WO2024204168A1 - Carbon nanotube dispersion paste, composite paste, and lithium ion secondary battery electrode layer production method - Google Patents
Carbon nanotube dispersion paste, composite paste, and lithium ion secondary battery electrode layer production method Download PDFInfo
- Publication number
- WO2024204168A1 WO2024204168A1 PCT/JP2024/011901 JP2024011901W WO2024204168A1 WO 2024204168 A1 WO2024204168 A1 WO 2024204168A1 JP 2024011901 W JP2024011901 W JP 2024011901W WO 2024204168 A1 WO2024204168 A1 WO 2024204168A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon nanotube
- less
- mass
- paste
- nanotube dispersion
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 282
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 253
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 251
- 239000006185 dispersion Substances 0.000 title claims abstract description 168
- 239000002131 composite material Substances 0.000 title claims abstract description 90
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 76
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 33
- 239000002904 solvent Substances 0.000 claims abstract description 83
- 239000011347 resin Substances 0.000 claims abstract description 77
- 229920005989 resin Polymers 0.000 claims abstract description 77
- 239000002033 PVDF binder Substances 0.000 claims abstract description 43
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 43
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 41
- 238000002156 mixing Methods 0.000 claims abstract description 39
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 38
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 34
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 44
- 239000007772 electrode material Substances 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 238000010521 absorption reaction Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 238000001035 drying Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 16
- 125000000524 functional group Chemical group 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 10
- 125000003277 amino group Chemical group 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 5
- 239000012024 dehydrating agents Substances 0.000 claims description 5
- 125000003368 amide group Chemical group 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- 125000005462 imide group Chemical group 0.000 claims description 3
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims 1
- 239000000049 pigment Substances 0.000 abstract description 59
- 238000003860 storage Methods 0.000 abstract description 31
- -1 battery electrodes Substances 0.000 description 44
- 239000010410 layer Substances 0.000 description 43
- 239000007787 solid Substances 0.000 description 39
- 239000002245 particle Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 27
- 239000000047 product Substances 0.000 description 24
- 229910052799 carbon Inorganic materials 0.000 description 18
- 239000000178 monomer Substances 0.000 description 17
- 230000002378 acidificating effect Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 15
- 238000000227 grinding Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 239000002253 acid Substances 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000001879 gelation Methods 0.000 description 8
- 229920000178 Acrylic resin Polymers 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 7
- 238000010306 acid treatment Methods 0.000 description 7
- 238000009835 boiling Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000008719 thickening Effects 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 229920006163 vinyl copolymer Polymers 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 229920006369 KF polymer Polymers 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UVLSCMIEPPWCHZ-UHFFFAOYSA-N 3-piperazin-1-ylpropan-1-amine Chemical compound NCCCN1CCNCC1 UVLSCMIEPPWCHZ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 2
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical compound CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 2
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- MXZROAOUCUVNHX-UHFFFAOYSA-N 2-Aminopropanol Chemical compound CCC(N)O MXZROAOUCUVNHX-UHFFFAOYSA-N 0.000 description 2
- FUIQBJHUESBZNU-UHFFFAOYSA-N 2-[(dimethylazaniumyl)methyl]phenolate Chemical compound CN(C)CC1=CC=CC=C1O FUIQBJHUESBZNU-UHFFFAOYSA-N 0.000 description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- CJNRGSHEMCMUOE-UHFFFAOYSA-N 2-piperidin-1-ylethanamine Chemical compound NCCN1CCCCC1 CJNRGSHEMCMUOE-UHFFFAOYSA-N 0.000 description 2
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical class C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 2
- FKNQCJSGGFJEIZ-UHFFFAOYSA-N 4-methylpyridine Chemical compound CC1=CC=NC=C1 FKNQCJSGGFJEIZ-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000005700 Putrescine Substances 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N alpha-methylpyridine Natural products CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 2
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- ITQTTZVARXURQS-UHFFFAOYSA-N beta-methylpyridine Natural products CC1=CC=CN=C1 ITQTTZVARXURQS-UHFFFAOYSA-N 0.000 description 2
- MRNZSTMRDWRNNR-UHFFFAOYSA-N bis(hexamethylene)triamine Chemical compound NCCCCCCNCCCCCCN MRNZSTMRDWRNNR-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- ZWWCURLKEXEFQT-UHFFFAOYSA-N dinitrogen pentaoxide Chemical compound [O-][N+](=O)O[N+]([O-])=O ZWWCURLKEXEFQT-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000001054 red pigment Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000007962 solid dispersion Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- SWZDQOUHBYYPJD-UHFFFAOYSA-N tridodecylamine Chemical compound CCCCCCCCCCCCN(CCCCCCCCCCCC)CCCCCCCCCCCC SWZDQOUHBYYPJD-UHFFFAOYSA-N 0.000 description 2
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000001052 yellow pigment Substances 0.000 description 2
- NDQXKKFRNOPRDW-UHFFFAOYSA-N 1,1,1-triethoxyethane Chemical compound CCOC(C)(OCC)OCC NDQXKKFRNOPRDW-UHFFFAOYSA-N 0.000 description 1
- HDPNBNXLBDFELL-UHFFFAOYSA-N 1,1,1-trimethoxyethane Chemical compound COC(C)(OC)OC HDPNBNXLBDFELL-UHFFFAOYSA-N 0.000 description 1
- NCYNKWQXFADUOZ-UHFFFAOYSA-N 1,1-dioxo-2,1$l^{6}-benzoxathiol-3-one Chemical compound C1=CC=C2C(=O)OS(=O)(=O)C2=C1 NCYNKWQXFADUOZ-UHFFFAOYSA-N 0.000 description 1
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FQUYSHZXSKYCSY-UHFFFAOYSA-N 1,4-diazepane Chemical compound C1CNCCNC1 FQUYSHZXSKYCSY-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- ZRMOLCPODIMNPJ-UHFFFAOYSA-N 1-[4-(2-hydroxypropyl)piperazin-1-yl]propan-2-ol Chemical compound CC(O)CN1CCN(CC(C)O)CC1 ZRMOLCPODIMNPJ-UHFFFAOYSA-N 0.000 description 1
- NPEIGRBGMUJNFE-UHFFFAOYSA-N 1-aminohexan-1-ol Chemical compound CCCCCC(N)O NPEIGRBGMUJNFE-UHFFFAOYSA-N 0.000 description 1
- WGAOZGUUHIBABN-UHFFFAOYSA-N 1-aminopentan-1-ol Chemical compound CCCCC(N)O WGAOZGUUHIBABN-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- NAHSJIQXYWGMJN-UHFFFAOYSA-N 1-cyclohexylpropane-1,3-diamine Chemical compound NCCC(N)C1CCCCC1 NAHSJIQXYWGMJN-UHFFFAOYSA-N 0.000 description 1
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical compound C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 1
- CTXUTPWZJZHRJC-UHFFFAOYSA-N 1-ethenylpyrrole Chemical compound C=CN1C=CC=C1 CTXUTPWZJZHRJC-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- ZYZXXEKBDWCGED-UHFFFAOYSA-N 1-n,2-n-diethylbutane-1,2-diamine Chemical compound CCNCC(CC)NCC ZYZXXEKBDWCGED-UHFFFAOYSA-N 0.000 description 1
- VECZPMZNUKYYOJ-UHFFFAOYSA-N 1-n,2-n-diethylpropane-1,2-diamine Chemical compound CCNCC(C)NCC VECZPMZNUKYYOJ-UHFFFAOYSA-N 0.000 description 1
- WLZRPMGWZLCLGV-UHFFFAOYSA-N 1-n,2-n-dimethylbutane-1,2-diamine Chemical compound CCC(NC)CNC WLZRPMGWZLCLGV-UHFFFAOYSA-N 0.000 description 1
- XCFLRKJSDRTWON-UHFFFAOYSA-N 1-n,3-n-diethylbutane-1,3-diamine Chemical compound CCNCCC(C)NCC XCFLRKJSDRTWON-UHFFFAOYSA-N 0.000 description 1
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 1
- XDJWZONZDVNKDU-UHFFFAOYSA-N 1314-24-5 Chemical compound O=POP=O XDJWZONZDVNKDU-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- NOGFHTGYPKWWRX-UHFFFAOYSA-N 2,2,6,6-tetramethyloxan-4-one Chemical compound CC1(C)CC(=O)CC(C)(C)O1 NOGFHTGYPKWWRX-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- NSMWYRLQHIXVAP-UHFFFAOYSA-N 2,5-dimethylpiperazine Chemical compound CC1CNC(C)CN1 NSMWYRLQHIXVAP-UHFFFAOYSA-N 0.000 description 1
- RLYCRLGLCUXUPO-UHFFFAOYSA-N 2,6-diaminotoluene Chemical compound CC1=C(N)C=CC=C1N RLYCRLGLCUXUPO-UHFFFAOYSA-N 0.000 description 1
- IFNWESYYDINUHV-UHFFFAOYSA-N 2,6-dimethylpiperazine Chemical compound CC1CNCC(C)N1 IFNWESYYDINUHV-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- GAMCKBORIMJJBE-UHFFFAOYSA-N 2-(dimethylamino)-4-methylphenol Chemical compound CN(C)C1=CC(C)=CC=C1O GAMCKBORIMJJBE-UHFFFAOYSA-N 0.000 description 1
- POIVWEXWFKSJHL-UHFFFAOYSA-N 2-(dimethylamino)propan-2-ol Chemical compound CN(C)C(C)(C)O POIVWEXWFKSJHL-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- STMZGJLCKJFMLQ-UHFFFAOYSA-N 2-[3-(2-aminoethyl)cyclohexyl]ethanamine Chemical compound NCCC1CCCC(CCN)C1 STMZGJLCKJFMLQ-UHFFFAOYSA-N 0.000 description 1
- XUXZELZSNNYLRE-UHFFFAOYSA-N 2-[4-(2-aminoethyl)cyclohexyl]ethanamine Chemical compound NCCC1CCC(CCN)CC1 XUXZELZSNNYLRE-UHFFFAOYSA-N 0.000 description 1
- JCBPETKZIGVZRE-UHFFFAOYSA-N 2-aminobutan-1-ol Chemical compound CCC(N)CO JCBPETKZIGVZRE-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- LTHNHFOGQMKPOV-UHFFFAOYSA-N 2-ethylhexan-1-amine Chemical compound CCCCC(CC)CN LTHNHFOGQMKPOV-UHFFFAOYSA-N 0.000 description 1
- IIFFFBSAXDNJHX-UHFFFAOYSA-N 2-methyl-n,n-bis(2-methylpropyl)propan-1-amine Chemical compound CC(C)CN(CC(C)C)CC(C)C IIFFFBSAXDNJHX-UHFFFAOYSA-N 0.000 description 1
- NJBCRXCAPCODGX-UHFFFAOYSA-N 2-methyl-n-(2-methylpropyl)propan-1-amine Chemical compound CC(C)CNCC(C)C NJBCRXCAPCODGX-UHFFFAOYSA-N 0.000 description 1
- JOMNTHCQHJPVAZ-UHFFFAOYSA-N 2-methylpiperazine Chemical compound CC1CNCCN1 JOMNTHCQHJPVAZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- NXVGUNGPINUNQN-UHFFFAOYSA-N 2-phenylpropan-2-yl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C1=CC=CC=C1 NXVGUNGPINUNQN-UHFFFAOYSA-N 0.000 description 1
- PXJBCMWIAPDWAU-UHFFFAOYSA-N 2-piperidin-4-ylethanamine Chemical compound NCCC1CCNCC1 PXJBCMWIAPDWAU-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical compound C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 1
- WGTASENVNYJZBK-UHFFFAOYSA-N 3,4,5-trimethoxyamphetamine Chemical compound COC1=CC(CC(C)N)=CC(OC)=C1OC WGTASENVNYJZBK-UHFFFAOYSA-N 0.000 description 1
- DVFGEIYOLIFSRX-UHFFFAOYSA-N 3-(2-ethylhexoxy)propan-1-amine Chemical compound CCCCC(CC)COCCCN DVFGEIYOLIFSRX-UHFFFAOYSA-N 0.000 description 1
- REJGIEGOYWEWPR-UHFFFAOYSA-N 3-(2-methylpropoxy)propan-1-amine Chemical compound CC(C)COCCCN REJGIEGOYWEWPR-UHFFFAOYSA-N 0.000 description 1
- KRPRVQWGKLEFKN-UHFFFAOYSA-N 3-(3-aminopropoxy)propan-1-amine Chemical compound NCCCOCCCN KRPRVQWGKLEFKN-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- ZDBWYUOUYNQZBM-UHFFFAOYSA-N 3-(aminomethyl)aniline Chemical compound NCC1=CC=CC(N)=C1 ZDBWYUOUYNQZBM-UHFFFAOYSA-N 0.000 description 1
- POTQBGGWSWSMCX-UHFFFAOYSA-N 3-[2-(3-aminopropoxy)ethoxy]propan-1-amine Chemical compound NCCCOCCOCCCN POTQBGGWSWSMCX-UHFFFAOYSA-N 0.000 description 1
- ANOPCGQVRXJHHD-UHFFFAOYSA-N 3-[3-(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]propan-1-amine Chemical compound C1OC(CCCN)OCC21COC(CCCN)OC2 ANOPCGQVRXJHHD-UHFFFAOYSA-N 0.000 description 1
- JZPGWKJWVYMINX-UHFFFAOYSA-N 3-[4-(3-aminopropyl)cyclohexyl]propan-1-amine Chemical compound NCCCC1CCC(CCCN)CC1 JZPGWKJWVYMINX-UHFFFAOYSA-N 0.000 description 1
- LPUBRQWGZPPVBS-UHFFFAOYSA-N 3-butoxypropan-1-amine Chemical compound CCCCOCCCN LPUBRQWGZPPVBS-UHFFFAOYSA-N 0.000 description 1
- DFSGINVHIGHPES-UHFFFAOYSA-N 3-ethenyl-4h-1,3-oxazin-2-one Chemical compound C=CN1CC=COC1=O DFSGINVHIGHPES-UHFFFAOYSA-N 0.000 description 1
- SOYBEXQHNURCGE-UHFFFAOYSA-N 3-ethoxypropan-1-amine Chemical compound CCOCCCN SOYBEXQHNURCGE-UHFFFAOYSA-N 0.000 description 1
- XYUINKARGUCCQJ-UHFFFAOYSA-N 3-imino-n-propylpropan-1-amine Chemical compound CCCNCCC=N XYUINKARGUCCQJ-UHFFFAOYSA-N 0.000 description 1
- GTWRKGOLLREWJB-UHFFFAOYSA-N 3-methylheptan-2-amine Chemical compound CCCCC(C)C(C)N GTWRKGOLLREWJB-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- JMUCXULQKPWSTJ-UHFFFAOYSA-N 3-piperidin-1-ylpropan-1-amine Chemical compound NCCCN1CCCCC1 JMUCXULQKPWSTJ-UHFFFAOYSA-N 0.000 description 1
- VHYUNSUGCNKWSO-UHFFFAOYSA-N 3-propan-2-yloxypropan-1-amine Chemical compound CC(C)OCCCN VHYUNSUGCNKWSO-UHFFFAOYSA-N 0.000 description 1
- UTOXFQVLOTVLSD-UHFFFAOYSA-N 3-propoxypropan-1-amine Chemical compound CCCOCCCN UTOXFQVLOTVLSD-UHFFFAOYSA-N 0.000 description 1
- ICNFHJVPAJKPHW-UHFFFAOYSA-N 4,4'-Thiodianiline Chemical compound C1=CC(N)=CC=C1SC1=CC=C(N)C=C1 ICNFHJVPAJKPHW-UHFFFAOYSA-N 0.000 description 1
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 1
- KOGSPLLRMRSADR-UHFFFAOYSA-N 4-(2-aminopropan-2-yl)-1-methylcyclohexan-1-amine Chemical compound CC(C)(N)C1CCC(C)(N)CC1 KOGSPLLRMRSADR-UHFFFAOYSA-N 0.000 description 1
- ZILQRIKYRNQQDE-UHFFFAOYSA-N 4-(2-piperidin-4-ylethyl)piperidine Chemical compound C1CNCCC1CCC1CCNCC1 ZILQRIKYRNQQDE-UHFFFAOYSA-N 0.000 description 1
- JKETWUADWJKEKN-UHFFFAOYSA-N 4-(3,4-diaminophenyl)sulfonylbenzene-1,2-diamine Chemical compound C1=C(N)C(N)=CC=C1S(=O)(=O)C1=CC=C(N)C(N)=C1 JKETWUADWJKEKN-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- OXEZLYIDQPBCBB-UHFFFAOYSA-N 4-(3-piperidin-4-ylpropyl)piperidine Chemical compound C1CNCCC1CCCC1CCNCC1 OXEZLYIDQPBCBB-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- YGIWTLULBLUFRJ-UHFFFAOYSA-N 4-(4-piperidin-4-ylbutyl)piperidine Chemical compound C1CNCCC1CCCCC1CCNCC1 YGIWTLULBLUFRJ-UHFFFAOYSA-N 0.000 description 1
- XUTHRJJZMHXMFR-UHFFFAOYSA-N 4-(piperidin-4-ylmethyl)piperidine Chemical compound C1CNCCC1CC1CCNCC1 XUTHRJJZMHXMFR-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- BXIXXXYDDJVHDL-UHFFFAOYSA-N 4-Chloro-ortho-phenylenediamine Chemical compound NC1=CC=C(Cl)C=C1N BXIXXXYDDJVHDL-UHFFFAOYSA-N 0.000 description 1
- ZMALNMQOXQXZRO-UHFFFAOYSA-N 4-ethenylmorpholin-3-one Chemical compound C=CN1CCOCC1=O ZMALNMQOXQXZRO-UHFFFAOYSA-N 0.000 description 1
- HDYTUPZMASQMOH-UHFFFAOYSA-N 4-ethenylmorpholine-3,5-dione Chemical compound C=CN1C(=O)COCC1=O HDYTUPZMASQMOH-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- JOJAEBZHFWYZAY-UHFFFAOYSA-N 4-methoxy-6-methylbenzene-1,3-diamine Chemical compound COC1=CC(C)=C(N)C=C1N JOJAEBZHFWYZAY-UHFFFAOYSA-N 0.000 description 1
- CMVNWVONJDMTSH-UHFFFAOYSA-N 7-bromo-2-methyl-1h-quinazolin-4-one Chemical compound C1=CC(Br)=CC2=NC(C)=NC(O)=C21 CMVNWVONJDMTSH-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- SAIKULLUBZKPDA-UHFFFAOYSA-N Bis(2-ethylhexyl) amine Chemical compound CCCCC(CC)CNCC(CC)CCCC SAIKULLUBZKPDA-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical group CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WJYIASZWHGOTOU-UHFFFAOYSA-N Heptylamine Chemical compound CCCCCCCN WJYIASZWHGOTOU-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CJKRXEBLWJVYJD-UHFFFAOYSA-N N,N'-diethylethylenediamine Chemical compound CCNCCNCC CJKRXEBLWJVYJD-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- GSCCALZHGUWNJW-UHFFFAOYSA-N N-Cyclohexyl-N-methylcyclohexanamine Chemical compound C1CCCCC1N(C)C1CCCCC1 GSCCALZHGUWNJW-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- AKNUHUCEWALCOI-UHFFFAOYSA-N N-ethyldiethanolamine Chemical compound OCCN(CC)CCO AKNUHUCEWALCOI-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- TUVYSBJZBYRDHP-UHFFFAOYSA-N acetic acid;methoxymethane Chemical compound COC.CC(O)=O TUVYSBJZBYRDHP-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- COHDHYZHOPQOFD-UHFFFAOYSA-N arsenic pentoxide Chemical compound O=[As](=O)O[As](=O)=O COHDHYZHOPQOFD-UHFFFAOYSA-N 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- MYONAGGJKCJOBT-UHFFFAOYSA-N benzimidazol-2-one Chemical compound C1=CC=CC2=NC(=O)N=C21 MYONAGGJKCJOBT-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- AYWZMOHWFNTOCH-UHFFFAOYSA-N bicyclo[2.2.1]hept-2-en-4-amine Chemical compound C1CC2C=CC1(N)C2 AYWZMOHWFNTOCH-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- ULEAQRIQMIQDPJ-UHFFFAOYSA-N butane-1,2-diamine Chemical compound CCC(N)CN ULEAQRIQMIQDPJ-UHFFFAOYSA-N 0.000 description 1
- RGTXVXDNHPWPHH-UHFFFAOYSA-N butane-1,3-diamine Chemical compound CC(N)CCN RGTXVXDNHPWPHH-UHFFFAOYSA-N 0.000 description 1
- YHASWHZGWUONAO-UHFFFAOYSA-N butanoyl butanoate Chemical compound CCCC(=O)OC(=O)CCC YHASWHZGWUONAO-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- DBUPOCYLUHVFHU-UHFFFAOYSA-N carboxyoxy 2,2-diethoxyethyl carbonate Chemical compound CCOC(OCC)COC(=O)OOC(O)=O DBUPOCYLUHVFHU-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- NWFNSTOSIVLCJA-UHFFFAOYSA-L copper;diacetate;hydrate Chemical compound O.[Cu+2].CC([O-])=O.CC([O-])=O NWFNSTOSIVLCJA-UHFFFAOYSA-L 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005443 coulometric titration Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- AVKNGPAMCBSNSO-UHFFFAOYSA-N cyclohexylmethanamine Chemical compound NCC1CCCCC1 AVKNGPAMCBSNSO-UHFFFAOYSA-N 0.000 description 1
- BSVQJWUUZCXSOL-UHFFFAOYSA-N cyclohexylsulfonyl ethaneperoxoate Chemical compound CC(=O)OOS(=O)(=O)C1CCCCC1 BSVQJWUUZCXSOL-UHFFFAOYSA-N 0.000 description 1
- NISGSNTVMOOSJQ-UHFFFAOYSA-N cyclopentanamine Chemical compound NC1CCCC1 NISGSNTVMOOSJQ-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- KTTMEOWBIWLMSE-UHFFFAOYSA-N diarsenic trioxide Chemical compound O1[As](O2)O[As]3O[As]1O[As]2O3 KTTMEOWBIWLMSE-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical compound OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- DDRPCXLAQZKBJP-UHFFFAOYSA-N furfurylamine Chemical compound NCC1=CC=CO1 DDRPCXLAQZKBJP-UHFFFAOYSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001056 green pigment Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- KDSNLYIMUZNERS-UHFFFAOYSA-N isobutyl amine Natural products CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- IZDROVVXIHRYMH-UHFFFAOYSA-N methanesulfonic anhydride Chemical compound CS(=O)(=O)OS(C)(=O)=O IZDROVVXIHRYMH-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- DTKANQSCBACEPK-UHFFFAOYSA-N n',n'-bis[3-(dimethylamino)propyl]-n,n-dimethylpropane-1,3-diamine Chemical compound CN(C)CCCN(CCCN(C)C)CCCN(C)C DTKANQSCBACEPK-UHFFFAOYSA-N 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- KMBPCQSCMCEPMU-UHFFFAOYSA-N n'-(3-aminopropyl)-n'-methylpropane-1,3-diamine Chemical compound NCCCN(C)CCCN KMBPCQSCMCEPMU-UHFFFAOYSA-N 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- WHDUKLPCKZTPFY-UHFFFAOYSA-N n,n'-diethylbutane-1,4-diamine Chemical compound CCNCCCCNCC WHDUKLPCKZTPFY-UHFFFAOYSA-N 0.000 description 1
- LDQWVRMGQLAWMN-UHFFFAOYSA-N n,n'-diethylhexane-1,6-diamine Chemical compound CCNCCCCCCNCC LDQWVRMGQLAWMN-UHFFFAOYSA-N 0.000 description 1
- BEPGHZIEOVULBU-UHFFFAOYSA-N n,n'-diethylpropane-1,3-diamine Chemical compound CCNCCCNCC BEPGHZIEOVULBU-UHFFFAOYSA-N 0.000 description 1
- KVKFRMCSXWQSNT-UHFFFAOYSA-N n,n'-dimethylethane-1,2-diamine Chemical compound CNCCNC KVKFRMCSXWQSNT-UHFFFAOYSA-N 0.000 description 1
- LFBJWQBNKOIOMJ-UHFFFAOYSA-N n,n'-dimethylheptane-1,7-diamine Chemical compound CNCCCCCCCNC LFBJWQBNKOIOMJ-UHFFFAOYSA-N 0.000 description 1
- MDKQJOKKKZNQDG-UHFFFAOYSA-N n,n'-dimethylhexane-1,6-diamine Chemical compound CNCCCCCCNC MDKQJOKKKZNQDG-UHFFFAOYSA-N 0.000 description 1
- BESLVGXJZXNIJE-UHFFFAOYSA-N n,n'-dimethylpentane-1,5-diamine Chemical compound CNCCCCCNC BESLVGXJZXNIJE-UHFFFAOYSA-N 0.000 description 1
- SRLHDBRENZFCIN-UHFFFAOYSA-N n,n-di(butan-2-yl)butan-2-amine Chemical compound CCC(C)N(C(C)CC)C(C)CC SRLHDBRENZFCIN-UHFFFAOYSA-N 0.000 description 1
- JMHSCDNOFUWANO-UHFFFAOYSA-N n,n-di(pentan-3-yl)pentan-3-amine Chemical compound CCC(CC)N(C(CC)CC)C(CC)CC JMHSCDNOFUWANO-UHFFFAOYSA-N 0.000 description 1
- MXHTZQSKTCCMFG-UHFFFAOYSA-N n,n-dibenzyl-1-phenylmethanamine Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)CC1=CC=CC=C1 MXHTZQSKTCCMFG-UHFFFAOYSA-N 0.000 description 1
- YYHPPOGFPXBRRX-UHFFFAOYSA-N n,n-dichloro-1-[4-[(dichloroamino)methyl]phenyl]methanamine Chemical compound ClN(Cl)CC1=CC=C(CN(Cl)Cl)C=C1 YYHPPOGFPXBRRX-UHFFFAOYSA-N 0.000 description 1
- FRQONEWDWWHIPM-UHFFFAOYSA-N n,n-dicyclohexylcyclohexanamine Chemical compound C1CCCCC1N(C1CCCCC1)C1CCCCC1 FRQONEWDWWHIPM-UHFFFAOYSA-N 0.000 description 1
- CIXSDMKDSYXUMJ-UHFFFAOYSA-N n,n-diethylcyclohexanamine Chemical compound CCN(CC)C1CCCCC1 CIXSDMKDSYXUMJ-UHFFFAOYSA-N 0.000 description 1
- DIAIBWNEUYXDNL-UHFFFAOYSA-N n,n-dihexylhexan-1-amine Chemical compound CCCCCCN(CCCCCC)CCCCCC DIAIBWNEUYXDNL-UHFFFAOYSA-N 0.000 description 1
- QMHNQZGXPNCMCO-UHFFFAOYSA-N n,n-dimethylhexan-1-amine Chemical compound CCCCCCN(C)C QMHNQZGXPNCMCO-UHFFFAOYSA-N 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- OOHAUGDGCWURIT-UHFFFAOYSA-N n,n-dipentylpentan-1-amine Chemical compound CCCCCN(CCCCC)CCCCC OOHAUGDGCWURIT-UHFFFAOYSA-N 0.000 description 1
- UQUPIHHYKUEXQD-UHFFFAOYSA-N n,n′-dimethyl-1,3-propanediamine Chemical compound CNCCCNC UQUPIHHYKUEXQD-UHFFFAOYSA-N 0.000 description 1
- RWIVICVCHVMHMU-UHFFFAOYSA-N n-aminoethylmorpholine Chemical compound NCCN1CCOCC1 RWIVICVCHVMHMU-UHFFFAOYSA-N 0.000 description 1
- ZWRDBWDXRLPESY-UHFFFAOYSA-N n-benzyl-n-ethylethanamine Chemical compound CCN(CC)CC1=CC=CC=C1 ZWRDBWDXRLPESY-UHFFFAOYSA-N 0.000 description 1
- OBYVIBDTOCAXSN-UHFFFAOYSA-N n-butan-2-ylbutan-2-amine Chemical compound CCC(C)NC(C)CC OBYVIBDTOCAXSN-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- XRKQMIFKHDXFNQ-UHFFFAOYSA-N n-cyclohexyl-n-ethylcyclohexanamine Chemical compound C1CCCCC1N(CC)C1CCCCC1 XRKQMIFKHDXFNQ-UHFFFAOYSA-N 0.000 description 1
- POMGZMHIXYRARC-UHFFFAOYSA-N n-hexyl-n-methylhexan-1-amine Chemical compound CCCCCCN(C)CCCCCC POMGZMHIXYRARC-UHFFFAOYSA-N 0.000 description 1
- PXSXRABJBXYMFT-UHFFFAOYSA-N n-hexylhexan-1-amine Chemical compound CCCCCCNCCCCCC PXSXRABJBXYMFT-UHFFFAOYSA-N 0.000 description 1
- XJINZNWPEQMMBV-UHFFFAOYSA-N n-methylhexan-1-amine Chemical compound CCCCCCNC XJINZNWPEQMMBV-UHFFFAOYSA-N 0.000 description 1
- QJQAMHYHNCADNR-UHFFFAOYSA-N n-methylpropanamide Chemical compound CCC(=O)NC QJQAMHYHNCADNR-UHFFFAOYSA-N 0.000 description 1
- CRBACSXYCMQSAH-UHFFFAOYSA-N n-pentan-3-ylpentan-3-amine Chemical compound CCC(CC)NC(CC)CC CRBACSXYCMQSAH-UHFFFAOYSA-N 0.000 description 1
- JACMPVXHEARCBO-UHFFFAOYSA-N n-pentylpentan-1-amine Chemical compound CCCCCNCCCCC JACMPVXHEARCBO-UHFFFAOYSA-N 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- KQSABULTKYLFEV-UHFFFAOYSA-N naphthalene-1,5-diamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1N KQSABULTKYLFEV-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000002429 nitrogen sorption measurement Methods 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- PFPYHYZFFJJQFD-UHFFFAOYSA-N oxalic anhydride Chemical compound O=C1OC1=O PFPYHYZFFJJQFD-UHFFFAOYSA-N 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- PQPFFKCJENSZKL-UHFFFAOYSA-N pentan-3-amine Chemical compound CCC(N)CC PQPFFKCJENSZKL-UHFFFAOYSA-N 0.000 description 1
- 229940100684 pentylamine Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- JAKNYTQAGPEFJB-UHFFFAOYSA-N piperidin-2-amine Chemical compound NC1CCCCN1 JAKNYTQAGPEFJB-UHFFFAOYSA-N 0.000 description 1
- RHPBLLCTOLJFPH-UHFFFAOYSA-N piperidin-2-ylmethanamine Chemical compound NCC1CCCCN1 RHPBLLCTOLJFPH-UHFFFAOYSA-N 0.000 description 1
- BCIIMDOZSUCSEN-UHFFFAOYSA-N piperidin-4-amine Chemical compound NC1CCNCC1 BCIIMDOZSUCSEN-UHFFFAOYSA-N 0.000 description 1
- LTEKQAPRXFBRNN-UHFFFAOYSA-N piperidin-4-ylmethanamine Chemical compound NCC1CCNCC1 LTEKQAPRXFBRNN-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- VHNQIURBCCNWDN-UHFFFAOYSA-N pyridine-2,6-diamine Chemical compound NC1=CC=CC(N)=N1 VHNQIURBCCNWDN-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 101150111792 sda1 gene Proteins 0.000 description 1
- BHRZNVHARXXAHW-UHFFFAOYSA-N sec-butylamine Chemical compound CCC(C)N BHRZNVHARXXAHW-UHFFFAOYSA-N 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- BQFPCTXLBRVFJL-UHFFFAOYSA-N triethoxymethylbenzene Chemical compound CCOC(OCC)(OCC)C1=CC=CC=C1 BQFPCTXLBRVFJL-UHFFFAOYSA-N 0.000 description 1
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 1
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 1
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- OXFUXNFMHFCELM-UHFFFAOYSA-N tripropan-2-yl phosphate Chemical compound CC(C)OP(=O)(OC(C)C)OC(C)C OXFUXNFMHFCELM-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a carbon nanotube dispersion paste (also referred to as a conductive pigment paste in the present invention) that has excellent electrical conductivity, pigment dispersibility, and storage stability even at a high pigment concentration, a composite paste, a method for producing an electrode layer for a lithium ion secondary battery, and a method for producing an electrode layer for a battery that has excellent battery performance.
- a carbon nanotube dispersion paste also referred to as a conductive pigment paste in the present invention
- paste-like pigment dispersions in which pigments are dispersed in a mixture of pigment dispersion resins and solvents, have been widely used in fields such as paints, battery electrodes, coating materials, electromagnetic shielding, display panels, touch screen panels, colored films, colored sheets, decorative materials, protective materials, magnet modifiers, printing inks, device components, electronic equipment components, printed wiring boards, solar cells, functional rubber components, and resin molding films.
- conductive pigments and conductive polymers are added to these materials to impart functions such as electrostatic paintability, conductivity, electromagnetic shielding, and antistatic properties.
- pigment dispersion resins and pigment pastes are being developed that have excellent pigment dispersion capabilities and excellent pigment dispersion stability that prevents re-agglomeration of pigment particles in the formed pigment dispersion.
- Patent Document 1 discloses a method for producing a slurry for electrodes of lithium secondary batteries, which is characterized by dispersing a solvent containing fibrous carbon with a media (hereinafter sometimes written as "media") type disperser to obtain a slurry, and kneading the slurry with an electrode active material to obtain a slurry to be applied to a current collector.
- media hereinafter sometimes written as "media”
- uniform dispersion cannot be achieved and storage stability is sometimes poor.
- the slurry contains a large amount of water, high viscosity and gelation can occur.
- the object of the present invention is to provide a method for producing a carbon nanotube-dispersed paste and a method for producing a composite paste that are excellent in pigment dispersibility and storage stability even in a paste with a high pigment concentration and/or high viscosity, and further to provide an electrode layer for a lithium-ion secondary battery that is excellent in finish quality, conductivity, etc.
- a method for producing a carbon nanotube dispersion paste which includes a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a moisture content of less than 10,000 ppm, and polyvinylidene fluoride (D), which can be included as necessary, and in which the moisture content of the carbon nanotube dispersion paste is less than 10,000 ppm, and thus has completed the present invention.
- a dispersion resin A having a heterocycle and/or an alkyl group having 12 or more carbon atoms
- carbon nanotubes B
- a solvent C
- polyvinylidene fluoride polyvinylidene fluoride
- the present invention provides the following carbon nanotube dispersion paste, composite paste, and method for producing an electrode layer for a lithium ion secondary battery.
- Item 1 A method for producing a carbon nanotube dispersion paste, comprising a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a moisture content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, wherein the moisture content of the carbon nanotube dispersion paste is less than 10,000 ppm.
- a dispersion resin A having a heterocycle and/or an alkyl group having 12 or more carbon atoms
- carbon nanotubes B
- a solvent C
- polyvinylidene fluoride D
- Item 3. Item 3. The method for producing a carbon nanotube dispersion paste according to item 1 or 2, characterized in that the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group and a cyano group, and has a polar functional group concentration of 0.1 mmol/g to 8.5 mmol/g.
- Item 4. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 3, characterized in that the solvent (C) contains a recycled product of N-methyl-2-pyrrolidone, and the water content in N-methyl-2-pyrrolidone is controlled to less than 10,000 ppm.
- Item 5. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 4, wherein the carbon nanotube dispersion paste contains the polyvinylidene fluoride (D). Item 6. 6.
- the mixing and dispersing step comprises: Step 1: adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process; and Step 2: adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process.
- Step 1 adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process
- Step 2 adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process.
- the moisture absorption amount of the carbon nanotube (B) is Y (mass%) and the BET specific surface area is Z (m 2 /g)
- the following formula: X Y x Z
- the value of X obtained by the above is in the range of X ⁇ 500
- the moisture absorption amount Y is measured under the following conditions: the mass of carbon nanotubes obtained by drying at 140° C. for 3 hours is Y1, and the mass of carbon nanotubes obtained by leaving at 20° C. for 24 hours under conditions of a relative humidity of 65% is Y2.
- Item 12. Item 12.
- G electrode active material
- a process for producing a carbon nanotube dispersion paste comprising a process for mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, the carbon nanotube dispersion paste having a water content of less than 10,000 ppm; and A step of producing a composite paste for a lithium ion secondary battery, the step including a step of mixing the carbon nanotube dispersion paste with an electrode active material (G), the composite paste having a moisture content of less than 10,000 ppm, and the electrode active material (G) being an electrode active material composite (G-1) having at least a part of its surface covered with carbon nanotubes;
- a method for producing a composite paste for a lithium ion secondary battery comprising the steps of: Item 14.
- Item 13 A method for producing an electrode layer for a lithium ion secondary battery, comprising the step of applying the composite paste obtained by the method for producing the electrode layer for a lithium ion secondary battery to a current collector.
- Item 15. A method for producing an electrode for a lithium ion secondary battery, comprising the step of applying an electrode insulating part to an end or an upper layer of the electrode layer obtained by the production method according to item 14.
- Item 16. Item 15. A method for producing a lithium ion secondary battery using a positive electrode having an electrode layer obtained by the production method according to item 14, a negative electrode, a non-aqueous electrolyte, and a separator.
- the method for producing a carbon nanotube dispersion paste of the present invention is excellent in pigment dispersibility and storage stability even at high pigment concentrations and/or high viscosities, and can sufficiently reduce the viscosity of the paste with a relatively small amount of dispersion resin.
- the electrode layer for lithium ion secondary batteries produced by this method is excellent in finish, conductivity, battery performance, etc.
- the paste containing carbon nanotubes is called a "carbon nanotube dispersion paste", but it can also be called an "conductive pigment paste”.
- the paste prepared by further mixing at least one electrode active material and, optionally, other various components in order to coat the carbon nanotube dispersion paste is called a "composite paste.”
- the composite paste that is coated on a substrate and dried is called a “coating film” or a "composite layer.” It can be said that the carbon nanotube dispersion paste is a paste that does not substantially contain an electrode active material.
- the carbon nanotubes can also be abbreviated as "CNT.”
- the coating film is used as an electrode for a battery, it can also be called an “electrode layer.”
- the moisture content of the carbon nanotube dispersion paste less than 10,000 ppm (and further making the moisture content of the solvent (C) less than 10,000 ppm), it is possible to suppress high viscosity and gelation during storage.
- the present invention it is believed that by using raw materials with a specified moisture content and by specifying the moisture content of the carbon nanotube dispersion paste and composite paste, polymerization of the polymer component (polyvinylidene fluoride) is suppressed, and the viscosity increase and gelation of the carbon nanotube dispersion paste or composite paste (for lithium ion secondary batteries) can be suppressed. Furthermore, since the moisture is brought in from various raw materials (particularly solvents) and is mixed in from water vapor contained in the air during the manufacturing process, it is practically impossible to reduce the moisture to zero.
- the water content of the carbon nanotube dispersion paste that can be used in the present invention is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more.
- the water content of the solvent (C) is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more. If it is within the above lower limit, production can be performed without excessive moisture content control of the raw materials (reduction of moisture content) or excessive moisture content control in the production process (reduction of moisture contamination).
- the present invention provides a method for producing a carbon nanotube dispersion paste, comprising a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, wherein the water content of the carbon nanotube dispersion paste is less than 10,000 ppm.
- the water content of the carbon nanotube dispersion paste is preferably less than 7500 ppm, more preferably less than 5000 ppm, further preferably less than 2500 ppm, and particularly preferably less than 1000 ppm.
- the carbon nanotube dispersion paste in the present invention can be said to be a substantially non-aqueous paste.
- the moisture content can be measured by Karl Fischer coulometric titration. Specifically, a Karl Fischer moisture meter (manufactured by Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610”) is used, and the moisture vaporizer (manufactured by Kyoto Electronics Co., Ltd., product name "ADP-611") attached to the device is set at a temperature of 130°C.
- Dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms As the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, any resin having a heterocycle and/or an alkyl group having 12 or more carbon atoms in the resin can be suitably used.
- the heterocycle includes other atoms in addition to carbon atoms in its ring structure, and the other atoms are, for example, oxygen, nitrogen, sulfur, etc.
- the number of ring structures included in the heterocycle is preferably one or two, and more preferably one.
- the atoms other than carbon constituting the ring are preferably oxygen and/or nitrogen, and more preferably oxygen.
- the atoms constituting the ring include atoms other than carbon atoms, polarization occurs in the heterocycle, and the carbon-based conductive pigment (carbon nanotubes in the present invention) can be strongly affected. It is also believed that when the dispersion resin has a relatively bulky side chain such as a heterocycle or an alkyl group having 12 or more carbon atoms, the pigment dispersibility and storage stability are improved due to steric repulsion.
- the method of introducing a heterocycle into the dispersion resin (A) is not particularly limited, and examples thereof include (co)polymerization reaction of a monomer containing a heterocycle, modification reaction of a polymer (resin), and/or addition reaction.
- Examples of polymerizable monomers containing a heterocycle include 2- or 4-vinylpyridine, N-vinylimidazole, N-vinylpyrrole, N-vinyl-2-pyrrolidone, N-vinyl- ⁇ -caprolactam, N-vinyl-2-piperidone, N-vinyl-3-morpholinone, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, glycidyl (meth)acrylate, maleic anhydride, itaconic anhydride, and the like. These may be used alone or in combination of two or more.
- the alkyl group having 12 or more carbon atoms can be any known alkyl group (hydrocarbon group) without any particular limitation.
- a straight-chain or branched alkyl group is preferable, and a straight-chain alkyl group is more preferable.
- the alkyl group having 12 or more carbon atoms is preferably an alkyl group having 12 or more and less than 30 carbon atoms, more preferably an alkyl group having 15 or more and less than 26 carbon atoms, and even more preferably an alkyl group having 19 or more and less than 24 carbon atoms.
- the method of introducing an alkyl group having 12 or more carbon atoms into the dispersion resin (A) is not particularly limited, and examples thereof include (co)polymerization reaction of a monomer containing an alkyl group having 12 or more carbon atoms, modification reaction of a polymer (resin), and/or addition reaction.
- polymerizable monomers containing an alkyl group having 12 or more carbon atoms include lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, behenyl (meth)acrylate, lauryl (meth)acrylamide, stearyl (meth)acrylamide, behenyl (meth)acrylamide, etc. These can be used alone or in combination of two or more.
- the type of resin that serves as the skeleton is not particularly limited as long as it is a resin other than polyvinylidene fluoride (D) described below.
- examples include acrylic resins, polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, polyvinyl alcohol, polyvinyl acetal, polyvinylpyrrolidone, polyvinyl acetate, silicone resins, polycarbonate resins, chlorine-based resins, and composite resins thereof.
- These resins contain heterocycles and/or alkyl groups having 12 or more carbon atoms, or these resins are synthesized and then added or modified to introduce heterocycles and/or alkyl groups having 12 or more carbon atoms, thereby producing resins having heterocycles and/or alkyl groups having 12 or more carbon atoms. These resins can be used alone or in combination of two or more.
- the dispersing resin (A) preferably contains a vinyl (co)polymer (A1) obtained by polymerizing or copolymerizing a monomer containing a polymerizable unsaturated group-containing monomer of the following formula (1), and in particular, an acrylic resin (co)polymerized with at least one polymerizable unsaturated group-containing monomer containing a (meth)acryloyl group is preferred.
- the "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
- R may be the same or different and is a hydrogen atom or an organic group. R may be linked to each other to form a ring.
- the vinyl (co)polymer (A1) can be produced by a polymerization method known per se. For example, it is preferable to use solution polymerization, but this is not limited thereto. For example, bulk polymerization or emulsion polymerization can be used. When solution polymerization is carried out, it may be continuous polymerization or batch polymerization, and the monomers may be charged all at once or in portions, or may be charged continuously or It may be added intermittently.
- the polymerization initiator used in the solution polymerization is not particularly limited, but specific examples include azo compounds such as azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), azobis-2,4-dimethylparabennitrile, and azobis(4-methoxy-2,4-dimethylparabennitrile); acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, and 2,4,4-trimethylpentyl-2,4-dimethylparabennitrile.
- azo compounds such as azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), azobis-2,4-dimethylparabennitrile, and azobis(4-methoxy-2,4-dimethylparabennitrile)
- acetyl peroxide benzoyl per
- -Peroxides such as peroxyphenoxyacetate; percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; perester compounds such as t-butyl peroxyneodecanate, ⁇ -cumyl peroxyneodecanate, and t-butyl peroxyneodecanate; and known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used.
- percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate
- perester compounds such as t-butyl peroxyneodecanate, ⁇ -cumyl peroxyneodecanate, and t-butyl
- the polymerization reaction temperature is not particularly limited, but can usually be set in the range of 30°C or higher and 200°C or lower.
- the vinyl (co)polymer (A1) obtainable as described above has a degree of polymerization of, for example, 100 or more, preferably 150 or more, and, for example, 4,000 or less, preferably 3,000 or less, more preferably 700 or less.
- the weight average molecular weight is, for example, 1,000 or more, preferably 2,000 or more, more preferably 7,000 or more, and, for example, 2,000,000 or less, preferably 1,000,000 or less, more preferably 500,000 or less.
- the weight average molecular weight is a value obtained by converting the retention time (retention volume) measured using a gel permeation chromatograph (GPC) into the molecular weight of polystyrene using the retention time (retention volume) of a standard polystyrene of known molecular weight measured under the same conditions.
- GPC gel permeation chromatograph
- the gel permeation chromatograph is "HLC8120GPC” (product name, manufactured by Tosoh Corporation), and the four columns are “TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL” and “TSKgel G-2000HXL” (all product names, manufactured by Tosoh Corporation), and the measurements can be performed under the following conditions: mobile phase tetrahydrofuran, measurement temperature 40°C, flow rate 1mL/min, and detector RI.
- the vinyl (co)polymer (A1) can be converted into a solid or into a resin solution in which any solvent has been replaced by removing the solvent and/or replacing the solvent.
- the method for removing the solvent may be performed by heating at normal pressure or under reduced pressure.
- the method for replacing the solvent may be performed by adding a replacement solvent at any stage before, during, or after the removal of the solvent.
- the content of the heterocycle in the dispersion resin (A), in the case of the vinyl (co)polymer (A1) is preferably 1 to 100 mass%, more preferably 10 to 100 mass%, further preferably 30 to 99 mass%, and particularly preferably 50 to 95 mass%, in terms of the mass ratio of the polymerizable monomer containing the heterocycle when the total amount of the monomers is taken as 100 mass%.
- the content of the alkyl group having 12 or more carbon atoms in the dispersion resin (A) is preferably 1 to 100 mass%, more preferably 10 to 90 mass%, still more preferably 20 to 80 mass%, and particularly preferably 30 to 60 mass%, expressed as the mass ratio of the polymerizable monomer containing an alkyl group having 12 or more carbon atoms when all monomers are taken as 100 mass%.
- the content of the heterocycle and the alkyl group having 12 or more carbon atoms is calculated based on the mass ratio of the reactive compound (a compound having a heterocycle or an alkyl group having 12 or more carbon atoms) added to the resin later.
- the dispersion resin (A) having the heterocycle and/or an alkyl group having 12 or more carbon atoms has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group, and a cyano group, in addition to the heterocycle and/or the alkyl group having 12 or more carbon atoms, and the polar functional group concentration is preferably 0.1 mmol/g to 8.5 mmol/g, more preferably 0.2 mmol/g to 6.0 mmol/g, even more preferably 0.3 mmol/g to 4.0 mmol/g, and particularly preferably 0.4 mmol/g to 2.0 mmol/g.
- the acid group and amino group may be in the form of a salt.
- the polar functional group preferably has a hydroxyl group, an acid group and/or an amino group, more preferably has a hydroxyl group and/or an amino group, and further preferably has an amino group.
- the amino group is usually a secondary or tertiary amino group, with a tertiary amino group being preferred.
- the dispersion resin (A) having the above-mentioned heterocycle and/or an alkyl group having 12 or more carbon atoms is converted from a solid state into a resin solution, from the viewpoint of solubility in the solvent, it is preferable to first mix and dissolve the resin in a solvent having a liquid temperature of 60°C or higher (preferably 80°C or higher) (upper limit is 200°C or lower, preferably 100°C or lower) to convert it into a resin solution, and after converting it into a resin solution, it is preferable to mix it with other components (components (B), (C), (D), etc.).
- the "liquid temperature” refers to the temperature of the solvent or resin solution at the time of dissolution.
- the solid dispersion resin (A) may be mixed and dissolved in a solvent at 60° C. or higher in advance, or the solid dispersion resin (A) may be mixed with a solvent and then heated to a temperature of 60° C. or higher. Furthermore, the dispersion may contain components other than the dispersion resin (A) and the solvent.
- the solvent may be used alone or in combination of two or more kinds, and as the type, those exemplified as the solvent (C) described later can be suitably used. In addition, it is preferable to cool the resin solution that has been hot-dissolved as described above to a predetermined temperature of 10° C.
- the solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on 100% by mass of the total solid content of the carbon nanotube dispersion paste, for example, 0.1% by mass or more, preferably 1% by mass or more, and more preferably 3% by mass or more, and for example, 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
- the solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on the total amount of the carbon nanotube dispersion paste as 100 mass%, for example, 0.1 mass% or more, preferably 0.4 mass% or more, and more preferably 0.7 mass% or more, and for example, 10 mass% or less, preferably 5 mass% or less, and more preferably 2 mass% or less.
- the solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on the content of the carbon nanotubes (B) of 100% by mass, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 150% by mass or less, preferably 120% by mass or less, more preferably 80% by mass or less.
- Carbon nanotubes (B) As the carbon nanotubes (B), single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination. In particular, in terms of viscosity, electrical conductivity, and cost, it is preferable to use multi-walled carbon nanotubes.
- the content of carbon nanotubes (B) is, based on 100 mass% of the total amount of the carbon nanotube dispersion paste, for example, 0.5 mass% or more, preferably 1 mass% or more, and more preferably 2 mass% or more, and for example, 10 mass% or less, preferably 7 mass% or less, and more preferably 6 mass% or less.
- the carbon nanotube dispersion paste based on 100% by mass of the total solid content of the carbon nanotube dispersion paste, it is, for example, 5% by mass or more, preferably 10% by mass or more, and more preferably 20% by mass or more, and for example, 90% by mass or less, preferably 70% by mass or less, and more preferably 50% by mass or less.
- the average outer diameter of the carbon nanotubes (B) is, for example, 1 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and is, for example, 30 nm or less, preferably 28 nm or less, more preferably 25 nm or less.
- the average length of the carbon nanotubes (B) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and is, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less.
- the BET specific surface area of the carbon nanotubes (B) is, in consideration of the relationship between viscosity and electrical conductivity, usually 100 m 2 /g or more, preferably 130 m 2 /g or more, more preferably 160 m 2 /g or more, and usually 800 m 2 /g or less, preferably 600 m 2 /g or less, more preferably 400 m 2 /g or less.
- the BET specific surface area of the present invention can be calculated by the BET method using nitrogen adsorption measurement.
- the BET specific surface area (m 2 /g) can be measured using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Co., Ltd.)) in accordance with JIS Z8830:2013.
- BERSORP-MAX Microtrac-Bell Co., Ltd.
- the amount of acidic groups in the carbon nanotubes (B) is usually 0.01 mmol/g or more, preferably 0.01 mmol/g or more, and usually 1.0 mmol/g or less, preferably 0.5 mmol/g or less, more preferably 0.2 mmol/g or less, and even more preferably 0.1 mmol/g or less, from the viewpoints of dispersibility and storage property. If the amount of acidic groups is 0.01 mmol/g or more, the dispersibility will be good, and if it is 1.0 mmol/g or less, the storage property will be good.
- the above acidic groups can be imparted to carbon nanotubes by acid treatment as described below.
- the acid treatment method is not particularly limited as long as it can bring the carbon nanotubes into contact with the acid, but a method of immersing the carbon nanotubes in an acid treatment solution (aqueous solution of acid) is preferred.
- the acid contained in the acid treatment solution is not particularly limited, but examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. Among these, nitric acid and sulfuric acid are preferred.
- the amount of acidic groups in the carbon nanotubes can be adjusted by the concentration of the acid treatment solution, the temperature, the treatment time, and the like.
- the excess acid component adhering to the surface is removed by a washing method described below, thereby obtaining acid-treated carbon nanotubes.
- the method for washing the acid-treated carbon nanotubes is not particularly limited, but washing with water is preferred.
- the carbon nanotubes are collected from the acid-treated carbon nanotubes by a known method such as filtration, and then washed with water. After the above washing, the water adhering to the surface can be removed by drying, etc., as necessary, to obtain the acid-treated carbon nanotubes.
- the volume-equivalent median diameter (D50) of the carbon nanotubes (B) is usually 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 250 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, when measured by the method described in the examples below.
- the median diameter (D50) can be obtained by irradiating a carbon nanotube particle with a laser beam and converting the diameter of the carbon nanotube into a sphere from the scattered light. The larger the median diameter (D50), the more carbon nanotube agglomerates there are, which means that the dispersibility is poor.
- the median diameter (D50) is larger than 250 ⁇ m, there is a high possibility that carbon nanotube agglomerates exist in the electrode, and the conductivity of the entire electrode becomes non-uniform.
- the median diameter (D50) is smaller than 10 ⁇ m, the fiber length is short, so the conductive path is insufficient, and the conductivity decreases.
- the median diameter (D50) is within the range of 10 ⁇ m or more and 250 ⁇ m or less, the carbon nanotubes can be uniformly dispersed within the electrode while maintaining their electrical conductivity.
- the G/D ratio In the Raman spectrum of the carbon nanotube (B), the G/D ratio, where G is the maximum peak intensity in the range of 1560 cm -1 to 1600 cm -1 and D is the maximum peak intensity in the range of 1310 cm -1 to 1350 cm -1 , is usually 0.1 or more, preferably 0.4 or more, more preferably 0.6 or more, and is usually 5.0 or less, preferably 3.0 or less, more preferably 1.0 or less.
- a G/D ratio in the range of 0.1 to 5.0 is preferable because it tends to have high conductivity due to fewer defects and crystal interfaces on the carbon surface.
- the carbon nanotubes (B) can be previously dry-dispersed in a media-type grinder before producing the carbon nanotube dispersion paste.
- the "dry dispersion” of the present invention refers to pulverization (including disintegration) by a pulverizer at a solid content concentration in the pulverized component of 80% by mass or more (preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more).
- the content of the carbon nanotubes (B) contained in the solid content of the pulverized component is usually 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, and particularly preferably only the carbon nanotubes (B).
- the components other than the carbon nanotubes (B) in the ground component solvents, resins, pigments other than the carbon nanotubes (B), etc. can be suitably used, but it is preferable that the ground component contains substantially only the carbon nanotubes (B).
- solid content concentration refers to the proportion of solid content (mass %) when 1 g of a sample is dried by heating at 130° C. for 3 hours.
- the above-mentioned dry dispersion is a method of grinding pigments without the inclusion of any liquid components, and since energy can be applied directly to the pigment, it is possible to perform highly efficient and powerful grinding (disintegration).
- the ground surface is activated and interacts with the surrounding substances, good dispersibility and storage stability can be obtained in the paste dispersion process described below, and the coating film can have excellent conductivity and finish.
- grinding is carried out using a grinding machine equipped with grinding media such as glass beads, zirconia beads, steel balls, etc. Grinding is carried out by utilizing the crushing force or destructive force caused by collisions between the grinding media and/or between the grinding machine and the grinding media.
- known grinding devices such as a high-speed rotation impact mill, jet mill, roll mill, attritor, ball mill, vibration mill, bead mill, etc. can be used.
- various steam or gases can be blown into the grinder during grinding to further activate the surface of the carbon nanotubes (B) or adjust the activity.
- steam acidic or basic compounds are suitable, and as the gas, oxygen, nitrogen, etc. are suitable.
- the outer diameter of the grinding media is preferably 0.1 mm to 5 mm, and more preferably 0.5 mm to 3 mm. Within the above range, the desired grinding force can be obtained, and the pigment can be efficiently ground and crushed without excessively destroying the fiber shape of the carbon nanotubes.
- the carbon nanotubes (B) adsorb moisture from the air during the processes of producing and storing the carbon nanotubes and producing and storing various pastes, but in the present invention, it is desirable that the carbon nanotubes do not adsorb moisture during each process.
- the amount of water (moisture absorption) of the carbon nanotubes (B) absorbed by the humidity of the air depends on the humidity, the surface area of the carbon nanotubes, and the surface properties (hydrophilicity) of the carbon nanotubes.
- the inventors have discovered that by keeping the content within the above range, the amount of moisture adsorption by the carbon nanotubes (B) can be reduced, thereby suppressing thickening and gelling of the paste while also achieving dispersibility (adsorption with a dispersant).
- the carbon nanotube dispersion paste used in the present invention can also use other conductive pigments (B1) other than the carbon nanotubes (B).
- Examples of other conductive pigments (B1) include at least one conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene, and graphite. Preferably, it is at least one selected from the group consisting of acetylene black, ketjen black, furnace black, and thermal black, more preferably at least one selected from the group consisting of acetylene black and ketjen black, and even more preferably it is acetylene black.
- the average primary particle diameter of the other conductive pigment (B1) is, for example, 10 nm or more, preferably 20 nm or more, and more preferably, for example, 80 nm or less, and more preferably, 70 nm or less.
- the average primary particle diameter refers to the average particle diameter of the primary particles obtained by observing the conductive pigment (B1) under an electron microscope, calculating the projected area of each of 100 particles, calculating the diameter of a circle assuming an area equal to that area, and then averaging the diameters of the 100 particles. Note that if the pigment is in an aggregated state, the calculation is performed using the primary particles that make up the aggregated particles.
- the BET specific surface area of the other conductive pigment (B1) is not particularly limited and is, for example, 1 m 2 /g or more, preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and is, for example, 500 m 2 /g or less, preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less, depending on the relationship between viscosity and conductivity.
- the dibutyl phthalate (DBP) oil absorption of the other conductive pigment (B1) is not particularly limited. In relation to pigment dispersibility and conductivity, it is, for example, 60 ml/100 g or more, preferably 150 ml/100 g or more, and, for example, 1,000 ml/100 g or less, preferably 800 ml/100 g or less.
- the solvent (C) has a water content of less than 10,000 ppm, and an organic solvent can be suitably used.
- the solvent include hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, and cyclobutane; aromatic solvents such as toluene and xylene; ketone solvents such as methyl isobutyl ketone; ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate, and ethylene glycol mono.
- the solvent examples include ester-based solvents such as methyl ether acetate and butyl carbitol acetate; ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; alcohol-based solvents such as ethanol, isopropanol, n-butanol, sec-butanol and isobutanol; and amide-based solvents such as Equamide (an amide-based solvent, product name, manufactured by Idemitsu Kosan Co., Ltd.), N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methylpropioamide and N-methyl-2-pyrrolidone.
- ester-based solvents such as methyl ether acetate and butyl carbitol acetate
- ketone-based solvents such as methyl ethyl ketone, methyl is
- amide-based solvents are preferred, and N-methyl-2-pyrrolidone is more preferred. These solvents can be used alone or in combination of two or more.
- the water content of the solvent (C) is usually less than 10,000 ppm, preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm.
- amine components may be contained as impurities, and in the carbon nanotube dispersion paste of the present invention, the viscosity or tendency to thicken may vary from lot to lot depending on the amine components as impurities.
- the solvent and the like volatilize and do not remain, but it is preferable to recover and reuse the volatilized solvent in order to reduce waste, be environmentally friendly, and/or reduce raw material costs. That is, it is preferable to use a recycled product as the solvent (C).
- this recycled solvent (recycled product) will also contain the amine compound originally contained therein, and similarly, the viscosity or thickening tendency of the paste will differ from lot to lot. Furthermore, amine compounds often have a strong odor.
- the amine compound content in the recycled solvent (C) is usually 1 mass% or less, preferably 0.5 mass% or less, and particularly preferably 0.1 mass% or less.
- the content of the amine compound can be quantified by a general analysis such as ion chromatography-mass spectrometry (IC-MS).
- IC-MS ion chromatography-mass spectrometry
- the content can be quantified by preparing a calibration curve in advance for the peaks of amine species that are expected to be mixed in.
- the above phrase "use of a recycled product as the solvent (C)" means that the solvent (C) used in the present invention contains 5% by mass or more (preferably 10% by mass or more) of a recycled product.
- the solvent recovered in the process of producing an electrode layer by heating and drying a composite paste which will be described later.
- the carbon nanotube dispersion paste of the present invention contains the highly polar low molecular weight component (E) described later, it is necessary to remove the highly polar low molecular weight component (E) in the solvent (C). Therefore, when the boiling point of the solvent (C) is (Xc) ° C. and the boiling point of the highly polar low molecular weight component (E) is (Xe) ° C., it is preferable that (Xc)-10>(Xe), and it is preferable that (Xc)-15>(Xe) from the viewpoint of distillation (removal of the highly polar low molecular weight component (E)).
- the solvent (C) preferably contains N-methyl-2-pyrrolidone.
- N-methyl-2-pyrrolidone When N-methyl-2-pyrrolidone is contained, it is preferable to use a recycled product of N-methyl-2-pyrrolidone. Furthermore, it is suitable to control the water content in N-methyl-2-pyrrolidone to less than 10,000 ppm (preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm).
- the highly polar, low-molecular-weight component (E) preferably contains an amine compound (E1).
- the content of the solvent (C) in the carbon nanotube dispersion paste is, based on 100 mass% of the total amount of the carbon nanotube dispersion paste, for example, 40 mass% or more, preferably 60 mass% or more, and more preferably 80 mass% or more, and for example, 99 mass% or less, preferably 98 mass% or less, and more preferably 97 mass% or less.
- the solid content of the carbon nanotube dispersion paste is, based on 100% by mass of the total amount of the carbon nanotube dispersion paste, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more, and is, for example, 60% by mass or less, preferably 40% by mass or less, and more preferably 20% by mass or less.
- Polyvinylidene fluoride (D) is a resin intended for forming a film of an electrode layer, and can be contained in the carbon nanotube dispersion paste of the present invention as necessary, and is preferably contained. Also, it is an essential component of the composite paste described later. Also, variously modified modified polyvinylidene fluoride (D1) can be suitably used, and it is preferable that the modified polyvinylidene fluoride has a polar functional group from the viewpoint of adhesion to the substrate.
- the weight average molecular weight of polyvinylidene fluoride (D) is, from the viewpoints of adhesion to the substrate, reinforcement of the film properties, and solvent resistance, for example, 100,000 or more, preferably 500,000 or more, more preferably 650,000 or more, and for example, 3 million or less, preferably 2 million or less.
- the content is, based on 100% by mass of the solid content of the carbon nanotube dispersion paste, for example, 10.0% by mass or more, preferably 30.0% by mass or more, more preferably 40.0% by mass or more, and for example, 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less. Also, based on 100% by mass of the total amount of the carbon nanotube dispersion paste, the content is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and for example, 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less.
- the step of converting the polyvinylidene fluoride (D) from a solid state into a resin solution preferably includes a step of mixing and dissolving the polyvinylidene fluoride (D) in a solvent having a liquid temperature of 40° C. or higher (preferably 60° C. or higher, more preferably 80° C. or higher) (upper limit is 200° C. or lower, preferably 100° C. or lower) in advance to convert the polyvinylidene fluoride (D) into a resin solution, from the viewpoint of solubility in the solvent.
- the polyvinylidene fluoride (D) is preferably mixed with other components [components (A), (B), (C), etc.].
- the “liquid temperature” refers to the temperature of the solvent or resin solution at the time of dissolution.
- Solid polyvinylidene fluoride (D) may be mixed in advance into a solvent at 40° C. or higher and dissolved therein, or solid polyvinylidene fluoride (D) may be mixed with a solvent and then heated to a temperature of 40° C. or higher.
- the composition may contain components other than the polyvinylidene fluoride (D) and the solvent.
- the solvent may be used alone or in combination of two or more kinds, and as the type, those exemplified above as the solvent (C) can be suitably used.
- the cooling step is carried out by reacting the resin solution with ... by the following reaction:
- the mixing and dispersing step is a step of mixing and further dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which can be included as necessary, and obtaining a liquid carbon nanotube dispersion paste.
- a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms carbon nanotubes
- B carbon nanotubes
- C solvent
- D polyvinylidene fluoride
- the upper limit of the solids concentration of the carbon nanotube dispersion paste is usually less than 80% by mass, preferably less than 50% by mass, more preferably less than 20% by mass, and even more preferably less than 10% by mass.
- the lower limit is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more.
- the components can be uniformly mixed and dispersed using a conventionally known dispersing machine such as a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin film rotary high-speed mixer (manufactured by Filmix, product name "Clearmix", etc.), etc.
- a conventionally known dispersing machine such as a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin film rotary high-speed mixer (manufactured by Filmix, product name "Clearmix", etc.), etc.
- the order in which the components are mixed is not particularly limited.
- the mixing and dispersing step further comprises: Step 1: adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less (preferably 50% by mass or less) based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process; and Step 2: adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process. It is preferable that the method includes the steps of sequentially carrying out the steps.
- the dispersion treatment time in step 1 is preferably at least 30 seconds or more (preferably 1 minute or more).
- the aggregation of the carbon nanotubes (B) is alleviated, and a homogeneous paste with good dispersibility is obtained even in a high-concentration paste, and the resulting battery electrode layer (coating film) has excellent finish, conductivity, battery performance, etc.
- the carbon nanotube dispersion paste may further contain a high-polarity, low-molecular-weight component (E).
- the high-polarity, low-molecular-weight component (E) is a component that increases the wettability and/or storage stability of the conductive pigment. Examples of the compound include basic components and acidic components known per se, and among these, it is preferable to contain an amine compound (E1).
- the content of the amine compound (E1) in the highly polar, low molecular weight component (E) is, for example, 50% by mass or more, preferably 75% by mass or more, and more preferably 95% by mass or more, based on 100% by mass of the highly polar, low molecular weight component (E).
- Examples of the amine compound (E1) include ammonia, primary amines, secondary amines, and tertiary amines.
- Primary amines include, for example, ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, laurylamine, myristyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethyl
- Secondary amines include, for example, diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di(2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-leupetidine, 2,6-leupetidine, 3,5-leupetidine, diphenylamine, secondary monoamines such as N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl-1,3-diaminopropane, N,N'-dimethyl-1,2-diaminobutane, N,N'-dimethyl-1,3 ...
- tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethylethanol
- primary amine compounds are preferred, and monovalent amine compounds (monoamines) are more preferred.
- the above amine compound (E1) may be an aliphatic amine, an alicyclic amine, an aromatic amine, an alkanolamine, etc., any of which may be suitably used, but aromatic amines are preferred.
- the weight average molecular weight of the amine compound (E1) is preferably less than 1,000, more preferably 800 or less, even more preferably 500 or less, particularly preferably 350 or less, and even more particularly preferably 250 or less.
- the boiling point of the amine compound is preferably 400° C. or less, more preferably 300° C. or less, and even more preferably 200° C. or less.
- the lower limit is preferably 50° C. or higher, and more preferably 100° C. or higher.
- the amine value of the amine compound (E1) is usually 5 mgKOH/g or more, preferably 50 mgKOH/g or more, more preferably 105 mgKOH/g or more, and is usually within the range of 1,000 mgKOH/g or less.
- an acidic highly polar, low molecular weight component selected from organic acids and inorganic acids can be used alone or in combination with two or more of them in combination with the amine compound (E1).
- a basic highly polar, low molecular weight component selected from organic bases and inorganic bases can be used alone or in combination with two or more of them.
- organic acids examples include organic carboxylic acids (formic acid, acetic acid, propionic acid, benzoic acid, phthalic acid, etc.) and organic sulfonic acids (benzenesulfonic acid, etc.), while examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, etc., and their acid anhydrides can also be used.
- organic bases include base components other than amine compounds
- inorganic bases include metal hydroxides (sodium hydroxide, potassium hydroxide, etc.).
- the content of the highly polar, low molecular weight component (E) is, for example, 1% by mass or more, preferably 1.5% by mass or more, and more preferably 2% by mass or more, based on 100% by mass of the solid content of the carbon nanotube dispersion paste, and is, for example, 600% by mass or less, preferably 300% by mass or less, and more preferably 50% by mass or less.
- the lower limit is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 5% by mass or more
- the upper limit is, for example, 1,000% by mass or less, preferably 500% by mass or less, and more preferably 50% by mass or less.
- the lower limit is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more
- the upper limit is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less.
- the content ratio of the solvent (C) to the highly polar, low molecular weight component (E) is usually within the range of 100/0.01 to 100/10, preferably within the range of 100/0.02 to 100/7, more preferably within the range of 100/0.05 to 100/5, and more preferably within the range of 100/0.1 to 100/4, in terms of the mass ratio of the solvent (C) to the highly polar, low molecular weight component (E).
- the carbon nanotube dispersion paste used in the manufacturing method of the present invention contains a highly polar, low molecular weight component (E), the value of X in the following formula (2), where ⁇ (parts by mass) is the content of the highly polar, low molecular weight component (E) per 100 parts by mass of the carbon nanotubes (B) and ⁇ ( m2 /g) is the BET specific surface area of the carbon nanotubes (B), is usually 1 or more, preferably 5 or more, and more preferably 10 or more, and is usually 2,500 or less, preferably 1,000 or less, more preferably 300 or less, and even more preferably 100 or less.
- the content of the highly polar, low molecular weight component (E) relative to the surface area of the carbon nanotube (B) is excessive (increased odor and cost), and if the content falls below the lower limit range, the content of the highly polar, low molecular weight component (E) relative to the surface area of the carbon nanotube (B) is insufficient.
- the carbon nanotube dispersion paste used in the manufacturing method of the present invention contains carbon nanotubes (B) and an amine compound (E1)
- the value of Y in the following formula (3) where ⁇ (parts by mass) is the content of the amine compound (E1) relative to 100 parts by mass of the carbon nanotubes (B), ⁇ (m 2 /g) is the BET specific surface area of the carbon nanotubes (B), and ⁇ (mmol/g) is the amount of acidic groups in the carbon nanotubes (B), is preferably 0.01 or more, more preferably 0.05 or more, even more preferably 0.1 or more, and particularly preferably 1 or more.
- the suitable range is preferably 0.01 or more and 400 or less, more preferably 0.05 or more and 100 or less, even more preferably 0.1 or more and 75 or less, and particularly preferably 1 or more and 50 or less.
- Y ⁇ / ⁇ / ⁇ ...Formula (3) It has been found that within this range, the amine compound (E1) can be sufficiently wetted onto the surface of the carbon nanotube (B) having a certain amount of acidic groups, and the dispersibility (including viscosity) and storage stability (including inhibition of thickening) of the carbon nanotube (B) can be improved.
- the content of the amine compound (E1) is excessive relative to the surface area of the carbon nanotubes (B) having acidic groups, the odor becomes strong and the cost increases, whereas if the content is insufficient, the content of the amine compound (E1) relative to the surface area of the carbon nanotubes (B) having acidic groups is insufficient, and dispersibility and storage stability (suppression of thickening) may be deteriorated.
- the carbon nanotube dispersion paste may further contain other components in addition to the above-mentioned components (A), (B), and (C), and the components (D) and (E) which may be contained as necessary.
- Other components include, for example, resins other than the dispersion resin (A) and polyvinylidene fluoride (D), neutralizing agents, defoamers, preservatives, rust inhibitors, plasticizers, pigments other than carbon nanotubes (B), dehydrating agents (F), etc.
- pigments other than carbon nanotubes (B) include the other conductive pigments (B1) described above; white pigments such as titanium white and zinc oxide; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and verdigris; organic red pigments such as azo and quinacridone, red pigments such as red iron oxide; organic yellow pigments such as benzimidazolone, isoindolinone, isoindoline and quinophthalone, yellow pigments such as titanium yellow and yellow lead. These pigments can be used alone or in combination of two or more.
- These pigments other than the carbon nanotubes (B) can be used for purposes such as color adjustment and reinforcement of the physical properties of the film, as long as the electrical conductivity is not significantly impaired. They may be dispersed simultaneously with the dispersing resin (A) and the carbon nanotubes (B), or they may be mixed as a pigment or pigment paste after dispersing the dispersing resin (A) and the carbon nanotubes (B) to prepare a paste.
- the content of pigments other than the carbon nanotubes (B) is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on 100% by mass of all pigments in the carbon nanotube dispersion paste, and it is particularly preferable that they are substantially not contained.
- the viscosity of the carbon nanotube dispersion paste at a shear rate of 2 s ⁇ 1 is, for example, less than 5,000 mPa ⁇ s, preferably less than 2,500 mPa ⁇ s, more preferably less than 1,000 mPa ⁇ s, and is, for example, 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more.
- the viscosity can be measured, for example, using a cone and plate type viscometer (manufactured by HAAKE, trade name "Mars2", diameter 35 mm, 2° inclined cone and plate).
- any known agent having a dehydrating effect can be used without any particular restrictions. It may be a solid dehydrating agent that does not dissolve in the solvent (C) of the paste, or a dehydrating agent that dissolves in the solvent (C).
- solid dehydrating agents such as zeolite, silica gel, calcium oxide, molecular sieve, activated alumina, barium oxide, calcium hydride, and sodium sulfate; phosphate esters such as trimethyl phosphate, tri-2-propyl phosphate, tributyl phosphate, and tetraisopropylethylene phosphonate; phosphine oxides such as tributyl phosphine oxide, trioctyl phosphine oxide, and triphenyl phosphine oxide; orthoformic acid methyl ester, orthoformic acid ethyl ester.
- phosphate esters such as trimethyl phosphate, tri-2-propyl phosphate, tributyl phosphate, and tetraisopropylethylene phosphonate
- phosphine oxides such as tributyl phosphine oxide, trioctyl phosphine oxide, and triphenyl pho
- orthoesters such as methyl orthoacetate, ethyl orthoacetate, and ethyl orthobenzoate
- acid anhydrides such as oxalic anhydride, acetic anhydride, propionic anhydride, butyric anhydride, benzoic anhydride, trifluoroacetic anhydride, disulfuric acid, dinitrogen pentoxide, diphosphoric acid, diphosphorus pentoxide, diphosphorus trioxide, diarsenic pentoxide, diarsenic trioxide, methanesulfonic anhydride, trifluoromethanesulfonic anhydride, and sulfobenzoic anhydride, which may be used alone or in combination of two or more.
- a carbon nanotube dispersion paste having carbon nanotubes (B) is prepared by the above-mentioned method.
- the carbon nanotube dispersion paste and at least one electrode active material (G) are mixed to produce a composite paste for a lithium ion secondary battery.
- the solid content of the electrode active material (G) is usually 10% by mass or more, preferably 20% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 99% by mass or less, preferably 95% by mass or less, which is suitable in terms of battery performance.
- polyvinylidene fluoride (D) which was an optional component in the carbon nanotube dispersion paste, is an essential component in the composite paste and is always contained.
- the solid content of polyvinylidene fluoride (D) is usually 0.05 mass% or more, preferably 0.1 mass% or more, based on 100 mass% of the total amount of the composite paste, and is usually 10 mass% or less, preferably 2 mass% or less, which is suitable in terms of battery performance, paste viscosity, etc.
- the composite paste can be mixed uniformly using a conventionally known mixer and disperser.
- the solid content of the dispersed resin (A) in the composite paste solids is usually 0.01% by mass or more, preferably 0.05% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 10% by mass or less, preferably 1% by mass or less, which is suitable in terms of battery performance, paste viscosity, etc.
- the composite paste of the present invention contains a highly polar, low molecular weight component (E), and it is preferable that the highly polar, low molecular weight component (E) contains at least one type of amine compound (E1).
- the highly polar, low molecular weight component (E) contains at least one type of amine compound (E1).
- the solid content of carbon nanotubes (B) in the composite paste solids of the present invention is typically 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the total composite paste, and is typically 30% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, which is preferred in terms of battery performance.
- the content of solvent (C) in the composite paste of the present invention is typically 1% by mass or more, preferably 4% by mass or more, more preferably 7% by mass or more, based on 100% by mass of the total composite paste, and is typically 90% by mass or less, preferably 70% by mass or less, more preferably 50% by mass or less, which is preferred in terms of electrode drying efficiency and paste viscosity.
- the above composite paste is suitable for use as a positive or negative electrode for lithium ion secondary batteries, and is preferably used as a positive electrode.
- the moisture content of the composite paste is usually less than 10,000 ppm, preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm, from the viewpoint of suppressing the increase in viscosity or gelation of the composite paste described above.
- the composite paste used in the present invention can be said to be a substantially non-aqueous composite paste.
- the moisture content of the composite paste is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more.
- Electrode active material (G) examples include lithium composite oxides such as lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; lithium iron phosphate (LiFePO 4 ); sodium composite oxide; and potassium composite oxide. These electrode active materials (G) can be used alone or in combination of two or more.
- the electrode active material containing lithium iron phosphate is inexpensive and has relatively good cycle characteristics and energy density, and can therefore be used preferably.
- the particle diameter of the electrode active material (G) is usually 0.5 ⁇ m or more, preferably 10.5 ⁇ m or more, and usually 30 ⁇ m or less, preferably 20 ⁇ m or less.
- the solid content of the electrode active material (G) in the 100% by mass solids of the composite paste for lithium ion secondary battery electrodes of the present invention is usually 50% by mass or more, preferably 60% by mass or more, and is preferably less than 100% by mass in terms of battery capacity, battery resistance, etc.
- the composite paste contains the electrode active material (G), it may thicken during storage.
- the electrode active material (G) has alkali metal hydroxides (e.g., LiOH, KOH, NaOH, etc.) derived from the raw materials on the particle surface, and is thought to aggregate (thicken) due to the carbon nanotubes (B) that have an acidic surface. Therefore, by containing a certain amount or more of a highly polar low molecular weight component (E) [particularly an amine compound (E1)], it is possible to suppress the thickening of the composite paste during storage.
- a highly polar low molecular weight component (E) particularly an amine compound (E1)
- the amount of water contained in the electrode active material (G) is usually less than 10,000 ppm, preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm, from the viewpoint of suppressing the increase in viscosity or gelation of the composite paste described above.
- an electrode active material composite (G-1) having at least a part of its surface covered with carbon nanotubes can be suitably used.
- the composite (G-1) can be obtained in advance by mixing the electrode active material (G), the carbon nanotubes, and, if necessary, other components (e.g., a solvent or a dispersion resin). If necessary, a drying step can be added after mixing, so that the carbon nanotubes can be more uniformly adsorbed and/or fixed to the electrode active material (G).
- the electrode active material composite (G-1) produced as described above can form a uniform conductive network around the electrode active material by adsorbing and/or fixing the carbon nanotubes to the surface of the electrode active material.
- any known carbon nanotubes can be used without particular limitation, but the carbon nanotubes exemplified as the carbon nanotubes (B) can be preferably used.
- an electrode layer for a lithium ion secondary battery (also referred to as an electrode mixture layer or a mixture layer) can be produced by applying a mixture paste for a lithium ion secondary battery to a core surface (current collector) of a positive electrode or a negative electrode and drying the applied paste, and is particularly preferably used for a positive electrode.
- the carbon nanotube dispersion paste obtained by the manufacturing method of the present invention can be used not only as a paste for a composite layer (electrode layer), but also as a primer layer (also called a functional layer or adhesive layer) between the electrode core material and the composite layer (electrode layer).
- the method of applying the composite paste for lithium ion secondary batteries can be carried out by a method known per se using a die coater or the like.
- the amount of application of the composite paste for lithium ion secondary batteries is not particularly limited, but can be set so that the thickness of the composite layer after drying is, for example, 0.04 mm or more, preferably 0.06 mm or more, and, for example, 0.30 mm or less, preferably 0.24 mm or less.
- the temperature of the drying step can be appropriately set, for example, 80° C. or more, preferably 100° C. or more, and, for example, 250° C. or less, preferably 200° C. or less.
- the time of the drying step can be appropriately set, for example, 5 seconds or more, and, for example, 120 minutes or less, preferably 60 minutes or less.
- the drying step all or a part of the solvent (C) and the highly polar, low molecular weight component (E) that may be contained as necessary volatilize.
- the volatilized components (C) and (E) in order to reduce waste, be environmentally friendly, and/or reduce costs, it is preferable to recover and reuse the volatilized components (C) and (E).
- the cycle life is reduced when impurities such as moisture are present in the electrode layer. That is, if the carbon nanotube dispersion paste or the composite paste contains moisture above a specified level, or if the electrode layer is not dried sufficiently in the manufacturing process, moisture remains in the electrode layer, which causes deterioration of the cycle characteristics of the battery.
- the moisture content in the electrode layer is usually less than 1000 ppm, preferably less than 750 ppm, more preferably less than 500 ppm, even more preferably less than 250 ppm, and particularly preferably less than 100 ppm.
- the vapor containing the solvent (C) (and, if necessary, the highly polar, low molecular weight component (E)) can be recovered, and then impurities other than the solvent (C) can be removed by distillation to produce a recycled version of the solvent (C).
- an insulating paste can be applied to form an electrode insulating portion for the purpose of insulating the ends or upper layer of the electrode layer.
- the insulating paste any material capable of providing insulation can be suitably used, but a paste containing an inorganic filler, a binder, a dispersant, and a solvent is preferred, and in particular, a paste containing boehmite as the inorganic filler, polyvinylidene fluoride as the binder, and N-methyl-2-pyrrolidone as the solvent is suitable.
- the insulating paste described in International Publication No. 2021/193286 can be suitably used as the insulating paste.
- the carbon nanotube dispersion paste, composite paste, and electrode layer of the present invention can be particularly suitably used in lithium ion secondary batteries that include a non-aqueous electrolyte solution.
- the lithium ion secondary battery having the non-aqueous electrolyte is a battery having at least a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and is a non-aqueous electrolyte type lithium ion secondary battery.
- N-methyl-2-pyrrolidone A solvent for the recycled product, made by mixing new material and the recycled product produced in Application Example 1 in a 1:1 ratio.
- the water content is 500 ppm (Note 2) and the amine content is 500 ppm (Note 2).
- iBA i-butyl acrylate (having a hydrocarbon group with 4 carbon atoms)
- SLMA Lauryl methacrylate (having a hydrocarbon group with 12 carbon atoms)
- SMA Stearyl methacrylate (having a hydrocarbon group with 18 carbon atoms)
- BEMA Behenyl methacrylate (having a hydrocarbon group with 22 carbon atoms)
- St styrene
- DMAEMA N,N-dimethylaminoethyl methacrylate
- AN acrylonitrile.
- Electrode active material composite Production Example 6
- One part of carbon nanotubes (CNT-C) shown in Table 2 below, 0.2 parts of acrylic resin (A1) (solid content 0.1 part), and 98.8 parts of N-methyl-2-pyrrolidone (Note 1) were mixed with stirring, and then mixed with 900 parts of electrode active material particles (lithium nickel manganese oxide particles with a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle size 6 ⁇ m, BET specific surface area 0.7 m2 /g) to prepare an electrode active material composite (G1) of CNT and electrode active material.
- electrode active material particles lithium nickel manganese oxide particles with a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle size 6 ⁇ m, BET specific surface area 0.7 m2 /g
- Example 1A Using a continuous dry bead mill “Drystar SDA1" (manufactured by Ashizawa Finetech Co., Ltd.), carbon nanotubes (CNT-C) shown in Table 2 below were pulverized (dry dispersed) at a supply rate of 0.5 kg/hr using zirconia beads (diameter 3.0 mm), a filling rate of 70%, and a mill peripheral speed of 5.0 m/s.
- N-methyl-2-pyrrolidone (Note 1), 80 parts of polyvinylpyrrolidone (40 parts solids) as a dispersion resin (Note 3), 1,800 parts of resin solution of KF polymer W#7300 (Kureha Corporation, trade name, polyvinylidene fluoride, weight average molecular weight 1,000,000) (180 parts solids) (Note 4), 25 parts of benzylamine as an amine, and 200 parts of the above-mentioned crushed carbon nanotubes were mixed with a disperser while stirring, and finally N-methyl-2-pyrrolidone (Note 1) was used to adjust the total mass to 10,000 parts.
- the mixture was dispersed in a ball mill for 4 hours to produce a carbon nanotube dispersion paste (A-1).
- the water content of the carbon nanotube dispersion paste (A-1) was 800 ppm (Note 2).
- the above manufacturing steps were all carried out in an atmosphere with a dew point of 10° C. or less.
- the other components were first thoroughly mixed, and then half the amount (100 parts) of the CNTs was added and mixed in the disperser while stirring. After confirming that the CNTs were thoroughly mixed, the remainder was gradually added and dispersed.
- Polyvinylpyrrolidone heterocycle-containing resin, weight average molecular weight (Mw) 12,000, functional group concentration 9 (mmol/g)
- the polyvinylidene fluoride resin solution was prepared by mixing and dissolving polyvinylidene fluoride and N-methyl-2-pyrrolidone (Note 1) at a temperature of 80° C. Then, the solution was cooled to 30° C. at a cooling rate of about 1° C./min.
- the above carbon nanotubes are all multi-walled carbon nanotubes.
- the median diameter (D50), G/D ratio, specific surface area (BET specific surface area), and amount of acidic groups in Table 2 were measured by the methods described below.
- Examples 2A to 10A, 13A, Comparative Examples 1A to 3A Carbon nanotube dispersion pastes (A-2) to (A-10) and (A-13) to (A-16) were obtained in the same manner as in Example 1A except that the compositions were as shown in Table 3 below.
- Example 8A carbon nanotube dispersion paste (A-8)
- unpulverized carbon nanotubes (CNT-C) were used.
- Examples 11A to 12A, Comparative Example 4A Water was added to the carbon nanotube dispersion paste (A-3) (moisture content 800 ppm) obtained in Example 3A so as to have the following moisture content (Note 2), and the mixture was thoroughly stirred to obtain the following carbon nanotube dispersion pastes (A-11), (A-12), and (A-17).
- Example 12A Carbon nanotube dispersion paste (A-11), water content 4000 ppm
- Example 13A Carbon nanotube dispersion paste (A-12), water content 8000 ppm
- Comparative Example 4A Carbon nanotube dispersion paste (A-17), moisture content 12,000 ppm
- the water content of the carbon nanotube dispersion paste (Note 2) and the results of the evaluation test described below are shown in Table 3 below.
- the resin amounts in Table 3 above are values based on solid content.
- the compositions of the dispersing resins in Table 3 above are as follows: Polyvinyl butyral: average degree of polymerization 600, amount of hydroxyl groups 12 mol%, amount of butyral groups 87 mol%, amount of acetyl groups 1 mol%, concentration of polar functional groups 1.0 (mmol/g)
- Polyvinyl alcohol average degree of polymerization 600, degree of saponification 80 mol%, polar functional group concentration 16.1 (mmol/g)
- Polymethyl methacrylate weight average molecular weight 20,000, homopolymer of methyl methacrylate, polar functional group concentration 0 (mmol/g)
- the boiling points and molecular weights of the amines in Table 3 above are as follows: Benzylamine: boiling point 185°C, molecular weight 107 Aminomethylpropanol: boiling point 166°C, molecular weight 89.
- Example 1B 100 parts of the carbon nanotube dispersion paste (A-1) was mixed with 900 parts of electrode active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 ⁇ m, BET specific surface area 0.7 m2 /g, moisture content 100 ppm) using a disperser to produce a composite paste (B-1).
- the moisture content of the composite paste (B-1) was 800 ppm (Note 2).
- the above manufacturing steps were all carried out in an atmosphere with a dew point of 10° C. or less.
- Example 10B 100 parts of the carbon nanotube dispersion paste (A-10) was mixed with 1000 parts of the electrode active material composite (G1) obtained in Production Example 6 (900 parts of electrode active material particles) using a disper to produce a composite paste (B-10).
- the moisture content of the composite paste (B-10) was 800 ppm (Note 2).
- Example 13B A composite paste (B-13) was produced by mixing 100 parts of the carbon nanotube dispersion paste (A-13) with 16 parts (solid content 1.6 parts) (Note 4 ) of a resin solution of KF Polymer W# 7300 (manufactured by Kureha Corporation, product name, polyvinylidene fluoride, weight average molecular weight 1,000,000) and 900 parts of electrode active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 ⁇ m, BET specific surface area 0.7 m2 /g, moisture content 100 ppm) using a disper.
- the moisture content of the composite paste (B-13) was 800 ppm (Note 2).
- Table 3 The results of the evaluation test of the composite paste described below are shown in Table 3 above.
- Examples (2-1A) to (2-5A) Carbon nanotube dispersion pastes (2-A-1) to (2-A-5) were obtained in the same manner as in Example 3A, except that the CNT species shown in Table 5 below were used (the CNTs were pulverized (dry dispersed) in the same manner as in Example 1A).
- the moisture absorption (X) of the carbon nanotubes and the results of the evaluation test of the carbon nanotube dispersion paste described below are shown in Table 5 below.
- the moisture absorption (X) was calculated by the following method. [Measurement of Hygroscopicity (X)] Approximately 5 g of carbon nanotubes (CNTs) are weighed out and dried at 140°C for 3 hours to obtain a mass of CNTs of Y1.
- the mass of CNTs obtained by leaving the CNTs for 24 hours under conditions of a temperature of 20°C and a relative humidity of 65% is then Y2.
- the value of Y obtained by the following formula is defined as the moisture absorption amount Y.
- Moisture absorption amount Y (Y2-Y1)/Y1 ⁇ 100
- the carbon nanotubes (CNT-A) to (CNT-E) in Table 5 above are as described in Table 2.
- the median diameter (D50) was measured using a laser diffraction/scattering type particle size distribution measuring device "LA-960" (trade name, manufactured by HORIBA Co., Ltd.) according to the following procedure.
- aqueous dispersion medium 0.10 g of F10MC (trade name, carboxymethylcellulose sodium (hereinafter also referred to as CMCNa), manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous dispersion medium containing 0.1% by mass of CMCNa.
- F10MC carboxymethylcellulose sodium
- CMCNa aqueous solution 2.0 g of F10MC (trade name, sodium carboxymethylcellulose, manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous solution of 2.0 mass % CMCNa.
- F10MC trade name, sodium carboxymethylcellulose, manufactured by Nippon Paper Industries Co., Ltd.
- Pre-measurement processing 6.0 mg of carbon nanotubes were weighed into a vial, and 6.0 g of the aqueous dispersion medium was added.
- An ultrasonic homogenizer (Microtec Nithion, "SmurtNR-50") was used for pre-measurement treatment.
- the tip was confirmed to be free of deterioration, and was adjusted so that the tip was immersed 10 mm or more below the surface of the sample to be treated.
- the time set irradiation time was 40 seconds, the power set was 50%, the start power was 50% (output 50%), and the carbon nanotube aqueous dispersion was homogenized by ultrasonic irradiation using auto power operation with a constant output power.
- the prepared carbon nanotube aqueous dispersion was added to the particle size distribution meter so that the relative concentration, which indicates the percentage of light scattered outside the beam by the particles, was 8 to 12%, or the PIDS was 40 to 55%, and ultrasonic irradiation was performed for 2 minutes at 78 W using the particle size distribution meter attachment (measurement pretreatment), and after circulating for 30 seconds to remove air bubbles, the particle size distribution was measured.
- a graph of particle size (particle diameter) versus volume % was obtained, and the presence ratio and median diameter (D50) of dispersed particles of 1 ⁇ m or less were determined.
- D50 median diameter
- ⁇ G/D ratio of carbon nanotubes The Raman spectrum of the carbon nanotube was measured by placing the carbon nanotube in a Raman microscope (manufactured by Horiba, Ltd., product name "XploRA") and using a laser wavelength of 532 nm.
- the G/D ratio of the carbon nanotube was determined by taking the maximum peak intensity G within the range of 1560 cm -1 to 1600 cm -1 in the spectrum and the maximum peak intensity D within the range of 1310 cm -1 to 1350 cm -1 .
- BET specific surface area The BET specific surface area of the carbon nanotubes was measured as a BET specific surface area (m 2 /g) in accordance with JIS Z8830:2013 using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Corporation)).
- Evaluation test The carbon nanotube dispersion paste and composite paste obtained in the above examples and comparative examples were subjected to an evaluation test. Evaluation D is a failure. If there is even one failure evaluation result, the evaluation of the carbon nanotube dispersion paste or composite paste is a failure.
- the resulting carbon nanotube dispersion paste was evaluated for dispersibility according to the dispersion degree test of JIS K-5600-2-5 using a grain gauge and the following criteria.
- D Aggregates are visually observed. Dispersibility is very poor.
- volume resistivity (conductivity)> The volume resistivity of the resulting carbon nanotube dispersion paste was further measured using a 5% by mass solution of polyvinylidene fluoride (manufactured by Kureha Corporation, product name "KF Polymer W#7300", solvent: N-methyl-2-pyrrolidone) as a binder.
- the carbon nanotube-dispersed paste and the KF Polymer W#7300 solution were weighed out so that the ratio of the mass of the carbon nanotubes (B) in the obtained carbon nanotube-dispersed paste to the combined mass of the dispersed resin (A) solid content and the KF Polymer W#7300 solid content in the carbon nanotube-dispersed paste was 5:100, and the mixture was mixed for 2 minutes with an ultrasonic homogenizer to obtain a measurement sample.
- a sample for measurement was applied to a glass plate (2 mm x 100 mm x 150 mm) by the doctor blade method, and then dried by heating at 80 ° C. for 60 minutes to form a coating film on the glass plate.
- the volume resistivity was evaluated according to the following criteria. A: The volume resistivity is less than 5 ⁇ cm and the electrical conductivity is good. B: The volume resistivity is 5 ⁇ cm or more and less than 15 ⁇ cm, and the electrical conductivity is normal. D: The volume resistivity is 15 ⁇ cm or more, and the electrical conductivity is poor.
- ⁇ Initial viscosity> The viscosity of the obtained composite paste was measured at a shear rate of 2.0 sec -1 using a cone and plate viscometer (manufactured by HAAKE Corporation, trade name "Mars2", diameter 35 mm, 2° inclined cone and plate) and evaluated according to the following criteria.
- C Viscosity is 20 Pa ⁇ s or more and less than 50 Pa ⁇ s.
- D Viscosity is 50 Pa ⁇ s or more.
- Viscosity increase rate (%) viscosity after storage (mPa ⁇ s) / initial viscosity (mPa ⁇ s) ⁇ 100 - 100 S: The viscosity increase rate (%) after storage is less than 10%.
- A The viscosity increase rate (%) after storage is 10% or more and less than 20%.
- B The viscosity increase rate (%) after storage is 20% or more and less than 50%.
- C The viscosity increase rate (%) after storage is 50% or more and less than 200%.
- D The viscosity increase rate (%) after storage is 200% or more (or gelation makes it impossible to measure).
- Example 3C The composite paste obtained in Example 3B was applied in strips by roller coating to both sides of a long aluminum foil (positive electrode current collector) having an average thickness of 15 ⁇ m so that the basis weight per side was 10 mg/cm 2 (based on solid content), and then dried (drying temperature 180° C., 30 minutes) to form a positive electrode layer.
- the positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled by a roll press machine to adjust the properties.
- the resulting electrode layer had a residual solvent amount of less than 1% and was an electrode layer with good finish and other properties.
- the vapor evaporated during the heating and drying in the above step was recovered to obtain a recovered solution (mixed solution).
- the mixed solution was then placed in a flask equipped with a condenser, and the flask was heated to 185°C or higher to distill off the amine (benzylamine). This was continued until the amine content reached 1000 ppm (note 2), producing a regenerated N-methyl-2-pyrrolidone.
- the water content of the regenerated N-methyl-2-pyrrolidone was 1000 ppm (note 2).
- Application example 2C As in Application Example 1, the composite paste was applied in a strip shape on an aluminum foil (positive electrode current collector), and then the insulating paste of Example 5A described in International Publication No. 2021/193286 was applied to both ends of the composite paste on the aluminum foil (positive electrode current collector) to install an electrode insulating part. Then, the electrode was dried (drying temperature 180 ° C., 30 minutes) to form a positive electrode layer and an insulating part. The positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled with a roll press machine to adjust the properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention addresses the problem of providing: production methods for a composite paste and a carbon nanotube dispersion paste that have excellent pigment dispersibility and storage stability even at high pigment concentrations; and a lithium ion secondary battery electrode layer that has excellent performance (electric conductivity, battery characteristics, etc.). Provided as a solution is a production method for a carbon nanotube dispersion paste, said production method comprising a step for mixing and dispersing a component containing a dispersion resin (A) that has a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) that has a moisture content of less than 10000 ppm, and a polyvinylidene fluoride (D) that can be included as necessary, said production method being characterized in that the moisture content of the carbon nanotube dispersion paste is less than 10000 ppm.
Description
本発明は、高顔料濃度においても、導電性、顔料分散性、及び貯蔵安定性に優れるカーボンナノチューブ分散ペースト(本発明では導電性顔料ペーストともいう)、合材ペースト、及び、リチウムイオン二次電池用電極層を製造する方法、並びに優れた電池性能を有する電池用電極層を製造する方法に関する。
The present invention relates to a carbon nanotube dispersion paste (also referred to as a conductive pigment paste in the present invention) that has excellent electrical conductivity, pigment dispersibility, and storage stability even at a high pigment concentration, a composite paste, a method for producing an electrode layer for a lithium ion secondary battery, and a method for producing an electrode layer for a battery that has excellent battery performance.
従来、顔料を顔料分散樹脂及び溶媒等の混合物中に分散させたペースト状の顔料分散体が、塗料、電池用電極、塗工材、コーティング材、電磁波シールド、ディスプレイパネル、タッチスクリーンパネル、着色フィルム、着色シート、化粧材、保護材、磁石改質材、印刷用インキ、デバイス部材、電子機器部材、プリント配線板、太陽電池、機能性ゴム部材、樹脂成形膜等の分野で広く用いられている。さらに、これらの材料に静電塗装性、導電性、電磁波シールド性、帯電防止性等の機能を付与するために導電性顔料や導電性高分子等を含有させている。
Traditionally, paste-like pigment dispersions, in which pigments are dispersed in a mixture of pigment dispersion resins and solvents, have been widely used in fields such as paints, battery electrodes, coating materials, electromagnetic shielding, display panels, touch screen panels, colored films, colored sheets, decorative materials, protective materials, magnet modifiers, printing inks, device components, electronic equipment components, printed wiring boards, solar cells, functional rubber components, and resin molding films. Furthermore, conductive pigments and conductive polymers are added to these materials to impart functions such as electrostatic paintability, conductivity, electromagnetic shielding, and antistatic properties.
これらの分野では、顔料の分散性、貯蔵安定性、導電性、塗工性、仕上がり性等の性能向上がますます要求されており、そのため、優れた顔料分散能力と、形成された顔料分散体中の顔料粒子を再凝集させないだけの優れた顔料分散安定性を有する顔料分散樹脂及び顔料ペーストの開発がなされつつある。
In these fields, there is an increasing demand for improved pigment dispersibility, storage stability, electrical conductivity, coatability, finish, and other performance features. As a result, pigment dispersion resins and pigment pastes are being developed that have excellent pigment dispersion capabilities and excellent pigment dispersion stability that prevents re-agglomeration of pigment particles in the formed pigment dispersion.
顔料ペーストの設計にあたっては、顔料分散樹脂が塗工膜等の最終製品そのものの導電性能等に悪い影響を及ぼさないように、あるいは溶媒及び顔料分散樹脂の使用量を低減することや乾燥時の使用エネルギーを低減する観点から、少量の顔料分散樹脂で高濃度かつ均一に分散された顔料ペーストを作製することが重要となっている。
When designing a pigment paste, it is important to create a highly concentrated, uniformly dispersed pigment paste using a small amount of pigment dispersion resin so that the pigment dispersion resin does not adversely affect the conductive properties of the final product itself, such as the coating film, and from the perspective of reducing the amount of solvent and pigment dispersion resin used and reducing the energy used during drying.
例えば、特許文献1には、繊維状炭素を含んだ溶媒をメディア(以降、「メジア」と表記することもある)型分散機により分散化してスラリーを得、前記スラリーを電極活物質と混練することにより集電体に塗布するスラリーを得ることを特徴とする、リチウム二次電池の電極用スラリーの製造方法が開示されている。しかしながら、高顔料濃度及び/又は高粘度のペーストの場合は、均一な分散ができず、貯蔵安定性が悪いことがあった。特にスラリーに水分が多く含んでいると高粘度化やゲル化が起こることがあった。
For example, Patent Document 1 discloses a method for producing a slurry for electrodes of lithium secondary batteries, which is characterized by dispersing a solvent containing fibrous carbon with a media (hereinafter sometimes written as "media") type disperser to obtain a slurry, and kneading the slurry with an electrode active material to obtain a slurry to be applied to a current collector. However, in the case of a paste with a high pigment concentration and/or high viscosity, uniform dispersion cannot be achieved and storage stability is sometimes poor. In particular, if the slurry contains a large amount of water, high viscosity and gelation can occur.
本発明の目的は、高顔料濃度及び/又は高粘度のペーストにおいても顔料分散性と貯蔵安定性に優れるカーボンナノチューブ分散ペーストの製造方法及び合材ペーストの製造方法を提供することであって、さらに、仕上がり性、及び導電性等に優れるリチウムイオン二次電池用電極層を提供することである。
The object of the present invention is to provide a method for producing a carbon nanotube-dispersed paste and a method for producing a composite paste that are excellent in pigment dispersibility and storage stability even in a paste with a high pigment concentration and/or high viscosity, and further to provide an electrode layer for a lithium-ion secondary battery that is excellent in finish quality, conductivity, etc.
本発明者等は、上記課題を解決するために鋭意検討した結果、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストの製造方法であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満である製造方法によって、上記課題の解決が達成できることを見出し、本発明を完成するに至った。
As a result of intensive research into solving the above problems, the inventors have discovered that the above problems can be solved by a method for producing a carbon nanotube dispersion paste, which includes a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a moisture content of less than 10,000 ppm, and polyvinylidene fluoride (D), which can be included as necessary, and in which the moisture content of the carbon nanotube dispersion paste is less than 10,000 ppm, and thus has completed the present invention.
即ち、本発明は、以下のカーボンナノチューブ分散ペースト、合材ペースト、及びリチウムイオン二次電池用電極層の製造方法を提供するものである。
項1.
複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストの製造方法であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満であることを特徴とするカーボンナノチューブ分散ペーストの製造方法。
項2.
露点10℃以下の雰囲気下で混合及び/又は分散を行なうことを特徴とする項1に記載のカーボンナノチューブ分散ペーストの製造方法。
項3.
前記複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、アミノ基及びシアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ極性官能基濃度が0.1mmol/g~8.5mmol/gであることを特徴とする項1又は2に記載のカーボンナノチューブ分散ペーストの製造方法。
項4.
前記溶媒(C)が、N-メチル-2-ピロリドンの再生品を含み、N-メチル-2-ピロリドン中の水分量を10000ppm未満に管理することを特徴とする項1~3のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項5.
カーボンナノチューブ分散ペーストが、前記ポリフッ化ビニリデン(D)を含有することを特徴とする項1~4のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項6.
前記ポリフッ化ビニリデン(D)を混合する工程が、予め40℃以上の液温の溶媒と混合及び溶解する工程を含むか、若しくはポリフッ化ビニリデン(D)と溶媒とを混合してから40℃以上の温度に加温する工程を含むことを特徴とする項5に記載のカーボンナノチューブ分散ペーストの製造方法。
項7.
カーボンナノチューブ分散ペーストが、さらに高極性低分子量成分(E)を含有することを特徴とする項1~6のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項8.
カーボンナノチューブ分散ペーストが、さらに脱水剤(F)を含有することを特徴とする項1~7のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項9.
前記カーボンナノチューブ(B)が、予めメジア型粉砕機で乾式分散してなることを特徴とする項1~8のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項10.
前記混合及び分散する工程が、
工程1:分散後に得られるカーボンナノチューブ分散ペーストに含まれるカーボンナノチューブ(B)の総量100質量%を基準として、70質量%以下の量となるカーボンナノチューブ(B)を含む成分を分散機内に添加し、分散処理を行う工程、及び
工程2:所望の濃度になるまでカーボンナノチューブ(B)を分散機内に添加して分散処理を行う工程、
を順次行う工程を含むことを特徴とする項1~9のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項11.
カーボンナノチューブ(B)の吸湿量をY(質量%)とし、BET比表面積をZ(m2/g)とした場合に、下記式;
X=Y×Z
で得られるXの値が、X≦500の範囲内であり、
吸湿量Yの測定条件が、140℃の温度で3時間乾燥させて得たカーボンナノチューブの質量をY1とし、さらに温度20℃、相対湿度65%の条件で24時間放置して得たカーボンナノチューブの質量をY2とした場合に、下記式
吸湿量Y=(Y2-Y1)/Y1×100
で得られるYの値(質量%)を吸湿量Yとすることを特徴とする項1~10のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項12.
項1~11のカーボンナノチューブ分散ペースト製造方法で得られるカーボンナノチューブ分散ペーストと電極活物質(G)を混合する工程を含む、リチウムイオン二次電池用合材ペーストの製造方法。
項13.
下記工程;
複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストを製造する工程であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満である工程、並びに、
前記カーボンナノチューブ分散ペーストと電極活物質(G)を混合する工程を含む、リチウムイオン二次電池用合材ペーストを製造する工程であって、該合材ペーストの水分量が10000ppm未満であり、該電極活物質(G)が、その表面の少なくとも一部をカーボンナノチューブで覆った電極活物質複合体(G-1)である工程、
を含むリチウムイオン二次電池用合材ペーストの製造方法。
項14.
項12に記載の製造方法で得られる合材ペーストを集電体に塗工する工程を含むリチウムイオン二次電池用電極層の製造方法。
項15.
項14に記載の製造方法で得られた電極層の端部又は上層に電極絶縁部を塗工する工程を含むリチウムイオン二次電池用電極の製造方法。
項16.
項14に記載の製造方法で得られた電極層を有する正極、負極、非水電解液、及びセパレータを用いるリチウムイオン二次電池の製造方法。 That is, the present invention provides the following carbon nanotube dispersion paste, composite paste, and method for producing an electrode layer for a lithium ion secondary battery.
Item 1.
A method for producing a carbon nanotube dispersion paste, comprising a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a moisture content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, wherein the moisture content of the carbon nanotube dispersion paste is less than 10,000 ppm.
Item 2.
2. A method for producing a carbon nanotube dispersion paste according to item 1, characterized in that the mixing and/or dispersion is carried out in an atmosphere with a dew point of 10° C. or less.
Item 3.
Item 3. The method for producing a carbon nanotube dispersion paste according to item 1 or 2, characterized in that the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group and a cyano group, and has a polar functional group concentration of 0.1 mmol/g to 8.5 mmol/g.
Item 4.
Item 4. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 3, characterized in that the solvent (C) contains a recycled product of N-methyl-2-pyrrolidone, and the water content in N-methyl-2-pyrrolidone is controlled to less than 10,000 ppm.
Item 5.
5. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 4, wherein the carbon nanotube dispersion paste contains the polyvinylidene fluoride (D).
Item 6.
6. The method for producing a carbon nanotube dispersion paste according to item 5, wherein the step of mixing the polyvinylidene fluoride (D) includes a step of mixing and dissolving the polyvinylidene fluoride (D) with a solvent having a liquid temperature of 40° C. or higher in advance, or a step of mixing the polyvinylidene fluoride (D) with a solvent and then heating the mixture to a temperature of 40° C. or higher.
Item 7.
7. The method for producing a carbon nanotube-dispersed paste according to any one of items 1 to 6, wherein the carbon nanotube-dispersed paste further contains a highly polar, low-molecular-weight component (E).
Item 8.
8. The method for producing a carbon nanotube-dispersed paste according to any one of items 1 to 7, wherein the carbon nanotube-dispersed paste further contains a dehydrating agent (F).
Item 9.
9. The method for producing a carbon nanotube-dispersed paste according to any one of items 1 to 8, wherein the carbon nanotubes (B) are previously dry-dispersed using a media-type grinder.
Item 10.
The mixing and dispersing step comprises:
Step 1: adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process; and Step 2: adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process.
10. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 9, comprising the steps of:
Item 11.
When the moisture absorption amount of the carbon nanotube (B) is Y (mass%) and the BET specific surface area is Z (m 2 /g), the following formula:
X = Y x Z
The value of X obtained by the above is in the range of X≦500,
The moisture absorption amount Y is measured under the following conditions: the mass of carbon nanotubes obtained by drying at 140° C. for 3 hours is Y1, and the mass of carbon nanotubes obtained by leaving at 20° C. for 24 hours under conditions of a relative humidity of 65% is Y2. The moisture absorption amount Y is calculated by the following formula: Y=(Y2-Y1)/Y1×100.
Item 11. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 10, wherein the value of Y (% by mass) obtained in step (a) is defined as the moisture absorption amount Y.
Item 12.
Item 12. A method for producing a composite paste for a lithium ion secondary battery, comprising mixing the carbon nanotube-dispersed paste obtained by the carbon nanotube-dispersed paste production method according to any one of Items 1 to 11 with an electrode active material (G).
Item 13.
The following steps:
A process for producing a carbon nanotube dispersion paste, the process comprising a process for mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, the carbon nanotube dispersion paste having a water content of less than 10,000 ppm; and
A step of producing a composite paste for a lithium ion secondary battery, the step including a step of mixing the carbon nanotube dispersion paste with an electrode active material (G), the composite paste having a moisture content of less than 10,000 ppm, and the electrode active material (G) being an electrode active material composite (G-1) having at least a part of its surface covered with carbon nanotubes;
A method for producing a composite paste for a lithium ion secondary battery comprising the steps of:
Item 14.
Item 13. A method for producing an electrode layer for a lithium ion secondary battery, comprising the step of applying the composite paste obtained by the method for producing the electrode layer for a lithium ion secondary battery to a current collector.
Item 15.
Item 15. A method for producing an electrode for a lithium ion secondary battery, comprising the step of applying an electrode insulating part to an end or an upper layer of the electrode layer obtained by the production method according to item 14.
Item 16.
Item 15. A method for producing a lithium ion secondary battery using a positive electrode having an electrode layer obtained by the production method according to item 14, a negative electrode, a non-aqueous electrolyte, and a separator.
項1.
複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストの製造方法であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満であることを特徴とするカーボンナノチューブ分散ペーストの製造方法。
項2.
露点10℃以下の雰囲気下で混合及び/又は分散を行なうことを特徴とする項1に記載のカーボンナノチューブ分散ペーストの製造方法。
項3.
前記複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、アミノ基及びシアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ極性官能基濃度が0.1mmol/g~8.5mmol/gであることを特徴とする項1又は2に記載のカーボンナノチューブ分散ペーストの製造方法。
項4.
前記溶媒(C)が、N-メチル-2-ピロリドンの再生品を含み、N-メチル-2-ピロリドン中の水分量を10000ppm未満に管理することを特徴とする項1~3のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項5.
カーボンナノチューブ分散ペーストが、前記ポリフッ化ビニリデン(D)を含有することを特徴とする項1~4のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項6.
前記ポリフッ化ビニリデン(D)を混合する工程が、予め40℃以上の液温の溶媒と混合及び溶解する工程を含むか、若しくはポリフッ化ビニリデン(D)と溶媒とを混合してから40℃以上の温度に加温する工程を含むことを特徴とする項5に記載のカーボンナノチューブ分散ペーストの製造方法。
項7.
カーボンナノチューブ分散ペーストが、さらに高極性低分子量成分(E)を含有することを特徴とする項1~6のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項8.
カーボンナノチューブ分散ペーストが、さらに脱水剤(F)を含有することを特徴とする項1~7のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項9.
前記カーボンナノチューブ(B)が、予めメジア型粉砕機で乾式分散してなることを特徴とする項1~8のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項10.
前記混合及び分散する工程が、
工程1:分散後に得られるカーボンナノチューブ分散ペーストに含まれるカーボンナノチューブ(B)の総量100質量%を基準として、70質量%以下の量となるカーボンナノチューブ(B)を含む成分を分散機内に添加し、分散処理を行う工程、及び
工程2:所望の濃度になるまでカーボンナノチューブ(B)を分散機内に添加して分散処理を行う工程、
を順次行う工程を含むことを特徴とする項1~9のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項11.
カーボンナノチューブ(B)の吸湿量をY(質量%)とし、BET比表面積をZ(m2/g)とした場合に、下記式;
X=Y×Z
で得られるXの値が、X≦500の範囲内であり、
吸湿量Yの測定条件が、140℃の温度で3時間乾燥させて得たカーボンナノチューブの質量をY1とし、さらに温度20℃、相対湿度65%の条件で24時間放置して得たカーボンナノチューブの質量をY2とした場合に、下記式
吸湿量Y=(Y2-Y1)/Y1×100
で得られるYの値(質量%)を吸湿量Yとすることを特徴とする項1~10のいずれか1項に記載のカーボンナノチューブ分散ペーストの製造方法。
項12.
項1~11のカーボンナノチューブ分散ペースト製造方法で得られるカーボンナノチューブ分散ペーストと電極活物質(G)を混合する工程を含む、リチウムイオン二次電池用合材ペーストの製造方法。
項13.
下記工程;
複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストを製造する工程であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満である工程、並びに、
前記カーボンナノチューブ分散ペーストと電極活物質(G)を混合する工程を含む、リチウムイオン二次電池用合材ペーストを製造する工程であって、該合材ペーストの水分量が10000ppm未満であり、該電極活物質(G)が、その表面の少なくとも一部をカーボンナノチューブで覆った電極活物質複合体(G-1)である工程、
を含むリチウムイオン二次電池用合材ペーストの製造方法。
項14.
項12に記載の製造方法で得られる合材ペーストを集電体に塗工する工程を含むリチウムイオン二次電池用電極層の製造方法。
項15.
項14に記載の製造方法で得られた電極層の端部又は上層に電極絶縁部を塗工する工程を含むリチウムイオン二次電池用電極の製造方法。
項16.
項14に記載の製造方法で得られた電極層を有する正極、負極、非水電解液、及びセパレータを用いるリチウムイオン二次電池の製造方法。 That is, the present invention provides the following carbon nanotube dispersion paste, composite paste, and method for producing an electrode layer for a lithium ion secondary battery.
Item 1.
A method for producing a carbon nanotube dispersion paste, comprising a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a moisture content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, wherein the moisture content of the carbon nanotube dispersion paste is less than 10,000 ppm.
Item 2.
2. A method for producing a carbon nanotube dispersion paste according to item 1, characterized in that the mixing and/or dispersion is carried out in an atmosphere with a dew point of 10° C. or less.
Item 3.
Item 3. The method for producing a carbon nanotube dispersion paste according to item 1 or 2, characterized in that the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group and a cyano group, and has a polar functional group concentration of 0.1 mmol/g to 8.5 mmol/g.
Item 4.
Item 4. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 3, characterized in that the solvent (C) contains a recycled product of N-methyl-2-pyrrolidone, and the water content in N-methyl-2-pyrrolidone is controlled to less than 10,000 ppm.
Item 5.
5. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 4, wherein the carbon nanotube dispersion paste contains the polyvinylidene fluoride (D).
Item 6.
6. The method for producing a carbon nanotube dispersion paste according to item 5, wherein the step of mixing the polyvinylidene fluoride (D) includes a step of mixing and dissolving the polyvinylidene fluoride (D) with a solvent having a liquid temperature of 40° C. or higher in advance, or a step of mixing the polyvinylidene fluoride (D) with a solvent and then heating the mixture to a temperature of 40° C. or higher.
Item 7.
7. The method for producing a carbon nanotube-dispersed paste according to any one of items 1 to 6, wherein the carbon nanotube-dispersed paste further contains a highly polar, low-molecular-weight component (E).
Item 8.
8. The method for producing a carbon nanotube-dispersed paste according to any one of items 1 to 7, wherein the carbon nanotube-dispersed paste further contains a dehydrating agent (F).
Item 9.
9. The method for producing a carbon nanotube-dispersed paste according to any one of items 1 to 8, wherein the carbon nanotubes (B) are previously dry-dispersed using a media-type grinder.
Item 10.
The mixing and dispersing step comprises:
Step 1: adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process; and Step 2: adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process.
10. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 9, comprising the steps of:
Item 11.
When the moisture absorption amount of the carbon nanotube (B) is Y (mass%) and the BET specific surface area is Z (m 2 /g), the following formula:
X = Y x Z
The value of X obtained by the above is in the range of X≦500,
The moisture absorption amount Y is measured under the following conditions: the mass of carbon nanotubes obtained by drying at 140° C. for 3 hours is Y1, and the mass of carbon nanotubes obtained by leaving at 20° C. for 24 hours under conditions of a relative humidity of 65% is Y2. The moisture absorption amount Y is calculated by the following formula: Y=(Y2-Y1)/Y1×100.
Item 11. The method for producing a carbon nanotube dispersion paste according to any one of items 1 to 10, wherein the value of Y (% by mass) obtained in step (a) is defined as the moisture absorption amount Y.
Item 12.
Item 12. A method for producing a composite paste for a lithium ion secondary battery, comprising mixing the carbon nanotube-dispersed paste obtained by the carbon nanotube-dispersed paste production method according to any one of Items 1 to 11 with an electrode active material (G).
Item 13.
The following steps:
A process for producing a carbon nanotube dispersion paste, the process comprising a process for mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, the carbon nanotube dispersion paste having a water content of less than 10,000 ppm; and
A step of producing a composite paste for a lithium ion secondary battery, the step including a step of mixing the carbon nanotube dispersion paste with an electrode active material (G), the composite paste having a moisture content of less than 10,000 ppm, and the electrode active material (G) being an electrode active material composite (G-1) having at least a part of its surface covered with carbon nanotubes;
A method for producing a composite paste for a lithium ion secondary battery comprising the steps of:
Item 14.
Item 13. A method for producing an electrode layer for a lithium ion secondary battery, comprising the step of applying the composite paste obtained by the method for producing the electrode layer for a lithium ion secondary battery to a current collector.
Item 15.
Item 15. A method for producing an electrode for a lithium ion secondary battery, comprising the step of applying an electrode insulating part to an end or an upper layer of the electrode layer obtained by the production method according to item 14.
Item 16.
Item 15. A method for producing a lithium ion secondary battery using a positive electrode having an electrode layer obtained by the production method according to item 14, a negative electrode, a non-aqueous electrolyte, and a separator.
本発明のカーボンナノチューブ分散ペーストの製造方法は、高顔料濃度及び/又は高粘度においても、顔料の分散性、貯蔵安定性に優れ、比較的少ない分散樹脂の配合量で充分にペーストの粘度を低下させることができる。また、そのリチウムイオン二次電池用電極層は、仕上がり性、導電性、及び電池性能等に優れる。
The method for producing a carbon nanotube dispersion paste of the present invention is excellent in pigment dispersibility and storage stability even at high pigment concentrations and/or high viscosities, and can sufficiently reduce the viscosity of the paste with a relatively small amount of dispersion resin. In addition, the electrode layer for lithium ion secondary batteries produced by this method is excellent in finish, conductivity, battery performance, etc.
以下、本発明を実施するための形態について詳細に説明する。
The following provides a detailed explanation of how to implement the present invention.
なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
本発明は、カーボンナノチューブを含有するペーストを「カーボンナノチューブ分散ペースト」と呼ぶが「導電性顔料ペースト」と言い換えることもできる。
前記カーボンナノチューブ分散ペーストを塗工するために少なくとも一種の電極活物質及び任意選択でその他の各種成分をさらに配合して調製したペーストを「合材ペースト」という。前記合材ペーストを被塗物に塗工して乾燥したものを「塗工膜」、又は「合材層」という。
前記カーボンナノチューブ分散ペーストは実質的に電極活物質を含有していないペーストであるといえる。
前記カーボンナノチューブを「CNT」と略すこともできる。
塗工膜が電池用電極に用いられる場合は「電極層」とも言い換えることができる。 It should be understood that the present invention is not limited to the following embodiments, but includes various modified examples that are implemented within the scope that does not deviate from the gist of the present invention.
In the present invention, the paste containing carbon nanotubes is called a "carbon nanotube dispersion paste", but it can also be called an "conductive pigment paste".
The paste prepared by further mixing at least one electrode active material and, optionally, other various components in order to coat the carbon nanotube dispersion paste is called a "composite paste." The composite paste that is coated on a substrate and dried is called a "coating film" or a "composite layer."
It can be said that the carbon nanotube dispersion paste is a paste that does not substantially contain an electrode active material.
The carbon nanotubes can also be abbreviated as "CNT."
When the coating film is used as an electrode for a battery, it can also be called an "electrode layer."
本発明は、カーボンナノチューブを含有するペーストを「カーボンナノチューブ分散ペースト」と呼ぶが「導電性顔料ペースト」と言い換えることもできる。
前記カーボンナノチューブ分散ペーストを塗工するために少なくとも一種の電極活物質及び任意選択でその他の各種成分をさらに配合して調製したペーストを「合材ペースト」という。前記合材ペーストを被塗物に塗工して乾燥したものを「塗工膜」、又は「合材層」という。
前記カーボンナノチューブ分散ペーストは実質的に電極活物質を含有していないペーストであるといえる。
前記カーボンナノチューブを「CNT」と略すこともできる。
塗工膜が電池用電極に用いられる場合は「電極層」とも言い換えることができる。 It should be understood that the present invention is not limited to the following embodiments, but includes various modified examples that are implemented within the scope that does not deviate from the gist of the present invention.
In the present invention, the paste containing carbon nanotubes is called a "carbon nanotube dispersion paste", but it can also be called an "conductive pigment paste".
The paste prepared by further mixing at least one electrode active material and, optionally, other various components in order to coat the carbon nanotube dispersion paste is called a "composite paste." The composite paste that is coated on a substrate and dried is called a "coating film" or a "composite layer."
It can be said that the carbon nanotube dispersion paste is a paste that does not substantially contain an electrode active material.
The carbon nanotubes can also be abbreviated as "CNT."
When the coating film is used as an electrode for a battery, it can also be called an "electrode layer."
本発明において、カーボンナノチューブ分散ペーストの水分量を10000ppm未満〔さらに溶媒(C)の水分量を10000ppm未満〕にすることで、貯蔵での高粘度化やゲル化を抑制できる。
In the present invention, by making the moisture content of the carbon nanotube dispersion paste less than 10,000 ppm (and further making the moisture content of the solvent (C) less than 10,000 ppm), it is possible to suppress high viscosity and gelation during storage.
カーボンナノチューブ分散ペースト及び(リチウムイオン二次電池用)合材ペーストが高粘度化、ゲル化する機構は明らかになってはいないが、下記のようなメカニズムが推測される。
例えば、ポリフッ化ビニリデンを含む合材ペーストにおいては、ポリフッ化ビニリデン中のフッ素基に隣接するプロトンの酸性度はフッ素基の電子吸引性により非常に高くなっており、そのため、特に塩基性の条件では容易にこのプロトン脱離が進行する。かかるプロトン脱離はカーボンナノチューブ分散ペースト及び合材ペースト中に水分が存在する場合に特に進みやすいものと推測される。プロトン脱離後の炭素上には陰イオンが生じ、当該陰イオンによりフッ素基の脱離が促され、そしてポリフッ化ビニリデン分子の主鎖中に二重結合が生じることになる。そして、二重結合を有することとなった複数のポリフッ化ビニリデン分子が重合し、さらなる高分子化をして、粘度上昇、ゲル化に至るものと推測される。特に合材ペースト中の電極活物質は比較的強塩基の水酸化リチウムを含む場合があるため、高粘度化、ゲル化は合材ペーストにおいて顕著である。 The mechanism by which the carbon nanotube dispersion paste and the composite paste (for lithium ion secondary batteries) become viscous and gelate has not been clarified, but the following mechanism is presumed.
For example, in a composite paste containing polyvinylidene fluoride, the acidity of the proton adjacent to the fluorine group in polyvinylidene fluoride is very high due to the electron-attracting property of the fluorine group, and therefore, this proton desorption proceeds easily, especially under basic conditions. It is speculated that such proton desorption is particularly likely to proceed when moisture is present in the carbon nanotube dispersion paste and the composite paste. After proton desorption, anions are generated on the carbon, which promotes the desorption of the fluorine group, and double bonds are generated in the main chain of the polyvinylidene fluoride molecule. It is speculated that the multiple polyvinylidene fluoride molecules that have double bonds are polymerized and further polymerized, leading to an increase in viscosity and gelation. In particular, since the electrode active material in the composite paste may contain lithium hydroxide, which is a relatively strong base, the increase in viscosity and gelation are remarkable in the composite paste.
例えば、ポリフッ化ビニリデンを含む合材ペーストにおいては、ポリフッ化ビニリデン中のフッ素基に隣接するプロトンの酸性度はフッ素基の電子吸引性により非常に高くなっており、そのため、特に塩基性の条件では容易にこのプロトン脱離が進行する。かかるプロトン脱離はカーボンナノチューブ分散ペースト及び合材ペースト中に水分が存在する場合に特に進みやすいものと推測される。プロトン脱離後の炭素上には陰イオンが生じ、当該陰イオンによりフッ素基の脱離が促され、そしてポリフッ化ビニリデン分子の主鎖中に二重結合が生じることになる。そして、二重結合を有することとなった複数のポリフッ化ビニリデン分子が重合し、さらなる高分子化をして、粘度上昇、ゲル化に至るものと推測される。特に合材ペースト中の電極活物質は比較的強塩基の水酸化リチウムを含む場合があるため、高粘度化、ゲル化は合材ペーストにおいて顕著である。 The mechanism by which the carbon nanotube dispersion paste and the composite paste (for lithium ion secondary batteries) become viscous and gelate has not been clarified, but the following mechanism is presumed.
For example, in a composite paste containing polyvinylidene fluoride, the acidity of the proton adjacent to the fluorine group in polyvinylidene fluoride is very high due to the electron-attracting property of the fluorine group, and therefore, this proton desorption proceeds easily, especially under basic conditions. It is speculated that such proton desorption is particularly likely to proceed when moisture is present in the carbon nanotube dispersion paste and the composite paste. After proton desorption, anions are generated on the carbon, which promotes the desorption of the fluorine group, and double bonds are generated in the main chain of the polyvinylidene fluoride molecule. It is speculated that the multiple polyvinylidene fluoride molecules that have double bonds are polymerized and further polymerized, leading to an increase in viscosity and gelation. In particular, since the electrode active material in the composite paste may contain lithium hydroxide, which is a relatively strong base, the increase in viscosity and gelation are remarkable in the composite paste.
本発明においては、水分量を規定した原材料を用い、かつカーボンナノチューブ分散ペースト及び合材ペーストの水分量を規定することにより、高分子成分(ポリフッ化ビニリデン)の重合を抑制し、カーボンナノチューブ分散ペースト又は(リチウムイオン二次電池用)合材ペーストの粘度上昇、ゲル化を抑えることができたものと考えられる。
また、上記水分は各種原材料(特に溶媒)からの持ち込みや製造工程で大気中に含まれる水蒸気からの混入などがあるためゼロにすることは実質的に不可能である。
従って、本発明で用いることができるカーボンナノチューブ分散ペーストの水分量としては100ppm以上が好ましく、200ppm以上がより好ましく、500ppm以上がさらに好ましい。また、溶媒(C)の水分量としては100ppm以上が好ましく、200ppm以上がより好ましく、500ppm以上がさらに好ましい。
上記の下限であれば、原材料の過度の水分量管理(水分量低減)や製造工程の過度の水分量管理(水分混入低減)をすることなく製造することができる。
また、本発明のペーストの製造においては、露点10℃以下、より好ましくは露点7℃以下、さらに好ましくは露点5℃以下の雰囲気下で混合及び/又は顔料分散を行なうことが、水分の混入低減と貯蔵安定性の観点から好ましい。 In the present invention, it is believed that by using raw materials with a specified moisture content and by specifying the moisture content of the carbon nanotube dispersion paste and composite paste, polymerization of the polymer component (polyvinylidene fluoride) is suppressed, and the viscosity increase and gelation of the carbon nanotube dispersion paste or composite paste (for lithium ion secondary batteries) can be suppressed.
Furthermore, since the moisture is brought in from various raw materials (particularly solvents) and is mixed in from water vapor contained in the air during the manufacturing process, it is practically impossible to reduce the moisture to zero.
Therefore, the water content of the carbon nanotube dispersion paste that can be used in the present invention is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more. The water content of the solvent (C) is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more.
If it is within the above lower limit, production can be performed without excessive moisture content control of the raw materials (reduction of moisture content) or excessive moisture content control in the production process (reduction of moisture contamination).
In addition, in producing the paste of the present invention, it is preferable to carry out mixing and/or pigment dispersion in an atmosphere having a dew point of 10° C. or less, more preferably a dew point of 7° C. or less, and even more preferably a dew point of 5° C. or less, from the viewpoints of reducing moisture contamination and storage stability.
また、上記水分は各種原材料(特に溶媒)からの持ち込みや製造工程で大気中に含まれる水蒸気からの混入などがあるためゼロにすることは実質的に不可能である。
従って、本発明で用いることができるカーボンナノチューブ分散ペーストの水分量としては100ppm以上が好ましく、200ppm以上がより好ましく、500ppm以上がさらに好ましい。また、溶媒(C)の水分量としては100ppm以上が好ましく、200ppm以上がより好ましく、500ppm以上がさらに好ましい。
上記の下限であれば、原材料の過度の水分量管理(水分量低減)や製造工程の過度の水分量管理(水分混入低減)をすることなく製造することができる。
また、本発明のペーストの製造においては、露点10℃以下、より好ましくは露点7℃以下、さらに好ましくは露点5℃以下の雰囲気下で混合及び/又は顔料分散を行なうことが、水分の混入低減と貯蔵安定性の観点から好ましい。 In the present invention, it is believed that by using raw materials with a specified moisture content and by specifying the moisture content of the carbon nanotube dispersion paste and composite paste, polymerization of the polymer component (polyvinylidene fluoride) is suppressed, and the viscosity increase and gelation of the carbon nanotube dispersion paste or composite paste (for lithium ion secondary batteries) can be suppressed.
Furthermore, since the moisture is brought in from various raw materials (particularly solvents) and is mixed in from water vapor contained in the air during the manufacturing process, it is practically impossible to reduce the moisture to zero.
Therefore, the water content of the carbon nanotube dispersion paste that can be used in the present invention is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more. The water content of the solvent (C) is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more.
If it is within the above lower limit, production can be performed without excessive moisture content control of the raw materials (reduction of moisture content) or excessive moisture content control in the production process (reduction of moisture contamination).
In addition, in producing the paste of the present invention, it is preferable to carry out mixing and/or pigment dispersion in an atmosphere having a dew point of 10° C. or less, more preferably a dew point of 7° C. or less, and even more preferably a dew point of 5° C. or less, from the viewpoints of reducing moisture contamination and storage stability.
[カーボンナノチューブ分散ペーストの製造方法]
本発明は、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストの製造方法であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満である。
また、カーボンナノチューブ分散ペーストの水分量は、7500ppm未満が好ましく、5000ppm未満がより好ましく、2500ppm未満がさらに好ましく、1000ppm未満が特に好ましい。
本発明におけるカーボンナノチューブ分散ペーストは、実質的に非水系のペーストといえる。 [Method of manufacturing carbon nanotube dispersion paste]
The present invention provides a method for producing a carbon nanotube dispersion paste, comprising a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, wherein the water content of the carbon nanotube dispersion paste is less than 10,000 ppm.
The water content of the carbon nanotube dispersion paste is preferably less than 7500 ppm, more preferably less than 5000 ppm, further preferably less than 2500 ppm, and particularly preferably less than 1000 ppm.
The carbon nanotube dispersion paste in the present invention can be said to be a substantially non-aqueous paste.
本発明は、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストの製造方法であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満である。
また、カーボンナノチューブ分散ペーストの水分量は、7500ppm未満が好ましく、5000ppm未満がより好ましく、2500ppm未満がさらに好ましく、1000ppm未満が特に好ましい。
本発明におけるカーボンナノチューブ分散ペーストは、実質的に非水系のペーストといえる。 [Method of manufacturing carbon nanotube dispersion paste]
The present invention provides a method for producing a carbon nanotube dispersion paste, comprising a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, wherein the water content of the carbon nanotube dispersion paste is less than 10,000 ppm.
The water content of the carbon nanotube dispersion paste is preferably less than 7500 ppm, more preferably less than 5000 ppm, further preferably less than 2500 ppm, and particularly preferably less than 1000 ppm.
The carbon nanotube dispersion paste in the present invention can be said to be a substantially non-aqueous paste.
本発明において、水分量は、カールフィッシャー電量滴定法にて測定できる。具体的には、カールフィッシャー水分率計(京都電子工業社製、商品名「MKC-610」)を用い、該装置に備えられた水分気化装置(京都電子社製、商品名「ADP-611」)の設定温度は130℃として測定できる。
In the present invention, the moisture content can be measured by Karl Fischer coulometric titration. Specifically, a Karl Fischer moisture meter (manufactured by Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610") is used, and the moisture vaporizer (manufactured by Kyoto Electronics Co., Ltd., product name "ADP-611") attached to the device is set at a temperature of 130°C.
複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)
上記複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)としては、樹脂中に複素環及び/又は炭素数12以上のアルキル基を有する樹脂であれば好適に用いることができる。
なお、前記複素環とは、その環状構造に炭素原子のほかに他の原子も含むものであり、他の原子とは、例えば、酸素、窒素、硫黄などである。また、複素環に含まれる環状構造の数は1つ又は2つであることが好ましく、1つであることがより好ましい。環を構成する炭素以外の他の原子としては、酸素及び/又は窒素が好ましく、酸素がより好ましい。環を構成する原子に炭素原子以外の原子を含むと、複素環内で分極が生じ、炭素系導電性顔料(本発明の場合はカーボンナノチューブ)に強く作用することができると考えられる。また、分散樹脂が複素環や炭素数12以上のアルキル基等の比較的嵩高い側鎖を有すると、立体反発によって顔料分散性と貯蔵安定性が向上すると考えられる。 Dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms
As the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, any resin having a heterocycle and/or an alkyl group having 12 or more carbon atoms in the resin can be suitably used.
The heterocycle includes other atoms in addition to carbon atoms in its ring structure, and the other atoms are, for example, oxygen, nitrogen, sulfur, etc. The number of ring structures included in the heterocycle is preferably one or two, and more preferably one. The atoms other than carbon constituting the ring are preferably oxygen and/or nitrogen, and more preferably oxygen. It is believed that when the atoms constituting the ring include atoms other than carbon atoms, polarization occurs in the heterocycle, and the carbon-based conductive pigment (carbon nanotubes in the present invention) can be strongly affected. It is also believed that when the dispersion resin has a relatively bulky side chain such as a heterocycle or an alkyl group having 12 or more carbon atoms, the pigment dispersibility and storage stability are improved due to steric repulsion.
上記複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)としては、樹脂中に複素環及び/又は炭素数12以上のアルキル基を有する樹脂であれば好適に用いることができる。
なお、前記複素環とは、その環状構造に炭素原子のほかに他の原子も含むものであり、他の原子とは、例えば、酸素、窒素、硫黄などである。また、複素環に含まれる環状構造の数は1つ又は2つであることが好ましく、1つであることがより好ましい。環を構成する炭素以外の他の原子としては、酸素及び/又は窒素が好ましく、酸素がより好ましい。環を構成する原子に炭素原子以外の原子を含むと、複素環内で分極が生じ、炭素系導電性顔料(本発明の場合はカーボンナノチューブ)に強く作用することができると考えられる。また、分散樹脂が複素環や炭素数12以上のアルキル基等の比較的嵩高い側鎖を有すると、立体反発によって顔料分散性と貯蔵安定性が向上すると考えられる。 Dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms
As the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, any resin having a heterocycle and/or an alkyl group having 12 or more carbon atoms in the resin can be suitably used.
The heterocycle includes other atoms in addition to carbon atoms in its ring structure, and the other atoms are, for example, oxygen, nitrogen, sulfur, etc. The number of ring structures included in the heterocycle is preferably one or two, and more preferably one. The atoms other than carbon constituting the ring are preferably oxygen and/or nitrogen, and more preferably oxygen. It is believed that when the atoms constituting the ring include atoms other than carbon atoms, polarization occurs in the heterocycle, and the carbon-based conductive pigment (carbon nanotubes in the present invention) can be strongly affected. It is also believed that when the dispersion resin has a relatively bulky side chain such as a heterocycle or an alkyl group having 12 or more carbon atoms, the pigment dispersibility and storage stability are improved due to steric repulsion.
分散樹脂(A)への複素環の導入方法は特に限定されないが、例えば、複素環を含むモノマーの(共)重合反応、重合体(樹脂)の変性反応、及び/又は付加反応などが挙げられる。複素環を含む重合性モノマーとしては、例えば、2-又は4-ビニルピリジン、N-ビニルイミダゾール、N-ビニルピロール、N-ビニル-2-ピロリドン、N-ビニル-ε-カプロラクタム、N-ビニル-2-ピペリドン、N-ビニル-3-モルホリノン、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン、グリシジル(メタ)アクリレート、無水マレイン酸、無水イタコン酸等が挙げられる。これらは、一種を単独で又は二種以上を組み合わせて用いることができる。
また、前記炭素数12以上のアルキル基とは、それ自体公知のアルキル基(炭化水素基)を特に制限なく用いることができ、直鎖状又は分岐状のアルキル基が好ましく、直鎖状のアルキル基がより好ましい。
前記炭素数12以上のアルキル基としては、炭素数12以上30未満のアルキル基が好ましく、15以上26未満のアルキル基がより好ましく、19以上24未満のアルキル基がさらに好ましい。
分散樹脂(A)への炭素数12以上のアルキル基の導入方法は特に限定されないが、例えば、炭素数12以上のアルキル基を含むモノマーの(共)重合反応、重合体(樹脂)の変性反応、及び/又は付加反応などが挙げられる。炭素数12以上のアルキル基を含む重合性モノマーとしては、例えば、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ラウリル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が挙げられる。これらは、一種を単独で又は二種以上を組み合わせて用いることができる。 The method of introducing a heterocycle into the dispersion resin (A) is not particularly limited, and examples thereof include (co)polymerization reaction of a monomer containing a heterocycle, modification reaction of a polymer (resin), and/or addition reaction. Examples of polymerizable monomers containing a heterocycle include 2- or 4-vinylpyridine, N-vinylimidazole, N-vinylpyrrole, N-vinyl-2-pyrrolidone, N-vinyl-ε-caprolactam, N-vinyl-2-piperidone, N-vinyl-3-morpholinone, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, glycidyl (meth)acrylate, maleic anhydride, itaconic anhydride, and the like. These may be used alone or in combination of two or more.
The alkyl group having 12 or more carbon atoms can be any known alkyl group (hydrocarbon group) without any particular limitation. A straight-chain or branched alkyl group is preferable, and a straight-chain alkyl group is more preferable.
The alkyl group having 12 or more carbon atoms is preferably an alkyl group having 12 or more and less than 30 carbon atoms, more preferably an alkyl group having 15 or more and less than 26 carbon atoms, and even more preferably an alkyl group having 19 or more and less than 24 carbon atoms.
The method of introducing an alkyl group having 12 or more carbon atoms into the dispersion resin (A) is not particularly limited, and examples thereof include (co)polymerization reaction of a monomer containing an alkyl group having 12 or more carbon atoms, modification reaction of a polymer (resin), and/or addition reaction. Examples of polymerizable monomers containing an alkyl group having 12 or more carbon atoms include lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, behenyl (meth)acrylate, lauryl (meth)acrylamide, stearyl (meth)acrylamide, behenyl (meth)acrylamide, etc. These can be used alone or in combination of two or more.
また、前記炭素数12以上のアルキル基とは、それ自体公知のアルキル基(炭化水素基)を特に制限なく用いることができ、直鎖状又は分岐状のアルキル基が好ましく、直鎖状のアルキル基がより好ましい。
前記炭素数12以上のアルキル基としては、炭素数12以上30未満のアルキル基が好ましく、15以上26未満のアルキル基がより好ましく、19以上24未満のアルキル基がさらに好ましい。
分散樹脂(A)への炭素数12以上のアルキル基の導入方法は特に限定されないが、例えば、炭素数12以上のアルキル基を含むモノマーの(共)重合反応、重合体(樹脂)の変性反応、及び/又は付加反応などが挙げられる。炭素数12以上のアルキル基を含む重合性モノマーとしては、例えば、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ラウリル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が挙げられる。これらは、一種を単独で又は二種以上を組み合わせて用いることができる。 The method of introducing a heterocycle into the dispersion resin (A) is not particularly limited, and examples thereof include (co)polymerization reaction of a monomer containing a heterocycle, modification reaction of a polymer (resin), and/or addition reaction. Examples of polymerizable monomers containing a heterocycle include 2- or 4-vinylpyridine, N-vinylimidazole, N-vinylpyrrole, N-vinyl-2-pyrrolidone, N-vinyl-ε-caprolactam, N-vinyl-2-piperidone, N-vinyl-3-morpholinone, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, glycidyl (meth)acrylate, maleic anhydride, itaconic anhydride, and the like. These may be used alone or in combination of two or more.
The alkyl group having 12 or more carbon atoms can be any known alkyl group (hydrocarbon group) without any particular limitation. A straight-chain or branched alkyl group is preferable, and a straight-chain alkyl group is more preferable.
The alkyl group having 12 or more carbon atoms is preferably an alkyl group having 12 or more and less than 30 carbon atoms, more preferably an alkyl group having 15 or more and less than 26 carbon atoms, and even more preferably an alkyl group having 19 or more and less than 24 carbon atoms.
The method of introducing an alkyl group having 12 or more carbon atoms into the dispersion resin (A) is not particularly limited, and examples thereof include (co)polymerization reaction of a monomer containing an alkyl group having 12 or more carbon atoms, modification reaction of a polymer (resin), and/or addition reaction. Examples of polymerizable monomers containing an alkyl group having 12 or more carbon atoms include lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, behenyl (meth)acrylate, lauryl (meth)acrylamide, stearyl (meth)acrylamide, behenyl (meth)acrylamide, etc. These can be used alone or in combination of two or more.
骨格となる樹脂の種類としては、後述するポリフッ化ビニリデン(D)以外の樹脂であれば特に限定されない。例えば、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂、アルキド樹脂、ウレタン樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、ポリ酢酸ビニル、シリコーン樹脂、ポリカーボネート樹脂、塩素系樹脂、及びこれらの複合樹脂等が挙げられる。これらの樹脂が複素環及び/又は炭素数12以上のアルキル基を含有していたり、又はこれらの樹脂を合成した後に付加又は変性して複素環及び/又は炭素数12以上のアルキル基を導入したりすることで複素環及び/又は炭素数12以上のアルキル基を有する樹脂を製造できる。これらの樹脂は、一種を単独で又は二種以上を組み合わせて用いることができる。
The type of resin that serves as the skeleton is not particularly limited as long as it is a resin other than polyvinylidene fluoride (D) described below. Examples include acrylic resins, polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, polyvinyl alcohol, polyvinyl acetal, polyvinylpyrrolidone, polyvinyl acetate, silicone resins, polycarbonate resins, chlorine-based resins, and composite resins thereof. These resins contain heterocycles and/or alkyl groups having 12 or more carbon atoms, or these resins are synthesized and then added or modified to introduce heterocycles and/or alkyl groups having 12 or more carbon atoms, thereby producing resins having heterocycles and/or alkyl groups having 12 or more carbon atoms. These resins can be used alone or in combination of two or more.
なかでも、顔料分散性、貯蔵安定性、及び仕上がり性等の観点から、分散樹脂(A)としては、下記式(1)の重合性不飽和基含有モノマーを含むモノマーを重合又は共重合することにより得られるビニル(共)重合体(A1)を含有することが好ましく、特に、少なくとも一種の(メタ)アクリロイル基を含有する重合性不飽和基含有モノマーを(共)重合したアクリル樹脂が好ましい。
尚、本発明の「(共)重合体」とは、一種類のモノマーを重合した重合体と二種以上のモノマーを共重合した共重合体の両方を含むものである。 Among these, from the viewpoints of pigment dispersibility, storage stability, finish quality, etc., the dispersing resin (A) preferably contains a vinyl (co)polymer (A1) obtained by polymerizing or copolymerizing a monomer containing a polymerizable unsaturated group-containing monomer of the following formula (1), and in particular, an acrylic resin (co)polymerized with at least one polymerizable unsaturated group-containing monomer containing a (meth)acryloyl group is preferred.
Incidentally, the "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
尚、本発明の「(共)重合体」とは、一種類のモノマーを重合した重合体と二種以上のモノマーを共重合した共重合体の両方を含むものである。 Among these, from the viewpoints of pigment dispersibility, storage stability, finish quality, etc., the dispersing resin (A) preferably contains a vinyl (co)polymer (A1) obtained by polymerizing or copolymerizing a monomer containing a polymerizable unsaturated group-containing monomer of the following formula (1), and in particular, an acrylic resin (co)polymerized with at least one polymerizable unsaturated group-containing monomer containing a (meth)acryloyl group is preferred.
Incidentally, the "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
C(-R)2=C(-R)2 ・・・式(1)
[上記式において、Rは、それぞれ同じでも異なってもよく、水素原子又は有機基である。またR同士が繋がって環状になっていてもよい。]
上記ビニル(共)重合体(A1)の重合方法は、それ自体既知の重合方法で製造することができ、例えば溶液重合を用いることが好ましいが、これに限られるものではなく、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。 C(-R) 2 =C(-R) 2 ...Formula (1)
[In the above formula, R may be the same or different and is a hydrogen atom or an organic group. R may be linked to each other to form a ring.]
The vinyl (co)polymer (A1) can be produced by a polymerization method known per se. For example, it is preferable to use solution polymerization, but this is not limited thereto. For example, bulk polymerization or emulsion polymerization can be used. When solution polymerization is carried out, it may be continuous polymerization or batch polymerization, and the monomers may be charged all at once or in portions, or may be charged continuously or It may be added intermittently.
[上記式において、Rは、それぞれ同じでも異なってもよく、水素原子又は有機基である。またR同士が繋がって環状になっていてもよい。]
上記ビニル(共)重合体(A1)の重合方法は、それ自体既知の重合方法で製造することができ、例えば溶液重合を用いることが好ましいが、これに限られるものではなく、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。 C(-R) 2 =C(-R) 2 ...Formula (1)
[In the above formula, R may be the same or different and is a hydrogen atom or an organic group. R may be linked to each other to form a ring.]
The vinyl (co)polymer (A1) can be produced by a polymerization method known per se. For example, it is preferable to use solution polymerization, but this is not limited thereto. For example, bulk polymerization or emulsion polymerization can be used. When solution polymerization is carried out, it may be continuous polymerization or batch polymerization, and the monomers may be charged all at once or in portions, or may be charged continuously or It may be added intermittently.
溶液重合において使用する重合開始剤は、特に限定するものではないが、具体的には、例えば、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビス-2,4-ジメチルパレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルパレロニトリル)等のアゾ化合物;アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物;ジイソプピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート等のパーエステル化合物;アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリル等の公知のラジカル重合開始剤を使用できる。
The polymerization initiator used in the solution polymerization is not particularly limited, but specific examples include azo compounds such as azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), azobis-2,4-dimethylparabennitrile, and azobis(4-methoxy-2,4-dimethylparabennitrile); acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, and 2,4,4-trimethylpentyl-2,4-dimethylparabennitrile. -Peroxides such as peroxyphenoxyacetate; percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; perester compounds such as t-butyl peroxyneodecanate, α-cumyl peroxyneodecanate, and t-butyl peroxyneodecanate; and known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used.
重合反応温度は、特に限定するものではないが、通常30℃以上200℃以下程度の範囲で設定できる。
The polymerization reaction temperature is not particularly limited, but can usually be set in the range of 30°C or higher and 200°C or lower.
上記のようにして得ることができるビニル(共)重合体(A1)は、重合度が例えば100以上、好ましくは150以上であり、例えば4,000以下、好ましくは3,000以下、より好ましくは700以下である。
The vinyl (co)polymer (A1) obtainable as described above has a degree of polymerization of, for example, 100 or more, preferably 150 or more, and, for example, 4,000 or less, preferably 3,000 or less, more preferably 700 or less.
また、重量平均分子量としては、例えば1,000以上、好ましくは2,000以上、より好ましくは7,000以上であり、例えば2,000,000以下、好ましくは1,000,000以下、より好ましくは500,000以下である。
The weight average molecular weight is, for example, 1,000 or more, preferably 2,000 or more, more preferably 7,000 or more, and, for example, 2,000,000 or less, preferably 1,000,000 or less, more preferably 500,000 or less.
なお、本明細書における重量平均分子量は、特に記載がない限り、ゲルパーミュエーションクロマトグラフ(GPC)を用いて測定した保持時間(保持容量)を、同一条件で測定した分子量既知の標準ポリスチレンの保持時間(保持容量)によりポリスチレンの分子量に換算して求めた値である。具体的には、ゲルパーミュエーションクロマトグラフとして、「HLC8120GPC」(東ソー社製、商品名)を用い、カラムとして、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」及び「TSKgel G-2000HXL」(いずれも東ソー社製、商品名)の4本を用い、移動相テトラヒドロフラン、測定温度40℃、流速1mL/min及び検出器RIの条件下で測定することができる。
In this specification, unless otherwise specified, the weight average molecular weight is a value obtained by converting the retention time (retention volume) measured using a gel permeation chromatograph (GPC) into the molecular weight of polystyrene using the retention time (retention volume) of a standard polystyrene of known molecular weight measured under the same conditions. Specifically, the gel permeation chromatograph is "HLC8120GPC" (product name, manufactured by Tosoh Corporation), and the four columns are "TSKgel G-4000HXL", "TSKgel G-3000HXL", "TSKgel G-2500HXL" and "TSKgel G-2000HXL" (all product names, manufactured by Tosoh Corporation), and the measurements can be performed under the following conditions: mobile phase tetrahydrofuran, measurement temperature 40°C, flow rate 1mL/min, and detector RI.
上記ビニル(共)重合体(A1)は、合成終了後に脱溶媒及び/又は溶媒置換することで、固体又は任意の溶媒に置き換えた樹脂溶液にできる。
After completion of the synthesis, the vinyl (co)polymer (A1) can be converted into a solid or into a resin solution in which any solvent has been replaced by removing the solvent and/or replacing the solvent.
脱溶媒の方法としては、常圧で加熱により行ってもよいし、減圧下で脱溶媒してもよい。溶媒置換の方法としては、脱溶媒前、脱溶媒途中、又は脱溶媒後のいずれの段階で置換溶媒を投入してもよい。
また、前記分散樹脂(A)における複素環の含有量としては、ビニル(共)重合体(A1)の場合、全モノマーを100質量%としたときの複素環を含む重合性モノマーの質量割合として、1~100質量%が好ましく、10~100質量%がより好ましく、30~99質量%がさらに好ましく、50~95質量%が特に好ましい。
前記分散樹脂(A)における炭素数12以上のアルキル基の含有量としては、ビニル(共)重合体(A1)の場合、全モノマーを100質量%としたときの炭素数12以上のアルキル基を含む重合性モノマーの質量割合として、1~100質量%が好ましく、10~90質量%がより好ましく、20~80質量%がさらに好ましく、30~60質量%が特に好ましい。
なお、前記複素環及び炭素数12以上のアルキル基の含有量としては、樹脂に反応性の当該化合物(複素環又は炭素数12以上のアルキル基を有する化合物)を後から付加した場合は当該化合物の質量割合で計算するものとする。 The method for removing the solvent may be performed by heating at normal pressure or under reduced pressure. The method for replacing the solvent may be performed by adding a replacement solvent at any stage before, during, or after the removal of the solvent.
In addition, the content of the heterocycle in the dispersion resin (A), in the case of the vinyl (co)polymer (A1), is preferably 1 to 100 mass%, more preferably 10 to 100 mass%, further preferably 30 to 99 mass%, and particularly preferably 50 to 95 mass%, in terms of the mass ratio of the polymerizable monomer containing the heterocycle when the total amount of the monomers is taken as 100 mass%.
In the case of the vinyl (co)polymer (A1), the content of the alkyl group having 12 or more carbon atoms in the dispersion resin (A) is preferably 1 to 100 mass%, more preferably 10 to 90 mass%, still more preferably 20 to 80 mass%, and particularly preferably 30 to 60 mass%, expressed as the mass ratio of the polymerizable monomer containing an alkyl group having 12 or more carbon atoms when all monomers are taken as 100 mass%.
In addition, the content of the heterocycle and the alkyl group having 12 or more carbon atoms is calculated based on the mass ratio of the reactive compound (a compound having a heterocycle or an alkyl group having 12 or more carbon atoms) added to the resin later.
また、前記分散樹脂(A)における複素環の含有量としては、ビニル(共)重合体(A1)の場合、全モノマーを100質量%としたときの複素環を含む重合性モノマーの質量割合として、1~100質量%が好ましく、10~100質量%がより好ましく、30~99質量%がさらに好ましく、50~95質量%が特に好ましい。
前記分散樹脂(A)における炭素数12以上のアルキル基の含有量としては、ビニル(共)重合体(A1)の場合、全モノマーを100質量%としたときの炭素数12以上のアルキル基を含む重合性モノマーの質量割合として、1~100質量%が好ましく、10~90質量%がより好ましく、20~80質量%がさらに好ましく、30~60質量%が特に好ましい。
なお、前記複素環及び炭素数12以上のアルキル基の含有量としては、樹脂に反応性の当該化合物(複素環又は炭素数12以上のアルキル基を有する化合物)を後から付加した場合は当該化合物の質量割合で計算するものとする。 The method for removing the solvent may be performed by heating at normal pressure or under reduced pressure. The method for replacing the solvent may be performed by adding a replacement solvent at any stage before, during, or after the removal of the solvent.
In addition, the content of the heterocycle in the dispersion resin (A), in the case of the vinyl (co)polymer (A1), is preferably 1 to 100 mass%, more preferably 10 to 100 mass%, further preferably 30 to 99 mass%, and particularly preferably 50 to 95 mass%, in terms of the mass ratio of the polymerizable monomer containing the heterocycle when the total amount of the monomers is taken as 100 mass%.
In the case of the vinyl (co)polymer (A1), the content of the alkyl group having 12 or more carbon atoms in the dispersion resin (A) is preferably 1 to 100 mass%, more preferably 10 to 90 mass%, still more preferably 20 to 80 mass%, and particularly preferably 30 to 60 mass%, expressed as the mass ratio of the polymerizable monomer containing an alkyl group having 12 or more carbon atoms when all monomers are taken as 100 mass%.
In addition, the content of the heterocycle and the alkyl group having 12 or more carbon atoms is calculated based on the mass ratio of the reactive compound (a compound having a heterocycle or an alkyl group having 12 or more carbon atoms) added to the resin later.
前記複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)は、前記複素環及び/又は炭素数12以上のアルキル基以外に、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、アミノ基、及びシアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ極性官能基濃度が0.1mmol/g~8.5mmol/gであることが好ましく、0.2mmol/g~6.0mmol/gであることがより好ましく、0.3mmol/g~4.0mmol/gであることがさらに好ましく、0.4mmol/g~2.0mmol/gであることが特に好ましい。また、上記の酸基やアミノ基は塩になっていてもよい。
なかでも、前記極性官能基として、水酸基、酸基及び/又はアミノ基を有することが好ましく、水酸基及び/又はアミノ基を有することがより好ましく、アミノ基を有することがさらに好ましい。
また、上記アミノ基は通常2級又は3級のアミノ基であり、3級のアミノ基が好ましい。 The dispersion resin (A) having the heterocycle and/or an alkyl group having 12 or more carbon atoms has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group, and a cyano group, in addition to the heterocycle and/or the alkyl group having 12 or more carbon atoms, and the polar functional group concentration is preferably 0.1 mmol/g to 8.5 mmol/g, more preferably 0.2 mmol/g to 6.0 mmol/g, even more preferably 0.3 mmol/g to 4.0 mmol/g, and particularly preferably 0.4 mmol/g to 2.0 mmol/g. The acid group and amino group may be in the form of a salt.
Among these, the polar functional group preferably has a hydroxyl group, an acid group and/or an amino group, more preferably has a hydroxyl group and/or an amino group, and further preferably has an amino group.
The amino group is usually a secondary or tertiary amino group, with a tertiary amino group being preferred.
なかでも、前記極性官能基として、水酸基、酸基及び/又はアミノ基を有することが好ましく、水酸基及び/又はアミノ基を有することがより好ましく、アミノ基を有することがさらに好ましい。
また、上記アミノ基は通常2級又は3級のアミノ基であり、3級のアミノ基が好ましい。 The dispersion resin (A) having the heterocycle and/or an alkyl group having 12 or more carbon atoms has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group, and a cyano group, in addition to the heterocycle and/or the alkyl group having 12 or more carbon atoms, and the polar functional group concentration is preferably 0.1 mmol/g to 8.5 mmol/g, more preferably 0.2 mmol/g to 6.0 mmol/g, even more preferably 0.3 mmol/g to 4.0 mmol/g, and particularly preferably 0.4 mmol/g to 2.0 mmol/g. The acid group and amino group may be in the form of a salt.
Among these, the polar functional group preferably has a hydroxyl group, an acid group and/or an amino group, more preferably has a hydroxyl group and/or an amino group, and further preferably has an amino group.
The amino group is usually a secondary or tertiary amino group, with a tertiary amino group being preferred.
上記複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)を固体の状態から樹脂溶液化する場合は、溶媒への溶解性の観点から、予め60℃以上(好ましくは80℃以上)(上限は200℃以下、好ましくは100℃以下)の液温の溶媒と混合及び溶解して樹脂溶液化することが好ましく、樹脂溶液化の後に他の成分(成分(B)、(C)、(D)など〕と混合することが好ましい。
なお、「液温」とは、溶解時の溶媒又は樹脂溶液の温度のことである。
予め60℃以上の溶媒に固形の分散樹脂(A)を混入して溶解してもよく、また固形の分散樹脂(A)と溶媒を混合してから60℃以上の温度に加温してもよい。
また、分散樹脂(A)と溶媒以外の成分を含有していてもよい。
使用する溶媒は一種を単独で又は二種以上を組み合わせて用いることができ、種類としては後述する溶媒(C)で挙げたものを好適に用いることができる。
また、上記の通り熱溶解した樹脂溶液を10℃~40℃の所定温度まで冷却することが好ましく、該冷却工程は、下記式:
冷却速度=(冷却開始時の溶液温度-冷却終了時の溶液温度)/冷却時間
で定義される冷却速度が0.5℃/分以上(好ましくは1℃/分以上)となることが析出を防止する観点から好ましい。 When the dispersion resin (A) having the above-mentioned heterocycle and/or an alkyl group having 12 or more carbon atoms is converted from a solid state into a resin solution, from the viewpoint of solubility in the solvent, it is preferable to first mix and dissolve the resin in a solvent having a liquid temperature of 60°C or higher (preferably 80°C or higher) (upper limit is 200°C or lower, preferably 100°C or lower) to convert it into a resin solution, and after converting it into a resin solution, it is preferable to mix it with other components (components (B), (C), (D), etc.).
The "liquid temperature" refers to the temperature of the solvent or resin solution at the time of dissolution.
The solid dispersion resin (A) may be mixed and dissolved in a solvent at 60° C. or higher in advance, or the solid dispersion resin (A) may be mixed with a solvent and then heated to a temperature of 60° C. or higher.
Furthermore, the dispersion may contain components other than the dispersion resin (A) and the solvent.
The solvent may be used alone or in combination of two or more kinds, and as the type, those exemplified as the solvent (C) described later can be suitably used.
In addition, it is preferable to cool the resin solution that has been hot-dissolved as described above to a predetermined temperature of 10° C. to 40° C., and the cooling step is carried out by the following reaction:
From the viewpoint of preventing precipitation, it is preferable that the cooling rate, defined as cooling rate=(solution temperature at the start of cooling−solution temperature at the end of cooling)/cooling time, is 0.5° C./min or more (preferably 1° C./min or more).
なお、「液温」とは、溶解時の溶媒又は樹脂溶液の温度のことである。
予め60℃以上の溶媒に固形の分散樹脂(A)を混入して溶解してもよく、また固形の分散樹脂(A)と溶媒を混合してから60℃以上の温度に加温してもよい。
また、分散樹脂(A)と溶媒以外の成分を含有していてもよい。
使用する溶媒は一種を単独で又は二種以上を組み合わせて用いることができ、種類としては後述する溶媒(C)で挙げたものを好適に用いることができる。
また、上記の通り熱溶解した樹脂溶液を10℃~40℃の所定温度まで冷却することが好ましく、該冷却工程は、下記式:
冷却速度=(冷却開始時の溶液温度-冷却終了時の溶液温度)/冷却時間
で定義される冷却速度が0.5℃/分以上(好ましくは1℃/分以上)となることが析出を防止する観点から好ましい。 When the dispersion resin (A) having the above-mentioned heterocycle and/or an alkyl group having 12 or more carbon atoms is converted from a solid state into a resin solution, from the viewpoint of solubility in the solvent, it is preferable to first mix and dissolve the resin in a solvent having a liquid temperature of 60°C or higher (preferably 80°C or higher) (upper limit is 200°C or lower, preferably 100°C or lower) to convert it into a resin solution, and after converting it into a resin solution, it is preferable to mix it with other components (components (B), (C), (D), etc.).
The "liquid temperature" refers to the temperature of the solvent or resin solution at the time of dissolution.
The solid dispersion resin (A) may be mixed and dissolved in a solvent at 60° C. or higher in advance, or the solid dispersion resin (A) may be mixed with a solvent and then heated to a temperature of 60° C. or higher.
Furthermore, the dispersion may contain components other than the dispersion resin (A) and the solvent.
The solvent may be used alone or in combination of two or more kinds, and as the type, those exemplified as the solvent (C) described later can be suitably used.
In addition, it is preferable to cool the resin solution that has been hot-dissolved as described above to a predetermined temperature of 10° C. to 40° C., and the cooling step is carried out by the following reaction:
From the viewpoint of preventing precipitation, it is preferable that the cooling rate, defined as cooling rate=(solution temperature at the start of cooling−solution temperature at the end of cooling)/cooling time, is 0.5° C./min or more (preferably 1° C./min or more).
複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)の固形分含有量は、カーボンナノチューブ分散ペーストの固形分総量100質量%を基準として、例えば0.1質量%以上、好ましくは1質量%以上、より好ましくは3質量%以上であり、例えば40質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下である。
また、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)の固形分含有量は、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば0.1質量%以上、好ましくは0.4質量%以上、より好ましくは0.7質量%以上であり、例えば10質量%以下、好ましくは5質量%以下、より好ましくは2質量%以下である。 The solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on 100% by mass of the total solid content of the carbon nanotube dispersion paste, for example, 0.1% by mass or more, preferably 1% by mass or more, and more preferably 3% by mass or more, and for example, 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
In addition, the solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on the total amount of the carbon nanotube dispersion paste as 100 mass%, for example, 0.1 mass% or more, preferably 0.4 mass% or more, and more preferably 0.7 mass% or more, and for example, 10 mass% or less, preferably 5 mass% or less, and more preferably 2 mass% or less.
また、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)の固形分含有量は、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば0.1質量%以上、好ましくは0.4質量%以上、より好ましくは0.7質量%以上であり、例えば10質量%以下、好ましくは5質量%以下、より好ましくは2質量%以下である。 The solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on 100% by mass of the total solid content of the carbon nanotube dispersion paste, for example, 0.1% by mass or more, preferably 1% by mass or more, and more preferably 3% by mass or more, and for example, 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
In addition, the solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on the total amount of the carbon nanotube dispersion paste as 100 mass%, for example, 0.1 mass% or more, preferably 0.4 mass% or more, and more preferably 0.7 mass% or more, and for example, 10 mass% or less, preferably 5 mass% or less, and more preferably 2 mass% or less.
また、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)の固形分含有量は、カーボンナノチューブ(B)の含有量100質量%を基準として、例えば0.1質量%以上、好ましくは1質量%以上、より好ましくは5質量%以上であり、例えば150質量%以下、好ましくは120質量%以下、より好ましくは80質量%以下である。
The solid content of the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms is, based on the content of the carbon nanotubes (B) of 100% by mass, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 150% by mass or less, preferably 120% by mass or less, more preferably 80% by mass or less.
カーボンナノチューブ(B)
カーボンナノチューブ(B)としては、単層カーボンナノチューブ、又は多層カーボンナノチューブをそれぞれ単独で、又は組合せて使用できる。特に粘度、導電性及びコストの関係から、多層カーボンナノチューブを用いることが好ましい。
カーボンナノチューブ(B)の含有量は、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば0.5質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上であり、例えば10質量%以下、好ましくは7質量%以下、より好ましくは6質量%以下である。
また、カーボンナノチューブ分散ペーストの固形分総量100質量%を基準として、例えば5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、例えば90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。 Carbon nanotubes (B)
As the carbon nanotubes (B), single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination. In particular, in terms of viscosity, electrical conductivity, and cost, it is preferable to use multi-walled carbon nanotubes.
The content of carbon nanotubes (B) is, based on 100 mass% of the total amount of the carbon nanotube dispersion paste, for example, 0.5 mass% or more, preferably 1 mass% or more, and more preferably 2 mass% or more, and for example, 10 mass% or less, preferably 7 mass% or less, and more preferably 6 mass% or less.
Furthermore, based on 100% by mass of the total solid content of the carbon nanotube dispersion paste, it is, for example, 5% by mass or more, preferably 10% by mass or more, and more preferably 20% by mass or more, and for example, 90% by mass or less, preferably 70% by mass or less, and more preferably 50% by mass or less.
カーボンナノチューブ(B)としては、単層カーボンナノチューブ、又は多層カーボンナノチューブをそれぞれ単独で、又は組合せて使用できる。特に粘度、導電性及びコストの関係から、多層カーボンナノチューブを用いることが好ましい。
カーボンナノチューブ(B)の含有量は、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば0.5質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上であり、例えば10質量%以下、好ましくは7質量%以下、より好ましくは6質量%以下である。
また、カーボンナノチューブ分散ペーストの固形分総量100質量%を基準として、例えば5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、例えば90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。 Carbon nanotubes (B)
As the carbon nanotubes (B), single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination. In particular, in terms of viscosity, electrical conductivity, and cost, it is preferable to use multi-walled carbon nanotubes.
The content of carbon nanotubes (B) is, based on 100 mass% of the total amount of the carbon nanotube dispersion paste, for example, 0.5 mass% or more, preferably 1 mass% or more, and more preferably 2 mass% or more, and for example, 10 mass% or less, preferably 7 mass% or less, and more preferably 6 mass% or less.
Furthermore, based on 100% by mass of the total solid content of the carbon nanotube dispersion paste, it is, for example, 5% by mass or more, preferably 10% by mass or more, and more preferably 20% by mass or more, and for example, 90% by mass or less, preferably 70% by mass or less, and more preferably 50% by mass or less.
カーボンナノチューブ(B)の平均外径としては、例えば1nm以上、好ましくは3nm以上、より好ましくは5nm以上であり、例えば30nm以下、好ましくは28nm以下、より好ましくは25nm以下である。
The average outer diameter of the carbon nanotubes (B) is, for example, 1 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and is, for example, 30 nm or less, preferably 28 nm or less, more preferably 25 nm or less.
カーボンナノチューブ(B)の平均長さとしては、例えば0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、例えば100μm以下、好ましくは80μm以下、より好ましくは60μm以下である。
The average length of the carbon nanotubes (B) is, for example, 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, and is, for example, 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less.
カーボンナノチューブ(B)のBET比表面積としては、粘度及び導電性の関係から、通常100m2/g以上、好ましくは130m2/g以上、より好ましくは160m2/g以上であり、通常800m2/g以下、好ましくは600m2/g以下、より好ましくは400m2/g以下である。
本発明のBET比表面積は窒素吸着測定によるBET法で算出することができる。具体的には、例えば、JIS Z8830:2013に準拠し、比表面積測定装置(BERSORP-MAX(マイクロトラック・ベル株式会社))を用いて、BET比表面積(m2/g)を測定できる。 The BET specific surface area of the carbon nanotubes (B) is, in consideration of the relationship between viscosity and electrical conductivity, usually 100 m 2 /g or more, preferably 130 m 2 /g or more, more preferably 160 m 2 /g or more, and usually 800 m 2 /g or less, preferably 600 m 2 /g or less, more preferably 400 m 2 /g or less.
The BET specific surface area of the present invention can be calculated by the BET method using nitrogen adsorption measurement. Specifically, for example, the BET specific surface area (m 2 /g) can be measured using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Co., Ltd.)) in accordance with JIS Z8830:2013.
本発明のBET比表面積は窒素吸着測定によるBET法で算出することができる。具体的には、例えば、JIS Z8830:2013に準拠し、比表面積測定装置(BERSORP-MAX(マイクロトラック・ベル株式会社))を用いて、BET比表面積(m2/g)を測定できる。 The BET specific surface area of the carbon nanotubes (B) is, in consideration of the relationship between viscosity and electrical conductivity, usually 100 m 2 /g or more, preferably 130 m 2 /g or more, more preferably 160 m 2 /g or more, and usually 800 m 2 /g or less, preferably 600 m 2 /g or less, more preferably 400 m 2 /g or less.
The BET specific surface area of the present invention can be calculated by the BET method using nitrogen adsorption measurement. Specifically, for example, the BET specific surface area (m 2 /g) can be measured using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Co., Ltd.)) in accordance with JIS Z8830:2013.
上記カーボンナノチューブ(B)の酸性基量としては、分散性及び貯蔵性の観点から、通常0.01mmol/g以上、好ましくは0.01mmol/g以上であり、通常1.0mmol/g以下、好ましくは0.5mmol/g以下、より好ましくは0.2mmol/g以下、さらに好ましくは0.1mmol/g以下である。酸性基量が0.01mmol/g以上であれば分散性が良好となり、また1.0mmol/g以下であれば貯蔵性が良好となる。
The amount of acidic groups in the carbon nanotubes (B) is usually 0.01 mmol/g or more, preferably 0.01 mmol/g or more, and usually 1.0 mmol/g or less, preferably 0.5 mmol/g or less, more preferably 0.2 mmol/g or less, and even more preferably 0.1 mmol/g or less, from the viewpoints of dispersibility and storage property. If the amount of acidic groups is 0.01 mmol/g or more, the dispersibility will be good, and if it is 1.0 mmol/g or less, the storage property will be good.
上記酸性基は以下のカーボンナノチューブの酸処理により付与することができる。
The above acidic groups can be imparted to carbon nanotubes by acid treatment as described below.
(酸処理方法)
酸処理の方法としては、カーボンナノチューブに酸を接触させることができれば特に限定されないが、カーボンナノチューブを酸処理液(酸の水溶液)中に浸漬させる方法が好ましい。酸処理液に含まれる酸としては、特に限定されないが、例えば硝酸、硫酸、塩酸が挙げられる。これらは、一種単独で又は二種以上を組み合わせて用いることができる。そしてこれらの中でも、硝酸、硫酸が好ましい。
カーボンナノチューブの酸性基量は、酸処理液の濃度、温度、処理時間等によって調整することができる。 (Acid Treatment Method)
The acid treatment method is not particularly limited as long as it can bring the carbon nanotubes into contact with the acid, but a method of immersing the carbon nanotubes in an acid treatment solution (aqueous solution of acid) is preferred. The acid contained in the acid treatment solution is not particularly limited, but examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. Among these, nitric acid and sulfuric acid are preferred.
The amount of acidic groups in the carbon nanotubes can be adjusted by the concentration of the acid treatment solution, the temperature, the treatment time, and the like.
酸処理の方法としては、カーボンナノチューブに酸を接触させることができれば特に限定されないが、カーボンナノチューブを酸処理液(酸の水溶液)中に浸漬させる方法が好ましい。酸処理液に含まれる酸としては、特に限定されないが、例えば硝酸、硫酸、塩酸が挙げられる。これらは、一種単独で又は二種以上を組み合わせて用いることができる。そしてこれらの中でも、硝酸、硫酸が好ましい。
カーボンナノチューブの酸性基量は、酸処理液の濃度、温度、処理時間等によって調整することができる。 (Acid Treatment Method)
The acid treatment method is not particularly limited as long as it can bring the carbon nanotubes into contact with the acid, but a method of immersing the carbon nanotubes in an acid treatment solution (aqueous solution of acid) is preferred. The acid contained in the acid treatment solution is not particularly limited, but examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. Among these, nitric acid and sulfuric acid are preferred.
The amount of acidic groups in the carbon nanotubes can be adjusted by the concentration of the acid treatment solution, the temperature, the treatment time, and the like.
酸処理後、後述する洗浄方法により表面に付着した余剰な酸成分を除去し、酸処理カーボンナノチューブを得ることができる。
酸処理したカーボンナノチューブを洗浄する方法としては、特に限定されないが、水洗が好ましい。例えば、酸処理をしたカーボンナノチューブから、ろ過などの既知の手法でカーボンナノチューブを回収し、続いてカーボンナノチューブを水洗する。上記洗浄後、必要に応じて、表面に付着した水を乾燥により除去する等して、酸処理カーボンナノチューブを得ることができる。 After the acid treatment, the excess acid component adhering to the surface is removed by a washing method described below, thereby obtaining acid-treated carbon nanotubes.
The method for washing the acid-treated carbon nanotubes is not particularly limited, but washing with water is preferred. For example, the carbon nanotubes are collected from the acid-treated carbon nanotubes by a known method such as filtration, and then washed with water. After the above washing, the water adhering to the surface can be removed by drying, etc., as necessary, to obtain the acid-treated carbon nanotubes.
酸処理したカーボンナノチューブを洗浄する方法としては、特に限定されないが、水洗が好ましい。例えば、酸処理をしたカーボンナノチューブから、ろ過などの既知の手法でカーボンナノチューブを回収し、続いてカーボンナノチューブを水洗する。上記洗浄後、必要に応じて、表面に付着した水を乾燥により除去する等して、酸処理カーボンナノチューブを得ることができる。 After the acid treatment, the excess acid component adhering to the surface is removed by a washing method described below, thereby obtaining acid-treated carbon nanotubes.
The method for washing the acid-treated carbon nanotubes is not particularly limited, but washing with water is preferred. For example, the carbon nanotubes are collected from the acid-treated carbon nanotubes by a known method such as filtration, and then washed with water. After the above washing, the water adhering to the surface can be removed by drying, etc., as necessary, to obtain the acid-treated carbon nanotubes.
また、カーボンナノチューブ(B)の体積換算のメディアン径(D50)としては、後述する実施例で記載する方法で測定した場合、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、通常250μm以下、好ましくは200μm以下、より好ましくは150μm以下である。ここでメディアン径(D50)はカーボンナノチューブの粒子にレーザー光を照射し、その散乱光からカーボンナノチューブの直径を球形に換算して求めることができる。メディアン径(D50)が大きいほどカーボンナノチューブの凝集塊が多く存在し、分散性が悪いことを意味する。メディアン径(D50)が250μmより大きい場合、電極中でカーボンナノチューブの凝集塊が存在する可能性が高くなり、電極全体における導電性が不均一となる。一方、メディアン径(D50)が10μmよりも小さい場合、繊維長が短くなっていることから導電パスが不十分であり、導電性が低下してしまう。メディアン径(D50)が10μm以上250μm以下の範囲内である場合、カーボンナノチューブは導電性を維持したまま電極内で均一に分散することが可能になる。
The volume-equivalent median diameter (D50) of the carbon nanotubes (B) is usually 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and usually 250 μm or less, preferably 200 μm or less, more preferably 150 μm or less, when measured by the method described in the examples below. Here, the median diameter (D50) can be obtained by irradiating a carbon nanotube particle with a laser beam and converting the diameter of the carbon nanotube into a sphere from the scattered light. The larger the median diameter (D50), the more carbon nanotube agglomerates there are, which means that the dispersibility is poor. If the median diameter (D50) is larger than 250 μm, there is a high possibility that carbon nanotube agglomerates exist in the electrode, and the conductivity of the entire electrode becomes non-uniform. On the other hand, if the median diameter (D50) is smaller than 10 μm, the fiber length is short, so the conductive path is insufficient, and the conductivity decreases. When the median diameter (D50) is within the range of 10 μm or more and 250 μm or less, the carbon nanotubes can be uniformly dispersed within the electrode while maintaining their electrical conductivity.
また、上記カーボンナノチューブ(B)のラマンスペクトルにおいて、1560cm-1以上1600cm-1以下の範囲内での最大ピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大ピーク強度をDとした際のG/D比が、通常0.1以上、好ましくは0.4以上、より好ましくは0.6以上であり、通常5.0以下、好ましくは3.0以下より好ましくは1.0以下であることがより好ましい。
In the Raman spectrum of the carbon nanotube (B), the G/D ratio, where G is the maximum peak intensity in the range of 1560 cm -1 to 1600 cm -1 and D is the maximum peak intensity in the range of 1310 cm -1 to 1350 cm -1 , is usually 0.1 or more, preferably 0.4 or more, more preferably 0.6 or more, and is usually 5.0 or less, preferably 3.0 or less, more preferably 1.0 or less.
ここで、G/D比が0.1以上5.0以下の範囲内であると、炭素表面の欠陥や結晶界面が少なく導電性が高くなりやすいため好適である。
Here, a G/D ratio in the range of 0.1 to 5.0 is preferable because it tends to have high conductivity due to fewer defects and crystal interfaces on the carbon surface.
(カーボンナノチューブの乾式分散)
上記カーボンナノチューブ(B)は、カーボンナノチューブ分散ペーストを製造する前に、予めメジア型粉砕機で乾式分散することができる。
本発明の「乾式分散」とは、粉砕成分中の固形分濃度が80質量%以上(好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上)で粉砕機により粉砕(解砕含む)することである。カーボンナノチューブ(B)以外の成分と共に粉砕することもできるが、粉砕成分中の固形分に含まれるカーボンナノチューブ(B)含有量が、通常80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、特に好ましくはカーボンナノチューブ(B)のみであることが好適である。
上記粉砕成分中のカーボンナノチューブ(B)以外の成分としては、溶媒、樹脂、及びカーボンナノチューブ(B)以外の顔料等を好適に使用できるが、実質的にカーボンナノチューブ(B)のみを含むことが好適である。
なお、上記「固形分濃度」とは、試料1gを130℃3時間で加熱乾燥させた場合の固形分の割合(質量%)である。 (Dry Dispersion of Carbon Nanotubes)
The carbon nanotubes (B) can be previously dry-dispersed in a media-type grinder before producing the carbon nanotube dispersion paste.
The "dry dispersion" of the present invention refers to pulverization (including disintegration) by a pulverizer at a solid content concentration in the pulverized component of 80% by mass or more (preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more). Although it is possible to pulverize together with components other than the carbon nanotubes (B), it is suitable that the content of the carbon nanotubes (B) contained in the solid content of the pulverized component is usually 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, and particularly preferably only the carbon nanotubes (B).
As the components other than the carbon nanotubes (B) in the ground component, solvents, resins, pigments other than the carbon nanotubes (B), etc. can be suitably used, but it is preferable that the ground component contains substantially only the carbon nanotubes (B).
The above "solid content concentration" refers to the proportion of solid content (mass %) when 1 g of a sample is dried by heating at 130° C. for 3 hours.
上記カーボンナノチューブ(B)は、カーボンナノチューブ分散ペーストを製造する前に、予めメジア型粉砕機で乾式分散することができる。
本発明の「乾式分散」とは、粉砕成分中の固形分濃度が80質量%以上(好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上)で粉砕機により粉砕(解砕含む)することである。カーボンナノチューブ(B)以外の成分と共に粉砕することもできるが、粉砕成分中の固形分に含まれるカーボンナノチューブ(B)含有量が、通常80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、特に好ましくはカーボンナノチューブ(B)のみであることが好適である。
上記粉砕成分中のカーボンナノチューブ(B)以外の成分としては、溶媒、樹脂、及びカーボンナノチューブ(B)以外の顔料等を好適に使用できるが、実質的にカーボンナノチューブ(B)のみを含むことが好適である。
なお、上記「固形分濃度」とは、試料1gを130℃3時間で加熱乾燥させた場合の固形分の割合(質量%)である。 (Dry Dispersion of Carbon Nanotubes)
The carbon nanotubes (B) can be previously dry-dispersed in a media-type grinder before producing the carbon nanotube dispersion paste.
The "dry dispersion" of the present invention refers to pulverization (including disintegration) by a pulverizer at a solid content concentration in the pulverized component of 80% by mass or more (preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more). Although it is possible to pulverize together with components other than the carbon nanotubes (B), it is suitable that the content of the carbon nanotubes (B) contained in the solid content of the pulverized component is usually 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, and particularly preferably only the carbon nanotubes (B).
As the components other than the carbon nanotubes (B) in the ground component, solvents, resins, pigments other than the carbon nanotubes (B), etc. can be suitably used, but it is preferable that the ground component contains substantially only the carbon nanotubes (B).
The above "solid content concentration" refers to the proportion of solid content (mass %) when 1 g of a sample is dried by heating at 130° C. for 3 hours.
上記乾式分散は、実質的に液状成分を含有させないで顔料を粉砕することであり、顔料に対して直接エネルギーを加えることができるため高効率かつ強力な粉砕(解砕)が可能である。また、粉砕面が活性化し周囲の物質と相互作用を起こすため、後述するペーストの分散工程において良好な分散性及び貯蔵安定性が得られ、その塗工膜は優れた導電性と仕上がり性を得ることができる。
The above-mentioned dry dispersion is a method of grinding pigments without the inclusion of any liquid components, and since energy can be applied directly to the pigment, it is possible to perform highly efficient and powerful grinding (disintegration). In addition, since the ground surface is activated and interacts with the surrounding substances, good dispersibility and storage stability can be obtained in the paste dispersion process described below, and the coating film can have excellent conductivity and finish.
上記乾式分散においては、ガラスビーズ、ジルコニアビーズ、スチールボール等の粉砕メジアを内蔵した粉砕機を使用して粉砕するものである。粉砕は、粉砕メジア同士の衝突、及び/又は粉砕機と粉砕メジアとの衝突による粉砕力や破壊力を利用して行なわれる。粉砕装置としては、高速回転型衝撃式ミル、ジェットミル、ロールミル、アトライター、ボールミル、振動ミル、ビーズミルなどの既知の粉砕装置を用いることができる。
In the above-mentioned dry dispersion, grinding is carried out using a grinding machine equipped with grinding media such as glass beads, zirconia beads, steel balls, etc. Grinding is carried out by utilizing the crushing force or destructive force caused by collisions between the grinding media and/or between the grinding machine and the grinding media. As the grinding device, known grinding devices such as a high-speed rotation impact mill, jet mill, roll mill, attritor, ball mill, vibration mill, bead mill, etc. can be used.
また、粉砕時に各種の蒸気又は気体を粉砕機内に吹き込んでカーボンナノチューブ(B)表面を更なる活性化又は活性度の調整をすることができる。蒸気としては、酸性又は塩基性の化合物などが好適であり、気体としては、酸素、窒素などが好適である。
In addition, various steam or gases can be blown into the grinder during grinding to further activate the surface of the carbon nanotubes (B) or adjust the activity. As the steam, acidic or basic compounds are suitable, and as the gas, oxygen, nitrogen, etc. are suitable.
粉砕メジアの外径は、0.1mm~5mmが好ましく、0.5mm~3mmがより好ましい。上記の範囲であれば、所望の粉砕力が得られ、カーボンナノチューブの繊維形状を過度に破壊せず効率的に顔料を粉砕及び解砕させることができる。
The outer diameter of the grinding media is preferably 0.1 mm to 5 mm, and more preferably 0.5 mm to 3 mm. Within the above range, the desired grinding force can be obtained, and the pigment can be efficiently ground and crushed without excessively destroying the fiber shape of the carbon nanotubes.
(カーボンナノチューブの吸湿性)
上記カーボンナノチューブ(B)は、カーボンナノチューブの製造及び貯蔵、並びに各種ペーストの製造及び貯蔵などの工程で大気中の水分を吸着することが知られているが、本発明においては各工程でカーボンナノチューブが水分を吸着しないことが望ましい。大気中の湿度に対するカーボンナノチューブ(B)の吸水量(吸湿量)は、湿度、カーボンナノチューブの表面積、及びカーボンナノチューブの表面性状(親水度)などによって決まる。 (Moisture absorption of carbon nanotubes)
It is known that the carbon nanotubes (B) adsorb moisture from the air during the processes of producing and storing the carbon nanotubes and producing and storing various pastes, but in the present invention, it is desirable that the carbon nanotubes do not adsorb moisture during each process. The amount of water (moisture absorption) of the carbon nanotubes (B) absorbed by the humidity of the air depends on the humidity, the surface area of the carbon nanotubes, and the surface properties (hydrophilicity) of the carbon nanotubes.
上記カーボンナノチューブ(B)は、カーボンナノチューブの製造及び貯蔵、並びに各種ペーストの製造及び貯蔵などの工程で大気中の水分を吸着することが知られているが、本発明においては各工程でカーボンナノチューブが水分を吸着しないことが望ましい。大気中の湿度に対するカーボンナノチューブ(B)の吸水量(吸湿量)は、湿度、カーボンナノチューブの表面積、及びカーボンナノチューブの表面性状(親水度)などによって決まる。 (Moisture absorption of carbon nanotubes)
It is known that the carbon nanotubes (B) adsorb moisture from the air during the processes of producing and storing the carbon nanotubes and producing and storing various pastes, but in the present invention, it is desirable that the carbon nanotubes do not adsorb moisture during each process. The amount of water (moisture absorption) of the carbon nanotubes (B) absorbed by the humidity of the air depends on the humidity, the surface area of the carbon nanotubes, and the surface properties (hydrophilicity) of the carbon nanotubes.
カーボンナノチューブ(B)における一定条件下での吸湿量をY(質量%)とし、BET比表面積をZ(m2/g)とした場合に、X=Y×Zで得られる吸湿性Xの上限値が、通常1000以下、好ましくは500以下、より好ましくは300以下であり、下限値が、通常10以上、好ましくは50以上、より好ましくは100以上であることが好適である。
上記範囲内にすることで、カーボンナノチューブ(B)の水分吸着量を減少させ、それによりペーストの増粘及びゲル化を抑制でき、かつ分散性(分散剤との吸着)を両立できることを発明者らは見出した。 When the moisture absorption amount of carbon nanotubes (B) under certain conditions is Y (mass%) and the BET specific surface area is Z ( m2 /g), the upper limit of the moisture absorption rate X obtained by X = Y x Z is usually 1,000 or less, preferably 500 or less, and more preferably 300 or less, and the lower limit is usually 10 or more, preferably 50 or more, and more preferably 100 or more.
The inventors have discovered that by keeping the content within the above range, the amount of moisture adsorption by the carbon nanotubes (B) can be reduced, thereby suppressing thickening and gelling of the paste while also achieving dispersibility (adsorption with a dispersant).
上記範囲内にすることで、カーボンナノチューブ(B)の水分吸着量を減少させ、それによりペーストの増粘及びゲル化を抑制でき、かつ分散性(分散剤との吸着)を両立できることを発明者らは見出した。 When the moisture absorption amount of carbon nanotubes (B) under certain conditions is Y (mass%) and the BET specific surface area is Z ( m2 /g), the upper limit of the moisture absorption rate X obtained by X = Y x Z is usually 1,000 or less, preferably 500 or less, and more preferably 300 or less, and the lower limit is usually 10 or more, preferably 50 or more, and more preferably 100 or more.
The inventors have discovered that by keeping the content within the above range, the amount of moisture adsorption by the carbon nanotubes (B) can be reduced, thereby suppressing thickening and gelling of the paste while also achieving dispersibility (adsorption with a dispersant).
なお、上記吸湿量Yは下記の測定条件によって求められる。
〔吸湿量Yの測定条件〕
140℃の温度で3時間乾燥させて得たカーボンナノチューブの質量をY1とし、さらに温度20℃、相対湿度65%の条件で24時間放置して得た導電カーボンの質量をY2とした場合に、下記式で得られるYの値(質量%)を吸湿量Yとする。
吸湿量Y=(Y2-Y1)/Y1×100 The moisture absorption amount Y is determined under the following measurement conditions.
[Conditions for measuring moisture absorption amount Y]
The mass of the carbon nanotubes obtained by drying at 140°C for 3 hours is defined as Y1, and the mass of the conductive carbon obtained by leaving it for 24 hours under conditions of a temperature of 20°C and a relative humidity of 65% is defined as Y2. The value of Y (mass%) obtained by the following formula is defined as the moisture absorption amount Y.
Moisture absorption amount Y=(Y2-Y1)/Y1×100
〔吸湿量Yの測定条件〕
140℃の温度で3時間乾燥させて得たカーボンナノチューブの質量をY1とし、さらに温度20℃、相対湿度65%の条件で24時間放置して得た導電カーボンの質量をY2とした場合に、下記式で得られるYの値(質量%)を吸湿量Yとする。
吸湿量Y=(Y2-Y1)/Y1×100 The moisture absorption amount Y is determined under the following measurement conditions.
[Conditions for measuring moisture absorption amount Y]
The mass of the carbon nanotubes obtained by drying at 140°C for 3 hours is defined as Y1, and the mass of the conductive carbon obtained by leaving it for 24 hours under conditions of a temperature of 20°C and a relative humidity of 65% is defined as Y2. The value of Y (mass%) obtained by the following formula is defined as the moisture absorption amount Y.
Moisture absorption amount Y=(Y2-Y1)/Y1×100
その他の導電性顔料(B1)
本発明で用いられるカーボンナノチューブ分散ペーストは、前記カーボンナノチューブ(B)以外のその他の導電性顔料(B1)も併用することができる。その他の導電性顔料(B1)としては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、グラフェン、黒鉛からなる群より選ばれる少なくとも一種の導電性カーボンが挙げられる。好ましくは、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラックからなる群より選ばれる一種以上であり、より好ましくは、アセチレンブラック、ケッチェンブラックからなる群より選ばれる一種以上であり、さらに好ましくはアセチレンブラックである。 Other conductive pigments (B1)
The carbon nanotube dispersion paste used in the present invention can also use other conductive pigments (B1) other than the carbon nanotubes (B). Examples of other conductive pigments (B1) include at least one conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene, and graphite. Preferably, it is at least one selected from the group consisting of acetylene black, ketjen black, furnace black, and thermal black, more preferably at least one selected from the group consisting of acetylene black and ketjen black, and even more preferably it is acetylene black.
本発明で用いられるカーボンナノチューブ分散ペーストは、前記カーボンナノチューブ(B)以外のその他の導電性顔料(B1)も併用することができる。その他の導電性顔料(B1)としては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、グラフェン、黒鉛からなる群より選ばれる少なくとも一種の導電性カーボンが挙げられる。好ましくは、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラックからなる群より選ばれる一種以上であり、より好ましくは、アセチレンブラック、ケッチェンブラックからなる群より選ばれる一種以上であり、さらに好ましくはアセチレンブラックである。 Other conductive pigments (B1)
The carbon nanotube dispersion paste used in the present invention can also use other conductive pigments (B1) other than the carbon nanotubes (B). Examples of other conductive pigments (B1) include at least one conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene, and graphite. Preferably, it is at least one selected from the group consisting of acetylene black, ketjen black, furnace black, and thermal black, more preferably at least one selected from the group consisting of acetylene black and ketjen black, and even more preferably it is acetylene black.
その他の導電性顔料(B1)の平均一次粒子径としては、例えば10nm以上、好ましくは20nm以上であり、例えば80nm以下好ましくは70nm以下であることがより好ましい。ここで、平均一次粒子径は、導電性顔料(B1)を電子顕微鏡で観察し、100個の粒子について、それぞれ投影面積を求めてその面積に等しい円を仮定したときの直径を求め、100個の粒子の直径を単純平均して求めた一次粒子の平均粒子径をいう。なお、顔料が凝集状態になっていた場合は、凝集粒子を構成している一次粒子で計算をする。
The average primary particle diameter of the other conductive pigment (B1) is, for example, 10 nm or more, preferably 20 nm or more, and more preferably, for example, 80 nm or less, and more preferably, 70 nm or less. Here, the average primary particle diameter refers to the average particle diameter of the primary particles obtained by observing the conductive pigment (B1) under an electron microscope, calculating the projected area of each of 100 particles, calculating the diameter of a circle assuming an area equal to that area, and then averaging the diameters of the 100 particles. Note that if the pigment is in an aggregated state, the calculation is performed using the primary particles that make up the aggregated particles.
その他の導電性顔料(B1)のBET比表面積は、特に限定されない。粘度及び導電性の関係から、例えば1m2/g以上、好ましくは10m2/g以上、より好ましくは20m2/g以上であり、例えば500m2/g以下、好ましくは250m2/g以下、より好ましくは200m2/g以下である。
The BET specific surface area of the other conductive pigment (B1) is not particularly limited and is, for example, 1 m 2 /g or more, preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and is, for example, 500 m 2 /g or less, preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less, depending on the relationship between viscosity and conductivity.
その他の導電性顔料(B1)のジブチルフタレート(DBP)吸油量は、特に限定されない。顔料分散性及び導電性の関係から、例えば60ml/100g以上、好ましくは150ml/100g以上であり、例えば1,000ml/100g以下、好ましくは800ml/100g以下である。
The dibutyl phthalate (DBP) oil absorption of the other conductive pigment (B1) is not particularly limited. In relation to pigment dispersibility and conductivity, it is, for example, 60 ml/100 g or more, preferably 150 ml/100 g or more, and, for example, 1,000 ml/100 g or less, preferably 800 ml/100 g or less.
溶媒(C)
前記溶媒(C)は、水分量が10000ppm未満であり、有機溶媒を好適に用いることができる。具体的には、例えば、n-ブタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロブタン等の炭化水素系溶剤;トルエン、キシレン等の芳香族系溶剤;メチルイソブチルケトン等のケトン系溶剤;n-ブチルエーテル、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール等のエーテル系溶剤;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤;エタノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール等のアルコール系溶剤;エクアミド(アミド系溶剤、出光興産社製、商品名)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、N-メチルアセトアミド、N-メチルプロピオアミド、N-メチル-2-ピロリドン等のアミド系溶剤等を挙げることができる。 Solvent (C)
The solvent (C) has a water content of less than 10,000 ppm, and an organic solvent can be suitably used. Specific examples of the solvent include hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, and cyclobutane; aromatic solvents such as toluene and xylene; ketone solvents such as methyl isobutyl ketone; ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate, and ethylene glycol mono. Examples of the solvent include ester-based solvents such as methyl ether acetate and butyl carbitol acetate; ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; alcohol-based solvents such as ethanol, isopropanol, n-butanol, sec-butanol and isobutanol; and amide-based solvents such as Equamide (an amide-based solvent, product name, manufactured by Idemitsu Kosan Co., Ltd.), N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methylpropioamide and N-methyl-2-pyrrolidone.
前記溶媒(C)は、水分量が10000ppm未満であり、有機溶媒を好適に用いることができる。具体的には、例えば、n-ブタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロブタン等の炭化水素系溶剤;トルエン、キシレン等の芳香族系溶剤;メチルイソブチルケトン等のケトン系溶剤;n-ブチルエーテル、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール等のエーテル系溶剤;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤;エタノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール等のアルコール系溶剤;エクアミド(アミド系溶剤、出光興産社製、商品名)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、N-メチルアセトアミド、N-メチルプロピオアミド、N-メチル-2-ピロリドン等のアミド系溶剤等を挙げることができる。 Solvent (C)
The solvent (C) has a water content of less than 10,000 ppm, and an organic solvent can be suitably used. Specific examples of the solvent include hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, and cyclobutane; aromatic solvents such as toluene and xylene; ketone solvents such as methyl isobutyl ketone; ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate, and ethylene glycol mono. Examples of the solvent include ester-based solvents such as methyl ether acetate and butyl carbitol acetate; ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; alcohol-based solvents such as ethanol, isopropanol, n-butanol, sec-butanol and isobutanol; and amide-based solvents such as Equamide (an amide-based solvent, product name, manufactured by Idemitsu Kosan Co., Ltd.), N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methylpropioamide and N-methyl-2-pyrrolidone.
なかでも、アミド系溶剤が好ましく、N-メチル-2-ピロリドンがより好ましい。これらの溶媒は、一種を単独で又は二種以上を組み合わせて用いることができる。
Among these, amide-based solvents are preferred, and N-methyl-2-pyrrolidone is more preferred. These solvents can be used alone or in combination of two or more.
溶媒(C)の水分量は、通常、10000ppm未満であり、7500ppm未満が好ましく、5000ppm未満がより好ましく、2500ppm未満がさらに好ましく、1000ppm未満が特に好ましい。
The water content of the solvent (C) is usually less than 10,000 ppm, preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm.
N-メチル-2-ピロリドン等のアミド系化合物(溶剤)を用いる場合、不純物としてアミン成分を含むことがあり、本発明のカーボンナノチューブ分散ペーストにおいて、この不純物であるアミン成分によってロット毎に粘度又は増粘傾向が異なることがあった。
When using amide compounds (solvents) such as N-methyl-2-pyrrolidone, amine components may be contained as impurities, and in the carbon nanotube dispersion paste of the present invention, the viscosity or tendency to thicken may vary from lot to lot depending on the amine components as impurities.
また、本発明のカーボンナノチューブ分散ペーストを後述する方法で電極層に適用する場合、溶媒等は揮発するため残らないが、廃棄物削減、環境対応、及び/又は原料コスト削減のために揮発した溶媒を回収及び再利用することが好ましい。すなわち、溶媒(C)として再生品を使用することが好ましい。この再生溶媒(再生品)には、本発明のカーボンナノチューブ分散ペーストにアミン化合物(E1)が含まれる場合は、もともと含有しているアミン化合物も含まれることになり、同じくロット毎にペーストの粘度又は増粘傾向が異なることになる。また、アミン化合物は強い臭気を有する場合が多い。
In addition, when the carbon nanotube dispersion paste of the present invention is applied to an electrode layer by the method described below, the solvent and the like volatilize and do not remain, but it is preferable to recover and reuse the volatilized solvent in order to reduce waste, be environmentally friendly, and/or reduce raw material costs. That is, it is preferable to use a recycled product as the solvent (C). In the case where the carbon nanotube dispersion paste of the present invention contains an amine compound (E1), this recycled solvent (recycled product) will also contain the amine compound originally contained therein, and similarly, the viscosity or thickening tendency of the paste will differ from lot to lot. Furthermore, amine compounds often have a strong odor.
従って、その場合は再生品である溶媒(C)中のアミン化合物含有量を一定量以下に管理・調整することが好ましく、アミン化合物含有量としては、通常1質量%以下であり、好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下であることが好適である。
また、アミン化合物の含有量は、イオンクロマトグラフィー質量分析(IC-MS:Ion Chromatography - Mass Spectrometry)等の一般的な分析により定量することができる。予め混入が予想されるアミン種のピークについて検量線を作成することにより含有量の定量が可能である。 In this case, therefore, it is preferable to control and adjust the amine compound content in the recycled solvent (C) to a certain amount or less, and the amine compound content is usually 1 mass% or less, preferably 0.5 mass% or less, and particularly preferably 0.1 mass% or less.
The content of the amine compound can be quantified by a general analysis such as ion chromatography-mass spectrometry (IC-MS). The content can be quantified by preparing a calibration curve in advance for the peaks of amine species that are expected to be mixed in.
また、アミン化合物の含有量は、イオンクロマトグラフィー質量分析(IC-MS:Ion Chromatography - Mass Spectrometry)等の一般的な分析により定量することができる。予め混入が予想されるアミン種のピークについて検量線を作成することにより含有量の定量が可能である。 In this case, therefore, it is preferable to control and adjust the amine compound content in the recycled solvent (C) to a certain amount or less, and the amine compound content is usually 1 mass% or less, preferably 0.5 mass% or less, and particularly preferably 0.1 mass% or less.
The content of the amine compound can be quantified by a general analysis such as ion chromatography-mass spectrometry (IC-MS). The content can be quantified by preparing a calibration curve in advance for the peaks of amine species that are expected to be mixed in.
なお、上記「溶媒(C)として再生品を使用」とは、本発明で用いられる溶媒(C)中に再生品が5質量%以上(好ましくは10質量%以上)含まれるということである。
上記再生品としては、後述する合材ペーストを加熱乾燥して電極層を作る過程で回収した溶媒を利用することが好ましい。 The above phrase "use of a recycled product as the solvent (C)" means that the solvent (C) used in the present invention contains 5% by mass or more (preferably 10% by mass or more) of a recycled product.
As the above-mentioned recycled product, it is preferable to use the solvent recovered in the process of producing an electrode layer by heating and drying a composite paste, which will be described later.
上記再生品としては、後述する合材ペーストを加熱乾燥して電極層を作る過程で回収した溶媒を利用することが好ましい。 The above phrase "use of a recycled product as the solvent (C)" means that the solvent (C) used in the present invention contains 5% by mass or more (preferably 10% by mass or more) of a recycled product.
As the above-mentioned recycled product, it is preferable to use the solvent recovered in the process of producing an electrode layer by heating and drying a composite paste, which will be described later.
また、溶媒(C)として再生品を使用し、かつ本発明のカーボンナノチューブ分散ペーストに後述する高極性低分子量成分(E)を含有する場合、溶媒(C)中の高極性低分子量成分(E)を除去する必要がある。そのため、溶媒(C)の沸点を(Xc)℃、高極性低分子量成分(E)の沸点を(Xe)℃とした場合、(Xc)-10>(Xe)であることが好ましく、(Xc)-15>(Xe)であることが蒸留(高極性低分子量成分(E)の除去)の観点から好ましい。
なお、溶媒(C)としては、N-メチル-2-ピロリドンを含むことが好ましく、N-メチル-2-ピロリドンを含む場合はN-メチル-2-ピロリドンの再生品を用いることが好ましく、さらにN-メチル-2-ピロリドン中の水分量を10000ppm未満(好ましくは7500ppm未満、より好ましくは5000ppm未満、さらに好ましくは2500ppm未満、特に好ましいは1000ppm未満)に管理することが好適である。
また、高極性低分子量成分(E)としてはアミン化合物(E1)を含むことが好ましい。 In addition, when a recycled product is used as the solvent (C) and the carbon nanotube dispersion paste of the present invention contains the highly polar low molecular weight component (E) described later, it is necessary to remove the highly polar low molecular weight component (E) in the solvent (C). Therefore, when the boiling point of the solvent (C) is (Xc) ° C. and the boiling point of the highly polar low molecular weight component (E) is (Xe) ° C., it is preferable that (Xc)-10>(Xe), and it is preferable that (Xc)-15>(Xe) from the viewpoint of distillation (removal of the highly polar low molecular weight component (E)).
The solvent (C) preferably contains N-methyl-2-pyrrolidone. When N-methyl-2-pyrrolidone is contained, it is preferable to use a recycled product of N-methyl-2-pyrrolidone. Furthermore, it is suitable to control the water content in N-methyl-2-pyrrolidone to less than 10,000 ppm (preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm).
The highly polar, low-molecular-weight component (E) preferably contains an amine compound (E1).
なお、溶媒(C)としては、N-メチル-2-ピロリドンを含むことが好ましく、N-メチル-2-ピロリドンを含む場合はN-メチル-2-ピロリドンの再生品を用いることが好ましく、さらにN-メチル-2-ピロリドン中の水分量を10000ppm未満(好ましくは7500ppm未満、より好ましくは5000ppm未満、さらに好ましくは2500ppm未満、特に好ましいは1000ppm未満)に管理することが好適である。
また、高極性低分子量成分(E)としてはアミン化合物(E1)を含むことが好ましい。 In addition, when a recycled product is used as the solvent (C) and the carbon nanotube dispersion paste of the present invention contains the highly polar low molecular weight component (E) described later, it is necessary to remove the highly polar low molecular weight component (E) in the solvent (C). Therefore, when the boiling point of the solvent (C) is (Xc) ° C. and the boiling point of the highly polar low molecular weight component (E) is (Xe) ° C., it is preferable that (Xc)-10>(Xe), and it is preferable that (Xc)-15>(Xe) from the viewpoint of distillation (removal of the highly polar low molecular weight component (E)).
The solvent (C) preferably contains N-methyl-2-pyrrolidone. When N-methyl-2-pyrrolidone is contained, it is preferable to use a recycled product of N-methyl-2-pyrrolidone. Furthermore, it is suitable to control the water content in N-methyl-2-pyrrolidone to less than 10,000 ppm (preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm).
The highly polar, low-molecular-weight component (E) preferably contains an amine compound (E1).
カーボンナノチューブ分散ペーストにおける溶媒(C)の含有量は、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば40質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上であり、例えば99質量%以下、好ましくは98質量%以下、より好ましくは97質量%以下である。
また、カーボンナノチューブ分散ペーストの固形分としては、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、例えば60質量%以下、好ましくは40質量%以下、より好ましくは20質量%以下である。 The content of the solvent (C) in the carbon nanotube dispersion paste is, based on 100 mass% of the total amount of the carbon nanotube dispersion paste, for example, 40 mass% or more, preferably 60 mass% or more, and more preferably 80 mass% or more, and for example, 99 mass% or less, preferably 98 mass% or less, and more preferably 97 mass% or less.
The solid content of the carbon nanotube dispersion paste is, based on 100% by mass of the total amount of the carbon nanotube dispersion paste, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more, and is, for example, 60% by mass or less, preferably 40% by mass or less, and more preferably 20% by mass or less.
また、カーボンナノチューブ分散ペーストの固形分としては、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、例えば60質量%以下、好ましくは40質量%以下、より好ましくは20質量%以下である。 The content of the solvent (C) in the carbon nanotube dispersion paste is, based on 100 mass% of the total amount of the carbon nanotube dispersion paste, for example, 40 mass% or more, preferably 60 mass% or more, and more preferably 80 mass% or more, and for example, 99 mass% or less, preferably 98 mass% or less, and more preferably 97 mass% or less.
The solid content of the carbon nanotube dispersion paste is, based on 100% by mass of the total amount of the carbon nanotube dispersion paste, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more, and is, for example, 60% by mass or less, preferably 40% by mass or less, and more preferably 20% by mass or less.
ポリフッ化ビニリデン(D)
前記ポリフッ化ビニリデン(D)は、電極層の膜形成を目的とする樹脂であり、本発明のカーボンナノチューブ分散ペーストに、必要に応じて含有することができ、含有することが好ましい。また、後述する合材ペーストには必須の成分である。
また、各種の変性がされている変性ポリフッ化ビニリデン(D1)も好適に用いることができ、基材との密着性の観点から極性官能基を有することが好ましい。 Polyvinylidene fluoride (D)
The polyvinylidene fluoride (D) is a resin intended for forming a film of an electrode layer, and can be contained in the carbon nanotube dispersion paste of the present invention as necessary, and is preferably contained. Also, it is an essential component of the composite paste described later.
Also, variously modified modified polyvinylidene fluoride (D1) can be suitably used, and it is preferable that the modified polyvinylidene fluoride has a polar functional group from the viewpoint of adhesion to the substrate.
前記ポリフッ化ビニリデン(D)は、電極層の膜形成を目的とする樹脂であり、本発明のカーボンナノチューブ分散ペーストに、必要に応じて含有することができ、含有することが好ましい。また、後述する合材ペーストには必須の成分である。
また、各種の変性がされている変性ポリフッ化ビニリデン(D1)も好適に用いることができ、基材との密着性の観点から極性官能基を有することが好ましい。 Polyvinylidene fluoride (D)
The polyvinylidene fluoride (D) is a resin intended for forming a film of an electrode layer, and can be contained in the carbon nanotube dispersion paste of the present invention as necessary, and is preferably contained. Also, it is an essential component of the composite paste described later.
Also, variously modified modified polyvinylidene fluoride (D1) can be suitably used, and it is preferable that the modified polyvinylidene fluoride has a polar functional group from the viewpoint of adhesion to the substrate.
ポリフッ化ビニリデン(D)の重量平均分子量としては、基材との密着性、膜物性の補強、及び耐溶剤性の観点から、例えば10万以上、好ましくは50万以上、より好ましくは65万以上であり、例えば300万以下、好ましくは200万以下である。
The weight average molecular weight of polyvinylidene fluoride (D) is, from the viewpoints of adhesion to the substrate, reinforcement of the film properties, and solvent resistance, for example, 100,000 or more, preferably 500,000 or more, more preferably 650,000 or more, and for example, 3 million or less, preferably 2 million or less.
ポリフッ化ビニリデン(D)を含有する場合の含有量は、カーボンナノチューブ分散ペーストの固形分100質量%を基準として、例えば10.0質量%以上、好ましくは30.0質量%以上、より好ましくは40.0質量%以上であり、例えば99.0質量%以下、好ましくは80.0質量%以下、より好ましくは60.0質量%以下である。また、カーボンナノチューブ分散ペーストの総量100質量%を基準として、例えば0.1質量%以上、好ましくは0.5質量%以上、より好ましくは1質量%以上であり、例えば10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下である。
When polyvinylidene fluoride (D) is contained, the content is, based on 100% by mass of the solid content of the carbon nanotube dispersion paste, for example, 10.0% by mass or more, preferably 30.0% by mass or more, more preferably 40.0% by mass or more, and for example, 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less. Also, based on 100% by mass of the total amount of the carbon nanotube dispersion paste, the content is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and for example, 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less.
上記ポリフッ化ビニリデン(D)を固体の状態から樹脂溶液化する工程は、溶媒への溶解性の観点から、予め40℃以上(好ましくは60℃以上、より好ましくは80℃以上)(上限は200℃以下、好ましくは100℃以下)の液温の溶媒と混合及び溶解して樹脂溶液化する工程を含むことが好ましく、樹脂溶液化の後に他の成分〔成分(A)、(B)、(C)など〕と混合することが好ましい。
なお、「液温」とは、溶解時の溶媒又は樹脂溶液の温度のことである。
予め40℃以上の溶媒に固形のポリフッ化ビニリデン(D)を混入して溶解してもよく、また固形のポリフッ化ビニリデン(D)と溶媒を混合してから40℃以上の温度に加温してもよい。
また、ポリフッ化ビニリデン(D)と溶媒以外の成分を含有していてもよい。
使用する溶媒は一種を単独で又は二種以上を組み合わせて用いることができ、種類としては前述の溶媒(C)で挙げたものを好適に用いることができる。
また、上記の通り熱溶解した樹脂溶液を10℃以上40℃未満の所定温度まで冷却することが好ましく、該冷却工程は、下記式:
冷却速度=(冷却開始時の溶液温度-冷却終了時の溶液温度)/冷却時間
で定義される冷却速度が0.5℃/分以上(好ましくは1℃/分以上)となることが析出を防止する観点から好ましい。 The step of converting the polyvinylidene fluoride (D) from a solid state into a resin solution preferably includes a step of mixing and dissolving the polyvinylidene fluoride (D) in a solvent having a liquid temperature of 40° C. or higher (preferably 60° C. or higher, more preferably 80° C. or higher) (upper limit is 200° C. or lower, preferably 100° C. or lower) in advance to convert the polyvinylidene fluoride (D) into a resin solution, from the viewpoint of solubility in the solvent. After conversion into a resin solution, the polyvinylidene fluoride (D) is preferably mixed with other components [components (A), (B), (C), etc.].
The "liquid temperature" refers to the temperature of the solvent or resin solution at the time of dissolution.
Solid polyvinylidene fluoride (D) may be mixed in advance into a solvent at 40° C. or higher and dissolved therein, or solid polyvinylidene fluoride (D) may be mixed with a solvent and then heated to a temperature of 40° C. or higher.
In addition, the composition may contain components other than the polyvinylidene fluoride (D) and the solvent.
The solvent may be used alone or in combination of two or more kinds, and as the type, those exemplified above as the solvent (C) can be suitably used.
In addition, it is preferable to cool the resin solution that has been hot dissolved as described above to a predetermined temperature of 10° C. or more and less than 40° C., and the cooling step is carried out by reacting the resin solution with ... by the following reaction:
From the viewpoint of preventing precipitation, it is preferable that the cooling rate, defined as cooling rate=(solution temperature at the start of cooling−solution temperature at the end of cooling)/cooling time, is 0.5° C./min or more (preferably 1° C./min or more).
なお、「液温」とは、溶解時の溶媒又は樹脂溶液の温度のことである。
予め40℃以上の溶媒に固形のポリフッ化ビニリデン(D)を混入して溶解してもよく、また固形のポリフッ化ビニリデン(D)と溶媒を混合してから40℃以上の温度に加温してもよい。
また、ポリフッ化ビニリデン(D)と溶媒以外の成分を含有していてもよい。
使用する溶媒は一種を単独で又は二種以上を組み合わせて用いることができ、種類としては前述の溶媒(C)で挙げたものを好適に用いることができる。
また、上記の通り熱溶解した樹脂溶液を10℃以上40℃未満の所定温度まで冷却することが好ましく、該冷却工程は、下記式:
冷却速度=(冷却開始時の溶液温度-冷却終了時の溶液温度)/冷却時間
で定義される冷却速度が0.5℃/分以上(好ましくは1℃/分以上)となることが析出を防止する観点から好ましい。 The step of converting the polyvinylidene fluoride (D) from a solid state into a resin solution preferably includes a step of mixing and dissolving the polyvinylidene fluoride (D) in a solvent having a liquid temperature of 40° C. or higher (preferably 60° C. or higher, more preferably 80° C. or higher) (upper limit is 200° C. or lower, preferably 100° C. or lower) in advance to convert the polyvinylidene fluoride (D) into a resin solution, from the viewpoint of solubility in the solvent. After conversion into a resin solution, the polyvinylidene fluoride (D) is preferably mixed with other components [components (A), (B), (C), etc.].
The "liquid temperature" refers to the temperature of the solvent or resin solution at the time of dissolution.
Solid polyvinylidene fluoride (D) may be mixed in advance into a solvent at 40° C. or higher and dissolved therein, or solid polyvinylidene fluoride (D) may be mixed with a solvent and then heated to a temperature of 40° C. or higher.
In addition, the composition may contain components other than the polyvinylidene fluoride (D) and the solvent.
The solvent may be used alone or in combination of two or more kinds, and as the type, those exemplified above as the solvent (C) can be suitably used.
In addition, it is preferable to cool the resin solution that has been hot dissolved as described above to a predetermined temperature of 10° C. or more and less than 40° C., and the cooling step is carried out by reacting the resin solution with ... by the following reaction:
From the viewpoint of preventing precipitation, it is preferable that the cooling rate, defined as cooling rate=(solution temperature at the start of cooling−solution temperature at the end of cooling)/cooling time, is 0.5° C./min or more (preferably 1° C./min or more).
混合及び分散
本発明の製造方法において、前記混合及び分散する工程は、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)、カーボンナノチューブ(B)、水分量が10000ppm未満の溶媒(C)、及び必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合して、さらに分散する工程であり、液状のカーボンナノチューブ分散ペーストを得ることができる。 Mixing and Dispersing In the manufacturing method of the present invention, the mixing and dispersing step is a step of mixing and further dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which can be included as necessary, and obtaining a liquid carbon nanotube dispersion paste.
本発明の製造方法において、前記混合及び分散する工程は、複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)、カーボンナノチューブ(B)、水分量が10000ppm未満の溶媒(C)、及び必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合して、さらに分散する工程であり、液状のカーボンナノチューブ分散ペーストを得ることができる。 Mixing and Dispersing In the manufacturing method of the present invention, the mixing and dispersing step is a step of mixing and further dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which can be included as necessary, and obtaining a liquid carbon nanotube dispersion paste.
上記カーボンナノチューブ分散ペーストの固形分濃度の上限としては、通常80質量%未満であり、好ましくは50質量%未満であり、より好ましくは20質量%未満であり、さらに好ましくは10質量%未満である。下限としては、通常0.1質量%以上であり、好ましくは0.5質量%以上であり、より好ましくは1質量%以上であり、さらに好ましくは2質量%以上である。
The upper limit of the solids concentration of the carbon nanotube dispersion paste is usually less than 80% by mass, preferably less than 50% by mass, more preferably less than 20% by mass, and even more preferably less than 10% by mass. The lower limit is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more.
上記混合及び分散工程において、各成分を、例えば、ペイントシェーカー、サンドミル、ボールミル、ペブルミル、LMZミル、DCPパールミル、遊星ボールミル、ホモジナイザー、二軸混練機、薄膜旋回型高速ミキサー(フィルミックス社製、商品名「クレアミックス」等)等の従来公知の分散機を用いて均一に混合、分散させることにより調製することができる。なお、各成分の混合する順序は特に限定されない。
また、上記混合及び分散する工程が、
工程1:分散後に得られるカーボンナノチューブ分散ペーストに含まれるカーボンナノチューブ(B)の総量100質量%を基準として、70質量%以下(好ましくは50質量%以下)の量となるカーボンナノチューブ(B)を含む成分を分散機内に添加し、分散処理を行う工程、及び
工程2:所望の濃度になるまでカーボンナノチューブ(B)を分散機内に添加して分散処理を行う工程、
を順次行う工程を含むことが好ましい。
また、工程1の分散処理時間は少なくとも30秒以上(好ましくは1分以上)であることが好ましい。
上記の混合及び分散をすることによって、カーボンナノチューブ(B)の凝集が緩和され高濃度のペーストにおいても分散性が良好で均質なペーストが得られ、その電池用電極層(塗工膜)は仕上がり性、導電性、及び電池性能等に優れる。 In the mixing and dispersing step, the components can be uniformly mixed and dispersed using a conventionally known dispersing machine such as a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin film rotary high-speed mixer (manufactured by Filmix, product name "Clearmix", etc.), etc. The order in which the components are mixed is not particularly limited.
The mixing and dispersing step further comprises:
Step 1: adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less (preferably 50% by mass or less) based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process; and Step 2: adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process.
It is preferable that the method includes the steps of sequentially carrying out the steps.
The dispersion treatment time in step 1 is preferably at least 30 seconds or more (preferably 1 minute or more).
By carrying out the above-mentioned mixing and dispersion, the aggregation of the carbon nanotubes (B) is alleviated, and a homogeneous paste with good dispersibility is obtained even in a high-concentration paste, and the resulting battery electrode layer (coating film) has excellent finish, conductivity, battery performance, etc.
また、上記混合及び分散する工程が、
工程1:分散後に得られるカーボンナノチューブ分散ペーストに含まれるカーボンナノチューブ(B)の総量100質量%を基準として、70質量%以下(好ましくは50質量%以下)の量となるカーボンナノチューブ(B)を含む成分を分散機内に添加し、分散処理を行う工程、及び
工程2:所望の濃度になるまでカーボンナノチューブ(B)を分散機内に添加して分散処理を行う工程、
を順次行う工程を含むことが好ましい。
また、工程1の分散処理時間は少なくとも30秒以上(好ましくは1分以上)であることが好ましい。
上記の混合及び分散をすることによって、カーボンナノチューブ(B)の凝集が緩和され高濃度のペーストにおいても分散性が良好で均質なペーストが得られ、その電池用電極層(塗工膜)は仕上がり性、導電性、及び電池性能等に優れる。 In the mixing and dispersing step, the components can be uniformly mixed and dispersed using a conventionally known dispersing machine such as a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin film rotary high-speed mixer (manufactured by Filmix, product name "Clearmix", etc.), etc. The order in which the components are mixed is not particularly limited.
The mixing and dispersing step further comprises:
Step 1: adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less (preferably 50% by mass or less) based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process; and Step 2: adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process.
It is preferable that the method includes the steps of sequentially carrying out the steps.
The dispersion treatment time in step 1 is preferably at least 30 seconds or more (preferably 1 minute or more).
By carrying out the above-mentioned mixing and dispersion, the aggregation of the carbon nanotubes (B) is alleviated, and a homogeneous paste with good dispersibility is obtained even in a high-concentration paste, and the resulting battery electrode layer (coating film) has excellent finish, conductivity, battery performance, etc.
高極性低分子量成分(E)
前記カーボンナノチューブ分散ペーストは、さらに高極性低分子量成分(E)を含有することができる。高極性低分子量成分(E)は、導電性顔料のぬれ性及び/又は貯蔵安定性を上げる成分であり、例えば、それ自体既知の塩基性成分や酸性成分が挙げられ、なかでもアミン化合物(E1)を含有することが好ましい。 High polar low molecular weight component (E)
The carbon nanotube dispersion paste may further contain a high-polarity, low-molecular-weight component (E). The high-polarity, low-molecular-weight component (E) is a component that increases the wettability and/or storage stability of the conductive pigment. Examples of the compound include basic components and acidic components known per se, and among these, it is preferable to contain an amine compound (E1).
前記カーボンナノチューブ分散ペーストは、さらに高極性低分子量成分(E)を含有することができる。高極性低分子量成分(E)は、導電性顔料のぬれ性及び/又は貯蔵安定性を上げる成分であり、例えば、それ自体既知の塩基性成分や酸性成分が挙げられ、なかでもアミン化合物(E1)を含有することが好ましい。 High polar low molecular weight component (E)
The carbon nanotube dispersion paste may further contain a high-polarity, low-molecular-weight component (E). The high-polarity, low-molecular-weight component (E) is a component that increases the wettability and/or storage stability of the conductive pigment. Examples of the compound include basic components and acidic components known per se, and among these, it is preferable to contain an amine compound (E1).
上記高極性低分子量成分(E)中のアミン化合物(E1)の含有量としては、高極性低分子量成分(E)100質量%を基準として、例えば50質量%以上、好ましくは75質量%以上、より好ましくは95質量%以上である。
The content of the amine compound (E1) in the highly polar, low molecular weight component (E) is, for example, 50% by mass or more, preferably 75% by mass or more, and more preferably 95% by mass or more, based on 100% by mass of the highly polar, low molecular weight component (E).
上記アミン化合物(E1)としては、例えば、アンモニア、1級アミン、2級アミン、3級アミン等が挙げられる。
Examples of the amine compound (E1) include ammonia, primary amines, secondary amines, and tertiary amines.
1級アミンとしては、例えば、エチルアミン、n-プロピルアミン、sec-プロピルアミン、n-ブチルアミン、sec-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ラウリルアミン、ミスチリルアミン、1,2-ジメチルヘキシルアミン、3-ペンチルアミン、2-エチルヘキシルアミン、アリルアミン、アミノエタノール、1-アミノプロパノール、2-アミノプロパノール、アミノブタノール、アミノペンタノール、アミノヘキサノール、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、3-(2-エチルヘキシロキシ)プロピルアミン、アミノシクロペンタン、アミノシクロヘキサン、アミノノルボルネン、アミノメチルシクロヘキサン、アミノベンゼン、ベンジルアミン、フェネチルアミン、α-フェニルエチルアミン、ナフチルアミン、フルフリルアミン等の1級モノアミン;エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ビス-(3-アミノプロピル)エーテル、1,2-ビス-(3-アミノプロポキシ)エタン、1,3-ビス-(3-アミノプロポキシ)-2,2’-ジメチルプロパン、アミノエチルエタノールアミン、1,2-ビスアミノシクロヘキサン、1,3-ビスアミノシクロヘキサン、1,4-ビスアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、1,3-ビスアミノエチルシクロヘキサン、1,4-ビスアミノエチルシクロヘキサン、1,3-ビスアミノプロピルシクロヘキサン、1,4-ビスアミノプロピルシクロヘキサン、水添4,4’-ジアミノジフェニルメタン、2-アミノピペリジン、4-アミノピペリジン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、2-アミノエチルピペリジン、4-アミノエチルピペリジン、N-アミノエチルピペリジン、N-アミノプロピルピペリジン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン、イソホロンジアミン、メンタンジアミン、1,4-ビスアミノプロピルピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、2,4-トルエンジアミン、m-アミノベンジルアミン、4-クロロ-o-フェニレンジアミン、テトラクロロ-p-キシリレンジアミン、4-メトキシ-6-メチル-m-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ベンジジン、4,4’-ビス(o-トルイジン)、ジアニシジン、4,4’-ジアミノジフェニルメタン、2,2-(4,4’-ジアミノジフェニル)プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-チオジアニリン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジトリルスルホン、メチレンビス(o-クロロアニリン)、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ジエチレントリアミン、イミノビスプロピルアミン、メチルイミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、1,4-ビス(アミノエチルピペラジン)、1,4-ビス(アミノプロピルピペラジン)、2,6-ジアミノピリジン、ビス(3,4-ジアミノフェニル)スルホン等の1級ポリアミン等が挙げられる。
Primary amines include, for example, ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, laurylamine, myristyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethylhexyloxy)propylamine, aminocyclopentane, aminocyclohexane, aminonorbornene, aminomethylcyclohexane, aminobenzene, benzylamine, phenethylamine, α-furan, primary monoamines such as phenylethylamine, naphthylamine, and furfurylamine; ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, dimethylaminopropylamine, diethylaminopropylamine, bis-(3-aminopropyl)ether, 1,2- Bis-(3-aminopropoxy)ethane, 1,3-bis-(3-aminopropoxy)-2,2'-dimethylpropane, aminoethylethanolamine, 1,2-bisaminocyclohexane, 1,3-bisaminocyclohexane, 1,4-bisaminocyclohexane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 1,3-bisaminoethylcyclohexane, 1,4-bisaminoethylcyclohexane, 1,3-bisaminopropylcyclohexane, 1,4-bisaminopropylcyclohexane, hydrogenated 4,4'-diaminodiphenylmethane, 2-aminopiperidine, 4-aminopiperidine, 2-aminomethylpiperidine, 4-aminomethylpiperidine, 2-aminoethylpiperidine, 4-aminoethylpiperidine, N-aminoethylpiperidine, N-aminopropylpiperidine, N-aminoethylmorpholine, N-aminopropylmorpholine, isophoronediamine, menthanediamine, 1,4-bisa Aminopropylpiperazine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, 2,4-toluenediamine, m-aminobenzylamine, 4-chloro-o-phenylenediamine, tetrachloro-p-xylylenediamine, 4-methoxy-6-methyl-m-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine Benzidine, 4,4'-bis(o-toluidine), dianisidine, 4,4'-diaminodiphenylmethane, 2,2-(4,4'-diaminodiphenyl)propane, 4,4'-diaminodiphenyl ether, 4,4'-thiodianiline, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminoditolyl sulfone, methylenebis(o-chloroaniline), 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro[5,5]undecane, diethylene Examples of primary polyamines include bis(hexamethylene)triamine, iminobispropylamine, methyliminobispropylamine, bis(hexamethylene)triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-aminoethylpiperazine, N-aminopropylpiperazine, 1,4-bis(aminoethylpiperazine), 1,4-bis(aminopropylpiperazine), 2,6-diaminopyridine, and bis(3,4-diaminophenyl)sulfone.
2級アミンとしては、例えば、ジエチルアミン、ジプロピルアミン、ジ-n-ブチルアミン、ジ-sec-ブチルアミン、ジイソブチルアミン、ジ-n-ペンチルアミン、ジ-3-ペンチルアミン、ジヘキシルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、メチルヘキシルアミン、ジアリルアミン、ピロリジン、ピペリジン、2,4-ルペチジン、2,6-ルペチジン、3,5-ルペチジン、ジフェニルアミン、N-メチルアニリン、N-エチルアニリン、ジベンジルアミン、メチルベンジルアミン、ジナフチルアミン、ピロール、インドリン、インドール、モルホリン等の2級モノアミン;N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,2-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,2-ジアミノブタン、N,N’-ジメチル-1,3-ジアミノブタン、N,N’-ジメチル-1,4-ジアミノブタン、N,N’-ジメチル-1,5-ジアミノペンタン、N,N’-ジメチル-1,6-ジアミノヘキサン、N,N’-ジメチル-1,7-ジアミノヘプタン、N,N’-ジエチルエチレンジアミン、N,N’-ジエチル-1,2-ジアミノプロパン、N,N’-ジエチル-1,3-ジアミノプロパン、N,N’-ジエチル-1,2-ジアミノブタン、N,N’-ジエチル-1,3-ジアミノブタン、N,N’-ジエチル-1,4-ジアミノブタン、N,N’-ジエチル-1,6-ジアミノヘキサン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、2,6-ジメチルピペラジン、ホモピペラジン、1,1-ジ-(4-ピペリジル)メタン、1,2-ジ-(4-ピペリジル)エタン、1,3-ジ-(4-ピペリジル)プロパン、1,4-ジ-(4-ピペリジル)ブタン等の2級ポリアミン等が挙げられる。
Secondary amines include, for example, diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di(2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-leupetidine, 2,6-leupetidine, 3,5-leupetidine, diphenylamine, secondary monoamines such as N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl-1,3-diaminopropane, N,N'-dimethyl-1,2-diaminobutane, N,N'-dimethyl-1,3 ... '-Dimethyl-1,4-diaminobutane, N,N'-dimethyl-1,5-diaminopentane, N,N'-dimethyl-1,6-diaminohexane, N,N'-dimethyl-1,7-diaminoheptane, N,N'-diethylethylenediamine, N,N'-diethyl-1,2-diaminopropane, N,N'-diethyl-1,3-diaminopropane, N,N'-diethyl-1,2-diaminobutane, N,N'-diethyl-1,3-diaminobutane Examples of secondary polyamines include hexane, N,N'-diethyl-1,4-diaminobutane, N,N'-diethyl-1,6-diaminohexane, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 2,6-dimethylpiperazine, homopiperazine, 1,1-di-(4-piperidyl)methane, 1,2-di-(4-piperidyl)ethane, 1,3-di-(4-piperidyl)propane, and 1,4-di-(4-piperidyl)butane.
3級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-iso-プロピルアミン、トリ-1,2-ジメチルプロピルアミン、トリ-3-メトキシプロピルアミン、トリ-n-ブチルアミン、トリ-iso-ブチルアミン、トリ-sec-ブチルアミン、トリ-ペンチルアミン、トリ-3-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-オクチルアミン、トリ-2-エチルヘキシルアミン、トリ-ドデシルアミン、トリ-ラウリルアミン、ジシクロヘキシルエチルアミン、シクロヘキシルジエチルアミン、トリ-シクロヘキシルアミン、N,N-ジメチルヘキシルアミン、N-メチルジヘキシルアミン、N,N-ジメチルシクロヘキシルアミン、N-メチルジシクロヘキシルアミン、N、N-ジエチルエタノールアミン、N、N-ジメチルエタノールアミン、N-エチルジエタノールアミン、トリエタノールアミン、トリベンジルアミン、N,N-ジメチルベンジルアミン、ジエチルベンジルアミン、トリフェニルアミン、N,N-ジメチルアミノ-p-クレゾール、N,N-ジメチルアミノメチルフェノール、2-(N,N-ジメチルアミノメチル)フェノール、N,N-ジメチルアニリン、N,N-ジエチルアニリン、ピリジン、キノリン、N-メチルモルホリン、N-メチルピペリジン、2-(2-ジメチルアミノエトキシ)-4-メチル-1,3,2-ジオキサボルナン、2-、3-、4-ピコリン等の3級モノアミン;テトラメチルエチレンジアミン、ピラジン、N,N’-ジメチルピペラジン、N,N’-ビス((2-ヒドロキシ)プロピル)ピペラジン、ヘキサメチレンテトラミン、N,N,N’,N’-テトラメチル-1,3-ブタンアミン、2-ジメチルアミノ-2-ヒドロキシプロパン、ジエチルアミノエタノール、N,N,N-トリス(3-ジメチルアミノプロピル)アミン、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、ヘプタメチルイソビグアニド等の3級ポリアミン等が挙げられる。
Examples of tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethylethanolamine, N,N-dimethylethanolamine, N-ethyldiethanolamine, triethanolamine, tribenzylamine, N,N-dimethylbenzylamine, diethylbenzylamine, tertiary monoamines such as diphenylamine, triphenylamine, N,N-dimethylamino-p-cresol, N,N-dimethylaminomethylphenol, 2-(N,N-dimethylaminomethyl)phenol, N,N-dimethylaniline, N,N-diethylaniline, pyridine, quinoline, N-methylmorpholine, N-methylpiperidine, 2-(2-dimethylaminoethoxy)-4-methyl-1,3,2-dioxabornane, and 2-, 3-, and 4-picoline; tetramethylethylenediamine, Examples of tertiary polyamines include pyrazine, N,N'-dimethylpiperazine, N,N'-bis((2-hydroxy)propyl)piperazine, hexamethylenetetramine, N,N,N',N'-tetramethyl-1,3-butanamine, 2-dimethylamino-2-hydroxypropane, diethylaminoethanol, N,N,N-tris(3-dimethylaminopropyl)amine, 2,4,6-tris(N,N-dimethylaminomethyl)phenol, and heptamethylisobiguanide.
これらは一種を単独で又は二種以上を組み合わせて用いることができる。
These can be used alone or in combination of two or more types.
なかでも、1級のアミン化合物が好ましく、1価のアミン化合物(モノアミン)が好ましい。
Among these, primary amine compounds are preferred, and monovalent amine compounds (monoamines) are more preferred.
上記アミン化合物(E1)としては、脂肪族アミン、脂環族アミン、芳香族アミン、アルカノールアミン等が挙げられ、いずれも好適に使用できるが、芳香族アミンが好ましい。
The above amine compound (E1) may be an aliphatic amine, an alicyclic amine, an aromatic amine, an alkanolamine, etc., any of which may be suitably used, but aromatic amines are preferred.
乾燥後の電極層にアミン化合物が残らないことが好ましいため、アミン化合物(E1)の重量平均分子量が1,000未満であることが好ましく、800以下であることがより好ましく、500以下であることがさらに好ましく、350以下であることが特に好ましく、250以下であることがさらに特に好ましい。また同じ理由で、アミン化合物の沸点としては、400℃以下が好ましく、300℃以下がより好ましく、200℃以下がさらに好ましい。
また、沸点が低い場合は製造又は貯蔵中に揮発する可能性があり、さらに臭気の観点から、下限としては50℃以上が好ましく、100℃以上がより好ましい。 Since it is preferable that no amine compound remains in the electrode layer after drying, the weight average molecular weight of the amine compound (E1) is preferably less than 1,000, more preferably 800 or less, even more preferably 500 or less, particularly preferably 350 or less, and even more particularly preferably 250 or less. For the same reason, the boiling point of the amine compound is preferably 400° C. or less, more preferably 300° C. or less, and even more preferably 200° C. or less.
Furthermore, if the boiling point is low, there is a possibility that the liquid will volatilize during production or storage, and furthermore, from the viewpoint of odor, the lower limit is preferably 50° C. or higher, and more preferably 100° C. or higher.
また、沸点が低い場合は製造又は貯蔵中に揮発する可能性があり、さらに臭気の観点から、下限としては50℃以上が好ましく、100℃以上がより好ましい。 Since it is preferable that no amine compound remains in the electrode layer after drying, the weight average molecular weight of the amine compound (E1) is preferably less than 1,000, more preferably 800 or less, even more preferably 500 or less, particularly preferably 350 or less, and even more particularly preferably 250 or less. For the same reason, the boiling point of the amine compound is preferably 400° C. or less, more preferably 300° C. or less, and even more preferably 200° C. or less.
Furthermore, if the boiling point is low, there is a possibility that the liquid will volatilize during production or storage, and furthermore, from the viewpoint of odor, the lower limit is preferably 50° C. or higher, and more preferably 100° C. or higher.
また、アミン化合物(E1)のアミン価としては、通常5mgKOH/g以上、好ましくは50mgKOH/g以上、より好ましくは105mgKOH/g以上であり、通常1,000mgKOH/g以下の範囲内である。
The amine value of the amine compound (E1) is usually 5 mgKOH/g or more, preferably 50 mgKOH/g or more, more preferably 105 mgKOH/g or more, and is usually within the range of 1,000 mgKOH/g or less.
その他の高極性低分子量成分としては、アミン化合物(E1)と併用して、例えば、有機酸及び無機酸から選ばれる酸性の高極性低分子量成分の一種を単独で又は二種以上を組み合わせて用いることができる。また、有機塩基及び無機塩基から選ばれる塩基性の高極性低分子量成分の一種を単独で又は二種以上を組み合わせて用いることができる。
As other highly polar, low molecular weight components, for example, an acidic highly polar, low molecular weight component selected from organic acids and inorganic acids can be used alone or in combination with two or more of them in combination with the amine compound (E1). Also, a basic highly polar, low molecular weight component selected from organic bases and inorganic bases can be used alone or in combination with two or more of them.
有機酸としては、例えば、有機カルボン酸(ギ酸、酢酸、プロピオン酸、安息香酸、フタル酸等)、有機スルホン酸(ベンゼンスルホン酸等)等が、無機酸としては、例えば、塩酸、硫酸、硝酸、リン酸等が、それぞれ挙げられ、これらの酸無水物も用いることができる。
Examples of organic acids include organic carboxylic acids (formic acid, acetic acid, propionic acid, benzoic acid, phthalic acid, etc.) and organic sulfonic acids (benzenesulfonic acid, etc.), while examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, etc., and their acid anhydrides can also be used.
有機塩基としては、アミン化合物以外の塩基成分や、無機塩基としては、例えば、金属水酸化物(水酸化ナトリウム、水酸化カリウム等)等が、それぞれ挙げられる。
Examples of organic bases include base components other than amine compounds, and examples of inorganic bases include metal hydroxides (sodium hydroxide, potassium hydroxide, etc.).
上記高極性低分子量成分(E)の含有量としては、カーボンナノチューブ分散ペーストの固形分100質量%を基準として、例えば1質量%以上、好ましくは1.5質量%以上、より好ましくは2質量%以上であり、例えば600質量%以下、好ましくは300質量%以下、より好ましくは50質量%以下が好適である。
The content of the highly polar, low molecular weight component (E) is, for example, 1% by mass or more, preferably 1.5% by mass or more, and more preferably 2% by mass or more, based on 100% by mass of the solid content of the carbon nanotube dispersion paste, and is, for example, 600% by mass or less, preferably 300% by mass or less, and more preferably 50% by mass or less.
また、カーボンナノチューブ(B)の固形分100質量%を基準として、下限としては、例えば1質量%以上、好ましくは2質量%以上、より好ましくは5質量%以上である。上限としては、例えば1,000質量%以下、好ましくは500質量%以下、より好ましくは50質量%以下である。
また、カーボンナノチューブ分散ペーストの総量100質量%を基準として、下限としては、例えば0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上である。上限としては、例えば10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下である。 Based on 100% by mass of the solid content of the carbon nanotubes (B), the lower limit is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 5% by mass or more, and the upper limit is, for example, 1,000% by mass or less, preferably 500% by mass or less, and more preferably 50% by mass or less.
Based on 100% by mass of the total amount of the carbon nanotube dispersion paste, the lower limit is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more, and the upper limit is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less.
また、カーボンナノチューブ分散ペーストの総量100質量%を基準として、下限としては、例えば0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上である。上限としては、例えば10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下である。 Based on 100% by mass of the solid content of the carbon nanotubes (B), the lower limit is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 5% by mass or more, and the upper limit is, for example, 1,000% by mass or less, preferably 500% by mass or less, and more preferably 50% by mass or less.
Based on 100% by mass of the total amount of the carbon nanotube dispersion paste, the lower limit is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more, and the upper limit is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less.
高極性低分子量成分(E)〔特にアミン化合物(E1)〕は、臭気が強いものが多いため、配合時や乾燥過程で作業環境が悪化する場合がある。また、一般的に高価なためコスト増になる場合がある。従って、必要最低限の含有量にする必要がある。
Many highly polar, low molecular weight components (E) [especially amine compounds (E1)] have a strong odor, which can lead to poor working conditions during mixing and drying. In addition, they are generally expensive, which can lead to increased costs. Therefore, it is necessary to keep the content at the minimum necessary.
また、溶媒(C)と高極性低分子量成分(E)の含有比率としては、溶媒(C)と高極性低分子量成分(E)の質量比で、通常100/0.01~100/10の範囲内であり、好ましくは100/0.02~100/7の範囲内であり、より好ましくは100/0.05~100/5の範囲内であり、より好ましくは100/0.1~100/4の範囲内であることが好適である。
The content ratio of the solvent (C) to the highly polar, low molecular weight component (E) is usually within the range of 100/0.01 to 100/10, preferably within the range of 100/0.02 to 100/7, more preferably within the range of 100/0.05 to 100/5, and more preferably within the range of 100/0.1 to 100/4, in terms of the mass ratio of the solvent (C) to the highly polar, low molecular weight component (E).
また、本発明の製造方法で用いるカーボンナノチューブ分散ペーストが高極性低分子量成分(E)を含有している場合、カーボンナノチューブ(B)の含有量100質量部に対する高極性低分子量成分(E)の含有量をα(質量部)、カーボンナノチューブ(B)のBET比表面積をβ(m2/g)とした下記式(2)のXの値が、通常1以上、好ましくは5以上、より好ましくは10以上であり、通常2,500以下、好ましくは1,000以下、より好ましくは300以下、さらに好ましくは100以下の範囲内であることがさらに好ましい。
X=α/β×300・・・式(2)
この範囲内であればカーボンナノチューブ(B)の表面に必要十分に高極性低分子量成分(E)を濡れさせることができ、カーボンナノチューブ(B)の分散性(粘度含む)や貯蔵安定性(増粘抑制含む)を向上できることを見出した。 Furthermore, when the carbon nanotube dispersion paste used in the manufacturing method of the present invention contains a highly polar, low molecular weight component (E), the value of X in the following formula (2), where α (parts by mass) is the content of the highly polar, low molecular weight component (E) per 100 parts by mass of the carbon nanotubes (B) and β ( m2 /g) is the BET specific surface area of the carbon nanotubes (B), is usually 1 or more, preferably 5 or more, and more preferably 10 or more, and is usually 2,500 or less, preferably 1,000 or less, more preferably 300 or less, and even more preferably 100 or less.
X=α/β×300...Formula (2)
It has been found that within this range, the highly polar, low molecular weight component (E) can be wetted to the surface of the carbon nanotubes (B) in a necessary and sufficient manner, thereby improving the dispersibility (including viscosity) and storage stability (including inhibition of thickening) of the carbon nanotubes (B).
X=α/β×300・・・式(2)
この範囲内であればカーボンナノチューブ(B)の表面に必要十分に高極性低分子量成分(E)を濡れさせることができ、カーボンナノチューブ(B)の分散性(粘度含む)や貯蔵安定性(増粘抑制含む)を向上できることを見出した。 Furthermore, when the carbon nanotube dispersion paste used in the manufacturing method of the present invention contains a highly polar, low molecular weight component (E), the value of X in the following formula (2), where α (parts by mass) is the content of the highly polar, low molecular weight component (E) per 100 parts by mass of the carbon nanotubes (B) and β ( m2 /g) is the BET specific surface area of the carbon nanotubes (B), is usually 1 or more, preferably 5 or more, and more preferably 10 or more, and is usually 2,500 or less, preferably 1,000 or less, more preferably 300 or less, and even more preferably 100 or less.
X=α/β×300...Formula (2)
It has been found that within this range, the highly polar, low molecular weight component (E) can be wetted to the surface of the carbon nanotubes (B) in a necessary and sufficient manner, thereby improving the dispersibility (including viscosity) and storage stability (including inhibition of thickening) of the carbon nanotubes (B).
上記上限範囲を上回るとカーボンナノチューブ(B)の表面積に対する高極性低分子量成分(E)含有量は過剰(臭気やコスト増)であり、上記下限範囲を下回るとカーボンナノチューブ(B)の表面積に対する高極性低分子量成分(E)含有量は不足している。
If the content exceeds the upper limit range, the content of the highly polar, low molecular weight component (E) relative to the surface area of the carbon nanotube (B) is excessive (increased odor and cost), and if the content falls below the lower limit range, the content of the highly polar, low molecular weight component (E) relative to the surface area of the carbon nanotube (B) is insufficient.
また、本発明の製造方法で用いるカーボンナノチューブ分散ペーストがカーボンナノチューブ(B)及びアミン化合物(E1)を含有している場合、カーボンナノチューブ(B)の含有量100質量部に対するアミン化合物(E1)の含有量をα(質量部)、カーボンナノチューブ(B)のBET比表面積をβ(m2/g)、カーボンナノチューブ(B)の酸性基量をγ(mmol/g)とした下記式(3)のYの値が、好ましくは0.01以上であり、より好ましくは0.05以上であり、さらに好ましくは0.1以上であり、特に好ましくは1以上である。また、好適な範囲としては、好ましくは0.01以上400以下であり、より好ましくは0.05以上100以下であり、さらに好ましくは0.1以上75以下であり、特に好ましくは1以上50以下である。
Y=α/β/γ・・・式(3)
この範囲内であればカーボンナノチューブ(B)の一定量の酸性基を有する表面に必要十分にアミン化合物(E1)を濡れさせることができ、カーボンナノチューブ(B)の分散性(粘度含む)や貯蔵安定性(増粘抑制含む)を向上できることを見出した。
酸性基を有するカーボンナノチューブ(B)の表面積に対するアミン化合物(E1)の含有量が過剰であると、臭気がきつくなり、またコスト増になる。含有量が不足するとカーボンナノチューブ(B)の酸性基を有する表面積に対するアミン化合物(E1)含有量は不足して分散性や貯蔵安定性(増粘抑制)が劣る場合がある。 In addition, when the carbon nanotube dispersion paste used in the manufacturing method of the present invention contains carbon nanotubes (B) and an amine compound (E1), the value of Y in the following formula (3), where α (parts by mass) is the content of the amine compound (E1) relative to 100 parts by mass of the carbon nanotubes (B), β (m 2 /g) is the BET specific surface area of the carbon nanotubes (B), and γ (mmol/g) is the amount of acidic groups in the carbon nanotubes (B), is preferably 0.01 or more, more preferably 0.05 or more, even more preferably 0.1 or more, and particularly preferably 1 or more. In addition, the suitable range is preferably 0.01 or more and 400 or less, more preferably 0.05 or more and 100 or less, even more preferably 0.1 or more and 75 or less, and particularly preferably 1 or more and 50 or less.
Y=α/β/γ...Formula (3)
It has been found that within this range, the amine compound (E1) can be sufficiently wetted onto the surface of the carbon nanotube (B) having a certain amount of acidic groups, and the dispersibility (including viscosity) and storage stability (including inhibition of thickening) of the carbon nanotube (B) can be improved.
If the content of the amine compound (E1) is excessive relative to the surface area of the carbon nanotubes (B) having acidic groups, the odor becomes strong and the cost increases, whereas if the content is insufficient, the content of the amine compound (E1) relative to the surface area of the carbon nanotubes (B) having acidic groups is insufficient, and dispersibility and storage stability (suppression of thickening) may be deteriorated.
Y=α/β/γ・・・式(3)
この範囲内であればカーボンナノチューブ(B)の一定量の酸性基を有する表面に必要十分にアミン化合物(E1)を濡れさせることができ、カーボンナノチューブ(B)の分散性(粘度含む)や貯蔵安定性(増粘抑制含む)を向上できることを見出した。
酸性基を有するカーボンナノチューブ(B)の表面積に対するアミン化合物(E1)の含有量が過剰であると、臭気がきつくなり、またコスト増になる。含有量が不足するとカーボンナノチューブ(B)の酸性基を有する表面積に対するアミン化合物(E1)含有量は不足して分散性や貯蔵安定性(増粘抑制)が劣る場合がある。 In addition, when the carbon nanotube dispersion paste used in the manufacturing method of the present invention contains carbon nanotubes (B) and an amine compound (E1), the value of Y in the following formula (3), where α (parts by mass) is the content of the amine compound (E1) relative to 100 parts by mass of the carbon nanotubes (B), β (m 2 /g) is the BET specific surface area of the carbon nanotubes (B), and γ (mmol/g) is the amount of acidic groups in the carbon nanotubes (B), is preferably 0.01 or more, more preferably 0.05 or more, even more preferably 0.1 or more, and particularly preferably 1 or more. In addition, the suitable range is preferably 0.01 or more and 400 or less, more preferably 0.05 or more and 100 or less, even more preferably 0.1 or more and 75 or less, and particularly preferably 1 or more and 50 or less.
Y=α/β/γ...Formula (3)
It has been found that within this range, the amine compound (E1) can be sufficiently wetted onto the surface of the carbon nanotube (B) having a certain amount of acidic groups, and the dispersibility (including viscosity) and storage stability (including inhibition of thickening) of the carbon nanotube (B) can be improved.
If the content of the amine compound (E1) is excessive relative to the surface area of the carbon nanotubes (B) having acidic groups, the odor becomes strong and the cost increases, whereas if the content is insufficient, the content of the amine compound (E1) relative to the surface area of the carbon nanotubes (B) having acidic groups is insufficient, and dispersibility and storage stability (suppression of thickening) may be deteriorated.
その他の成分
前記カーボンナノチューブ分散ペーストとしては、上記の成分(A)、(B)、及び(C)と、必要に応じて含有できる成分(D)と(E)の他に、さらにその他の成分を含有することができる。 Other Components The carbon nanotube dispersion paste may further contain other components in addition to the above-mentioned components (A), (B), and (C), and the components (D) and (E) which may be contained as necessary.
前記カーボンナノチューブ分散ペーストとしては、上記の成分(A)、(B)、及び(C)と、必要に応じて含有できる成分(D)と(E)の他に、さらにその他の成分を含有することができる。 Other Components The carbon nanotube dispersion paste may further contain other components in addition to the above-mentioned components (A), (B), and (C), and the components (D) and (E) which may be contained as necessary.
その他の成分としては、例えば、分散樹脂(A)及びポリフッ化ビニリデン(D)以外の樹脂、中和剤、消泡剤、防腐剤、防錆剤、可塑剤、カーボンナノチューブ(B)以外の顔料、脱水剤(F)等を挙げることができる。
Other components include, for example, resins other than the dispersion resin (A) and polyvinylidene fluoride (D), neutralizing agents, defoamers, preservatives, rust inhibitors, plasticizers, pigments other than carbon nanotubes (B), dehydrating agents (F), etc.
カーボンナノチューブ(B)以外の顔料としては、例えば、前述したその他の導電性顔料(B1);チタン白、亜鉛華等の白色顔料;シアニンブルー、インダスレンブルー等の青色顔料;シアニングリーン、緑青等の緑色顔料;アゾ系やキナクリドン系等の有機赤色顔料、ベンガラ等の赤色顔料;ベンツイミダゾロン系、イソインドリノン系、イソインドリン系及びキノフタロン系等の有機黄色顔料、チタンイエロー、黄鉛等の黄色顔料等が挙られる。これらの顔料は、一種を単独で又は二種以上を組み合わせて用いることができる。
これらのカーボンナノチューブ(B)以外の顔料は、導電性を大きく損なわない範囲内で色調整や膜の物性補強等の目的で使用することができ、分散樹脂(A)とカーボンナノチューブ(B)と共に同時に分散してもよく、また、分散樹脂(A)とカーボンナノチューブ(B)を分散してペーストを作成した後に顔料又は顔料ペーストとして混ぜてもよい。 Examples of pigments other than carbon nanotubes (B) include the other conductive pigments (B1) described above; white pigments such as titanium white and zinc oxide; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and verdigris; organic red pigments such as azo and quinacridone, red pigments such as red iron oxide; organic yellow pigments such as benzimidazolone, isoindolinone, isoindoline and quinophthalone, yellow pigments such as titanium yellow and yellow lead. These pigments can be used alone or in combination of two or more.
These pigments other than the carbon nanotubes (B) can be used for purposes such as color adjustment and reinforcement of the physical properties of the film, as long as the electrical conductivity is not significantly impaired. They may be dispersed simultaneously with the dispersing resin (A) and the carbon nanotubes (B), or they may be mixed as a pigment or pigment paste after dispersing the dispersing resin (A) and the carbon nanotubes (B) to prepare a paste.
これらのカーボンナノチューブ(B)以外の顔料は、導電性を大きく損なわない範囲内で色調整や膜の物性補強等の目的で使用することができ、分散樹脂(A)とカーボンナノチューブ(B)と共に同時に分散してもよく、また、分散樹脂(A)とカーボンナノチューブ(B)を分散してペーストを作成した後に顔料又は顔料ペーストとして混ぜてもよい。 Examples of pigments other than carbon nanotubes (B) include the other conductive pigments (B1) described above; white pigments such as titanium white and zinc oxide; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and verdigris; organic red pigments such as azo and quinacridone, red pigments such as red iron oxide; organic yellow pigments such as benzimidazolone, isoindolinone, isoindoline and quinophthalone, yellow pigments such as titanium yellow and yellow lead. These pigments can be used alone or in combination of two or more.
These pigments other than the carbon nanotubes (B) can be used for purposes such as color adjustment and reinforcement of the physical properties of the film, as long as the electrical conductivity is not significantly impaired. They may be dispersed simultaneously with the dispersing resin (A) and the carbon nanotubes (B), or they may be mixed as a pigment or pigment paste after dispersing the dispersing resin (A) and the carbon nanotubes (B) to prepare a paste.
上記カーボンナノチューブ(B)以外の顔料の含有量としては、カーボンナノチューブ分散ペースト中の全顔料100質量%を基準として、10質量以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましく、実質的に含有しないことが特に好ましい。
The content of pigments other than the carbon nanotubes (B) is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on 100% by mass of all pigments in the carbon nanotube dispersion paste, and it is particularly preferable that they are substantially not contained.
上記カーボンナノチューブ分散ペーストの粘度としては、顔料分散性や貯蔵安定性などの観点から、せん断速度2s-1での粘度が、例えば5,000mPa・s未満、好ましくは2,500mPa・s未満、より好ましくは1,000mPa・s未満であり、例えば10mPa・s以上、好ましくは50mPa・s以上より好ましくは100mPa・s以上である。 粘度の測定は、例えば、コーン&プレート型粘度計(HAAKE社製、商品名「Mars2」、直径35mm、2°傾斜のコーン&プレート)を用いて測定することができる。
From the viewpoint of pigment dispersibility and storage stability, the viscosity of the carbon nanotube dispersion paste at a shear rate of 2 s −1 is, for example, less than 5,000 mPa·s, preferably less than 2,500 mPa·s, more preferably less than 1,000 mPa·s, and is, for example, 10 mPa·s or more, preferably 50 mPa·s or more, more preferably 100 mPa·s or more. The viscosity can be measured, for example, using a cone and plate type viscometer (manufactured by HAAKE, trade name "Mars2", diameter 35 mm, 2° inclined cone and plate).
上記脱水剤(F)としては、脱水作用を有するものであれば公知のものを特に制限なく用いることができる。ペーストの溶媒(C)に溶解しない固体の脱水剤でもよいし、溶媒(C)に溶解する脱水剤でもよい。具体的には、例えば、ゼオライト、シリカゲル、酸化カルシウム、モレキュラーシーブ、活性アルミナ、酸化バリウム、水素化カルシウム、硫酸ナトリウム等の固形脱水剤;トリメチルホスフェイト、トリ-2-プロピルホスフェイト、トリブチルホスフェイト、テトライソプロピルエチレンホスホネート等のリン酸エステル;トルブチルホスフィンオキサイド、トリオクチルホスフィンオキサイド、トリフェニルホスフィンオキサイド等のホスフィンオキサイド;オルト蟻酸メチルエステル、オルト蟻酸エチルエステル、オルト酢酸メチルエステル、オルト酢酸エチルエステル、オルト安息香酸エチルエステル等のオルトエステル類;無水シュウ酸、無水酢酸、プロピオン酸無水物、酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物、二硫酸、五酸化二窒素、二リン酸、五酸化二リン、三酸化二リン、五酸化二ヒ素、三酸化二ヒ素、メタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、スルホ安息香酸無水物等の酸無水物などが挙げられ、これらは一種を単独で又は二種以上を組み合わせて用いることができる。
As the dehydrating agent (F), any known agent having a dehydrating effect can be used without any particular restrictions. It may be a solid dehydrating agent that does not dissolve in the solvent (C) of the paste, or a dehydrating agent that dissolves in the solvent (C). Specifically, for example, solid dehydrating agents such as zeolite, silica gel, calcium oxide, molecular sieve, activated alumina, barium oxide, calcium hydride, and sodium sulfate; phosphate esters such as trimethyl phosphate, tri-2-propyl phosphate, tributyl phosphate, and tetraisopropylethylene phosphonate; phosphine oxides such as tributyl phosphine oxide, trioctyl phosphine oxide, and triphenyl phosphine oxide; orthoformic acid methyl ester, orthoformic acid ethyl ester. orthoesters such as methyl orthoacetate, ethyl orthoacetate, and ethyl orthobenzoate; and acid anhydrides such as oxalic anhydride, acetic anhydride, propionic anhydride, butyric anhydride, benzoic anhydride, trifluoroacetic anhydride, disulfuric acid, dinitrogen pentoxide, diphosphoric acid, diphosphorus pentoxide, diphosphorus trioxide, diarsenic pentoxide, diarsenic trioxide, methanesulfonic anhydride, trifluoromethanesulfonic anhydride, and sulfobenzoic anhydride, which may be used alone or in combination of two or more.
〔(リチウムイオン二次電池用)合材ペーストの製造方法〕
本発明の製造方法においては、まず前述した方法によってカーボンナノチューブ(B)を有するカーボンナノチューブ分散ペーストが調整される。さらに前記カーボンナノチューブ分散ペーストと少なくとも一種の電極活物質(G)を混合してリチウムイオン二次電池用の合材ペーストを製造することができる。
電極活物質(G)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常10質量%以上、好ましくは20質量%以上であり、通常99質量%以下、好ましくは95質量%以下であることが、電池性能の面から好適である。
なお、前記カーボンナノチューブ分散ペーストでは任意成分であったポリフッ化ビニリデン(D)は、合材ペーストでは必須成分であり、必ず含有される。
ポリフッ化ビニリデン(D)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常0.05質量%以上、好ましくは0.1質量%以上であり、通常10質量%以下、好ましくは2質量%以下であることが、電池性能、ペースト粘度等の面から好適である。 [Method for producing composite paste (for lithium ion secondary batteries)]
In the manufacturing method of the present invention, first, a carbon nanotube dispersion paste having carbon nanotubes (B) is prepared by the above-mentioned method. The carbon nanotube dispersion paste and at least one electrode active material (G) are mixed to produce a composite paste for a lithium ion secondary battery.
The solid content of the electrode active material (G) is usually 10% by mass or more, preferably 20% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 99% by mass or less, preferably 95% by mass or less, which is suitable in terms of battery performance.
In addition, polyvinylidene fluoride (D), which was an optional component in the carbon nanotube dispersion paste, is an essential component in the composite paste and is always contained.
The solid content of polyvinylidene fluoride (D) is usually 0.05 mass% or more, preferably 0.1 mass% or more, based on 100 mass% of the total amount of the composite paste, and is usually 10 mass% or less, preferably 2 mass% or less, which is suitable in terms of battery performance, paste viscosity, etc.
本発明の製造方法においては、まず前述した方法によってカーボンナノチューブ(B)を有するカーボンナノチューブ分散ペーストが調整される。さらに前記カーボンナノチューブ分散ペーストと少なくとも一種の電極活物質(G)を混合してリチウムイオン二次電池用の合材ペーストを製造することができる。
電極活物質(G)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常10質量%以上、好ましくは20質量%以上であり、通常99質量%以下、好ましくは95質量%以下であることが、電池性能の面から好適である。
なお、前記カーボンナノチューブ分散ペーストでは任意成分であったポリフッ化ビニリデン(D)は、合材ペーストでは必須成分であり、必ず含有される。
ポリフッ化ビニリデン(D)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常0.05質量%以上、好ましくは0.1質量%以上であり、通常10質量%以下、好ましくは2質量%以下であることが、電池性能、ペースト粘度等の面から好適である。 [Method for producing composite paste (for lithium ion secondary batteries)]
In the manufacturing method of the present invention, first, a carbon nanotube dispersion paste having carbon nanotubes (B) is prepared by the above-mentioned method. The carbon nanotube dispersion paste and at least one electrode active material (G) are mixed to produce a composite paste for a lithium ion secondary battery.
The solid content of the electrode active material (G) is usually 10% by mass or more, preferably 20% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 99% by mass or less, preferably 95% by mass or less, which is suitable in terms of battery performance.
In addition, polyvinylidene fluoride (D), which was an optional component in the carbon nanotube dispersion paste, is an essential component in the composite paste and is always contained.
The solid content of polyvinylidene fluoride (D) is usually 0.05 mass% or more, preferably 0.1 mass% or more, based on 100 mass% of the total amount of the composite paste, and is usually 10 mass% or less, preferably 2 mass% or less, which is suitable in terms of battery performance, paste viscosity, etc.
上記の電極活物質(G)の混合工程においては、従来公知の混合機及び分散機を用いて合材ペーストを均一に混合することができる。
In the above-mentioned mixing step of the electrode active material (G), the composite paste can be mixed uniformly using a conventionally known mixer and disperser.
上記合材ペースト固形分中の分散樹脂(A)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常0.01質量%以上、好ましくは0.05質量%以上であり、通常10質量%以下、好ましくは1質量%以下であることが、電池性能、ペースト粘度等の面から好適である。
The solid content of the dispersed resin (A) in the composite paste solids is usually 0.01% by mass or more, preferably 0.05% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 10% by mass or less, preferably 1% by mass or less, which is suitable in terms of battery performance, paste viscosity, etc.
本発明の合材ペーストにおいては、合材ペーストにおける貯蔵安定性(増粘抑制)の観点から、高極性低分子量成分(E)を含有しており、高極性低分子量成分(E)として、少なくとも一種のアミン化合物(E1)を含有していることが好ましい。
高極性低分子量成分(E)をカーボンナノチューブ(B)に接触させ(濡れさせ)、次いで電極活物質(G)を混合することでカーボンナノチューブ(B)と電極活物質(G)との凝集が緩和される観点から、まずカーボンナノチューブ(B)と高極性低分子量成分(E)を混合する順序を含むことが好ましい。 In the composite paste of the present invention, from the viewpoint of storage stability (suppression of thickening) in the composite paste, it contains a highly polar, low molecular weight component (E), and it is preferable that the highly polar, low molecular weight component (E) contains at least one type of amine compound (E1).
From the viewpoint of alleviating aggregation between the carbon nanotubes (B) and the electrode active material (G) by contacting (wetting) the high-polarity, low-molecular-weight component (E) with the carbon nanotubes (B) and then mixing the electrode active material (G), it is preferable to include a sequence of first mixing the carbon nanotubes (B) and the high-polarity, low-molecular-weight component (E).
高極性低分子量成分(E)をカーボンナノチューブ(B)に接触させ(濡れさせ)、次いで電極活物質(G)を混合することでカーボンナノチューブ(B)と電極活物質(G)との凝集が緩和される観点から、まずカーボンナノチューブ(B)と高極性低分子量成分(E)を混合する順序を含むことが好ましい。 In the composite paste of the present invention, from the viewpoint of storage stability (suppression of thickening) in the composite paste, it contains a highly polar, low molecular weight component (E), and it is preferable that the highly polar, low molecular weight component (E) contains at least one type of amine compound (E1).
From the viewpoint of alleviating aggregation between the carbon nanotubes (B) and the electrode active material (G) by contacting (wetting) the high-polarity, low-molecular-weight component (E) with the carbon nanotubes (B) and then mixing the electrode active material (G), it is preferable to include a sequence of first mixing the carbon nanotubes (B) and the high-polarity, low-molecular-weight component (E).
本発明の合材ペースト固形分中のカーボンナノチューブ(B)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下であることが電池性能の点から好適である。また、本発明の合材ペースト中の溶媒(C)の含有量は、合材ペーストの総量100質量%を基準として、通常1質量%以上、好ましくは4質量%以上、より好ましくは7質量%以上であり、通常90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下であることが電極乾燥効率、ペースト粘度の点から好適である。
The solid content of carbon nanotubes (B) in the composite paste solids of the present invention is typically 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the total composite paste, and is typically 30% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, which is preferred in terms of battery performance. The content of solvent (C) in the composite paste of the present invention is typically 1% by mass or more, preferably 4% by mass or more, more preferably 7% by mass or more, based on 100% by mass of the total composite paste, and is typically 90% by mass or less, preferably 70% by mass or less, more preferably 50% by mass or less, which is preferred in terms of electrode drying efficiency and paste viscosity.
上記合材ペーストは、リチウムイオン二次電池電極用の正極又は負極用途に使用することが好適であり、好ましくは正極用途として使用することが好適である。
The above composite paste is suitable for use as a positive or negative electrode for lithium ion secondary batteries, and is preferably used as a positive electrode.
また、上記合材ペーストの水分量は、前述した合材ペーストの粘度上昇又はゲル化を抑制する観点から、通常10000ppm未満であり、7500ppm未満が好ましく、5000ppm未満がより好ましく、2500ppm未満がさらに好ましく、1000ppm未満が特に好ましい。
本発明で用いられる合材ペーストは、実質的に非水系の合材ペーストといえる。
また、前述した理由(原材料からの水分持ち込みや製造工程の水分混入)により、合材ペーストの水分量としては100ppm以上が好ましく、200ppm以上がより好ましく、500ppm以上がさらに好ましい。 In addition, the moisture content of the composite paste is usually less than 10,000 ppm, preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm, from the viewpoint of suppressing the increase in viscosity or gelation of the composite paste described above.
The composite paste used in the present invention can be said to be a substantially non-aqueous composite paste.
Furthermore, for the reasons described above (moisture carried over from raw materials and moisture mixed in during the manufacturing process), the moisture content of the composite paste is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more.
本発明で用いられる合材ペーストは、実質的に非水系の合材ペーストといえる。
また、前述した理由(原材料からの水分持ち込みや製造工程の水分混入)により、合材ペーストの水分量としては100ppm以上が好ましく、200ppm以上がより好ましく、500ppm以上がさらに好ましい。 In addition, the moisture content of the composite paste is usually less than 10,000 ppm, preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm, from the viewpoint of suppressing the increase in viscosity or gelation of the composite paste described above.
The composite paste used in the present invention can be said to be a substantially non-aqueous composite paste.
Furthermore, for the reasons described above (moisture carried over from raw materials and moisture mixed in during the manufacturing process), the moisture content of the composite paste is preferably 100 ppm or more, more preferably 200 ppm or more, and even more preferably 500 ppm or more.
電極活物質(G)
前記電極活物質(G)としては、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、コバルト酸リチウム(LiCoO2)、LiNi1/3Co1/3Mn1/3O2等のリチウム複合酸化物;リン酸鉄リチウム(LiFePO4);ナトリウム複合酸化物;カリウム複合酸化物等が挙げられる。これらの電極活物質(G)は、一種を単独で又は二種以上を組み合わせて用いることができる。上記リン酸鉄リチウムを含有する電極活物質は、安価でありサイクル特性及びエネルギー密度が比較的良好であるため、好適に用いることができる。 Electrode active material (G)
Examples of the electrode active material (G) include lithium composite oxides such as lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; lithium iron phosphate (LiFePO 4 ); sodium composite oxide; and potassium composite oxide. These electrode active materials (G) can be used alone or in combination of two or more. The electrode active material containing lithium iron phosphate is inexpensive and has relatively good cycle characteristics and energy density, and can therefore be used preferably.
前記電極活物質(G)としては、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、コバルト酸リチウム(LiCoO2)、LiNi1/3Co1/3Mn1/3O2等のリチウム複合酸化物;リン酸鉄リチウム(LiFePO4);ナトリウム複合酸化物;カリウム複合酸化物等が挙げられる。これらの電極活物質(G)は、一種を単独で又は二種以上を組み合わせて用いることができる。上記リン酸鉄リチウムを含有する電極活物質は、安価でありサイクル特性及びエネルギー密度が比較的良好であるため、好適に用いることができる。 Electrode active material (G)
Examples of the electrode active material (G) include lithium composite oxides such as lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; lithium iron phosphate (LiFePO 4 ); sodium composite oxide; and potassium composite oxide. These electrode active materials (G) can be used alone or in combination of two or more. The electrode active material containing lithium iron phosphate is inexpensive and has relatively good cycle characteristics and energy density, and can therefore be used preferably.
電極活物質(G)の粒子径としては、通常0.5μm以上、好ましくは10.5μm以上であり、通常30μm以下、好ましくは20μm以下である。
The particle diameter of the electrode active material (G) is usually 0.5 μm or more, preferably 10.5 μm or more, and usually 30 μm or less, preferably 20 μm or less.
本発明のリチウムイオン二次電池電極用合材ペースト固形分100質量%中の電極活物質(G)の固形分含有量は、通常50質量%以上、好ましくは60質量%以上であり、かつ100質量%未満であることが、電池容量、電池抵抗等の面から好適である。
The solid content of the electrode active material (G) in the 100% by mass solids of the composite paste for lithium ion secondary battery electrodes of the present invention is usually 50% by mass or more, preferably 60% by mass or more, and is preferably less than 100% by mass in terms of battery capacity, battery resistance, etc.
合材ペースト中に上記電極活物質(G)を含有すると、貯蔵により増粘する場合がある。その理由としては、電極活物質(G)は、粒子表面に原料由来のアルカリ金属の水酸化物(例えば、LiOH、KOH、NaOHなど)を有することになるため、酸性表面を有するカーボンナノチューブ(B)により凝集(増粘)すると考えられる。そのため、高極性低分子量成分(E)〔特にアミン化合物(E1)〕を一定量以上含有することにより合材ペーストの貯蔵増粘を抑制することができる。
When the composite paste contains the electrode active material (G), it may thicken during storage. The reason for this is that the electrode active material (G) has alkali metal hydroxides (e.g., LiOH, KOH, NaOH, etc.) derived from the raw materials on the particle surface, and is thought to aggregate (thicken) due to the carbon nanotubes (B) that have an acidic surface. Therefore, by containing a certain amount or more of a highly polar low molecular weight component (E) [particularly an amine compound (E1)], it is possible to suppress the thickening of the composite paste during storage.
また、電極活物質(G)に含まれる水分量は、前述した合材ペーストの粘度上昇又はゲル化を抑制する観点から、通常10000ppm未満であり、7500ppm未満が好ましく、5000ppm未満がより好ましく、2500ppm未満がさらに好ましく、1000ppm未満が特に好ましい。
The amount of water contained in the electrode active material (G) is usually less than 10,000 ppm, preferably less than 7,500 ppm, more preferably less than 5,000 ppm, even more preferably less than 2,500 ppm, and particularly preferably less than 1,000 ppm, from the viewpoint of suppressing the increase in viscosity or gelation of the composite paste described above.
また、本発明の電極活物質(G)は、その表面の少なくとも一部をカーボンナノチューブで覆った電極活物質複合体(G-1)を好適に用いることができる。
上記複合体(G-1)は、予め電極活物質(G)と、カーボンナノチューブと、必要に応じて他の成分(例えば、溶媒や分散樹脂)とを混合して得ることができ、必要に応じて混合後に乾燥工程を入れることができ、電極活物質(G)にカーボンナノチューブをより均一に吸着及び/又は定着することができる。
また、上記の通り製造した電極活物質複合体(G-1)は、カーボンナノチューブを電極活物質表面へ吸着及び/又は定着することで、電極活物質の周辺で均一な導電ネットワークを形成することができる。
前記電極活物質複合体(G-1)で用いることができるカーボンナノチューブとしては、それ自体公知のものを特に制限なく用いることができるが、前記カーボンナノチューブ(B)で挙げたカーボンナノチューブを好適に用いることができる。 As the electrode active material (G) of the present invention, an electrode active material composite (G-1) having at least a part of its surface covered with carbon nanotubes can be suitably used.
The composite (G-1) can be obtained in advance by mixing the electrode active material (G), the carbon nanotubes, and, if necessary, other components (e.g., a solvent or a dispersion resin). If necessary, a drying step can be added after mixing, so that the carbon nanotubes can be more uniformly adsorbed and/or fixed to the electrode active material (G).
Furthermore, the electrode active material composite (G-1) produced as described above can form a uniform conductive network around the electrode active material by adsorbing and/or fixing the carbon nanotubes to the surface of the electrode active material.
As the carbon nanotubes that can be used in the electrode active material composite (G-1), any known carbon nanotubes can be used without particular limitation, but the carbon nanotubes exemplified as the carbon nanotubes (B) can be preferably used.
上記複合体(G-1)は、予め電極活物質(G)と、カーボンナノチューブと、必要に応じて他の成分(例えば、溶媒や分散樹脂)とを混合して得ることができ、必要に応じて混合後に乾燥工程を入れることができ、電極活物質(G)にカーボンナノチューブをより均一に吸着及び/又は定着することができる。
また、上記の通り製造した電極活物質複合体(G-1)は、カーボンナノチューブを電極活物質表面へ吸着及び/又は定着することで、電極活物質の周辺で均一な導電ネットワークを形成することができる。
前記電極活物質複合体(G-1)で用いることができるカーボンナノチューブとしては、それ自体公知のものを特に制限なく用いることができるが、前記カーボンナノチューブ(B)で挙げたカーボンナノチューブを好適に用いることができる。 As the electrode active material (G) of the present invention, an electrode active material composite (G-1) having at least a part of its surface covered with carbon nanotubes can be suitably used.
The composite (G-1) can be obtained in advance by mixing the electrode active material (G), the carbon nanotubes, and, if necessary, other components (e.g., a solvent or a dispersion resin). If necessary, a drying step can be added after mixing, so that the carbon nanotubes can be more uniformly adsorbed and/or fixed to the electrode active material (G).
Furthermore, the electrode active material composite (G-1) produced as described above can form a uniform conductive network around the electrode active material by adsorbing and/or fixing the carbon nanotubes to the surface of the electrode active material.
As the carbon nanotubes that can be used in the electrode active material composite (G-1), any known carbon nanotubes can be used without particular limitation, but the carbon nanotubes exemplified as the carbon nanotubes (B) can be preferably used.
リチウムイオン二次電池用電極層の製法
前述したように、リチウムイオン二次電池用電極層(電極合材層又は合材層とも呼ぶ)は、リチウムイオン二次電池用合材ペーストを正極又は負極の芯材表面(集電体)に塗布し、これを乾燥することで、電極層を製造することができるが、特に正極に用いることが好ましい。 As described above, an electrode layer for a lithium ion secondary battery (also referred to as an electrode mixture layer or a mixture layer) can be produced by applying a mixture paste for a lithium ion secondary battery to a core surface (current collector) of a positive electrode or a negative electrode and drying the applied paste, and is particularly preferably used for a positive electrode.
前述したように、リチウムイオン二次電池用電極層(電極合材層又は合材層とも呼ぶ)は、リチウムイオン二次電池用合材ペーストを正極又は負極の芯材表面(集電体)に塗布し、これを乾燥することで、電極層を製造することができるが、特に正極に用いることが好ましい。 As described above, an electrode layer for a lithium ion secondary battery (also referred to as an electrode mixture layer or a mixture layer) can be produced by applying a mixture paste for a lithium ion secondary battery to a core surface (current collector) of a positive electrode or a negative electrode and drying the applied paste, and is particularly preferably used for a positive electrode.
また、本発明の製造方法で得られたカーボンナノチューブ分散ペーストの用途としては、合材層(電極層)のペーストとして用いる以外に、電極芯材と合材層(電極層)との間のプライマー層(機能層、接着層ともいわれる)としても用いることができる。
リチウムイオン二次電池用合材ペーストの塗布方法は、ダイコーター等を用いたそれ自体公知の方法により行うことができる。リチウムイオン二次電池用合材ペーストの塗布量は特に限定されないが、乾燥後の合材層の厚みが、例えば0.04mm以上、好ましくは0.06mm以上であり、例えば0.30mm以下、好ましくは0.24mm以下の範囲となるように設定することができる。乾燥工程の温度としては、例えば80℃以上、好ましくは100℃以上であり、例えば250℃以下、好ましくは200℃以下の範囲内で適宜設定することができる。乾燥工程の時間としては、例えば5秒以上であり、例えば120分以下、好ましくは60分以下の範囲内で適宜設定することができる。 In addition, the carbon nanotube dispersion paste obtained by the manufacturing method of the present invention can be used not only as a paste for a composite layer (electrode layer), but also as a primer layer (also called a functional layer or adhesive layer) between the electrode core material and the composite layer (electrode layer).
The method of applying the composite paste for lithium ion secondary batteries can be carried out by a method known per se using a die coater or the like. The amount of application of the composite paste for lithium ion secondary batteries is not particularly limited, but can be set so that the thickness of the composite layer after drying is, for example, 0.04 mm or more, preferably 0.06 mm or more, and, for example, 0.30 mm or less, preferably 0.24 mm or less. The temperature of the drying step can be appropriately set, for example, 80° C. or more, preferably 100° C. or more, and, for example, 250° C. or less, preferably 200° C. or less. The time of the drying step can be appropriately set, for example, 5 seconds or more, and, for example, 120 minutes or less, preferably 60 minutes or less.
リチウムイオン二次電池用合材ペーストの塗布方法は、ダイコーター等を用いたそれ自体公知の方法により行うことができる。リチウムイオン二次電池用合材ペーストの塗布量は特に限定されないが、乾燥後の合材層の厚みが、例えば0.04mm以上、好ましくは0.06mm以上であり、例えば0.30mm以下、好ましくは0.24mm以下の範囲となるように設定することができる。乾燥工程の温度としては、例えば80℃以上、好ましくは100℃以上であり、例えば250℃以下、好ましくは200℃以下の範囲内で適宜設定することができる。乾燥工程の時間としては、例えば5秒以上であり、例えば120分以下、好ましくは60分以下の範囲内で適宜設定することができる。 In addition, the carbon nanotube dispersion paste obtained by the manufacturing method of the present invention can be used not only as a paste for a composite layer (electrode layer), but also as a primer layer (also called a functional layer or adhesive layer) between the electrode core material and the composite layer (electrode layer).
The method of applying the composite paste for lithium ion secondary batteries can be carried out by a method known per se using a die coater or the like. The amount of application of the composite paste for lithium ion secondary batteries is not particularly limited, but can be set so that the thickness of the composite layer after drying is, for example, 0.04 mm or more, preferably 0.06 mm or more, and, for example, 0.30 mm or less, preferably 0.24 mm or less. The temperature of the drying step can be appropriately set, for example, 80° C. or more, preferably 100° C. or more, and, for example, 250° C. or less, preferably 200° C. or less. The time of the drying step can be appropriately set, for example, 5 seconds or more, and, for example, 120 minutes or less, preferably 60 minutes or less.
上記乾燥工程で溶媒(C)及び必要に応じて含有できる高極性低分子量成分(E)の全部又は一部が揮発するが、前述した通り、廃棄物削減、環境対応、及び/又はコスト削減のために、揮発した成分(C)及び成分(E)を回収・再利用することが好ましい。
また、リチウムイオン二次電池においては、電極層中に水分をはじめとする不純物が存在するとサイクル寿命が低下するという問題点がある。すなわち、カーボンナノチューブ分散ペーストや合材ペーストに規定以上の水分が含有されていたり、電極層の製造工程において乾燥が不十分であったりすると、電極層中に水分が残存し、電池のサイクル特性を劣化させる要因になる。上記電極層中の水分量としては、通常1000ppm未満であり、750ppm未満が好ましく、500ppm未満がより好ましく、250ppm未満がさらに好ましく、100ppm未満が特に好ましい。 In the drying step, all or a part of the solvent (C) and the highly polar, low molecular weight component (E) that may be contained as necessary volatilize. As described above, in order to reduce waste, be environmentally friendly, and/or reduce costs, it is preferable to recover and reuse the volatilized components (C) and (E).
In addition, in lithium ion secondary batteries, there is a problem that the cycle life is reduced when impurities such as moisture are present in the electrode layer. That is, if the carbon nanotube dispersion paste or the composite paste contains moisture above a specified level, or if the electrode layer is not dried sufficiently in the manufacturing process, moisture remains in the electrode layer, which causes deterioration of the cycle characteristics of the battery. The moisture content in the electrode layer is usually less than 1000 ppm, preferably less than 750 ppm, more preferably less than 500 ppm, even more preferably less than 250 ppm, and particularly preferably less than 100 ppm.
また、リチウムイオン二次電池においては、電極層中に水分をはじめとする不純物が存在するとサイクル寿命が低下するという問題点がある。すなわち、カーボンナノチューブ分散ペーストや合材ペーストに規定以上の水分が含有されていたり、電極層の製造工程において乾燥が不十分であったりすると、電極層中に水分が残存し、電池のサイクル特性を劣化させる要因になる。上記電極層中の水分量としては、通常1000ppm未満であり、750ppm未満が好ましく、500ppm未満がより好ましく、250ppm未満がさらに好ましく、100ppm未満が特に好ましい。 In the drying step, all or a part of the solvent (C) and the highly polar, low molecular weight component (E) that may be contained as necessary volatilize. As described above, in order to reduce waste, be environmentally friendly, and/or reduce costs, it is preferable to recover and reuse the volatilized components (C) and (E).
In addition, in lithium ion secondary batteries, there is a problem that the cycle life is reduced when impurities such as moisture are present in the electrode layer. That is, if the carbon nanotube dispersion paste or the composite paste contains moisture above a specified level, or if the electrode layer is not dried sufficiently in the manufacturing process, moisture remains in the electrode layer, which causes deterioration of the cycle characteristics of the battery. The moisture content in the electrode layer is usually less than 1000 ppm, preferably less than 750 ppm, more preferably less than 500 ppm, even more preferably less than 250 ppm, and particularly preferably less than 100 ppm.
また、前述した通り、合材ペーストを集電体上に塗工及び加熱乾燥した場合に、溶媒(C)〔さらに必要に応じて高極性低分子量成分(E)〕等を含む蒸気を回収して、次いで蒸留により溶媒(C)以外の不純物を除去して、溶媒(C)の再生品を製造することができる。
As described above, when the composite paste is applied to a current collector and dried by heating, the vapor containing the solvent (C) (and, if necessary, the highly polar, low molecular weight component (E)) can be recovered, and then impurities other than the solvent (C) can be removed by distillation to produce a recycled version of the solvent (C).
また、上記合材ペーストを集電体上に帯状に塗布して電極層を形成した後、電極層端部又は上層の絶縁を目的として、絶縁ペーストを塗工して電極絶縁部を形成することができる。
上記絶縁ペーストとしては、絶縁できるものであれば好適に使用することができるが、無機フィラー、バインダー、分散剤、及び溶媒を含有しているペーストが好ましく、中でも無機フィラーとしてベーマイト、バインダーとしてポリフッ化ビニリデン、溶媒としてN-メチル-2-ピロリドンを含んでいることが好適である。
上記絶縁ペーストは国際公報2021/193286号公報に記載の絶縁ペーストを好適に使用できる。 In addition, after the above-mentioned composite paste is applied in a band shape onto a current collector to form an electrode layer, an insulating paste can be applied to form an electrode insulating portion for the purpose of insulating the ends or upper layer of the electrode layer.
As the insulating paste, any material capable of providing insulation can be suitably used, but a paste containing an inorganic filler, a binder, a dispersant, and a solvent is preferred, and in particular, a paste containing boehmite as the inorganic filler, polyvinylidene fluoride as the binder, and N-methyl-2-pyrrolidone as the solvent is suitable.
The insulating paste described in International Publication No. 2021/193286 can be suitably used as the insulating paste.
上記絶縁ペーストとしては、絶縁できるものであれば好適に使用することができるが、無機フィラー、バインダー、分散剤、及び溶媒を含有しているペーストが好ましく、中でも無機フィラーとしてベーマイト、バインダーとしてポリフッ化ビニリデン、溶媒としてN-メチル-2-ピロリドンを含んでいることが好適である。
上記絶縁ペーストは国際公報2021/193286号公報に記載の絶縁ペーストを好適に使用できる。 In addition, after the above-mentioned composite paste is applied in a band shape onto a current collector to form an electrode layer, an insulating paste can be applied to form an electrode insulating portion for the purpose of insulating the ends or upper layer of the electrode layer.
As the insulating paste, any material capable of providing insulation can be suitably used, but a paste containing an inorganic filler, a binder, a dispersant, and a solvent is preferred, and in particular, a paste containing boehmite as the inorganic filler, polyvinylidene fluoride as the binder, and N-methyl-2-pyrrolidone as the solvent is suitable.
The insulating paste described in International Publication No. 2021/193286 can be suitably used as the insulating paste.
なお、本発明のカーボンナノチューブ分散ペースト、合材ペースト、及び電極層は、非水電解液を備えるリチウムイオン二次電池の用途に特に好適に用いることができる。
上記非水電解液を備えるリチウムイオン二次電池とは、少なくとも、正極、負極、セパレータ、及び非水電解液を備える電池であり、非水電解液型のリチウムイオン二次電池である。 The carbon nanotube dispersion paste, composite paste, and electrode layer of the present invention can be particularly suitably used in lithium ion secondary batteries that include a non-aqueous electrolyte solution.
The lithium ion secondary battery having the non-aqueous electrolyte is a battery having at least a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and is a non-aqueous electrolyte type lithium ion secondary battery.
上記非水電解液を備えるリチウムイオン二次電池とは、少なくとも、正極、負極、セパレータ、及び非水電解液を備える電池であり、非水電解液型のリチウムイオン二次電池である。 The carbon nanotube dispersion paste, composite paste, and electrode layer of the present invention can be particularly suitably used in lithium ion secondary batteries that include a non-aqueous electrolyte solution.
The lithium ion secondary battery having the non-aqueous electrolyte is a battery having at least a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and is a non-aqueous electrolyte type lithium ion secondary battery.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれら特定の実施形態に限定されるものではない。各例中の「部」は質量部、「%」は質量%を示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these specific embodiments. In each example, "parts" refers to parts by mass and "%" refers to % by mass.
[分散樹脂の製造]
製造例1
温度計、サーモスタット、撹拌装置、還流冷却器及び水分離器を備えた反応容器に、N-メチル-2-ピロリドン(注1)75部を加え、窒素気流中で120℃に加温した。120℃に達したら、下記表1に示したモノマー種(合計100部)及び2,2’-アゾビス(2-メチルブチロニトリル)2部の混合物を3時間かけて滴下した。添加終了後120℃で30分間熟成し、2,2’-アゾビス(2-メチルブチロニトリル)1部とN-メチル-2-ピロリドン(注1)20部の混合物を1時間要して滴下した。さらに120℃で1時間熟成を行った後に冷却し、N-メチル-2-ピロリドン(注1)を加えて固形分50%のアクリル樹脂(A1)を得た。極性官能基濃度は1.3(mmol/g)である。
(注1)N-メチル-2-ピロリドン:新品と応用例1で製造した再生品を1/1で混合した再生品の溶媒であり、水分含有量500ppm(注2)、アミン含有量500ppm(注2)である。
(注2)水分含有量とアミン含有量は、カールフィッシャー水分率計(京都電子工業製、商品名「MKC-610」)とイオンクロマトグラフィー(島津製作所製、商品名「prominence HIC-NS」)を用いて測定した。 [Production of Dispersion Resin]
Production Example 1
A reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and water separator was charged with 75 parts of N-methyl-2-pyrrolidone (note 1) and heated to 120°C in a nitrogen stream. When the temperature reached 120°C, a mixture of the monomer species (total 100 parts) shown in Table 1 below and 2 parts of 2,2'-azobis(2-methylbutyronitrile) was added dropwise over 3 hours. After the addition was completed, the mixture was aged at 120°C for 30 minutes, and a mixture of 1 part of 2,2'-azobis(2-methylbutyronitrile) and 20 parts of N-methyl-2-pyrrolidone (note 1) was added dropwise over 1 hour. After further aging at 120°C for 1 hour, the mixture was cooled, and N-methyl-2-pyrrolidone (note 1) was added to obtain an acrylic resin (A1) with a solid content of 50%. The polar functional group concentration was 1.3 (mmol/g).
(Note 1) N-methyl-2-pyrrolidone: A solvent for the recycled product, made by mixing new material and the recycled product produced in Application Example 1 in a 1:1 ratio. The water content is 500 ppm (Note 2) and the amine content is 500 ppm (Note 2).
(Note 2) The water content and the amine content were measured using a Karl Fischer moisture meter (Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610") and ion chromatography (Shimadzu Corporation, product name "Prominence HIC-NS").
製造例1
温度計、サーモスタット、撹拌装置、還流冷却器及び水分離器を備えた反応容器に、N-メチル-2-ピロリドン(注1)75部を加え、窒素気流中で120℃に加温した。120℃に達したら、下記表1に示したモノマー種(合計100部)及び2,2’-アゾビス(2-メチルブチロニトリル)2部の混合物を3時間かけて滴下した。添加終了後120℃で30分間熟成し、2,2’-アゾビス(2-メチルブチロニトリル)1部とN-メチル-2-ピロリドン(注1)20部の混合物を1時間要して滴下した。さらに120℃で1時間熟成を行った後に冷却し、N-メチル-2-ピロリドン(注1)を加えて固形分50%のアクリル樹脂(A1)を得た。極性官能基濃度は1.3(mmol/g)である。
(注1)N-メチル-2-ピロリドン:新品と応用例1で製造した再生品を1/1で混合した再生品の溶媒であり、水分含有量500ppm(注2)、アミン含有量500ppm(注2)である。
(注2)水分含有量とアミン含有量は、カールフィッシャー水分率計(京都電子工業製、商品名「MKC-610」)とイオンクロマトグラフィー(島津製作所製、商品名「prominence HIC-NS」)を用いて測定した。 [Production of Dispersion Resin]
Production Example 1
A reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and water separator was charged with 75 parts of N-methyl-2-pyrrolidone (note 1) and heated to 120°C in a nitrogen stream. When the temperature reached 120°C, a mixture of the monomer species (total 100 parts) shown in Table 1 below and 2 parts of 2,2'-azobis(2-methylbutyronitrile) was added dropwise over 3 hours. After the addition was completed, the mixture was aged at 120°C for 30 minutes, and a mixture of 1 part of 2,2'-azobis(2-methylbutyronitrile) and 20 parts of N-methyl-2-pyrrolidone (note 1) was added dropwise over 1 hour. After further aging at 120°C for 1 hour, the mixture was cooled, and N-methyl-2-pyrrolidone (note 1) was added to obtain an acrylic resin (A1) with a solid content of 50%. The polar functional group concentration was 1.3 (mmol/g).
(Note 1) N-methyl-2-pyrrolidone: A solvent for the recycled product, made by mixing new material and the recycled product produced in Application Example 1 in a 1:1 ratio. The water content is 500 ppm (Note 2) and the amine content is 500 ppm (Note 2).
(Note 2) The water content and the amine content were measured using a Karl Fischer moisture meter (Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610") and ion chromatography (Shimadzu Corporation, product name "Prominence HIC-NS").
製造例2~5
下記表1のモノマー種とする以外は製造例1と同様にして固形分50%のアクリル樹脂(A2)~(A5)を得た。
尚、得られた樹脂の重量平均分子量の値を下記表1に記す。なお、表中「樹脂A1」~「樹脂A5」は、それぞれ「アクリル樹脂(A1)」~「アクリル樹脂(A5)」を意味する。 Production Examples 2 to 5
Acrylic resins (A2) to (A5) each having a solid content of 50% were obtained in the same manner as in Production Example 1, except that the monomer types shown in Table 1 below were used.
The weight average molecular weights of the resins obtained are shown in Table 1. In the table, "Resin A1" to "Resin A5" mean "Acrylic Resin (A1)" to "Acrylic Resin (A5)," respectively.
下記表1のモノマー種とする以外は製造例1と同様にして固形分50%のアクリル樹脂(A2)~(A5)を得た。
尚、得られた樹脂の重量平均分子量の値を下記表1に記す。なお、表中「樹脂A1」~「樹脂A5」は、それぞれ「アクリル樹脂(A1)」~「アクリル樹脂(A5)」を意味する。 Production Examples 2 to 5
Acrylic resins (A2) to (A5) each having a solid content of 50% were obtained in the same manner as in Production Example 1, except that the monomer types shown in Table 1 below were used.
The weight average molecular weights of the resins obtained are shown in Table 1. In the table, "Resin A1" to "Resin A5" mean "Acrylic Resin (A1)" to "Acrylic Resin (A5)," respectively.
上記表1中のモノマー種の略称は下記の通りである。
・iBA:i-ブチルアクリレート(炭素数4の炭化水素基を有する)
・SLMA:ラウリルメタクリレート(炭素数12の炭化水素基を有する)
・SMA:ステアリルメタクリレート(炭素数18の炭化水素基を有する)
・BEMA:ベヘニルメタクリレート(炭素数22の炭化水素基を有する)
・St:スチレン
・DMAEMA:N,N-ジメチルアミノエチルメタクリレート
・AN:アクリロニトリル。 The abbreviations for the monomer species in Table 1 above are as follows.
iBA: i-butyl acrylate (having a hydrocarbon group with 4 carbon atoms)
SLMA: Lauryl methacrylate (having a hydrocarbon group with 12 carbon atoms)
SMA: Stearyl methacrylate (having a hydrocarbon group with 18 carbon atoms)
BEMA: Behenyl methacrylate (having a hydrocarbon group with 22 carbon atoms)
St: styrene; DMAEMA: N,N-dimethylaminoethyl methacrylate; AN: acrylonitrile.
・iBA:i-ブチルアクリレート(炭素数4の炭化水素基を有する)
・SLMA:ラウリルメタクリレート(炭素数12の炭化水素基を有する)
・SMA:ステアリルメタクリレート(炭素数18の炭化水素基を有する)
・BEMA:ベヘニルメタクリレート(炭素数22の炭化水素基を有する)
・St:スチレン
・DMAEMA:N,N-ジメチルアミノエチルメタクリレート
・AN:アクリロニトリル。 The abbreviations for the monomer species in Table 1 above are as follows.
iBA: i-butyl acrylate (having a hydrocarbon group with 4 carbon atoms)
SLMA: Lauryl methacrylate (having a hydrocarbon group with 12 carbon atoms)
SMA: Stearyl methacrylate (having a hydrocarbon group with 18 carbon atoms)
BEMA: Behenyl methacrylate (having a hydrocarbon group with 22 carbon atoms)
St: styrene; DMAEMA: N,N-dimethylaminoethyl methacrylate; AN: acrylonitrile.
[電極活物質複合体の製造]
製造例6
下記表2に記載のカーボンナノチューブ(CNT-C)1部、アクリル樹脂(A1)0.2部(固形分0.1部)、及びN-メチル-2-ピロリドン(注1)98.8部を撹拌しながら混合し、次いで電極活物質粒子(組成式LiNi0.5Mn1.5O4で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒子径6μm、BET比表面積0.7m2/g)900部と混ぜて、CNTと電極活物質の電極活物質複合体(G1)を作製した。 [Production of electrode active material composite]
Production Example 6
One part of carbon nanotubes (CNT-C) shown in Table 2 below, 0.2 parts of acrylic resin (A1) (solid content 0.1 part), and 98.8 parts of N-methyl-2-pyrrolidone (Note 1) were mixed with stirring, and then mixed with 900 parts of electrode active material particles (lithium nickel manganese oxide particles with a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle size 6 μm, BET specific surface area 0.7 m2 /g) to prepare an electrode active material composite (G1) of CNT and electrode active material.
製造例6
下記表2に記載のカーボンナノチューブ(CNT-C)1部、アクリル樹脂(A1)0.2部(固形分0.1部)、及びN-メチル-2-ピロリドン(注1)98.8部を撹拌しながら混合し、次いで電極活物質粒子(組成式LiNi0.5Mn1.5O4で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒子径6μm、BET比表面積0.7m2/g)900部と混ぜて、CNTと電極活物質の電極活物質複合体(G1)を作製した。 [Production of electrode active material composite]
Production Example 6
One part of carbon nanotubes (CNT-C) shown in Table 2 below, 0.2 parts of acrylic resin (A1) (solid content 0.1 part), and 98.8 parts of N-methyl-2-pyrrolidone (Note 1) were mixed with stirring, and then mixed with 900 parts of electrode active material particles (lithium nickel manganese oxide particles with a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle size 6 μm, BET specific surface area 0.7 m2 /g) to prepare an electrode active material composite (G1) of CNT and electrode active material.
[カーボンナノチューブ分散ペースト及び合材ペーストの製造]
実施例1A
連続乾式ビーズミル「ドライスター SDA1」(アシザワ・ファインテック株式会社製)を用いて、ジルコニアビーズ(直径3.0mm)、充填率70%、ミル周速5.0m/sで、下記表2に記載のカーボンナノチューブ(CNT-C)を供給量0.5kg/hrで粉砕(乾式分散)した。
続いて、N-メチル-2-ピロリドン(注1)5000部、分散樹脂としてポリビニルピロリドン80部(固形分40部)(注3)、KFポリマーW#7300(クレハ社製、商品名、ポリフッ化ビニリデン、重量平均分子量100万)の樹脂溶液1800部(固形分180部)(注4)、アミンとしてベンジルアミン25部、及び上記の粉砕したカーボンナノチューブ200部を撹拌しながらディスパーで混合し、最後にN-メチル-2-ピロリドン(注1)で合計質量10000部となるように調整した。続いてボールミルにて4時間分散し、カーボンナノチューブ分散ペースト(A-1)を製造した。カーボンナノチューブ分散ペースト(A-1)の水分含有量は800ppm(注2)であった。
なお、上記製造工程は全て露点10℃以下の雰囲気下で行った。
また、カーボンナノチューブ(200部)のディスパーでの分散は、まず他の成分を十分に混ぜた上で、半量(100部)のCNTを分散機内に撹拌しながら混合し、十分に混ざったことを確認した後にさらに残りを徐々に加えて分散した。
(注3)ポリビニルピロリドン:複素環含有樹脂、重量平均分子量(Mw)12000、官能基濃度9(mmol/g)
(注4)ポリフッ化ビニリデンの樹脂溶液は、予め80℃の温度でポリフッ化ビニリデンとN-メチル-2-ピロリドン(注1)とを混合及び溶解した。その後、約1℃/分の冷却速度で30℃まで冷却した。 [Production of carbon nanotube dispersion paste and composite paste]
Example 1A
Using a continuous dry bead mill "Drystar SDA1" (manufactured by Ashizawa Finetech Co., Ltd.), carbon nanotubes (CNT-C) shown in Table 2 below were pulverized (dry dispersed) at a supply rate of 0.5 kg/hr using zirconia beads (diameter 3.0 mm), a filling rate of 70%, and a mill peripheral speed of 5.0 m/s.
Next, 5,000 parts of N-methyl-2-pyrrolidone (Note 1), 80 parts of polyvinylpyrrolidone (40 parts solids) as a dispersion resin (Note 3), 1,800 parts of resin solution of KF polymer W#7300 (Kureha Corporation, trade name, polyvinylidene fluoride, weight average molecular weight 1,000,000) (180 parts solids) (Note 4), 25 parts of benzylamine as an amine, and 200 parts of the above-mentioned crushed carbon nanotubes were mixed with a disperser while stirring, and finally N-methyl-2-pyrrolidone (Note 1) was used to adjust the total mass to 10,000 parts. Then, the mixture was dispersed in a ball mill for 4 hours to produce a carbon nanotube dispersion paste (A-1). The water content of the carbon nanotube dispersion paste (A-1) was 800 ppm (Note 2).
The above manufacturing steps were all carried out in an atmosphere with a dew point of 10° C. or less.
In addition, to disperse carbon nanotubes (200 parts) in a disperser, the other components were first thoroughly mixed, and then half the amount (100 parts) of the CNTs was added and mixed in the disperser while stirring. After confirming that the CNTs were thoroughly mixed, the remainder was gradually added and dispersed.
(Note 3) Polyvinylpyrrolidone: heterocycle-containing resin, weight average molecular weight (Mw) 12,000, functional group concentration 9 (mmol/g)
(Note 4) The polyvinylidene fluoride resin solution was prepared by mixing and dissolving polyvinylidene fluoride and N-methyl-2-pyrrolidone (Note 1) at a temperature of 80° C. Then, the solution was cooled to 30° C. at a cooling rate of about 1° C./min.
実施例1A
連続乾式ビーズミル「ドライスター SDA1」(アシザワ・ファインテック株式会社製)を用いて、ジルコニアビーズ(直径3.0mm)、充填率70%、ミル周速5.0m/sで、下記表2に記載のカーボンナノチューブ(CNT-C)を供給量0.5kg/hrで粉砕(乾式分散)した。
続いて、N-メチル-2-ピロリドン(注1)5000部、分散樹脂としてポリビニルピロリドン80部(固形分40部)(注3)、KFポリマーW#7300(クレハ社製、商品名、ポリフッ化ビニリデン、重量平均分子量100万)の樹脂溶液1800部(固形分180部)(注4)、アミンとしてベンジルアミン25部、及び上記の粉砕したカーボンナノチューブ200部を撹拌しながらディスパーで混合し、最後にN-メチル-2-ピロリドン(注1)で合計質量10000部となるように調整した。続いてボールミルにて4時間分散し、カーボンナノチューブ分散ペースト(A-1)を製造した。カーボンナノチューブ分散ペースト(A-1)の水分含有量は800ppm(注2)であった。
なお、上記製造工程は全て露点10℃以下の雰囲気下で行った。
また、カーボンナノチューブ(200部)のディスパーでの分散は、まず他の成分を十分に混ぜた上で、半量(100部)のCNTを分散機内に撹拌しながら混合し、十分に混ざったことを確認した後にさらに残りを徐々に加えて分散した。
(注3)ポリビニルピロリドン:複素環含有樹脂、重量平均分子量(Mw)12000、官能基濃度9(mmol/g)
(注4)ポリフッ化ビニリデンの樹脂溶液は、予め80℃の温度でポリフッ化ビニリデンとN-メチル-2-ピロリドン(注1)とを混合及び溶解した。その後、約1℃/分の冷却速度で30℃まで冷却した。 [Production of carbon nanotube dispersion paste and composite paste]
Example 1A
Using a continuous dry bead mill "Drystar SDA1" (manufactured by Ashizawa Finetech Co., Ltd.), carbon nanotubes (CNT-C) shown in Table 2 below were pulverized (dry dispersed) at a supply rate of 0.5 kg/hr using zirconia beads (diameter 3.0 mm), a filling rate of 70%, and a mill peripheral speed of 5.0 m/s.
Next, 5,000 parts of N-methyl-2-pyrrolidone (Note 1), 80 parts of polyvinylpyrrolidone (40 parts solids) as a dispersion resin (Note 3), 1,800 parts of resin solution of KF polymer W#7300 (Kureha Corporation, trade name, polyvinylidene fluoride, weight average molecular weight 1,000,000) (180 parts solids) (Note 4), 25 parts of benzylamine as an amine, and 200 parts of the above-mentioned crushed carbon nanotubes were mixed with a disperser while stirring, and finally N-methyl-2-pyrrolidone (Note 1) was used to adjust the total mass to 10,000 parts. Then, the mixture was dispersed in a ball mill for 4 hours to produce a carbon nanotube dispersion paste (A-1). The water content of the carbon nanotube dispersion paste (A-1) was 800 ppm (Note 2).
The above manufacturing steps were all carried out in an atmosphere with a dew point of 10° C. or less.
In addition, to disperse carbon nanotubes (200 parts) in a disperser, the other components were first thoroughly mixed, and then half the amount (100 parts) of the CNTs was added and mixed in the disperser while stirring. After confirming that the CNTs were thoroughly mixed, the remainder was gradually added and dispersed.
(Note 3) Polyvinylpyrrolidone: heterocycle-containing resin, weight average molecular weight (Mw) 12,000, functional group concentration 9 (mmol/g)
(Note 4) The polyvinylidene fluoride resin solution was prepared by mixing and dissolving polyvinylidene fluoride and N-methyl-2-pyrrolidone (Note 1) at a temperature of 80° C. Then, the solution was cooled to 30° C. at a cooling rate of about 1° C./min.
上記カーボンナノチューブは全て多層カーボンナノチューブである。
なお、上記表2中のメディアン径(D50)、G/D比、比表面積(BET比表面積)、及び酸性基量は後述する方法で測定した。 The above carbon nanotubes are all multi-walled carbon nanotubes.
The median diameter (D50), G/D ratio, specific surface area (BET specific surface area), and amount of acidic groups in Table 2 were measured by the methods described below.
なお、上記表2中のメディアン径(D50)、G/D比、比表面積(BET比表面積)、及び酸性基量は後述する方法で測定した。 The above carbon nanotubes are all multi-walled carbon nanotubes.
The median diameter (D50), G/D ratio, specific surface area (BET specific surface area), and amount of acidic groups in Table 2 were measured by the methods described below.
実施例2A~10A、13A、比較例1A~3A
下記表3の配合とする以外は実施例1Aと同様にしてカーボンナノチューブ分散ペースト(A-2)~(A-10)、(A-13)~(A-16)を得た。
なお、実施例8A(カーボンナノチューブ分散ペースト(A-8))では粉砕していないカーボンナノチューブ(CNT-C)を使用している。 Examples 2A to 10A, 13A, Comparative Examples 1A to 3A
Carbon nanotube dispersion pastes (A-2) to (A-10) and (A-13) to (A-16) were obtained in the same manner as in Example 1A except that the compositions were as shown in Table 3 below.
In Example 8A (carbon nanotube dispersion paste (A-8)), unpulverized carbon nanotubes (CNT-C) were used.
下記表3の配合とする以外は実施例1Aと同様にしてカーボンナノチューブ分散ペースト(A-2)~(A-10)、(A-13)~(A-16)を得た。
なお、実施例8A(カーボンナノチューブ分散ペースト(A-8))では粉砕していないカーボンナノチューブ(CNT-C)を使用している。 Examples 2A to 10A, 13A, Comparative Examples 1A to 3A
Carbon nanotube dispersion pastes (A-2) to (A-10) and (A-13) to (A-16) were obtained in the same manner as in Example 1A except that the compositions were as shown in Table 3 below.
In Example 8A (carbon nanotube dispersion paste (A-8)), unpulverized carbon nanotubes (CNT-C) were used.
実施例11A~12A、比較例4A
実施例3Aで得たカーボンナノチューブ分散ペースト(A-3)(水分含有量800ppm)に下記水分含有量(注2)となるように水を加えて十分に撹拌し、下記カーボンナノチューブ分散ペースト(A-11)、(A-12)、(A-17)を得た。
・実施例12A:カーボンナノチューブ分散ペースト(A-11)、水分含有量4000ppm
・実施例13A:カーボンナノチューブ分散ペースト(A-12)、水分含有量8000ppm
・比較例4A:カーボンナノチューブ分散ペースト(A-17)、水分含有量12000ppm
カーボンナノチューブ分散ペーストの水分含有量(注2)と後述する評価試験の結果を下記表3に記す。 Examples 11A to 12A, Comparative Example 4A
Water was added to the carbon nanotube dispersion paste (A-3) (moisture content 800 ppm) obtained in Example 3A so as to have the following moisture content (Note 2), and the mixture was thoroughly stirred to obtain the following carbon nanotube dispersion pastes (A-11), (A-12), and (A-17).
Example 12A: Carbon nanotube dispersion paste (A-11), water content 4000 ppm
Example 13A: Carbon nanotube dispersion paste (A-12), water content 8000 ppm
Comparative Example 4A: Carbon nanotube dispersion paste (A-17), moisture content 12,000 ppm
The water content of the carbon nanotube dispersion paste (Note 2) and the results of the evaluation test described below are shown in Table 3 below.
実施例3Aで得たカーボンナノチューブ分散ペースト(A-3)(水分含有量800ppm)に下記水分含有量(注2)となるように水を加えて十分に撹拌し、下記カーボンナノチューブ分散ペースト(A-11)、(A-12)、(A-17)を得た。
・実施例12A:カーボンナノチューブ分散ペースト(A-11)、水分含有量4000ppm
・実施例13A:カーボンナノチューブ分散ペースト(A-12)、水分含有量8000ppm
・比較例4A:カーボンナノチューブ分散ペースト(A-17)、水分含有量12000ppm
カーボンナノチューブ分散ペーストの水分含有量(注2)と後述する評価試験の結果を下記表3に記す。 Examples 11A to 12A, Comparative Example 4A
Water was added to the carbon nanotube dispersion paste (A-3) (moisture content 800 ppm) obtained in Example 3A so as to have the following moisture content (Note 2), and the mixture was thoroughly stirred to obtain the following carbon nanotube dispersion pastes (A-11), (A-12), and (A-17).
Example 12A: Carbon nanotube dispersion paste (A-11), water content 4000 ppm
Example 13A: Carbon nanotube dispersion paste (A-12), water content 8000 ppm
Comparative Example 4A: Carbon nanotube dispersion paste (A-17), moisture content 12,000 ppm
The water content of the carbon nanotube dispersion paste (Note 2) and the results of the evaluation test described below are shown in Table 3 below.
上記表3中の樹脂の配合量は固形分の値である。
上記表3中の分散樹脂の組成は下記の通りである。
・ポリビニルブチラール:平均重合度600、水酸基量12モル%、ブチラール基量87モル%、アセチル基量1モル%、極性官能基濃度1.0(mmol/g)
・ポリビニルアルコール:平均重合度600、ケン化度80モル%、極性官能基濃度16.1(mmol/g)
・ポリメチルメタクリレート:重量平均分子量20000、メチルメタクリレートのホモポリマー、極性官能基濃度0(mmol/g)
上記表3中のアミンの沸点及び分子量は下記の通りである。
・ベンジルアミン:沸点185℃、分子量107
・アミノメチルプロパノール:沸点166℃、分子量89。 The resin amounts in Table 3 above are values based on solid content.
The compositions of the dispersing resins in Table 3 above are as follows:
Polyvinyl butyral: average degree of polymerization 600, amount of hydroxyl groups 12 mol%, amount of butyral groups 87 mol%, amount of acetyl groups 1 mol%, concentration of polar functional groups 1.0 (mmol/g)
Polyvinyl alcohol: average degree of polymerization 600, degree of saponification 80 mol%, polar functional group concentration 16.1 (mmol/g)
Polymethyl methacrylate: weight average molecular weight 20,000, homopolymer of methyl methacrylate, polar functional group concentration 0 (mmol/g)
The boiling points and molecular weights of the amines in Table 3 above are as follows:
Benzylamine: boiling point 185°C, molecular weight 107
Aminomethylpropanol: boiling point 166°C, molecular weight 89.
上記表3中の分散樹脂の組成は下記の通りである。
・ポリビニルブチラール:平均重合度600、水酸基量12モル%、ブチラール基量87モル%、アセチル基量1モル%、極性官能基濃度1.0(mmol/g)
・ポリビニルアルコール:平均重合度600、ケン化度80モル%、極性官能基濃度16.1(mmol/g)
・ポリメチルメタクリレート:重量平均分子量20000、メチルメタクリレートのホモポリマー、極性官能基濃度0(mmol/g)
上記表3中のアミンの沸点及び分子量は下記の通りである。
・ベンジルアミン:沸点185℃、分子量107
・アミノメチルプロパノール:沸点166℃、分子量89。 The resin amounts in Table 3 above are values based on solid content.
The compositions of the dispersing resins in Table 3 above are as follows:
Polyvinyl butyral: average degree of polymerization 600, amount of hydroxyl groups 12 mol%, amount of butyral groups 87 mol%, amount of acetyl groups 1 mol%, concentration of polar functional groups 1.0 (mmol/g)
Polyvinyl alcohol: average degree of polymerization 600, degree of saponification 80 mol%, polar functional group concentration 16.1 (mmol/g)
Polymethyl methacrylate: weight average molecular weight 20,000, homopolymer of methyl methacrylate, polar functional group concentration 0 (mmol/g)
The boiling points and molecular weights of the amines in Table 3 above are as follows:
Benzylamine: boiling point 185°C, molecular weight 107
Aminomethylpropanol: boiling point 166°C, molecular weight 89.
実施例1B
上記カーボンナノチューブ分散ペースト(A-1)100部に対して、電極活物質粒子(組成式LiNi0.5Mn1.5O4で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒子径6μm、BET比表面積0.7m2/g、水分含有量100ppm)900部をディスパーで混合して合材ペースト(B-1)を製造した。
合材ペースト(B-1)の水分含有量は800ppm(注2)であった。
なお、上記製造工程は全て露点10℃以下の雰囲気下で行った。 Example 1B
100 parts of the carbon nanotube dispersion paste (A-1) was mixed with 900 parts of electrode active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 μm, BET specific surface area 0.7 m2 /g, moisture content 100 ppm) using a disperser to produce a composite paste (B-1).
The moisture content of the composite paste (B-1) was 800 ppm (Note 2).
The above manufacturing steps were all carried out in an atmosphere with a dew point of 10° C. or less.
上記カーボンナノチューブ分散ペースト(A-1)100部に対して、電極活物質粒子(組成式LiNi0.5Mn1.5O4で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒子径6μm、BET比表面積0.7m2/g、水分含有量100ppm)900部をディスパーで混合して合材ペースト(B-1)を製造した。
合材ペースト(B-1)の水分含有量は800ppm(注2)であった。
なお、上記製造工程は全て露点10℃以下の雰囲気下で行った。 Example 1B
100 parts of the carbon nanotube dispersion paste (A-1) was mixed with 900 parts of electrode active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 μm, BET specific surface area 0.7 m2 /g, moisture content 100 ppm) using a disperser to produce a composite paste (B-1).
The moisture content of the composite paste (B-1) was 800 ppm (Note 2).
The above manufacturing steps were all carried out in an atmosphere with a dew point of 10° C. or less.
実施例2B~9B、11B~12B、比較例1B~4B
下記表4の配合とする以外は実施例1Bと同様にして合材ペースト(B-2)~(B-9)、(B-11)~(B-12)、(B-14)~(B-17)を得た。 Examples 2B to 9B, 11B to 12B, Comparative Examples 1B to 4B
Except for the formulations shown in Table 4 below, the same procedures as in Example 1B were carried out to obtain composite pastes (B-2) to (B-9), (B-11) to (B-12), and (B-14) to (B-17).
下記表4の配合とする以外は実施例1Bと同様にして合材ペースト(B-2)~(B-9)、(B-11)~(B-12)、(B-14)~(B-17)を得た。 Examples 2B to 9B, 11B to 12B, Comparative Examples 1B to 4B
Except for the formulations shown in Table 4 below, the same procedures as in Example 1B were carried out to obtain composite pastes (B-2) to (B-9), (B-11) to (B-12), and (B-14) to (B-17).
実施例10B
上記カーボンナノチューブ分散ペースト(A-10)100部に対して、製造例6で得た電極活物質複合体(G1)1000部(電極活物質粒子900部)をディスパーで混合して合材ペースト(B-10)を製造した。
合材ペースト(B-10)の水分含有量は800ppm(注2)であった。 Example 10B
100 parts of the carbon nanotube dispersion paste (A-10) was mixed with 1000 parts of the electrode active material composite (G1) obtained in Production Example 6 (900 parts of electrode active material particles) using a disper to produce a composite paste (B-10).
The moisture content of the composite paste (B-10) was 800 ppm (Note 2).
上記カーボンナノチューブ分散ペースト(A-10)100部に対して、製造例6で得た電極活物質複合体(G1)1000部(電極活物質粒子900部)をディスパーで混合して合材ペースト(B-10)を製造した。
合材ペースト(B-10)の水分含有量は800ppm(注2)であった。 Example 10B
100 parts of the carbon nanotube dispersion paste (A-10) was mixed with 1000 parts of the electrode active material composite (G1) obtained in Production Example 6 (900 parts of electrode active material particles) using a disper to produce a composite paste (B-10).
The moisture content of the composite paste (B-10) was 800 ppm (Note 2).
実施例13B
上記カーボンナノチューブ分散ペースト(A-13)100部に対して、KFポリマーW#7300(クレハ社製、商品名、ポリフッ化ビニリデン、重量平均分子量100万)の樹脂溶液16部(固形分1.6部)(注4)及び電極活物質粒子(組成式LiNi0.5Mn1.5O4で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒子径6μm、BET比表面積0.7m2/g、水分含有量100ppm)900部をディスパーで混合して合材ペースト(B-13)を製造した。
合材ペースト(B-13)の水分含有量は800ppm(注2)であった。
後述する合材ペーストの評価試験の結果を上記表3に記す。 Example 13B
A composite paste (B-13) was produced by mixing 100 parts of the carbon nanotube dispersion paste (A-13) with 16 parts (solid content 1.6 parts) (Note 4 ) of a resin solution of KF Polymer W# 7300 (manufactured by Kureha Corporation, product name, polyvinylidene fluoride, weight average molecular weight 1,000,000) and 900 parts of electrode active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 μm, BET specific surface area 0.7 m2 /g, moisture content 100 ppm) using a disper.
The moisture content of the composite paste (B-13) was 800 ppm (Note 2).
The results of the evaluation test of the composite paste described below are shown in Table 3 above.
上記カーボンナノチューブ分散ペースト(A-13)100部に対して、KFポリマーW#7300(クレハ社製、商品名、ポリフッ化ビニリデン、重量平均分子量100万)の樹脂溶液16部(固形分1.6部)(注4)及び電極活物質粒子(組成式LiNi0.5Mn1.5O4で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒子径6μm、BET比表面積0.7m2/g、水分含有量100ppm)900部をディスパーで混合して合材ペースト(B-13)を製造した。
合材ペースト(B-13)の水分含有量は800ppm(注2)であった。
後述する合材ペーストの評価試験の結果を上記表3に記す。 Example 13B
A composite paste (B-13) was produced by mixing 100 parts of the carbon nanotube dispersion paste (A-13) with 16 parts (solid content 1.6 parts) (Note 4 ) of a resin solution of KF Polymer W# 7300 (manufactured by Kureha Corporation, product name, polyvinylidene fluoride, weight average molecular weight 1,000,000) and 900 parts of electrode active material particles (lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 μm, BET specific surface area 0.7 m2 /g, moisture content 100 ppm) using a disper.
The moisture content of the composite paste (B-13) was 800 ppm (Note 2).
The results of the evaluation test of the composite paste described below are shown in Table 3 above.
実施例(2-1A)~(2-5A)
下記表5のCNT種(CNTは実施例1Aと同様に粉砕〔乾式分散〕している)とする以外は実施例3Aと同様にしてカーボンナノチューブ分散ペースト(2-A-1)~(2-A-5)を得た。
カーボンナノチューブの吸湿性(X)と、後述するカーボンナノチューブ分散ペーストの評価試験の結果を下記表5に記す。
なお、上記吸湿性(X)は以下に示す方法で算出した。
〔吸湿性(X)の測定〕
カーボンナノチューブ(CNT)を約5g秤量し、140℃の温度で3時間乾燥させて得たCNTの質量をY1とし、さらに温度20℃、相対湿度65%の条件で24時間放置して得たCNTの質量をY2とした場合に、下記式で得られるYの値を吸湿量Yとする。
吸湿量Y=(Y2-Y1)/Y1×100
さらに、上記吸湿量をY(質量%)及び後述する方法で測定したBET比表面積をZ(m2/g)とした場合に、「X=Y×Z」で得られるXの値を吸湿性Xとする。 Examples (2-1A) to (2-5A)
Carbon nanotube dispersion pastes (2-A-1) to (2-A-5) were obtained in the same manner as in Example 3A, except that the CNT species shown in Table 5 below were used (the CNTs were pulverized (dry dispersed) in the same manner as in Example 1A).
The moisture absorption (X) of the carbon nanotubes and the results of the evaluation test of the carbon nanotube dispersion paste described below are shown in Table 5 below.
The moisture absorption (X) was calculated by the following method.
[Measurement of Hygroscopicity (X)]
Approximately 5 g of carbon nanotubes (CNTs) are weighed out and dried at 140°C for 3 hours to obtain a mass of CNTs of Y1. The mass of CNTs obtained by leaving the CNTs for 24 hours under conditions of a temperature of 20°C and a relative humidity of 65% is then Y2. The value of Y obtained by the following formula is defined as the moisture absorption amount Y.
Moisture absorption amount Y=(Y2-Y1)/Y1×100
Furthermore, when the moisture absorption amount is Y (mass %) and the BET specific surface area measured by the method described later is Z (m 2 /g), the value X obtained by "X = Y × Z" is defined as the moisture absorption rate X.
下記表5のCNT種(CNTは実施例1Aと同様に粉砕〔乾式分散〕している)とする以外は実施例3Aと同様にしてカーボンナノチューブ分散ペースト(2-A-1)~(2-A-5)を得た。
カーボンナノチューブの吸湿性(X)と、後述するカーボンナノチューブ分散ペーストの評価試験の結果を下記表5に記す。
なお、上記吸湿性(X)は以下に示す方法で算出した。
〔吸湿性(X)の測定〕
カーボンナノチューブ(CNT)を約5g秤量し、140℃の温度で3時間乾燥させて得たCNTの質量をY1とし、さらに温度20℃、相対湿度65%の条件で24時間放置して得たCNTの質量をY2とした場合に、下記式で得られるYの値を吸湿量Yとする。
吸湿量Y=(Y2-Y1)/Y1×100
さらに、上記吸湿量をY(質量%)及び後述する方法で測定したBET比表面積をZ(m2/g)とした場合に、「X=Y×Z」で得られるXの値を吸湿性Xとする。 Examples (2-1A) to (2-5A)
Carbon nanotube dispersion pastes (2-A-1) to (2-A-5) were obtained in the same manner as in Example 3A, except that the CNT species shown in Table 5 below were used (the CNTs were pulverized (dry dispersed) in the same manner as in Example 1A).
The moisture absorption (X) of the carbon nanotubes and the results of the evaluation test of the carbon nanotube dispersion paste described below are shown in Table 5 below.
The moisture absorption (X) was calculated by the following method.
[Measurement of Hygroscopicity (X)]
Approximately 5 g of carbon nanotubes (CNTs) are weighed out and dried at 140°C for 3 hours to obtain a mass of CNTs of Y1. The mass of CNTs obtained by leaving the CNTs for 24 hours under conditions of a temperature of 20°C and a relative humidity of 65% is then Y2. The value of Y obtained by the following formula is defined as the moisture absorption amount Y.
Moisture absorption amount Y=(Y2-Y1)/Y1×100
Furthermore, when the moisture absorption amount is Y (mass %) and the BET specific surface area measured by the method described later is Z (m 2 /g), the value X obtained by "X = Y × Z" is defined as the moisture absorption rate X.
なお、上記表5中のカーボンナノチューブ(CNT-A)~(CNT-E)は表2に記載の通りである。
The carbon nanotubes (CNT-A) to (CNT-E) in Table 5 above are as described in Table 2.
実施例(2-1B)~(2-5B)
下記表6の配合とする以外は実施例1Bと同様にして合材ペースト(2-B-1)~(2-B-5)を得た。
後述する合材ペーストの評価試験の結果を上記表5に記す。 Examples (2-1B) to (2-5B)
Composite pastes (2-B-1) to (2-B-5) were obtained in the same manner as in Example 1B except that the compositions were as shown in Table 6 below.
The results of the evaluation test of the composite paste described below are shown in Table 5 above.
下記表6の配合とする以外は実施例1Bと同様にして合材ペースト(2-B-1)~(2-B-5)を得た。
後述する合材ペーストの評価試験の結果を上記表5に記す。 Examples (2-1B) to (2-5B)
Composite pastes (2-B-1) to (2-B-5) were obtained in the same manner as in Example 1B except that the compositions were as shown in Table 6 below.
The results of the evaluation test of the composite paste described below are shown in Table 5 above.
<メディアン径(D50)>
メディアン径(D50)の測定は、レーザー回折/散乱式 粒子径分布測定装置「LA-960」(HORIBA社製、商品名)を用い、下記の手順で行った。 <Median diameter (D50)>
The median diameter (D50) was measured using a laser diffraction/scattering type particle size distribution measuring device "LA-960" (trade name, manufactured by HORIBA Co., Ltd.) according to the following procedure.
メディアン径(D50)の測定は、レーザー回折/散乱式 粒子径分布測定装置「LA-960」(HORIBA社製、商品名)を用い、下記の手順で行った。 <Median diameter (D50)>
The median diameter (D50) was measured using a laser diffraction/scattering type particle size distribution measuring device "LA-960" (trade name, manufactured by HORIBA Co., Ltd.) according to the following procedure.
(水分散媒の調製)
蒸留水100mLにF10MC(日本製紙社製、商品名、カルボキシメチルセルロースナトリウム(以下CMCNaとも記載))0.10gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa0.1質量%の水分散媒を調製した。 (Preparation of aqueous dispersion medium)
0.10 g of F10MC (trade name, carboxymethylcellulose sodium (hereinafter also referred to as CMCNa), manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous dispersion medium containing 0.1% by mass of CMCNa.
蒸留水100mLにF10MC(日本製紙社製、商品名、カルボキシメチルセルロースナトリウム(以下CMCNaとも記載))0.10gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa0.1質量%の水分散媒を調製した。 (Preparation of aqueous dispersion medium)
0.10 g of F10MC (trade name, carboxymethylcellulose sodium (hereinafter also referred to as CMCNa), manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous dispersion medium containing 0.1% by mass of CMCNa.
(CMCNa水溶液の調製)
蒸留水100mLにF10MC(日本製紙社製、商品名、カルボキシメチルセルロースナトリウム)2.0gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa2.0質量%の水溶液を調製した。 (Preparation of CMCNa aqueous solution)
2.0 g of F10MC (trade name, sodium carboxymethylcellulose, manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous solution of 2.0 mass % CMCNa.
蒸留水100mLにF10MC(日本製紙社製、商品名、カルボキシメチルセルロースナトリウム)2.0gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa2.0質量%の水溶液を調製した。 (Preparation of CMCNa aqueous solution)
2.0 g of F10MC (trade name, sodium carboxymethylcellulose, manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous solution of 2.0 mass % CMCNa.
(測定前処理)
バイアル瓶にカーボンナノチューブを6.0mg秤量し、前記水分散媒6.0gを添加した。測定前処理に超音波ホモジナイザー(マイクロテック・ニチオン社製、「SmurtNR-50」)を用いた。チップの劣化がないことを確認し、チップが処理サンプル液面から10mm以上つかるように調整した。TIME SET(照射時間)を40秒、POW SETを50%、START POWを50%(出力50%)とし、出力電力が一定であるオートパワー運転による超音波照射により均一化させカーボンナノチューブ水分散液を作製した。 (Pre-measurement processing)
6.0 mg of carbon nanotubes were weighed into a vial, and 6.0 g of the aqueous dispersion medium was added. An ultrasonic homogenizer (Microtec Nithion, "SmurtNR-50") was used for pre-measurement treatment. The tip was confirmed to be free of deterioration, and was adjusted so that the tip was immersed 10 mm or more below the surface of the sample to be treated. The time set (irradiation time) was 40 seconds, the power set was 50%, the start power was 50% (output 50%), and the carbon nanotube aqueous dispersion was homogenized by ultrasonic irradiation using auto power operation with a constant output power.
バイアル瓶にカーボンナノチューブを6.0mg秤量し、前記水分散媒6.0gを添加した。測定前処理に超音波ホモジナイザー(マイクロテック・ニチオン社製、「SmurtNR-50」)を用いた。チップの劣化がないことを確認し、チップが処理サンプル液面から10mm以上つかるように調整した。TIME SET(照射時間)を40秒、POW SETを50%、START POWを50%(出力50%)とし、出力電力が一定であるオートパワー運転による超音波照射により均一化させカーボンナノチューブ水分散液を作製した。 (Pre-measurement processing)
6.0 mg of carbon nanotubes were weighed into a vial, and 6.0 g of the aqueous dispersion medium was added. An ultrasonic homogenizer (Microtec Nithion, "SmurtNR-50") was used for pre-measurement treatment. The tip was confirmed to be free of deterioration, and was adjusted so that the tip was immersed 10 mm or more below the surface of the sample to be treated. The time set (irradiation time) was 40 seconds, the power set was 50%, the start power was 50% (output 50%), and the carbon nanotube aqueous dispersion was homogenized by ultrasonic irradiation using auto power operation with a constant output power.
[測定]
<カーボンナノチューブの1μm以下の分散粒子の割合及びメディアン径(D50)> 前記カーボンナノチューブ水分散液を用い、カーボンナノチューブの1μm以下の分散粒子の割合及びメディアン径(D50)の測定を、以下の方法に従い実施した。
LS 13 320 ユニバーサルリキッドモジュールの光学モデルをカーボンナノチューブ1.520、水1.333とそれぞれの屈折率に設定し、モジュ-ル洗浄終了後にCMCNa水溶液を約1.0mL充填する。
ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製したカーボンナノチューブ水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8~12%、もしくはPIDSが40~55%になるように加え、粒度分布計付属装置により78W、2分間超音波照射を行い(測定前処理)、30秒循環し気泡を除いた後に粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、1μm以下の分散粒子の存在割合及びメディアン径(D50)を求めた。
測定は、カーボンナノチューブ1試料につき、採取場所を変え3測定用サンプルを採取して粒度分布測定を行い、1μm以下の分散粒子の存在割合及びメディアン径(D50)をその平均値で求めた。 [measurement]
<Proportion of Dispersed Carbon Nanotube Particles of 1 μm or Less and Median Diameter (D50)> Using the carbon nanotube aqueous dispersion, the proportion of dispersed carbon nanotube particles of 1 μm or less and the median diameter (D50) were measured according to the following method.
The optical model of the LS 13 320 universal liquid module is set to a refractive index of 1.520 for carbon nanotubes and 1.333 for water, and after the module has been washed, it is filled with approximately 1.0 mL of a CMCNa aqueous solution.
After performing offset measurement, optical axis adjustment, and background measurement under the condition of 50% pump speed, the prepared carbon nanotube aqueous dispersion was added to the particle size distribution meter so that the relative concentration, which indicates the percentage of light scattered outside the beam by the particles, was 8 to 12%, or the PIDS was 40 to 55%, and ultrasonic irradiation was performed for 2 minutes at 78 W using the particle size distribution meter attachment (measurement pretreatment), and after circulating for 30 seconds to remove air bubbles, the particle size distribution was measured. A graph of particle size (particle diameter) versus volume % was obtained, and the presence ratio and median diameter (D50) of dispersed particles of 1 μm or less were determined.
For each carbon nanotube sample, three measurement samples were taken from different locations and particle size distribution was measured. The proportion of dispersed particles of 1 μm or less and the median diameter (D50) were calculated as the average value.
<カーボンナノチューブの1μm以下の分散粒子の割合及びメディアン径(D50)> 前記カーボンナノチューブ水分散液を用い、カーボンナノチューブの1μm以下の分散粒子の割合及びメディアン径(D50)の測定を、以下の方法に従い実施した。
LS 13 320 ユニバーサルリキッドモジュールの光学モデルをカーボンナノチューブ1.520、水1.333とそれぞれの屈折率に設定し、モジュ-ル洗浄終了後にCMCNa水溶液を約1.0mL充填する。
ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製したカーボンナノチューブ水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8~12%、もしくはPIDSが40~55%になるように加え、粒度分布計付属装置により78W、2分間超音波照射を行い(測定前処理)、30秒循環し気泡を除いた後に粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、1μm以下の分散粒子の存在割合及びメディアン径(D50)を求めた。
測定は、カーボンナノチューブ1試料につき、採取場所を変え3測定用サンプルを採取して粒度分布測定を行い、1μm以下の分散粒子の存在割合及びメディアン径(D50)をその平均値で求めた。 [measurement]
<Proportion of Dispersed Carbon Nanotube Particles of 1 μm or Less and Median Diameter (D50)> Using the carbon nanotube aqueous dispersion, the proportion of dispersed carbon nanotube particles of 1 μm or less and the median diameter (D50) were measured according to the following method.
The optical model of the LS 13 320 universal liquid module is set to a refractive index of 1.520 for carbon nanotubes and 1.333 for water, and after the module has been washed, it is filled with approximately 1.0 mL of a CMCNa aqueous solution.
After performing offset measurement, optical axis adjustment, and background measurement under the condition of 50% pump speed, the prepared carbon nanotube aqueous dispersion was added to the particle size distribution meter so that the relative concentration, which indicates the percentage of light scattered outside the beam by the particles, was 8 to 12%, or the PIDS was 40 to 55%, and ultrasonic irradiation was performed for 2 minutes at 78 W using the particle size distribution meter attachment (measurement pretreatment), and after circulating for 30 seconds to remove air bubbles, the particle size distribution was measured. A graph of particle size (particle diameter) versus volume % was obtained, and the presence ratio and median diameter (D50) of dispersed particles of 1 μm or less were determined.
For each carbon nanotube sample, three measurement samples were taken from different locations and particle size distribution was measured. The proportion of dispersed particles of 1 μm or less and the median diameter (D50) were calculated as the average value.
<カーボンナノチューブのG/D比>
カーボンナノチューブのラマンスペクトルは、ラマン顕微鏡(堀場製作所社製、商品名「XploRA」)にカーボンナノチューブを設置し、532nmのレーザー波長を用いて測定を行った。得られたピークの内、スペクトルで1560cm-1以上~1600cm-1以下の範囲内で最大ピーク強度をG、1310cm-1以上~1350cm-1以下の範囲内で最大ピーク強度をDとした際のG/Dの比をカーボンナノチューブのG/D比とした。 <G/D ratio of carbon nanotubes>
The Raman spectrum of the carbon nanotube was measured by placing the carbon nanotube in a Raman microscope (manufactured by Horiba, Ltd., product name "XploRA") and using a laser wavelength of 532 nm. The G/D ratio of the carbon nanotube was determined by taking the maximum peak intensity G within the range of 1560 cm -1 to 1600 cm -1 in the spectrum and the maximum peak intensity D within the range of 1310 cm -1 to 1350 cm -1 .
カーボンナノチューブのラマンスペクトルは、ラマン顕微鏡(堀場製作所社製、商品名「XploRA」)にカーボンナノチューブを設置し、532nmのレーザー波長を用いて測定を行った。得られたピークの内、スペクトルで1560cm-1以上~1600cm-1以下の範囲内で最大ピーク強度をG、1310cm-1以上~1350cm-1以下の範囲内で最大ピーク強度をDとした際のG/Dの比をカーボンナノチューブのG/D比とした。 <G/D ratio of carbon nanotubes>
The Raman spectrum of the carbon nanotube was measured by placing the carbon nanotube in a Raman microscope (manufactured by Horiba, Ltd., product name "XploRA") and using a laser wavelength of 532 nm. The G/D ratio of the carbon nanotube was determined by taking the maximum peak intensity G within the range of 1560 cm -1 to 1600 cm -1 in the spectrum and the maximum peak intensity D within the range of 1310 cm -1 to 1350 cm -1 .
<比表面積(BET比表面積)>
カーボンナノチューブのBET比表面積は、JIS Z8830:2013に準拠し、比表面積測定装置(BERSORP-MAX(マイクロトラック・ベル株式会社))を用いて、BET比表面積(m2/g)を測定した。 <Specific surface area (BET specific surface area)>
The BET specific surface area of the carbon nanotubes was measured as a BET specific surface area (m 2 /g) in accordance with JIS Z8830:2013 using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Corporation)).
カーボンナノチューブのBET比表面積は、JIS Z8830:2013に準拠し、比表面積測定装置(BERSORP-MAX(マイクロトラック・ベル株式会社))を用いて、BET比表面積(m2/g)を測定した。 <Specific surface area (BET specific surface area)>
The BET specific surface area of the carbon nanotubes was measured as a BET specific surface area (m 2 /g) in accordance with JIS Z8830:2013 using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Corporation)).
<カーボンナノチューブ(CNT)の酸性基量>
CNTを2g精秤し、0.01Mのベンジルアミン/n-メチルピロリドン溶液50mlに浸漬させ、超音波照射機で1時間分散処理をした。その後遠心分離を行い、上澄みをフィルターでろ過した。得られたろ液中に残存するベンジルアミンを0.1Mの塩酸で電位差滴定することにより定量分析し、得られたCNT1g当たりの酸性基量(mmol/g)を特定した。 <Amount of Acidic Groups in Carbon Nanotubes (CNTs)>
2 g of CNT was weighed out, immersed in 50 ml of 0.01 M benzylamine/n-methylpyrrolidone solution, and dispersed for 1 hour using an ultrasonic irradiator. Then, the mixture was centrifuged and the supernatant was filtered through a filter. The benzylamine remaining in the obtained filtrate was quantitatively analyzed by potentiometric titration with 0.1 M hydrochloric acid, and the amount of acidic groups (mmol/g) per 1 g of the obtained CNT was identified.
CNTを2g精秤し、0.01Mのベンジルアミン/n-メチルピロリドン溶液50mlに浸漬させ、超音波照射機で1時間分散処理をした。その後遠心分離を行い、上澄みをフィルターでろ過した。得られたろ液中に残存するベンジルアミンを0.1Mの塩酸で電位差滴定することにより定量分析し、得られたCNT1g当たりの酸性基量(mmol/g)を特定した。 <Amount of Acidic Groups in Carbon Nanotubes (CNTs)>
2 g of CNT was weighed out, immersed in 50 ml of 0.01 M benzylamine/n-methylpyrrolidone solution, and dispersed for 1 hour using an ultrasonic irradiator. Then, the mixture was centrifuged and the supernatant was filtered through a filter. The benzylamine remaining in the obtained filtrate was quantitatively analyzed by potentiometric titration with 0.1 M hydrochloric acid, and the amount of acidic groups (mmol/g) per 1 g of the obtained CNT was identified.
評価試験
上記実施例及び比較例で得られたカーボンナノチューブ分散ペースト及び合材ペーストの評価試験を行った。評価としてはDが不合格である。1つでも不合格の評価結果がある場合、カーボンナノチューブ分散ペースト又は合材ペーストの評価としては不合格である。 Evaluation test: The carbon nanotube dispersion paste and composite paste obtained in the above examples and comparative examples were subjected to an evaluation test. Evaluation D is a failure. If there is even one failure evaluation result, the evaluation of the carbon nanotube dispersion paste or composite paste is a failure.
上記実施例及び比較例で得られたカーボンナノチューブ分散ペースト及び合材ペーストの評価試験を行った。評価としてはDが不合格である。1つでも不合格の評価結果がある場合、カーボンナノチューブ分散ペースト又は合材ペーストの評価としては不合格である。 Evaluation test: The carbon nanotube dispersion paste and composite paste obtained in the above examples and comparative examples were subjected to an evaluation test. Evaluation D is a failure. If there is even one failure evaluation result, the evaluation of the carbon nanotube dispersion paste or composite paste is a failure.
<分散性>
得られたカーボンナノチューブ分散ペーストをJIS K-5600-2-5の分散度試験に準じ、ツブゲージを用いて下記基準により分散性を評価した。
A:顔料が10μm未満で分散されている。分散性は非常に良好である。
B:顔料が10μm以上、かつ20μm未満で分散されている。分散性はやや良好である。
C:顔料が20μm以上で分散されているが、目視で凝集物は確認できない。分散性はやや劣る。
D:目視で凝集物が確認される。分散性は非常に劣る。 <Dispersibility>
The resulting carbon nanotube dispersion paste was evaluated for dispersibility according to the dispersion degree test of JIS K-5600-2-5 using a grain gauge and the following criteria.
A: The pigment is dispersed at a particle size of less than 10 μm. The dispersibility is very good.
B: The pigment is dispersed at a size of 10 μm or more and less than 20 μm. The dispersibility is somewhat good.
C: The pigment is dispersed at a particle size of 20 μm or more, but no aggregates are visible. Dispersibility is somewhat poor.
D: Aggregates are visually observed. Dispersibility is very poor.
得られたカーボンナノチューブ分散ペーストをJIS K-5600-2-5の分散度試験に準じ、ツブゲージを用いて下記基準により分散性を評価した。
A:顔料が10μm未満で分散されている。分散性は非常に良好である。
B:顔料が10μm以上、かつ20μm未満で分散されている。分散性はやや良好である。
C:顔料が20μm以上で分散されているが、目視で凝集物は確認できない。分散性はやや劣る。
D:目視で凝集物が確認される。分散性は非常に劣る。 <Dispersibility>
The resulting carbon nanotube dispersion paste was evaluated for dispersibility according to the dispersion degree test of JIS K-5600-2-5 using a grain gauge and the following criteria.
A: The pigment is dispersed at a particle size of less than 10 μm. The dispersibility is very good.
B: The pigment is dispersed at a size of 10 μm or more and less than 20 μm. The dispersibility is somewhat good.
C: The pigment is dispersed at a particle size of 20 μm or more, but no aggregates are visible. Dispersibility is somewhat poor.
D: Aggregates are visually observed. Dispersibility is very poor.
<体積抵抗率(導電性)>
得られたカーボンナノチューブ分散ペーストに関して、さらに体積抵抗率の測定を行った。体積抵抗率の測定では、バインダーとしてポリフッ化ビニリデンの5質量%溶液(クレハ社製、商品名「KFポリマーW#7300」、溶媒:N-メチル-2-ピロリドン)を使用した。
得られたカーボンナノチューブ分散ペーストのカーボンナノチューブ(B)の質量と、カーボンナノチューブ分散ペーストの分散樹脂(A)固形分及びKFポリマーW#7300固形分を合計した質量との比が5:100となるように、カーボンナノチューブ分散ペーストとKFポリマーW#7300溶液を量り取り、超音波ホモジナイザーで2分間混合して測定用試料を得た。
ガラス板(2mm×100mm×150mm)上に測定用試料をドクターブレード法にて塗工して、80℃60分で加熱乾燥し、ガラス板上に塗工膜を形成した。得られた塗工膜について膜厚を測定した後、ASPプローブ(三菱化学アナリテック社製、商品名「MCP-TP03P」)を用いて、抵抗率計(三菱化学アナリテック社製、商品名「Loresta-GP MCP-T610」)で抵抗値を測定し、得られた抵抗値に抵抗率補正係数(RCF)4.532及び塗工膜の膜厚を乗じて体積抵抗率を算出した。体積抵抗率は下記基準により評価した。
A:体積抵抗率が、5Ω・cm未満であり、導電性は良好である。
B:体積抵抗率が、5Ω・cm以上、かつ15Ω・cm未満であり、導電性は普通である。
D:体積抵抗率が、15Ω・cm以上であり、導電性は劣る。 <Volume resistivity (conductivity)>
The volume resistivity of the resulting carbon nanotube dispersion paste was further measured using a 5% by mass solution of polyvinylidene fluoride (manufactured by Kureha Corporation, product name "KF Polymer W#7300", solvent: N-methyl-2-pyrrolidone) as a binder.
The carbon nanotube-dispersed paste and the KF Polymer W#7300 solution were weighed out so that the ratio of the mass of the carbon nanotubes (B) in the obtained carbon nanotube-dispersed paste to the combined mass of the dispersed resin (A) solid content and the KF Polymer W#7300 solid content in the carbon nanotube-dispersed paste was 5:100, and the mixture was mixed for 2 minutes with an ultrasonic homogenizer to obtain a measurement sample.
A sample for measurement was applied to a glass plate (2 mm x 100 mm x 150 mm) by the doctor blade method, and then dried by heating at 80 ° C. for 60 minutes to form a coating film on the glass plate. After measuring the film thickness of the obtained coating film, the resistance value was measured with an ASP probe (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name "MCP-TP03P") and a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name "Loresta-GP MCP-T610"), and the obtained resistance value was multiplied by a resistivity correction factor (RCF) of 4.532 and the film thickness of the coating film to calculate the volume resistivity. The volume resistivity was evaluated according to the following criteria.
A: The volume resistivity is less than 5 Ω·cm and the electrical conductivity is good.
B: The volume resistivity is 5 Ω·cm or more and less than 15 Ω·cm, and the electrical conductivity is normal.
D: The volume resistivity is 15 Ω·cm or more, and the electrical conductivity is poor.
得られたカーボンナノチューブ分散ペーストに関して、さらに体積抵抗率の測定を行った。体積抵抗率の測定では、バインダーとしてポリフッ化ビニリデンの5質量%溶液(クレハ社製、商品名「KFポリマーW#7300」、溶媒:N-メチル-2-ピロリドン)を使用した。
得られたカーボンナノチューブ分散ペーストのカーボンナノチューブ(B)の質量と、カーボンナノチューブ分散ペーストの分散樹脂(A)固形分及びKFポリマーW#7300固形分を合計した質量との比が5:100となるように、カーボンナノチューブ分散ペーストとKFポリマーW#7300溶液を量り取り、超音波ホモジナイザーで2分間混合して測定用試料を得た。
ガラス板(2mm×100mm×150mm)上に測定用試料をドクターブレード法にて塗工して、80℃60分で加熱乾燥し、ガラス板上に塗工膜を形成した。得られた塗工膜について膜厚を測定した後、ASPプローブ(三菱化学アナリテック社製、商品名「MCP-TP03P」)を用いて、抵抗率計(三菱化学アナリテック社製、商品名「Loresta-GP MCP-T610」)で抵抗値を測定し、得られた抵抗値に抵抗率補正係数(RCF)4.532及び塗工膜の膜厚を乗じて体積抵抗率を算出した。体積抵抗率は下記基準により評価した。
A:体積抵抗率が、5Ω・cm未満であり、導電性は良好である。
B:体積抵抗率が、5Ω・cm以上、かつ15Ω・cm未満であり、導電性は普通である。
D:体積抵抗率が、15Ω・cm以上であり、導電性は劣る。 <Volume resistivity (conductivity)>
The volume resistivity of the resulting carbon nanotube dispersion paste was further measured using a 5% by mass solution of polyvinylidene fluoride (manufactured by Kureha Corporation, product name "KF Polymer W#7300", solvent: N-methyl-2-pyrrolidone) as a binder.
The carbon nanotube-dispersed paste and the KF Polymer W#7300 solution were weighed out so that the ratio of the mass of the carbon nanotubes (B) in the obtained carbon nanotube-dispersed paste to the combined mass of the dispersed resin (A) solid content and the KF Polymer W#7300 solid content in the carbon nanotube-dispersed paste was 5:100, and the mixture was mixed for 2 minutes with an ultrasonic homogenizer to obtain a measurement sample.
A sample for measurement was applied to a glass plate (2 mm x 100 mm x 150 mm) by the doctor blade method, and then dried by heating at 80 ° C. for 60 minutes to form a coating film on the glass plate. After measuring the film thickness of the obtained coating film, the resistance value was measured with an ASP probe (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name "MCP-TP03P") and a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name "Loresta-GP MCP-T610"), and the obtained resistance value was multiplied by a resistivity correction factor (RCF) of 4.532 and the film thickness of the coating film to calculate the volume resistivity. The volume resistivity was evaluated according to the following criteria.
A: The volume resistivity is less than 5 Ω·cm and the electrical conductivity is good.
B: The volume resistivity is 5 Ω·cm or more and less than 15 Ω·cm, and the electrical conductivity is normal.
D: The volume resistivity is 15 Ω·cm or more, and the electrical conductivity is poor.
<初期粘度>
得られた合材ペーストをコーン&プレート型粘度計(HAAKE社製、商品名「Mars2」、直径35mm、2°傾斜のコーン&プレート)を用い、シアーレート2.0sec-1で粘度を測定し、下記基準により評価した。
A:粘度が、10Pa・s未満である。
B:粘度が、10Pa・s以上、かつ20Pa・s未満である。
C:粘度が、20Pa・s以上、かつ50Pa・s未満である。
D:粘度が、50Pa・s以上である。 <Initial viscosity>
The viscosity of the obtained composite paste was measured at a shear rate of 2.0 sec -1 using a cone and plate viscometer (manufactured by HAAKE Corporation, trade name "Mars2", diameter 35 mm, 2° inclined cone and plate) and evaluated according to the following criteria.
A: The viscosity is less than 10 Pa·s.
B: Viscosity is 10 Pa·s or more and less than 20 Pa·s.
C: Viscosity is 20 Pa·s or more and less than 50 Pa·s.
D: Viscosity is 50 Pa·s or more.
得られた合材ペーストをコーン&プレート型粘度計(HAAKE社製、商品名「Mars2」、直径35mm、2°傾斜のコーン&プレート)を用い、シアーレート2.0sec-1で粘度を測定し、下記基準により評価した。
A:粘度が、10Pa・s未満である。
B:粘度が、10Pa・s以上、かつ20Pa・s未満である。
C:粘度が、20Pa・s以上、かつ50Pa・s未満である。
D:粘度が、50Pa・s以上である。 <Initial viscosity>
The viscosity of the obtained composite paste was measured at a shear rate of 2.0 sec -1 using a cone and plate viscometer (manufactured by HAAKE Corporation, trade name "Mars2", diameter 35 mm, 2° inclined cone and plate) and evaluated according to the following criteria.
A: The viscosity is less than 10 Pa·s.
B: Viscosity is 10 Pa·s or more and less than 20 Pa·s.
C: Viscosity is 20 Pa·s or more and less than 50 Pa·s.
D: Viscosity is 50 Pa·s or more.
<貯蔵安定性>
得られた合材ペーストを50℃の温度で2週間貯蔵を行い、初期粘度と貯蔵後の粘度の比較を行なった。粘度は、コーン&プレート型粘度計(HAAKE社製、商品名「Mars2」、直径35mm、2°傾斜のコーン&プレート)を用い、せん断速度2.0s-1で測定し、下記式により粘度上昇率を求め、下記の基準により貯蔵安定性を評価した。
粘度上昇率(%)=貯蔵後粘度(mPa・s)/初期粘度(mPa・s)×100-100
S:貯蔵後の粘度上昇率(%)が、10%未満である。
A:貯蔵後の粘度上昇率(%)が、10%以上、かつ20%未満である。
B:貯蔵後の粘度上昇率(%)が、20%以上、かつ50%未満である。
C:貯蔵後の粘度上昇率(%)が、50%以上、かつ200%未満である。
D:貯蔵後の粘度上昇率(%)が、200%以上(又はゲル化して測定不可)である。 <Storage stability>
The obtained composite paste was stored at 50° C. for 2 weeks, and the initial viscosity and the viscosity after storage were compared. The viscosity was measured at a shear rate of 2.0 s -1 using a cone and plate viscometer (manufactured by HAAKE, product name "Mars2", diameter 35 mm, cone and plate inclined at 2°). The viscosity increase rate was calculated using the following formula, and the storage stability was evaluated according to the following criteria.
Viscosity increase rate (%) = viscosity after storage (mPa·s) / initial viscosity (mPa·s) × 100 - 100
S: The viscosity increase rate (%) after storage is less than 10%.
A: The viscosity increase rate (%) after storage is 10% or more and less than 20%.
B: The viscosity increase rate (%) after storage is 20% or more and less than 50%.
C: The viscosity increase rate (%) after storage is 50% or more and less than 200%.
D: The viscosity increase rate (%) after storage is 200% or more (or gelation makes it impossible to measure).
得られた合材ペーストを50℃の温度で2週間貯蔵を行い、初期粘度と貯蔵後の粘度の比較を行なった。粘度は、コーン&プレート型粘度計(HAAKE社製、商品名「Mars2」、直径35mm、2°傾斜のコーン&プレート)を用い、せん断速度2.0s-1で測定し、下記式により粘度上昇率を求め、下記の基準により貯蔵安定性を評価した。
粘度上昇率(%)=貯蔵後粘度(mPa・s)/初期粘度(mPa・s)×100-100
S:貯蔵後の粘度上昇率(%)が、10%未満である。
A:貯蔵後の粘度上昇率(%)が、10%以上、かつ20%未満である。
B:貯蔵後の粘度上昇率(%)が、20%以上、かつ50%未満である。
C:貯蔵後の粘度上昇率(%)が、50%以上、かつ200%未満である。
D:貯蔵後の粘度上昇率(%)が、200%以上(又はゲル化して測定不可)である。 <Storage stability>
The obtained composite paste was stored at 50° C. for 2 weeks, and the initial viscosity and the viscosity after storage were compared. The viscosity was measured at a shear rate of 2.0 s -1 using a cone and plate viscometer (manufactured by HAAKE, product name "Mars2", diameter 35 mm, cone and plate inclined at 2°). The viscosity increase rate was calculated using the following formula, and the storage stability was evaluated according to the following criteria.
Viscosity increase rate (%) = viscosity after storage (mPa·s) / initial viscosity (mPa·s) × 100 - 100
S: The viscosity increase rate (%) after storage is less than 10%.
A: The viscosity increase rate (%) after storage is 10% or more and less than 20%.
B: The viscosity increase rate (%) after storage is 20% or more and less than 50%.
C: The viscosity increase rate (%) after storage is 50% or more and less than 200%.
D: The viscosity increase rate (%) after storage is 200% or more (or gelation makes it impossible to measure).
[電池用電極層の製造]
応用例1C
実施例3Bで得られた合材ペーストを、平均厚み15μmの長尺状アルミニウム箔(正極集電体)の両面に、片面あたりの目付量が10mg/cm2(固形分基準)となるようにローラコート法で帯状に塗布して乾燥(乾燥温度180℃、30分間)することにより、正極層を形成した。この正極集電体に担持された正極活物質層(正極電極層)をロールプレス機により圧延して、性状を調整した。
得られた電極層は残存溶媒量が1%未満であり、仕上がり性などが良好な電極層であった。
また、上記工程で加熱乾燥した際に蒸発した蒸気を回収して回収溶液(混合溶液)を得た。
次いで上記混合溶液を冷却器付フラスコに入れ、フラスコを185℃以上に加熱して、アミン(ベンジルアミン)を留去した。アミン含有量が1000ppm(注2)になるまで続け、N-メチル-2-ピロリドンの再生品を製造した。また、上記N-メチル-2-ピロリドン再生品の水分含有量は1000ppm(注2)であった。 [Production of battery electrode layer]
Application example 1C
The composite paste obtained in Example 3B was applied in strips by roller coating to both sides of a long aluminum foil (positive electrode current collector) having an average thickness of 15 μm so that the basis weight per side was 10 mg/cm 2 (based on solid content), and then dried (drying temperature 180° C., 30 minutes) to form a positive electrode layer. The positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled by a roll press machine to adjust the properties.
The resulting electrode layer had a residual solvent amount of less than 1% and was an electrode layer with good finish and other properties.
In addition, the vapor evaporated during the heating and drying in the above step was recovered to obtain a recovered solution (mixed solution).
The mixed solution was then placed in a flask equipped with a condenser, and the flask was heated to 185°C or higher to distill off the amine (benzylamine). This was continued until the amine content reached 1000 ppm (note 2), producing a regenerated N-methyl-2-pyrrolidone. The water content of the regenerated N-methyl-2-pyrrolidone was 1000 ppm (note 2).
応用例1C
実施例3Bで得られた合材ペーストを、平均厚み15μmの長尺状アルミニウム箔(正極集電体)の両面に、片面あたりの目付量が10mg/cm2(固形分基準)となるようにローラコート法で帯状に塗布して乾燥(乾燥温度180℃、30分間)することにより、正極層を形成した。この正極集電体に担持された正極活物質層(正極電極層)をロールプレス機により圧延して、性状を調整した。
得られた電極層は残存溶媒量が1%未満であり、仕上がり性などが良好な電極層であった。
また、上記工程で加熱乾燥した際に蒸発した蒸気を回収して回収溶液(混合溶液)を得た。
次いで上記混合溶液を冷却器付フラスコに入れ、フラスコを185℃以上に加熱して、アミン(ベンジルアミン)を留去した。アミン含有量が1000ppm(注2)になるまで続け、N-メチル-2-ピロリドンの再生品を製造した。また、上記N-メチル-2-ピロリドン再生品の水分含有量は1000ppm(注2)であった。 [Production of battery electrode layer]
Application example 1C
The composite paste obtained in Example 3B was applied in strips by roller coating to both sides of a long aluminum foil (positive electrode current collector) having an average thickness of 15 μm so that the basis weight per side was 10 mg/cm 2 (based on solid content), and then dried (drying temperature 180° C., 30 minutes) to form a positive electrode layer. The positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled by a roll press machine to adjust the properties.
The resulting electrode layer had a residual solvent amount of less than 1% and was an electrode layer with good finish and other properties.
In addition, the vapor evaporated during the heating and drying in the above step was recovered to obtain a recovered solution (mixed solution).
The mixed solution was then placed in a flask equipped with a condenser, and the flask was heated to 185°C or higher to distill off the amine (benzylamine). This was continued until the amine content reached 1000 ppm (note 2), producing a regenerated N-methyl-2-pyrrolidone. The water content of the regenerated N-methyl-2-pyrrolidone was 1000 ppm (note 2).
応用例2C
上記応用例1と同様に、アルミニウム箔(正極集電体)上に合材ペーストを帯状に塗布した後、アルミニウム箔(正極集電体)上の合材ペースト両端の端部に国際公報2021/193286号公報に記載した実施例5Aの絶縁ペーストを塗工して、電極絶縁部を設置した。次いで乾燥(乾燥温度180℃、30分間)することにより、正極層と絶縁部を形成した。この正極集電体に担持された正極活物質層(正極電極層)をロールプレス機により圧延して、性状を調整した。 Application example 2C
As in Application Example 1, the composite paste was applied in a strip shape on an aluminum foil (positive electrode current collector), and then the insulating paste of Example 5A described in International Publication No. 2021/193286 was applied to both ends of the composite paste on the aluminum foil (positive electrode current collector) to install an electrode insulating part. Then, the electrode was dried (drying temperature 180 ° C., 30 minutes) to form a positive electrode layer and an insulating part. The positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled with a roll press machine to adjust the properties.
上記応用例1と同様に、アルミニウム箔(正極集電体)上に合材ペーストを帯状に塗布した後、アルミニウム箔(正極集電体)上の合材ペースト両端の端部に国際公報2021/193286号公報に記載した実施例5Aの絶縁ペーストを塗工して、電極絶縁部を設置した。次いで乾燥(乾燥温度180℃、30分間)することにより、正極層と絶縁部を形成した。この正極集電体に担持された正極活物質層(正極電極層)をロールプレス機により圧延して、性状を調整した。 Application example 2C
As in Application Example 1, the composite paste was applied in a strip shape on an aluminum foil (positive electrode current collector), and then the insulating paste of Example 5A described in International Publication No. 2021/193286 was applied to both ends of the composite paste on the aluminum foil (positive electrode current collector) to install an electrode insulating part. Then, the electrode was dried (drying temperature 180 ° C., 30 minutes) to form a positive electrode layer and an insulating part. The positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled with a roll press machine to adjust the properties.
Claims (16)
- 複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストの製造方法であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満であることを特徴とするカーボンナノチューブ分散ペーストの製造方法。 A method for producing a carbon nanotube dispersion paste, comprising a step of mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, wherein the water content of the carbon nanotube dispersion paste is less than 10,000 ppm.
- 露点10℃以下の雰囲気下で混合及び/又は分散を行なうことを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing the carbon nanotube dispersion paste according to claim 1, characterized in that the mixing and/or dispersion is carried out in an atmosphere with a dew point of 10°C or less.
- 前記複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、アミノ基及びシアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ極性官能基濃度が0.1mmol/g~8.5mmol/gであることを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube dispersion paste according to claim 1, characterized in that the dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphate group, an amino group, and a cyano group, and the polar functional group concentration is 0.1 mmol/g to 8.5 mmol/g.
- 前記溶媒(C)が、N-メチル-2-ピロリドンの再生品を含み、N-メチル-2-ピロリドン中の水分量を10000ppm未満に管理することを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube dispersion paste according to claim 1, characterized in that the solvent (C) contains recycled N-methyl-2-pyrrolidone, and the moisture content in the N-methyl-2-pyrrolidone is controlled to less than 10,000 ppm.
- カーボンナノチューブ分散ペーストが、前記ポリフッ化ビニリデン(D)を含有することを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube dispersion paste according to claim 1, characterized in that the carbon nanotube dispersion paste contains the polyvinylidene fluoride (D).
- 前記ポリフッ化ビニリデン(D)を混合する工程が、予め40℃以上の液温の溶媒と混合及び溶解する工程を含むか、若しくはポリフッ化ビニリデン(D)と溶媒とを混合してから40℃以上の温度に加温する工程を含むことを特徴とする請求項5に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube dispersion paste according to claim 5, characterized in that the step of mixing the polyvinylidene fluoride (D) includes a step of mixing and dissolving it in a solvent having a liquid temperature of 40°C or higher in advance, or a step of mixing the polyvinylidene fluoride (D) with a solvent and then heating the mixture to a temperature of 40°C or higher.
- カーボンナノチューブ分散ペーストが、さらに高極性低分子量成分(E)を含有することを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube dispersion paste according to claim 1, characterized in that the carbon nanotube dispersion paste further contains a highly polar, low molecular weight component (E).
- カーボンナノチューブ分散ペーストが、さらに脱水剤(F)を含有することを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube dispersion paste according to claim 1, characterized in that the carbon nanotube dispersion paste further contains a dehydrating agent (F).
- 前記カーボンナノチューブ(B)が、予めメジア型粉砕機で乾式分散してなることを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube dispersion paste according to claim 1, characterized in that the carbon nanotubes (B) are previously dry-dispersed using a media-type grinder.
- 前記混合及び分散する工程が、
工程1:分散後に得られるカーボンナノチューブ分散ペーストに含まれるカーボンナノチューブ(B)の総量100質量%を基準として、70質量%以下の量となるカーボンナノチューブ(B)を含む成分を分散機内に添加し、分散処理を行う工程、及び
工程2:所望の濃度になるまでカーボンナノチューブ(B)を分散機内に添加して分散処理を行う工程、
を順次行う工程を含むことを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 The mixing and dispersing step comprises:
Step 1: adding a component containing carbon nanotubes (B) in an amount of 70% by mass or less based on 100% by mass of the total amount of carbon nanotubes (B) contained in the carbon nanotube dispersion paste obtained after dispersion to a dispersing machine and performing a dispersing process; and Step 2: adding carbon nanotubes (B) to a dispersing machine until a desired concentration is reached, and performing a dispersing process.
2. The method for producing a carbon nanotube dispersion paste according to claim 1, further comprising the steps of: - カーボンナノチューブ(B)の吸湿量をY(質量%)とし、BET比表面積をZ(m2/g)とした場合に、下記式;
X=Y×Z
で得られるXの値が、X≦500の範囲内であり、
吸湿量Yの測定条件が、140℃の温度で3時間乾燥させて得たカーボンナノチューブの質量をY1とし、さらに温度20℃、相対湿度65%の条件で24時間放置して得たカーボンナノチューブの質量をY2とした場合に、下記式
吸湿量Y=(Y2-Y1)/Y1×100
で得られるYの値(質量%)を吸湿量Yとすることを特徴とする請求項1に記載のカーボンナノチューブ分散ペーストの製造方法。 When the moisture absorption amount of the carbon nanotube (B) is Y (mass%) and the BET specific surface area is Z (m 2 /g), the following formula:
X = Y x Z
The value of X obtained by the above is in the range of X≦500,
The moisture absorption amount Y is measured under the following conditions: the mass of carbon nanotubes obtained by drying at 140° C. for 3 hours is Y1, and the mass of carbon nanotubes obtained by leaving at 20° C. for 24 hours under conditions of a relative humidity of 65% is Y2. The moisture absorption amount Y is calculated by the following formula: Y=(Y2-Y1)/Y1×100.
2. The method for producing a carbon nanotube dispersion paste according to claim 1, wherein the value of Y (mass %) obtained in step (a) is defined as the moisture absorption amount Y. - 請求項1~11のいずれか1項に記載されたカーボンナノチューブ分散ペーストの製造方法で得られるカーボンナノチューブ分散ペーストと電極活物質(G)を混合する工程を含む、リチウムイオン二次電池用合材ペーストの製造方法。 A method for producing a composite paste for a lithium ion secondary battery, comprising a step of mixing a carbon nanotube dispersion paste obtained by the method for producing a carbon nanotube dispersion paste according to any one of claims 1 to 11 with an electrode active material (G).
- 下記工程;
複素環及び/又は炭素数12以上のアルキル基を有する分散樹脂(A)と、カーボンナノチューブ(B)と、水分量が10000ppm未満の溶媒(C)と、必要に応じて含むことができるポリフッ化ビニリデン(D)と、を含有する成分を混合及び分散する工程を含む、カーボンナノチューブ分散ペーストを製造する工程であって、該カーボンナノチューブ分散ペーストの水分量が10000ppm未満である工程、並びに、
前記カーボンナノチューブ分散ペーストと電極活物質(G)を混合する工程を含む、リチウムイオン二次電池用合材ペーストを製造する工程であって、該合材ペーストの水分量が10000ppm未満であり、該電極活物質(G)が、その表面の少なくとも一部をカーボンナノチューブで覆った電極活物質複合体(G-1)である工程、
を含むリチウムイオン二次電池用合材ペーストの製造方法。 The following steps:
A process for producing a carbon nanotube dispersion paste, the process including a process for mixing and dispersing components containing a dispersion resin (A) having a heterocycle and/or an alkyl group having 12 or more carbon atoms, carbon nanotubes (B), a solvent (C) having a water content of less than 10,000 ppm, and polyvinylidene fluoride (D) which may be included as necessary, the carbon nanotube dispersion paste having a water content of less than 10,000 ppm; and
A step of producing a composite paste for a lithium ion secondary battery, the step including a step of mixing the carbon nanotube dispersion paste with an electrode active material (G), the composite paste having a moisture content of less than 10,000 ppm, and the electrode active material (G) being an electrode active material composite (G-1) having at least a part of its surface covered with carbon nanotubes;
A method for producing a composite paste for a lithium ion secondary battery comprising the steps of: - 請求項12に記載の製造方法で得られる合材ペーストを集電体に塗工する工程を含むリチウムイオン二次電池用電極層の製造方法。 A method for producing an electrode layer for a lithium ion secondary battery, comprising the step of applying the composite paste obtained by the method of claim 12 to a current collector.
- 請求項14に記載の製造方法で得られた電極層の端部又は上層に電極絶縁部を塗工する工程を含むリチウムイオン二次電池用電極の製造方法。 A method for manufacturing an electrode for a lithium ion secondary battery, comprising a step of applying an electrode insulating part to the end or upper layer of the electrode layer obtained by the manufacturing method described in claim 14.
- 請求項14に記載の製造方法で得られた電極層を有する正極、負極、非水電解液、及びセパレータを用いるリチウムイオン二次電池の製造方法。 A method for producing a lithium ion secondary battery using a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator having an electrode layer obtained by the method of claim 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023049203 | 2023-03-27 | ||
JP2023-049203 | 2023-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204168A1 true WO2024204168A1 (en) | 2024-10-03 |
Family
ID=92906517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/011901 WO2024204168A1 (en) | 2023-03-27 | 2024-03-26 | Carbon nanotube dispersion paste, composite paste, and lithium ion secondary battery electrode layer production method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204168A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019021517A (en) * | 2017-07-18 | 2019-02-07 | 関西ペイント株式会社 | Conductive paste for lithium ion battery positive electrode and manufacturing method of composite material paste for lithium ion battery positive electrode |
WO2019208637A1 (en) * | 2018-04-26 | 2019-10-31 | 東洋インキScホールディングス株式会社 | Carbon nanotube dispersion and use for same |
JP2021002520A (en) * | 2019-06-20 | 2021-01-07 | 関西ペイント株式会社 | Method for producing conductive paste |
JP2021084945A (en) * | 2019-11-27 | 2021-06-03 | 関西ペイント株式会社 | Conductive pigment paste, coating material, and conductive coating film |
WO2022172847A1 (en) * | 2021-02-09 | 2022-08-18 | 関西ペイント株式会社 | Conductive pigment paste, coating material and coating film |
-
2024
- 2024-03-26 WO PCT/JP2024/011901 patent/WO2024204168A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019021517A (en) * | 2017-07-18 | 2019-02-07 | 関西ペイント株式会社 | Conductive paste for lithium ion battery positive electrode and manufacturing method of composite material paste for lithium ion battery positive electrode |
WO2019208637A1 (en) * | 2018-04-26 | 2019-10-31 | 東洋インキScホールディングス株式会社 | Carbon nanotube dispersion and use for same |
JP2021002520A (en) * | 2019-06-20 | 2021-01-07 | 関西ペイント株式会社 | Method for producing conductive paste |
JP2021084945A (en) * | 2019-11-27 | 2021-06-03 | 関西ペイント株式会社 | Conductive pigment paste, coating material, and conductive coating film |
WO2022172847A1 (en) * | 2021-02-09 | 2022-08-18 | 関西ペイント株式会社 | Conductive pigment paste, coating material and coating film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6638846B1 (en) | Dispersant, dispersion, electrode, and resin composition | |
WO2012051264A1 (en) | Surface modified organic black pigments, surface modified carbon blacks, pigment mixtures using them, and low dielectric black dispersions, coatings, films, black matrices, and devices containing same | |
JP7362989B2 (en) | Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries | |
JP7098076B1 (en) | Carbon material dispersion and its use | |
JP7381757B2 (en) | Carbon material dispersion liquid | |
WO2024024162A1 (en) | Carbon material dispersion and use thereof | |
KR102632651B1 (en) | carbon material dispersion | |
WO2022172847A1 (en) | Conductive pigment paste, coating material and coating film | |
JP7583978B1 (en) | Carbon nanotube dispersion paste, composite paste, and method for manufacturing electrode layer for lithium ion secondary battery | |
JP7565475B1 (en) | Method for producing carbon nanotube dispersion paste and method for producing composite paste for lithium ion secondary batteries | |
WO2024204168A1 (en) | Carbon nanotube dispersion paste, composite paste, and lithium ion secondary battery electrode layer production method | |
JP7565474B1 (en) | Method for producing conductive pigment paste and method for producing composite paste | |
KR102718047B1 (en) | Method for producing carbon material dispersion | |
JP7453487B1 (en) | Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries | |
WO2023048203A1 (en) | Conductive pigment paste, mixture paste, and electrode for lithium ion battery | |
WO2024063003A1 (en) | Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries | |
US20220006093A1 (en) | Carbonaceous material dispersion and method for producing therof | |
CN118103463A (en) | Conductive pigment paste, clad material paste, and electrode for lithium ion battery | |
US12146045B2 (en) | Carbon material dispersion | |
KR102728085B1 (en) | Carbon material dispersion and its use | |
TW202405100A (en) | Carbon material dispersion and use therefor | |
JP2024100762A (en) | Carbonaceous material dispersion and production method of the same |