Nothing Special   »   [go: up one dir, main page]

WO2024203397A1 - X-ray talbot imaging condition calculation device, x-ray talbot imaging condition calculation method, x-ray talbot imaging system, x-ray talbot imaging condition display device, and program - Google Patents

X-ray talbot imaging condition calculation device, x-ray talbot imaging condition calculation method, x-ray talbot imaging system, x-ray talbot imaging condition display device, and program Download PDF

Info

Publication number
WO2024203397A1
WO2024203397A1 PCT/JP2024/010042 JP2024010042W WO2024203397A1 WO 2024203397 A1 WO2024203397 A1 WO 2024203397A1 JP 2024010042 W JP2024010042 W JP 2024010042W WO 2024203397 A1 WO2024203397 A1 WO 2024203397A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
imaging
image
information
ray talbot
Prior art date
Application number
PCT/JP2024/010042
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 森
昌宏 今田
愛彦 江口
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024203397A1 publication Critical patent/WO2024203397A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers

Definitions

  • the present invention relates to an X-ray Talbot imaging condition calculation device, an X-ray Talbot imaging condition calculation method, an X-ray Talbot imaging system, an X-ray Talbot imaging condition display device, and a program.
  • X-ray Talbot imaging devices using a Talbot interferometer or a Talbot-Lau interferometer that utilizes the Talbot effect have been known. It is not easy to judge whether or not imaging is possible using the X-ray Talbot imaging device and to determine appropriate imaging conditions. This is because, in Talbot imaging, the X-ray transmittance and scattering strength change depending on the material and thickness of the subject. For this reason, it is necessary to estimate the X-ray transmittance and scattering strength from the material and thickness of the subject to determine whether or not imaging is possible, or to consider in advance whether to change the imaging conditions.
  • Method A Patent Document 1
  • Method B Non-Patent Documents 1, 2, 3, 4, 5
  • Method B Non-Patent Documents 1, 2, 3, 4, 5
  • the method A can present shooting conditions that are likely to obtain a desired image quality based on actual cases, but cannot present shooting conditions for an unknown subject for which there are no similar shooting cases.
  • the above method B by applying theoretical prediction, it is possible to predict image quality and present shooting conditions based on the image quality prediction even for unknown subjects.
  • the subject to be photographed is actually at hand and the device is nearby, it is possible to adjust the parameters by actually placing the subject on the device and taking a test shot. However, this requires actual shooting, and it is necessary to secure time to use the device and then take multiple shots with parameter adjustments to check the shooting results, which is time-consuming and laborious. If the subject is not at hand or the device is not nearby, it is necessary to prepare a subject for testing, go to a location where the device is located, or send the subject to have it photographed, which takes even more time and labor.
  • the objective of the present invention is therefore to provide a means by which even inexperienced users can easily determine more appropriate shooting conditions for Talbot photography.
  • the X-ray Talbot radiography condition calculation device of the present invention comprises: 1. An X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small-angle scattering image and/or a differential phase image of a subject, comprising: A receiving means for receiving input of subject information; A calculation means for calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula; Equipped with.
  • the X-ray Talbot radiography condition calculation method of the present invention comprises the steps of: 1.
  • An X-ray Talbot imaging condition calculation method using an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small angle scattering image and/or a differential phase image of a subject comprising: A receiving step of receiving input of subject information; a calculation step of calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula; Includes.
  • the X-ray Talbot imaging system of the present invention comprises: a Talbot imaging means which comprises a radiation source, a plurality of gratings, and a radiation detector arranged in a direction of a radiation irradiation axis, and which captures at least a small-angle scattering image and/or a differential phase image of a subject based on a Moiré fringe image obtained by irradiating a subject arranged in the direction of the radiation irradiation axis with radiation from the radiation source and capturing the image; A receiving means for receiving input of subject information; A calculation means for calculating a photographing condition based on the subject information and past photographing information; Equipped with.
  • a Talbot imaging means which comprises a radiation source, a plurality of gratings, and a radiation detector arranged in a direction of a radiation irradiation axis, and which captures at least a small-angle scattering image and/or a differential phase image of a subject based on a Moiré
  • the program of the present invention is a computer of an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small angle scattering image and/or a differential phase image of a subject,
  • the X-ray Talbot radiography condition display device of the present invention further comprises:
  • the X-ray Talbot imaging condition calculation device further includes a display unit for displaying the imaging conditions calculated by the calculation means of the X-ray Talbot imaging condition calculation device.
  • FIG. 1 is a schematic diagram illustrating an overall view of an X-ray Talbot imaging system.
  • FIG. 1 is a diagram illustrating the principle of a Talbot interferometer.
  • 3 is a schematic plan view of a source grating, a first grating, and a second grating.
  • FIG. FIG. 2 is a block diagram showing a functional configuration of the image processing device.
  • FIG. 13 is an image diagram of a shooting condition calculation process. 13 is a flowchart showing a shooting condition calculation process.
  • FIG. 13 is an image diagram of an input screen. This is the relationship between X-ray energy and transmittance.
  • FIG. 13 is an image diagram of an output screen.
  • FIG. FIG. 13 is an image diagram of an input screen.
  • FIG. 13 is an image diagram of a photography information database.
  • FIG. 13 is an image diagram of an output screen.
  • FIG. FIG. 13 is an image diagram of an input screen. This is the relationship between X-ray energy and transmittance. This is the relationship between the mAs value and noise. This is the relationship between the mAs value and noise. This is the relationship between the mAs value and noise.
  • 13 is an example of a calculation result of a differential phase image. 13 is an example of a calculation result of a differential phase image.
  • FIG. 13 is an image diagram of an output screen. The relationship between orientation angle and frequency. The relationship between orientation angle and frequency.
  • 1 is an example of a visual field arrangement. 1 is an example of a visual field arrangement. 1 is an example of a visual field arrangement. 1 is an example of a visual field arrangement. 1 is an example of a visual field arrangement.
  • FIG. 13 is an image diagram of a feedback screen. This is the relationship between particle size and normalized signal value.
  • an X-ray imaging system 100 includes an X-ray Talbot imaging device 1 and an X-ray Talbot imaging condition calculation device 2.
  • the X-ray Talbot imaging device 1 employs a Talbot-Lau interferometer equipped with a source grating (also referred to as a G0 grating) 12. Note that it is also possible to employ an X-ray Talbot imaging device using a Talbot interferometer equipped only with a first grating (also referred to as a G1 grating) 14 and a second grating (also referred to as a G2 grating) 15 without the source grating 12.
  • the X-ray Talbot imaging device 1 includes an X-ray generator 11, a source grating 12, a subject table 13, a first grating 14, a second grating 15, an X-ray detector 16, a support 17, and a base unit 18.
  • the X-ray Talbot imaging device 1 At least three types of images can be reconstructed by capturing a moire image of the subject H at a predetermined position relative to the subject table 13 using a method based on the principle of the fringe scanning method, or by analyzing the moire image using the Fourier transform method (referred to as reconstructed images).
  • the X-ray Talbot imaging condition calculation device 2 generates a reconstructed image based on the moire image read by the X-ray Talbot imaging device 1 and a moire image in a state where the subject H does not exist (referred to as a BG: Back Ground moire image).
  • the X-ray imaging system 100 captures a moire image in a state where the subject H does not exist at least once before or after the imaging of the subject H.
  • imaging of another subject may be performed between the imaging of the subject H and the imaging of the BG moire image.
  • an absorption image (same as a normal X-ray absorption image) which visualizes the transmittance, which is the ratio between the average components of a BG moiré fringe image and a moiré fringe image
  • a differential phase image which visualizes the phase difference between a BG moiré fringe image and a moiré fringe image
  • a small-angle scattering image which visualizes the visibility ratio, which is the ratio of the visibility (sharpness) of a BG moiré fringe image and a moiré fringe image.
  • the fringe scanning method is a method in which one of multiple gratings is moved in the direction of the slit period by 1/M (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images) of the grating, and then reconstructed using the moiré images captured M times to obtain a high-resolution reconstructed image.
  • M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images
  • the Fourier transform method is a method in which, in the presence of a subject, a single moiré image is captured using an X-ray Talbot imaging device, and then in image processing, the moiré image is subjected to a Fourier transform or other process to reconstruct and generate an absorption image, differential phase image, and small-angle scattering image.
  • Figure 2 shows the case of a Talbot interferometer
  • the case of a Talbot-Lau interferometer can be basically explained in the same way.
  • the z direction in Figure 2 corresponds to the vertical direction in the X-ray Talbot imaging device 1 in Figure 1
  • the x and y directions in Figure 2 correspond to the horizontal directions (front-back and left-right directions) in the X-ray Talbot imaging device 1 in Figure 1.
  • the first grating 14 and the second grating 15 (and the source grating 12 in the case of a Talbot-Lau interferometer) have a plurality of slits S arranged at a predetermined period d in the x direction perpendicular to the z direction, which is the irradiation direction of the X-rays.
  • the periods of the source grating 12, the first grating 14, and the second grating 15 are not limited to being the same.
  • X-rays irradiated from X-ray source 11a (X-ray generator 11) (in the case of a Talbot-Lau interferometer, the X-rays irradiated from X-ray source 11a are converted into multiple light sources by source grating 12 (not shown in Figure 2)) pass through first grating 14, the transmitted X-rays form images at regular intervals in the z direction. These images are called self-images (also called grating images, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
  • the Talbot effect is a phenomenon in which, when coherent light passes through the first grating 14, which has slits S at a constant period d as shown in Figure 2, it forms self-images at constant intervals in the direction of light travel, as described above.
  • a second grating 15 having slits S with approximately the same period as the self-image of the first grating 14 is placed at the position where the self-image of the first grating 14 forms an image.
  • the extension direction of the slits S of the second grating 15 i.e., the x-axis direction in FIG. 2
  • a moiré image Mo is obtained on the second grating 15.
  • the moire image Mo is drawn away from the second grating 15 because if the moire image Mo were drawn on the second grating 15, the moire fringes and slits S would be mixed together and would be difficult to understand. However, in reality, the moire image Mo is formed on the second grating 15 and downstream of it. This moire image Mo is then captured by the X-ray detector 16, which is placed directly below the second grating 15.
  • the subject H will cause the phase of the X-rays to shift or the X-rays to scatter.
  • the moire fringes of the moire image Mo will be disturbed at the boundary of the subject's edge, and in the latter case, the visibility rate of the scattered part will decrease, not limited to the subject's edge.
  • a moire fringe image that is not influenced by the subject H that is, a BG moire image, will appear.
  • the subject H may be placed behind the first grating 14.
  • the second grating 15 is arranged in the second cover unit 130 at a position where the self-image of the first grating 14 forms an image. Also, as mentioned above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 2) becomes blurred, so in this embodiment, the X-ray detector 16 is arranged directly below the second grating 15.
  • the second cover unit 130 is provided to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, second grating 15, X-ray detector 16, etc.
  • the X-ray detector 16 is configured such that conversion elements that generate electrical signals in response to irradiated X-rays are arranged in a two-dimensional array (matrix), and the electrical signals generated by the conversion elements are read as image signals.
  • the X-ray detector 16 captures the moiré image Mo, which is an image of the X-rays formed on the second grating 15, as an image signal for each conversion element.
  • the X-ray Talbot imaging device 1 captures multiple moiré images Mo using a so-called fringe scanning method. That is, in the X-ray Talbot imaging device 1 according to this embodiment, multiple moiré images Mo are captured while shifting the relative positions of the first grating 14 and the second grating 15 in the x-axis direction in Figures 1 to 3 (i.e., the direction perpendicular to the extension direction (y-axis direction) of the slit S). In another embodiment, the source grating 12 may be moved.
  • the X-ray Talbot imaging condition calculation device 2 receives image signals of multiple moiré images Mo from the X-ray Talbot imaging device 1, and performs image processing to reconstruct an absorption image, a differential phase image, a small-angle scattering image, etc. based on the multiple moiré images Mo.
  • a moving device (not shown) is provided for moving the first grating 14 in the x-axis direction by a predetermined amount. Note that it is also possible to configure the device so that the second grating 15 is moved instead of the first grating 14, or so that both are moved. In another embodiment, the source grating 12 may be moved.
  • the X-ray Talbot imaging device 1 can be configured to capture only one moire image Mo while keeping the relative positions of the first grating 14 and the second grating 15 fixed, and then to reconstruct an absorption image, differential phase image, and small-angle scattering image by analyzing this moire image Mo using a Fourier transform method or the like in image processing in the image processing device.
  • a sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the lattice, and the vertical axis represents the small-angle scattering signal value of a certain pixel. The amplitude, average, and phase of the sine wave are obtained as fitting parameters.
  • an image showing the amplitude value for each pixel is called an orientation degree image
  • an image showing the average value for each pixel is called a scattering intensity image
  • an image showing the phase for each pixel is called an orientation angle image.
  • the fitting method is not limited to a sine wave.
  • the reconstructed image and the orientation images (orientation degree image, scattering intensity image, and orientation angle image) generated by recombining the reconstructed images will be referred to as a Talbot image.
  • This embodiment is a so-called vertical type, in which the X-ray generator 11, radiation source grating 12, subject table 13, first grating 14, second grating 15, and X-ray detector 16 are arranged in this order in the z direction, which is the direction of gravity. That is, in this embodiment, the z direction is the irradiation direction of X-rays from the X-ray generator 11.
  • the X-ray generator 11 is equipped with an X-ray source 11a, such as a Coolidge X-ray source or a rotating anode X-ray source that are widely used in medical settings. Other X-ray sources can also be used.
  • the X-ray generator 11 of this embodiment is configured to irradiate X-rays in a cone beam shape from a focal point. In other words, the X-rays are irradiated so that they spread out the further away from the X-ray generator 11.
  • the radiation source grating 12 is provided below the X-ray generator 11.
  • the radiation source grating 12 is not attached to the X-ray generator 11, but is attached to a fixed member 18a attached to a base portion 18 provided on a support 17.
  • a buffer member 17a is provided between the X-ray generator 11 and the support 17 to prevent vibrations from the X-ray generator 11 from propagating to other parts of the X-ray Talbot imaging device 1, such as the support 17 (or to reduce the amount of vibration that propagates).
  • the fixed member 18a is equipped with a filtering filter (also called an additional filter) 112 for changing the radiation quality of the X-rays transmitted through the radiation source grating 12, an irradiation field aperture 113 for narrowing the irradiation field of the irradiated X-rays, and an irradiation field lamp 114 for irradiating the subject with visible light instead of X-rays for alignment before irradiating the subject with X-rays.
  • a filtering filter also called an additional filter
  • a first cover unit 120 is arranged around the radiation source grating 12 and other components to protect them.
  • the subject table 13 is a table on which the subject H is placed.
  • the subject table 13 is provided with a fixing unit (not shown) that fixes the position of the subject H with respect to the X-rays irradiated from the X-ray generator 11.
  • the fixing unit has a fixing part that can fix the subject H at a predetermined position, and a moving mechanism that can rotate the fixing part about the XY axis (two-dimensional direction) + ⁇ axis (any rotation angle in the XY plane).
  • the subject H does not necessarily need to be fixed, and for example, if the subject H is a plate material or a dumbbell test piece that does not move on the subject table 13 even without being fixed, it can be photographed without being fixed.
  • the imaging angle is an angle indicating the position of the subject H relative to the X-ray Talbot imaging device 1, and specifically, is a rotation angle from a reference position P of the subject table 13.
  • the grating facing angle is the relationship (angle) between the direction of the captured image (or the image displayed after imaging) and the direction of the gratings (the multi-slit 12, the first grating 14, and the second grating 15).
  • the degree of change in phase or the decrease in visibility rate varies depending on the relative angle between the lattice and the boundary between materials with different refractive indexes inside the subject, or the scatterer, and when generated as a reconstructed image, the image seen according to the angle varies. Therefore, by photographing the same part of the subject H multiple times with different lattice facing angles, it is possible to obtain multiple image sets of three types of reconstructed images (absorption image, differential phase image, small angle scattering image) based on the same moire image Mo for each angle.
  • alignment may be performed by image processing.
  • the characteristics of the subject H may be used for alignment, or a marker for alignment other than the subject H may be photographed together with the subject H and the marker may be used.
  • the imaging angle of the subject H is adjusted by the moving mechanism of the fixed unit, but a configuration may be adopted in which the X-ray source 11a, the multiple gratings 12, 14, 15 (which may be grating holders), and the X-ray detector 16 rotate as a whole around the optical axis of the X-rays, thereby enabling imaging by changing the grating facing angle between the subject H and the gratings.
  • the X-ray Talbot imaging device 1 may be equipped with an optical photograph acquisition device that photographs a subject placed on a subject table from at least one of the x, y and z directions to acquire an optical photograph of the subject.
  • the X-ray Talbot imaging condition calculation device 2 can generate a Talbot image of the subject H and perform image processing of the Talbot image by using the moire image Mo obtained by the X-ray Talbot imaging device 1. Furthermore, the X-ray Talbot imaging condition calculation device 2 can calculate imaging conditions based on subject information, past imaging information and/or theoretical calculation formulas. As shown in FIG. 4, the X-ray Talbot radiography condition calculation device 2 includes a control unit 21, an operation unit 22, a display unit 23, a communication unit 24, and a storage unit 25. Moreover, the X-ray Talbot imaging condition calculation device 2 executes imaging condition calculation processing and imaging condition display processing, which will be described later. The X-ray Talbot radiography condition calculation device 2 including the display unit 23 also functions as an image display device (X-ray Talbot radiography condition display device).
  • the control unit 21 is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), etc., and executes various processes including image processing, which will be described later, in cooperation with programs stored in the storage unit 25 .
  • the control unit 21 functions as a receiving unit that receives input of subject information.
  • the control unit 21 also functions as a calculation unit that calculates the shooting conditions based on the subject information, past shooting information and/or theoretical calculation formulas.
  • the control unit 21 also functions as a calculation means for calculating a predetermined feature amount based on past photographing information and/or a theoretical calculation formula.
  • the feature amount refers to transmittance, scattering amount (visibility rate), etc.
  • the visibility of the moire image Mo has the property of being reduced by scattering of the subject, and the greater the scattering amount, the smaller the visibility rate. Therefore, the visibility rate and the small-angle scattering image can be considered as visualization of the amount of X-ray scattering at each position of the subject.
  • the control unit 21 also functions as a selection unit that selects the imaging conditions based on the calculated feature amounts.
  • the control unit 21 also functions as a prediction unit that predicts the image quality of an image when photographed based on the photographing conditions.
  • the control unit 21 also functions as a determination unit that determines whether the predicted image quality satisfies a predetermined image quality condition.
  • the control unit 21 also functions as an extraction unit that searches the storage unit for past shooting information that matches or is similar to the subject information, and extracts shooting conditions in the matching or similar past shooting information.
  • the control unit 21 also functions as a display control unit that displays the shooting conditions on the display unit.
  • the determination means determines that shooting conditions that satisfy the specified image quality conditions cannot be obtained
  • the control unit 21 functions as a second calculation means that calculates subject conditions in the subject information that satisfy the specified image quality conditions.
  • the control unit 21 also functions as a calculation means for calculating the degree of discrepancy between the image quality predicted when an image is captured based on the shooting conditions and the image quality of an image captured based on the shooting conditions.
  • the operation unit 22 is configured with a keyboard equipped with cursor keys, numeric input keys, various function keys, etc., and a pointing device such as a mouse, and outputs press signals of keys pressed on the keyboard and operation signals from the mouse as input signals to the control unit 21. It may also be configured with a touch panel integrated with the display of the display unit 23, and generate operation signals corresponding to these operations and output them to the control unit 21.
  • the display unit 23 is configured with a display such as a CRT (Cathode Ray Tube) or LCD (Liquid Crystal Display), and displays various display screens, etc., according to the display control of the control unit 21.
  • a display such as a CRT (Cathode Ray Tube) or LCD (Liquid Crystal Display), and displays various display screens, etc., according to the display control of the control unit 21.
  • the communication unit 24 has a communication interface and communicates with the X-ray Talbot imaging device 1 on the communication network and with external systems such as a PACS (Picture Archiving and Communication System) via wired or wireless communication.
  • PACS Picture Archiving and Communication System
  • the storage unit 25 is configured with a non-volatile semiconductor memory, a hard disk, or the like, and stores the programs executed by the control unit 21, data necessary for executing the programs, and the like.
  • the storage unit 25 functions as a storage unit that stores the past shooting information in association with the subject information of the subject photographed using the past shooting information.
  • the storage unit 25 includes a shooting information database, which will be described later.
  • the storage unit 25 also functions as a storage means and stores theoretical calculation formulas.
  • the storage unit 25 also stores a learning model that is constructed from the subject information and the past shooting information and that calculates signal values of the small-angle scattering image and/or the differential phase image.
  • model refers to the learning model.
  • the photographing condition calculation process is a process in which the control unit 21 calculates the photographing conditions based on the subject information, past photographing information and/or theoretical calculation formulas. After calculating the photographing conditions, the control unit 21 functions as a display control means and executes a photographing condition display process for displaying the photographing conditions on the display unit 23. The photographing condition calculation process and the photographing condition display process are executed by the control unit 21 in cooperation with a program stored in the storage unit 25 .
  • the image shown in Fig. 5 is an image in which subject information is input, and the control unit 21 functioning as a calculation means performs theoretical calculations using theoretical formulas and/or calculations from data such as past photographing information, and outputs recommended photographing conditions.
  • the input subject information includes, for example, material, composition, structure, solid/composite material, fiber length, fiber diameter, defect information, and problem background.
  • the shooting conditions that are output include, for example, transmittance, scattering intensity, X-ray irradiation conditions, tube voltage, mAs value, number of shots (orientation shooting), number of shots (tiling shooting), arrangement of the shooting field of view (tiling shooting), and whether shooting is possible. This allows the user to easily determine more appropriate shooting conditions for Talbot photography.
  • Example 1 Next, the flow of the shooting condition calculation process will be described with reference to FIG.
  • a user wants to know whether defects (voids) in aluminum die-cast products can be detected by Talbot images.
  • the subject information in Example 1 is as follows: name: aluminum die-cast, category: metal part, thickness in the optical axis direction: 60 mm, and dimensions within the subject table: 100 mm x 100 mm.
  • the user uses the operation unit 22 to input subject information into the input screen shown in FIG. 7 displayed on the display unit 23.
  • the control unit 21 accepts the subject information (step S1). At this time, the control unit 21 functions as a receiving unit.
  • the name field A1 is a field where the user inputs the name of the subject.
  • the name of the subject is, for example, the product name or general name of the subject being photographed.
  • the user can input the name manually, or by selecting from a selection of options using a pull-down menu, or by other methods.
  • the category field A2 is a field where the user inputs the category of the subject.
  • the category of the subject is, for example, a general classification of the subject. General classifications include resin/fiber-reinforced resin/electronic components/metal components, etc.
  • the user can input the category to which the subject being photographed is thought to belong by manually inputting the name, or by selecting from a selection of options set in advance using a pull-down menu, or by other methods.
  • the element field A3 is a field where the user inputs the material and elements that make up the subject.
  • the contents input in the element field A3 are referred to as characteristics (elements).
  • the material and element fields may be input manually, or may be selected from a pre-set element table or representative material examples (CFRP, GFRP, etc.).
  • the shape field may be input manually, or may be selected from pre-set options (rectangular prism, sphere, columnar, plate, cylinder, etc.) using a pull-down menu. When the shape field is an option, the information to be input in the subject table surface dimension field changes depending on the set shape.
  • the in-plane dimension information can be input, but if "sphere” is input, the radius information can be input.
  • the thickness field in the optical axis direction is a field where the dimension in the z-axis direction in FIG. 1 is input.
  • the concentration field is a field where the concentration of the contained substance is input. If it is considered that no contained substance is contained, the contained substance field A4 may be left blank or deleted.
  • the visualization target field A5 is the target that the user wants to visualize. Such targets are, for example, cracks, voids, fibers, etc.
  • the material/element field is a field in which the materials and elements that make up the visualization target are input. For example, air, fibers, etc.
  • the shape field may be input manually, or may be input by selecting from pre-defined options (cuboid, sphere, columnar, plate, etc.) using a pull-down menu. If "sphere” is selected in the shape field, information such as "radius” can be input in the field below the shape field, and if "columnar” is selected, information such as "diameter” and "orientation” can be input. If the dimensions of the target to be visualized are unknown, the field may be left blank. It is also possible to add or delete the number of elements, the substances contained in the elements, and their characteristic values for each subject.
  • the add characteristic button B1 is a button for adding an input field for a characteristic (element) or a characteristic (contained substance) to the element field A3 or the contained substance field A4.
  • the characteristic deletion button B2 is a button for deleting the input field of the characteristic (element) or characteristic (contained substance) in the element field A3 or the contained substance field A4.
  • the element addition button B3 is a button for adding an element field A3.
  • the element deletion button B4 is a button for deleting the element column A3.
  • the add substance button B5 is a button for adding a substance column A4.
  • the Delete Substances button B6 is a button for deleting the Substances column A4.
  • the optical photo acquisition button B7 is a button that photographs the subject placed on the subject table 13 from at least one direction and acquires an optical photo.
  • the acquired optical photo is displayed in the optical photo display area A6.
  • information such as the thickness and dimensions of the subject can be automatically calculated and reflected on the input screen.
  • the user can also manually specify dimensions from the acquired optical photo.
  • the photo can also be acquired by reading and displaying a photo of the sample taken separately.
  • the Import Drawing button B8 is a button for importing drawing information into the input screen when there is drawing information. For example, the thickness and dimensions of the subject, and the material type that constitutes the subject can be reflected on the input screen. Specifically, when the Import Drawing button B8 is pressed, a file selection dialog box is opened, and CAD data, etc. can be selected. The imported drawing information is displayed in the drawing display field A7.
  • the file load button B9 is a button for loading a text file containing information such as the components and substances contained in the subject, instead of manually inputting the information, and reflecting the information on the input screen.
  • the subject background field A8 is a field for the user to input and record the background and subject that led to wanting to take the photograph or taking the photograph.
  • the purpose column A9 is a column where the user inputs the purpose of the photography.
  • the calculation start button B10 is a button for proceeding with the photographing condition calculation process based on the input subject information.
  • step S2 the user uses the operation unit 22 to press the calculation start button B10 displayed on the display unit 23.
  • the control unit 21 accepts the pressing of the calculation start button B10 (step S2).
  • the shooting condition calculation process proceeds to step S3.
  • the control unit 21 searches the photography information database for photography information that matches or is similar to the input subject information (step S3).
  • the control unit 21 functions as an extraction unit.
  • the search method may involve, for example, extracting shooting information that matches the name and category of the input object information from the shooting information database, and then searching for shooting information that matches or is similar to the object's material, thickness, etc. If there is photographic information that is similar or coincident with the subject information (step S4; YES), the amount of scattering is calculated based on the photographic information in parallel with steps S6 to S8 (step S5). In this embodiment, it is assumed that there is no photographic information that coincides or is similar to the subject information, and the process proceeds to the next step.
  • step S4 If there is no shooting information similar or matching to the subject information (step S4; NO), the shooting condition calculation process does not calculate the amount of scattering based on the shooting information (step S5), and proceeds to step S9.
  • step S5 it is assumed that there is no shooting information similar or matching to the subject information, and therefore step S5 is skipped.
  • the process of steps S4 to S5 and the process of steps S6 to S8 are performed in parallel, but the process of steps S4 to S5 and the process of steps S6 to S8 may each be performed independently.
  • control unit 21 calculates the transmittance (step S6).
  • the control unit 21 functions as a calculation unit.
  • the control unit 21 calculates the transmittance of each X-ray energy when passing through the subject from the input subject information.
  • the control unit 21 may treat the X-ray energy as polychromatic or may calculate as monochromatic.
  • the linear absorption coefficient is derived from the information of "material/element" of "element" in the input subject information.
  • the linear absorption coefficient can be derived by referring to databases such as NIST (https://physics.nist.gov/PhysRefData/FFast/html/form.html) and science chronology and collating it with the subject information.
  • the following formulas can be used for the calculation, for example.
  • TR transmittance
  • wavelength (corresponding to energy)
  • linear absorption coefficient
  • t thickness
  • i type of element constituting the subject
  • the range of energy (maximum and minimum values) to be substituted into Equation 1 may be determined within a certain range based on the tube voltage and type of additional filter selectable for the X-ray source mounted on the device that the user can use. In this embodiment, the following calculations are performed assuming that the energy range is from 50 to 100 keV.
  • Figure 8 is a graph in which the horizontal axis is X-ray energy and the vertical axis is transmittance [%]. The solid line indicates the transmittance calculated based on the subject information input in this example.
  • step S7 the control unit 21 determines whether the transmittance is equal to or greater than a threshold value.
  • a transmittance threshold is set as one of the criteria for whether Talbot imaging is possible or difficult. This threshold may be set in advance or may be set to an arbitrary value by the user.
  • step S6 the control unit 21 performs a theoretical calculation of the transmittance of the subject to check whether there is a condition in which the transmittance exceeds the threshold. If there is a condition in which the transmittance exceeds the threshold (step S7; YES), the process proceeds to the next step S8 for that condition.
  • step S7 If there is no condition in which the transmittance exceeds the threshold (step S7; NO), it is determined that imaging is difficult with the currently set X-ray energy, and the imaging condition calculation process proceeds to step S14.
  • the calculation of countermeasures may be performed without performing the subsequent calculation step S8 (calculation of the visibility rate), or the calculation of countermeasures (step S14) may be performed while performing the subsequent calculation step S8 (calculation of the visibility rate).
  • the transmittance threshold is 10% (dotted line in FIG. 8), it can be seen that even at maximum energy (dotted line in FIG.
  • Example 1 the process proceeds to step S14, where a countermeasure is calculated.
  • the control unit 21 calculates candidate countermeasures that will enable imaging (step S14). At this time, the control unit 21 functions as a second calculation means.
  • the calculation of the transmittance based on formula (1) shows that the subject thickness at which the transmittance is ⁇ 10% at the maximum energy of 100 keV is 4.9 cm or less (dotted line in FIG. 5). This calculation derives the subject thickness at which the transmittance exceeds the threshold value.
  • the subject thickness is the subject condition.
  • other parameters that can be adjusted include the X-ray energy (however, this is limited to a range smaller than the maximum tube voltage of the device specifications), the subject material/elements, the composition/shape of the contained substances, and the orientation of the subject during imaging.
  • control unit 21 outputs the calculation result (step S15).
  • the control unit 21 outputs the calculation result to the display unit 23 and displays it on the display unit 23 (shooting condition calculation processing), thereby presenting it to the user.
  • the control unit 21 may cause the display unit 23 to display a screen such as that shown in FIG. 9.
  • the imaging condition display area A11 is an area for displaying at least one recommended imaging condition.
  • imaging conditions it is conceivable to output the tube voltage, mAs value, thickness of the additional filter, etc.
  • the shooting conditions are displayed in an order that follows some rule.
  • the rule for the display order may be, for example, displaying in ascending order from the condition with the best image quality, the highest transmittance, and the shortest shooting time. In this embodiment 1, there is no condition that exceeds the threshold value at the time of the transmittance calculation (step S6).
  • the condition to be output in the shooting condition display area A11 may be left blank, or the condition with the highest transmittance may be output.
  • the setting value of the tube voltage displayed on the output screen does not necessarily coincide with the peak position of the X-ray energy distribution irradiated under that setting value. Therefore, the conditions of the tube voltage and additional filter that realize the X-ray energy (100 keV in the first embodiment) that maximizes the image quality and transmittance as a result of the calculation may be calculated separately and displayed in A11.
  • the calculation result display area A12 is an area for displaying the image quality and the predicted calculation result of the image quality when imaging is performed using the imaging conditions displayed in the imaging condition display area A11.
  • the imaging time is the time required for imaging.
  • the time required to acquire one moire image Mo during BG imaging or actual imaging (referred to as the moire image acquisition time) is set in advance.
  • the imaging time can be derived from a calculation formula such as moire image acquisition time x (number of moire images acquired in BG imaging + number of moire images acquired in actual imaging) x number of imaging.
  • the calculation formula is not limited to this, and for example, a calculation formula that additionally takes into account various intervals such as the time for setting up the subject between BG and actual imaging may be used.
  • the photographing method is orientation photographing, it may be possible to display the number of photographs required to achieve a desired orientation angle, the installation position of an appropriate mark for position correction, etc.
  • the photographing method is orientation photographing, it is necessary to photograph the BG photograph for each orientation angle, and the timing of the BG photographing may be displayed using text, a timing chart, or a flow chart.
  • the tiling photography method display area A13 is an area that displays a proposal for the tiling photography method.
  • the tiling photography method display area A13 will be described later. Note that a recommended field of view arrangement for capturing the entire subject with as few shots as possible may be displayed in this area.
  • the photographing availability display area A14 is an area that displays "available" when there are photographing conditions that make photographing possible as a result of the calculation, and displays "not possible” when there are no photographing conditions that make photographing possible.
  • “not possible” since there were no photographing conditions that make photographing possible, "not possible” was displayed.
  • the possibility of photographing the subject may be judged from the viewpoint of the photographing time, S/N, spatial resolution, etc., and the possibility of photographing may be displayed.
  • the photographing time is used as the criterion for the possibility of photographing, if the photographing time of the calculation result exceeds the upper limit of the photographing time determined by the user or the device specifications, "Not possible" can be displayed, and vice versa.
  • the cause display area A15 is an area where, if it is determined that photography is not possible as a result of the calculation, the cause of the determination is displayed.
  • the cause of the determination is that there is no photography condition where the subject transmittance is equal to or greater than the threshold, so for example, "insufficient transmittance" is displayed.
  • the countermeasure display area A16 is an area that presents the user with countermeasure candidates that will enable photography if it is determined that photography is not possible as a result of the calculation.
  • the condition for photography being possible was “subject thickness ⁇ 4.9 cm,” so for example, “subject thickness ⁇ 4.9 cm” is displayed. If the photography condition is "subject thickness ⁇ 4.9 cm,” the transmittance is equal to or greater than the threshold, and photography is possible.
  • the recalculation button B11 is a button for returning to the input screen. When the recalculation button B11 is pressed, the user can re-input the subject information.
  • the calculation end button B12 is a button for ending the imaging condition calculation process and the imaging condition display process by the control unit 21. When the calculation end button B12 is pressed, the imaging condition calculation process and the imaging condition display process end. When the calculation end button B12 is pressed, the imaging conditions selected by the user are reflected in the X-ray Talbot imaging device 1.
  • the imaging method is tiling imaging
  • the tiling imaging method and imaging flow may be output as a script together with the display in the tiling imaging method display area A13. The output script is read into the X-ray Talbot imaging device 1, and the X-ray Talbot imaging device 1 can execute tiling imaging based on the read script.
  • the information output to the output screen in FIG. 9 may be such that at least one or more calculation results in steps S8 to S13 can be displayed in the calculation result display area A12 in addition to the information described in [0070] to [0074]. When multiple exposure conditions and calculation results are displayed, they may be displayed in an order based on the rules described in [0070].
  • Example 2 Next, the flow of the photographing condition calculation process will be described with reference to Fig. 6.
  • the subject of Example 2 is a flat plate made of resin with a rib structure provided on it, as shown in Fig. 10.
  • the resin of subject H is assumed to contain spherical silica filler with a particle size of 2 ⁇ m at a concentration of 10 vol% as a contained substance.
  • the user uses the operation unit 22 to input subject information into the input screen shown in FIG. 11 displayed on the display unit 23.
  • the control unit 21 accepts the subject information (step S1).
  • the items on the input screen are the same as those in the first embodiment, so a description thereof will be omitted.
  • the user uses the operation unit 22 to press the calculation start button B10 displayed on the display unit 23.
  • the control unit 21 accepts the pressing of the calculation start button B10 (step S2).
  • the shooting condition calculation process proceeds to step S3.
  • the shooting information database in the storage unit 25 is searched for shooting information of similar subjects (step S3).
  • the photographing information database in the storage unit 25 stores, for example, the following information:
  • the shooting date and time is the date and time when the subject was photographed.
  • the subject information (subject name and category) is the name and category of the subject.
  • the subject information (subject name and category) is used for the search in step S3.
  • the subject information (subject name and category) corresponds to the name column A1 and the category column A2 on the input screen.
  • Subject information (elements) consists of issue, element, and characteristic (element). Issue is the background that led to the photograph and the problem to be solved. Issue corresponds to issue/background column A8 on the input screen.
  • Elements are the materials that make up the subject, and if the subject is made up of multiple types of elements, the number of elements can be entered in the database.
  • Characteristics (elements) are the characteristic values of each element. Characteristics (elements) include, for example, shape, thickness, and ratio to the subject.
  • Subject information (elements) corresponds to element column A3 on the input screen.
  • the subject information (containing substances) is the material of the containing substances contained in each element.
  • the characteristics (containing substances) are characteristic values of each containing substance. Examples of the characteristics (containing substances) include shape and size.
  • the subject information (containing substances) corresponds to the containing substances column A4 on the input screen.
  • the imaging conditions are the conditions specified at the time of imaging, such as the tube voltage and mAs value.
  • the shooting result is the result of shooting under certain shooting conditions.
  • the shooting result is the signal value, noise, etc. of the obtained image.
  • the shooting result column may also include a sensory evaluation of whether the obtained image has
  • the control unit 21 narrows down the shooting information in the shooting information database in the following order to extract shooting information similar to the input information.
  • Step 1 The control unit 21 extracts items with matching names and categories.
  • Step 2 The control unit 21 extracts subjects whose elements match.
  • Step 3 The control unit 21 extracts items with matching contained substances.
  • match includes not only a perfect match but also a partial match.
  • step S3 finds that photographing information similar to the input subject information exists (step S4; YES), and the photographing condition calculation process proceeds to step S5.
  • the control unit 21 calculates the amount of scattering caused by the subject in the following manner:
  • the control unit 21 uses the visibility ratio obtained by Talbot photography or the signal value of small angle scattering as an index of the amount of scattering.
  • the control unit 21 performs an interpolation calculation using the values of the imaging information extracted in step S3 for each of the values of the thickness of the element of the input object information and the concentration and particle size of the contained substance, and predicts the visibility ratio (small-angle scattering signal value) of the input object (step S5).
  • the control unit 21 functions as a calculation means.
  • the thickness and the concentration of the contained substance are used as variables, but the variables are not limited to this.
  • the concentration of the substance contained in the input subject matches the thickness of the subject in the shooting information in the shooting information database, but if they do not match, the control unit 21 estimates the visibility rate by linear interpolation, as in the case of thickness.
  • a model is constructed from similar imaging information extracted from the imaging information database, with various subject information and imaging conditions as explanatory variables and the visibility rate and small-angle scattering signal value to be estimated as objective variables. In this way, it becomes possible to predict the estimated visibility rate and small-angle scattering signal value for each imaging condition when new subject information is input.
  • the accuracy of the model can be improved by providing feedback to the model each time an image of the subject is taken.
  • Steps S6 and S7 which are executed in parallel with steps S4 and S5, are similar to those in the first embodiment, and therefore the description thereof will be omitted.
  • the transmittance calculated in step S6 exceeds the threshold value, and the photographing condition calculation process proceeds to step S8.
  • the control unit 21 calculates the amount of scattering caused by the subject using the theoretical calculation formula stored in the memory unit 25 (step S8). At this time, the control unit 21 functions as a calculation means. The control unit 21 inputs the input subject information into the theoretical calculation formula, thereby enabling theoretical prediction of the visibility rate. Examples of the theoretical calculation formula include the formulas described in Non-Patent Documents 2, 3, 4, and 5.
  • the control unit 21 judges whether the visibility rate is equal to or higher than a threshold (step S9).
  • a threshold value of the visibility rate is set as one of the criteria for whether photography is possible or difficult. This threshold value may be set in advance or may be set to an arbitrary value by the user. If there is a condition that causes the visibility rate to exceed the threshold, the photographing condition calculation process proceeds to step S12. If there is no condition that causes the visibility rate to exceed the threshold, the photographing condition calculation process proceeds to step S14.
  • the predicted visibility rate may be derived from an experimental value in step S5 or from a theoretical calculation in step S8. Which of the two is to be used for the judgment is judged, for example, as follows.
  • Step 1 When there is no information in the imaging information database and derivation from experimental values is not possible, the control unit 21 adopts a predicted visibility based on a theoretical calculation formula.
  • Step 2 When it is possible to predict and calculate the visibility rate from the information in the photographing information database, the control unit 21 adopts the predicted visibility value based on the experimental value.
  • the determination procedure is not limited to the above procedures 1 and 2, and may be a procedure in which the highest predicted visibility rate is adopted, or the results of procedures 1 and 2 are presented to the user to allow the user to select.
  • the threshold value of the visibility rate is assumed to be 10% (FIG. 13, dotted line).
  • the predicted visibility rate calculated from the information in the imaging information database is below the threshold value under the conditions shown in FIG. 13 (FIG. 13, estimated value). Therefore, it is determined that imaging is difficult at least under these imaging conditions (tube voltage and additional filter). Therefore, since there are no imaging conditions in which the visibility rate exceeds the threshold value for this subject, it is determined that imaging is difficult for this subject (step S9; NO).
  • the control unit 21 calculates potential countermeasures that will enable imaging (step S14). At this time, the control unit 21 functions as a second calculation means. For example, the control unit 21 can derive conditions under which the visibility rate exceeds a threshold value by performing an interpolation calculation from experimental values (step S5) or a calculation using a theoretical formula (step S8). Possible parameters to be adjusted include X-ray energy, subject thickness, and the composition/size/concentration of contained substances.
  • the control unit 21 outputs the calculation result (step S15). For example, the control unit 21 outputs the calculation result to the display unit 23 and displays it on the display unit 23 (shooting condition calculation processing) to present it to the user. For example, the control unit 21 may cause the display unit 23 to display a screen such as that shown in FIG. 14. Each item on the display screen in FIG. 14 is the same as in Example 1, so a description thereof will be omitted.
  • Example 3 the flow of the photographing condition calculation process will be described with reference to Fig. 6.
  • the epoxy resin E contains spherical silica fillers with a particle size of 2 ⁇ m at a concentration of 5 vol% as a contained substance.
  • the user uses the operation unit 22 to input subject information into the input screen shown in FIG. 11 that is displayed on the display unit 23.
  • the control unit 21 accepts the subject information (step S1).
  • the user uses the operation unit 22 to press the calculation start button B10 displayed on the display unit 23.
  • the control unit 21 accepts the pressing of the calculation start button B10 (step S2).
  • the shooting condition calculation process proceeds to step S3.
  • control unit 21 searches the photography information database of the storage unit 25 for photography information of a similar subject based on the input subject information (step S3).
  • photography information of a similar subject exists.
  • the control unit 21 calculates the amount of scattering by the subject using the past imaging information (step S5).
  • the control unit 21 searches the imaging information database for similar past imaging results based on information (composition, concentration, thickness) about the filler among the substances that make up the subject inputted on the input screen, and obtains the visibility rate under the closest conditions.
  • the control unit 21 can handle this by calculating the interpolation/extrapolation of the visibility rate for both parameters in a manner similar to the procedure described in the second embodiment.
  • control unit 21 calculates the subject transmittance in the same manner as in Examples 1 and 2 (step S6).
  • Figure 17 shows the relationship of the transmittance of a copper plate with a thickness of 0.1 mm.
  • the control unit 21 judges whether the transmittance is equal to or greater than a threshold value (step S7). Assuming that the maximum X-ray energy that can be set is 100 keV and the transmittance threshold value is 10%, similarly to the first and second embodiments, the control unit 21 judges that if the X-ray energy is equal to or greater than 80 keV from the graph of FIG. It is determined that the threshold value is exceeded (step S7; YES). Note that the graph in Fig. 17 shows the relationship between X-ray energy and transmittance. Therefore, in subsequent calculations, the control unit 21 performs image quality calculations at X-ray energies equal to or higher than this threshold value.
  • control unit 21 calculates the amount of scattering by the subject using a theoretical calculation formula (step S8).
  • control unit 21 estimates the visibility rate using the theoretical calculation formula. Note that the predicted visibility may be performed for all X-ray energies that can be set, or may be performed only for X-ray energies for which the transmittance derived in step S6 is equal to or greater than a threshold value.
  • control unit 21 determines whether the predicted visibility rate is equal to or greater than the threshold value (step S9). As in the second embodiment, the control unit 21 determines whether the estimated visibility rate is equal to or greater than the threshold value based on the imaging information or by using a theoretical calculation formula. In the third embodiment, it is determined that the visibility rate exceeds the threshold value at any tube voltage under any imaging condition, and the process proceeds to the subsequent step S10.
  • control unit 21 predicts the image quality when shooting is performed under the shooting conditions (step S10).
  • the control unit 21 functions as a prediction unit.
  • the control unit 21 calculates the image quality ((1) noise, (2) signal value, (3) S/N) using a theoretical calculation formula. The calculation method will be described in order.
  • the control unit 21 performs calculations of only (1) or (1) to (3) for all conditions (tube voltages and filters) that exceeded the thresholds in step S9.
  • (1) Theoretical Calculation of Noise The control unit 21 calculates the noise of each image according to a theoretical calculation formula.
  • the control unit 21 can calculate the relationship between the detector output value and the noise of each image by using, for example, the theoretical formula described in Non-Patent Document 1 as a theoretical calculation formula.
  • the detector output value is proportional to the mAs value of the radiation source. Therefore, the noise value can be predicted by using the mAs value as a variable parameter.
  • Fig. 18 is a graph made using the theoretical formula of Non-Patent Document 1. The theoretical formulas for noise of transmittance, phase, and visibility rate are shown in the order of Fig. 18A, Fig. 18B, and Fig. 18C. Note that the transmittance and visibility rate are normalized by the average value. From this result, the control unit 21 calculates a mAs value that satisfies the required noise level.
  • the control unit 21 calculates the minimum count value (the intersection of the blue line and the gray dotted line) among the count values that satisfy the noise required value (gray dotted line in FIG. 18) set in advance.
  • the required noise may be set for the Talbot images (absorption image, differential phase image, small angle scattering image), or may be set for only one of the images (for example, small angle scattering).
  • the control unit 21 may end the calculation in step (1) and output the conditions that the noise is equal to or less than a specified value and the shooting time is short on the output screen.
  • the control unit 21 may additionally calculate the signal of the subject in the subsequent steps to calculate the S/N ratio.
  • the control unit 21 can theoretically calculate the signal values of the visualization target at least for absorption and differential phase images.
  • the control unit 21 may have difficulty performing theoretical calculations for small-angle scattering images.
  • the control unit 21 searches and extracts similar shooting information from a database of past shooting history, and calculates the signal values.
  • the control unit 21 can generate a simulation image of a differential phase image and a lateral profile of the assumed void as shown in Fig. 19.
  • Fig. 19A is a simulation image of the signal values of the differential phase image.
  • Fig. 19B is a lateral profile of the signal values of the differential phase image.
  • the control unit 21 can calculate the S/N ratio by taking the ratio between the noise value and the signal value derived in (1) and (2), respectively.
  • step S11 judges whether the image quality predicted in step S10 satisfies a predetermined image quality condition. At this time, the control unit 21 functions as a judging unit. If there is (step S11; YES), the shooting condition calculation process proceeds to step S12. If not (step S11; NO), the process proceeds to step S 14.
  • the process content of step S14 is the same as that of the second embodiment, except that the visibility rate is replaced with image quality.
  • control unit 21 selects the shooting conditions to be output (step S12).
  • the control unit 21 functions as a selection unit. For example, when an upper limit is set for the number of shooting conditions to be output, the control unit 21 selects shooting conditions with good image quality, starting from the one with the best image quality.
  • the control unit 21 outputs the photographing conditions (step S13), and the process ends.
  • the control unit 21 outputs the calculation result to the display unit 23 and displays it on the display unit 23 (photographing condition calculation process), thereby presenting it to the user.
  • the control unit 21 may display a screen as shown in Fig. 20 on the display unit 23.
  • Each item on the display screen in Fig. 20 is the same as in Example 1, and therefore description thereof will be omitted.
  • multiple shooting conditions are output. When multiple shooting conditions are output, the shooting conditions may be sorted in a predetermined order.
  • the sorting order may be, for example, arranging from the highest image quality, arranging from the condition with the shortest shooting time, arranging from the condition closest to the design value of the shooting device, etc. Some of the top sorted items are displayed on the output screen, and the image noise, S/N, and shooting time for each condition are presented. Even if there is no shooting condition that satisfies the required S/N and noise, sorting and display are performed, and at the same time, a countermeasure to satisfy the required S/N and noise is recommended in the countermeasure display area A16.
  • Example 4 a fourth embodiment in which the present invention is applied to orientation photography for acquiring the above-mentioned orientation degree image and the like will be described with reference to FIG.
  • the user can obtain the angle dependence of the signal value of the small-angle image at each angle, and by analyzing this, can obtain orientation analysis images called scattering intensity images, orientation degree images, and orientation angle images.
  • the user can obtain information about the orientation of the scatterers, such as the in-plane distribution of the scattering intensity of the subject (corresponding to the in-plane distribution of the amount of scatterers), the degree of orientation of the scattering intensity from the orientation degree image (the degree to which scattering is strong in a specific direction or isotropically and randomly), and the direction and angle at which strong scattering occurs from the orientation angle image (corresponding to the orientation direction of the scatterers).
  • orientation photography is called orientation photography.
  • Fig. 21A shows a histogram when the noise-to-signal ratio (S/N) is changed from 2 to 10.
  • the horizontal axis represents the orientation angle
  • the vertical axis represents the frequency, which corresponds to the number of pixels having the orientation angle corresponding to the angle on the horizontal axis within the analyzed region.
  • Figure 21B shows the results of calculating the histogram when the number of images taken with the same S/N ratio, i.e. the number of relative angles between the grid and the subject being photographed, is changed from 4 to 12 angles.
  • control unit 21 does not simply present multiple candidates in parallel, but may present recommended conditions from the candidates in order of priority and the reasons therefor, for example, condition A is good if accuracy is prioritized, while condition B is good if the shooting time is to be shortened.
  • control unit 21 functions as a selection means.
  • Example 5 Next, a case will be described in which the user wishes to photograph the entire subject even though the in-plane size of the subject input to the operation unit 22 is larger than the field of view of the photographing device per photograph, as shown in FIG. In this case, it is necessary to perform tiling photography in which the entire subject is photographed by photographing the subject multiple times while moving it.
  • the function of the control unit 21 will be described below, which presents how to arrange the field of view relative to the subject during tiling photography so that the entire area to be photographed can be photographed with the minimum number of photographs required.
  • the control unit 21 presents a proposal for the field of view arrangement when performing tiling photography, as shown in FIG. 22A.
  • the display of the tiling photography arrangement may be switched ON/OFF at the user's choice. In other words, even if the subject is larger than the field of view, tiling photography may be turned OFF if tiling photography is not necessary.
  • the orientation of the subject at the time of shooting, the area of the subject that is to be photographed, or the area of the subject that is not required to be photographed may be input by some method such as a mouse, coordinate specification, or CAD data.
  • the orientation of the subject at the time of shooting refers to which part of the subject is arranged in the horizontal or vertical direction.
  • the area of the subject that is to be photographed refers to a case where it is sufficient to photograph only a certain area of the subject, not the entire subject.
  • the area of the subject that is not required to be photographed refers to an area of the entire subject that is not required to be photographed, such as an edge of the subject or a metal member, which is difficult to photograph using a Talbot camera, and is therefore not required to be photographed by the user.
  • FIG. 22B shows a schematic diagram of a case where the user inputs that a part of the sample (F) does not need to be photographed, and the photographing fields of view V1, V2, and V3 are presented to the user so that the entire area other than F can be photographed. Furthermore, as shown in Fig. 22B, when calculating the arrangement of the fields of view, the fields of view may be arranged so as to cover only the area to be photographed, rather than the entire subject, or the fields of view may not be arranged for areas that do not need to be photographed. This allows the number of photographed fields of view to be reduced, shortening the photographing time and suppressing tube wear.
  • the control unit 21 or the user when aligning individual images after shooting, it is easier for the control unit 21 or the user to perform alignment if the images overlap partially as shown in FIG. 22.
  • This overlap amount is preferably set to about 3 to 10 mm, but it may be possible to set a range larger or smaller than this range. It is preferable to present some value, such as 5 mm, as an initial value, and allow the user to change it.
  • tiling shooting may be performed with a certain gap between the fields of view. In this way, it is possible to shoot a subject that is several times larger than the field of view with a small number of shots to roughly grasp the overall trend.
  • the control unit 21 may also present a recommended position for placing the alignment mark M, taking into consideration the overlapping areas of the photographed fields of view.
  • the subject and the sample when actually taking an image, may be placed manually one by one on the subject table 13 alongside the sample.
  • the subject and alignment marks may be placed on a plate that transmits X-rays and scatters little, such as a transparent acrylic plate, and then fixed with tape or the like, and the acrylic plate may then be placed on the subject table 13 of the imaging device, which is preferable as it makes it easier to set up the actual subject.
  • control unit 21 may present not only the arrangement of the fields of view to be tiled, but also the desired shooting order at the same time.
  • the field of view specified by the user is used as a reference, and the fields of view are arranged at appropriate intervals around it, so that a shooting field of view layout that satisfies both the user's desire and shooting with a small field of view can be presented to the user.
  • control unit 21 may temporarily save the presented visual field arrangement in a file so that the visual field arrangement and even the imaging conditions can be recalled and executed at a later date.
  • the control unit 21 may also recall previous saved information and then use it by modifying a part of it by the control unit 21 or the user.
  • Information may also be input to the X-ray Talbot imaging device 1 using a file and used during actual imaging.
  • Information may also be transmitted directly to the X-ray Talbot imaging device 1 via a wireless/wired network without going through file storage. In this case, not only the visual field arrangement but also the imaging conditions may be transmitted.
  • Example 6 If the size of the subject is larger than the size of one field of view and it is desired to capture the orientation of the entire subject, it is necessary to perform the tiling capture described in Example 5 multiple times while changing the relative angle between the grid and the subject. When taking a photograph by changing the relative angle between the grid and the subject, the subject's position will change, and the field of view arrangement will need to be reconsidered accordingly. Therefore, in Example 5, even when the subject is rotated by a specified angle, by presenting an appropriate shooting field of view arrangement, it is possible to perform tiling shooting with a different relative angle between the subject and the grid. For example, the arrangement in FIG. 23A is set to a relative angle of 0 degrees with respect to the grid, and FIG.
  • 23B shows an example of the field of view arrangement when the subject is rotated 45 degrees to capture an image with a relative angle of 45 degrees with respect to the grid.
  • the user is presented with a shooting field of view arrangement that matches the orientation and arrangement of the sample at that time. The user can then use this to take images at multiple angles and tile the obtained shooting results, thereby obtaining multiple tiled images with different relative angles between the grid and the subject.
  • orientation analysis using the multiple tiling images, the user can obtain orientation results for a large-area subject that is larger than the imaging field of view size.
  • Example 7 As described in Example 5, when tiling, there is a risk that slight misalignment (subpixel to several pixels) may occur when aligning the captured images of each field of view, or that changes in signal intensity may occur at the seams. When orientation analysis is performed using images captured by tiling photography, such deviations and changes in signal values may adversely affect the results of the orientation analysis. For example, when orientation analysis is performed using tiling images obtained by tiling photography as in Figure 23 of Example 6, it is unavoidable that the images captured by tiling photography at each angle used for orientation analysis have seams. However, as shown in Fig.
  • orientation analysis when orientation analysis is performed by first photographing the upper left region of the subject at 0 degrees, 45 degrees, 90 degrees, and 135 degrees, there are no tiling joints in the images of each angle used for orientation analysis, and orientation analysis results can be obtained without the risk of errors due to misalignment or changes in signal strength during tiling. At this time, an orientation analysis image within the inscribed circle of the photographing field of view shown by the dotted line in Fig. 24 is obtained. Then, such photographing is also performed at other positions within the subject, for example, the lower right region of the subject as shown in Fig.
  • control unit 21 can assist the user in obtaining orientation photography results of the entire subject by presenting the user with the arrangement of the photography field of view, the order of photography, the photography time required at that time, etc.
  • the control unit 21 may also save the presented field of view arrangement and photography procedure in a file or transmit it to the Talbot photography device so that it can be reused or used for actual photography.
  • a feedback (FB) input screen is shown in Fig. 25.
  • the control unit 21 causes the display unit 23 to display a feedback input screen as shown in Fig. 25, which allows the user to feed back the results of the photographing including the image quality.
  • image quality indicators there are indices that can be numerically derived from pixel values and indices that allow a user to visually and sensorily evaluate an image, as described below.
  • the above numerical and sensory image quality results can also be additionally recorded in the photography information database together with the subject information and photography parameters.
  • Numerical image quality indicators include: (1) S/N, (2) visibility rate, and (3) Transmittance, (4) Visibility ⁇ ⁇ Transmittance, etc.
  • the numerical image quality index may be calculated for the entire image or for a portion of the image.
  • the calculation region can be set by the user manually setting the region of interest on the image, or by automatically recognizing and setting a region that meets a certain definition, such as a blank area or a low image quality area.
  • the blank area is an area where no subject is captured.
  • the blank area may be specified manually by the user or automatically by contour detection or other methods.
  • the blank area may be used as the image quality calculation area in its entirety, or a portion of it may be specified.
  • the control unit 21 can calculate low image quality areas in at least one of the three Talbot images (absorption image, differential phase image, small angle scattering image) acquired with certain imaging parameters, and display the areas on the display unit 23 in a framed state to display to the user.
  • the control unit 21 functions as a visualization means for visualizing the low image quality areas. This can also be used as a criterion for determining whether the images and signals confirmed in the images are reliable.
  • the calculation method for the low image quality part will be described.
  • the low image quality part is defined by the following conditions, for example, and can be determined by automatically or manually searching for an area that satisfies this definition.
  • the conditions are: (1) an area where the transmittance/visibility rate is significantly lower than the minimum required value; (2) an area where the S/N is significantly lower than the S/N of the non-transparent part; (3) an area where the S/N is significantly lower than a standard S/N set in advance.
  • the sensory image quality index As an index of sensory image quality, the user can judge the quality of the image based on their own criteria. The judgment can be input to the control unit 21 using the operation unit 22 so that the better the image quality, the greater the number of numbers or symbols. If the user does not make a judgment, it is recorded in the memory unit 25 as "no evaluation.”
  • the accuracy of the model can be improved by constructing a model in which various object information and shooting conditions are used as explanatory variables and the visibility rate and small-angle scattering signal value to be estimated are used as objective variables, and having the model learn.
  • a small-angle scattering image is used as an example, but is not limited to a small-angle scattering image.
  • a method described in [0084] can be considered in which a model is constructed from similar shooting information extracted from the shooting information database in which various object information and shooting conditions are used as explanatory variables and the visibility rate and small-angle scattering signal value to be estimated are used as objective variables.
  • the signal values (experimental values) obtained when a user actually took a Talbot photograph are displayed as points in Figure 26.
  • the subject photographed was a resin in which spherical silica particles were mixed and solidified.
  • formulas (2) to (4) closely reproduce the change in signal value versus particle size obtained in the experiment.
  • the shape and distribution of particles may differ from the assumptions of the model, and the theoretical value and the experimental value may diverge. In other words, an increase in the number of divergent points suggests that a parameter other than the parameter (particle diameter) assumed by the theoretical formula affects the signal value.
  • the control unit 21 may calculate a degree of deviation indicating the degree of deviation. For example, the degree of deviation may be calculated by dividing the number of experiments in which the theoretical value and the experimental value deviate from each other by a predetermined value or more by the total number of experiments.
  • the calculation means (control unit 21) also includes a calculation means (control unit 21) that calculates a predetermined characteristic amount based on past shooting information and/or a theoretical calculation formula, and a selection means (control unit 21) that selects shooting conditions based on the calculated characteristic amount. This allows the user to easily determine more appropriate shooting conditions for Talbot photography based on the selected shooting conditions.
  • the X-ray Talbot imaging condition calculation device 2 also includes a second calculation means (controller 21) that calculates subject conditions in subject information that satisfy the specified image quality conditions when the determination means (controller 21) determines that imaging conditions that satisfy the specified image quality conditions cannot be obtained. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging without having to perform test imaging of the subject in advance.
  • the X-ray Talbot imaging condition calculation method is an X-ray Talbot imaging condition calculation method using an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small-angle scattering image and/or a differential phase image of a subject, and includes a reception step (step S1) for receiving input of subject information, and a calculation step (steps S5, S6, S8) for calculating imaging conditions based on the subject information, past imaging information, and/or theoretical calculation formulas. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging.
  • the X-ray Talbot imaging system 100 also includes a radiation source, multiple gratings, and a radiation detector arranged in the radiation irradiation axis direction, and includes a Talbot imaging means (X-ray Talbot imaging device 1) that captures at least a small-angle scattering image and/or a differential phase image of a subject based on a moiré fringe image obtained by irradiating a subject arranged in the radiation irradiation axis direction with radiation from the radiation source and capturing the image, a receiving means (control unit 21) that receives input of subject information, and a calculation means (control unit 21) that calculates the imaging conditions based on the subject information and past imaging information. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging.
  • a Talbot imaging means X-ray Talbot imaging device 1 that captures at least a small-angle scattering image and/or a differential phase image of a subject based on a moiré fringe image obtained by irradiating a subject arranged in
  • the program also causes the computer of the X-ray Talbot imaging condition calculation device 2, which calculates the imaging conditions in the Talbot imaging means for capturing small-angle scattering images and/or differential phase images of the subject, to function as a receiving means (control unit 21) that receives input of subject information, and a calculation means (control unit 21) that calculates the imaging conditions based on the subject information, past imaging information, and/or theoretical calculation formulas. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging.
  • the X-ray Talbot radiography condition calculation device 2 equipped with the display unit 23 also functions as an image display device, but the X-ray Talbot radiography condition calculation device and the image display device may be separate devices.
  • the image display device may perform only display processing, and various processes and information management may be performed by a separate X-ray Talbot radiography condition calculation device.
  • the X-ray Talbot radiography condition calculation device may be a cloud, and only display processing may be performed by the image display device.
  • This disclosure can be used in an X-ray Talbot imaging condition calculation device, an X-ray Talbot imaging condition calculation method, an X-ray Talbot imaging system, an X-ray Talbot imaging condition display device, and a program.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An X-ray Talbot imaging condition calculation device 2 calculates an imaging condition in a Talbot imaging means (X-ray imaging system 100), which generates a small-angle scattering image and/or a differential phase image of a subject, the X-ray Talbot imaging condition calculation device comprising: a reception means (control unit 21) that receives an input of subject information; and a calculation means (control unit 21) that calculates an imaging condition on the basis of the subject information and past imaging information and/or a theoretical calculation formula.

Description

X線タルボ撮影条件演算装置、X線タルボ撮影条件演算方法、X線タルボ撮影システム、X線タルボ撮影条件表示装置及びプログラムX-ray Talbot radiography condition calculation device, X-ray Talbot radiography condition calculation method, X-ray Talbot radiography system, X-ray Talbot radiography condition display device and program
 本発明は、X線タルボ撮影条件演算装置、X線タルボ撮影条件演算方法、X線タルボ撮影システム、X線タルボ撮影条件表示装置及びプログラムに関する。 The present invention relates to an X-ray Talbot imaging condition calculation device, an X-ray Talbot imaging condition calculation method, an X-ray Talbot imaging system, an X-ray Talbot imaging condition display device, and a program.
 従来、タルボ効果を利用するタルボ干渉計やタルボ・ロー干渉計を用いたX線タルボ撮影装置が知られている。X線タルボ撮影装置を用いたタルボ撮影での撮影可否の判断や適切な撮影条件を決めるのは容易ではない。なぜなら、タルボ撮影では、被写体の材質や厚さに応じて、X線透過率や散乱の強さが変わるためである。
 そのため、被写体の材質や厚さからX線透過率や散乱の強さを推測して撮影可否の判断を判断したり、撮影条件を変えたりといった事前検討をする必要がある。
Conventionally, X-ray Talbot imaging devices using a Talbot interferometer or a Talbot-Lau interferometer that utilizes the Talbot effect have been known. It is not easy to judge whether or not imaging is possible using the X-ray Talbot imaging device and to determine appropriate imaging conditions. This is because, in Talbot imaging, the X-ray transmittance and scattering strength change depending on the material and thickness of the subject.
For this reason, it is necessary to estimate the X-ray transmittance and scattering strength from the material and thickness of the subject to determine whether or not imaging is possible, or to consider in advance whether to change the imaging conditions.
 事前検討する際に採りうる手段として、過去の撮影事例から、撮影予定の被写体に似た事例を探索し、その条件を基に、撮影条件を設定する方法A(特許文献1)や、被写体の厚み・材質等の特性情報から、X線透過量・屈折角・散乱量等を計算し、理論的に画質を予測することで、撮影条件を設定する方法B(非特許文献1, 2, 3, 4, 5)がある。 Possible methods for advance consideration include Method A (Patent Document 1), which involves searching past imaging cases for cases similar to the subject to be imaged, and setting imaging conditions based on those conditions; and Method B ( Non-Patent Documents 1, 2, 3, 4, 5), which involves calculating the amount of X-ray transmission, refraction angle, amount of scattering, etc. from characteristic information such as the thickness and material of the subject, and setting imaging conditions by theoretically predicting image quality.
特開2020-061284号公報JP 2020-061284 A
 上記方法Aでは、実際の事例をベースとして、所望の画質を得る可能性の高い撮影条件の提示を行うことができる。一方で、類似の撮影事例の無い未知の被写体に対しては、撮影条件を提示することはできない。
 また、上記方法Bでは、理論予測を適用することによって、未知の被写体に対しても画質予測と画質予測に基づいた撮影条件の提示が可能である。一方で、現実の被写体の特徴を全て網羅的にインプットして、計算を行うことは困難である。つまり、単純な構成の被
写体についての理論計算式は存在するが、現実の被写体の特徴は複雑であり、あらゆる構成のパターンに対応できるような理論計算式は存在しないため、理論計算式のみで撮影条件を決めることは必ずしも適切とはいえない。
 また、撮影対象の被写体が実際に手元に存在し、かつ装置も近くに存在する場合は、その被写体を実際に装置に設置して、試し撮影を行うことで、パラメータの調整が可能である。しかし、そのために実際の撮影を行う必要があり、装置利用時間を確保したうえで、パラメータ調整で複数回の撮影を行って撮影結果を確認する必要があり、手間と時間がかかる。被写体が手元に存在しない場合、あるいは装置が近くにない場合は、テストするための被写体を準備する、あるいは装置がある場所に行く、被写体を送付して撮影してもらう、などさらに手間と時間がかかる。
The method A can present shooting conditions that are likely to obtain a desired image quality based on actual cases, but cannot present shooting conditions for an unknown subject for which there are no similar shooting cases.
In addition, in the above method B, by applying theoretical prediction, it is possible to predict image quality and present shooting conditions based on the image quality prediction even for unknown subjects. On the other hand, it is difficult to perform calculations by comprehensively inputting all the characteristics of real subjects. In other words, although there are theoretical calculation formulas for subjects with simple configurations, the characteristics of real subjects are complex, and there are no theoretical calculation formulas that can handle all patterns of configurations, so it is not necessarily appropriate to determine shooting conditions only by theoretical calculation formulas.
Also, if the subject to be photographed is actually at hand and the device is nearby, it is possible to adjust the parameters by actually placing the subject on the device and taking a test shot. However, this requires actual shooting, and it is necessary to secure time to use the device and then take multiple shots with parameter adjustments to check the shooting results, which is time-consuming and laborious. If the subject is not at hand or the device is not nearby, it is necessary to prepare a subject for testing, go to a location where the device is located, or send the subject to have it photographed, which takes even more time and labor.
 したがって、本発明の課題は、経験の浅いユーザーであっても、タルボ撮影において、より適切な撮影条件を容易に決定できる手段を提供することである。 The objective of the present invention is therefore to provide a means by which even inexperienced users can easily determine more appropriate shooting conditions for Talbot photography.
 上記課題を解決するため、本発明のX線タルボ撮影条件演算装置は、
 被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置において、
 被写体情報の入力を受け付ける受付手段と、
 前記被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算手段と、
 を備える。
In order to solve the above problems, the X-ray Talbot radiography condition calculation device of the present invention comprises:
1. An X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small-angle scattering image and/or a differential phase image of a subject, comprising:
A receiving means for receiving input of subject information;
A calculation means for calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula;
Equipped with.
 また、本発明のX線タルボ撮影条件演算方法は、
 被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置を用いたX線タルボ撮影条件演算方法であって、
 被写体情報の入力を受け付ける受付ステップ、
 前記被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算ステップ、
 を含む。
Further, the X-ray Talbot radiography condition calculation method of the present invention comprises the steps of:
1. An X-ray Talbot imaging condition calculation method using an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small angle scattering image and/or a differential phase image of a subject, comprising:
A receiving step of receiving input of subject information;
a calculation step of calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula;
Includes.
 また、本発明のX線タルボ撮影システムは、
 放射線源と、複数の格子と、放射線検出器と、が放射線照射軸方向に並んで設けられ、前記放射線照射軸方向に配置された被写体に前記放射線源により放射線を照射して撮影を行うことにより得られるモアレ縞画像に基づいて、少なくとも前記被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段と、
 被写体情報の入力を受け付ける受付手段と、
 前記被写体情報と過去の撮影情報とに基づいて、撮影条件を演算する演算手段と、
 を備える。
Further, the X-ray Talbot imaging system of the present invention comprises:
a Talbot imaging means which comprises a radiation source, a plurality of gratings, and a radiation detector arranged in a direction of a radiation irradiation axis, and which captures at least a small-angle scattering image and/or a differential phase image of a subject based on a Moiré fringe image obtained by irradiating a subject arranged in the direction of the radiation irradiation axis with radiation from the radiation source and capturing the image;
A receiving means for receiving input of subject information;
A calculation means for calculating a photographing condition based on the subject information and past photographing information;
Equipped with.
 また、本発明のプログラムは、
 被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置のコンピューターに、
 被写体情報の入力を受け付ける受付手段、
 前記被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算手段、
 として機能させる。
In addition, the program of the present invention is
a computer of an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small angle scattering image and/or a differential phase image of a subject,
A receiving means for receiving input of subject information;
a calculation means for calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula;
Function as.
 また、本発明のX線タルボ撮影条件表示装置は、
 前記X線タルボ撮影条件演算装置の演算手段により演算された撮影条件を表示させる表示部を備える。
The X-ray Talbot radiography condition display device of the present invention further comprises:
The X-ray Talbot imaging condition calculation device further includes a display unit for displaying the imaging conditions calculated by the calculation means of the X-ray Talbot imaging condition calculation device.
 本発明によれば、経験の浅いユーザーであっても、タルボ撮影において、被写体の試し撮影を行うことなく、より適切な撮影条件を容易に決定できる。 According to the present invention, even an inexperienced user can easily determine more appropriate shooting conditions for Talbot photography without taking test shots of the subject.
X線タルボ撮影システムの全体像を表す概略図である。FIG. 1 is a schematic diagram illustrating an overall view of an X-ray Talbot imaging system. タルボ干渉計の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of a Talbot interferometer. 線源格子や第1格子、第2格子の概略平面図である。3 is a schematic plan view of a source grating, a first grating, and a second grating. FIG. 画像処理装置の機能的構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the image processing device. 撮影条件演算処理のイメージ図である。FIG. 13 is an image diagram of a shooting condition calculation process. 撮影条件演算処理を示すフローチャートである。13 is a flowchart showing a shooting condition calculation process. 入力画面のイメージ図である。FIG. 13 is an image diagram of an input screen. X線エネルギーと透過率の関係である。This is the relationship between X-ray energy and transmittance. 出力画面のイメージ図である。FIG. 13 is an image diagram of an output screen. 被写体のイメージ図である。FIG. 入力画面のイメージ図である。FIG. 13 is an image diagram of an input screen. 撮影情報データベースのイメージ図である。FIG. 13 is an image diagram of a photography information database. 被写体の厚さとビジビリティ率の関係である。This is the relationship between the thickness of the subject and the visibility rate. 出力画面のイメージ図である。FIG. 13 is an image diagram of an output screen. 被写体のイメージ図である。FIG. 入力画面のイメージ図である。FIG. 13 is an image diagram of an input screen. X線エネルギーと透過率の関係である。This is the relationship between X-ray energy and transmittance. mAs値とノイズの関係である。This is the relationship between the mAs value and noise. mAs値とノイズの関係である。This is the relationship between the mAs value and noise. mAs値とノイズの関係である。This is the relationship between the mAs value and noise. 微分位相画像の演算結果の例である。13 is an example of a calculation result of a differential phase image. 微分位相画像の演算結果の例である。13 is an example of a calculation result of a differential phase image. 出力画面のイメージ図である。FIG. 13 is an image diagram of an output screen. 配向角度と頻度の関係である。The relationship between orientation angle and frequency. 配向角度と頻度の関係である。The relationship between orientation angle and frequency. 視野配置の例である。1 is an example of a visual field arrangement. 視野配置の例である。1 is an example of a visual field arrangement. 視野配置の例である。1 is an example of a visual field arrangement. 視野配置の例である。1 is an example of a visual field arrangement. 視野配置の例である。1 is an example of a visual field arrangement. フィードバック画面のイメージ図である。FIG. 13 is an image diagram of a feedback screen. 粒子径と規格化信号値の関係である。This is the relationship between particle size and normalized signal value.
[第1実施形態]
 以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の技術的範囲を以下の実施形態および図示例に限定するものではない。
[First embodiment]
Hereinafter, the embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are subject to various technically preferable limitations for carrying out the present invention, but the technical scope of the present invention is not limited to the following embodiments and illustrated examples.
 本実施形態のX線撮影システム100は、図1に示すように、X線タルボ撮影装置1と、X線タルボ撮影条件演算装置2と、を備える。
 X線タルボ撮影装置1としては、線源格子(G0格子ともいう。)12を備えるタルボ・ロー干渉計を用いたものが採用されている。なお、線源格子12を備えず、第1格子(G1格子ともいう。)14と第2格子(G2格子ともいう。)15のみを備えるタルボ干渉計を用いたX線タルボ撮影装置を採用することもできる。
As shown in FIG. 1, an X-ray imaging system 100 according to this embodiment includes an X-ray Talbot imaging device 1 and an X-ray Talbot imaging condition calculation device 2.
The X-ray Talbot imaging device 1 employs a Talbot-Lau interferometer equipped with a source grating (also referred to as a G0 grating) 12. Note that it is also possible to employ an X-ray Talbot imaging device using a Talbot interferometer equipped only with a first grating (also referred to as a G1 grating) 14 and a second grating (also referred to as a G2 grating) 15 without the source grating 12.
[X線タルボ撮影装置について]
 図1は、本実施形態に係るX線タルボ撮影装置1の全体像を表す概略図である。本実施
形態に係るX線タルボ撮影装置1は、図1に示すように、X線発生装置11と、線源格子12と、被写体台13と、第1格子14と、第2格子15と、X線検出器16と、支柱17と、基台部18と、を備えている。
[About the X-ray Talbot Imaging Device]
1 is a schematic diagram showing an overall image of an X-ray Talbot imaging device 1 according to this embodiment. As shown in FIG. 1, the X-ray Talbot imaging device 1 according to this embodiment includes an X-ray generator 11, a source grating 12, a subject table 13, a first grating 14, a second grating 15, an X-ray detector 16, a support 17, and a base unit 18.
 このようなX線タルボ撮影装置1によれば、被写体台13に対して所定位置にある被写体Hのモアレ画像を縞走査法の原理に基づく方法で撮影したり、モアレ画像を、フーリエ変換法を用いて解析したりすることで、少なくとも3種類の画像を再構成することができる(再構成画像という)。詳しくは、X線タルボ撮影条件演算装置2が、X線タルボ撮影装置1で読み取られたモアレ画像及び被写体Hが存在しない状態でのモアレ画像(BG:Back Groundモアレ画像と呼ぶ)に基づいて、再構成画像を生成する。なお、X線撮影システム100は、被写体Hが存在しない状態でのモアレ画像を少なくとも1回、被写体H撮影の事前や事後に撮影するものとする。ただし、被写体H撮影とBGモアレ画像の撮影の間に、別の被写体の撮影を行っても良い。
 すなわち、BGモアレ縞画像とモアレ縞画像の平均成分の比である透過率を画像化した吸収画像(通常のX線の吸収画像と同じ)と、BGモアレ縞画像とモアレ縞画像の位相の差を画像化した微分位相画像と、BGモアレ縞画像とモアレ縞画像のビジビリティ(鮮明度)の比であるビジビリティ率を画像化した小角散乱画像の3種類の画像である。
According to the X-ray Talbot imaging device 1, at least three types of images can be reconstructed by capturing a moire image of the subject H at a predetermined position relative to the subject table 13 using a method based on the principle of the fringe scanning method, or by analyzing the moire image using the Fourier transform method (referred to as reconstructed images). In detail, the X-ray Talbot imaging condition calculation device 2 generates a reconstructed image based on the moire image read by the X-ray Talbot imaging device 1 and a moire image in a state where the subject H does not exist (referred to as a BG: Back Ground moire image). Note that the X-ray imaging system 100 captures a moire image in a state where the subject H does not exist at least once before or after the imaging of the subject H. However, imaging of another subject may be performed between the imaging of the subject H and the imaging of the BG moire image.
That is, there are three types of images: an absorption image (same as a normal X-ray absorption image) which visualizes the transmittance, which is the ratio between the average components of a BG moiré fringe image and a moiré fringe image; a differential phase image which visualizes the phase difference between a BG moiré fringe image and a moiré fringe image; and a small-angle scattering image which visualizes the visibility ratio, which is the ratio of the visibility (sharpness) of a BG moiré fringe image and a moiré fringe image.
 なお、縞走査法とは、複数の格子のうちのひとつを格子のスリット周期の1/M(Mは正の整数、吸収画像はM>2、微分位相画像と小角散乱画像はM>3)ずつ、スリット周期方向に移動させてM回撮影したモアレ画像を用いて再構成を行い、高精細の再構成画像を得る方法である。 The fringe scanning method is a method in which one of multiple gratings is moved in the direction of the slit period by 1/M (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images) of the grating, and then reconstructed using the moiré images captured M times to obtain a high-resolution reconstructed image.
 また、フーリエ変換法とは、被写体が存在する状態で、X線タルボ撮影装置でモアレ画像を1枚撮影し、画像処理において、そのモアレ画像をフーリエ変換する等して吸収画像、微分位相画像、小角散乱画像を再構成して生成する方法である。 The Fourier transform method is a method in which, in the presence of a subject, a single moiré image is captured using an X-ray Talbot imaging device, and then in image processing, the moiré image is subjected to a Fourier transform or other process to reconstruct and generate an absorption image, differential phase image, and small-angle scattering image.
 次に、タルボ干渉計やタルボ・ロー干渉計に共通する原理について、図2を用いて説明する。 Next, the principle common to Talbot and Talbot-Lau interferometers will be explained using Figure 2.
 なお、図2では、タルボ干渉計の場合が示されているが、タルボ・ロー干渉計の場合も基本的に同様に説明される。また、図2におけるz方向が図1のX線タルボ撮影装置1における鉛直方向に対応し、図2におけるx、y方向が図1のX線タルボ撮影装置1における水平方向(前後、左右方向)に対応する。 Note that while Figure 2 shows the case of a Talbot interferometer, the case of a Talbot-Lau interferometer can be basically explained in the same way. Also, the z direction in Figure 2 corresponds to the vertical direction in the X-ray Talbot imaging device 1 in Figure 1, and the x and y directions in Figure 2 correspond to the horizontal directions (front-back and left-right directions) in the X-ray Talbot imaging device 1 in Figure 1.
 また、図3に示すように、第1格子14や第2格子15には(タルボ・ロー干渉計の場合は線源格子12にも)、X線の照射方向であるz方向と直交するx方向に、所定の周期dで複数のスリットSが配列されて形成されている。
 なお、線源格子12、第1格子14、第2格子15の周期は、同一の周期に限定されない。
As shown in FIG. 3 , the first grating 14 and the second grating 15 (and the source grating 12 in the case of a Talbot-Lau interferometer) have a plurality of slits S arranged at a predetermined period d in the x direction perpendicular to the z direction, which is the irradiation direction of the X-rays.
The periods of the source grating 12, the first grating 14, and the second grating 15 are not limited to being the same.
 図2に示すように、X線源11a(X線発生装置11)から照射されたX線(タルボ・ロー干渉計の場合はX線源11aから照射されたX線が線源格子12(図2では図示省略)で多光源化されたX線)が第1格子14を透過すると、透過したX線がz方向に一定の間隔で像を結ぶ。この像を自己像(格子像等ともいう。)といい、このように自己像がz方向に一定の間隔をおいて形成される現象をタルボ効果という。 As shown in Figure 2, when X-rays irradiated from X-ray source 11a (X-ray generator 11) (in the case of a Talbot-Lau interferometer, the X-rays irradiated from X-ray source 11a are converted into multiple light sources by source grating 12 (not shown in Figure 2)) pass through first grating 14, the transmitted X-rays form images at regular intervals in the z direction. These images are called self-images (also called grating images, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
 すなわち、タルボ効果とは、図2に示すように一定の周期dでスリットSが設けられた第1格子14を可干渉性(コヒーレント)の光が透過すると、上記のように光の進行方向に一定の間隔でその自己像を結ぶ現象をいう。 In other words, the Talbot effect is a phenomenon in which, when coherent light passes through the first grating 14, which has slits S at a constant period d as shown in Figure 2, it forms self-images at constant intervals in the direction of light travel, as described above.
 そして、図2に示すように、第1格子14の自己像が像を結ぶ位置に、第1格子14の自己像と略同じ周期のスリットSが設けられた第2格子15を配置する。その際、第2格子15のスリットSの延在方向(すなわち図2ではx軸方向)が、第1格子14のスリットSの延在方向に対して略平行になるように配置すると、第2格子15上でモアレ画像Moが得られる。 Then, as shown in FIG. 2, a second grating 15 having slits S with approximately the same period as the self-image of the first grating 14 is placed at the position where the self-image of the first grating 14 forms an image. At this time, if the extension direction of the slits S of the second grating 15 (i.e., the x-axis direction in FIG. 2) is placed approximately parallel to the extension direction of the slits S of the first grating 14, a moiré image Mo is obtained on the second grating 15.
 なお、図2では、モアレ画像Moを第2格子15上に記載するとモアレ縞とスリットSとが混在する状態になって分かりにくくなるため、モアレ画像Moを第2格子15から離して記載している。しかし、実際には第2格子15上およびその下流側でモアレ画像Moが形成される。そして、このモアレ画像Moが、第2格子15の直下に配置されるX線検出器16で撮影される。 In FIG. 2, the moire image Mo is drawn away from the second grating 15 because if the moire image Mo were drawn on the second grating 15, the moire fringes and slits S would be mixed together and would be difficult to understand. However, in reality, the moire image Mo is formed on the second grating 15 and downstream of it. This moire image Mo is then captured by the X-ray detector 16, which is placed directly below the second grating 15.
 また、図2に示すように、X線源11a(X線発生装置11)と第1格子14との間に(すなわち図1の被写体台13上に)被写体Hが存在すると、被写体HによってX線の位相がずれたり、X線が散乱したりするため、前者の場合は、モアレ画像Moのモアレ縞が被写体の辺縁を境界に乱れ、後者の場合は、被写体の辺縁に限定されず、散乱を受けた部分のビジビリティ率が低下する。一方、図示を省略するが、X線源11a(X線発生装置11)と第1格子14との間に被写体Hが存在しなければ、被写体Hの影響を受けていないモアレ縞画像、つまりBGモアレ画像が現れる。以上がタルボ干渉計やタルボ・ロー干渉計の原理である。なお、被写体Hは、第1格子14の後ろに配置されていてもよい。 Also, as shown in FIG. 2, if the subject H is present between the X-ray source 11a (X-ray generator 11) and the first grating 14 (i.e., on the subject table 13 in FIG. 1), the subject H will cause the phase of the X-rays to shift or the X-rays to scatter. In the former case, the moire fringes of the moire image Mo will be disturbed at the boundary of the subject's edge, and in the latter case, the visibility rate of the scattered part will decrease, not limited to the subject's edge. On the other hand, although not shown, if the subject H is not present between the X-ray source 11a (X-ray generator 11) and the first grating 14, a moire fringe image that is not influenced by the subject H, that is, a BG moire image, will appear. This is the principle of the Talbot interferometer and the Talbot-Lau interferometer. The subject H may be placed behind the first grating 14.
 この原理に基づいて、本実施形態に係るX線タルボ撮影装置1においても、例えば図1に示すように、第2のカバーユニット130内で、第1格子14の自己像が像を結ぶ位置に第2格子15が配置されるようになっている。また、前述したように、第2格子15とX線検出器16とを離すとモアレ画像Mo(図2参照)がぼやけるため、本実施形態では、X線検出器16は第2格子15の直下に配置されるようになっている。 Based on this principle, in the X-ray Talbot imaging device 1 according to this embodiment, for example as shown in FIG. 1, the second grating 15 is arranged in the second cover unit 130 at a position where the self-image of the first grating 14 forms an image. Also, as mentioned above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 2) becomes blurred, so in this embodiment, the X-ray detector 16 is arranged directly below the second grating 15.
 なお、第2のカバーユニット130は、人や物が第1格子14や第2格子15、X線検出器16等にぶつかったり触れたりしないようにして、X線検出器16等を防護するために設けられている。 The second cover unit 130 is provided to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, second grating 15, X-ray detector 16, etc.
 図示を省略するが、X線検出器16は、照射されたX線に応じて電気信号を生成する変換素子が二次元状(マトリクス状)に配置され、変換素子により生成された電気信号を画像信号として読み取るように構成されている。そして、本実施形態では、X線検出器16は、第2格子15上に形成されるX線の像である上記のモアレ画像Moを変換素子ごとの画像信号として撮影するようになっている。 Although not shown in the figure, the X-ray detector 16 is configured such that conversion elements that generate electrical signals in response to irradiated X-rays are arranged in a two-dimensional array (matrix), and the electrical signals generated by the conversion elements are read as image signals. In this embodiment, the X-ray detector 16 captures the moiré image Mo, which is an image of the X-rays formed on the second grating 15, as an image signal for each conversion element.
 そして、本実施形態では、X線タルボ撮影装置1は、いわゆる縞走査法を用いてモアレ画像Moを複数枚撮影するようになっている。すなわち、本実施形態に係るX線タルボ撮影装置1では、第1格子14と第2格子15との相対位置を図1~図3におけるx軸方向(すなわちスリットSの延在方向(y軸方向)に直交する方向)にずらしながらモアレ画像Moを複数枚撮影する。なお、別の実施形態として線源格子12を動かしてもよい。 In this embodiment, the X-ray Talbot imaging device 1 captures multiple moiré images Mo using a so-called fringe scanning method. That is, in the X-ray Talbot imaging device 1 according to this embodiment, multiple moiré images Mo are captured while shifting the relative positions of the first grating 14 and the second grating 15 in the x-axis direction in Figures 1 to 3 (i.e., the direction perpendicular to the extension direction (y-axis direction) of the slit S). In another embodiment, the source grating 12 may be moved.
 そして、X線タルボ撮影装置1から複数枚分のモアレ画像Moの画像信号を受信したX線タルボ撮影条件演算装置2における画像処理で、複数枚のモアレ画像Moに基づいて、吸収画像や、微分位相画像や、小角散乱画像等を再構成するようになっている。 Then, the X-ray Talbot imaging condition calculation device 2 receives image signals of multiple moiré images Mo from the X-ray Talbot imaging device 1, and performs image processing to reconstruct an absorption image, a differential phase image, a small-angle scattering image, etc. based on the multiple moiré images Mo.
 そのため、本実施形態に係るX線タルボ撮影装置1で、縞走査法によりモアレ画像Moを複数枚撮影するために、第1格子14をx軸方向に所定量ずつ移動させるための図示し
ない移動装置等が設けられている。なお、第1格子14を移動させる代わりに第2格子15を移動させたり、或いは両方とも移動させたりするように構成することも可能である。また、別の実施形態として線源格子12を動かしてもよい。
Therefore, in the X-ray Talbot imaging device 1 according to this embodiment, in order to capture multiple moire images Mo by the fringe scanning method, a moving device (not shown) is provided for moving the first grating 14 in the x-axis direction by a predetermined amount. Note that it is also possible to configure the device so that the second grating 15 is moved instead of the first grating 14, or so that both are moved. In another embodiment, the source grating 12 may be moved.
 また、X線タルボ撮影装置1で、第1格子14と第2格子15との相対位置を固定したままモアレ画像Moを1枚だけ撮影し、画像処理装置における画像処理で、このモアレ画像Moを、フーリエ変換法等を用いて解析する等して吸収画像、微分位相画像、小角散乱画像を再構成するように構成することも可能である。 In addition, the X-ray Talbot imaging device 1 can be configured to capture only one moire image Mo while keeping the relative positions of the first grating 14 and the second grating 15 fixed, and then to reconstruct an absorption image, differential phase image, and small-angle scattering image by analyzing this moire image Mo using a Fourier transform method or the like in image processing in the image processing device.
 そして、この方法を用いる場合には、X線タルボ撮影装置1に必ずしも上記の移動装置等を設ける必要はない。なお、本発明は、このような移動装置が設けられていないX線タルボ撮影装置にも適用される。 When using this method, it is not necessary to provide the above-mentioned moving device etc. in the X-ray Talbot imaging device 1. Note that the present invention is also applicable to X-ray Talbot imaging devices that are not provided with such a moving device.
 なお、上記の3種類の再構成画像を再合成する等してさらに多くの種類の画像を生成することもできる。例えば、配向撮影では、複数(3以上の)の格子対向角で撮影された小角散乱画像を用い、各画像の位置合わせを行ったうえで、画素ごとに、正弦波でフィッティングを行い、フィッティングパラメータを抽出する。正弦波のグラフは、横軸をサンプルと格子の相対角度とし、縦軸をある画素の小角散乱信号値とするグラフである。フィッティングパラメータとして、正弦波の振幅、平均、位相が得られる。画素ごとの振幅値を表す画像を配向度画像、画素ごとの平均値を示す画像を散乱強度画像、画素ごとの位相を示す画像を配向角度画像と呼ぶ。なお、フィッティングの方法は正弦波に限定されない。
 以降では、再構成画像や再構成画像を再合成することで生成された配向画像(配向度画像、散乱強度画像、配向角度画像)を合わせてタルボ画像とする。
It is also possible to generate many more types of images by recombining the above three types of reconstructed images. For example, in orientation photography, small-angle scattering images taken at multiple (three or more) lattice facing angles are used, and after aligning each image, fitting is performed with a sine wave for each pixel to extract fitting parameters. A sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the lattice, and the vertical axis represents the small-angle scattering signal value of a certain pixel. The amplitude, average, and phase of the sine wave are obtained as fitting parameters. An image showing the amplitude value for each pixel is called an orientation degree image, an image showing the average value for each pixel is called a scattering intensity image, and an image showing the phase for each pixel is called an orientation angle image. It is to be noted that the fitting method is not limited to a sine wave.
Hereinafter, the reconstructed image and the orientation images (orientation degree image, scattering intensity image, and orientation angle image) generated by recombining the reconstructed images will be referred to as a Talbot image.
 本実施形態に係るX線タルボ撮影装置1における他の部分の構成について説明する。本実施形態では、いわゆる縦型であり、X線発生装置11、線源格子12、被写体台13、第1格子14、第2格子15、X線検出器16が、この順序に重力方向であるz方向に配置されている。すなわち、本実施形態では、z方向が、X線発生装置11からのX線の照射方向ということになる。 The configuration of other parts of the X-ray Talbot imaging device 1 according to this embodiment will be described. This embodiment is a so-called vertical type, in which the X-ray generator 11, radiation source grating 12, subject table 13, first grating 14, second grating 15, and X-ray detector 16 are arranged in this order in the z direction, which is the direction of gravity. That is, in this embodiment, the z direction is the irradiation direction of X-rays from the X-ray generator 11.
 X線発生装置11は、X線源11aとして、例えば医療現場で広く一般に用いられているクーリッジX線源や回転陽極X線源等を備えている。また、それ以外のX線源を用いることも可能である。本実施形態のX線発生装置11は、焦点からX線をコーンビーム状に照射するようになっている。すなわち、X線発生装置11から離れるほどX線が広がるように照射される。 The X-ray generator 11 is equipped with an X-ray source 11a, such as a Coolidge X-ray source or a rotating anode X-ray source that are widely used in medical settings. Other X-ray sources can also be used. The X-ray generator 11 of this embodiment is configured to irradiate X-rays in a cone beam shape from a focal point. In other words, the X-rays are irradiated so that they spread out the further away from the X-ray generator 11.
 そして、本実施形態では、X線発生装置11の下方に線源格子12が設けられている。その際、X線源11aの陽極の回転等により生じるX線発生装置11の振動が線源格子12に伝わらないようにするために、本実施形態では、線源格子12は、X線発生装置11には取り付けられず、支柱17に設けられた基台部18に取り付けられた固定部材18aに取り付けられている。 In this embodiment, the radiation source grating 12 is provided below the X-ray generator 11. In order to prevent vibrations of the X-ray generator 11 caused by the rotation of the anode of the X-ray source 11a, etc., from being transmitted to the radiation source grating 12, in this embodiment, the radiation source grating 12 is not attached to the X-ray generator 11, but is attached to a fixed member 18a attached to a base portion 18 provided on a support 17.
 なお、本実施形態では、X線発生装置11の振動が支柱17等のX線タルボ撮影装置1の他の部分に伝播しないようにするために(或いは伝播する振動をより小さくするために)、X線発生装置11と支柱17との間に緩衝部材17aが設けられている。 In this embodiment, a buffer member 17a is provided between the X-ray generator 11 and the support 17 to prevent vibrations from the X-ray generator 11 from propagating to other parts of the X-ray Talbot imaging device 1, such as the support 17 (or to reduce the amount of vibration that propagates).
 本実施形態では、上記の固定部材18aには、線源格子12のほか、線源格子12を透過したX線の線質を変えるためのろ過フィルタ(付加フィルタともいう。)112や、照射されるX線の照射野を絞るための照射野絞り113、X線を照射する前にX線の代
わりに可視光を被写体に照射して位置合わせを行うための照射野ランプ114等が取り付
けられている。
In this embodiment, in addition to the radiation source grating 12, the fixed member 18a is equipped with a filtering filter (also called an additional filter) 112 for changing the radiation quality of the X-rays transmitted through the radiation source grating 12, an irradiation field aperture 113 for narrowing the irradiation field of the irradiated X-rays, and an irradiation field lamp 114 for irradiating the subject with visible light instead of X-rays for alignment before irradiating the subject with X-rays.
 なお、線源格子12とろ過フィルタ112と照射野絞り113とは、必ずしもこの順番に設けられる必要はない。また、本実施形態では、線源格子12等の周囲には、それらを保護するための第1のカバーユニット120が配置されている。 Note that the radiation source grating 12, the filtration filter 112, and the irradiation field aperture 113 do not necessarily have to be arranged in this order. In addition, in this embodiment, a first cover unit 120 is arranged around the radiation source grating 12 and other components to protect them.
 被写体台13は、被写体Hを載置するための台である。被写体台13は、X線発生装置11から照射されるX線に対して被写体Hの位置を固定する固定ユニット(図示せず。)が設けられている。固定ユニットは、被写体Hを所定の位置で固定可能とする固定部と、当該固定部をXY軸(2次元方向)+Θ軸(XY面内の任意の回転角度)に回転可能とする移動機構と、を有する。このような固定ユニットを用い、被写体HをXY面内で回転させることで、X線タルボ撮影装置1によって、被写体Hの同一部位を、撮影角度や格子対向角度(格子対向角)を変えた状態で正確に複数回撮影することができる。なお、被写体Hは必ずしも固定されている必要はなく、例えば、板材やダンベル試験片など、固定せずとも被写体台13上で移動することがない被写体Hであれば、固定せず撮影可能である。
 ここで、撮影角度とは、X線タルボ撮影装置1に対する被写体Hの位置を示す角度であり、具体的には、被写体台13の基準位置Pからの回転角度である。また、格子対向角とは、撮影された画像(もしくは、撮影後表示された画像)の方向と格子(マルチスリット12、第1格子14、第2格子15)の方向との関係(角度)である。
The subject table 13 is a table on which the subject H is placed. The subject table 13 is provided with a fixing unit (not shown) that fixes the position of the subject H with respect to the X-rays irradiated from the X-ray generator 11. The fixing unit has a fixing part that can fix the subject H at a predetermined position, and a moving mechanism that can rotate the fixing part about the XY axis (two-dimensional direction) + Θ axis (any rotation angle in the XY plane). By using such a fixing unit and rotating the subject H in the XY plane, the same part of the subject H can be accurately photographed multiple times by the X-ray Talbot imaging device 1 with different shooting angles and lattice facing angles (lattice facing angles). Note that the subject H does not necessarily need to be fixed, and for example, if the subject H is a plate material or a dumbbell test piece that does not move on the subject table 13 even without being fixed, it can be photographed without being fixed.
Here, the imaging angle is an angle indicating the position of the subject H relative to the X-ray Talbot imaging device 1, and specifically, is a rotation angle from a reference position P of the subject table 13. Also, the grating facing angle is the relationship (angle) between the direction of the captured image (or the image displayed after imaging) and the direction of the gratings (the multi-slit 12, the first grating 14, and the second grating 15).
 なお、格子と、被写体内部の屈折率が異なる材料同士の境界部、あるいは散乱体との相対角度に応じて、位相の変化量あるいはビジビリティ率の低下の度合いが異なり、再構成画像として生成された際に、当該角度に応じて見える像が異なるものとなる。したがって、被写体Hの同一部位を、格子対向角を変えて複数回撮影することによって、同一のモアレ画像Moを基にした3種類(吸収画像、微分位相画像、小角散乱画像)の再構成画像の画像セットを角度ごとに複数取得することができる。ここで、取得された格子対向角ごとの画像における被写体Hの同一部位を合わせるため、画像処理にて位置合わせをしてもよい。また、位置合わせにおいては、被写体Hの特徴を用いてもよいし、被写体Hとは別の位置合わせ用のマーカーを被写体Hと一緒に撮影し、そのマーカーを利用して実施してもよい。
 また、本実施形態では、被写体Hの撮影角度の調整を、固定ユニットの移動機構で行うものとしたが、X線源11a、複数の格子12,14,15(格子保持部でもよい。)及びX線検出器16が、X線の光軸を回転軸とし、全体として回転することで、被写体Hと格子の格子対向角度を変えて撮影できるような構成を採用してもよいものとする。
In addition, the degree of change in phase or the decrease in visibility rate varies depending on the relative angle between the lattice and the boundary between materials with different refractive indexes inside the subject, or the scatterer, and when generated as a reconstructed image, the image seen according to the angle varies. Therefore, by photographing the same part of the subject H multiple times with different lattice facing angles, it is possible to obtain multiple image sets of three types of reconstructed images (absorption image, differential phase image, small angle scattering image) based on the same moire image Mo for each angle. Here, in order to match the same part of the subject H in the images obtained for each lattice facing angle, alignment may be performed by image processing. In addition, the characteristics of the subject H may be used for alignment, or a marker for alignment other than the subject H may be photographed together with the subject H and the marker may be used.
In addition, in this embodiment, the imaging angle of the subject H is adjusted by the moving mechanism of the fixed unit, but a configuration may be adopted in which the X-ray source 11a, the multiple gratings 12, 14, 15 (which may be grating holders), and the X-ray detector 16 rotate as a whole around the optical axis of the X-rays, thereby enabling imaging by changing the grating facing angle between the subject H and the gratings.
 図示を省略するが、X線タルボ撮影装置1は、被写体台に設置された被写体を、xyz方向のうち少なくとも1方向から撮影し、被写体の光学写真を取得する光学写真取得装置を備えていてもよい。 Although not shown in the figure, the X-ray Talbot imaging device 1 may be equipped with an optical photograph acquisition device that photographs a subject placed on a subject table from at least one of the x, y and z directions to acquire an optical photograph of the subject.
[X線タルボ撮影条件演算装置について]
 X線タルボ撮影条件演算装置2は、X線タルボ撮影装置1により得られたモアレ画像Moを用いて、被写体Hのタルボ画像を生成したり、タルボ画像の画像処理を行ったりすることができる。また、X線タルボ撮影条件演算装置2は、被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算することができる。
 このようなX線タルボ撮影条件演算装置2は、図4に示すように、制御部21、操作部22、表示部23、通信部24、記憶部25を備えて構成されている。
 また、X線タルボ撮影条件演算装置2は、後述する撮影条件演算処理や撮影条件表示処理などを実行する。
 なお、表示部23を備えるX線タルボ撮影条件演算装置2は、画像表示装置(X線タルボ撮影条件表示装置)としても機能する。
[About the X-ray Talbot radiography condition calculation device]
The X-ray Talbot imaging condition calculation device 2 can generate a Talbot image of the subject H and perform image processing of the Talbot image by using the moire image Mo obtained by the X-ray Talbot imaging device 1. Furthermore, the X-ray Talbot imaging condition calculation device 2 can calculate imaging conditions based on subject information, past imaging information and/or theoretical calculation formulas.
As shown in FIG. 4, the X-ray Talbot radiography condition calculation device 2 includes a control unit 21, an operation unit 22, a display unit 23, a communication unit 24, and a storage unit 25.
Moreover, the X-ray Talbot imaging condition calculation device 2 executes imaging condition calculation processing and imaging condition display processing, which will be described later.
The X-ray Talbot radiography condition calculation device 2 including the display unit 23 also functions as an image display device (X-ray Talbot radiography condition display device).
 制御部21は、CPU(Central Processing Unit)やRAM(Random Access Memory)等から構成され、記憶部25に記憶されているプログラムとの協働により、後述する画像処理を始めとする各種処理を実行する。
 そして、制御部21は、被写体情報の入力を受け付ける受付手段として機能する。
 また、制御部21は、被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算手段として機能する。
 また、制御部21は、過去の撮影情報及び/又は理論計算式に基づいて、所定の特徴量を算出する算出手段として機能する。特徴量とは、透過率や散乱量(ビジビリティ率)などを指す。なお、モアレ画像Moのビジビリティには、被写体の散乱によって、小さくなるという性質があり、散乱量が大きいほど、ビジビリティ率は減少する。よって、ビジビリティ率や小角散乱画像は被写体の各位置におけるX線散乱量を可視化したものと考えることができる。
 また、制御部21は、算出した特徴量に基づいて撮影条件を選定する選定手段として機能する。
 また、制御部21は、撮影条件に基づいて撮影した場合の画像の画質を予測する予測手段として機能する。
 また、制御部21は、予測された画質が所定の画質条件を満たすかどうか判定する判定手段として機能する。
 また、制御部21は、記憶手段から、被写体情報に一致又は類似する過去の撮影情報を検索し、一致又は類似する過去の撮影情報における撮影条件を抽出する抽出手段として機能する。
 また、制御部21は、撮影条件を表示手段に表示する表示制御手段として機能する。
 また、制御部21は、判定手段により所定の画質条件を満たす撮影条件が得られないと判定された場合には、所定の画質条件を満たす被写体情報における被写体条件を演算する第2演算手段として機能する。
 また、制御部21は、撮影条件に基づいて撮影した場合に予測される画像の画質と当該撮影条件に基づいて撮影された画像の画質との乖離度を計算する計算手段として機能する。
 また、制御部21は、乖離度に基づいて理論計算式へのフィードバックを行うフィードバック手段として機能する。
 また、制御部21は、撮影した画像の低画質領域を可視化する可視化手段として機能する。
 また、制御部21は、タイリング撮影時に適切な撮影視野の配置を計算して提示する手段として機能する。
The control unit 21 is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), etc., and executes various processes including image processing, which will be described later, in cooperation with programs stored in the storage unit 25 .
The control unit 21 functions as a receiving unit that receives input of subject information.
The control unit 21 also functions as a calculation unit that calculates the shooting conditions based on the subject information, past shooting information and/or theoretical calculation formulas.
The control unit 21 also functions as a calculation means for calculating a predetermined feature amount based on past photographing information and/or a theoretical calculation formula. The feature amount refers to transmittance, scattering amount (visibility rate), etc. The visibility of the moire image Mo has the property of being reduced by scattering of the subject, and the greater the scattering amount, the smaller the visibility rate. Therefore, the visibility rate and the small-angle scattering image can be considered as visualization of the amount of X-ray scattering at each position of the subject.
The control unit 21 also functions as a selection unit that selects the imaging conditions based on the calculated feature amounts.
The control unit 21 also functions as a prediction unit that predicts the image quality of an image when photographed based on the photographing conditions.
The control unit 21 also functions as a determination unit that determines whether the predicted image quality satisfies a predetermined image quality condition.
The control unit 21 also functions as an extraction unit that searches the storage unit for past shooting information that matches or is similar to the subject information, and extracts shooting conditions in the matching or similar past shooting information.
The control unit 21 also functions as a display control unit that displays the shooting conditions on the display unit.
In addition, when the determination means determines that shooting conditions that satisfy the specified image quality conditions cannot be obtained, the control unit 21 functions as a second calculation means that calculates subject conditions in the subject information that satisfy the specified image quality conditions.
The control unit 21 also functions as a calculation means for calculating the degree of discrepancy between the image quality predicted when an image is captured based on the shooting conditions and the image quality of an image captured based on the shooting conditions.
The control unit 21 also functions as a feedback unit that performs feedback to the theoretical calculation formula based on the degree of deviation.
The control unit 21 also functions as a visualization unit that visualizes low-quality areas of a captured image.
The control unit 21 also functions as a means for calculating and presenting an appropriate arrangement of the photographing fields of view during tiling photographing.
 操作部22は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードで押下操作されたキーの押下信号とマウスによる操作信号とを、入力信号として制御部21に出力する。表示部23のディスプレイと一体に構成されたタッチパネルを備え、これらの操作に応じた操作信号を生成して制御部21に出力する構成としてもよい。 The operation unit 22 is configured with a keyboard equipped with cursor keys, numeric input keys, various function keys, etc., and a pointing device such as a mouse, and outputs press signals of keys pressed on the keyboard and operation signals from the mouse as input signals to the control unit 21. It may also be configured with a touch panel integrated with the display of the display unit 23, and generate operation signals corresponding to these operations and output them to the control unit 21.
 表示部23は、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のディスプレイを備えて構成されており、制御部21の表示制御に従って、各種表示画面等を表示する。 The display unit 23 is configured with a display such as a CRT (Cathode Ray Tube) or LCD (Liquid Crystal Display), and displays various display screens, etc., according to the display control of the control unit 21.
 通信部24は、通信インターフェイスを備え、通信ネットワーク上にあるX線タルボ撮影装置1や、PACS(Picture Archiving and Communication System)等の外部システムと有線又は無線により通信する。 The communication unit 24 has a communication interface and communicates with the X-ray Talbot imaging device 1 on the communication network and with external systems such as a PACS (Picture Archiving and Communication System) via wired or wireless communication.
 記憶部25は、不揮発性の半導体メモリーやハードディスク等により構成され、制御部21により実行されるプログラムやプログラムの実行に必要なデータ等を記憶している。
 そして、記憶部25は、過去の撮影情報を、当該過去の撮影情報を用いて撮影した被写体の被写体情報と紐付けて格納する記憶手段として機能する。具体的には、記憶部25は、後述する撮影情報データベースを備えている。
 また、記憶部25は、記憶手段として機能し、理論計算式を格納する。
 また、記憶部25は、被写体情報と前記過去の撮影情報とから構築した、小角散乱画像および/又は微分位相画像の信号値を算出する学習モデルを記憶している。以降の説明において、モデルとは、学習モデルを指すものとする。
The storage unit 25 is configured with a non-volatile semiconductor memory, a hard disk, or the like, and stores the programs executed by the control unit 21, data necessary for executing the programs, and the like.
The storage unit 25 functions as a storage unit that stores the past shooting information in association with the subject information of the subject photographed using the past shooting information. Specifically, the storage unit 25 includes a shooting information database, which will be described later.
The storage unit 25 also functions as a storage means and stores theoretical calculation formulas.
The storage unit 25 also stores a learning model that is constructed from the subject information and the past shooting information and that calculates signal values of the small-angle scattering image and/or the differential phase image. In the following description, the term "model" refers to the learning model.
(撮影条件演算処理)
 撮影条件演算処理は、制御部21が、被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する処理である。制御部21は、撮影条件を演算後、表示制御手段として機能し、表示部23に撮影条件を表示する撮影条件表示処理を実行する。
 撮影条件演算処理や撮影条件表示処理は、制御部21と、記憶部25に記憶されているプログラムとの協働により実行される。
(Shooting condition calculation processing)
The photographing condition calculation process is a process in which the control unit 21 calculates the photographing conditions based on the subject information, past photographing information and/or theoretical calculation formulas. After calculating the photographing conditions, the control unit 21 functions as a display control means and executes a photographing condition display process for displaying the photographing conditions on the display unit 23.
The photographing condition calculation process and the photographing condition display process are executed by the control unit 21 in cooperation with a program stored in the storage unit 25 .
 まず、図5を用いて、撮影条件演算処理のイメージを説明する。図5に示すイメージは、被写体情報が入力され、演算手段として機能する制御部21により、理論計算式を用いた理論演算および/又は過去の撮影情報などのデータから演算が行われ、推奨する撮影条件を出力するイメージである。
 入力される被写体情報とは、例えば、材質、組成、構造、一体/複合材、繊維長、繊維径、欠陥情報、課題背景などである。
 出力される撮影条件とは、例えば、透過率、散乱強度、X線照射条件、管電圧、mAs値、撮影枚数(配向撮影)、撮影枚数(タイリング撮影)、撮影視野の配置(タイリング撮影)、撮影可否などである。
 これにより、ユーザーが、タルボ撮影において、より適切な撮影条件を容易に決定できる。
First, an image of the photographing condition calculation process will be described with reference to Fig. 5. The image shown in Fig. 5 is an image in which subject information is input, and the control unit 21 functioning as a calculation means performs theoretical calculations using theoretical formulas and/or calculations from data such as past photographing information, and outputs recommended photographing conditions.
The input subject information includes, for example, material, composition, structure, solid/composite material, fiber length, fiber diameter, defect information, and problem background.
The shooting conditions that are output include, for example, transmittance, scattering intensity, X-ray irradiation conditions, tube voltage, mAs value, number of shots (orientation shooting), number of shots (tiling shooting), arrangement of the shooting field of view (tiling shooting), and whether shooting is possible.
This allows the user to easily determine more appropriate shooting conditions for Talbot photography.
<実施例1>
 次に、図6を用いて、撮影条件演算処理のフローを説明する。
 実施例1では、ユーザーは、アルミダイキャスト製品における欠陥(ボイド)について、タルボ画像で検出可能かどうかについて知りたいものとする。実施例1の被写体情報は、名称:アルミダイキャスト、カテゴリ:金属製部品、光軸方向の厚み:60mm、被写体台面内の寸法:100mm×100mmであるとする。
Example 1
Next, the flow of the shooting condition calculation process will be described with reference to FIG.
In Example 1, a user wants to know whether defects (voids) in aluminum die-cast products can be detected by Talbot images. The subject information in Example 1 is as follows: name: aluminum die-cast, category: metal part, thickness in the optical axis direction: 60 mm, and dimensions within the subject table: 100 mm x 100 mm.
 まず、ユーザーが操作部22を用いて、表示部23に表示された図7に示す入力画面に被写体情報の入力を行う。制御部21は、被写体情報を受け付ける(ステップS1)。このとき、制御部21は、受付手段として機能する。 First, the user uses the operation unit 22 to input subject information into the input screen shown in FIG. 7 displayed on the display unit 23. The control unit 21 accepts the subject information (step S1). At this time, the control unit 21 functions as a receiving unit.
 ここで、図7に示す入力画面について、説明する。
 名称欄A1は、ユーザーが被写体の名称を入力する欄である。被写体の名称とは、例えば、撮影を行う被写体の製品名や一般的な呼称である。ユーザーは、手入力もしくは、ある選択肢の中からプルダウン方式で選択すること、等の方法で入力することができる
 カテゴリ欄A2は、ユーザーが被写体のカテゴリを入力する欄である。被写体のカテゴリとは、例えば、被写体の一般的な分類である。一般的な分類とは、樹脂/繊維強化樹脂/電子部品/金属部品などである。ユーザーは、撮影を行う被写体が属すると思われる上記カテゴリについて、手入力もしくは、あらかじめ設定されている選択肢の中からプルダウン方式で選択すること、等の方法で入力することができる
Here, the input screen shown in FIG. 7 will be described.
The name field A1 is a field where the user inputs the name of the subject. The name of the subject is, for example, the product name or general name of the subject being photographed. The user can input the name manually, or by selecting from a selection of options using a pull-down menu, or by other methods. The category field A2 is a field where the user inputs the category of the subject. The category of the subject is, for example, a general classification of the subject. General classifications include resin/fiber-reinforced resin/electronic components/metal components, etc. The user can input the category to which the subject being photographed is thought to belong by manually inputting the name, or by selecting from a selection of options set in advance using a pull-down menu, or by other methods.
 要素欄A3は、ユーザーが被写体を構成する材料や元素を入力する欄である。以降の説明において、要素欄A3に入力された内容を、特性(要素)とする。材料・元素欄は、手入力されてもよいし、あらかじめ設定されている元素テーブル、あるいは代表的な材料例(CFRP、GFRP、など)から選択して入力されてもよい。形状欄は、手入力されてもよいし、あらかじめある選択肢(直方体・球状・柱状・板状・円柱状など)の選択肢からプルダウン方式で選択して入力されてもよい。なお、形状欄が選択肢の場合、設定された形状によって、被写体台面内の寸法欄の入力するべき情報が変化する。例えば、「直方体」が入力された場合は、面内の寸法の情報が入力可能となるが、「球」が入力された場合は、半径の情報が入力可能となる。光軸方向の厚み欄は、図1のz軸方向の寸法を入力する欄である。被写体台面内の寸法欄は、面内、つまり、図1のxy平面の寸法を入力する欄である。例えば、形状欄にて、「直方体」が選択された場合は、x方向寸法×y方向寸法=Xmm×Ymmが入力可能であり、球が選択された場合は、半径=Rmmが入力可能となる。またCADデータなどを直接読みこんで、より複雑な形状を入力できても良い。 The element field A3 is a field where the user inputs the material and elements that make up the subject. In the following explanation, the contents input in the element field A3 are referred to as characteristics (elements). The material and element fields may be input manually, or may be selected from a pre-set element table or representative material examples (CFRP, GFRP, etc.). The shape field may be input manually, or may be selected from pre-set options (rectangular prism, sphere, columnar, plate, cylinder, etc.) using a pull-down menu. When the shape field is an option, the information to be input in the subject table surface dimension field changes depending on the set shape. For example, if "rectangular prism" is input, the in-plane dimension information can be input, but if "sphere" is input, the radius information can be input. The thickness field in the optical axis direction is a field where the dimension in the z-axis direction in FIG. 1 is input. The subject table surface dimension field is a field where the in-plane dimension, that is, the xy plane dimension in FIG. 1 is input. For example, if "rectangle" is selected in the shape field, x-dimension x y-dimension = X mm x Y mm can be input, and if sphere is selected, radius = R mm can be input. It may also be possible to directly load CAD data, etc., to input more complex shapes.
 含有物質欄A4は、ユーザーが要素ごとに、その要素の内部に含まれる含有物質の情報を入力する欄である。含有物質とは、例えば、充填剤・添加剤・フィラーなどである。以降の説明において、要素欄A3に入力された内容を、特性(含有物質)とする。組成欄は、手入力されてもよいし、あらかじめ設定されている組成テーブルから選択して入力されてもよい。形状欄は、手入力されてもよいし、あらかじめある選択肢(球状・柱状・板状など)の選択肢からプルダウン方式で選択して入力されてもよい。形状欄にて、「球」が選択された場合は「半径」を、「柱状」が選択された場合は「径」、「向き」等の情報が、形状欄以下の欄に入力可能となる。濃度欄は、上記含有物質の濃度を入力する欄である。なお、含有物質が含まれないと考えられるときは、含有物質欄A4は空欄もしくは削除されてもよい。 The contained substance field A4 is a field where the user inputs information about the contained substances contained within each element. The contained substances are, for example, packing materials, additives, and fillers. In the following explanation, the content input in the element field A3 is referred to as the characteristic (contained substance). The composition field may be input manually or may be input by selecting from a pre-set composition table. The shape field may be input manually or may be input by selecting from pre-set options (spherical, cylindrical, plate-like, etc.) using a pull-down menu. If "sphere" is selected in the shape field, information such as "radius" can be input in the field below the shape field, and if "cylindrical" is selected, information such as "diameter" and "orientation" can be input in the field below the shape field. The concentration field is a field where the concentration of the contained substance is input. If it is considered that no contained substance is contained, the contained substance field A4 may be left blank or deleted.
 可視化対象欄A5は、ユーザーが可視化を行いたい対象である。その対象とは、例えば、クラック・ボイド・繊維等である。材料・元素欄は、可視化対象を構成する材料や元素が入力される欄である。例えば、空気・繊維などである。形状欄は、手入力されてもよいし、あらかじめある選択肢(直方体・球状・柱状・板状など)の選択肢からプルダウン方式で選択して入力されてもよい。形状欄にて、「球」が選択された場合は「半径」を、「柱状」が選択された場合は「径」、「向き」等の情報が、形状欄以下の欄に入力可能となる。可視化を行いたい対象の寸法が不明の場合は空欄でもよい。
 また、各被写体において、要素数やその要素に含まれる含有物質、さらにそれらの特性値を追加・削除することもできる。
The visualization target field A5 is the target that the user wants to visualize. Such targets are, for example, cracks, voids, fibers, etc. The material/element field is a field in which the materials and elements that make up the visualization target are input. For example, air, fibers, etc. The shape field may be input manually, or may be input by selecting from pre-defined options (cuboid, sphere, columnar, plate, etc.) using a pull-down menu. If "sphere" is selected in the shape field, information such as "radius" can be input in the field below the shape field, and if "columnar" is selected, information such as "diameter" and "orientation" can be input. If the dimensions of the target to be visualized are unknown, the field may be left blank.
It is also possible to add or delete the number of elements, the substances contained in the elements, and their characteristic values for each subject.
 特性追加ボタンB1は、要素欄A3又は含有物質欄A4の特性(要素)又は特性(含有物質)の入力欄を追加するボタンである。
 特性削除ボタンB2は、要素欄A3又は含有物質欄A4の特性(要素)又は特性(含有物質)の入力欄を削除するボタンである。
 要素追加ボタンB3は、要素欄A3を追加するボタンである。
 要素削除ボタンB4は、要素欄A3を削除するボタンである。
 含有物質追加ボタンB5は、含有物質欄A4を追加するボタンである。
 含有物質削除ボタンB6は、含有物質欄A4を削除するボタンである。
 例えば、図7にて、要素欄A3において要素1が指定された状態で、含有物質追加ボタンB5もしくは特性追加ボタンB1が押下されると、要素1における含有物質もしくは特性が追加される。同様に、含有物質欄A4において含有物質1が選択された状態で、特性追加ボタンB1を押すと、含有物質1における特性を追加することができる。
The add characteristic button B1 is a button for adding an input field for a characteristic (element) or a characteristic (contained substance) to the element field A3 or the contained substance field A4.
The characteristic deletion button B2 is a button for deleting the input field of the characteristic (element) or characteristic (contained substance) in the element field A3 or the contained substance field A4.
The element addition button B3 is a button for adding an element field A3.
The element deletion button B4 is a button for deleting the element column A3.
The add substance button B5 is a button for adding a substance column A4.
The Delete Substances button B6 is a button for deleting the Substances column A4.
7, when element 1 is specified in element field A3, pressing the Add Ingredient Button B5 or the Add Property Button B1 adds an ingredient or property to element 1. Similarly, when element 1 is selected in element field A4, pressing the Add Property Button B1 adds a property to element 1.
 光学写真取得ボタンB7は、被写体台13に設置された被写体を少なくとも1方向から撮影し、光学写真を取得するボタンである。取得された光学写真は、光学写真表示欄A6に表示される。この画像中の被写体部分を認識することで、例えば、被写体の厚みや寸法などの情報を、自動で算出し、インプット画面へ反映させることもできる。得られた光学写真から、ユーザーが手で寸法を指定することもできる。また写真の取得は、別途撮影した試料の写真を読みこんで表示するやり方でもよい。 The optical photo acquisition button B7 is a button that photographs the subject placed on the subject table 13 from at least one direction and acquires an optical photo. The acquired optical photo is displayed in the optical photo display area A6. By recognizing the subject part in this image, information such as the thickness and dimensions of the subject can be automatically calculated and reflected on the input screen. The user can also manually specify dimensions from the acquired optical photo. The photo can also be acquired by reading and displaying a photo of the sample taken separately.
 図面取込ボタンB8は、図面情報がある場合、図面情報を入力画面へ取り込むためのボタンである。例えば、被写体の厚みや寸法、被写体を構成している材料種を、入力画面へ反映させることができる。具体的には、図面取込ボタンB8が押下されると、ファイル選択ダイアログが開かれ、CADデータ等を選択することができる。取り込まれた図面情報は、図面表示欄A7に表示される。
 ファイル読込ボタンB9は、被写体の構成要素・含有物質等の情報を手入力で行う代わりに、同様の情報が記載されたテキストファイルを読み込ませることで、入力画面に情報を反映するためのボタンである。
 課題背景欄A8は、ユーザーが、撮影を行いたい・行うにいたった背景、課題を入力し、記録するための欄である。
 目的欄A9は、ユーザーが、撮影の目的を入力する欄である。
 演算開始ボタンB10は、入力された被写体情報に基づいて、撮影条件演算処理を進めるボタンである。
The Import Drawing button B8 is a button for importing drawing information into the input screen when there is drawing information. For example, the thickness and dimensions of the subject, and the material type that constitutes the subject can be reflected on the input screen. Specifically, when the Import Drawing button B8 is pressed, a file selection dialog box is opened, and CAD data, etc. can be selected. The imported drawing information is displayed in the drawing display field A7.
The file load button B9 is a button for loading a text file containing information such as the components and substances contained in the subject, instead of manually inputting the information, and reflecting the information on the input screen.
The subject background field A8 is a field for the user to input and record the background and subject that led to wanting to take the photograph or taking the photograph.
The purpose column A9 is a column where the user inputs the purpose of the photography.
The calculation start button B10 is a button for proceeding with the photographing condition calculation process based on the input subject information.
 次に、ユーザーが操作部22を用いて、表示部23に表示された演算開始ボタンB10を押下する。制御部21は、演算開始ボタンB10の押下を受け付ける(ステップS2)。撮影条件演算処理はステップS3に進む。 Next, the user uses the operation unit 22 to press the calculation start button B10 displayed on the display unit 23. The control unit 21 accepts the pressing of the calculation start button B10 (step S2). The shooting condition calculation process proceeds to step S3.
 次に、制御部21は、撮影情報データベースから、入力された被写体情報に一致又は類似した撮影情報を検索する(ステップS3)。このとき、制御部21は、抽出手段として機能する。
 検索方法は、例えば入力された被写体情報の名称・カテゴリと、一致する撮影情報を撮影情報データベースから抽出したうえで、被写体の材質・厚みなどが一致又は類似する撮影情報を検索する方法がある。
 被写体情報に類似・一致する撮影情報がある場合(ステップS4;YES)は、ステップS6~S8と並行して、その撮影情報を基にした散乱量算出を行う(ステップS5)。本実施例では、被写体情報に一致又は類似する撮影情報がないものとし、次のステップに移行する。
 被写体情報に類似・一致する撮影情報がない場合(ステップS4;NO)、撮影条件演算処理は、撮影情報を基にした散乱量算出を行わず(ステップS5)、ステップS9へ進む。
 実施例1では、被写体情報に類似・一致する撮影情報がないものとして説明する。したがって、ステップS5はスキップされる。
 なお、実施例では、ステップS4~S5の処理とステップS6~S8の処理が並行しているが、ステップS4~S5の処理とステップS6~S8の処理が、それぞれ単独でもよい。
Next, the control unit 21 searches the photography information database for photography information that matches or is similar to the input subject information (step S3). At this time, the control unit 21 functions as an extraction unit.
The search method may involve, for example, extracting shooting information that matches the name and category of the input object information from the shooting information database, and then searching for shooting information that matches or is similar to the object's material, thickness, etc.
If there is photographic information that is similar or coincident with the subject information (step S4; YES), the amount of scattering is calculated based on the photographic information in parallel with steps S6 to S8 (step S5). In this embodiment, it is assumed that there is no photographic information that coincides or is similar to the subject information, and the process proceeds to the next step.
If there is no shooting information similar or matching to the subject information (step S4; NO), the shooting condition calculation process does not calculate the amount of scattering based on the shooting information (step S5), and proceeds to step S9.
In the first embodiment, it is assumed that there is no shooting information similar or matching to the subject information, and therefore step S5 is skipped.
In the embodiment, the process of steps S4 to S5 and the process of steps S6 to S8 are performed in parallel, but the process of steps S4 to S5 and the process of steps S6 to S8 may each be performed independently.
 次に、制御部21は、透過率の算出を行う(ステップS6)。このとき、制御部21は、算出手段として機能する。
 制御部21は、入力された被写体情報から、各X線エネルギーにおける被写体通過時の透過率を算出する。制御部21は、透過率計算において、X線エネルギーを多色として取り扱ってもよいし、単色として計算してもよい。ここでは、簡単のため単色で計算する場合について説明する。まず、入力された被写体情報のうち、「要素」の「材料・元素」の
情報から、線吸収係数を導く。線吸収係数は、NIST(https://physics.nist.gov/PhysRefData/FFast/html/form.html)や理科年表などのデータベースを参照して、上記被写体情報と照合することで導ける。計算に用いる数式は例えば以下のようなものが考えられる。
(TR:透過率,λ:波長(エネルギーに対応),μ:線吸収係数,t:厚み,i:被写体を構成する要素の種類)
Figure JPOXMLDOC01-appb-M000001
 
 要素が複数ある場合は、要素ごとに線吸収係数を導き、各要素の厚みとともに、式1へ代入することで、透過率を導出できる。また、式1に代入するエネルギーの範囲(最大値
および最小値)は、ユーザーが利用できる装置に搭載されているX線源で選択可能な管電
圧や付加フィルタの種類などから、ある範囲に決められているとしてもよい。本実施例では、このエネルギーの範囲が50から100keVの範囲であるとして、以降の演算を進め
る。
 実施例1では、要素は1種類かつ材料がアルミニウムであるため、アルミニウムの線吸収係数を導き、厚み(=60mm)とともに、式1へ代入すると、X線エネルギー毎の被写体透過率は以下の図8のようになる。図8は、横軸がX線エネルギー、縦軸が透過率[%]のグラフである。実線は、本実施例で入力された被写体情報に基づいて計算された透過率である。
Next, the control unit 21 calculates the transmittance (step S6). At this time, the control unit 21 functions as a calculation unit.
The control unit 21 calculates the transmittance of each X-ray energy when passing through the subject from the input subject information. In the transmittance calculation, the control unit 21 may treat the X-ray energy as polychromatic or may calculate as monochromatic. Here, for simplicity, the case of calculating as monochromatic will be described. First, the linear absorption coefficient is derived from the information of "material/element" of "element" in the input subject information. The linear absorption coefficient can be derived by referring to databases such as NIST (https://physics.nist.gov/PhysRefData/FFast/html/form.html) and science chronology and collating it with the subject information. The following formulas can be used for the calculation, for example.
(TR: transmittance, λ: wavelength (corresponding to energy), μ: linear absorption coefficient, t: thickness, i: type of element constituting the subject)
Figure JPOXMLDOC01-appb-M000001

When there are multiple elements, the linear absorption coefficient for each element is derived, and the transmittance can be derived by substituting the linear absorption coefficient for each element together with the thickness of each element into Equation 1. The range of energy (maximum and minimum values) to be substituted into Equation 1 may be determined within a certain range based on the tube voltage and type of additional filter selectable for the X-ray source mounted on the device that the user can use. In this embodiment, the following calculations are performed assuming that the energy range is from 50 to 100 keV.
In Example 1, since there is only one type of element and the material is aluminum, the linear absorption coefficient of aluminum is derived and substituted into Equation 1 together with the thickness (=60 mm), and the subject transmittance for each X-ray energy is as shown in the following Figure 8. Figure 8 is a graph in which the horizontal axis is X-ray energy and the vertical axis is transmittance [%]. The solid line indicates the transmittance calculated based on the subject information input in this example.
 次に、制御部21は、透過率が閾値以上かどうかの判定を行う(ステップS7)。
 タルボ撮影可能か又は困難かの基準の1つとして、透過率の閾値が設定されている。この閾値は、事前に設定されていてもよいし、ユーザーによって任意の値へ設定されていてもよい。制御部21は、ステップS6にて、被写体の透過率の理論演算を行い、透過率が閾値を上回るような条件が存在するかどうかを調べる。閾値を上回る条件がある場合(ステップS7;YES)、その条件については、次のステップS8へ進む。閾値を上回る条件が存在しない場合(ステップS7;NO)、現在設定されているX線エネルギーでは撮影が困難と判断され、撮影条件演算処理は、ステップS14へ進む。
 なお、撮影困難と判定された時点で、以降の演算ステップS8(ビジビリティ率の演算を行わずに、対応策の演算(ステップS14)を行ってもよいし、以降の演算ステップS8(ビジビリティ率の演算)を行いながら、対応策の演算(ステップS14)を行ってもよい。
 実施例1において、仮に上記の透過率閾値を10%(図8一点鎖線)とすると、本実施例の被写体の透過率透過率が最大となる条件である最大エネルギー(図8鎖線)においても6%程度であり、上記の閾値を上回らないことがわかる。よって、本被写体において、透過率が閾値を上回るような撮影条件は存在しないため、本被写体は撮影困難と判断される。実施例1では、ステップS14に進み、対応策の演算が行われる。
Next, the control unit 21 determines whether the transmittance is equal to or greater than a threshold value (step S7).
A transmittance threshold is set as one of the criteria for whether Talbot imaging is possible or difficult. This threshold may be set in advance or may be set to an arbitrary value by the user. In step S6, the control unit 21 performs a theoretical calculation of the transmittance of the subject to check whether there is a condition in which the transmittance exceeds the threshold. If there is a condition in which the transmittance exceeds the threshold (step S7; YES), the process proceeds to the next step S8 for that condition. If there is no condition in which the transmittance exceeds the threshold (step S7; NO), it is determined that imaging is difficult with the currently set X-ray energy, and the imaging condition calculation process proceeds to step S14.
In addition, at the point in time when it is determined that photography is difficult, the calculation of countermeasures (step S14) may be performed without performing the subsequent calculation step S8 (calculation of the visibility rate), or the calculation of countermeasures (step S14) may be performed while performing the subsequent calculation step S8 (calculation of the visibility rate).
In Example 1, if the transmittance threshold is 10% (dotted line in FIG. 8), it can be seen that even at maximum energy (dotted line in FIG. 8), which is the condition under which the transmittance of the subject in this example is at its maximum, the transmittance is about 6%, which does not exceed the threshold. Therefore, since there are no shooting conditions for this subject under which the transmittance exceeds the threshold, it is determined that it is difficult to shoot this subject. In Example 1, the process proceeds to step S14, where a countermeasure is calculated.
 次に、制御部21は、撮影可能となるような対応策候補の演算を行う(ステップS14)。このとき、制御部21は、第2演算手段として機能する。例えば、実施例1の被写体の場合、式(1)に基づいた透過率の演算によると、上記最大エネルギー100keVにおいて透過率≧10%となる被写体厚みは、4.9cm以下となることがわかる(図5点線)。このような演算によって、透過率が閾値を超えるような被写体厚みを導出する。この例では、被写体厚みが被写体条件である。対応策候補の演算の際に、調整対象とするパラメータは他に、X線エネルギー(ただし装置仕様の最大管電圧より小さい範囲内に限定される)被写体材質/元素・含有物質の組成/形状・撮影時の被写体の向き等が考えられる。 Next, the control unit 21 calculates candidate countermeasures that will enable imaging (step S14). At this time, the control unit 21 functions as a second calculation means. For example, in the case of the subject in Example 1, the calculation of the transmittance based on formula (1) shows that the subject thickness at which the transmittance is ≧10% at the maximum energy of 100 keV is 4.9 cm or less (dotted line in FIG. 5). This calculation derives the subject thickness at which the transmittance exceeds the threshold value. In this example, the subject thickness is the subject condition. When calculating the candidate countermeasures, other parameters that can be adjusted include the X-ray energy (however, this is limited to a range smaller than the maximum tube voltage of the device specifications), the subject material/elements, the composition/shape of the contained substances, and the orientation of the subject during imaging.
 次に、制御部21は、演算結果の出力を行う(ステップS15)。例えば、制御部21は、演算結果を表示部23に出力し、表示部23に表示させる(撮影条件演算処理)ことでユーザーへ提示する。例えば、制御部21は、図9に示すような画面を表示部23に表示させることが考えられる。 Next, the control unit 21 outputs the calculation result (step S15). For example, the control unit 21 outputs the calculation result to the display unit 23 and displays it on the display unit 23 (shooting condition calculation processing), thereby presenting it to the user. For example, the control unit 21 may cause the display unit 23 to display a screen such as that shown in FIG. 9.
 図9に示す出力画面を説明する。
 撮影条件表示領域A11は、推奨される撮影条件を少なくとも1つ表示する領域である。
 撮影条件としては、管電圧・mAs値・付加フィルタの厚み等を出力することが考えられ
る。
 画質や透過率などの演算の結果、何らかの規則に乗っ取った順番で、撮影条件が表示される。表示する順番の規則としては、例えば、画質が最も良い・透過率が最も高い・撮影時間が短い条件から、昇順に表示するなどが考えられる。本実施例1では透過率の演算(ステップS6)の時点で閾値を上回る条件がない。よって、撮影条件表示領域A11に出力する条件は空欄でもよいし、最も透過率が高くなる条件を出力してもよい。
 なお、出力画面に表示する管電圧の設定値とその設定値の下で照射されるX線エネルギー分布のピーク位置は必ずしも一致しない。よって、演算の結果最も画質や透過率の値が大きくなるX線エネルギー(実施例1では100keV)を実現するような、管電圧や付加フィルタの条件が別途演算されたうえで、A11に表示されてもよい。
The output screen shown in FIG. 9 will be described.
The imaging condition display area A11 is an area for displaying at least one recommended imaging condition.
As imaging conditions, it is conceivable to output the tube voltage, mAs value, thickness of the additional filter, etc.
As a result of the calculation of image quality, transmittance, etc., the shooting conditions are displayed in an order that follows some rule. The rule for the display order may be, for example, displaying in ascending order from the condition with the best image quality, the highest transmittance, and the shortest shooting time. In this embodiment 1, there is no condition that exceeds the threshold value at the time of the transmittance calculation (step S6). Therefore, the condition to be output in the shooting condition display area A11 may be left blank, or the condition with the highest transmittance may be output.
Note that the setting value of the tube voltage displayed on the output screen does not necessarily coincide with the peak position of the X-ray energy distribution irradiated under that setting value. Therefore, the conditions of the tube voltage and additional filter that realize the X-ray energy (100 keV in the first embodiment) that maximizes the image quality and transmittance as a result of the calculation may be calculated separately and displayed in A11.
 演算結果表示領域A12は、撮影条件表示領域A11に表示された撮影条件を用いて撮影を行った場合の、撮影画質や画質の予測演算結果を表示する領域である。実施例1では、透過率の演算のみ行っており、ステップS6で演算されたX線エネルギーにおける被写体透過率のみ記載されており、残りの欄は空欄としている。なお、撮影時間とは、撮影に要する時間である。BG撮影もしくは本撮影際のモアレ画像Mo1枚取得するのにかかる時間
(モアレ画像取得時間と呼ぶ)は事前に設定されている。撮影時間は、例えば、モアレ画像取得時間×(BG撮影でのモアレ画像取得枚数+本撮影でのモアレ画像取得枚数)×撮影回数のような計算式から、導出可能である。なお、計算式はこれに限定されず、例えば、BG~本撮影間の被写体設置のための時間など各種インターバルを、追加で考慮に入れた計算式を用いてもよい。
 なお、撮影方法が、配向撮影の場合、所望の配向角度を達成するために必要な撮影枚数や、位置補正用に適切なマークの設置位置などを表示してもよい。また、撮影方法が、配向撮影の場合、BG撮影も配向角度ごとに撮影する必要があるが、BG撮影のタイミングを、文章やタイミングチャートやフローチャートを用いて表示してもよい。
The calculation result display area A12 is an area for displaying the image quality and the predicted calculation result of the image quality when imaging is performed using the imaging conditions displayed in the imaging condition display area A11. In the first embodiment, only the transmittance is calculated, and only the subject transmittance at the X-ray energy calculated in step S6 is written, and the remaining fields are left blank. The imaging time is the time required for imaging. The time required to acquire one moire image Mo during BG imaging or actual imaging (referred to as the moire image acquisition time) is set in advance. The imaging time can be derived from a calculation formula such as moire image acquisition time x (number of moire images acquired in BG imaging + number of moire images acquired in actual imaging) x number of imaging. The calculation formula is not limited to this, and for example, a calculation formula that additionally takes into account various intervals such as the time for setting up the subject between BG and actual imaging may be used.
In addition, when the photographing method is orientation photographing, it may be possible to display the number of photographs required to achieve a desired orientation angle, the installation position of an appropriate mark for position correction, etc. In addition, when the photographing method is orientation photographing, it is necessary to photograph the BG photograph for each orientation angle, and the timing of the BG photographing may be displayed using text, a timing chart, or a flow chart.
 タイリング撮影方法表示領域A13は、タイリング撮影方法の案を表示する領域である。タイリング撮影方法表示領域A13については、後述する。なお、被写体の全面を、できるだけ少ない撮影枚数で撮影するために推奨される視野の配置をこの部分に表示してもよい。 The tiling photography method display area A13 is an area that displays a proposal for the tiling photography method. The tiling photography method display area A13 will be described later. Note that a recommended field of view arrangement for capturing the entire subject with as few shots as possible may be displayed in this area.
 撮影可否表示領域A14は、演算の結果、撮影可能となる撮影条件がある場合は「可」を、撮影可能となる撮影条件がない場合は「不可」を表示する領域である。実施例1では、撮影可能となる撮影条件がないという結果であったため、「不可」と表示されている。
 なお、撮影時間・S/N・空間分解能などの観点から、本被写体の撮影可否を判断し、撮
影可否を表示してもよい。可否判断の基準として撮影時間を採用した場合は、ユーザーによって、もしくは装置仕様から決められている撮影時間の上限に対して、演算結果の撮影時間が上回る場合は「不可」を、逆の場合は「可」を表示することもできる。基準としてS/Nを採用した場合も、あらかじめ設定されたS/Nの下限値と演算結果のS/Nを比較するこ
とで、撮影可否の判断を行うこともできる。空間分解能についても同様に、あらかじめ設
定された装置空間分解能と可視化対象の大きさを比較することで、撮影可否の判断を行う事もできる。
 原因表示領域A15は、演算の結果、撮影不可と判定された場合、その判定の原因が表示される領域である。実施例1では、被写体透過率で閾値以上となる撮影条件が存在しないことが、不可の原因であるため、例えば「透過率不足」のように表示される。
 対策表示領域A16は、演算の結果、撮影不可と判定された場合、撮影可能となるような対応策の候補をユーザーへ提示する領域である。実施例1では、「被写体厚み≦4.9cm」が、撮影可能となる条件となっていたので、例えば「被写体厚み≦4.9cm」のように表示される。撮影条件が「被写体厚み≦4.9cm」であれば、透過率が閾値以上となり、撮影可能となる。
The photographing availability display area A14 is an area that displays "available" when there are photographing conditions that make photographing possible as a result of the calculation, and displays "not possible" when there are no photographing conditions that make photographing possible. In the first embodiment, since there were no photographing conditions that make photographing possible, "not possible" was displayed.
In addition, the possibility of photographing the subject may be judged from the viewpoint of the photographing time, S/N, spatial resolution, etc., and the possibility of photographing may be displayed. When the photographing time is used as the criterion for the possibility of photographing, if the photographing time of the calculation result exceeds the upper limit of the photographing time determined by the user or the device specifications, "Not possible" can be displayed, and vice versa. When the S/N is used as the criterion, the possibility of photographing can also be judged by comparing the S/N of the calculation result with the lower limit of the S/N set in advance. Similarly, for the spatial resolution, the possibility of photographing can also be judged by comparing the size of the visualized object with the spatial resolution of the device set in advance.
The cause display area A15 is an area where, if it is determined that photography is not possible as a result of the calculation, the cause of the determination is displayed. In the first embodiment, the cause of the determination is that there is no photography condition where the subject transmittance is equal to or greater than the threshold, so for example, "insufficient transmittance" is displayed.
The countermeasure display area A16 is an area that presents the user with countermeasure candidates that will enable photography if it is determined that photography is not possible as a result of the calculation. In the first embodiment, the condition for photography being possible was "subject thickness ≦ 4.9 cm," so for example, "subject thickness ≦ 4.9 cm" is displayed. If the photography condition is "subject thickness ≦ 4.9 cm," the transmittance is equal to or greater than the threshold, and photography is possible.
 再計算ボタンB11は、入力画面へ戻るためのボタンである。再計算ボタンB11が押下されると、ユーザーは被写体情報を再度入力することができる。
 計算終了ボタンB12は、制御部21による撮影条件演算処理や撮影条件表示処理を終了するためのボタンである。計算終了ボタンB12が押下されると、撮影条件演算処理や撮影条件表示処理は、終了する。計算終了ボタンB12が押下されると、ユーザーにより選択された撮影条件が、X線タルボ撮影装置1へ反映される。
 なお、撮影方法が、タイリング撮影の場合、タイリング撮影方法表示領域A13への表示と併せて、タイリング撮影方式・撮影フローをスクリプトとして出力してもよい。出力されたスクリプトをX線タルボ撮影装置1に読み込ませ、X線タルボ撮影装置1は、読み込んだスクリプトに基づいて、タイリング撮影を実行することができる。
The recalculation button B11 is a button for returning to the input screen. When the recalculation button B11 is pressed, the user can re-input the subject information.
The calculation end button B12 is a button for ending the imaging condition calculation process and the imaging condition display process by the control unit 21. When the calculation end button B12 is pressed, the imaging condition calculation process and the imaging condition display process end. When the calculation end button B12 is pressed, the imaging conditions selected by the user are reflected in the X-ray Talbot imaging device 1.
In addition, when the imaging method is tiling imaging, the tiling imaging method and imaging flow may be output as a script together with the display in the tiling imaging method display area A13. The output script is read into the X-ray Talbot imaging device 1, and the X-ray Talbot imaging device 1 can execute tiling imaging based on the read script.
 なお、本実施例では被写体透過率の計算値が閾値を超えなかったことから、撮影困難と判断され、ステップS8~ステップS13の計算が行われなかった。しかし、透過率が低くても、ステップS8~ステップS13の計算は可能であるため、ステップS14の対応策演
算と平行して行ってもよい。その場合、図9の出力画面に出力される情報は、[0070]~[0074]に記載されている情報に加えて、ステップS8~ステップS13の演算結果を演算結果表示領域A12に少なくとも1つ以上表示できる、としてもよい。複数の
曝射条件・演算結果が表示される場合は、[0070]に記載の規則に基づく順番に表示されてもよい。
In this embodiment, since the calculated value of the subject transmittance did not exceed the threshold, it was determined that imaging was difficult, and the calculations in steps S8 to S13 were not performed. However, even if the transmittance is low, the calculations in steps S8 to S13 are possible, so they may be performed in parallel with the countermeasure calculation in step S14. In that case, the information output to the output screen in FIG. 9 may be such that at least one or more calculation results in steps S8 to S13 can be displayed in the calculation result display area A12 in addition to the information described in [0070] to [0074]. When multiple exposure conditions and calculation results are displayed, they may be displayed in an order based on the rules described in [0070].
<実施例2>
 次に、図6を用いて、撮影条件演算処理のフローを説明する。実施例2では、ユーザーは、樹脂板上にリブ構造が設けられた被写体Hの撮影条件について知りたいものとする。
実施例2の被写体は、図10に示すように、樹脂製の平板の上に、リブ構造が設けられている。ユーザーは、このリブ構造の足元を検査を行いたい領域(=注目領域)として考え、この部分に存在する可能性のあるボイドB(Φ=100μm)が、タルボ画像で検出可能かどうかについて知りたいものとする。なお、被写体Hの樹脂には、含有物質として粒径=2μmの球状シリカフィラーが濃度=10 vol%で含まれているものとする。
Example 2
Next, the flow of the photographing condition calculation process will be described with reference to Fig. 6. In the second embodiment, it is assumed that the user wants to know the photographing conditions of the subject H having a rib structure provided on a resin plate.
The subject of Example 2 is a flat plate made of resin with a rib structure provided on it, as shown in Fig. 10. The user considers the base of this rib structure to be the area to be inspected (= area of interest), and wants to know whether a void B (Φ = 100 μm) that may be present in this area can be detected in a Talbot image. The resin of subject H is assumed to contain spherical silica filler with a particle size of 2 μm at a concentration of 10 vol% as a contained substance.
 まず、ユーザーが操作部22を用いて、表示部23に表示された図11に示す入力画面に被写体情報の入力を行う。制御部21は、被写体情報を受け付ける(ステップS1)。入力画面の項目については、実施例1と同様のため、説明を省略する。 First, the user uses the operation unit 22 to input subject information into the input screen shown in FIG. 11 displayed on the display unit 23. The control unit 21 accepts the subject information (step S1). The items on the input screen are the same as those in the first embodiment, so a description thereof will be omitted.
 ユーザーが操作部22を用いて、表示部23に表示された演算開始ボタンB10を押下する。制御部21は、演算開始ボタンB10の押下を受け付ける(ステップS2)。撮影条件演算処理はステップS3に進む。 The user uses the operation unit 22 to press the calculation start button B10 displayed on the display unit 23. The control unit 21 accepts the pressing of the calculation start button B10 (step S2). The shooting condition calculation process proceeds to step S3.
 次に、入力された被写体情報を基に、記憶部25の撮影情報データベースから類似した被写体の撮影情報を検索する(ステップS3)。 Next, based on the input subject information, the shooting information database in the storage unit 25 is searched for shooting information of similar subjects (step S3).
 ここで、記憶部25の撮影情報データベースと検索方法について説明する。
 図12のように、記憶部25の撮影情報データベースには、例えば以下のような情報が記載されている。
 撮影した日時は、被写体を撮影した日時である。
 被写体情報(被写体名・カテゴリ)は、被写体の名称及びカテゴリである。被写体情報(被写体名・カテゴリ)は、ステップS3の検索に用いられる。被写体情報(被写体名・カテゴリ)は、入力画面の名称欄A1及びカテゴリ欄A2に対応している。
 被写体情報(要素)は、課題、要素、特性(要素)からなる。課題とは、その撮影に至った背景・解決したい課題である。課題は、入力画面の課題・背景欄A8に対応している
要素とは、被写体を構成する材料であり、被写体が複数種類の要素からなる場合、その数分、データベースに記載可能である。特性(要素)は、各要素における特性値である。特性(要素)とは、例えば形状・厚み、被写体に対する比率などが挙げられる。被写体情報(要素)は、入力画面の要素欄A3に対応している。
 被写体情報(含有物質)は、各要素に含まれる含有物質の材料である。特性(含有物質)は、各含有物質における特性値である。特性(含有物質)とは、例えば形状・大きさなどが挙げられる。被写体情報(含有物質)は、入力画面の含有物質欄A4に対応している。
 撮影条件は、撮影時に指定した条件である。撮影条件は、管電圧・mAs値などである。
 撮影結果は、ある撮影条件で撮影した結果である。撮影結果は、得られた画像の信号値・ノイズ等である。また、撮影結果欄には、得られた画像がユーザーにとって満足のできる画質かどうかの官能的な評価も記載されていてよい。
Here, the photographing information database in the storage unit 25 and the search method will be described.
As shown in FIG. 12, the photographing information database in the storage unit 25 stores, for example, the following information:
The shooting date and time is the date and time when the subject was photographed.
The subject information (subject name and category) is the name and category of the subject. The subject information (subject name and category) is used for the search in step S3. The subject information (subject name and category) corresponds to the name column A1 and the category column A2 on the input screen.
Subject information (elements) consists of issue, element, and characteristic (element). Issue is the background that led to the photograph and the problem to be solved. Issue corresponds to issue/background column A8 on the input screen. Elements are the materials that make up the subject, and if the subject is made up of multiple types of elements, the number of elements can be entered in the database. Characteristics (elements) are the characteristic values of each element. Characteristics (elements) include, for example, shape, thickness, and ratio to the subject. Subject information (elements) corresponds to element column A3 on the input screen.
The subject information (containing substances) is the material of the containing substances contained in each element. The characteristics (containing substances) are characteristic values of each containing substance. Examples of the characteristics (containing substances) include shape and size. The subject information (containing substances) corresponds to the containing substances column A4 on the input screen.
The imaging conditions are the conditions specified at the time of imaging, such as the tube voltage and mAs value.
The shooting result is the result of shooting under certain shooting conditions. The shooting result is the signal value, noise, etc. of the obtained image. The shooting result column may also include a sensory evaluation of whether the obtained image has a satisfactory image quality for the user.
 類似した被写体の撮影情報の検索方法を説明する。
 例えば、制御部21は、以下の順番で、撮影情報データベース中の撮影情報を絞り込んでいくことで、入力された情報に近い撮影情報を抽出する。
手順1;制御部21は、名称・カテゴリが一致するものを抽出する。
手順2;制御部21は、被写体の要素が一致するものを抽出する。
手順3;制御部21は、含有物質が一致するものを抽出する。
 なお、一致には、完全一致だけでなく、部分一致も含まれる。
A method for searching for shooting information of a similar subject will now be described.
For example, the control unit 21 narrows down the shooting information in the shooting information database in the following order to extract shooting information similar to the input information.
Step 1: The control unit 21 extracts items with matching names and categories.
Step 2: The control unit 21 extracts subjects whose elements match.
Step 3: The control unit 21 extracts items with matching contained substances.
It should be noted that the term "match" includes not only a perfect match but also a partial match.
 実施例2では、ステップS3の撮影情報データベース検索にて、入力された被写体情報に類似する撮影情報が存在する(ステップS4;YES)として説明する。つまり、撮影条件演算処理は、ステップS5に進む。
 制御部21は、以下の方法で被写体による散乱量を計算する。制御部21は、散乱量の指標として、タルボ撮影で得られるビジビリティ率、もしくは小角散乱の信号値を用いる。
 制御部21は、入力された被写体情報の要素の厚み、含有物質の濃度・粒径の各数値に対して、ステップS3にて抽出した撮影情報の数値を用いて補間計算を行い、入力された被写体のビジビリティ率(小角散乱信号値)を予測する(ステップS5)。このとき、制御部21は、算出手段として機能する。
In the second embodiment, it is assumed that the photographing information database search in step S3 finds that photographing information similar to the input subject information exists (step S4; YES), and the photographing condition calculation process proceeds to step S5.
The control unit 21 calculates the amount of scattering caused by the subject in the following manner: The control unit 21 uses the visibility ratio obtained by Talbot photography or the signal value of small angle scattering as an index of the amount of scattering.
The control unit 21 performs an interpolation calculation using the values of the imaging information extracted in step S3 for each of the values of the thickness of the element of the input object information and the concentration and particle size of the contained substance, and predicts the visibility ratio (small-angle scattering signal value) of the input object (step S5). At this time, the control unit 21 functions as a calculation means.
 例えば、制御部21は、図13に示す、先述の撮影情報データベースを用いて、被写体の厚み・含有物質(フィラー)の濃度を変数とした場合のグラフを用いてビジビリティ率を予測する。なお、X線エネルギー=80keVを例として説明する。
 以降の説明において、実験値とは、過去の撮影情報における値を指すものとする。
 制御部21は、入力された被写体の厚みに関して、その値の両隣の実験値を選択する。続いて、その2点の厚みとビジビリティ率の実験値を結ぶ直線の方程式を導出する(図13点線)。最後に、制御部21は、上記2点の間にある入力被写体の厚みと、上記方程式
を用いて、ビジビリティ率の予測値とする。
For example, the control unit 21 predicts the visibility rate using a graph in which the thickness of the subject and the concentration of the contained substance (filler) are variables, using the above-mentioned imaging information database shown in Fig. 13. Note that the following description will be given taking an example in which X-ray energy is 80 keV.
In the following description, experimental values refer to values in past photographing information.
The control unit 21 selects the experimental values on either side of the input subject thickness. Then, it derives an equation for a line connecting the thicknesses at those two points and the experimental value of the visibility ratio (dotted line in FIG. 13). Finally, the control unit 21 uses the input subject thickness between those two points and the equation to determine a predicted value of the visibility ratio.
 なお、上記説明では、厚み・含有物質(フィラー)の濃度を変数として用いて説明したが、これに限定されない。
 また、図13の例では、入力した被写体の含有物質の濃度が、撮影情報データベースの撮影情報の被写体の厚みと一致しているが、一致していない場合は、厚みの場合と同様に、制御部21は、線形補間によって、ビジビリティ率の推定を行う。
In the above description, the thickness and the concentration of the contained substance (filler) are used as variables, but the variables are not limited to this.
In addition, in the example of Figure 13, the concentration of the substance contained in the input subject matches the thickness of the subject in the shooting information in the shooting information database, but if they do not match, the control unit 21 estimates the visibility rate by linear interpolation, as in the case of thickness.
 また、これに代わるビジビリティ推定の手段として、下記でもよい。
 撮影情報データベースから抽出した類似の撮影情報から、各種被写体情報や撮影条件などを説明変数とし、推定したいビジビリティ率や小角散乱信号値を目的変数とした、モデルを構築しておく。そのようにしておけば、インプットされた新たな被写体情報を入力した際の、ビジビリティ率や小角散乱信号値の推定値を、撮影条件毎の予測が可能となる。被写体の撮影を行うごとに、モデルに対してフィードバックを行うことで、モデルの精度を向上させることができる。
Alternatively, the following may be used as a means of estimating visibility.
A model is constructed from similar imaging information extracted from the imaging information database, with various subject information and imaging conditions as explanatory variables and the visibility rate and small-angle scattering signal value to be estimated as objective variables. In this way, it becomes possible to predict the estimated visibility rate and small-angle scattering signal value for each imaging condition when new subject information is input. The accuracy of the model can be improved by providing feedback to the model each time an image of the subject is taken.
 ステップS4やS5と並行して実行されている、ステップS6~S7は、実施例1と同様であるため、説明を省略する。
 実施例2では、ステップS6にて算出された透過率が閾値を上回ったとして説明する。よって、撮影条件演算処理は、ステップS8に移る。
Steps S6 and S7, which are executed in parallel with steps S4 and S5, are similar to those in the first embodiment, and therefore the description thereof will be omitted.
In the second embodiment, it is assumed that the transmittance calculated in step S6 exceeds the threshold value, and the photographing condition calculation process proceeds to step S8.
 制御部21は、記憶部25に記憶された理論計算式を用いて、被写体による散乱量を算出する(ステップS8)。このとき、制御部21は、算出手段として機能する。制御部21は、入力された被写体情報を、理論計算式へ入力することで、ビジビリティ率の理論予測が可能になる。理論計算式の例として、非特許文献2, 3, 4, 5に記載の式などが考えられる。 The control unit 21 calculates the amount of scattering caused by the subject using the theoretical calculation formula stored in the memory unit 25 (step S8). At this time, the control unit 21 functions as a calculation means. The control unit 21 inputs the input subject information into the theoretical calculation formula, thereby enabling theoretical prediction of the visibility rate. Examples of the theoretical calculation formula include the formulas described in Non-Patent Documents 2, 3, 4, and 5.
 制御部21は、ビジビリティ率が閾値以上かどうかを判定する(ステップS9)。本発明では、撮影可能かもしくは困難かの基準の1つとして、ビジビリティ率の閾値が設定されている。この閾値は、事前に設定されていてもよいし、ユーザーによって任意の値へ設定されていてもよい。
 ビジビリティ率が閾値を上回るような条件が存在すれば、撮影条件演算処理は、ステップS12へ進む。ビジビリティ率が閾値を上回るような条件が存在しなければ、撮影条件演算処理は、ステップS14へ進む。
 ここで、予想ビジビリティ率としては、ステップS5にて実験値から導出したものと、ステップS8にて理論計算から導出したものが存在しうる。両者のうち、どちらを用いて、判定するかは、例えば、以下の様にして判定する。
手順1;制御部21は、撮影情報データベースに情報がなく、実験値からの導出ができない場合、理論計算式による予測ビジビリティを採用する。
手順2;制御部21は、撮影情報データベースの情報から、ビジビリティ率の予測演算が可能な場合、実験値による予測ビジビリティの値を採用する。
 なお、判定の手順は、上記手順1、2に限定されず、最も高い予想ビジビリティ率を採用する、手順1、手順2の結果をそれぞれユーザーに提示してユーザーが選択する、などの手順でもよい。
The control unit 21 judges whether the visibility rate is equal to or higher than a threshold (step S9). In the present invention, a threshold value of the visibility rate is set as one of the criteria for whether photography is possible or difficult. This threshold value may be set in advance or may be set to an arbitrary value by the user.
If there is a condition that causes the visibility rate to exceed the threshold, the photographing condition calculation process proceeds to step S12. If there is no condition that causes the visibility rate to exceed the threshold, the photographing condition calculation process proceeds to step S14.
Here, the predicted visibility rate may be derived from an experimental value in step S5 or from a theoretical calculation in step S8. Which of the two is to be used for the judgment is judged, for example, as follows.
Step 1: When there is no information in the imaging information database and derivation from experimental values is not possible, the control unit 21 adopts a predicted visibility based on a theoretical calculation formula.
Step 2: When it is possible to predict and calculate the visibility rate from the information in the photographing information database, the control unit 21 adopts the predicted visibility value based on the experimental value.
The determination procedure is not limited to the above procedures 1 and 2, and may be a procedure in which the highest predicted visibility rate is adopted, or the results of procedures 1 and 2 are presented to the user to allow the user to select.
 実施例2において、仮にビジビリティ率の閾値を10%(図13.鎖線)とする。撮影情報データベースの情報から計算した予測ビジビリティ率は、図13で示した条件においては、閾値を下回っている(図13.推定値)。よって、少なくともこの撮影条件(管電圧・付加フィルタ)では、撮影困難と判断される。よって、本被写体において、ビジビリティ率が閾値を上回るような撮影条件は存在しないため、本被写体は撮影困難と判断され
る(ステップS9;NO)。
In the second embodiment, the threshold value of the visibility rate is assumed to be 10% (FIG. 13, dotted line). The predicted visibility rate calculated from the information in the imaging information database is below the threshold value under the conditions shown in FIG. 13 (FIG. 13, estimated value). Therefore, it is determined that imaging is difficult at least under these imaging conditions (tube voltage and additional filter). Therefore, since there are no imaging conditions in which the visibility rate exceeds the threshold value for this subject, it is determined that imaging is difficult for this subject (step S9; NO).
 制御部21は、撮影可能となるような対応策候補を演算する(ステップS14)。このとき、制御部21は、第2演算手段として機能する。例えば、制御部21は、実験値からの補間演算(ステップS5)もしくは理論式を用いた演算(ステップS8)によって、ビジビリティ率が閾値を上回るような条件を導出することが出来る。調整対象とするパラメータとして、X線エネルギー、被写体厚み、含有物質の組成/サイズ/濃度などが考えられる。 The control unit 21 calculates potential countermeasures that will enable imaging (step S14). At this time, the control unit 21 functions as a second calculation means. For example, the control unit 21 can derive conditions under which the visibility rate exceeds a threshold value by performing an interpolation calculation from experimental values (step S5) or a calculation using a theoretical formula (step S8). Possible parameters to be adjusted include X-ray energy, subject thickness, and the composition/size/concentration of contained substances.
 制御部21は、演算結果の出力を行う(ステップS15)。例えば、制御部21は、演算結果を表示部23に出力し、表示部23に表示させる(撮影条件演算処理)ことでユーザーへ提示する。例えば、制御部21は、図14に示すような画面を表示部23に表示させることが考えられる。図14の表示画面の各項目は、実施例1と同様のため、説明を省略する。 The control unit 21 outputs the calculation result (step S15). For example, the control unit 21 outputs the calculation result to the display unit 23 and displays it on the display unit 23 (shooting condition calculation processing) to present it to the user. For example, the control unit 21 may cause the display unit 23 to display a screen such as that shown in FIG. 14. Each item on the display screen in FIG. 14 is the same as in Example 1, so a description thereof will be omitted.
<実施例3>
 次に、図6を用いて、撮影条件演算処理のフローを説明する。実施例3では、ユーザーは、図15に示す厚さ0.1mmの銅板C上に厚さ3mmのエポキシ樹脂Eを重ねた被写体Hのエポキシ樹脂中に含まれるボイドB(Φ=100μm)をタルボ画像で検出可能であるかどうかについて知りたいものとする。なお、エポキシ樹脂Eには、含有物質として
粒径=2μmの球状シリカフィラーが濃度=5 vol%で含まれているものとする。
Example 3
Next, the flow of the photographing condition calculation process will be described with reference to Fig. 6. In the third embodiment, the user wishes to know whether or not a void B (Φ=100 μm) contained in the epoxy resin of the subject H, which is a copper plate C with a thickness of 0.1 mm and an epoxy resin E with a thickness of 3 mm layered thereon, can be detected in a Talbot image. It is assumed that the epoxy resin E contains spherical silica fillers with a particle size of 2 μm at a concentration of 5 vol% as a contained substance.
 まず、ユーザーが操作部22を用いて、表示部23に表示された図11に示す入力画面に被写体情報の入力を行う。制御部21は、被写体情報を受け付ける(ステップS1)。 First, the user uses the operation unit 22 to input subject information into the input screen shown in FIG. 11 that is displayed on the display unit 23. The control unit 21 accepts the subject information (step S1).
 ユーザーが操作部22を用いて、表示部23に表示された演算開始ボタンB10を押下する。制御部21は、演算開始ボタンB10の押下を受け付ける(ステップS2)。撮影条件演算処理はステップS3に進む。 The user uses the operation unit 22 to press the calculation start button B10 displayed on the display unit 23. The control unit 21 accepts the pressing of the calculation start button B10 (step S2). The shooting condition calculation process proceeds to step S3.
 次に、制御部21は、入力された被写体情報を基に、記憶部25の撮影情報データベースから類似した被写体の撮影情報を検索する(ステップS3)。実施例3では、類似した被写体の撮影情報が存在するものとして説明する。 Then, the control unit 21 searches the photography information database of the storage unit 25 for photography information of a similar subject based on the input subject information (step S3). In the third embodiment, it is assumed that photography information of a similar subject exists.
 次に、制御部21は、過去の撮影情報を用いて、被写体による散乱量を計算する(ステップS5)。実施例2に記載の方法と同様にして制御部21は、過去の撮影情報から散乱量(=ビジビリティ率)の推定を行う。制御部21は、入力画面に入力された被写体を構成する物質のうち、フィラーについての情報(組成・濃度・厚み)をもとに、撮影情報データベースから、類似した過去の撮影結果を検索し、最も近い条件におけるビジビリティ率を取得する。
 なお、制御部21は、類似した濃度・厚みについての撮影情報がない場合は、実施例2に記載の手順と同様の方法で、両パラメータについてビジビリティ率の内挿・外挿を計算することで対応できる。
Next, the control unit 21 calculates the amount of scattering by the subject using the past imaging information (step S5). In the same manner as the method described in the second embodiment, the control unit 21 estimates the amount of scattering (=visibility rate) from the past imaging information. The control unit 21 searches the imaging information database for similar past imaging results based on information (composition, concentration, thickness) about the filler among the substances that make up the subject inputted on the input screen, and obtains the visibility rate under the closest conditions.
In addition, if there is no imaging information regarding similar concentration/thickness, the control unit 21 can handle this by calculating the interpolation/extrapolation of the visibility rate for both parameters in a manner similar to the procedure described in the second embodiment.
 次に、制御部21は、実施例1,2と同様に、被写体透過率を計算する(ステップS6)。図17に、厚さ0.1mmの銅板の透過率の関係を示す。 Next, the control unit 21 calculates the subject transmittance in the same manner as in Examples 1 and 2 (step S6). Figure 17 shows the relationship of the transmittance of a copper plate with a thickness of 0.1 mm.
 次に、制御部21は、透過率が閾値以上かどうか判定する(ステップS7)。制御部21は、実施例1,2と同様に、設定できる最大のX線エネルギーを100keV,透過率
閾値を10%とすると、図17のグラフからX線エネルギーが80keV以上であれば、
閾値を上回ると判定する(ステップS7;YES)。なお、図17のグラフは、X線エネ
ルギーと透過率の関係である。よって、制御部21は、以降の計算では、このX線エネルギー以上で、画質の演算を行う。
Next, the control unit 21 judges whether the transmittance is equal to or greater than a threshold value (step S7). Assuming that the maximum X-ray energy that can be set is 100 keV and the transmittance threshold value is 10%, similarly to the first and second embodiments, the control unit 21 judges that if the X-ray energy is equal to or greater than 80 keV from the graph of FIG.
It is determined that the threshold value is exceeded (step S7; YES). Note that the graph in Fig. 17 shows the relationship between X-ray energy and transmittance. Therefore, in subsequent calculations, the control unit 21 performs image quality calculations at X-ray energies equal to or higher than this threshold value.
 次に、制御部21は、理論計算式を用いて、被写体による散乱量を計算する(ステップS8)。制御部21は、実施例2と同様に、理論計算式を用いてビジビリティ率の推定を行う。なお、予測ビジビリティは、設定できる全X線エネルギーに対して行ってもよいし、ステップS6で導出した透過率が閾値以上となるX線エネルギーについてのみに対して行ってもよい。 Then, the control unit 21 calculates the amount of scattering by the subject using a theoretical calculation formula (step S8). As in the second embodiment, the control unit 21 estimates the visibility rate using the theoretical calculation formula. Note that the predicted visibility may be performed for all X-ray energies that can be set, or may be performed only for X-ray energies for which the transmittance derived in step S6 is equal to or greater than a threshold value.
 次に、制御部21は、予測ビジビリティ率が閾値以上かどうかの判定する(ステップS9)。制御部21は、実施例2と同様に、撮影情報に基づき、または、理論計算式を用いて、推定したビジビリティ率が、閾値以上となるかどうかの判定を行う。実施例3では、ビジビリティ率がいずれの撮影条件における管電圧においても閾値を超えるものとし、以降のステップS10に移る。 Next, the control unit 21 determines whether the predicted visibility rate is equal to or greater than the threshold value (step S9). As in the second embodiment, the control unit 21 determines whether the estimated visibility rate is equal to or greater than the threshold value based on the imaging information or by using a theoretical calculation formula. In the third embodiment, it is determined that the visibility rate exceeds the threshold value at any tube voltage under any imaging condition, and the process proceeds to the subsequent step S10.
 次に、制御部21は、その撮影条件で撮影を行った場合の画質を予測する(ステップS10)。このとき、制御部21は、予測手段として機能する。具体例として、制御部21は、理論計算式を用いて、画質((1)ノイズ、(2)信号値、(3)S/N)の計算を行う。計算方法について、順に述べていく。
 制御部21は、(1)のみまたは(1)~(3)の計算を、ステップS9で閾値を超えた全条件(管電圧・フィルタ)に対して行う。
(1)ノイズの理論計算
 制御部21は、理論計算式に従い、各画像のノイズを計算する。
制御部21は、理論計算式として、例えば非特許文献1に記載の理論式を用いると、検出器の出力値と各画像のノイズの関係を計算することが可能である。検出器の出力値は、線源のmAs値に比例する。したがって、mAs値を可変パラメータとして、ノイズの値を予
測することができる。
 例えば、今回仮定した被写体の計算結果は、図18のようになる。図18は、非特許文献1の理論式を用いて、グラフ化したものである。図18A、図18B、図18Cの順に、透過率・位相・ビジビリティ率のノイズの理論式となっている。なお、透過率・ビジビリティ率は平均値で規格化されているものとする。
 制御部21は、この結果から、要求ノイズレベルを満たす、mAs値を算出する。制御部21は、事前に設定されているノイズの要求値(図18の灰色点線)を満足するカウント値のうち、最小のカウント値(青線と灰色点線の交点)を算出する。なお、要求ノイズは、タルボ画像(吸収画像、微分位相画像、小角散乱画像)に対して設定してもよいし、そううちの一つの画像(例えば、小角散乱)のみに設定してもよい。
 なお、制御部21は、(1)のステップで計算終了として、出力画面にノイズが規定値以下かつ撮影時間が短い条件を出力してもよい。制御部21は、以降のステップで、追加で被写体のシグナルの計算を行い、S/Nを算出してもよい。
Next, the control unit 21 predicts the image quality when shooting is performed under the shooting conditions (step S10). At this time, the control unit 21 functions as a prediction unit. As a specific example, the control unit 21 calculates the image quality ((1) noise, (2) signal value, (3) S/N) using a theoretical calculation formula. The calculation method will be described in order.
The control unit 21 performs calculations of only (1) or (1) to (3) for all conditions (tube voltages and filters) that exceeded the thresholds in step S9.
(1) Theoretical Calculation of Noise The control unit 21 calculates the noise of each image according to a theoretical calculation formula.
The control unit 21 can calculate the relationship between the detector output value and the noise of each image by using, for example, the theoretical formula described in Non-Patent Document 1 as a theoretical calculation formula. The detector output value is proportional to the mAs value of the radiation source. Therefore, the noise value can be predicted by using the mAs value as a variable parameter.
For example, the calculation result for the subject assumed here is as shown in Fig. 18. Fig. 18 is a graph made using the theoretical formula of Non-Patent Document 1. The theoretical formulas for noise of transmittance, phase, and visibility rate are shown in the order of Fig. 18A, Fig. 18B, and Fig. 18C. Note that the transmittance and visibility rate are normalized by the average value.
From this result, the control unit 21 calculates a mAs value that satisfies the required noise level. The control unit 21 calculates the minimum count value (the intersection of the blue line and the gray dotted line) among the count values that satisfy the noise required value (gray dotted line in FIG. 18) set in advance. Note that the required noise may be set for the Talbot images (absorption image, differential phase image, small angle scattering image), or may be set for only one of the images (for example, small angle scattering).
The control unit 21 may end the calculation in step (1) and output the conditions that the noise is equal to or less than a specified value and the shooting time is short on the output screen. The control unit 21 may additionally calculate the signal of the subject in the subsequent steps to calculate the S/N ratio.
(2)信号値の理論計算
 制御部21は、可視化対象の形状・組成及び可視化対象の周囲の物質の組成が指定されていれば、少なくとも吸収・微分位相画像について、可視化対象の信号値を理論計算可能である。一方で、制御部21は、小角散乱画像については、理論計算が難しい場合がある。計算困難な場合は、過去の撮影履歴データベースから、類似した撮影情報を検索抽出し、信号値を算出する。
 例えば、制御部21は、図19に示すような、今回仮定したボイドについての微分位相画像のシミュレーション画像および、横方向のプロファイルを生成可能である。図19Aは、微分位相画像の信号値のシミュレーション画像である。図19Bは、微分位相画像の信号値の横方向のプロファイルである。
(2) Theoretical Calculation of Signal Values If the shape and composition of the visualization target and the composition of the material surrounding the visualization target are specified, the control unit 21 can theoretically calculate the signal values of the visualization target at least for absorption and differential phase images. On the other hand, the control unit 21 may have difficulty performing theoretical calculations for small-angle scattering images. When the calculation is difficult, the control unit 21 searches and extracts similar shooting information from a database of past shooting history, and calculates the signal values.
For example, the control unit 21 can generate a simulation image of a differential phase image and a lateral profile of the assumed void as shown in Fig. 19. Fig. 19A is a simulation image of the signal values of the differential phase image. Fig. 19B is a lateral profile of the signal values of the differential phase image.
(3)S/Nの計算
 制御部21は、(1),(2)で各々導出した、ノイズ値と信号値の比をとることで、S/Nを計算可能である。
(3) Calculation of S/N The control unit 21 can calculate the S/N ratio by taking the ratio between the noise value and the signal value derived in (1) and (2), respectively.
 次に、制御部21は、ステップS10にて予測された画質が所定の画質条件を満たすかどうか判定する(ステップS11)。このとき、制御部21は、判定手段として機能する。
 ある場合(ステップS11;YES)、撮影条件演算処理は、ステップS12に進む。
 ない場合(ステップS11;NO)、ステップS14に進む。ステップS14の処理内容は、実施例2の記載のビジビリティ率を画質に置き換えた内容となる。
Next, the control unit 21 judges whether the image quality predicted in step S10 satisfies a predetermined image quality condition (step S11). At this time, the control unit 21 functions as a judging unit.
If there is (step S11; YES), the shooting condition calculation process proceeds to step S12.
If not (step S11; NO), the process proceeds to step S 14. The process content of step S14 is the same as that of the second embodiment, except that the visibility rate is replaced with image quality.
 次に、制御部21は、出力する撮影条件を選定する(ステップS12)。このとき、制御部21は、選定手段として機能する。例えば、制御部21は、出力する撮影条件の数の上限が設定されている場合、画質の良い撮影条件を、画質の良い方から選定する。 Next, the control unit 21 selects the shooting conditions to be output (step S12). At this time, the control unit 21 functions as a selection unit. For example, when an upper limit is set for the number of shooting conditions to be output, the control unit 21 selects shooting conditions with good image quality, starting from the one with the best image quality.
 次に、制御部21は、撮影条件を出力し(ステップS13)、処理は終了する。例えば、制御部21は、演算結果を表示部23に出力し、表示部23に表示させる(撮影条件演算処理)ことでユーザーへ提示する。例えば、制御部21は、図20に示すような画面を表示部23に表示させることが考えられる。図20の表示画面の各項目は、実施例1と同様のため、説明を省略する。
 図20の表示画面の例では、出力された撮影条件が複数である。撮影条件が複数の場合、撮影条件は、所定の順番でソートされてもよい。ソートの順番は、例えば、画質が高いものから並べる・撮影時間が短い条件から並べる・撮影装置の設計値に近い条件から並べる、などがある。ソートされたものの上位のいくつかを出力画面に表示するとともに、各条件における画像ノイズ・S/N・撮影時間を提示する。要求S/N・ノイズを満足する撮影条件がない場合についても、ソート・表示を行うが、それと同時に、対策表示領域A16に、要求S/N・ノイズを満足するための対策案をレコメンドする。
Next, the control unit 21 outputs the photographing conditions (step S13), and the process ends. For example, the control unit 21 outputs the calculation result to the display unit 23 and displays it on the display unit 23 (photographing condition calculation process), thereby presenting it to the user. For example, the control unit 21 may display a screen as shown in Fig. 20 on the display unit 23. Each item on the display screen in Fig. 20 is the same as in Example 1, and therefore description thereof will be omitted.
In the example of the display screen in FIG. 20, multiple shooting conditions are output. When multiple shooting conditions are output, the shooting conditions may be sorted in a predetermined order. The sorting order may be, for example, arranging from the highest image quality, arranging from the condition with the shortest shooting time, arranging from the condition closest to the design value of the shooting device, etc. Some of the top sorted items are displayed on the output screen, and the image noise, S/N, and shooting time for each condition are presented. Even if there is no shooting condition that satisfies the required S/N and noise, sorting and display are performed, and at the same time, a countermeasure to satisfy the required S/N and noise is recommended in the countermeasure display area A16.
<実施例4>
 次に、図21を用いて、上述した配向度画像などを取得する配向撮影に、本発明を適用した実施例4を説明する。
 ユーザーは、内部に散乱体が含まれる被写体を、格子との相対角度を変化させながら複数角度で撮影を行うことで各角度の小角画像の信号値の角度依存性を取得し、これを解析することで散乱強度画像、配向度画像、配向角度画像と呼ばれる配向解析画像を得ることができる。散乱強度画像より、ユーザーは、被写体の散乱強度の面内分布(散乱体量の面内分布に対応)を、配向度画像より散乱強度の配向度(特定の方向に強く散乱しているか、それとも等方的に、ランダムに散乱しているか、の度合い)、配向角度画像より散乱が強く生じる方向・角度(散乱体の配向方向に対応)、といった散乱体の配向に関する情報を得ることができる。これを配向撮影と呼ぶ。
Example 4
Next, a fourth embodiment in which the present invention is applied to orientation photography for acquiring the above-mentioned orientation degree image and the like will be described with reference to FIG.
By photographing a subject containing scatterers at multiple angles while changing the relative angle with the lattice, the user can obtain the angle dependence of the signal value of the small-angle image at each angle, and by analyzing this, can obtain orientation analysis images called scattering intensity images, orientation degree images, and orientation angle images. From the scattering intensity image, the user can obtain information about the orientation of the scatterers, such as the in-plane distribution of the scattering intensity of the subject (corresponding to the in-plane distribution of the amount of scatterers), the degree of orientation of the scattering intensity from the orientation degree image (the degree to which scattering is strong in a specific direction or isotropically and randomly), and the direction and angle at which strong scattering occurs from the orientation angle image (corresponding to the orientation direction of the scatterers). This is called orientation photography.
 この配向撮影の場合、ユーザーが、被写体の材料や厚み、内部に存在する散乱体などの情報を入力することで、適切な撮影条件をシミュレーション(演算)および撮影情報の撮影情報データベースをもとに複数選定し、候補を提示する点は、実施例4以降においてもこれまでの実施例1~3と同様である。
 しかし、配向撮影特有の課題として、取得できる配向角度の精度があげられる。図21Aに、配向角度の精度が、画像のS/Nによって変化する様子を計算した結果を示す。
 計算は、100x100画素の撮影領域に対して、格子との相対角度を0度、45度、90度、135度の4角度で変えたとき、信号値が角度0をピークとする正弦波状になる
と仮定し、各画素の信号値(正弦波の振幅)にランダムなノイズを重畳させて、配向角度の解析を行った。
 図21Aは、そのノイズと信号の比(S/N)を2~10で変化させたときのヒストグラムを示している。図21Aでは、横軸が配向角度、縦軸が頻度を表しており、解析した領域内における横軸の角度に対応する配向角度の画素数に対応する。
 なお、ノイズが全くない場合は、角度0度をピークとする正弦波を用いていることから、全画素0度となる。
 図21Aから分かるように、S/Nが低い、つまりノイズが多い場合は、配向角度が広い範囲にばらついており、配向角度の解析の精度が悪化していることが分かる。また、S/Nが高くなるにつれて、ヒストグラムの幅が狭くなっていることから、得られる配向角度の精度が高くなっていることが分かる。
 つまり、実際の被写体の撮影においても、撮影条件を変更してノイズを減らしS/Nを高くすることで揺らぎを低減し解析精度を高くすることができる。具体的なノイズを減らす方法としては、線量(mAs値)を増やす、あるいは撮影枚数を増やすなどがある。mAs値を増やすことで、S/Nが良い画像を得ることができるため、より配向角度分布の精度が良くなることが期待される。
In the case of this orientation photography, the user inputs information such as the material and thickness of the subject, and scattering bodies present inside, and multiple appropriate photography conditions are selected based on simulation (calculation) and a photography information database of photography information, and candidates are presented, which is the same as in the previous embodiments 1 to 3 in the embodiments 4 and onwards.
However, a problem specific to orientation photography is the accuracy of the acquired orientation angle. Figure 21A shows the results of calculations of how the accuracy of the orientation angle changes depending on the S/N ratio of the image.
The calculations were performed assuming that when the relative angle to the grid for a 100 x 100 pixel shooting area was changed to four angles, 0 degrees, 45 degrees, 90 degrees, and 135 degrees, the signal value would be sinusoidal with a peak at an angle of 0 degrees, and random noise was superimposed on the signal value of each pixel (amplitude of the sine wave) to analyze the orientation angle.
Fig. 21A shows a histogram when the noise-to-signal ratio (S/N) is changed from 2 to 10. In Fig. 21A, the horizontal axis represents the orientation angle, and the vertical axis represents the frequency, which corresponds to the number of pixels having the orientation angle corresponding to the angle on the horizontal axis within the analyzed region.
It should be noted that when there is absolutely no noise, all pixels are at 0 degrees because a sine wave having a peak at an angle of 0 degrees is used.
As can be seen from Fig. 21A, when the S/N is low, i.e., when there is a lot of noise, the orientation angle varies over a wide range, and the accuracy of the analysis of the orientation angle deteriorates. Also, as the S/N increases, the width of the histogram becomes narrower, which indicates that the accuracy of the obtained orientation angle increases.
In other words, even when photographing an actual subject, the fluctuation can be reduced and the analysis accuracy can be improved by changing the photographing conditions to reduce noise and increase the S/N ratio. Specific methods for reducing noise include increasing the dose (mAs value) or increasing the number of photographs. By increasing the mAs value, an image with a good S/N ratio can be obtained, and it is expected that the accuracy of the orientation angle distribution will be improved.
 次に、図21Bに、同じS/Nの信号で撮影枚数、つまり撮影する格子と被写体の相対角度の数を4角度から12角度の範囲で変えたときのヒストグラムの計算結果を示す。撮影角度の数を4角度から12角度に増やすことで、配向角度がばらつく範囲が狭くなっており、線量を増やした場合と同様に配向角度の解析精度が向上していることが分かる。 Next, Figure 21B shows the results of calculating the histogram when the number of images taken with the same S/N ratio, i.e. the number of relative angles between the grid and the subject being photographed, is changed from 4 to 12 angles. By increasing the number of shooting angles from 4 to 12 angles, the range of variation in the orientation angles is narrowed, and it can be seen that the analysis accuracy of the orientation angles is improved, just as when the dose is increased.
 上記のように、1撮影当たりのmAs値を増やす、あるいは撮影する角度の数を増やすと、その分撮影回数の増加や撮影に要する時間が長くなる、管球の消耗が大きくなる、などのデメリットもある。そのため、評価の目的に応じて適切な条件を選定することが好ましい。そこで配向角度の解析精度についても、これまでの実施例1~3で述べてきた小角散乱画像のS/Nの予測・計算結果やこれまでの撮影情報の撮影情報データベースを参照してシミュレーションを行い、それぞれの撮影条件においてどの程度の配向角度精度が得られると期待されるか、という情報を提示して、ユーザーが適切な撮影条件を選択するための参考情報とすることができる。またこの際、制御部21は、単に複数の候補を並列で提示するだけにとどまらず、候補の中からおすすめの条件を優先順位とその理由、例えば精度を優先する場合は条件Aが良い、一方撮影時間を短くしたい場合は条件Bが良い、などと提示しても良い。このとき、制御部21は、選定手段として機能する。 As described above, increasing the mAs value per shot or the number of angles shot at will have disadvantages such as an increase in the number of shots, a longer time required for shooting, and greater tube wear. Therefore, it is preferable to select appropriate conditions according to the purpose of the evaluation. For the analysis accuracy of the orientation angle, a simulation is performed by referring to the predicted and calculated results of the S/N of the small-angle scattering images described in Examples 1 to 3 and the shooting information database of previous shooting information, and information on the expected degree of orientation angle accuracy can be presented for each shooting condition, which can be used as reference information for the user to select appropriate shooting conditions. In addition, at this time, the control unit 21 does not simply present multiple candidates in parallel, but may present recommended conditions from the candidates in order of priority and the reasons therefor, for example, condition A is good if accuracy is prioritized, while condition B is good if the shooting time is to be shortened. At this time, the control unit 21 functions as a selection means.
<実施例5>
 次に、ユーザーが、図22に示すように、操作部22に入力された被写体の面内の大きさが、撮影装置の1撮影当たりの視野より大きいが、被写体全体の撮影を行いたい場合について説明する。
 この場合、被写体を動かしながら複数回撮影することで、被写体全体を撮影するタイリング撮影を行う必要がある。このタイリング撮影時に被写体に対して視野をどのように配置すれば、必要最低限の撮影枚数で撮影したい領域全体を撮影できるかを提示する、制御部21の機能について説明する。
Example 5
Next, a case will be described in which the user wishes to photograph the entire subject even though the in-plane size of the subject input to the operation unit 22 is larger than the field of view of the photographing device per photograph, as shown in FIG.
In this case, it is necessary to perform tiling photography in which the entire subject is photographed by photographing the subject multiple times while moving it. The function of the control unit 21 will be described below, which presents how to arrange the field of view relative to the subject during tiling photography so that the entire area to be photographed can be photographed with the minimum number of photographs required.
 制御部21は、入力された被写体の大きさに関する情報より、被写体の大きさが撮影視野より大きな場合は、タイリング撮影をするときの視野配置の案を図22Aに示すように提示する。
 また、ユーザーの選択でタイリング撮影の配置の表示のON/OFFを切り替えても良い。つまり、被写体が視野より大きくても、タイリング撮影が不要な場合は、タイリング撮影をOFFにしてもよい。
 また、撮影時の被写体の向き、あるいは被写体の中で撮影したい領域、あるいは被写体の中で撮影が不要な領域をマウス、座標指定、CADデータなど何らかの方法で入力できても良い。撮影時の被写体の向きとは、被写体のどの部分を水平方向や垂直方向にあわせて配置するかということを指す。また、被写体の中で撮影したい領域とは、被写体全体ではなく、被写体の中のある領域だけが撮影できれば良い場合を指す。また、被写体の中で撮影が不要な領域とは、被写体全体の中で撮影不要な領域、例えば被写体の端部や金属部材が存在し、もともとタルボ撮影が困難でありユーザーとしては撮影する必要がない領域を指す。例えば図22Bは、試料の一部(F)は撮影不要とユーザーが入力した結果、F以外の領域全体を撮影できるように撮影視野V1、V2、V3をユーザーに提示している場合を模式的に示している。
 さらに図22Bに示すように、視野の配置を計算する際に、被写体全体ではなく、撮影したい領域だけをカバーするように視野を配置する、あるいは撮影不要な領域は視野の配置を行わなくしてもよい。これにより、撮影視野数を減らすことができ、撮影時間を低減するとともに管球の消耗を抑えることができる。
 また、撮影後の個別の画像を位置合わせする際、図22に示すように画像の一部が重なっているほうが、制御部21、あるいはユーザーが位置合わせを行いやすい。視野の重なり量が多いほど、位置合わせを行うときの情報が増えるため位置合わせが行いやすくなるが、一方で視野の重なりが大きすぎると、ある大きさの被写体の撮影に必要な視野数が増えるため好ましくない。この重なり量は3から10mm程度で設定することが好ましいが、この範囲よりも大きいあるいは小さい範囲を設定できても良い。初期値として、5mmなど何らかの値を提示し、ユーザー側で変更できることが好ましい。また、マイナスの値を設定することで、視野と視野の間に一定の隙間をあけてタイリング撮影しても良い。こうすることで視野の数倍以上大きな被写体を少ない撮影枚数でおおよそ全体の傾向を把握するような撮影も行うことができる。
If the size of the subject is larger than the field of view based on the input information on the size of the subject, the control unit 21 presents a proposal for the field of view arrangement when performing tiling photography, as shown in FIG. 22A.
In addition, the display of the tiling photography arrangement may be switched ON/OFF at the user's choice. In other words, even if the subject is larger than the field of view, tiling photography may be turned OFF if tiling photography is not necessary.
In addition, the orientation of the subject at the time of shooting, the area of the subject that is to be photographed, or the area of the subject that is not required to be photographed may be input by some method such as a mouse, coordinate specification, or CAD data. The orientation of the subject at the time of shooting refers to which part of the subject is arranged in the horizontal or vertical direction. The area of the subject that is to be photographed refers to a case where it is sufficient to photograph only a certain area of the subject, not the entire subject. The area of the subject that is not required to be photographed refers to an area of the entire subject that is not required to be photographed, such as an edge of the subject or a metal member, which is difficult to photograph using a Talbot camera, and is therefore not required to be photographed by the user. For example, FIG. 22B shows a schematic diagram of a case where the user inputs that a part of the sample (F) does not need to be photographed, and the photographing fields of view V1, V2, and V3 are presented to the user so that the entire area other than F can be photographed.
Furthermore, as shown in Fig. 22B, when calculating the arrangement of the fields of view, the fields of view may be arranged so as to cover only the area to be photographed, rather than the entire subject, or the fields of view may not be arranged for areas that do not need to be photographed. This allows the number of photographed fields of view to be reduced, shortening the photographing time and suppressing tube wear.
In addition, when aligning individual images after shooting, it is easier for the control unit 21 or the user to perform alignment if the images overlap partially as shown in FIG. 22. The greater the overlap amount of the fields of view, the more information is available for alignment, making alignment easier, but on the other hand, if the overlap amount of the fields of view is too large, the number of fields of view required to shoot a subject of a certain size increases, which is not preferable. This overlap amount is preferably set to about 3 to 10 mm, but it may be possible to set a range larger or smaller than this range. It is preferable to present some value, such as 5 mm, as an initial value, and allow the user to change it. Also, by setting a negative value, tiling shooting may be performed with a certain gap between the fields of view. In this way, it is possible to shoot a subject that is several times larger than the field of view with a small number of shots to roughly grasp the overall trend.
 また、被写体自体には特徴的な輪郭や形状、信号値の変化が少ない被写体の場合は、図22に示すように視野(V1~V4)と視野の重なる部分に何らかの位置合わせ用の目印(アライメントマークM)を配置して、被写体と同時に撮影することで、制御部21あるいはユーザーがより容易に視野同士の手動/自動での位置合わせを行うことが可能となる。制御部21は、視野の配置を提示する際に、同時にアライメントマークMを配置する推奨位置も撮影視野が重なっている部分を考慮して提示しても良い。 In addition, in the case of a subject that has a distinctive outline or shape and little change in signal value, by placing some sort of alignment mark (alignment mark M) in the overlapping area of the fields of view (V1 to V4) as shown in FIG. 22 and photographing the subject at the same time, the control unit 21 or the user can more easily align the fields of view manually or automatically. When presenting the layout of the fields of view, the control unit 21 may also present a recommended position for placing the alignment mark M, taking into consideration the overlapping areas of the photographed fields of view.
 また、実際の撮影時は、被写体台13上に、試料と並べて手作業で1つずつ配置しても良いが、別の方法として、透明なアクリル板などX線を透過し散乱の少ない板の上に被写体とアライメントマークを配置、テープなどで固定したうえで、アクリル板ごと撮影装置の被写体台13上に配置することで、より実際の被写体のセッティングがやりやすくなり好ましい。
 このような配置を支援するために、被写体の位置が分かるような輪郭などの情報とアライメントマークの位置、視野の配置など必要な情報を実物大でプリントアウトする、あるいはディスプレイなどのパネル上に表示する機能があっても良い。
 プリントアウトや机上に水平に置いて情報を表示したパネルの上にアクリル板を置いて、表示された配置に重なるように被写体やアライメントマークを配置、必要に応じて固定することで、容易に提示された被写体の配置を実現することが可能となる。
In addition, when actually taking an image, the subject and the sample may be placed manually one by one on the subject table 13 alongside the sample. Alternatively, as an alternative method, the subject and alignment marks may be placed on a plate that transmits X-rays and scatters little, such as a transparent acrylic plate, and then fixed with tape or the like, and the acrylic plate may then be placed on the subject table 13 of the imaging device, which is preferable as it makes it easier to set up the actual subject.
To assist with such positioning, it would be good to have a function to print out necessary information such as contours that indicate the position of the subject, the positions of alignment marks, and the position of the field of view in actual size, or to display it on a panel such as a display.
By placing an acrylic plate on top of a printout or a panel that is placed horizontally on a desk and displays information, and then arranging the subjects and alignment marks so that they overlap the displayed arrangement and fixing them in place as necessary, it is possible to easily realize the presented arrangement of the subjects.
 また、隣り合う視野同士の撮影時間は極力近いことが好ましい。これは時間が経過すると、温度変化などの環境変化によって得られる画像・信号値に微妙な変化が生じて、タイリングした時につなぎ目が目立ってしまう可能性があるためである。
 そのような事態を避けるために、制御部21は、タイリングする視野の配置だけでなく、望ましい撮影順序も同時に提示しても良い。
It is also preferable that the shooting times of adjacent fields of view are as close as possible, because as time passes, subtle changes occur in the images and signal values obtained due to environmental changes such as temperature changes, and this can result in noticeable seams when tiled.
To avoid such a situation, the control unit 21 may present not only the arrangement of the fields of view to be tiled, but also the desired shooting order at the same time.
 また、撮影視野と撮影視野のつなぎ目部分はどうしても別々に撮影した画像を並べているため、そのつなぎ目部分でつないでいることに由来する信号値の変化が生じやすい。また、つなぐ際の位置ずれなどが生じやすい。
 そこで、被写体情報を入力する際に、できるだけ1視野で撮影したい領域、極力視野のつなぎ目が来てほしくない領域をユーザーが入力する機能があっても良い。この入力があった場合は、制御部21は、視野のタイリングを計算する際に、その領域には極力視野のつなぎ目が位置しないように視野配置を計算しユーザー提示する。これにより、ユーザーの希望に沿った撮影が可能となる。
 また、提示された視野配置を見て、ユーザーが視野の位置をマウスなどで移動させて希望する配置に修正する機能があっても良い。その場合は、ユーザーが移動させて指定した視野を基準として、その周囲に適切な間隔で視野を配置することで、ユーザーの希望と少ない視野での撮影を両方満足する撮影視野配置をユーザーに提示することができる。
In addition, because the joints between the fields of view are made by arranging images that were taken separately, it is easy for signal values to change due to the joints being joined together. Also, positional deviations are likely to occur when joining the images.
Therefore, when inputting subject information, a function may be provided that allows the user to input an area that is desired to be photographed in one field of view as much as possible and an area where seams of the fields of view are desired to be avoided as much as possible. When this input is received, when calculating the tiling of the fields of view, the control unit 21 calculates the field of view arrangement so that seams of the fields of view are not located in that area as much as possible and presents it to the user. This makes it possible to photograph according to the user's wishes.
Also, there may be a function that allows the user to see the presented field of view layout and correct it to a desired layout by moving the position of the field of view with a mouse, etc. In that case, the field of view specified by the user is used as a reference, and the fields of view are arranged at appropriate intervals around it, so that a shooting field of view layout that satisfies both the user's desire and shooting with a small field of view can be presented to the user.
 さらに、制御部21は、提示した視野配置をいったんファイルに保存して、後日視野配置、さらには撮影条件も呼び出して実行できるようにしてもよい。また、制御部21は、保存された以前の情報を呼び出したうえでその一部を制御部21、もしくはユーザーが修正して利用しても良い。また、ファイルを使ってX線タルボ撮影装置1に情報を入力して実際の撮影時に利用しても良い。また、ファイル保存を介さず、無線/有線などのネットワークを通してX線タルボ撮影装置1に直接情報を伝達しても良い。その際視野配置だけでなく、撮影条件も含めて伝達しても良い。 Furthermore, the control unit 21 may temporarily save the presented visual field arrangement in a file so that the visual field arrangement and even the imaging conditions can be recalled and executed at a later date. The control unit 21 may also recall previous saved information and then use it by modifying a part of it by the control unit 21 or the user. Information may also be input to the X-ray Talbot imaging device 1 using a file and used during actual imaging. Information may also be transmitted directly to the X-ray Talbot imaging device 1 via a wireless/wired network without going through file storage. In this case, not only the visual field arrangement but also the imaging conditions may be transmitted.
<実施例6>
 被写体の大きさが1視野のサイズより大きく、かつ被写体全体の配向撮影を行いたい場合は、実施例5で述べたタイリング撮影を、格子と被写体の相対角度を変えながら複数回撮影する必要がある。
 その時、格子と被写体の相対角度を変えて撮影する際は、被写体の配置が変わるため、それに応じて視野配置を再検討する必要がある。
 そこで、実施例5において、さらに被写体を所定の角度回転させた配置に対しても、改めて適切な撮影視野の配置を提示することで、被写体と格子の相対角度を変えたタイリング撮影を行うことが可能となる。
 例えば、図23Aの配置を格子との相対角度0度として、格子との相対角度45度の撮影をするために被写体を45度回転させたときの視野配置の一例が図23Bなる。
 また、図には示さないが、同様に被写体を90度、135度に回転させたときに、その時の試料の向き・配置にあわせた撮影視野配置をユーザーに提示し、ユーザーがそれを用いて、複数角度での撮影を行い、得られた撮影結果をタイリングすることで、格子と被写体の相対角度の異なる複数のタイリング画像を得ることができる。
 また、その複数のタイリング画像を用いて配向解析を行うことで、撮影視野サイズより大きな大面積の被写体の配向結果をユーザーが得ることが可能となる。
Example 6
If the size of the subject is larger than the size of one field of view and it is desired to capture the orientation of the entire subject, it is necessary to perform the tiling capture described in Example 5 multiple times while changing the relative angle between the grid and the subject.
When taking a photograph by changing the relative angle between the grid and the subject, the subject's position will change, and the field of view arrangement will need to be reconsidered accordingly.
Therefore, in Example 5, even when the subject is rotated by a specified angle, by presenting an appropriate shooting field of view arrangement, it is possible to perform tiling shooting with a different relative angle between the subject and the grid.
For example, the arrangement in FIG. 23A is set to a relative angle of 0 degrees with respect to the grid, and FIG. 23B shows an example of the field of view arrangement when the subject is rotated 45 degrees to capture an image with a relative angle of 45 degrees with respect to the grid.
In addition, although not shown in the figure, when the subject is similarly rotated 90 degrees or 135 degrees, the user is presented with a shooting field of view arrangement that matches the orientation and arrangement of the sample at that time.The user can then use this to take images at multiple angles and tile the obtained shooting results, thereby obtaining multiple tiled images with different relative angles between the grid and the subject.
Furthermore, by performing orientation analysis using the multiple tiling images, the user can obtain orientation results for a large-area subject that is larger than the imaging field of view size.
<実施例7>
 実施例5で述べた通り、タイリングする際は、各視野の撮影画像の位置合わせ時に微小な(サブピクセル~数ピクセル)のずれが生じたり、あるいはつなぎ目での信号強度の変化が生じたりするリスクが存在する。
 タイリング撮影した画像で配向解析した場合は、そのようなずれや信号値の変化が配向解析結果に悪い影響を及ぼす可能性がある。例えば、実施例6の図23のようにタイリング撮影して得られたタイリング画像を用いて配向解析した場合、配向解析に使う各角度の画像にタイリング撮影したつなぎ目が存在することが避けられない。
 しかし、図24に示すように、まず被写体の左上の領域において、0度、45度、90度、135度の撮影を行って配向解析を行った場合、配向解析に使う各角度の画像の中に
はタイリングのつなぎ目は存在しておらず、タイリング時の位置ずれや信号強度の変化に起因する誤差のリスクのない配向解析結果を得ることができる。この時、図24にて点線表示された撮影視野の内接円内の配向解析画像が得られる。そして、このような撮影を被写体内の他の位置、例えば、図24で示すように被写体右下の領域でも行い、さらに図示はしていないが、試料内の配向解析画像を取得したい領域全体で行ったうえで、得られた各撮影位置での配向解析画像をタイリングすることで、視野より大きな被写体全体の配向解析画像を、タイリングのつなぎ目に起因するリスクなくユーザーは取得することができる。
 そこで、制御部21は、このような撮影視野の配置や撮影する順序、その時に必要な撮影時間などをユーザーに提示することで、被写体全体の配向撮影結果の取得を支援することができる。また、制御部21は、提示した視野配置や撮影手順をファイルに保存、あるいはタルボ撮影装置に送信することで、再利用したり、実際の撮影に利用したりしてもよい。
Example 7
As described in Example 5, when tiling, there is a risk that slight misalignment (subpixel to several pixels) may occur when aligning the captured images of each field of view, or that changes in signal intensity may occur at the seams.
When orientation analysis is performed using images captured by tiling photography, such deviations and changes in signal values may adversely affect the results of the orientation analysis. For example, when orientation analysis is performed using tiling images obtained by tiling photography as in Figure 23 of Example 6, it is unavoidable that the images captured by tiling photography at each angle used for orientation analysis have seams.
However, as shown in Fig. 24, when orientation analysis is performed by first photographing the upper left region of the subject at 0 degrees, 45 degrees, 90 degrees, and 135 degrees, there are no tiling joints in the images of each angle used for orientation analysis, and orientation analysis results can be obtained without the risk of errors due to misalignment or changes in signal strength during tiling. At this time, an orientation analysis image within the inscribed circle of the photographing field of view shown by the dotted line in Fig. 24 is obtained. Then, such photographing is also performed at other positions within the subject, for example, the lower right region of the subject as shown in Fig. 24, and further, although not shown, it is performed over the entire region in which an orientation analysis image within the sample is to be obtained, and then the orientation analysis images obtained at each photographing position are tiled, so that the user can obtain an orientation analysis image of the entire subject larger than the field of view without the risk of errors due to tiling joints.
Therefore, the control unit 21 can assist the user in obtaining orientation photography results of the entire subject by presenting the user with the arrangement of the photography field of view, the order of photography, the photography time required at that time, etc. The control unit 21 may also save the presented field of view arrangement and photography procedure in a file or transmit it to the Talbot photography device so that it can be reused or used for actual photography.
(フィードバック処理)
 フィードバック(FB)入力画面を図25に示す。制御部21は、ユーザーがX線タルボ撮影装置1を用いて被写体を撮影後、ユーザーがその撮影の画質を含む結果をフィードバックするための図25に示すようなフィードバック入力画面を表示部23に表示させる。
 画質の指標としては、下記載の通り、画素値から数値的に導出できる指標とユーザーが画像を目視で官能的に評価する指標がある。
 上記の数値的・官能的な画質良否の結果は、被写体情報と撮影パラメータとともに、撮影情報データベースに追加で記録することもできる。
(Feedback Processing)
A feedback (FB) input screen is shown in Fig. 25. After the user photographs a subject using the X-ray Talbot imaging device 1, the control unit 21 causes the display unit 23 to display a feedback input screen as shown in Fig. 25, which allows the user to feed back the results of the photographing including the image quality.
As for image quality indicators, there are indices that can be numerically derived from pixel values and indices that allow a user to visually and sensorily evaluate an image, as described below.
The above numerical and sensory image quality results can also be additionally recorded in the photography information database together with the subject information and photography parameters.
 まず、数値的な画質指標について、説明する。
 数値的な画質の指標としては、(1) S/N, (2) ビジビリティ率, (3)
 透過率, (4) ビジビリティ×√透過率 などが挙げられる。
 数値的な画質指標は、画像全体について計算してもよいし、画像の一部領域について計算してもよい。
 一部領域について計算を行う場合、計算領域の設定方法としては、ユーザーが手動で画像上の関心領域を設定してもよいし、素抜け部・低画質部など、ある定義を満たす領域を自動で認識して設定するようにしてもよい。
 素抜け部は、被写体が写っていない領域である。素抜け部の指定方法としては、ユーザーが手動で指定する方法、輪郭検出などの方法によって自動で指定する方法でもよい。画質の演算領域としては、素抜け部全体を用いてもよいし、一部を指定して用いてもよい。
 低画質部の表示について、説明する。制御部21は、ある撮影パラメータで取得したタルボ3画像(吸収画像、微分位相画像、小角散乱画像)のうち、少なくとも一画像について、画像中の低画質領域を演算して、表示部23にその領域を枠で囲った状態で表示させ、ユーザーへ表示することができる。このとき、制御部21は、低画質領域を可視化する可視化手段として機能する。これにより、画像中で確認できる像・シグナルが信頼できるものかどうかの判断基準とすることもできる。
 低画質部の演算方法について、説明する。上記低画質部は、例えば下記のような条件で定義され、この定義を満たす領域を、自動・手動で探すことで決定できる。その条件とは、(1) 透過率・ビジビリティ率が、最低限必要な数値に対して有意に低い領域 (2) 素抜け部のS/Nに対して、有意にS/Nが低い領域 (3) 事前に設定している基準S/Nに対して、有意にS/Nが低い領域 など、である。
First, the numerical image quality index will be described.
Numerical image quality indicators include: (1) S/N, (2) visibility rate, and (3)
Transmittance, (4) Visibility × √Transmittance, etc.
The numerical image quality index may be calculated for the entire image or for a portion of the image.
When performing calculations on a partial region, the calculation region can be set by the user manually setting the region of interest on the image, or by automatically recognizing and setting a region that meets a certain definition, such as a blank area or a low image quality area.
The blank area is an area where no subject is captured. The blank area may be specified manually by the user or automatically by contour detection or other methods. The blank area may be used as the image quality calculation area in its entirety, or a portion of it may be specified.
The display of low image quality areas will now be described. The control unit 21 can calculate low image quality areas in at least one of the three Talbot images (absorption image, differential phase image, small angle scattering image) acquired with certain imaging parameters, and display the areas on the display unit 23 in a framed state to display to the user. At this time, the control unit 21 functions as a visualization means for visualizing the low image quality areas. This can also be used as a criterion for determining whether the images and signals confirmed in the images are reliable.
The calculation method for the low image quality part will be described. The low image quality part is defined by the following conditions, for example, and can be determined by automatically or manually searching for an area that satisfies this definition. The conditions are: (1) an area where the transmittance/visibility rate is significantly lower than the minimum required value; (2) an area where the S/N is significantly lower than the S/N of the non-transparent part; (3) an area where the S/N is significantly lower than a standard S/N set in advance.
 次に、官能的な画質の指標について、説明する。官能的な画質の指標として、ユーザーが独自の基準で、画像の良好度を判定できる。判定は、画質が良好であるほど、数値もしくは記号の数が多くなるように、操作部22を用いて、制御部21に入力することができ
る。ユーザーが判定を行わない場合は、「評価無」として、記憶部25に記録される。
Next, the sensory image quality index will be described. As an index of sensory image quality, the user can judge the quality of the image based on their own criteria. The judgment can be input to the control unit 21 using the operation unit 22 so that the better the image quality, the greater the number of numbers or symbols. If the user does not make a judgment, it is recorded in the memory unit 25 as "no evaluation."
(モデルを用いた信号値予測)
 上述のように、各種被写体情報・撮影条件などを説明変数・推定したいビジビリティ率や小角散乱信号値を目的変数とした、モデルを構築し、モデルに学習させることで、モデルの精度を向上させることができる。なお、以降の説明では小角散乱画像を例として説明するが、小角散乱画像に限定されない。この学習モデルの構築方法や更新方法としては、[0084]に記載している方法で、撮影情報データベースから抽出した類似の撮影情報から、各種被写体情報や撮影条件などを説明変数とし、推定したいビジビリティ率や小角散乱信号値を目的変数とした、モデルを構築するという手段が考えられる。
 一方で、この方法は、データベースに同一カテゴリの被写体の撮影事例が一定数たまってくることで初めてできるようになる。撮影事例に乏しく、データ量が少ない場合は、以下に述べるような理論に基づくモデルを起点とすることが考えられる。
 例えば、以下に示す式(2)~(4)は、ある媒質中に球状の散乱体がランダムに分布しているというモデルを仮定した小角散乱信号値の非特許文献2に記載の理論式である。この式を用いて、散乱体形状が球状かつランダム分布を仮定した場合の粒子径に対する信号値(理論値)を算出することが可能である。そして、粒子径に対する信号値は、図26のグラフの曲線で表される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 また、実際にユーザーがタルボ撮影したところ得られた信号値(実験値)が、図26の点で表示されている。撮影を行った被写体は、樹脂中に球状のシリカ粒子を混ぜて固めたものである。図26からわかる通り、式(2)~(4)は、実験で得られた粒子径に対する信号値の変化をよく再現している。
 しかし、現実の被写体では、粒子の形状や分布が、上記モデルの仮定と異なる場合があり、上記理論値と実験値の値が乖離する場合が考えられる。言い換えれば、乖離している点の数が多くなるということは、理論式が想定しているパラメータ(粒子径)とは別のパラメータが信号値に効くことを示唆する。よって、理論値と実験値が乖離する事例が増えてきた場合は、ユーザーが入力する被写体情報を用いて、それまで用いていたパラメータ(粒子径など)とは別のパラメータ(粒子の形状など)を新たに説明変数として追加した新たなモデル式を作成し、該当する被写体の信号値を予測する場合は、それを用いてもよい。
 上記理論値と実験値の値が乖離する場合、制御部21(計算手段)に、乖離度合いを示す乖離度を計算させてもよい。例えば、乖離度とは、理論値と実験値の値が所定値以上に乖離する実験数を、実験の総数で割った数などが考えられる。
(Signal value prediction using a model)
As described above, the accuracy of the model can be improved by constructing a model in which various object information and shooting conditions are used as explanatory variables and the visibility rate and small-angle scattering signal value to be estimated are used as objective variables, and having the model learn. In the following description, a small-angle scattering image is used as an example, but is not limited to a small-angle scattering image. As a method for constructing and updating this learning model, a method described in [0084] can be considered in which a model is constructed from similar shooting information extracted from the shooting information database in which various object information and shooting conditions are used as explanatory variables and the visibility rate and small-angle scattering signal value to be estimated are used as objective variables.
However, this method is only possible once a certain number of photographic examples of subjects in the same category have been accumulated in the database. When photographic examples are scarce and the amount of data is small, it is possible to start with a model based on the theory described below.
For example, the following formulas (2) to (4) are theoretical formulas described in Non-Patent Document 2 for small-angle scattering signal values, which assume a model in which spherical scatterers are randomly distributed in a certain medium. Using these formulas, it is possible to calculate the signal value (theoretical value) versus particle diameter when the scatterers are assumed to be spherical and randomly distributed. The signal value versus particle diameter is represented by the curve in the graph in FIG.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Furthermore, the signal values (experimental values) obtained when a user actually took a Talbot photograph are displayed as points in Figure 26. The subject photographed was a resin in which spherical silica particles were mixed and solidified. As can be seen from Figure 26, formulas (2) to (4) closely reproduce the change in signal value versus particle size obtained in the experiment.
However, in a real subject, the shape and distribution of particles may differ from the assumptions of the model, and the theoretical value and the experimental value may diverge. In other words, an increase in the number of divergent points suggests that a parameter other than the parameter (particle diameter) assumed by the theoretical formula affects the signal value. Therefore, if there are an increasing number of cases where the theoretical value and the experimental value diverge, a new model formula may be created using the subject information entered by the user, in which a parameter (such as particle shape) other than the parameter (such as particle diameter) used until then is added as a new explanatory variable, and this may be used to predict the signal value of the subject in question.
When the theoretical value and the experimental value deviate from each other, the control unit 21 (calculation means) may calculate a degree of deviation indicating the degree of deviation. For example, the degree of deviation may be calculated by dividing the number of experiments in which the theoretical value and the experimental value deviate from each other by a predetermined value or more by the total number of experiments.
(効果)
 以上説明したように、X線タルボ撮影条件演算装置2は、被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段(X線撮影システム100)における撮影条件を演算するX線タルボ撮影条件演算装置2であって、被写体情報の入力を受け付ける受付手段(制御部21)と、被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算手段(制御部21)と、を備える。これにより、ユーザーが、タルボ撮影において、より適切な撮影条件や撮影視野の配置を容易に決定できる。
(effect)
As described above, the X-ray Talbot imaging condition calculation device 2 is an X-ray Talbot imaging condition calculation device 2 that calculates imaging conditions in a Talbot imaging means (X-ray imaging system 100) that captures a small-angle scattering image and/or a differential phase image of a subject, and includes a receiving means (control unit 21) that receives input of subject information, and a calculation means (control unit 21) that calculates imaging conditions based on the subject information, past imaging information, and/or theoretical calculation formula. This allows a user to easily determine more appropriate imaging conditions and an arrangement of an imaging field of view in Talbot imaging.
 また、演算手段(制御部21)は、過去の撮影情報及び/又は理論計算式に基づいて、所定の特徴量を算出する算出手段(制御部21)と、算出した特徴量に基づいて撮影条件を選定する選定手段(制御部21)と、を備える。これにより、ユーザーが、タルボ撮影において、選定された撮影条件を基に、より適切な撮影条件を容易に決定できる。 The calculation means (control unit 21) also includes a calculation means (control unit 21) that calculates a predetermined characteristic amount based on past shooting information and/or a theoretical calculation formula, and a selection means (control unit 21) that selects shooting conditions based on the calculated characteristic amount. This allows the user to easily determine more appropriate shooting conditions for Talbot photography based on the selected shooting conditions.
 また、X線タルボ撮影条件演算装置2は、判定手段(制御部21)により所定の画質条件を満たす撮影条件が得られないと判定された場合には、所定の画質条件を満たす被写体情報における被写体条件を演算する第2演算手段(制御部21)を備える。これにより、ユーザーが、タルボ撮影において、事前に被写体の試し撮影を行うことなく、より適切な撮影条件を容易に決定できる。 The X-ray Talbot imaging condition calculation device 2 also includes a second calculation means (controller 21) that calculates subject conditions in subject information that satisfy the specified image quality conditions when the determination means (controller 21) determines that imaging conditions that satisfy the specified image quality conditions cannot be obtained. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging without having to perform test imaging of the subject in advance.
 また、X線タルボ撮影条件演算方法は、被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置を用いたX線タルボ撮影条件演算方法であって、被写体情報の入力を受け付ける受付ステップ(ステップS1)、被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算ステップ(ステップS5、S6、S8)、を含む。これにより、ユーザーが、タルボ撮影において、より適切な撮影条件を容易に決定できる。 The X-ray Talbot imaging condition calculation method is an X-ray Talbot imaging condition calculation method using an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small-angle scattering image and/or a differential phase image of a subject, and includes a reception step (step S1) for receiving input of subject information, and a calculation step (steps S5, S6, S8) for calculating imaging conditions based on the subject information, past imaging information, and/or theoretical calculation formulas. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging.
 また、X線タルボ撮影システム100は、放射線源と、複数の格子と、放射線検出器と、が放射線照射軸方向に並んで設けられ、放射線照射軸方向に配置された被写体に放射線源により放射線を照射して撮影を行うことにより得られるモアレ縞画像に基づいて、少なくとも被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段(X線タルボ撮影装置1)と、被写体情報の入力を受け付ける受付手段(制御部21)と、被写体情報と過去の撮影情報とに基づいて、撮影条件を演算する演算手段(制御部21)と、を備える。これにより、ユーザーが、タルボ撮影において、より適切な撮影条件を容易に決定できる。 The X-ray Talbot imaging system 100 also includes a radiation source, multiple gratings, and a radiation detector arranged in the radiation irradiation axis direction, and includes a Talbot imaging means (X-ray Talbot imaging device 1) that captures at least a small-angle scattering image and/or a differential phase image of a subject based on a moiré fringe image obtained by irradiating a subject arranged in the radiation irradiation axis direction with radiation from the radiation source and capturing the image, a receiving means (control unit 21) that receives input of subject information, and a calculation means (control unit 21) that calculates the imaging conditions based on the subject information and past imaging information. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging.
 また、プログラムは、被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置2のコンピューターに、被写体情報の入力を受け付ける受付手段(制御部21)、被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算手段(制御部21)、として機能させる。これにより、ユーザーが、タルボ撮影において、より適切な撮影条件を容易に決定できる。 The program also causes the computer of the X-ray Talbot imaging condition calculation device 2, which calculates the imaging conditions in the Talbot imaging means for capturing small-angle scattering images and/or differential phase images of the subject, to function as a receiving means (control unit 21) that receives input of subject information, and a calculation means (control unit 21) that calculates the imaging conditions based on the subject information, past imaging information, and/or theoretical calculation formulas. This allows the user to easily determine more appropriate imaging conditions for Talbot imaging.
 以上、本発明の実施形態について説明したが、上述した本実施形態における記述は、本発明に係る好適な一例であり、これに限定されるものではない。 The above describes an embodiment of the present invention, but the description of the above embodiment is a preferred example of the present invention and is not intended to be limiting.
 例えば、上記では、表示部23を備えるX線タルボ撮影条件演算装置2は、画像表示装置としても機能しているが、X線タルボ撮影条件演算装置と画像表示装置を別の装置としてもよい。具体的には、画像表示装置では表示処理のみ行い、各種処理や情報管理は別のX線タルボ撮影条件演算装置で行ってもよい。例えば、X線タルボ撮影条件演算装置をクラウドとし、表示処理のみ画像表示装置で行うことなどが挙げられる。 For example, in the above, the X-ray Talbot radiography condition calculation device 2 equipped with the display unit 23 also functions as an image display device, but the X-ray Talbot radiography condition calculation device and the image display device may be separate devices. Specifically, the image display device may perform only display processing, and various processes and information management may be performed by a separate X-ray Talbot radiography condition calculation device. For example, the X-ray Talbot radiography condition calculation device may be a cloud, and only display processing may be performed by the image display device.
 また、上記の説明では、本発明に係るプログラムのコンピューター読み取り可能な媒体としてハードディスクや半導体の不揮発性メモリー等を使用した例を開示したが、この例に限定されない。その他のコンピューター読み取り可能な媒体として、CD-ROM等の可搬型記録媒体を適用することが可能である。 In addition, in the above explanation, examples have been disclosed in which a hard disk or a non-volatile semiconductor memory is used as a computer-readable medium for the program according to the present invention, but this is not a limitation. Portable recording media such as CD-ROMs can also be used as other computer-readable media.
 その他、各装置の細部構成及び細部動作に関しても、発明の趣旨を逸脱することのない範囲で適宜変更可能である。 In addition, the detailed configuration and operation of each device may be modified as appropriate without departing from the spirit of the invention.
 本開示は、X線タルボ撮影条件演算装置、X線タルボ撮影条件演算方法、X線タルボ撮影システム、X線タルボ撮影条件表示装置及びプログラムに利用できる。 This disclosure can be used in an X-ray Talbot imaging condition calculation device, an X-ray Talbot imaging condition calculation method, an X-ray Talbot imaging system, an X-ray Talbot imaging condition display device, and a program.
1 X線タルボ撮影装置(タルボ撮影手段)
2 X線タルボ撮影条件演算装置
11 X線発生装置
11a X線源
12 線源格子(G0格子)
13 被写体台
14 第1格子(G1格子)
15 第2格子(G2格子)
16 X線検出器(FPD)
21 制御部(受付手段、演算手段、算出手段、選定手段、予測手段、判定手段、抽出手段、表示制御手段、第2演算手段、計算手段、フィードバック手段、可視化手段)
22 操作部
23 表示部(表示手段)
24 通信部
25 記憶部(記憶手段)
100 X線撮影システム
H 被写体
S スリット
Mo モアレ画像
1 X-ray Talbot imaging device (Talbot imaging means)
2 X-ray Talbot imaging condition calculation device 11 X-ray generator 11a X-ray source 12 Source grating (G0 grating)
13 Subject stage 14 1st grid (G1 grid)
15 Second lattice (G2 lattice)
16 X-ray detector (FPD)
21 Control unit (acceptance means, calculation means, calculation means, selection means, prediction means, determination means, extraction means, display control means, second calculation means, calculation means, feedback means, visualization means)
22 Operation unit 23 Display unit (display means)
24 Communication unit 25 Storage unit (storage means)
100 X-ray imaging system H Subject S Slit Mo Moire image

Claims (26)

  1.  被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置において、
     被写体情報の入力を受け付ける受付手段と、
     前記被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算手段と、
     を備えるX線タルボ撮影条件演算装置。
    1. An X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small-angle scattering image and/or a differential phase image of a subject, comprising:
    A receiving means for receiving input of subject information;
    A calculation means for calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula;
    An X-ray Talbot radiography condition calculation device comprising:
  2.  前記演算手段は、
     過去の撮影情報及び/又は理論計算式に基づいて、所定の特徴量を算出する算出手段と、
     算出した特徴量に基づいて前記撮影条件を選定する選定手段と、
     を備える請求項1記載のX線タルボ撮影条件演算装置。
    The calculation means includes:
    A calculation means for calculating a predetermined feature amount based on past photographing information and/or a theoretical calculation formula;
    A selection means for selecting the photographing conditions based on the calculated feature amount;
    2. The X-ray Talbot radiography condition calculation device according to claim 1, further comprising:
  3.  前記演算手段は、前記撮影条件に基づいて撮影した場合の画像の画質を予測する予測手段を備える請求項2に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 2, wherein the calculation means includes a prediction means for predicting the image quality of an image when captured based on the imaging conditions.
  4.  前記演算手段は、前記予測された画質が所定の画質条件を満たすかどうか判定する判定手段を備え、
     前記選定手段は、前記所定の画質条件を満たすと判定された画質が得られる撮影条件を選定する請求項3に記載のX線タルボ撮影条件演算装置。
    The calculation means includes a determination means for determining whether the predicted image quality satisfies a predetermined image quality condition,
    4. The X-ray Talbot imaging condition calculation device according to claim 3, wherein the selection means selects imaging conditions that provide image quality that is determined to satisfy the predetermined image quality condition.
  5.  前記選定手段は、所定の撮影時間内で撮影が終了できる撮影条件を選定する請求項4に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 4, wherein the selection means selects imaging conditions that allow imaging to be completed within a predetermined imaging time.
  6.  前記選定手段は、配向角度の解析精度に基づいて、撮影条件を選定する請求項2に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 2, wherein the selection means selects imaging conditions based on the analytical accuracy of the orientation angle.
  7.  前記被写体情報は、被写体の厚み、被写体を構成する材質の組成及び被写体に対する比率、材質毎に含まれる含有物質情報、被写体中の注目領域の組成・形状・サイズのうち少なくとも1つを含む請求項1に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 1, wherein the subject information includes at least one of the following: thickness of the subject, composition of the material constituting the subject and its ratio to the subject, information on substances contained in each material, and composition, shape, and size of a region of interest in the subject.
  8.  前記被写体情報は前記被写体の欠陥情報を含む請求項1に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 1, wherein the subject information includes defect information of the subject.
  9.  前記過去の撮影情報を、当該過去の撮影情報を用いて撮影した被写体の被写体情報と紐付けて格納する記憶手段を備える請求項1に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 1, further comprising a storage means for storing the past imaging information in association with subject information of a subject imaged using the past imaging information.
  10.  前記記憶手段は、理論計算式を格納する請求項9に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 9, wherein the storage means stores a theoretical calculation formula.
  11.  前記演算手段は、前記記憶手段から、前記被写体情報に一致又は類似する過去の撮影情報を検索し、前記一致又は類似する過去の撮影情報における撮影条件を抽出する抽出手段を備える請求項9に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 9, wherein the calculation means includes an extraction means for searching the storage means for past imaging information that matches or is similar to the subject information, and extracting imaging conditions in the matching or similar past imaging information.
  12.  前記撮影条件を表示手段に表示する表示制御手段を備える請求項1に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 1, further comprising a display control means for displaying the imaging conditions on a display means.
  13.  前記撮影条件を表示手段に表示する表示制御手段を備え、
     前記表示制御手段は、前記選定手段により選定された撮影条件を表示する請求項4に記載のX線タルボ撮影条件演算装置。
    a display control means for displaying the photographing conditions on a display means;
    5. The X-ray Talbot imaging condition calculation device according to claim 4, wherein said display control means displays the imaging condition selected by said selection means.
  14.  前記撮影条件を表示手段に表示する表示制御手段を備え、
     前記表示制御手段は、所定の画質条件を満たす撮影条件がない場合、その旨を前記表示手段に表示させる請求項4に記載のX線タルボ撮影条件演算装置。
    a display control means for displaying the photographing conditions on a display means;
    5. The X-ray Talbot imaging condition calculation device according to claim 4, wherein said display control means, when there is no imaging condition that satisfies a predetermined image quality condition, causes said display means to display that effect.
  15.  前記判定手段により所定の画質条件を満たす撮影条件が得られないと判定された場合には、所定の画質条件を満たす被写体情報における被写体条件を演算する第2演算手段を備える請求項4に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 4, further comprising a second calculation means for calculating subject conditions in subject information that satisfy the predetermined image quality conditions when the determination means determines that imaging conditions that satisfy the predetermined image quality conditions cannot be obtained.
  16.  前記撮影条件に基づいて撮影した場合に予測される画像の画質と当該撮影条件に基づいて撮影された画像の画質との乖離度を計算する計算手段と有する請求項3に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 3, further comprising a calculation means for calculating the degree of discrepancy between the image quality predicted when imaging is performed based on the imaging conditions and the image quality of the image captured based on the imaging conditions.
  17.  前記乖離度に基づいて理論計算式へのフィードバックを行うフィードバック手段を備える請求項16に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 16, further comprising a feedback means for providing feedback to the theoretical calculation formula based on the deviation.
  18.  前記被写体情報と前記過去の撮影情報とから構築した、小角散乱画像および/又は微分位相画像の信号値を算出する学習モデルをさらに備え、
     前記演算手段は、前記学習モデルを用いて前記撮影条件を演算する請求項17に記載のX線タルボ撮影条件演算装置。
    A learning model is further provided that calculates a signal value of a small angle scattering image and/or a differential phase image constructed from the subject information and the past shooting information,
    18. The X-ray Talbot imaging condition calculation device according to claim 17, wherein the calculation means calculates the imaging conditions by using the learning model.
  19.  前記フィードバック手段は、乖離度、元の理論計算式、計算に用いた被写体情報の少なくともいずれか1つに基づいて、前記学習モデルを修正する請求項18に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 18, wherein the feedback means corrects the learning model based on at least one of the deviation degree, the original theoretical calculation formula, and the subject information used in the calculation.
  20.  撮影した画像の低画質領域を可視化する可視化手段をさらに備える請求項1に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 1, further comprising a visualization means for visualizing low-image-quality areas of the captured image.
  21.  前記演算手段は、撮影視野より大きな試料を撮影する際の前記撮影視野の配置を提示する請求項1に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 1, wherein the calculation means presents the arrangement of the imaging field when imaging a sample larger than the imaging field.
  22.  前記撮影視野の配置は、X線タルボ撮影装置に対する前記被写体の位置を示す撮影角度ごとの撮影視野の配置である請求項21に記載のX線タルボ撮影条件演算装置。 The X-ray Talbot imaging condition calculation device according to claim 21, wherein the arrangement of the imaging field of view is an arrangement of the imaging field of view for each imaging angle that indicates the position of the subject relative to the X-ray Talbot imaging device.
  23.  被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置を用いたX線タルボ撮影条件演算方法であって、
     被写体情報の入力を受け付ける受付ステップ、
     前記被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算ステップ、
     を含むX線タルボ撮影条件演算方法。
    1. An X-ray Talbot imaging condition calculation method using an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small angle scattering image and/or a differential phase image of a subject, comprising:
    A receiving step of receiving input of subject information;
    a calculation step of calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula;
    The X-ray Talbot radiography condition calculation method includes the following:
  24.  放射線源と、複数の格子と、放射線検出器と、が放射線照射軸方向に並んで設けられ、前記放射線照射軸方向に配置された被写体に前記放射線源により放射線を照射して撮影を行うことにより得られるモアレ縞画像に基づいて、少なくとも前記被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段と、
     被写体情報の入力を受け付ける受付手段と、
     前記被写体情報と過去の撮影情報とに基づいて、撮影条件を演算する演算手段と、
     を備えるX線タルボ撮影システム。
    a Talbot imaging means which comprises a radiation source, a plurality of gratings, and a radiation detector arranged in a direction of a radiation irradiation axis, and which captures at least a small-angle scattering image and/or a differential phase image of a subject based on a Moiré fringe image obtained by irradiating a subject arranged in the direction of the radiation irradiation axis with radiation from the radiation source and capturing the image;
    A receiving means for receiving input of subject information;
    A calculation means for calculating a photographing condition based on the subject information and past photographing information;
    An X-ray Talbot imaging system comprising:
  25.  被写体の小角散乱画像および/又は微分位相画像を撮影するタルボ撮影手段における撮影条件を演算するX線タルボ撮影条件演算装置のコンピューターに、
     被写体情報の入力を受け付ける受付手段、
     前記被写体情報と、過去の撮影情報及び/又は理論計算式とに基づいて、撮影条件を演算する演算手段、
     として機能させるプログラム。
    a computer of an X-ray Talbot imaging condition calculation device that calculates imaging conditions in a Talbot imaging means that captures a small angle scattering image and/or a differential phase image of a subject,
    A receiving means for receiving input of subject information;
    a calculation means for calculating a photographing condition based on the subject information, past photographing information and/or a theoretical calculation formula;
    A program that functions as a
  26.  請求項1に記載のX線タルボ撮影条件演算装置の演算手段により演算された撮影条件を表示させる表示部を備えるX線タルボ画像表示装置。 An X-ray Talbot image display device having a display unit that displays the imaging conditions calculated by the calculation means of the X-ray Talbot imaging condition calculation device described in claim 1.
PCT/JP2024/010042 2023-03-31 2024-03-14 X-ray talbot imaging condition calculation device, x-ray talbot imaging condition calculation method, x-ray talbot imaging system, x-ray talbot imaging condition display device, and program WO2024203397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-057742 2023-03-31
JP2023057742 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024203397A1 true WO2024203397A1 (en) 2024-10-03

Family

ID=92906011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010042 WO2024203397A1 (en) 2023-03-31 2024-03-14 X-ray talbot imaging condition calculation device, x-ray talbot imaging condition calculation method, x-ray talbot imaging system, x-ray talbot imaging condition display device, and program

Country Status (1)

Country Link
WO (1) WO2024203397A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024068A (en) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 Medical image processor
WO2015015851A1 (en) * 2013-07-30 2015-02-05 コニカミノルタ株式会社 Medical image system and joint cartilage state score determination method
JP2016150173A (en) * 2015-02-19 2016-08-22 コニカミノルタ株式会社 X-ray talbot photographing apparatus and x-ray talbot photographing system
JP2017006588A (en) * 2015-06-26 2017-01-12 コニカミノルタ株式会社 Radiographic system and image processing apparatus
JP2017213010A (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Talbot photographing device
JP2021021621A (en) * 2019-07-26 2021-02-18 株式会社島津製作所 X-ray phase difference imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024068A (en) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 Medical image processor
WO2015015851A1 (en) * 2013-07-30 2015-02-05 コニカミノルタ株式会社 Medical image system and joint cartilage state score determination method
JP2016150173A (en) * 2015-02-19 2016-08-22 コニカミノルタ株式会社 X-ray talbot photographing apparatus and x-ray talbot photographing system
JP2017006588A (en) * 2015-06-26 2017-01-12 コニカミノルタ株式会社 Radiographic system and image processing apparatus
JP2017213010A (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Talbot photographing device
JP2021021621A (en) * 2019-07-26 2021-02-18 株式会社島津製作所 X-ray phase difference imaging device

Similar Documents

Publication Publication Date Title
US8333508B2 (en) Multi-functional medical imaging quality assurance sensor
Grediac et al. The Grid Method for In‐plane Displacement and Strain Measurement: A Review and Analysis
Barhli et al. J-integral calculation by finite element processing of measured full-field surface displacements
JP2019184450A (en) X-ray imaging system
Kelvin et al. Galaxy And Mass Assembly (GAMA): structural investigation of galaxies via model analysis
Siliqi et al. SUNBIM: A package for X-ray imaging of nano-and biomaterials using SAXS, WAXS, GISAXS and GIWAXS techniques
JP7456135B2 (en) Molding support device and molding support method
Basinger et al. Pattern center determination in electron backscatter diffraction microscopy
JP6363573B2 (en) Radiation source image plane distance acquisition apparatus, method and program, and radiographic image processing apparatus, method and program
Pineda et al. Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
Jiang et al. Four-channel toroidal crystal x-ray imager for laser-produced plasmas
Alloo et al. M ultimodal intrinsic speckle-tracking (MIST) to extract images of rapidly-varying diffuse X-ray dark-field
WO2024203397A1 (en) X-ray talbot imaging condition calculation device, x-ray talbot imaging condition calculation method, x-ray talbot imaging system, x-ray talbot imaging condition display device, and program
Sorrentino et al. Close-range photogrammetry reveals morphometric changes on replicative ground stones
Koshti X-ray ray tracing simulation and flaw parameters for crack detection
Bátor et al. A comparison of a track shape analysis-based automated slide scanner system with traditional methods
Landauer et al. A materials data framework and dataset for elastomeric foam impact mitigating materials
JP7306528B2 (en) Control device, display method and inspection method
JP2023166550A (en) Scatter correction for computed tomography imaging
EP3998948B1 (en) Apparatus for processing data acquired by a dark-field and/or phase contrast x-ray imaging system
Morgan et al. Capturing and visualizing transient X-ray wavefront topological features by single-grid phase imaging
Zendagui et al. Reflectance Transformation Imaging as a Tool for Computer-Aided Visual Inspection
JP6372018B2 (en) Measuring device and measuring method
Keklikoğlu et al. Dynamic flat field correction in edge illumination imaging
Liu et al. Characterization of relief printing