、硬化性樹脂の重合反応を容易に開始させることができ、硬化反応の制御が容易になる。
When using an energy ray curable resin or a thermosetting resin, it is preferable to use a photopolymerization initiator, a thermal polymerization initiator, or the like. By using a photopolymerization initiator, a thermal polymerization initiator, or the like, the polymerization reaction of the curable resin can be easily started, making it easier to control the curing reaction.
光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、2-クロールアンスラキノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド等の光ラジカル重合開始剤が挙げられる。
Photopolymerization initiators include photoradical polymerization initiators such as benzophenone, acetophenone, benzoin, benzoin methyl ether, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6-trimethylbenzoyl)-phenyl-phosphine oxide.
また、光重合開始剤としては、光ラジカル重合開始剤以外に、光カチオン重合開始剤が挙げられる。光カチオン重合開始剤は、エネルギー線が照射されることによってカチオン種を発生して、カチオン硬化性化合物の硬化反応を開始させる化合物であり、エネルギー線を吸収するカチオン部と酸の発生源となるアニオン部からなる。
In addition to photoradical polymerization initiators, photocationic polymerization initiators can also be used as photopolymerization initiators. Photocationic polymerization initiators are compounds that generate cationic species when irradiated with energy rays, initiating the curing reaction of cationic curable compounds, and consist of a cationic portion that absorbs energy rays and an anionic portion that serves as a source of acid generation.
光カチオン重合開始剤としては、例えば、スルホニウム塩系化合物、ヨードニウム塩系化合物、ホスホニウム塩系化合物、アンモニウム塩系化合物、アンチモン酸塩系化合物、ジアゾニウム塩系化合物、セレニウム塩系化合物、オキソニウム塩系化合物、臭素塩系化合物等が挙げられる。これらの中でも、相溶性に優れ、得られる接着剤の保存安定性に優れるという観点から、スルホニウム塩系化合物が好ましく、芳香族基を有する芳香族スルホニウム塩系化合物がより好ましい。
Examples of photocationic polymerization initiators include sulfonium salt compounds, iodonium salt compounds, phosphonium salt compounds, ammonium salt compounds, antimony salt compounds, diazonium salt compounds, selenium salt compounds, oxonium salt compounds, and bromine salt compounds. Among these, sulfonium salt compounds are preferred from the viewpoints of excellent compatibility and excellent storage stability of the resulting adhesive, and aromatic sulfonium salt compounds having an aromatic group are more preferred.
スルホニウム塩系化合物としては、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、及びトリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
Examples of sulfonium salt compounds include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, and triphenylsulfonium tetrakis(pentafluorophenyl)borate.
ヨードニウム塩系化合物としては、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート及び(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
Iodonium salt compounds include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, and (tricumyl)iodonium tetrakis(pentafluorophenyl)borate.
ホスホニウム塩系化合物としては、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、及びヘキサデシルトリブチルホスホニウムクロライド等が挙げられる。
Phosphonium salt compounds include tri-n-butyl(2,5-dihydroxyphenyl)phosphonium bromide and hexadecyltributylphosphonium chloride.
アンモニウム塩系化合物としては、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド、及びベンジルトリメチルアンモニウムブロマイド等が挙げられる。
Examples of ammonium salt compounds include benzyltrimethylammonium chloride, phenyltributylammonium chloride, and benzyltrimethylammonium bromide.
アンチモン酸塩系化合物としては、トリフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、及びジアリルヨードニウムヘキサフルオロアンチモネート等が挙げられる。
Examples of antimonate compounds include triphenylsulfonium hexafluoroantimonate, p-(phenylthio)phenyldiphenylsulfonium hexafluoroantimonate, and diaryliodonium hexafluoroantimonate.
熱重合開始剤としては、過酸化水素;ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、及びペルオキソ二硫酸カリウム等のペルオキソ二硫酸塩;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリル、及び2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系化合物;及び;過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイド、及びクメンヒドロパーオキサイド等の有機過酸化物等の熱ラジカル重合開始剤が挙げられる。
Thermal polymerization initiators include hydrogen peroxide; peroxodisulfates such as ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate; azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobisisobutyronitrile, and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile); and thermal radical polymerization initiators such as benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, and organic peroxides such as cumene hydroperoxide.
また、熱重合開始剤としては、上記の熱ラジカル重合開始剤以外に、熱カチオン重合開始剤が挙げられる。熱カチオン重合開始剤は、加熱によって、重合を開始させるカチオン種を発生しうる化合物である。熱カチオン重合開始剤としては、スルホニウム塩、第四級アンモニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩等が挙げられる。これらの中でも、入手が容易であること、接着性と透明性により優れるものが得られ易いこと等の観点から、スルホニウム塩が好ましい。
In addition to the above-mentioned thermal radical polymerization initiators, thermal cationic polymerization initiators can also be used as thermal polymerization initiators. Thermal cationic polymerization initiators are compounds that can generate cationic species that initiate polymerization when heated. Examples of thermal cationic polymerization initiators include sulfonium salts, quaternary ammonium salts, phosphonium salts, diazonium salts, and iodonium salts. Among these, sulfonium salts are preferred from the viewpoints of ease of availability and the ease with which products with superior adhesion and transparency can be obtained.
スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、及びトリフェニルスルホニウムヘキサフルオロアルシネート等が挙げられる。
Sulfonium salts include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, and triphenylsulfonium hexafluoroarsinate.
第四級アンモニウム塩としては、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムヘキサフルオロホスフェート、及びテトラブチルアンモニウムハイドロジェンサルフェート等が挙げられる。
ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、及びテトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the quaternary ammonium salt include tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and tetrabutylammonium hydrogen sulfate.
Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、及びテトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the quaternary ammonium salt include tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and tetrabutylammonium hydrogen sulfate.
Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
ジアゾニウム塩としては、塩化ベンゼンジアゾニウム等が挙げられる。ヨードニウム塩としては、ジフェニルヨードニウムヘキサフルオロアルシネート、ビス(4-クロロフェニル)ヨードニウムヘキサフルオロアルシネート、及びフェニル(4-メトキシフェニル)ヨードニウムヘキサフルオロアルシネート等が挙げられる。
Diazonium salts include benzenediazonium chloride, etc. Iodonium salts include diphenyliodonium hexafluoroarsinate, bis(4-chlorophenyl)iodonium hexafluoroarsinate, and phenyl(4-methoxyphenyl)iodonium hexafluoroarsinate, etc.
これらの重合開始剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂又は熱硬化性樹脂100質量部に対して、0.1質量部以上、30質量部以下であることが好ましく、0.5質量部以上、20質量部以下であることがより好ましく、1質量部以上、10質量部以下であることが特に好ましい。 These polymerization initiators may be used alone or in combination of two or more.
When these polymerization initiators are used to form a crosslinked structure, the amount used is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less, relative to 100 parts by mass of the energy ray-curable resin or the thermosetting resin.
これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂又は熱硬化性樹脂100質量部に対して、0.1質量部以上、30質量部以下であることが好ましく、0.5質量部以上、20質量部以下であることがより好ましく、1質量部以上、10質量部以下であることが特に好ましい。 These polymerization initiators may be used alone or in combination of two or more.
When these polymerization initiators are used to form a crosslinked structure, the amount used is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less, relative to 100 parts by mass of the energy ray-curable resin or the thermosetting resin.
また、熱硬化性樹脂を用いる場合、イミダゾール系硬化触媒等の硬化触媒を用いてもよい。
If a thermosetting resin is used, a curing catalyst such as an imidazole-based curing catalyst may be used.
本実施形態において、硬化性の接着剤は、エネルギー線硬化性樹脂又は熱硬化性樹脂とともに、硬化前のシート形状の維持を容易にするため、柔軟性調整成分を含有していてもよい。柔軟性調整成分として用いられるポリマーとしては、フェノキシ樹脂、ポリオレフィン系樹脂又はその変性物、ポリアミドイミド樹脂、ポリイミド樹脂、ゴム系樹脂、及びアクリル樹脂等が挙げられる。
In this embodiment, the curable adhesive may contain a flexibility adjusting component together with the energy ray curable resin or thermosetting resin to facilitate maintaining the sheet shape before curing. Examples of polymers used as flexibility adjusting components include phenoxy resin, polyolefin resin or modified products thereof, polyamideimide resin, polyimide resin, rubber resin, and acrylic resin.
これらの柔軟性調整成分は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
These flexibility adjusting ingredients can be used alone or in combination of two or more.
本実施形態に用いる硬化性の接着剤が柔軟性調整成分を含む場合、接着剤が含むエネルギー線硬化性樹脂と熱硬化性樹脂の合計量は、第一樹脂層4の貯蔵弾性率を上述した範囲に調整する観点から、柔軟性調整成分100質量部に対して、15質量部以上、300質量部以下であることが好ましく、30質量部以上、250質量部以下であることがより好ましく、60質量部以上200質量部以下であることがさらに好ましい。また、接着剤がエネルギー線硬化性樹脂又は熱硬化性樹脂を含み、柔軟性調整成分を含まない場合、第一樹脂層4の貯蔵弾性率が高くなり過ぎてしまう傾向がある。
When the curable adhesive used in this embodiment contains a flexibility adjusting component, the total amount of energy ray curable resin and thermosetting resin contained in the adhesive is, from the viewpoint of adjusting the storage modulus of the first resin layer 4 to the above-mentioned range, preferably 15 parts by mass or more and 300 parts by mass or less, more preferably 30 parts by mass or more and 250 parts by mass or less, and even more preferably 60 parts by mass or more and 200 parts by mass or less, per 100 parts by mass of the flexibility adjusting component. Furthermore, when the adhesive contains an energy ray curable resin or a thermosetting resin but does not contain a flexibility adjusting component, the storage modulus of the first resin layer 4 tends to be too high.
本実施形態において、硬化性の接着剤は、充填材を含有しないことが好ましい。接着剤が充填材を含有しない場合には、第一樹脂層4の23℃における貯蔵弾性率が高くなり過ぎることを防止できる。
ただし、硬化性の接着剤は、第一樹脂層4の23℃における貯蔵弾性率を前記範囲内に調整できる範囲において、充填材を含有していてもよい。 In the present embodiment, it is preferable that the curable adhesive does not contain a filler. When the adhesive does not contain a filler, it is possible to prevent the storage modulus at 23° C. of thefirst resin layer 4 from becoming too high.
However, the curable adhesive may contain a filler within a range in which the storage modulus at 23° C. of thefirst resin layer 4 can be adjusted to fall within the above range.
ただし、硬化性の接着剤は、第一樹脂層4の23℃における貯蔵弾性率を前記範囲内に調整できる範囲において、充填材を含有していてもよい。 In the present embodiment, it is preferable that the curable adhesive does not contain a filler. When the adhesive does not contain a filler, it is possible to prevent the storage modulus at 23° C. of the
However, the curable adhesive may contain a filler within a range in which the storage modulus at 23° C. of the
充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、及び窒化ホウ素等の無機粉末;無機粉末を球形化したビーズ、単結晶繊維、及びガラス繊維等が挙げられる。これらの中でも、シリカフィラー及びアルミナフィラーが好ましい。充填材は、1種単独で用いてもよく、2種以上を併用してもよい。
Fillers include, for example, inorganic powders such as silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride; beads made by shaping inorganic powders into spherical shapes, single crystal fibers, and glass fibers. Among these, silica filler and alumina filler are preferred. The fillers may be used alone or in combination of two or more types.
硬化性の接着剤には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、カップリング剤、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤等の周知の添加剤が挙げられる。
The curable adhesive may contain other components. Examples of other components include well-known additives such as organic solvents, coupling agents, flame retardants, tackifiers, UV absorbers, antioxidants, preservatives, fungicides, plasticizers, defoamers, and wettability adjusters.
(電極)
電極5は、導電性線状体31に電流を供給するために用いられる。電極5は、一対になっている。電極5は、導電性線状体31に直接的に接触する。そして、電極5は、導電性線状体31の両端部に電気的に接続されて配置される。
電極5は、公知の電極材料を用いて形成できる。電極材料としては、銀ペースト等の導電性ペースト、銅箔等の金属箔、及び金属ワイヤー等が挙げられる。電極材料が金属ワイヤーである場合、金属ワイヤーは、1本であってもよいが、2本以上であることが好ましい。 (electrode)
Theelectrodes 5 are used to supply a current to the conductive linear body 31. The electrodes 5 are in a pair. The electrodes 5 are in direct contact with the conductive linear body 31. The electrodes 5 are disposed so as to be electrically connected to both ends of the conductive linear body 31.
Theelectrode 5 can be formed using a known electrode material. Examples of the electrode material include a conductive paste such as silver paste, a metal foil such as copper foil, and a metal wire. When the electrode material is a metal wire, the number of metal wires may be one, but is preferably two or more.
電極5は、導電性線状体31に電流を供給するために用いられる。電極5は、一対になっている。電極5は、導電性線状体31に直接的に接触する。そして、電極5は、導電性線状体31の両端部に電気的に接続されて配置される。
電極5は、公知の電極材料を用いて形成できる。電極材料としては、銀ペースト等の導電性ペースト、銅箔等の金属箔、及び金属ワイヤー等が挙げられる。電極材料が金属ワイヤーである場合、金属ワイヤーは、1本であってもよいが、2本以上であることが好ましい。 (electrode)
The
The
電極材料が、金属箔又は金属ワイヤーである場合、金属箔又は金属ワイヤーの金属としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等の金属を2種以上含む合金が挙げられる。また、金属箔又は金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよい。
When the electrode material is a metal foil or metal wire, examples of the metal of the metal foil or metal wire include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals such as stainless steel, carbon steel, brass, phosphor bronze, zirconium copper alloy, beryllium copper, iron nickel, nichrome, nickel titanium, Kanthal, Hastelloy, and rhenium tungsten. The metal foil or metal wire may also be plated with gold, tin, zinc, silver, nickel, chromium, nickel chromium alloy, or solder.
電極5のうち、少なくとも一方の電極の幅は、積層体100の平面視において、10mm以下であることが好ましく、3mm以下であることがより好ましい。また、この電極の幅は、0.1mm以上であることが好ましく、0.5mm以上であることがより好ましい。なお、少なくとも一方の電極が金属ワイヤーである場合には、電極の幅は、金属ワイヤーの直径であり、金属ワイヤーを2本以上用いた場合の一方の電極の幅とは、各金属ワイヤーの直径の和のことをいう。
The width of at least one of the electrodes 5 is preferably 10 mm or less, and more preferably 3 mm or less, in a plan view of the laminate 100. The width of this electrode is preferably 0.1 mm or more, and more preferably 0.5 mm or more. If at least one of the electrodes is a metal wire, the width of the electrode is the diameter of the metal wire, and if two or more metal wires are used, the width of one electrode refers to the sum of the diameters of the metal wires.
電極5の厚さは、2μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。電極5の厚さは、200μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることがさらに好ましく、25μm以下であることが特に好ましい。電極5の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり疑似シート構造体との抵抗値を低く抑えられる。また、電極として十分な強度が得られる。なお、電極が金属ワイヤーである場合には、電極の厚さは、金属ワイヤーの直径である。
The thickness of the electrode 5 is preferably 2 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. The thickness of the electrode 5 is preferably 200 μm or less, more preferably 100 μm or less, even more preferably 50 μm or less, and particularly preferably 25 μm or less. If the thickness of the electrode 5 is within the above range, the electrical conductivity is high and the resistance is low, and the resistance value with the pseudo sheet structure can be kept low. In addition, sufficient strength as an electrode is obtained. Note that when the electrode is a metal wire, the thickness of the electrode is the diameter of the metal wire.
(第二樹脂層)
第二樹脂層6は、第一基材1又は第二基材2と、配線シート10との間に設けられる。第二樹脂層6は、第一樹脂層4よりも貯蔵弾性率が低い。この第二樹脂層6により、第二基材2にクラックが発生することを防止できる。本実施形態では、第二基材2と、配線シート10とは、第二樹脂層6を介して積層されている。
クラックの防止の観点から、第二樹脂層6の23℃における貯蔵弾性率は、1.0×104Pa以上、3.0×105Pa以下であることが好ましい。同様の観点から、第二樹脂層6の23℃における貯蔵弾性率は、4.0×104Pa以上であることがより好ましく、8.0×104Pa以上であることがさらに好ましい。第二樹脂層6の23℃における貯蔵弾性率は、2.5×105Pa以下であることがより好ましく、2.0×105Pa以下であることがさらに好ましい。
また、同様の観点から、第二樹脂層6の105℃における貯蔵弾性率は、5.0×103Pa以上であることが好ましく、1.0×104Pa以上であることがより好ましい。第二樹脂層6の105℃における貯蔵弾性率は、4.0×104Pa以下であることが好ましく、3.0×104Pa以下であることがより好ましい。
なお、貯蔵弾性率は、後述する実施例に記載の方法により測定できる。 (Second Resin Layer)
Thesecond resin layer 6 is provided between the first substrate 1 or the second substrate 2, and the wiring sheet 10. The second resin layer 6 has a lower storage modulus than the first resin layer 4. This second resin layer 6 can prevent cracks from occurring in the second substrate 2. In this embodiment, the second substrate 2 and the wiring sheet 10 are laminated with the second resin layer 6 interposed therebetween.
From the viewpoint of preventing cracks, the storage modulus of thesecond resin layer 6 at 23° C. is preferably 1.0×10 4 Pa or more and 3.0×10 5 Pa or less. From the same viewpoint, the storage modulus of the second resin layer 6 at 23° C. is more preferably 4.0×10 4 Pa or more, and even more preferably 8.0×10 4 Pa or more. The storage modulus of the second resin layer 6 at 23° C. is more preferably 2.5×10 5 Pa or less, and even more preferably 2.0×10 5 Pa or less.
From the same viewpoint, the storage modulus of thesecond resin layer 6 at 105° C. is preferably 5.0×10 3 Pa or more, and more preferably 1.0×10 4 Pa or more. The storage modulus of the second resin layer 6 at 105° C. is preferably 4.0×10 4 Pa or less, and more preferably 3.0×10 4 Pa or less.
The storage modulus can be measured by the method described in the examples below.
第二樹脂層6は、第一基材1又は第二基材2と、配線シート10との間に設けられる。第二樹脂層6は、第一樹脂層4よりも貯蔵弾性率が低い。この第二樹脂層6により、第二基材2にクラックが発生することを防止できる。本実施形態では、第二基材2と、配線シート10とは、第二樹脂層6を介して積層されている。
クラックの防止の観点から、第二樹脂層6の23℃における貯蔵弾性率は、1.0×104Pa以上、3.0×105Pa以下であることが好ましい。同様の観点から、第二樹脂層6の23℃における貯蔵弾性率は、4.0×104Pa以上であることがより好ましく、8.0×104Pa以上であることがさらに好ましい。第二樹脂層6の23℃における貯蔵弾性率は、2.5×105Pa以下であることがより好ましく、2.0×105Pa以下であることがさらに好ましい。
また、同様の観点から、第二樹脂層6の105℃における貯蔵弾性率は、5.0×103Pa以上であることが好ましく、1.0×104Pa以上であることがより好ましい。第二樹脂層6の105℃における貯蔵弾性率は、4.0×104Pa以下であることが好ましく、3.0×104Pa以下であることがより好ましい。
なお、貯蔵弾性率は、後述する実施例に記載の方法により測定できる。 (Second Resin Layer)
The
From the viewpoint of preventing cracks, the storage modulus of the
From the same viewpoint, the storage modulus of the
The storage modulus can be measured by the method described in the examples below.
第二樹脂層6の厚さは、特に制限されない。第二樹脂層6の厚さは、1μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。第二樹脂層6の厚さは、1000μm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることがさらに好ましい。
The thickness of the second resin layer 6 is not particularly limited. The thickness of the second resin layer 6 is preferably 1 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. The thickness of the second resin layer 6 is preferably 1000 μm or less, more preferably 500 μm or less, and even more preferably 300 μm or less.
第二樹脂層6は、粘着剤層としての性能が優れるという観点と、貯蔵弾性率を前記範囲内とするという観点から、下記の粘着剤層であることが好ましい。
The second resin layer 6 is preferably an adhesive layer as described below, from the viewpoint of excellent performance as an adhesive layer and of having a storage modulus within the above range.
粘着剤層は、例えば、(メタ)アクリル酸エステル重合体(A)および架橋剤(B)、またはエネルギー線硬化性成分(C)、もしくはその両方を含有する粘着性組成物(以下「粘着性組成物P」という場合がある。)を架橋(熱架橋)してなる粘着剤により構成することができる。なお、この粘着性組成物Pは、所望により、光重合開始剤(D)をさらに含有することが好ましい。また、本明細書において、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸の両方を意味する。他の類似用語も同様である。さらに、「重合体」には「共重合体」の概念も含まれるものとする。
The adhesive layer can be composed of an adhesive obtained by crosslinking (thermal crosslinking) an adhesive composition (hereinafter sometimes referred to as "adhesive composition P") containing, for example, a (meth)acrylic acid ester polymer (A) and a crosslinking agent (B), or an energy ray curable component (C), or both. Note that, if desired, this adhesive composition P preferably further contains a photopolymerization initiator (D). In addition, in this specification, (meth)acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms. Furthermore, the concept of "copolymer" is also included in "polymer."
粘着性組成物Pがエネルギー線硬化性成分(C)を含む場合、粘着性組成物Pを架橋させて得られる粘着剤層は、粘着シートの段階、すなわち、被着体に貼付される前の段階では、エネルギー線によっては未だ硬化しておらず貯蔵弾性率が比較的低い。そのため、被着体に対して貼合された時に発生する応力を緩和することができる。これにより、被着体に凹凸が存在する面に粘着剤層を貼合する場合であっても、粘着剤層が凹凸に追従し易く、凹凸近傍に隙間、浮き等が生じることが抑制され、被着体への優れた貼合性を発揮する。
When the adhesive composition P contains the energy ray curable component (C), the adhesive layer obtained by crosslinking the adhesive composition P has not yet been cured by energy rays at the stage of the adhesive sheet, i.e., before being attached to the adherend, and has a relatively low storage modulus. Therefore, it is possible to alleviate the stress that occurs when the adhesive layer is attached to the adherend. As a result, even when the adhesive layer is attached to the surface of the adherend that has irregularities, the adhesive layer easily follows the irregularities, and the occurrence of gaps, floating, etc. near the irregularities is suppressed, and excellent adhesion to the adherend is demonstrated.
(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、(メタ)アクリル酸アルキルエステルと、分子内に反応性官能基を有するモノマー(反応性官能基含有モノマー)とを含有することが好ましい。
The (meth)acrylic acid ester polymer (A) preferably contains, as monomer units constituting this polymer, an alkyl (meth)acrylic acid ester and a monomer having a reactive functional group in the molecule (a reactive functional group-containing monomer).
(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、(メタ)アクリル酸アルキルエステルを含有することで、好ましい粘着性を発現することができる。(メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルが好ましい。アルキル基は、直鎖状または分岐鎖状であってもよいし、環状構造を有するものであってもよい。
The (meth)acrylic acid ester polymer (A) can exhibit favorable adhesion by containing an alkyl (meth)acrylic acid ester as a monomer unit constituting this polymer. As the alkyl (meth)acrylic acid ester, an alkyl (meth)acrylic acid ester having 1 to 20 carbon atoms is preferable. The alkyl group may be linear or branched, or may have a cyclic structure.
アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、及び(メタ)アクリル酸アダマンチル等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of (meth)acrylic acid alkyl esters having an alkyl group with 1 to 20 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-decyl (meth)acrylate, n-dodecyl (meth)acrylate, myristyl (meth)acrylate, palmityl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, and adamantyl (meth)acrylate. These may be used alone or in combination of two or more.
(メタ)アクリル酸アルキルエステルとしては、これらの中でも、アルキル基の炭素数が4~20の(メタ)アクリル酸アルキルエステルが好ましい。アルキル基の炭素数が4~20の(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、及び(メタ)アクリル酸イソボルニル等が好ましく、また、優れた粘着性が得られるという観点から、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、及び(メタ)アクリル酸イソボルニル等がより好ましく、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル及びアクリル酸イソボルニル等が特に好ましい。
Among these, the (meth)acrylic acid alkyl esters are preferably those having an alkyl group with 4 to 20 carbon atoms. As the (meth)acrylic acid alkyl esters having an alkyl group with 4 to 20 carbon atoms, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, isobornyl (meth)acrylate, etc. are preferred, and from the viewpoint of obtaining excellent adhesion, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isobornyl (meth)acrylate, etc. are more preferred, and n-butyl acrylate, 2-ethylhexyl acrylate, isobornyl acrylate, etc. are particularly preferred.
(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、(メタ)アクリル酸アルキルエステルを40質量%以上含有することが好ましく、50質量%以上含有することがより好ましく、60質量%以上含有することがさらに好ましく、70質量%以上含有することが特に好ましい。(メタ)アクリル酸アルキルエステルを40質量%以上含有すると、(メタ)アクリル酸エステル重合体(A)は好適な粘着性を発揮することができる。また、(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、(メタ)アクリル酸アルキルエステルを99質量%以下含有することが好ましく、特に95質量%以下含有することが好ましく、さらには90質量%以下含有することが好ましい。上記(メタ)アクリル酸アルキルエステルを99質量%以下とすることにより、(メタ)アクリル酸エステル重合体(A)中に他のモノマー成分を好適な量導入することができる。特に、(メタ)アクリル酸エステル重合体(A)がこの重合体を構成するモノマーとして水酸基含有モノマーを含む場合は、(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位としての(メタ)アクリル酸アルキルエステルを、87質量%以下含有することが好ましく、83質量%以下含有することがさらに好ましい。
The (meth)acrylic acid ester polymer (A) preferably contains 40% by mass or more of (meth)acrylic acid alkyl ester as a monomer unit constituting this polymer, more preferably 50% by mass or more, even more preferably 60% by mass or more, and particularly preferably 70% by mass or more. When the (meth)acrylic acid alkyl ester is contained at 40% by mass or more, the (meth)acrylic acid ester polymer (A) can exhibit suitable adhesion. In addition, the (meth)acrylic acid ester polymer (A) preferably contains 99% by mass or less of (meth)acrylic acid alkyl ester as a monomer unit constituting this polymer, particularly preferably 95% by mass or less, and even more preferably 90% by mass or less. By making the (meth)acrylic acid alkyl ester 99% by mass or less, other monomer components can be introduced into the (meth)acrylic acid ester polymer (A) in suitable amounts. In particular, when the (meth)acrylic acid ester polymer (A) contains a hydroxyl group-containing monomer as a monomer constituting this polymer, the (meth)acrylic acid ester polymer (A) preferably contains 87% by mass or less, and more preferably 83% by mass or less, of (meth)acrylic acid alkyl ester as a monomer unit constituting this polymer.
(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として反応性官能基含有モノマーを含有することで、反応性官能基含有モノマー由来の反応性官能基を介して、後述する架橋剤(B)と反応し、これにより架橋構造(三次元網目構造)が形成され、所望の凝集力を有する粘着剤が得られる。
The (meth)acrylic acid ester polymer (A) contains a reactive functional group-containing monomer as a monomer unit constituting this polymer, and reacts with the crosslinking agent (B) described below via the reactive functional group derived from the reactive functional group-containing monomer, forming a crosslinked structure (three-dimensional network structure) and resulting in an adhesive with the desired cohesive strength.
(メタ)アクリル酸エステル重合体(A)が、この重合体を構成するモノマー単位として含有する反応性官能基含有モノマーとしては、分子内に水酸基を有するモノマー(水酸基含有モノマー)、分子内にカルボキシ基を有するモノマー(カルボキシ基含有モノマー)、及び分子内にアミノ基を有するモノマー(アミノ基含有モノマー)などが好ましく挙げられる。これらの反応性官能基含有モノマーは、1種を単独で用いてもよいし、2種以上を併用してもよい。
Preferred examples of reactive functional group-containing monomers contained in the (meth)acrylic acid ester polymer (A) as monomer units constituting this polymer include monomers having a hydroxyl group in the molecule (hydroxyl group-containing monomers), monomers having a carboxyl group in the molecule (carboxyl group-containing monomers), and monomers having an amino group in the molecule (amino group-containing monomers). These reactive functional group-containing monomers may be used alone or in combination of two or more.
反応性官能基含有モノマーの中でも、架橋密度を調整し易く所望の凝集力を有する粘着剤を得やすいという観点から、水酸基含有モノマーまたはカルボキシ基含有モノマーが好ましく、粘着力及び耐湿熱白化性の観点からは、水酸基含有モノマーが好ましい。
Among the reactive functional group-containing monomers, hydroxyl group-containing monomers or carboxyl group-containing monomers are preferred from the viewpoint of ease of adjusting the crosslink density and of obtaining an adhesive with the desired cohesive strength, and hydroxyl group-containing monomers are preferred from the viewpoint of adhesive strength and resistance to wet heat whitening.
水酸基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、及び(メタ)アクリル酸4-ヒドロキシブチルなどの(メタ)アクリル酸ヒドロキシアルキルエステル等が挙げられる。これらの中でも、炭素数が1~4のヒドロキシアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルが好ましい。具体的には、例えば、(メタ)アクリル酸2-ヒドロキシエチル、及び(メタ)アクリル酸4-ヒドロキシブチル等が好ましく挙げられ、特に、アクリル酸2-ヒドロキシエチル、及びアクリル酸4-ヒドロキシブチルが好ましく挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Hydroxyl group-containing monomers include, for example, hydroxyalkyl (meth)acrylate esters such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate. Among these, hydroxyalkyl (meth)acrylate esters having a hydroxyalkyl group with 1 to 4 carbon atoms are preferred. Specifically, for example, 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate are preferred, and in particular, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are preferred. These may be used alone or in combination of two or more.
カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、及びシトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。これらの中でも、得られる(メタ)アクリル酸エステル重合体(A)の凝集力の点からアクリル酸が好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of carboxyl group-containing monomers include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. Among these, acrylic acid is preferred from the viewpoint of the cohesive strength of the resulting (meth)acrylic acid ester polymer (A). These may be used alone or in combination of two or more.
(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、反応性官能基含有モノマーを、1質量%以上含有することが好ましく、3質量%以上含有することがより好ましく、5質量%以上含有することがさらに好ましい。反応性官能基含有モノマーが水酸基含有モノマーである場合、5質量%以上含有することが好ましく、8質量%以上含有することがより好ましく、10質量%以上含有することがさらに好ましい。また、反応性官能基含有モノマーが水酸基含有モノマーである場合、25質量%未満であることが好ましく、20質量%以下であることがより好ましく、16質量%以下であることがさらに好ましい。また、(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、反応性官能基含有モノマーを、50質量%以下で含有することが好ましく、40質量%以下で含有することがより好ましく、30質量%以下で含有することがさらに好ましい。
The (meth)acrylic acid ester polymer (A) preferably contains 1% by mass or more of reactive functional group-containing monomer as a monomer unit constituting this polymer, more preferably 3% by mass or more, and even more preferably 5% by mass or more. When the reactive functional group-containing monomer is a hydroxyl group-containing monomer, it is preferably contained 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more. When the reactive functional group-containing monomer is a hydroxyl group-containing monomer, it is preferably contained less than 25% by mass, more preferably 20% by mass or less, and even more preferably 16% by mass or less. When the (meth)acrylic acid ester polymer (A) is a monomer unit constituting this polymer, it is preferably contained 50% by mass or less of reactive functional group-containing monomer as a monomer unit constituting this polymer, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
また、(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、窒素原子含有モノマーを含有することも好ましい。窒素原子含有モノマーを構成単位として重合体中に存在させることにより、粘着剤に所定の極性を付与し、ガラスのようなある程度の極性を有する被着体に対しても、親和性に優れたものとすることができる。窒素原子含有モノマーとしては、前述した反応性官能基含有モノマーとしてのアミノ基含有モノマーの他に、アミド基を有するモノマー、窒素含有複素環を有するモノマーなどが挙げられる。これらの中でも、(メタ)アクリル酸エステル重合体(A)に適度な剛性を持たせる観点から、窒素含有複素環を有するモノマーが好ましい。
It is also preferable that the (meth)acrylic acid ester polymer (A) contains a nitrogen atom-containing monomer as a monomer unit constituting this polymer. By having the nitrogen atom-containing monomer exist as a constituent unit in the polymer, a predetermined polarity is imparted to the adhesive, and it is possible to make it have excellent affinity even for adherends having a certain degree of polarity, such as glass. In addition to the amino group-containing monomers as the reactive functional group-containing monomers described above, examples of the nitrogen atom-containing monomer include monomers having amide groups and monomers having nitrogen-containing heterocycles. Among these, from the viewpoint of imparting appropriate rigidity to the (meth)acrylic acid ester polymer (A), monomers having nitrogen-containing heterocycles are preferred.
なお、窒素原子含有モノマーとして、例えば、N-ビニルカルボン酸アミド、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-tert-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-エチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、及びN-ビニルカプロラクタム等を使用することもできる。
これらの窒素原子含有モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition, examples of the nitrogen atom-containing monomer that can be used include N-vinyl carboxylic acid amide, (meth)acrylamide, N-methyl(meth)acrylamide, N-methylol(meth)acrylamide, N-tert-butyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-ethyl(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-phenyl(meth)acrylamide, dimethylaminopropyl(meth)acrylamide, and N-vinyl caprolactam.
These nitrogen atom-containing monomers may be used alone or in combination of two or more.
これらの窒素原子含有モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition, examples of the nitrogen atom-containing monomer that can be used include N-vinyl carboxylic acid amide, (meth)acrylamide, N-methyl(meth)acrylamide, N-methylol(meth)acrylamide, N-tert-butyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-ethyl(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-phenyl(meth)acrylamide, dimethylaminopropyl(meth)acrylamide, and N-vinyl caprolactam.
These nitrogen atom-containing monomers may be used alone or in combination of two or more.
窒素含有複素環を有するモノマーとしては、例えば、N-(メタ)アクリロイルモルホリン、N-ビニル-2-ピロリドン、N-(メタ)アクリロイルピロリドン、N-(メタ)アクリロイルピペリジン、N-(メタ)アクリロイルピロリジン、N-(メタ)アクリロイルアジリジン、アジリジニルエチル(メタ)アクリレート、2-ビニルピリジン、4-ビニルピリジン、2-ビニルピラジン、1-ビニルイミダゾール、N-ビニルカルバゾール、N-ビニルフタルイミド等が挙げられ、中でも、より優れた粘着力を発揮するN-(メタ)アクリロイルモルホリンが好ましく、特にN-アクリロイルモルホリン(4-アクリロイルモルホリン)が好ましい。
Examples of monomers having a nitrogen-containing heterocycle include N-(meth)acryloylmorpholine, N-vinyl-2-pyrrolidone, N-(meth)acryloylpyrrolidone, N-(meth)acryloylpiperidine, N-(meth)acryloylpyrrolidine, N-(meth)acryloylaziridine, aziridinylethyl (meth)acrylate, 2-vinylpyridine, 4-vinylpyridine, 2-vinylpyrazine, 1-vinylimidazole, N-vinylcarbazole, and N-vinylphthalimide. Among these, N-(meth)acryloylmorpholine is preferred because it exhibits superior adhesive strength, and N-acryloylmorpholine (4-acryloylmorpholine) is particularly preferred.
(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として窒素含有複素環を有するモノマーを含有する場合、窒素原子含有モノマーを0.5質量%以上含有することが好ましく、1質量%以上含有することがより好ましく、3質量%以上含有することがさらに好ましい。また、(メタ)アクリル酸エステル重合体(A)は、この重合体を構成するモノマー単位として、窒素含有複素環を有するモノマーを20質量%以下含有することが好ましく、15質量%以下含有することがより好ましく、8質量%以下含有することがさらに好ましい。窒素含有複素環を有するモノマーの含有量が上記の範囲内にあると、得られる粘着剤が、ガラス等の被着体に対して優れた粘着性を効果的に発揮することができる。
When the (meth)acrylic acid ester polymer (A) contains a monomer having a nitrogen-containing heterocycle as a monomer unit constituting this polymer, it preferably contains 0.5 mass% or more of the nitrogen atom-containing monomer, more preferably 1 mass% or more, and even more preferably 3 mass% or more. Furthermore, the (meth)acrylic acid ester polymer (A) preferably contains 20 mass% or less of the monomer having a nitrogen-containing heterocycle as a monomer unit constituting this polymer, more preferably 15 mass% or less, and even more preferably 8 mass% or less. When the content of the monomer having a nitrogen-containing heterocycle is within the above range, the resulting adhesive can effectively exhibit excellent adhesion to adherends such as glass.
(メタ)アクリル酸エステル重合体(A)は、所望により、この重合体を構成するモノマー単位として、他のモノマーを含有してもよい。他のモノマーとしては、例えば、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル、酢酸ビニル、及びスチレンなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The (meth)acrylic acid ester polymer (A) may contain other monomers as monomer units constituting this polymer, if desired. Examples of other monomers include (meth)acrylic acid alkoxyalkyl esters such as methoxyethyl (meth)acrylate and ethoxyethyl (meth)acrylate, vinyl acetate, and styrene. These may be used alone or in combination of two or more.
(メタ)アクリル酸エステル重合体(A)は、直鎖状のポリマーであることが好ましい。直鎖状のポリマーであることにより、分子鎖の絡み合いが起こりやすくなり、凝集力の向上が期待できるため、より優れた粘着剤が得られる。
The (meth)acrylic acid ester polymer (A) is preferably a linear polymer. By using a linear polymer, entanglement of molecular chains occurs more easily, and it is expected that the cohesive strength will be improved, resulting in a superior adhesive.
(メタ)アクリル酸エステル重合体(A)の重合態様は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
The polymerization form of the (meth)acrylic acid ester polymer (A) may be a random copolymer or a block copolymer.
(メタ)アクリル酸エステル重合体(A)の重量平均分子量は、20万以上であることが好ましく、30万以上であることがより好ましく、40万以上であることがさらに好ましい。(メタ)アクリル酸エステル重合体(A)の重量平均分子量の下限値が上記以上であると、第二樹脂層及び積層体が長期耐久性にすぐれたものとなる。
The weight average molecular weight of the (meth)acrylic acid ester polymer (A) is preferably 200,000 or more, more preferably 300,000 or more, and even more preferably 400,000 or more. If the lower limit of the weight average molecular weight of the (meth)acrylic acid ester polymer (A) is above the above limit, the second resin layer and the laminate will have excellent long-term durability.
また、(メタ)アクリル酸エステル重合体(A)の重量平均分子量は、200万以下であることが好ましく、150万以下であることがより好ましく、100万以下であることがさらに好ましく、80万以下であることが特に好ましい。(メタ)アクリル酸エステル重合体(A)の重量平均分子量の上限値が上記以下であると、得られる粘着剤の被着体への貼合性及び密着性の少なくとも一方がより優れたものとなる。
The weight average molecular weight of the (meth)acrylic acid ester polymer (A) is preferably 2 million or less, more preferably 1.5 million or less, even more preferably 1 million or less, and particularly preferably 800,000 or less. When the upper limit of the weight average molecular weight of the (meth)acrylic acid ester polymer (A) is the above or less, the resulting pressure-sensitive adhesive has at least one of better adhesion and better sticking ability to the adherend.
なお、粘着性組成物Pにおいて、(メタ)アクリル酸エステル重合体(A)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In addition, in the adhesive composition P, the (meth)acrylic acid ester polymer (A) may be used alone or in combination of two or more kinds.
架橋剤(B)は、粘着性組成物Pの加熱により(メタ)アクリル酸エステル重合体(A)を架橋し、三次元網目構造を良好に形成することが可能となる。これにより、得られる粘着剤の凝集力がより向上したものとなる。
The crosslinking agent (B) crosslinks the (meth)acrylic acid ester polymer (A) by heating the adhesive composition P, making it possible to form a good three-dimensional mesh structure. This results in an adhesive with improved cohesive strength.
架橋剤(B)としては、(メタ)アクリル酸エステル重合体(A)が有する反応性官能基と反応するものであればよく、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アミン系架橋剤、メラミン系架橋剤、アジリジン系架橋剤、ヒドラジン系架橋剤、アルデヒド系架橋剤、オキサゾリン系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、及びアンモニウム塩系架橋剤等が挙げられる。これらの中でも、(メタ)アクリル酸エステル重合体(A)が有する反応性官能基が水酸基の場合、水酸基との反応性に優れたイソシアネート系架橋剤を使用することが好ましく、(メタ)アクリル酸エステル重合体(A)が有する反応性官能基がカルボキシ基の場合、カルボキシ基との反応性に優れたエポキシ系架橋剤を使用することが好ましい。なお、架橋剤(B)は、1種を単独で、または2種以上を組み合わせて使用することができる。
The crosslinking agent (B) may be any that reacts with the reactive functional group of the (meth)acrylic acid ester polymer (A), and examples thereof include isocyanate-based crosslinking agents, epoxy-based crosslinking agents, amine-based crosslinking agents, melamine-based crosslinking agents, aziridine-based crosslinking agents, hydrazine-based crosslinking agents, aldehyde-based crosslinking agents, oxazoline-based crosslinking agents, metal alkoxide-based crosslinking agents, metal chelate-based crosslinking agents, metal salt-based crosslinking agents, and ammonium salt-based crosslinking agents. Among these, when the reactive functional group of the (meth)acrylic acid ester polymer (A) is a hydroxyl group, it is preferable to use an isocyanate-based crosslinking agent that has excellent reactivity with the hydroxyl group, and when the reactive functional group of the (meth)acrylic acid ester polymer (A) is a carboxyl group, it is preferable to use an epoxy-based crosslinking agent that has excellent reactivity with the carboxyl group. The crosslinking agent (B) may be used alone or in combination of two or more types.
イソシアネート系架橋剤は、少なくともポリイソシアネート化合物を含むものである。ポリイソシアネート化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、及びキシリレンジイソシアネート等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂環式ポリイソシアネート等、並びに、これらのビウレット体、及びイソシアヌレート体、並びに、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、及びヒマシ油等の低分子活性水素含有化合物との反応物であるアダクト体等が挙げられる。これらの中でも、水酸基との反応性の観点から、トリメチロールプロパン変性の芳香族ポリイソシアネートが好ましく、特にトリメチロールプロパン変性トリレンジイソシアネートおよびトリメチロールプロパン変性キシリレンジイソシアネートの少なくとも一方を使用することが好ましい。
The isocyanate-based crosslinking agent contains at least a polyisocyanate compound. Examples of polyisocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate and hydrogenated diphenylmethane diisocyanate, and biuret and isocyanurate forms thereof, as well as adducts which are reaction products with low-molecular active hydrogen-containing compounds such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, and castor oil. Among these, trimethylolpropane-modified aromatic polyisocyanates are preferred from the viewpoint of reactivity with hydroxyl groups, and it is particularly preferred to use at least one of trimethylolpropane-modified tolylene diisocyanate and trimethylolpropane-modified xylylene diisocyanate.
エポキシ系架橋剤としては、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、エチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ジグリシジルアニリン、及びジグリシジルアミン等が挙げられる。これらの中でもカルボキシ基との反応性の観点から、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンが好ましい。
Epoxy crosslinking agents include 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-m-xylylenediamine, ethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, diglycidylaniline, and diglycidylamine. Among these, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane is preferred from the viewpoint of reactivity with carboxy groups.
粘着性組成物P中における架橋剤(B)の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。また、この含有量は、3質量部以下であることが好ましく、2質量部以下であることがより好ましく、1質量部以下であることがさらに好ましい。架橋剤(B)の含有量が上記の範囲にあることで、架橋の程度が適度なものとなり、得られる粘着剤は、前述した貯蔵弾性率を好適な値に調整し易くなって、より優れたものとなる。
The content of the crosslinking agent (B) in the adhesive composition P is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.1 parts by mass or more, per 100 parts by mass of the (meth)acrylic acid ester polymer (A). This content is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1 part by mass or less. By having the content of the crosslinking agent (B) within the above range, the degree of crosslinking becomes appropriate, and the obtained adhesive becomes superior because it becomes easier to adjust the storage modulus described above to a suitable value.
粘着性組成物Pがエネルギー線硬化性成分(C)を含有することにより、粘着性組成物Pを架橋(熱架橋)して得られる粘着剤は、エネルギー線硬化性の粘着剤となる。この粘着剤は、被着体貼付後のエネルギー線照射による硬化により、エネルギー線硬化性成分(C)が互いに重合し、その重合したエネルギー線硬化性成分(C)が(メタ)アクリル酸エステル重合体(A)の架橋構造(三次元網目構造)に絡み付くものと推定される。かかる高次構造を有する粘着剤は、凝集力が高く、高い被膜強度を示すものとなる。
Since the adhesive composition P contains the energy ray curable component (C), the adhesive obtained by crosslinking (thermal crosslinking) the adhesive composition P becomes an energy ray curable adhesive. It is presumed that this adhesive is cured by irradiation with energy rays after attachment to an adherend, whereby the energy ray curable components (C) polymerize with each other, and the polymerized energy ray curable components (C) become entangled in the crosslinked structure (three-dimensional network structure) of the (meth)acrylic acid ester polymer (A). An adhesive with such a high-order structure has high cohesive strength and exhibits high coating strength.
エネルギー線硬化性成分(C)は、エネルギー線の照射によって硬化し、上記の効果が得られる成分であれば特に制限されず、モノマー、オリゴマーまたはポリマーのいずれであってもよいし、それらの混合物であってもよい。これらの中でも、(メタ)アクリル酸エステル重合体(A)等との相溶性に優れる多官能アクリレート系モノマーを好ましく挙げることができる。
The energy ray-curable component (C) is not particularly limited as long as it is a component that cures when irradiated with energy rays and provides the above-mentioned effects, and may be any of a monomer, oligomer, or polymer, or a mixture thereof. Among these, preferred examples include polyfunctional acrylate monomers that have excellent compatibility with the (meth)acrylic acid ester polymer (A) and the like.
多官能アクリレート系モノマーとしては、トリシクロデカンジメタノールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレート、及び9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等の2官能型;トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、及びε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート等の3官能型;ジグリセリンテトラ(メタ)アクリレート、及びペンタエリスリトールテトラ(メタ)アクリレート等の4官能型;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能型;並びに、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びカプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能型等が挙げられる。上記の中でも、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート及びトリシクロデカンジメタノールジ(メタ)アクリレートの少なくとも一方を使用することが好ましい。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、(メタ)アクリル酸エステル重合体(A)との相溶性の観点から、多官能アクリレート系モノマーは、分子量1000未満のものが好ましい。
Multifunctional acrylate monomers include tricyclodecane dimethanol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, neopentyl glycol adipate di(meth)acrylate, hydroxypivalic acid neopentyl glycol di(meth)acrylate, dicyclopentanyl di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, ethylene oxide-modified phosphoric acid di(meth)acrylate, di(acryloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate, ethoxylated bisphenol A diacrylate, and 2-amino acids such as 9,9-bis[4-(2-acryloyloxyethoxy)phenyl]fluorene. functional types; trifunctional types such as trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, tris(acryloxyethyl)isocyanurate, and ε-caprolactone-modified tris-(2-(meth)acryloxyethyl)isocyanurate; tetrafunctional types such as diglycerin tetra(meth)acrylate, and pentaerythritol tetra(meth)acrylate; pentafunctional types such as propionic acid-modified dipentaerythritol penta(meth)acrylate; and hexafunctional types such as dipentaerythritol hexa(meth)acrylate, and caprolactone-modified dipentaerythritol hexa(meth)acrylate. Among the above, it is preferable to use at least one of ε-caprolactone-modified tris-(2-(meth)acryloxyethyl)isocyanurate and tricyclodecane dimethanol di(meth)acrylate. These may be used alone or in combination of two or more. In addition, from the viewpoint of compatibility with the (meth)acrylic acid ester polymer (A), it is preferable that the polyfunctional acrylate monomer has a molecular weight of less than 1000.
粘着性組成物P中におけるエネルギー線硬化性成分(C)の含有量は、得られる粘着剤を前述した貯蔵弾性率を所望の値にしやすくする観点から、(メタ)アクリル酸エステル重合体(A)100質量部に対して、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることがさらに好ましく、5質量部以上であることが特に好ましい。一方、この含有量は、エネルギー線硬化性成分(C)が(メタ)アクリル酸エステル重合体(A)と相分離することを防止する観点および前述した貯蔵弾性率を所望の値にしやすくする観点から、50質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましく、7.5質量部以下あることが特に好ましい。
The content of the energy ray curable component (C) in the adhesive composition P is preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, and particularly preferably 5 parts by mass or more, relative to 100 parts by mass of the (meth)acrylic acid ester polymer (A), from the viewpoint of making it easier to adjust the storage modulus of the resulting adhesive to the desired value. On the other hand, this content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, and particularly preferably 7.5 parts by mass or less, from the viewpoint of preventing phase separation of the energy ray curable component (C) from the (meth)acrylic acid ester polymer (A) and from the viewpoint of making it easier to adjust the storage modulus to the desired value.
エネルギー線硬化性の粘着剤を硬化させるのに使用するエネルギー線として紫外線を用いる場合には、粘着性組成物Pは、さらに光重合開始剤(D)を含有することが好ましい。このように光重合開始剤(D)を含有することにより、エネルギー線硬化性成分(C)を効率良く重合させることができ、また重合硬化時間およびエネルギー線の照射量を少なくすることができる。
When ultraviolet light is used as the energy ray to cure the energy ray-curable adhesive, it is preferable that the adhesive composition P further contains a photopolymerization initiator (D). By containing the photopolymerization initiator (D) in this way, the energy ray-curable component (C) can be polymerized efficiently, and the polymerization curing time and the amount of energy ray irradiation can be reduced.
光重合開始剤(D)としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the photopolymerization initiator (D) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloroanthraquinone, 4-(2-hydroxyethoxy)-phenyl(2-hydroxy-2-propyl)ketone, 2-benzothiazole-N,N-diethyldithiocarbamate, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide. These may be used alone or in combination of two or more.
粘着性組成物P中における光重合開始剤(D)の含有量は、エネルギー線硬化性成分(C)100質量部に対して、0.1質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、5.0質量部以上であることがさらに好ましい。また、この含有量は、35質量部以下であることが好ましく、25質量部以下であることがより好ましく、15質量部以下であることがさらに好ましい。光重合開始剤(D)の含有量がこの範囲であると、エネルギー線照射時に問題なく開裂して、エネルギー線硬化性成分(C)の硬化性がより向上する。また、前述した貯蔵弾性率が満たされやすいものとなる。
The content of the photopolymerization initiator (D) in the adhesive composition P is preferably 0.1 parts by mass or more, more preferably 1.0 parts by mass or more, and even more preferably 5.0 parts by mass or more, relative to 100 parts by mass of the energy ray-curable component (C). This content is preferably 35 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 15 parts by mass or less. When the content of the photopolymerization initiator (D) is within this range, it is cleaved without problems upon irradiation with energy rays, and the curability of the energy ray-curable component (C) is further improved. In addition, the storage modulus described above is more likely to be satisfied.
粘着性組成物Pには、所望により、アクリル系粘着剤に通常使用されている各種添加剤を使用できる。各種添加剤としては、シランカップリング剤、帯電防止剤、粘着付与剤、酸化防止剤、光安定剤、軟化剤、充填剤、及び屈折率調整剤等が挙げられる。
If desired, various additives that are commonly used in acrylic adhesives can be used in the adhesive composition P. Examples of various additives include silane coupling agents, antistatic agents, tackifiers, antioxidants, light stabilizers, softeners, fillers, and refractive index adjusters.
(積層体の製造方法)
本実施形態に係る積層体100の製造方法は、特に限定されない。積層体100は、例えば、次の工程により、製造できる。
まず、配線体3を備える配線体フィルムを作製する工程を行う。この工程では、剥離フィルムの上に、第一樹脂層4を形成するための熱硬化性の接着剤を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、接着剤層を作製する。次に、接着剤層上に、導電性線状体31を配列しながら配置して、配線体3を形成する。例えば、ドラム部材の外周面に剥離フィルム付きの接着剤層を配置した状態で、ドラム部材を回転させながら、接着剤層上に導電性線状体31を螺旋状に巻き付ける。その後、螺旋状に巻き付けた導電性線状体31の束をドラム部材の軸方向に沿って切断する。これにより、配線体3を形成すると共に、接着剤層上に配置する。このようにして、剥離フィルム付きの接着剤層上に配線体3が形成された、配線体フィルムが得られる。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体31の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、配線体3における隣り合う導電性線状体31の間隔Lを調整することが容易である。
次に、第一基材1の上に、一対の電極5を設ける工程を行う。この工程では、第一基材1の上に、例えば、導電性ペースト等を所定の配置で印刷し、乾燥等することで、一対の電極5を設けることができる。
次に、一対の電極5が設けられた第一基材1の上に、配線体フィルムを配置し、熱硬化性の接着剤を硬化させる工程を行う。この工程では、配線体フィルムの配線体3における導電性線状体31の両端部に、一対の電極5が接触するように、一対の電極5が設けられた第一基材1の上に、配線体フィルムを貼り合わせる。そして、剥離フィルムを剥がした後で、熱硬化性の接着剤に、所定の熱処理を施すことで、第一樹脂層4を形成して、第一基材1の上に配線シート10を形成する。 (Method for manufacturing laminate)
There is no particular limitation on the method for producing the laminate 100 according to this embodiment. The laminate 100 can be produced, for example, by the following steps.
First, a process for producing a wiring film including thewiring body 3 is performed. In this process, a thermosetting adhesive for forming the first resin layer 4 is applied onto a release film to form a coating film. Next, the coating film is dried to produce an adhesive layer. Next, the conductive linear bodies 31 are arranged on the adhesive layer to form the wiring body 3. For example, in a state where an adhesive layer with a release film is arranged on the outer circumferential surface of a drum member, the conductive linear bodies 31 are wound spirally on the adhesive layer while rotating the drum member. Then, the bundle of conductive linear bodies 31 wound spirally is cut along the axial direction of the drum member. This forms the wiring body 3 and places it on the adhesive layer. In this way, a wiring film in which the wiring body 3 is formed on the adhesive layer with a release film is obtained. According to this method, for example, by moving the unwinding portion of the conductive linear bodies 31 along a direction parallel to the axis of the drum member while rotating the drum member, it is easy to adjust the interval L between adjacent conductive linear bodies 31 in the wiring body 3.
Next, a step of providing a pair ofelectrodes 5 on the first substrate 1 is performed. In this step, for example, a conductive paste or the like is printed in a predetermined arrangement on the first substrate 1, and then dried, so that the pair of electrodes 5 can be provided.
Next, a process is performed in which a wiring film is placed on thefirst substrate 1 provided with the pair of electrodes 5, and the thermosetting adhesive is cured. In this process, the wiring film is bonded onto the first substrate 1 provided with the pair of electrodes 5 so that the pair of electrodes 5 contact both ends of the conductive linear members 31 in the wiring 3 of the wiring film. Then, after removing the release film, a predetermined heat treatment is performed on the thermosetting adhesive to form a first resin layer 4, and a wiring sheet 10 is formed on the first substrate 1.
本実施形態に係る積層体100の製造方法は、特に限定されない。積層体100は、例えば、次の工程により、製造できる。
まず、配線体3を備える配線体フィルムを作製する工程を行う。この工程では、剥離フィルムの上に、第一樹脂層4を形成するための熱硬化性の接着剤を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、接着剤層を作製する。次に、接着剤層上に、導電性線状体31を配列しながら配置して、配線体3を形成する。例えば、ドラム部材の外周面に剥離フィルム付きの接着剤層を配置した状態で、ドラム部材を回転させながら、接着剤層上に導電性線状体31を螺旋状に巻き付ける。その後、螺旋状に巻き付けた導電性線状体31の束をドラム部材の軸方向に沿って切断する。これにより、配線体3を形成すると共に、接着剤層上に配置する。このようにして、剥離フィルム付きの接着剤層上に配線体3が形成された、配線体フィルムが得られる。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体31の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、配線体3における隣り合う導電性線状体31の間隔Lを調整することが容易である。
次に、第一基材1の上に、一対の電極5を設ける工程を行う。この工程では、第一基材1の上に、例えば、導電性ペースト等を所定の配置で印刷し、乾燥等することで、一対の電極5を設けることができる。
次に、一対の電極5が設けられた第一基材1の上に、配線体フィルムを配置し、熱硬化性の接着剤を硬化させる工程を行う。この工程では、配線体フィルムの配線体3における導電性線状体31の両端部に、一対の電極5が接触するように、一対の電極5が設けられた第一基材1の上に、配線体フィルムを貼り合わせる。そして、剥離フィルムを剥がした後で、熱硬化性の接着剤に、所定の熱処理を施すことで、第一樹脂層4を形成して、第一基材1の上に配線シート10を形成する。 (Method for manufacturing laminate)
There is no particular limitation on the method for producing the laminate 100 according to this embodiment. The laminate 100 can be produced, for example, by the following steps.
First, a process for producing a wiring film including the
Next, a step of providing a pair of
Next, a process is performed in which a wiring film is placed on the
一方で、第二基材2及び第二樹脂層6を備える保護フィルムを作製する工程を行う。この工程では、第二基材2の上に、第二樹脂層6を形成するための粘着性組成物Pを塗布し、塗膜を形成して、保護フィルムを作製する。なお、図1及び図2に示すように、第二基材2に2つの穴を設けることが好ましい。
次に、配線シート10が設けられた第一基材1の上に、保護フィルムを配置し、粘着性組成物Pを架橋する工程を行う。この工程では、平面視において、保護フィルムの2つの穴と一対の電極5とが重なるように、また、保護フィルムの粘着性組成物Pの塗膜と、配線シート10とが接するように、配線シート10が設けられた第一基材1の上に、保護フィルムを貼り合わせる。そして、粘着性組成物Pの塗膜に、所定のエネルギー線照射を施すことで、第二樹脂層6を形成して、積層体100を作製する。 Meanwhile, a process is performed to prepare a protective film including asecond substrate 2 and a second resin layer 6. In this process, a pressure-sensitive adhesive composition P for forming the second resin layer 6 is applied onto the second substrate 2 to form a coating film, thereby preparing the protective film. As shown in Figs. 1 and 2, it is preferable to provide two holes in the second substrate 2.
Next, a step is performed in which a protective film is placed on thefirst substrate 1 on which the wiring sheet 10 is provided, and the adhesive composition P is crosslinked. In this step, the protective film is attached to the first substrate 1 on which the wiring sheet 10 is provided, so that, in a plan view, two holes in the protective film overlap the pair of electrodes 5, and the coating of the adhesive composition P on the protective film contacts the wiring sheet 10. Then, a predetermined energy ray is irradiated to the coating of the adhesive composition P, thereby forming a second resin layer 6, and the laminate 100 is produced.
次に、配線シート10が設けられた第一基材1の上に、保護フィルムを配置し、粘着性組成物Pを架橋する工程を行う。この工程では、平面視において、保護フィルムの2つの穴と一対の電極5とが重なるように、また、保護フィルムの粘着性組成物Pの塗膜と、配線シート10とが接するように、配線シート10が設けられた第一基材1の上に、保護フィルムを貼り合わせる。そして、粘着性組成物Pの塗膜に、所定のエネルギー線照射を施すことで、第二樹脂層6を形成して、積層体100を作製する。 Meanwhile, a process is performed to prepare a protective film including a
Next, a step is performed in which a protective film is placed on the
(第一実施形態の作用効果)
本実施形態によれば、次のような作用効果を奏することができる。
(1)本実施形態によれば、第二樹脂層6は、貯蔵弾性率が低いために、変形しやすい。そのため、積層体100が高温になった場合に、この第二樹脂層6が変形することで、第二基材2に生ずる歪みを緩和できる。このようにして、第二基材2にクラックが発生することを防止できる。
(2)本実施形態によれば、第二樹脂層6の23℃における貯蔵弾性率を、1.0×104Pa以上、3.0×105Pa以下とすることで、第二樹脂層6を変形しやすくし、第二基材2に生ずる歪みを緩和できる。
(3)本実施形態によれば、第一樹脂層4により、導電性線状体31を固定でき、積層体100の内部における厚さ方向の変形を抑制し、導電性線状体31と電極5との接触を安定させ、配線体3の抵抗値を安定化できる。
(4)本実施形態によれば、第一樹脂層4の23℃における貯蔵弾性率を、5.0×106Pa以上、1.0×1010Pa以下とすることで、積層体100に変形が加えられた場合に、導電性線状体31と電極5との接続部分が破壊されるのを防止しつつ、導電性線状体31を固定できる。
(5)本実施形態に係る積層体100は、前述の積層体の製造方法により、比較的に簡便な方法で作製できる。 (Functions and Effects of the First Embodiment)
According to this embodiment, the following advantageous effects can be obtained.
(1) According to this embodiment, thesecond resin layer 6 is easily deformed due to its low storage modulus. Therefore, when the laminate 100 becomes hot, the second resin layer 6 deforms, thereby relaxing the distortion generated in the second base material 2. In this way, the generation of cracks in the second base material 2 can be prevented.
(2) According to the present embodiment, the storage modulus of thesecond resin layer 6 at 23° C. is set to 1.0×10 4 Pa or more and 3.0×10 5 Pa or less, so that the second resin layer 6 is easily deformed and distortion generated in the second base material 2 can be alleviated.
(3) According to this embodiment, thefirst resin layer 4 can fix the conductive linear body 31, suppress deformation in the thickness direction inside the laminate 100, stabilize the contact between the conductive linear body 31 and the electrode 5, and stabilize the resistance value of the wiring body 3.
(4) According to the present embodiment, the storage modulus of thefirst resin layer 4 at 23° C. is set to be 5.0×10 6 Pa or more and 1.0×10 10 Pa or less. As a result, when the laminate 100 is deformed, the conductive linear body 31 can be fixed while preventing the connection portion between the conductive linear body 31 and the electrode 5 from being destroyed.
(5) The laminate 100 according to this embodiment can be produced in a relatively simple manner using the above-described laminate production method.
本実施形態によれば、次のような作用効果を奏することができる。
(1)本実施形態によれば、第二樹脂層6は、貯蔵弾性率が低いために、変形しやすい。そのため、積層体100が高温になった場合に、この第二樹脂層6が変形することで、第二基材2に生ずる歪みを緩和できる。このようにして、第二基材2にクラックが発生することを防止できる。
(2)本実施形態によれば、第二樹脂層6の23℃における貯蔵弾性率を、1.0×104Pa以上、3.0×105Pa以下とすることで、第二樹脂層6を変形しやすくし、第二基材2に生ずる歪みを緩和できる。
(3)本実施形態によれば、第一樹脂層4により、導電性線状体31を固定でき、積層体100の内部における厚さ方向の変形を抑制し、導電性線状体31と電極5との接触を安定させ、配線体3の抵抗値を安定化できる。
(4)本実施形態によれば、第一樹脂層4の23℃における貯蔵弾性率を、5.0×106Pa以上、1.0×1010Pa以下とすることで、積層体100に変形が加えられた場合に、導電性線状体31と電極5との接続部分が破壊されるのを防止しつつ、導電性線状体31を固定できる。
(5)本実施形態に係る積層体100は、前述の積層体の製造方法により、比較的に簡便な方法で作製できる。 (Functions and Effects of the First Embodiment)
According to this embodiment, the following advantageous effects can be obtained.
(1) According to this embodiment, the
(2) According to the present embodiment, the storage modulus of the
(3) According to this embodiment, the
(4) According to the present embodiment, the storage modulus of the
(5) The laminate 100 according to this embodiment can be produced in a relatively simple manner using the above-described laminate production method.
[第二実施形態]
次に、本発明の第二実施形態を図面に基づいて説明する。本発明は本実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
第二実施形態においては、積層体100Aの断面視において、第一基材1と、配線シート10とが、第二樹脂層6を介して積層されている点が、第一実施形態とは異なっている。
以下の説明では、第一実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第一実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。 [Second embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the contents of this embodiment. In the drawings, some parts are illustrated enlarged or reduced in size for ease of explanation.
The second embodiment differs from the first embodiment in that, in a cross-sectional view of the laminate 100A, afirst substrate 1 and a wiring sheet 10 are laminated via a second resin layer 6.
In the following description, differences from the first embodiment will be mainly described, and overlapping descriptions will be omitted or simplified. The same components as those in the first embodiment will be denoted by the same reference numerals, and descriptions thereof will be omitted or simplified.
次に、本発明の第二実施形態を図面に基づいて説明する。本発明は本実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
第二実施形態においては、積層体100Aの断面視において、第一基材1と、配線シート10とが、第二樹脂層6を介して積層されている点が、第一実施形態とは異なっている。
以下の説明では、第一実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第一実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。 [Second embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the contents of this embodiment. In the drawings, some parts are illustrated enlarged or reduced in size for ease of explanation.
The second embodiment differs from the first embodiment in that, in a cross-sectional view of the laminate 100A, a
In the following description, differences from the first embodiment will be mainly described, and overlapping descriptions will be omitted or simplified. The same components as those in the first embodiment will be denoted by the same reference numerals, and descriptions thereof will be omitted or simplified.
本実施形態に係る積層体100Aは、図3に示すように、第一基材1と、第一基材1よりも線膨張係数の高い第二基材2と、第一基材1及び第二基材2の間に挟持された配線シート10とを備えている。そして、配線シート10は、複数の導電性線状体31が間隔をもって配列された配線体3と、配線体3を直接的又は間接的に支持する第一樹脂層4と、導電性線状体31に直接的に接触する一対の電極5とを備えている。また、第一基材1と、配線シート10とは、第一樹脂層4よりも貯蔵弾性率の低い第二樹脂層6を介して積層されている。
As shown in FIG. 3, the laminate 100A according to this embodiment includes a first substrate 1, a second substrate 2 having a higher linear expansion coefficient than the first substrate 1, and a wiring sheet 10 sandwiched between the first substrate 1 and the second substrate 2. The wiring sheet 10 includes a wiring body 3 in which a plurality of conductive linear bodies 31 are arranged at intervals, a first resin layer 4 that directly or indirectly supports the wiring body 3, and a pair of electrodes 5 that directly contact the conductive linear bodies 31. The first substrate 1 and the wiring sheet 10 are laminated via a second resin layer 6 having a lower storage modulus than the first resin layer 4.
(第二実施形態の作用効果)
本実施形態によれば、前記第一実施形態における作用効果(1)から(4)を奏することができる。 (Functions and Effects of the Second Embodiment)
According to this embodiment, it is possible to achieve the effects (1) to (4) of the first embodiment.
本実施形態によれば、前記第一実施形態における作用効果(1)から(4)を奏することができる。 (Functions and Effects of the Second Embodiment)
According to this embodiment, it is possible to achieve the effects (1) to (4) of the first embodiment.
[実施形態の変形]
本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、又は改良等は本発明に含まれる。
例えば、前述の実施形態では、積層体100は、フィルム状の第一基材1を備えているが、これに限定されない。例えば、第一基材1は、三次元形状に成形された基材であってもよい。このような場合には、第一樹脂層4又は第二樹脂層6により、配線シート10を被着体である第一基材1に貼り付けて使用できる。
前述の第二実施形態においては、積層体100Aの断面視において、第一基材1と、配線シート10とが、第二樹脂層6を介して積層されている点を変更しているが、変形例はこれに限定されない。例えば、他に2つの変形例が挙げられる。1つの変形例は、第一実施形態から、配線シート10を裏返し(電極5が第二基材2の側に設けられる)に変更した例である。また、もう1つの変形例は、第二実施形態から、配線シート10を裏返し(電極5が第二基材2の上に設けられる)に変更した例である。 [Modifications of the embodiment]
The present invention is not limited to the above-described embodiment, and any modifications or improvements that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiment, the laminate 100 includes the film-likefirst substrate 1, but is not limited thereto. For example, the first substrate 1 may be a substrate formed into a three-dimensional shape. In such a case, the wiring sheet 10 can be used by being attached to the first substrate 1, which is an adherend, by the first resin layer 4 or the second resin layer 6.
In the second embodiment described above, thefirst substrate 1 and the wiring sheet 10 are laminated via the second resin layer 6 in the cross-sectional view of the laminate 100A, but the modified examples are not limited thereto. For example, there are two other modified examples. One modified example is an example in which the wiring sheet 10 is turned upside down (the electrode 5 is provided on the second substrate 2 side) from the first embodiment. The other modified example is an example in which the wiring sheet 10 is turned upside down (the electrode 5 is provided on the second substrate 2) from the second embodiment.
本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、又は改良等は本発明に含まれる。
例えば、前述の実施形態では、積層体100は、フィルム状の第一基材1を備えているが、これに限定されない。例えば、第一基材1は、三次元形状に成形された基材であってもよい。このような場合には、第一樹脂層4又は第二樹脂層6により、配線シート10を被着体である第一基材1に貼り付けて使用できる。
前述の第二実施形態においては、積層体100Aの断面視において、第一基材1と、配線シート10とが、第二樹脂層6を介して積層されている点を変更しているが、変形例はこれに限定されない。例えば、他に2つの変形例が挙げられる。1つの変形例は、第一実施形態から、配線シート10を裏返し(電極5が第二基材2の側に設けられる)に変更した例である。また、もう1つの変形例は、第二実施形態から、配線シート10を裏返し(電極5が第二基材2の上に設けられる)に変更した例である。 [Modifications of the embodiment]
The present invention is not limited to the above-described embodiment, and any modifications or improvements that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiment, the laminate 100 includes the film-like
In the second embodiment described above, the
以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
また、実施例で得られた積層体の評価は、以下のようにして、行った。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples in any way.
The laminates obtained in the examples were evaluated as follows.
また、実施例で得られた積層体の評価は、以下のようにして、行った。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples in any way.
The laminates obtained in the examples were evaluated as follows.
[クラック評価]
積層体を105℃の条件で1000時間静置した後、積層体の基材層のクラック有無を、デジタル顕微鏡を用いて確認した。 [Crack evaluation]
After the laminate was allowed to stand at 105° C. for 1000 hours, the presence or absence of cracks in the base layer of the laminate was confirmed using a digital microscope.
積層体を105℃の条件で1000時間静置した後、積層体の基材層のクラック有無を、デジタル顕微鏡を用いて確認した。 [Crack evaluation]
After the laminate was allowed to stand at 105° C. for 1000 hours, the presence or absence of cracks in the base layer of the laminate was confirmed using a digital microscope.
[貯蔵弾性率測定]
測定対象となる層を形成する組成物と同一の組成物から形成した直径8mm×厚さ1mmの円柱形の試験サンプルを作製した。粘弾性測定装置(Anton Paar社製、装置名「MCR300」)にて、測定治具に直径8mmのパラレルプレートを用いて、試験開始温度-20℃、試験終了温度150℃、昇温速度3℃/分、せん断ひずみ0.05%及び周波数1Hzの条件で、試験サンプルの貯蔵弾性率を測定した。 [Storage modulus measurement]
A cylindrical test sample with a diameter of 8 mm and a thickness of 1 mm was prepared from the same composition as the composition forming the layer to be measured. The storage modulus of the test sample was measured using a viscoelasticity measuring device (manufactured by Anton Paar, device name "MCR300") under the conditions of a test start temperature of -20°C, a test end temperature of 150°C, a heating rate of 3°C/min, a shear strain of 0.05%, and a frequency of 1 Hz, using a parallel plate with a diameter of 8 mm as a measuring jig.
測定対象となる層を形成する組成物と同一の組成物から形成した直径8mm×厚さ1mmの円柱形の試験サンプルを作製した。粘弾性測定装置(Anton Paar社製、装置名「MCR300」)にて、測定治具に直径8mmのパラレルプレートを用いて、試験開始温度-20℃、試験終了温度150℃、昇温速度3℃/分、せん断ひずみ0.05%及び周波数1Hzの条件で、試験サンプルの貯蔵弾性率を測定した。 [Storage modulus measurement]
A cylindrical test sample with a diameter of 8 mm and a thickness of 1 mm was prepared from the same composition as the composition forming the layer to be measured. The storage modulus of the test sample was measured using a viscoelasticity measuring device (manufactured by Anton Paar, device name "MCR300") under the conditions of a test start temperature of -20°C, a test end temperature of 150°C, a heating rate of 3°C/min, a shear strain of 0.05%, and a frequency of 1 Hz, using a parallel plate with a diameter of 8 mm as a measuring jig.
[線膨張係数測定]
基材を4.5mm×20mmの長方形に裁断し、試験サンプルを作製した。熱機械分析装置(ネッチ・ジャパン株式会社製、製品名「TMA4000SE」)を用い、引張荷重2g、温度範囲23~105℃、昇温速度5℃/分の条件にて、試験サンプルの線膨張係数を測定した。 [Measurement of linear expansion coefficient]
The substrate was cut into a rectangle of 4.5 mm x 20 mm to prepare a test sample. The linear expansion coefficient of the test sample was measured using a thermomechanical analyzer (manufactured by Netzsch Japan, product name "TMA4000SE") under the conditions of a tensile load of 2 g, a temperature range of 23 to 105°C, and a heating rate of 5°C/min.
基材を4.5mm×20mmの長方形に裁断し、試験サンプルを作製した。熱機械分析装置(ネッチ・ジャパン株式会社製、製品名「TMA4000SE」)を用い、引張荷重2g、温度範囲23~105℃、昇温速度5℃/分の条件にて、試験サンプルの線膨張係数を測定した。 [Measurement of linear expansion coefficient]
The substrate was cut into a rectangle of 4.5 mm x 20 mm to prepare a test sample. The linear expansion coefficient of the test sample was measured using a thermomechanical analyzer (manufactured by Netzsch Japan, product name "TMA4000SE") under the conditions of a tensile load of 2 g, a temperature range of 23 to 105°C, and a heating rate of 5°C/min.
[調製例1]
フェノキシ樹脂(三菱ケミカル社製、製品名「YX7200B35」)100質量部に、多官能水添ビスフェノールAジグリシジルエーテルエポキシ化合物(三菱ケミカル株式会社製、製品名「YX8000」)170質量部、シランカップリング剤(信越化学工業株式会社製、製品名「KBM-4803」)0.2質量部、熱カチオン重合開始剤(三新化学工業株式会社製、製品名「サンエイドSI-B3」)2質量部、及び、熱カチオン重合開始剤(三新化学工業株式会社製、製品名「サンエイドSI-B7」)2質量部を配合して、硬化性の接着剤を得た。 [Preparation Example 1]
A curable adhesive was obtained by blending 100 parts by mass of a phenoxy resin (manufactured by Mitsubishi Chemical Corporation, product name "YX7200B35") with 170 parts by mass of a polyfunctional hydrogenated bisphenol A diglycidyl ether epoxy compound (manufactured by Mitsubishi Chemical Corporation, product name "YX8000"), 0.2 parts by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., product name "KBM-4803"), 2 parts by mass of a thermal cationic polymerization initiator (manufactured by Sanshin Chemical Industry Co., Ltd., product name "SAN-AID SI-B3"), and 2 parts by mass of a thermal cationic polymerization initiator (manufactured by Sanshin Chemical Industry Co., Ltd., product name "SAN-AID SI-B7")
フェノキシ樹脂(三菱ケミカル社製、製品名「YX7200B35」)100質量部に、多官能水添ビスフェノールAジグリシジルエーテルエポキシ化合物(三菱ケミカル株式会社製、製品名「YX8000」)170質量部、シランカップリング剤(信越化学工業株式会社製、製品名「KBM-4803」)0.2質量部、熱カチオン重合開始剤(三新化学工業株式会社製、製品名「サンエイドSI-B3」)2質量部、及び、熱カチオン重合開始剤(三新化学工業株式会社製、製品名「サンエイドSI-B7」)2質量部を配合して、硬化性の接着剤を得た。 [Preparation Example 1]
A curable adhesive was obtained by blending 100 parts by mass of a phenoxy resin (manufactured by Mitsubishi Chemical Corporation, product name "YX7200B35") with 170 parts by mass of a polyfunctional hydrogenated bisphenol A diglycidyl ether epoxy compound (manufactured by Mitsubishi Chemical Corporation, product name "YX8000"), 0.2 parts by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., product name "KBM-4803"), 2 parts by mass of a thermal cationic polymerization initiator (manufactured by Sanshin Chemical Industry Co., Ltd., product name "SAN-AID SI-B3"), and 2 parts by mass of a thermal cationic polymerization initiator (manufactured by Sanshin Chemical Industry Co., Ltd., product name "SAN-AID SI-B7")
[調製例2]
((メタ)アクリル酸エステル重合体(A)の調製)
アクリル酸2-エチルヘキシル65質量部、4-アクリロイルモルホリン5質量部、アクリル酸イソボルニル15質量部、およびアクリル酸2-ヒドロキシエチル15質量部を共重合させて、(メタ)アクリル酸エステル重合体(A)を調製した。この(メタ)アクリル酸エステル重合体(A)の分子量を測定したところ、重量平均分子量(Mw)50万であった。また、この(メタ)アクリル酸エステル重合体(A)のガラス転移温度(Tg、単位は℃)を、(メタ)アクリル酸エステル重合体(A)を構成する各モノマーのホモポリマーとしてのガラス転移温度(Tg)に基づき、FOXの式により算出したところ、-36.5℃であった。
(粘着性組成物の調製)
得られた(メタ)アクリル酸エステル重合体(A)100質量部(固形分換算値、以下同じ)と、架橋剤(B)としてのトリメチロールプロパン変性トリレンジイソシアネート0.18質量部と、エネルギー線硬化性成分(C)としてのε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート7質量部と、光重合開始剤(D)としての、ベンゾフェノンおよび1-ヒドロキシシクロヘキシルフェニルケトンを1:1の質量比で混合した混合物0.7質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.28質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。 [Preparation Example 2]
(Preparation of (meth)acrylic acid ester polymer (A))
65 parts by mass of 2-ethylhexyl acrylate, 5 parts by mass of 4-acryloylmorpholine, 15 parts by mass of isobornyl acrylate, and 15 parts by mass of 2-hydroxyethyl acrylate were copolymerized to prepare a (meth)acrylic acid ester polymer (A). The molecular weight of this (meth)acrylic acid ester polymer (A) was measured, and the weight average molecular weight (Mw) was 500,000. The glass transition temperature (Tg, unit: ° C.) of this (meth)acrylic acid ester polymer (A) was calculated by the FOX formula based on the glass transition temperatures (Tg) of the respective monomers constituting the (meth)acrylic acid ester polymer (A) as homopolymers, and was found to be −36.5° C.
(Preparation of adhesive composition)
100 parts by mass of the obtained (meth)acrylic acid ester polymer (A) (solid content equivalent, the same applies below), 0.18 parts by mass of trimethylolpropane-modified tolylene diisocyanate as a crosslinking agent (B), 7 parts by mass of ε-caprolactone-modified tris-(2-acryloxyethyl)isocyanurate as an energy ray-curable component (C), 0.7 parts by mass of a mixture of benzophenone and 1-hydroxycyclohexyl phenyl ketone in a 1:1 mass ratio as a photopolymerization initiator (D), and 0.28 parts by mass of 3-glycidoxypropyltrimethoxysilane as a silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of a pressure-sensitive adhesive composition.
((メタ)アクリル酸エステル重合体(A)の調製)
アクリル酸2-エチルヘキシル65質量部、4-アクリロイルモルホリン5質量部、アクリル酸イソボルニル15質量部、およびアクリル酸2-ヒドロキシエチル15質量部を共重合させて、(メタ)アクリル酸エステル重合体(A)を調製した。この(メタ)アクリル酸エステル重合体(A)の分子量を測定したところ、重量平均分子量(Mw)50万であった。また、この(メタ)アクリル酸エステル重合体(A)のガラス転移温度(Tg、単位は℃)を、(メタ)アクリル酸エステル重合体(A)を構成する各モノマーのホモポリマーとしてのガラス転移温度(Tg)に基づき、FOXの式により算出したところ、-36.5℃であった。
(粘着性組成物の調製)
得られた(メタ)アクリル酸エステル重合体(A)100質量部(固形分換算値、以下同じ)と、架橋剤(B)としてのトリメチロールプロパン変性トリレンジイソシアネート0.18質量部と、エネルギー線硬化性成分(C)としてのε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート7質量部と、光重合開始剤(D)としての、ベンゾフェノンおよび1-ヒドロキシシクロヘキシルフェニルケトンを1:1の質量比で混合した混合物0.7質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.28質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。 [Preparation Example 2]
(Preparation of (meth)acrylic acid ester polymer (A))
65 parts by mass of 2-ethylhexyl acrylate, 5 parts by mass of 4-acryloylmorpholine, 15 parts by mass of isobornyl acrylate, and 15 parts by mass of 2-hydroxyethyl acrylate were copolymerized to prepare a (meth)acrylic acid ester polymer (A). The molecular weight of this (meth)acrylic acid ester polymer (A) was measured, and the weight average molecular weight (Mw) was 500,000. The glass transition temperature (Tg, unit: ° C.) of this (meth)acrylic acid ester polymer (A) was calculated by the FOX formula based on the glass transition temperatures (Tg) of the respective monomers constituting the (meth)acrylic acid ester polymer (A) as homopolymers, and was found to be −36.5° C.
(Preparation of adhesive composition)
100 parts by mass of the obtained (meth)acrylic acid ester polymer (A) (solid content equivalent, the same applies below), 0.18 parts by mass of trimethylolpropane-modified tolylene diisocyanate as a crosslinking agent (B), 7 parts by mass of ε-caprolactone-modified tris-(2-acryloxyethyl)isocyanurate as an energy ray-curable component (C), 0.7 parts by mass of a mixture of benzophenone and 1-hydroxycyclohexyl phenyl ketone in a 1:1 mass ratio as a photopolymerization initiator (D), and 0.28 parts by mass of 3-glycidoxypropyltrimethoxysilane as a silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of a pressure-sensitive adhesive composition.
[調製例3]
(粘着性組成物の調製)
調製例2で得られた(メタ)アクリル酸エステル重合体(A)100質量部と、架橋剤(B)としてのトリメチロールプロパン変性トリレンジイソシアネート0.15質量部と、エネルギー線硬化性成分(C)としてのε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート5質量部と、光重合開始剤(D)としての2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド0.5質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.25質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。 [Preparation Example 3]
(Preparation of adhesive composition)
100 parts by mass of the (meth)acrylic acid ester polymer (A) obtained in Preparation Example 2, 0.15 parts by mass of trimethylolpropane-modified tolylene diisocyanate as the crosslinking agent (B), 5 parts by mass of ε-caprolactone-modified tris-(2-acryloxyethyl)isocyanurate as the energy ray curable component (C), 0.5 parts by mass of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide as the photopolymerization initiator (D), and 0.25 parts by mass of 3-glycidoxypropyltrimethoxysilane as the silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of an adhesive composition.
(粘着性組成物の調製)
調製例2で得られた(メタ)アクリル酸エステル重合体(A)100質量部と、架橋剤(B)としてのトリメチロールプロパン変性トリレンジイソシアネート0.15質量部と、エネルギー線硬化性成分(C)としてのε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート5質量部と、光重合開始剤(D)としての2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド0.5質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.25質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。 [Preparation Example 3]
(Preparation of adhesive composition)
100 parts by mass of the (meth)acrylic acid ester polymer (A) obtained in Preparation Example 2, 0.15 parts by mass of trimethylolpropane-modified tolylene diisocyanate as the crosslinking agent (B), 5 parts by mass of ε-caprolactone-modified tris-(2-acryloxyethyl)isocyanurate as the energy ray curable component (C), 0.5 parts by mass of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide as the photopolymerization initiator (D), and 0.25 parts by mass of 3-glycidoxypropyltrimethoxysilane as the silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of an adhesive composition.
[調製例4]
((メタ)アクリル酸エステル重合体(A)の調製)
アクリル酸2-エチルヘキシル30質量部、アクリル酸n-ブチル25質量部、4-アクリロイルモルホリン5質量部、アクリル酸イソボルニル15質量部、およびアクリル酸2-ヒドロキシエチル25質量部を共重合させて、(メタ)アクリル酸エステル重合体(A)を調製した。この(メタ)アクリル酸エステル重合体(A)の分子量を測定したところ、重量平均分子量(Mw)60万であった。
(粘着性組成物の調製)
得られた(メタ)アクリル酸エステル重合体(A)100質量部と、架橋剤(B)としてのトリメチロールプロパン変性トリレンジイソシアネート0.2質量部と、エネルギー線硬化性成分(C)としてのε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート8.0質量部と、光重合開始剤(D)としての、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド0.8質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.2質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。 [Preparation Example 4]
(Preparation of (meth)acrylic acid ester polymer (A))
A (meth)acrylic acid ester polymer (A) was prepared by copolymerizing 30 parts by mass of 2-ethylhexyl acrylate, 25 parts by mass of n-butyl acrylate, 5 parts by mass of 4-acryloylmorpholine, 15 parts by mass of isobornyl acrylate, and 25 parts by mass of 2-hydroxyethyl acrylate. The molecular weight of this (meth)acrylic acid ester polymer (A) was measured, and the weight average molecular weight (Mw) was 600,000.
(Preparation of adhesive composition)
100 parts by mass of the obtained (meth)acrylic acid ester polymer (A), 0.2 parts by mass of trimethylolpropane-modified tolylene diisocyanate as a crosslinking agent (B), 8.0 parts by mass of ε-caprolactone-modified tris-(2-acryloxyethyl)isocyanurate as an energy ray curable component (C), 0.8 parts by mass of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide as a photopolymerization initiator (D), and 0.2 parts by mass of 3-glycidoxypropyltrimethoxysilane as a silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of a pressure-sensitive adhesive composition.
((メタ)アクリル酸エステル重合体(A)の調製)
アクリル酸2-エチルヘキシル30質量部、アクリル酸n-ブチル25質量部、4-アクリロイルモルホリン5質量部、アクリル酸イソボルニル15質量部、およびアクリル酸2-ヒドロキシエチル25質量部を共重合させて、(メタ)アクリル酸エステル重合体(A)を調製した。この(メタ)アクリル酸エステル重合体(A)の分子量を測定したところ、重量平均分子量(Mw)60万であった。
(粘着性組成物の調製)
得られた(メタ)アクリル酸エステル重合体(A)100質量部と、架橋剤(B)としてのトリメチロールプロパン変性トリレンジイソシアネート0.2質量部と、エネルギー線硬化性成分(C)としてのε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート8.0質量部と、光重合開始剤(D)としての、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド0.8質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.2質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。 [Preparation Example 4]
(Preparation of (meth)acrylic acid ester polymer (A))
A (meth)acrylic acid ester polymer (A) was prepared by copolymerizing 30 parts by mass of 2-ethylhexyl acrylate, 25 parts by mass of n-butyl acrylate, 5 parts by mass of 4-acryloylmorpholine, 15 parts by mass of isobornyl acrylate, and 25 parts by mass of 2-hydroxyethyl acrylate. The molecular weight of this (meth)acrylic acid ester polymer (A) was measured, and the weight average molecular weight (Mw) was 600,000.
(Preparation of adhesive composition)
100 parts by mass of the obtained (meth)acrylic acid ester polymer (A), 0.2 parts by mass of trimethylolpropane-modified tolylene diisocyanate as a crosslinking agent (B), 8.0 parts by mass of ε-caprolactone-modified tris-(2-acryloxyethyl)isocyanurate as an energy ray curable component (C), 0.8 parts by mass of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide as a photopolymerization initiator (D), and 0.2 parts by mass of 3-glycidoxypropyltrimethoxysilane as a silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of a pressure-sensitive adhesive composition.
[実施例1]
(配線体フィルムの作製)
厚さ38μmの剥離フィルム(リンテック株式会社製、製品名「SP-382150」)上に、調製例1で得られた硬化性の接着剤を、厚さ15μmとなるように塗布し、250mm×320mmの長方形に裁断し、接着シートを作製した。導電性線状体として、金めっきタングステンワイヤー(直径10μm、以下、ワイヤーとも称する)を準備した。次に、外周面がゴム製のドラム部材に、得られた接着シートを、感圧接着剤層の表面が外側を向き、しわのないように巻きつけ、円周方向における接着シートの両端部を両面テープで固定した。ボビンに巻き付けたワイヤーを、ドラム部材の端部付近に位置する接着シートの感圧接着剤層の表面に付着させた上で、ワイヤーを繰り出しながらドラム部材で巻き取り、少しずつドラム部材をドラム軸と平行な方向に移動させていき、ワイヤーが等間隔3mmでらせんを描きながらドラム部材に巻きつくようにした。これにより、ワイヤーが接着剤の表面に96本並べられた状態で、配線体を形成した。その後、ワイヤーを切断し、ドラム部材上から、配線体を取り外した。ワイヤー12本分が取り出されるように、40×82mm幅に配線体を裁断し、配線体フィルムを作製した。 [Example 1]
(Preparation of Wiring Film)
The curable adhesive obtained in Preparation Example 1 was applied to a 38 μm-thick release film (manufactured by Lintec Corporation, product name "SP-382150") to a thickness of 15 μm, and cut into a rectangle of 250 mm x 320 mm to prepare an adhesive sheet. A gold-plated tungsten wire (diameter 10 μm, hereinafter also referred to as wire) was prepared as a conductive linear body. Next, the obtained adhesive sheet was wound around a drum member with a rubber outer circumferential surface, with the surface of the pressure-sensitive adhesive layer facing outward and without wrinkles, and both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape. The wire wound around the bobbin was attached to the surface of the pressure-sensitive adhesive layer of the adhesive sheet located near the end of the drum member, and the wire was wound around the drum member while being unwound, and the drum member was gradually moved in a direction parallel to the drum axis so that the wire was wound around the drum member while drawing a spiral at equal intervals of 3 mm. As a result, a wiring body was formed with 96 wires lined up on the surface of the adhesive. Thereafter, the wires were cut, and the wiring body was removed from the drum member. The wiring body was cut to a width of 40×82 mm so that 12 wires could be taken out, and a wiring body film was produced.
(配線体フィルムの作製)
厚さ38μmの剥離フィルム(リンテック株式会社製、製品名「SP-382150」)上に、調製例1で得られた硬化性の接着剤を、厚さ15μmとなるように塗布し、250mm×320mmの長方形に裁断し、接着シートを作製した。導電性線状体として、金めっきタングステンワイヤー(直径10μm、以下、ワイヤーとも称する)を準備した。次に、外周面がゴム製のドラム部材に、得られた接着シートを、感圧接着剤層の表面が外側を向き、しわのないように巻きつけ、円周方向における接着シートの両端部を両面テープで固定した。ボビンに巻き付けたワイヤーを、ドラム部材の端部付近に位置する接着シートの感圧接着剤層の表面に付着させた上で、ワイヤーを繰り出しながらドラム部材で巻き取り、少しずつドラム部材をドラム軸と平行な方向に移動させていき、ワイヤーが等間隔3mmでらせんを描きながらドラム部材に巻きつくようにした。これにより、ワイヤーが接着剤の表面に96本並べられた状態で、配線体を形成した。その後、ワイヤーを切断し、ドラム部材上から、配線体を取り外した。ワイヤー12本分が取り出されるように、40×82mm幅に配線体を裁断し、配線体フィルムを作製した。 [Example 1]
(Preparation of Wiring Film)
The curable adhesive obtained in Preparation Example 1 was applied to a 38 μm-thick release film (manufactured by Lintec Corporation, product name "SP-382150") to a thickness of 15 μm, and cut into a rectangle of 250 mm x 320 mm to prepare an adhesive sheet. A gold-plated tungsten wire (
(電極付き基板の作製)
第一基材としての厚さ2mmのガラス(線膨張係数3.3×10-6/℃)に対して、銀ペーストを2mm幅で電極間距離が7.8mmになるようにスクリーン印刷した後、温度150℃で、30分間の条件にて乾燥させて、厚さが17μmの帯状電極を形成した。その後、帯状電極に無電解めっきを施し、電極付き基板を作製した。 (Preparation of Substrate with Electrodes)
Silver paste was screen-printed onto a 2 mm-thick glass substrate (linear expansion coefficient 3.3×10 -6 /° C.) as a first substrate so that the width was 2 mm and the distance between the electrodes was 7.8 mm, and then dried at a temperature of 150° C. for 30 minutes to form strip electrodes having a thickness of 17 μm. The strip electrodes were then subjected to electroless plating to produce a substrate with electrodes.
第一基材としての厚さ2mmのガラス(線膨張係数3.3×10-6/℃)に対して、銀ペーストを2mm幅で電極間距離が7.8mmになるようにスクリーン印刷した後、温度150℃で、30分間の条件にて乾燥させて、厚さが17μmの帯状電極を形成した。その後、帯状電極に無電解めっきを施し、電極付き基板を作製した。 (Preparation of Substrate with Electrodes)
Silver paste was screen-printed onto a 2 mm-thick glass substrate (linear expansion coefficient 3.3×10 -6 /° C.) as a first substrate so that the width was 2 mm and the distance between the electrodes was 7.8 mm, and then dried at a temperature of 150° C. for 30 minutes to form strip electrodes having a thickness of 17 μm. The strip electrodes were then subjected to electroless plating to produce a substrate with electrodes.
(配線シートの形成)
得られた電極付き基板に、得られた配線体フィルムを、ワイヤーの両端に電極が位置するように貼り合わせた。その後、温度120℃、圧力0.5MPaで、30分間の条件で加熱し、接着剤を硬化させて第一樹脂層を形成して、第一基材の上に配線シートを形成した。
なお、第一樹脂層の23℃における貯蔵弾性率は2.2×109Paであり、第一樹脂層の105℃における貯蔵弾性率は1.6×109Paであった。 (Formation of wiring sheet)
The obtained wiring film was attached to the obtained electrode-attached substrate so that the electrodes were located at both ends of the wires. Then, the substrate was heated at a temperature of 120° C. and a pressure of 0.5 MPa for 30 minutes to harden the adhesive and form a first resin layer, thereby forming a wiring sheet on the first base material.
The storage elastic modulus of the first resin layer at 23°C was 2.2×10 9 Pa, and the storage elastic modulus of the first resin layer at 105°C was 1.6×10 9 Pa.
得られた電極付き基板に、得られた配線体フィルムを、ワイヤーの両端に電極が位置するように貼り合わせた。その後、温度120℃、圧力0.5MPaで、30分間の条件で加熱し、接着剤を硬化させて第一樹脂層を形成して、第一基材の上に配線シートを形成した。
なお、第一樹脂層の23℃における貯蔵弾性率は2.2×109Paであり、第一樹脂層の105℃における貯蔵弾性率は1.6×109Paであった。 (Formation of wiring sheet)
The obtained wiring film was attached to the obtained electrode-attached substrate so that the electrodes were located at both ends of the wires. Then, the substrate was heated at a temperature of 120° C. and a pressure of 0.5 MPa for 30 minutes to harden the adhesive and form a first resin layer, thereby forming a wiring sheet on the first base material.
The storage elastic modulus of the first resin layer at 23°C was 2.2×10 9 Pa, and the storage elastic modulus of the first resin layer at 105°C was 1.6×10 9 Pa.
(保護シートの作製)
第二基材としての厚さ100μmのシクロオレフィンポリマーフィルム(日本ゼオン株式会社製、製品名「ZF16」)の上に、調製例2で得られた粘着性組成物の塗布溶液を、厚さ100μmとなるように塗布し、50mm×120mmの長方形に裁断した。その後、2つの円の中心間距離が7.8mmになるように直径5mmの円をくり抜き、2つの穴を形成して、保護シートを作製した。
第二基材の線膨張係数を表1に示す。 (Preparation of protective sheet)
The adhesive composition coating solution obtained in Preparation Example 2 was coated to a thickness of 100 μm on a cycloolefin polymer film (manufactured by Zeon Corporation, product name "ZF16") as a second substrate, and cut into a rectangle of 50 mm × 120 mm. Then, a circle with a diameter of 5 mm was cut out so that the center-to-center distance between the two circles was 7.8 mm, forming two holes to prepare a protective sheet.
The linear expansion coefficient of the second substrate is shown in Table 1.
第二基材としての厚さ100μmのシクロオレフィンポリマーフィルム(日本ゼオン株式会社製、製品名「ZF16」)の上に、調製例2で得られた粘着性組成物の塗布溶液を、厚さ100μmとなるように塗布し、50mm×120mmの長方形に裁断した。その後、2つの円の中心間距離が7.8mmになるように直径5mmの円をくり抜き、2つの穴を形成して、保護シートを作製した。
第二基材の線膨張係数を表1に示す。 (Preparation of protective sheet)
The adhesive composition coating solution obtained in Preparation Example 2 was coated to a thickness of 100 μm on a cycloolefin polymer film (manufactured by Zeon Corporation, product name "ZF16") as a second substrate, and cut into a rectangle of 50 mm × 120 mm. Then, a circle with a diameter of 5 mm was cut out so that the center-to-center distance between the two circles was 7.8 mm, forming two holes to prepare a protective sheet.
The linear expansion coefficient of the second substrate is shown in Table 1.
(積層体の作製)
配線シートが設けられた第一基材に対し、配線シートの電極と保護シートの円が合わさるように保護シートを貼り合わせた。その後、波長365nmの紫外線を、照度200mW/cm2、光量1000mJ/cm2の条件で照射し、第二樹脂層を形成して、積層体を得た。
得られた積層体のクラックを評価した。また、第二樹脂層の23℃及び105℃における貯蔵弾性率を表1に示す。 (Preparation of Laminate)
The protective sheet was attached to the first substrate provided with the wiring sheet so that the electrodes of the wiring sheet and the circles of the protective sheet were aligned. Thereafter, ultraviolet light having a wavelength of 365 nm was irradiated under conditions of an illuminance of 200 mW/cm 2 and a light quantity of 1000 mJ/cm 2 to form a second resin layer, thereby obtaining a laminate.
The laminate thus obtained was evaluated for cracks. Table 1 also shows the storage modulus of the second resin layer at 23° C. and 105° C.
配線シートが設けられた第一基材に対し、配線シートの電極と保護シートの円が合わさるように保護シートを貼り合わせた。その後、波長365nmの紫外線を、照度200mW/cm2、光量1000mJ/cm2の条件で照射し、第二樹脂層を形成して、積層体を得た。
得られた積層体のクラックを評価した。また、第二樹脂層の23℃及び105℃における貯蔵弾性率を表1に示す。 (Preparation of Laminate)
The protective sheet was attached to the first substrate provided with the wiring sheet so that the electrodes of the wiring sheet and the circles of the protective sheet were aligned. Thereafter, ultraviolet light having a wavelength of 365 nm was irradiated under conditions of an illuminance of 200 mW/cm 2 and a light quantity of 1000 mJ/cm 2 to form a second resin layer, thereby obtaining a laminate.
The laminate thus obtained was evaluated for cracks. Table 1 also shows the storage modulus of the second resin layer at 23° C. and 105° C.
[実施例2]
保護シートのシクロオレフィンポリマーフィルム(日本ゼオン株式会社製、製品名「ZF16」)を、ポリカーボネートフィルム(帝人株式会社製、製品名「L-100」)に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Example 2]
A laminate was produced in the same manner as in Example 1, except that the cycloolefin polymer film (manufactured by Nippon Zeon Co., Ltd., product name "ZF16") of the protective sheet was changed to a polycarbonate film (manufactured by Teijin Limited, product name "L-100").
保護シートのシクロオレフィンポリマーフィルム(日本ゼオン株式会社製、製品名「ZF16」)を、ポリカーボネートフィルム(帝人株式会社製、製品名「L-100」)に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Example 2]
A laminate was produced in the same manner as in Example 1, except that the cycloolefin polymer film (manufactured by Nippon Zeon Co., Ltd., product name "ZF16") of the protective sheet was changed to a polycarbonate film (manufactured by Teijin Limited, product name "L-100").
[実施例3]
保護シートの調製例2で得られた粘着性組成物の塗布溶液を、調製例3で得られた粘着性組成物の塗布溶液に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Example 3]
A laminate was prepared in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 3.
保護シートの調製例2で得られた粘着性組成物の塗布溶液を、調製例3で得られた粘着性組成物の塗布溶液に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Example 3]
A laminate was prepared in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 3.
[比較例1]
保護シートの調製例2で得られた粘着性組成物の塗布溶液を、調製例4で得られた粘着性組成物の塗布溶液に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Comparative Example 1]
A laminate was prepared in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 4.
保護シートの調製例2で得られた粘着性組成物の塗布溶液を、調製例4で得られた粘着性組成物の塗布溶液に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Comparative Example 1]
A laminate was prepared in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 4.
[比較例2]
保護シートの調製例2で得られた粘着性組成物の塗布溶液を、調製例4で得られた粘着性組成物の塗布溶液に変更し、シクロオレフィンポリマーフィルム(日本ゼオン株式会社製、製品名「ZF16」)を、ポリカーボネートフィルム(帝人株式会社製、製品名「L-100」)に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Comparative Example 2]
A laminate was produced in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 4, and the cycloolefin polymer film (manufactured by Zeon Corporation, product name "ZF16") was changed to a polycarbonate film (manufactured by Teijin Limited, product name "L-100").
保護シートの調製例2で得られた粘着性組成物の塗布溶液を、調製例4で得られた粘着性組成物の塗布溶液に変更し、シクロオレフィンポリマーフィルム(日本ゼオン株式会社製、製品名「ZF16」)を、ポリカーボネートフィルム(帝人株式会社製、製品名「L-100」)に変更したこと以外、実施例1と同様にして、積層体を作製した。 [Comparative Example 2]
A laminate was produced in the same manner as in Example 1, except that the coating solution of the adhesive composition obtained in Preparation Example 2 of the protective sheet was changed to the coating solution of the adhesive composition obtained in Preparation Example 4, and the cycloolefin polymer film (manufactured by Zeon Corporation, product name "ZF16") was changed to a polycarbonate film (manufactured by Teijin Limited, product name "L-100").
表1で示すとおり、実施例1~3で得られた積層体は、クラックの評価の結果が良好であった。このことから、本発明によれば、基材にクラックが発生することを防止できる積層体が得られることが確認された。
As shown in Table 1, the laminates obtained in Examples 1 to 3 had good crack evaluation results. This confirmed that the present invention can provide a laminate that can prevent cracks from occurring in the substrate.
1…第一基材、2…第二基材、3…配線体、31…導電性線状体、4…第一樹脂層、5…電極、6…第二樹脂層、10…配線シート、100,100A…積層体。
1...first substrate, 2...second substrate, 3...wiring body, 31...conductive linear body, 4...first resin layer, 5...electrode, 6...second resin layer, 10...wiring sheet, 100, 100A...laminate.
Claims (6)
- 第一基材と、前記第一基材よりも線膨張係数の高い第二基材と、前記第一基材及び前記第二基材の間に挟持された配線シートとを備える積層体であって、
前記配線シートは、複数の導電性線状体が間隔をもって配列された配線体と、前記配線体を直接的又は間接的に支持する第一樹脂層と、前記導電性線状体に直接的に接触する一対の電極とを備え、
前記第一基材又は前記第二基材と、前記配線シートとは、前記第一樹脂層よりも貯蔵弾性率の低い第二樹脂層を介して積層されている、
積層体。 A laminate including a first substrate, a second substrate having a linear expansion coefficient higher than that of the first substrate, and a wiring sheet sandwiched between the first substrate and the second substrate,
the wiring sheet includes a wiring body in which a plurality of conductive linear bodies are arranged at intervals, a first resin layer that directly or indirectly supports the wiring body, and a pair of electrodes that directly contact the conductive linear bodies,
The first substrate or the second substrate and the wiring sheet are laminated via a second resin layer having a storage modulus lower than that of the first resin layer.
Laminate. - 請求項1に記載の積層体において、
前記第二樹脂層の23℃における貯蔵弾性率が、1.0×104Pa以上、3.0×105Pa以下である、
積層体。 The laminate according to claim 1 ,
The second resin layer has a storage modulus at 23° C. of 1.0×10 4 Pa or more and 3.0×10 5 Pa or less.
Laminate. - 請求項1又は請求項2に記載の積層体において、
前記第一樹脂層の23℃における貯蔵弾性率が、5.0×106Pa以上、1.0×1010Pa以下である、
積層体。 The laminate according to claim 1 or 2,
The storage modulus of the first resin layer at 23° C. is 5.0×10 6 Pa or more and 1.0×10 10 Pa or less.
Laminate. - 請求項1又は請求項2に記載の積層体において、
前記第一基材の線膨張係数が、0.01×10-6/℃以上、10×10-6/℃以下である、
積層体。 The laminate according to claim 1 or 2,
The linear expansion coefficient of the first substrate is 0.01×10 −6 /° C. or more and 10×10 −6 /° C. or less.
Laminate. - 請求項1又は請求項2に記載の積層体において、
前記第二基材の線膨張係数が、50×10-6/℃以上、100×10-6/℃以下である、
積層体。 The laminate according to claim 1 or 2,
The linear expansion coefficient of the second base material is 50×10 −6 /° C. or more and 100×10 −6 /° C. or less.
Laminate. - 請求項1又は請求項2に記載の積層体において、
前記第二基材と、前記配線シートとは、前記第二樹脂層を介して積層されている、
積層体。 The laminate according to claim 1 or 2,
The second base material and the wiring sheet are laminated via the second resin layer.
Laminate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-053161 | 2023-03-29 | ||
JP2023053161 | 2023-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204434A1 true WO2024204434A1 (en) | 2024-10-03 |
Family
ID=92905720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/012440 WO2024204434A1 (en) | 2023-03-29 | 2024-03-27 | Layered body |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204434A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115252A (en) * | 1978-02-28 | 1979-09-07 | Canon Inc | Heat fixing device |
JPH0511386U (en) * | 1991-07-26 | 1993-02-12 | 京セラ株式会社 | Ceramic heater |
WO2002043441A1 (en) * | 2000-11-24 | 2002-05-30 | Ibiden Co., Ltd. | Ceramic heater, and production method for ceramic heater |
JP2006294604A (en) * | 2005-03-17 | 2006-10-26 | Ist Corp | Planar heater, its manufacturing method, and image fixing device |
JP2018026427A (en) * | 2016-08-09 | 2018-02-15 | 新光電気工業株式会社 | Substrate fixing device and manufacturing method of the same |
WO2020129894A1 (en) * | 2018-12-17 | 2020-06-25 | リンテック株式会社 | Conductive adhesive sheet, laminate, and heating device |
JP2022085213A (en) * | 2020-11-27 | 2022-06-08 | リンテック株式会社 | Wiring sheet and method for manufacturing the same |
-
2024
- 2024-03-27 WO PCT/JP2024/012440 patent/WO2024204434A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115252A (en) * | 1978-02-28 | 1979-09-07 | Canon Inc | Heat fixing device |
JPH0511386U (en) * | 1991-07-26 | 1993-02-12 | 京セラ株式会社 | Ceramic heater |
WO2002043441A1 (en) * | 2000-11-24 | 2002-05-30 | Ibiden Co., Ltd. | Ceramic heater, and production method for ceramic heater |
JP2006294604A (en) * | 2005-03-17 | 2006-10-26 | Ist Corp | Planar heater, its manufacturing method, and image fixing device |
JP2018026427A (en) * | 2016-08-09 | 2018-02-15 | 新光電気工業株式会社 | Substrate fixing device and manufacturing method of the same |
WO2020129894A1 (en) * | 2018-12-17 | 2020-06-25 | リンテック株式会社 | Conductive adhesive sheet, laminate, and heating device |
JP2022085213A (en) * | 2020-11-27 | 2022-06-08 | リンテック株式会社 | Wiring sheet and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6178948B1 (en) | Sheet, heating element, and heating device | |
JP7063817B2 (en) | Heat-generating sheet for three-dimensional molding and surface heat-generating articles | |
TW202000837A (en) | Adhesive agent layer for flexible image display device, laminate body for flexible image display device, and flexible image display device | |
TWI547533B (en) | Energy line hardening adhesive and adhesive sheet | |
JP7503622B2 (en) | Adhesive composition layer, laminate, optical laminate and optical device, and method for producing optical laminate | |
JP6163622B2 (en) | Adhesive sheet | |
JP7401461B2 (en) | Conductive adhesive sheets, laminates, and heat generating devices | |
WO2018097323A1 (en) | Conductive sheet for three-dimensional molding | |
JP7321164B2 (en) | METHOD FOR MANUFACTURING ARTICLE WITH CONDUCTIVE SHEET | |
JP6230761B2 (en) | First protective film forming sheet | |
JPWO2018055859A1 (en) | Adhesive sheet for semiconductor processing | |
JP7306381B2 (en) | Conductor substrate, elastic wiring substrate, and elastic resin film for wiring substrate | |
JP2020119856A (en) | Manufacturing method of sheet-like conductive member, and sheet-like conductive member | |
WO2024204434A1 (en) | Layered body | |
JP7308210B2 (en) | Sheet-shaped conductive member | |
JP7099853B2 (en) | Conductive sheet with electrodes and conductive sheet | |
JP2020200387A (en) | Adhesive sheet and laminate | |
WO2022070481A1 (en) | Wiring sheet and wiring sheet production method | |
US20220242099A1 (en) | Manufacturing method of sheet-like conductive member, and sheet-like conductive member | |
WO2021187361A1 (en) | Wiring sheet, and sheet-like heater | |
JP2015193706A (en) | Method for producing surface protective film for conductive substrate | |
JP7411636B2 (en) | Method for manufacturing sheet-like conductive member | |
JP2024141479A (en) | Wiring sheet | |
WO2021261488A1 (en) | Wiring sheet | |
WO2021225142A1 (en) | Wiring sheet |