Nothing Special   »   [go: up one dir, main page]

WO2024203281A1 - Liquefied methane production method and liquefied methane production apparatus - Google Patents

Liquefied methane production method and liquefied methane production apparatus Download PDF

Info

Publication number
WO2024203281A1
WO2024203281A1 PCT/JP2024/009548 JP2024009548W WO2024203281A1 WO 2024203281 A1 WO2024203281 A1 WO 2024203281A1 JP 2024009548 W JP2024009548 W JP 2024009548W WO 2024203281 A1 WO2024203281 A1 WO 2024203281A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
methane
biogas
liquefied methane
moisture
Prior art date
Application number
PCT/JP2024/009548
Other languages
French (fr)
Japanese (ja)
Inventor
沙紀 藤井
真子 寺井
智大 西川
Original Assignee
エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社 filed Critical エア・ウォーター株式会社
Publication of WO2024203281A1 publication Critical patent/WO2024203281A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • This disclosure relates to a method for producing liquefied methane and an apparatus for producing liquefied methane.
  • Natural gas and liquefied natural gas have been attracting attention as clean energy sources that emit less carbon dioxide compared to fossil fuels such as coal and oil.
  • carbon dioxide is still emitted, and the amount of carbon dioxide emissions is steadily increasing. Therefore, there is a demand for alternative energy sources to replace natural gas and liquefied natural gas.
  • Biogas derived from livestock manure such as dairy and beef cows, food waste, and sewage sludge is attracting attention.
  • Biogas is composed of methane gas, carbon dioxide gas, nitrogen gas, etc., and is expected to be an alternative energy source to natural gas and liquefied natural gas.
  • Patent Document 1 JP 2018-188594 A discloses a method for increasing the concentration of methane gas by removing carbon dioxide from biogas using a high-pressure water absorption method
  • Patent Document 2 JP 2021-178269 A discloses a method for increasing the concentration of methane gas by removing carbon dioxide from biogas using a chemical absorption method
  • Patent Document 3 JP 2013-534863 A discloses a method for increasing the concentration of methane gas by removing carbon dioxide from biogas using a membrane separation method.
  • Patent Document 1 has problems such as the equipment becoming larger and being costly. Also, the methods described in Patent Documents 2 and 3 make it difficult to increase the purity of methane gas.
  • liquefied methane derived from biogas is used as ship and truck fuel, and a supply system has been established.
  • High-purity liquefied methane is also used as rocket fuel. As such, it is expected that demand will expand not only for methane gas, but also for liquefied methane.
  • the object of this disclosure is to provide a method and apparatus for producing liquefied methane from biogas.
  • a method for producing liquefied methane from a biogas containing methane gas, carbon dioxide gas, nitrogen gas, oxygen gas, argon gas and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas comprising: A first step of separating carbon dioxide gas and moisture from the biogas or the concentrated gas to obtain an intermediate gas; A second step of distilling and separating the intermediate gas in a distillation column to obtain liquefied methane.
  • An apparatus for producing liquefied methane from a biogas containing methane gas, carbon dioxide gas, nitrogen gas, oxygen gas, argon gas and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas comprising: A separation device for separating carbon dioxide gas and moisture from the biogas or the concentrated gas to obtain an intermediate gas; and a distillation apparatus for distilling and separating the intermediate gas to obtain liquefied methane.
  • the distillation apparatus includes a distillation column and a condenser connected to the top of the distillation column,
  • a main heat exchanger for cooling the intermediate gas The liquefied methane production apparatus according to claim 9, wherein nitrogen gas produced in the condenser is reused as a refrigerant in the main heat exchanger.
  • the present disclosure provides a method and apparatus for producing liquefied methane from biogas.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a liquefied methane production apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram showing an example of a partial configuration of the liquefied methane production apparatus in this embodiment.
  • FIG. 3 is a schematic diagram showing the configuration of the liquefied methane production apparatus used in Example 1.
  • FIG. 4 is a schematic diagram showing the configuration of the liquefied methane production apparatus used in Example 2.
  • the method for producing liquefied methane in this embodiment includes a first step of obtaining an intermediate gas by separating CO2 and moisture from a biogas containing methane gas, carbon dioxide gas ( CO2 ), nitrogen gas, oxygen gas, argon gas, and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, and a second step of obtaining liquefied methane by distilling and separating the intermediate gas in a distillation column.
  • biogas refers to a gas containing methane gas, CO 2 , nitrogen gas, oxygen gas, argon gas, and moisture.
  • the biogas may be, for example, a gas derived from at least one selected from the group consisting of livestock manure and food residue.
  • concentrations of each gas in the biogas are, for example, methane gas is 50% by volume to 60% by volume, CO 2 is 30% by volume to 40% by volume, nitrogen gas is 1% by volume to 15% by volume, oxygen gas is 0.1% by volume to 5% by volume, argon gas is 0.01% by volume to 1% by volume, and moisture is 0.01% by volume to 5% by volume. It is preferable that hydrogen sulfide is removed from the biogas in advance.
  • Concentrated gas refers to a gas obtained by concentrating methane gas in biogas.
  • concentration of methane gas in the concentrated gas is, for example, 75% by volume or more and 97% by volume or less.
  • This process is a process of obtaining intermediate gas by separating CO2 and moisture from biogas or concentrated gas.
  • the CO2 concentration in the intermediate gas is reduced to 0.0001% by volume or less.
  • the moisture in the intermediate gas is reduced to 0.0001% by volume or less.
  • separation methods in this process include temperature swing adsorption and pressure swing adsorption.
  • methods for mainly separating CO2 include separation membrane separation, high-pressure water absorption, and chemical absorption.
  • thermo Swing Adsorption Method In this method, biogas or concentrated gas is introduced into an adsorption tower filled with an adsorbent that adsorbs CO2 and moisture, and CO2 and water are separated.
  • an adsorption cycle of (1) an adsorption step, (2) a thermal regeneration step, (3) a purging step, and (4) a pressure recovery step is repeated in sequence.
  • the adsorption process is a process in which the biogas or concentrated gas is supplied to an adsorption tower and the CO2 and moisture are adsorbed by an adsorbent, thereby separating the CO2 and moisture from the biogas or concentrated gas.
  • the temperature of the supplied biogas or concentrated gas is adjusted to be, for example, 40°C or lower.
  • the adsorbent is a regenerative adsorbent that can adsorb CO2 and moisture and can recover its adsorption performance by being heated to release the adsorbed CO2 and moisture.
  • adsorbents include activated alumina, silica gel, and hydrophobic zeolite.
  • the thermal regeneration process is a process in which a gas inert to the adsorbent (hereinafter simply referred to as "inert gas”) is heated and supplied to the adsorption tower after the adsorption process, or the adsorbent is directly heated, thereby desorbing CO2 and moisture from the adsorbent.
  • the thermal regeneration process is a process in which the adsorbent filled in the adsorption tower is made reusable.
  • inert gases examples include gases from which CO2 and moisture have been removed by the adsorption process from biogas or concentrated gas, and nitrogen gas. Such gases are heated and brought into contact with the adsorbent filled in the adsorption tower, thereby increasing the temperature of the adsorbent surface and desorbing the CO2 and moisture adsorbed to the adsorbent. The adsorbent is regenerated by this process.
  • the heating temperature is, for example, 170°C or higher.
  • nitrogen gas is preferably used. In this case, it is preferable to reuse the nitrogen gas used in the second step described below. In this way, the nitrogen gas is used efficiently and the amount of nitrogen gas used throughout this manufacturing method is reduced.
  • the purge step is a step of removing the inert gas in the adsorption tower after the heating regeneration step.
  • the inert gas is removed by introducing a gas into the adsorption tower.
  • the gas introduced is, for example, a gas obtained by removing CO2 and moisture from the biogas or concentrated gas by the adsorption step.
  • This step is preferably performed multiple times until the inert gas is completely removed. Note that when the inert gas is a gas obtained by removing CO2 and moisture from the biogas or concentrated gas by the adsorption step, this step is not necessary.
  • a high-pressure gas is introduced into the adsorption tower after the desorption step to restore the pressure to the pressure required for the adsorption step.
  • the high-pressure gas used may be a gas from which CO2 and moisture have been removed by the adsorption step.
  • adsorption towers it is preferable to use a plurality of adsorption towers. For example, when two adsorption towers are used, while an adsorption step is being performed in one adsorption tower, a heating regeneration step, a purging step, and a pressure recovery step are being performed in the other adsorption tower, and by operating the two adsorption towers while switching in this manner, it is possible to continuously and efficiently separate CO2 and water from the biogas or concentrated gas.
  • the adsorption process is a process in which biogas or concentrated gas is supplied to an adsorption tower, and CO2 and moisture are adsorbed by an adsorbent, thereby separating CO2 and moisture from the biogas or concentrated gas. This process is carried out, for example, under a pressure of 0.7 MPaG or more.
  • the adsorbent is the same as the adsorbent that can be used in the above-mentioned temperature swing adsorption method, so a description thereof is omitted.
  • the desorption process is a process in which the adsorption tower after the adsorption process is depressurized to atmospheric pressure (0 MPaG) and the CO 2 and moisture adsorbed by the adsorbent are desorbed.
  • the pressure in the adsorption tower may be reduced to -0.1 MPaG by a vacuum pump.
  • Biogas or concentrated gas is introduced into a chemical absorption liquid and CO2 is separated by chemical reaction.
  • separation proceeds by reacting an alkaline compound in the chemical absorption liquid with CO2 in the biogas or concentrated gas.
  • An example of the alkaline compound is an amine compound.
  • the first step preferably includes at least one method selected from the group consisting of temperature swing adsorption and pressure swing adsorption. It is more preferable that the first step includes a plurality of separation methods. For example, when the first step includes two separation methods, it is preferable that the combination of one method selected from the group consisting of temperature swing adsorption and pressure swing adsorption and one method selected from the group consisting of membrane separation, high pressure water absorption, and chemical absorption is used. Of these, it is more preferable that separation by membrane separation and temperature swing adsorption is performed in this order. Note that when an intermediate gas is obtained from a concentrated gas, it is sufficient that the first step includes at least one method selected from the group consisting of temperature swing adsorption and pressure swing adsorption.
  • ⁇ Second step>> This process involves distilling the intermediate gas in a distillation column to obtain liquefied methane. This process includes (1) a cooling process, (2) a distillation process, and (3) a condensation process.
  • the cooling step is a step of cooling the intermediate gas obtained in the first step.
  • the temperature of the intermediate gas supplied to the cooling step is preferably 40° C. or lower.
  • the pressure of the intermediate gas during the cooling step is, for example, 0.1 to 0.8 MPaG.
  • a part of the methane gas contained in the intermediate gas may be liquefied by the cooling step.
  • the cooling step may be performed only once or may be performed multiple times.
  • the nitrogen gas in the condensation step described below may be reused as a cooling means in this step.
  • the pressure of the intermediate gas after this process may be adjusted before it is introduced into the distillation process described below.
  • the pressure during this process is usually higher than the pressure during the distillation process, so it is preferable to reduce the pressure.
  • the distillation step is a step in which the intermediate gas is introduced into a distillation column and distilled.
  • the pressure in the distillation column during the distillation step is, for example, 0.1 to 0.9 MPaG.
  • the nitrogen gas (boiling point at atmospheric pressure: -195.8°C), oxygen gas (boiling point at atmospheric pressure: -183°C), and argon gas (boiling point at atmospheric pressure: -185.8°C) contained in the intermediate gas are separated from methane gas (boiling point at atmospheric pressure: -161.6°C) due to their difference in boiling points.
  • the separated methane gas is converted into liquefied methane by heat exchange with a reboiler that is usually installed at the bottom of the distillation tower.
  • the condensation step is a step in which the methane gas that was not liquefied in the distillation step is condensed in a condenser to obtain liquefied methane.
  • the condenser is connected to the top of the distillation tower, and methane gas is introduced into the condenser from the top of the tower.
  • the methane gas introduced into the condenser is condensed, and at least a portion of it becomes liquefied methane.
  • the liquefied methane is returned to the distillation tower and recovered.
  • the methane gas introduced into the condenser is condensed, for example, by heat exchange with a refrigerant.
  • a refrigerant for example, liquid nitrogen is used as the refrigerant, and this process is carried out by supplying liquid nitrogen to the condenser.
  • the liquid nitrogen is introduced into the condenser under pressure, for example, of about 0.5 MPaG.
  • the nitrogen gas obtained in this process is preferably reused, for example, as a refrigerant for cooling the intermediate gas in the cooling process.
  • the reused nitrogen gas is also preferably reused in the purging process of the temperature swing adsorption method described above. In this way, the nitrogen gas is used effectively, and the amount of nitrogen gas used throughout this production method is reduced.
  • the liquefied methane production apparatus in this embodiment includes a separation device for obtaining an intermediate gas by separating CO2 and moisture from a biogas containing methane gas, CO2 , nitrogen gas, oxygen gas, argon gas, and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, and a distillation device for distilling and separating the intermediate gas to obtain liquefied methane.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a liquefied methane production apparatus in this embodiment.
  • the liquefied methane production apparatus 30 will be described below. Note that any explanation that overlaps with the contents explained in the above ⁇ Liquefied methane production method> will be omitted.
  • This device is a device for separating CO2 and moisture from biogas or concentrated gas to obtain an intermediate gas.
  • separation devices include temperature swing adsorption separation devices and pressure swing adsorption separation devices.
  • Devices that mainly separate CO2 include membrane separation devices, high-pressure water absorption devices, and chemical absorption devices. Note that FIG. 1 shows a membrane separation device 1 and a temperature swing adsorption device 10 as separation devices.
  • This apparatus is equipped with an adsorption tower 11 that adsorbs CO2 and moisture contained in the biogas or concentrated gas.
  • the adsorption tower 11 is filled with an adsorbent for adsorbing CO2 and moisture.
  • each step of the temperature swing adsorption method described above is performed, thereby separating CO2 and moisture from the biogas or concentrated gas.
  • the present apparatus is preferably equipped with a heating means 12.
  • the heating means 12 heats the inert gas used in the above-mentioned thermal regeneration process to such an extent that the adsorbent filled in the adsorption tower can be reused.
  • the heating means 12 There are no particular limitations on the heating means 12, but examples include a heater.
  • Temperature swing adsorption separation apparatus 10 preferably includes a plurality of adsorption towers 11.
  • temperature swing adsorption separation apparatus 10 is configured with two adsorption towers (adsorption tower 11a, adsorption tower 11b), and biogas or concentrated gas is alternately discharged to adsorption tower 11a and adsorption tower 11b, thereby enabling continuous and efficient separation of CO2 and moisture from the biogas or concentrated gas.
  • This apparatus (Pressure Swing Adsorption Separation Device) This apparatus (not shown) is equipped with an adsorption tower that adsorbs CO2 and moisture contained in the biogas or concentrated gas.
  • the adsorption tower is filled with an adsorbent for adsorbing CO2 and moisture.
  • each step of the pressure swing adsorption method described above is performed, thereby separating CO2 and moisture from the biogas or concentrated gas.
  • Membrane separation device This device is equipped with a separation membrane module (not shown) for selectively allowing CO2 contained in the biogas or concentrated gas to permeate.
  • the biogas or concentrated gas is discharged to the separation membrane module by a compressor (not shown), and the CO2 contained in the biogas or concentrated gas is separated by the separation membrane. Since the CO2 separated by the membrane separation device may contain methane gas, the separated CO2 may be separated again by the membrane separation device into CO2 and methane gas, and the methane gas may be recovered and recycled.
  • This apparatus (not shown) is equipped with a high-pressure absorption tower that absorbs the CO2 contained in the biogas or concentrated gas.
  • the high-pressure absorption tower contains water for absorbing the CO2 .
  • the biogas or concentrated gas is delivered to the high-pressure absorption tower by a compressor, and the CO2 contained in the biogas or concentrated gas is separated.
  • This apparatus (not shown) is equipped with an absorption tower that absorbs the CO2 contained in the biogas or concentrated gas.
  • the absorption tower contains a treatment liquid for absorbing the CO2 .
  • the biogas or concentrated gas is led to the absorption tower, and the CO2 contained in the biogas or concentrated gas is separated.
  • the separation device includes at least one device selected from the group consisting of a temperature swing adsorption separation device and a pressure swing adsorption separation device. It is more preferable that the separation device includes multiple separation devices. For example, when the separation device includes two separation devices, it is preferable that the separation device is a combination of one device selected from the group consisting of a temperature swing adsorption separation device and a pressure swing adsorption separation device and one device selected from the group consisting of a membrane separation device, a high-pressure water absorption device, and a chemical absorption device. Of these, it is more preferable that separation using the membrane separation device and the temperature swing adsorption separation device is performed in this order. Note that when an intermediate gas is obtained from a concentrated gas, it is sufficient that the separation device includes at least one separation device selected from the group consisting of a temperature swing adsorption separation device and a pressure swing adsorption separation device.
  • Fig. 2 is a schematic diagram showing an example of the configuration of the distillation apparatus. The following description will be given with reference to Fig. 2.
  • the intermediate gas obtained by the separation device is cooled, for example, by the main heat exchanger 21.
  • the main heat exchanger 21 it is preferable to reuse nitrogen gas, which will be described later, as a refrigerant.
  • nitrogen gas, oxygen gas, and argon gas that are separated in the distillation column 23 and not condensed in the condenser 24 may also be reused as refrigerants.
  • the pressure of the intermediate gas cooled by the main heat exchanger 21 may be adjusted, for example, by a pressure reducing valve (not shown) before being introduced into the distillation column 23.
  • the intermediate gas cooled by the main heat exchanger 21 is introduced into the distillation tower 23 and distilled. From the viewpoint of increasing the efficiency of distillation, it is preferable that the intermediate gas is introduced into the distillation tower 23 from the center of the tower by providing an inlet at the center of the tower.
  • the liquefied methane distilled and separated in the distillation tower 23 is taken out from the bottom of the distillation tower 23 and sent to the storage tank 25.
  • the intermediate gas cooled by the main heat exchanger 21 is usually introduced into the distillation tower 23 through a reboiler 22 installed at the bottom of the distillation tower 23.
  • a reboiler 22 installed at the bottom of the distillation tower 23.
  • some of the methane gas in the intermediate gas is liquefied, and the intermediate gas and liquefied methane are introduced into the distillation tower 23 in a mixed state.
  • the methane gas that is not liquefied in the distillation tower 23 is condensed by the condenser 24 connected to the top of the distillation tower 23, and at least a portion of it becomes liquefied methane.
  • the liquefied methane is returned to the distillation tower 23 and sent to the storage tank 25.
  • the methane gas introduced into the condenser 24 is condensed, for example, by heat exchange with a refrigerant.
  • a refrigerant for example, liquid nitrogen is used as the refrigerant.
  • the nitrogen gas is preferably reused, for example, as a refrigerant for cooling the intermediate gas in the main heat exchanger 21.
  • the nitrogen gas reused in the main heat exchanger 21 is preferably reused in the temperature swing adsorption separation device 10 described above.
  • the nitrogen gas, oxygen gas, and argon gas in the intermediate gas separated by the distillation column 23 are also introduced into the condenser 24.
  • These non-liquefied gases such as nitrogen gas, oxygen gas, and argon gas may be exhausted or reused as a refrigerant to cool the intermediate gas in the main heat exchanger 21.
  • the distillation apparatus may include a tank 26 for holding liquid nitrogen.
  • the melting point of liquefied methane is -182.5°C
  • the liquid nitrogen used in this embodiment is introduced into the condenser 24 under a pressure of about 0.5 MPaG.
  • the liquid nitrogen in this case is hotter than normal liquid nitrogen (e.g., -180 to -175°C) and is close to the melting point of liquefied methane. If the pressure of the liquid nitrogen drops, there is a risk that the liquefied methane will solidify in the condenser 24. Therefore, by installing a tank 26 for storing liquid nitrogen to suppress a drop in the temperature of the liquid nitrogen in the condenser 24, it is possible to prevent the condenser 24 from overcooling.
  • Example 1 A liquefied methane production apparatus having the configuration shown in FIG. 3 was prepared. Biogas derived from livestock manure was prepared. The concentrations of each gas in the biogas are as shown in point 1 of Table 1.
  • the first step was performed in the order of membrane separation method and temperature swing adsorption method, and then the second step was performed.
  • the membrane separation device a hollow fiber membrane was used as the separation membrane, and in the temperature swing adsorption separation device, zeolite was used as the adsorbent.
  • nitrogen gas obtained by vaporizing a part of the liquid nitrogen that was heat exchanged with methane gas in the condenser and nitrogen gas, oxygen gas, and argon gas separated by distillation were used. Note that the biogas at point 1 is compressed by a compressor.
  • the flow rate, pressure, temperature, and composition at points 1 to 6 in Figure 3 are shown in Table 1.
  • the composition at each point was analyzed by gas chromatography (GAS5000F HPID, manufactured by J Science Labs, Inc.).
  • Example 2 A liquefied methane production apparatus having the configuration shown in Fig. 4 was prepared.
  • a concentrated gas was prepared by concentrating the methane gas in the biogas used in Example 1. The concentrations of each gas in the concentrated gas are as shown in point 1 of Table 2.
  • the first step was performed in the order of the temperature swing adsorption method, and then the second step was performed.
  • the same temperature swing adsorption separation apparatus in the first step and the distillation apparatus in the second step were used as in Example 1.
  • the concentrated gas at point 1 was compressed by a compressor.
  • Example 1 liquefied methane with a purity of 99.99% or more was obtained from biogas containing 50% by volume of methane gas. In addition, the recovery rate of the liquefied methane was 95% by volume.
  • Example 2 liquefied methane with a purity of 99.99% or more was obtained from the concentrated gas obtained by concentrating the methane gas in the same biogas as in Example 1.
  • the recovery rate of the liquefied methane was 95% by volume.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Provided is a method for producing liquefied methane from a biogas containing a methane gas, a carbon dioxide gas, a nitrogen gas, an oxygen gas, an argon gas and water or an enriched gas obtained by enriching the methane gas in the biogas, the method comprising a first step for separating the carbon dioxide gas and water from the biogas or the enriched gas to produce an intermediate gas and a second step for subjecting the intermediate gas to distillation separation using a distillation column to produce liquefied methane.

Description

液化メタンの製造方法および液化メタンの製造装置Liquefied methane production method and liquefied methane production apparatus
 本開示は、液化メタンの製造方法および液化メタンの製造装置に関する。 This disclosure relates to a method for producing liquefied methane and an apparatus for producing liquefied methane.
 天然ガスや液化天然ガスは、石炭や石油等の化石燃料と比較して、炭酸ガスの排出量が少ないクリーンなエネルギーとして注目されてきた。しかし、天然ガスや液化天然ガスをエネルギー源とした場合にも炭酸ガスは排出され、その排出量は増加の一途を辿っている。したがって、天然ガスや液化天然ガスに代わる代替エネルギーが求められている。 Natural gas and liquefied natural gas have been attracting attention as clean energy sources that emit less carbon dioxide compared to fossil fuels such as coal and oil. However, even when natural gas or liquefied natural gas is used as an energy source, carbon dioxide is still emitted, and the amount of carbon dioxide emissions is steadily increasing. Therefore, there is a demand for alternative energy sources to replace natural gas and liquefied natural gas.
 このような代替エネルギーとして、乳牛や肉牛等の家畜の糞尿や食品の残渣、下水汚泥等を由来とするバイオガスが注目されている。バイオガスは、メタンガス、炭酸ガス、窒素ガス等で構成されており、天然ガスや液化天然ガスに代わる代替エネルギーとして期待されている。 As such an alternative energy source, biogas derived from livestock manure such as dairy and beef cows, food waste, and sewage sludge is attracting attention. Biogas is composed of methane gas, carbon dioxide gas, nitrogen gas, etc., and is expected to be an alternative energy source to natural gas and liquefied natural gas.
 バイオガスをエネルギーとして利用する場合、バイオガス中の炭酸ガス等の不純物を除去し、メタンガスの濃度を高くする必要がある。特許文献1(特開2018-188594号公報)は、高圧水吸収法を用いて、特許文献2(特開2021-178269号公報)は、化学吸収法を用いて、特許文献3(特表2013-534863号公報)は、膜分離法を用いて、バイオガス中の炭酸ガスを除去することでメタンガスの濃度を高める方法を開示している。 When using biogas as energy, it is necessary to remove impurities such as carbon dioxide from the biogas and increase the concentration of methane gas. Patent Document 1 (JP 2018-188594 A) discloses a method for increasing the concentration of methane gas by removing carbon dioxide from biogas using a high-pressure water absorption method, Patent Document 2 (JP 2021-178269 A) discloses a method for increasing the concentration of methane gas by removing carbon dioxide from biogas using a chemical absorption method, and Patent Document 3 (JP 2013-534863 A) discloses a method for increasing the concentration of methane gas by removing carbon dioxide from biogas using a membrane separation method.
特開2018-188594号公報JP 2018-188594 A 特開2021-178269号公報JP 2021-178269 A 特表2013-534863号公報Special Publication No. 2013-534863
 しかしながら、特許文献1に記載の方法では、装置が大型化する、コストがかかるといった課題がある。また、特許文献2および3に記載の方法では、メタンガスの純度を高くすることが困難である。 However, the method described in Patent Document 1 has problems such as the equipment becoming larger and being costly. Also, the methods described in Patent Documents 2 and 3 make it difficult to increase the purity of methane gas.
 また、海外では、船舶燃料やトラック燃料として、バイオガス由来の液化メタンが使用されており、供給体制も整備されている。その他に、ロケット燃料にも高純度の液化メタンが使用されている。このように、メタンガスだけでなく、液化メタンの需要も拡大するものと考えられる。  Furthermore, overseas, liquefied methane derived from biogas is used as ship and truck fuel, and a supply system has been established. High-purity liquefied methane is also used as rocket fuel. As such, it is expected that demand will expand not only for methane gas, but also for liquefied methane.
 本開示の目的は、バイオガスからの液化メタンの製造方法および製造装置を提供することである。 The object of this disclosure is to provide a method and apparatus for producing liquefied methane from biogas.
 〔1〕 メタンガス、炭酸ガス、窒素ガス、酸素ガス、アルゴンガスおよび水分を含むバイオガス、または、前記バイオガス中のメタンガスを濃縮した濃縮ガスから液化メタンを製造する方法であって、
 前記バイオガスまたは前記濃縮ガスから炭酸ガスおよび水分を分離して中間ガスを得る第1工程と、
 前記中間ガスを蒸留塔により蒸留分離し、液化メタンを得る第2工程と、を含む、液化メタンの製造方法。
[1] A method for producing liquefied methane from a biogas containing methane gas, carbon dioxide gas, nitrogen gas, oxygen gas, argon gas and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, comprising:
A first step of separating carbon dioxide gas and moisture from the biogas or the concentrated gas to obtain an intermediate gas;
A second step of distilling and separating the intermediate gas in a distillation column to obtain liquefied methane.
 〔2〕 前記第2工程において、前記蒸留塔の塔頂部に接続されたコンデンサに冷媒として液体窒素が供給される、〔1〕に記載の液化メタンの製造方法。 [2] The method for producing liquefied methane described in [1], in which in the second step, liquid nitrogen is supplied as a refrigerant to a condenser connected to the top of the distillation column.
 〔3〕 前記コンデンサで生じる窒素ガスを、前記第2工程において前記中間ガスを冷却するための冷媒として再利用する、〔2〕に記載の液化メタンの製造方法。 [3] The method for producing liquefied methane described in [2], in which the nitrogen gas produced in the condenser is reused as a refrigerant for cooling the intermediate gas in the second process.
 〔4〕 前記第1工程は、複数の分離方法を含む、〔1〕から〔3〕のいずれかに記載の液化メタンの製造方法。 [4] The method for producing liquefied methane described in any one of [1] to [3], wherein the first step includes a plurality of separation methods.
 〔5〕 前記第1工程において、膜分離法および温度スイング吸着法による分離がこの順に行われる、〔4〕に記載の液化メタンの製造方法。 [5] The method for producing liquefied methane described in [4], in which separation is performed in the first step by membrane separation and temperature swing adsorption in this order.
 〔6〕 前記バイオガスは、家畜の糞尿および食品の残渣からなる群より選択される少なくとも1種を由来とするガスである、〔1〕から〔5〕のいずれかに記載の液化メタンの製造方法。 [6] The method for producing liquefied methane described in any one of [1] to [5], wherein the biogas is a gas derived from at least one selected from the group consisting of livestock manure and food waste.
 〔7〕 前記バイオガスは、メタンガスを50体積%以上60体積%以下、炭酸ガスを30体積%以上40体積%以下、窒素ガスを1体積%以上15体積%以下含む、〔1〕から〔6〕のいずれかに記載の液化メタンの製造方法。 [7] A method for producing liquefied methane described in any one of [1] to [6], wherein the biogas contains 50% to 60% by volume of methane gas, 30% to 40% by volume of carbon dioxide gas, and 1% to 15% by volume of nitrogen gas.
 〔8〕 メタンガス、炭酸ガス、窒素ガス、酸素ガス、アルゴンガスおよび水分を含むバイオガス、または、前記バイオガス中のメタンガスを濃縮した濃縮ガスから液化メタンを製造するための装置であって、
 前記バイオガスまたは前記濃縮ガスから炭酸ガスおよび水分を分離して中間ガスを得るための分離装置と、
 前記中間ガスを蒸留分離して液化メタンを得るための蒸留装置と、を含む、液化メタンの製造装置。
[8] An apparatus for producing liquefied methane from a biogas containing methane gas, carbon dioxide gas, nitrogen gas, oxygen gas, argon gas and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, comprising:
A separation device for separating carbon dioxide gas and moisture from the biogas or the concentrated gas to obtain an intermediate gas;
and a distillation apparatus for distilling and separating the intermediate gas to obtain liquefied methane.
 〔9〕 前記蒸留装置は、蒸留塔および前記蒸留塔の塔頂部に接続されたコンデンサを有し、
 前記コンデンサに冷媒として液体窒素が供給される、〔8〕に記載の液化メタンの製造装置。
[9] The distillation apparatus includes a distillation column and a condenser connected to the top of the distillation column,
The liquefied methane production apparatus according to claim 8, wherein liquid nitrogen is supplied to the condenser as a refrigerant.
 〔10〕 前記中間ガスを冷却するための主熱交換器を有し、
 前記コンデンサで生じる窒素ガスを前記主熱交換器で冷媒として再利用する、〔9〕に記載の液化メタンの製造装置。
[10] A main heat exchanger for cooling the intermediate gas,
The liquefied methane production apparatus according to claim 9, wherein nitrogen gas produced in the condenser is reused as a refrigerant in the main heat exchanger.
 〔11〕 前記分離装置は、複数の分離装置を含む、〔8〕から〔10〕のいずれかに記載の液化メタンの製造装置。 [11] The liquefied methane production apparatus according to any one of [8] to [10], wherein the separation device includes a plurality of separation devices.
 〔12〕 前記分離装置は、膜分離装置および温度スイング吸着分離装置を含む、〔11〕に記載の液化メタンの製造装置。 [12] The liquefied methane production apparatus described in [11], wherein the separation device includes a membrane separation device and a temperature swing adsorption separation device.
 本開示によれば、バイオガスからの液化メタンの製造方法および製造装置を提供することができる。 The present disclosure provides a method and apparatus for producing liquefied methane from biogas.
図1は、本実施形態における液化メタンの製造装置の構成の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the configuration of a liquefied methane production apparatus according to the present embodiment. 図2は、本実施形態における液化メタンの製造装置の一部の構成の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a partial configuration of the liquefied methane production apparatus in this embodiment. 図3は、実施例1において使用した液化メタンの製造装置の構成を示す概略図である。FIG. 3 is a schematic diagram showing the configuration of the liquefied methane production apparatus used in Example 1. 図4は、実施例2において使用した液化メタンの製造装置の構成を示す概略図である。FIG. 4 is a schematic diagram showing the configuration of the liquefied methane production apparatus used in Example 2.
 以下、本開示の実施形態が説明される。ただし以下の説明は請求の範囲を限定するものではない。 Embodiments of the present disclosure are described below. However, the following description is not intended to limit the scope of the claims.
 <液化メタンの製造方法>
 本実施形態における液化メタンの製造方法は、メタンガス、炭酸ガス(CO)、窒素ガス、酸素ガス、アルゴンガスおよび水分を含むバイオガスまたはバイオガス中のメタンガスを濃縮した濃縮ガスからCOおよび水分を分離して中間ガスを得る第1工程と、中間ガスを蒸留塔により蒸留分離し、液化メタンを得る第2工程と、を含む。以下、本実施形態における液化メタンの製造方法の各工程について説明する。
<Method of producing liquefied methane>
The method for producing liquefied methane in this embodiment includes a first step of obtaining an intermediate gas by separating CO2 and moisture from a biogas containing methane gas, carbon dioxide gas ( CO2 ), nitrogen gas, oxygen gas, argon gas, and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, and a second step of obtaining liquefied methane by distilling and separating the intermediate gas in a distillation column. Each step of the method for producing liquefied methane in this embodiment will be described below.
 《バイオガス》
 本実施形態において、「バイオガス」とは、メタンガス、CO、窒素ガス、酸素ガス、アルゴンガスおよび水分を含むガスを示す。バイオガスは、例えば、家畜の糞尿および食品の残渣からなる群より選択される少なくとも1種を由来とするガスであってもよい。バイオガス中の各ガスの濃度は、例えば、メタンガスは50体積%以上60体積%以下であり、COは30体積%以上40体積%以下であり、窒素ガスは1体積%以上15体積%以下であり、酸素ガスは0.1体積%以上5体積%以下であり、アルゴンガスは0.01体積%以上1体積%以下であり、水分は0.01体積%以上5体積%以下である。バイオガスは、予め硫化水素が除去されていることが好ましい。
Biogas
In this embodiment, "biogas" refers to a gas containing methane gas, CO 2 , nitrogen gas, oxygen gas, argon gas, and moisture. The biogas may be, for example, a gas derived from at least one selected from the group consisting of livestock manure and food residue. The concentrations of each gas in the biogas are, for example, methane gas is 50% by volume to 60% by volume, CO 2 is 30% by volume to 40% by volume, nitrogen gas is 1% by volume to 15% by volume, oxygen gas is 0.1% by volume to 5% by volume, argon gas is 0.01% by volume to 1% by volume, and moisture is 0.01% by volume to 5% by volume. It is preferable that hydrogen sulfide is removed from the biogas in advance.
 《濃縮ガス》
 本実施形態において、「濃縮ガス」とは、バイオガス中のメタンガスを濃縮したガスを示す。濃縮ガス中のメタンガスの濃度は、例えば、75体積%以上97体積%以下である。
Concentrated Gas
In this embodiment, the term "concentrated gas" refers to a gas obtained by concentrating methane gas in biogas. The concentration of methane gas in the concentrated gas is, for example, 75% by volume or more and 97% by volume or less.
 《中間ガス》
 本実施形態において、「中間ガス」とは、バイオガスまたは濃縮ガスからCOおよび水分が分離され、バイオガスまたは濃縮ガスよりもメタンガスの濃度が高くなったガスを示す。中間ガス中のメタンガスの濃度は、例えば、80体積%以上99体積%以下である。
"Intermediate Gas"
In this embodiment, the term "intermediate gas" refers to a gas in which CO2 and moisture have been separated from the biogas or concentrated gas, and the concentration of methane gas is higher than that of the biogas or concentrated gas. The concentration of methane gas in the intermediate gas is, for example, 80% by volume or more and 99% by volume or less.
 《第1工程》
 本工程は、バイオガスまたは濃縮ガスからCOおよび水分を分離して中間ガスを得る工程である。本工程により、中間ガス中のCO濃度は、0.0001体積%以下にされる。本工程により、中間ガス中の水分は、0.0001体積%以下にされる。本工程における分離方法としては、例えば、温度スイング吸着法、圧力スイング吸着法等が挙げられる。また、主にCOを分離する方法としては、分離膜分離法、高圧水吸収法、化学吸収法等が挙げられる。
<<First Step>>
This process is a process of obtaining intermediate gas by separating CO2 and moisture from biogas or concentrated gas. By this process, the CO2 concentration in the intermediate gas is reduced to 0.0001% by volume or less. By this process, the moisture in the intermediate gas is reduced to 0.0001% by volume or less. Examples of separation methods in this process include temperature swing adsorption and pressure swing adsorption. In addition, methods for mainly separating CO2 include separation membrane separation, high-pressure water absorption, and chemical absorption.
 (温度スイング吸着法)
 本方法では、COおよび水分を吸着する吸着剤が充填された吸着塔にバイオガスまたは濃縮ガスを導入し、COおよび水を分離する。本方法は、例えば、(1)吸着工程、(2)加熱再生工程、(3)パージ工程、(4)復圧工程、の吸着サイクルを順次繰り返す。
(Temperature Swing Adsorption Method)
In this method, biogas or concentrated gas is introduced into an adsorption tower filled with an adsorbent that adsorbs CO2 and moisture, and CO2 and water are separated. In this method, for example, an adsorption cycle of (1) an adsorption step, (2) a thermal regeneration step, (3) a purging step, and (4) a pressure recovery step is repeated in sequence.
 (1)吸着工程
 吸着工程とは、吸着塔にバイオガスまたは濃縮ガスを供給し、COおよび水分を吸着剤に吸着させることにより、バイオガスまたは濃縮ガスからCOおよび水分を分離する工程である。本工程では、供給するバイオガスまたは濃縮ガスの温度は、例えば、40℃以下となるように調整される。
(1) Adsorption process The adsorption process is a process in which the biogas or concentrated gas is supplied to an adsorption tower and the CO2 and moisture are adsorbed by an adsorbent, thereby separating the CO2 and moisture from the biogas or concentrated gas. In this process, the temperature of the supplied biogas or concentrated gas is adjusted to be, for example, 40°C or lower.
 吸着剤は、COおよび水分を吸着可能であり、加熱されることで吸着したCOおよび水分が放出されて吸着性能が回復する再生可能な吸着剤である。このような吸着剤としては、例えば、活性アルミナ、シリカゲル、疎水性ゼオライト等が挙げられる。 The adsorbent is a regenerative adsorbent that can adsorb CO2 and moisture and can recover its adsorption performance by being heated to release the adsorbed CO2 and moisture. Examples of such adsorbents include activated alumina, silica gel, and hydrophobic zeolite.
 (2)加熱再生工程
 加熱再生工程とは、吸着工程後の吸着塔に対し、吸着剤とは不活性なガス(以下、単に「不活性ガス」と称する。)を加熱して供給する、または吸着剤を直接加熱することにより、吸着剤からCOおよび水分を脱着させる工程である。換言すると、加熱再生工程は、吸着塔内に充填された吸着剤を再使用可能な状態にする工程である。
(2) Thermal regeneration process The thermal regeneration process is a process in which a gas inert to the adsorbent (hereinafter simply referred to as "inert gas") is heated and supplied to the adsorption tower after the adsorption process, or the adsorbent is directly heated, thereby desorbing CO2 and moisture from the adsorbent. In other words, the thermal regeneration process is a process in which the adsorbent filled in the adsorption tower is made reusable.
 不活性ガスとしては、例えば、吸着工程によりバイオガスまたは濃縮ガスからCOおよび水分が除去されたガスや、窒素ガス等が挙げられる。このようなガスが加熱され、吸着塔内に充填された吸着剤に接触させることにより、吸着剤表面の温度を上昇させ、吸着剤に吸着しているCOおよび水分を脱着させる。本工程により、吸着剤は再生される。加熱温度は、例えば、170℃以上である。 Examples of inert gases include gases from which CO2 and moisture have been removed by the adsorption process from biogas or concentrated gas, and nitrogen gas. Such gases are heated and brought into contact with the adsorbent filled in the adsorption tower, thereby increasing the temperature of the adsorbent surface and desorbing the CO2 and moisture adsorbed to the adsorbent. The adsorbent is regenerated by this process. The heating temperature is, for example, 170°C or higher.
 不活性ガスとしては、窒素ガスが好適に使用される。この場合、後述する第2工程で使用された窒素ガスを再利用することが好ましい。このようにすることで、窒素ガスが有効に利用され、本製造方法全体で使用される窒素ガスの量が削減される。 As the inert gas, nitrogen gas is preferably used. In this case, it is preferable to reuse the nitrogen gas used in the second step described below. In this way, the nitrogen gas is used efficiently and the amount of nitrogen gas used throughout this manufacturing method is reduced.
 (3)パージ工程
 パージ工程とは、加熱再生工程後の吸着塔内の不活性ガスを取り除く工程である。本工程では、吸着塔内にガスを導入することで、不活性ガスを取り除く。不活性ガスが窒素ガスの場合、導入されるガスは、例えば、吸着工程によりバイオガスまたは濃縮ガスからCOおよび水分が除去されたガスである。本工程は、不活性ガスが完全に取り除かれるまで、複数回行われることが好ましい。なお、不活性ガスが吸着工程によりバイオガスまたは濃縮ガスからCOおよび水分が除去されたガスである場合、本工程は不要である。
(3) Purge step The purge step is a step of removing the inert gas in the adsorption tower after the heating regeneration step. In this step, the inert gas is removed by introducing a gas into the adsorption tower. When the inert gas is nitrogen gas, the gas introduced is, for example, a gas obtained by removing CO2 and moisture from the biogas or concentrated gas by the adsorption step. This step is preferably performed multiple times until the inert gas is completely removed. Note that when the inert gas is a gas obtained by removing CO2 and moisture from the biogas or concentrated gas by the adsorption step, this step is not necessary.
 (4)復圧工程
 復圧工程では、脱着工程後の吸着塔を、例えば、高圧ガスを導入し、吸着工程を行うための圧力まで復圧させる工程である。高圧のガスとしては、例えば、吸着工程によりバイオガスからCOおよび水分が除去されたガスを用いる。
(4) Pressure Reinstatement Step In the pressure reinstatement step, for example, a high-pressure gas is introduced into the adsorption tower after the desorption step to restore the pressure to the pressure required for the adsorption step. For example, the high-pressure gas used may be a gas from which CO2 and moisture have been removed by the adsorption step.
 本方法では、複数の吸着塔を用いることが好ましい。例えば、2つの吸着塔を用いる場合、一方の吸着塔で吸着工程が行われている間は、他方の吸着塔で加熱再生工程、パージ工程および復圧工程が行われ、このような切り換えを行いながら、2つの吸着塔を稼働させることにより、連続的かつ効率的にバイオガスまたは濃縮ガスからのCOおよび水の分離を可能にしている。 In this method, it is preferable to use a plurality of adsorption towers. For example, when two adsorption towers are used, while an adsorption step is being performed in one adsorption tower, a heating regeneration step, a purging step, and a pressure recovery step are being performed in the other adsorption tower, and by operating the two adsorption towers while switching in this manner, it is possible to continuously and efficiently separate CO2 and water from the biogas or concentrated gas.
 (圧力スイング吸着法)
 本方法では、COおよび水分を吸着する吸着剤が充填された吸着塔にバイオガスまたは濃縮ガスを導入し、COおよび水を分離する。本方法は、(1)吸着工程、(2)パージ工程、(3)脱着工程、(4)復圧工程、の吸着サイクルを順次繰り返す。なお、(2)パージ工程および(4)復圧工程に関しては、上述の温度スイング吸着法における(3)パージ工程および(4)復圧工程と同じであるため、説明は省略する。
(Pressure Swing Adsorption)
In this method, biogas or concentrated gas is introduced into an adsorption tower filled with an adsorbent that adsorbs CO2 and moisture, and CO2 and water are separated. In this method, an adsorption cycle of (1) adsorption step, (2) purging step, (3) desorption step, and (4) pressure recovery step is repeated in sequence. Note that the (2) purging step and (4) pressure recovery step are the same as the (3) purging step and (4) pressure recovery step in the above-mentioned temperature swing adsorption method, so a description thereof will be omitted.
 吸着工程とは、吸着塔にバイオガスまたは濃縮ガスを供給し、COおよび水分を吸着剤に吸着させることにより、バイオガスまたは濃縮ガスからCOおよび水分を分離する工程である。本工程は、例えば、0.7MPaG以上の圧力下で行う。なお、吸着剤は、上述の温度スイング吸着法で使用可能な吸着剤と同じであるため、説明は省略する。 The adsorption process is a process in which biogas or concentrated gas is supplied to an adsorption tower, and CO2 and moisture are adsorbed by an adsorbent, thereby separating CO2 and moisture from the biogas or concentrated gas. This process is carried out, for example, under a pressure of 0.7 MPaG or more. The adsorbent is the same as the adsorbent that can be used in the above-mentioned temperature swing adsorption method, so a description thereof is omitted.
 脱着工程とは、吸着工程後の吸着塔を、大気圧(0MPaG)まで減圧し、吸着剤に吸着させたCOおよび水分を脱着させる工程である。本工程では、例えば、真空ポンプにより吸着塔の圧力を-0.1MPaGまで減圧させてもよい。 The desorption process is a process in which the adsorption tower after the adsorption process is depressurized to atmospheric pressure (0 MPaG) and the CO 2 and moisture adsorbed by the adsorbent are desorbed. In this process, for example, the pressure in the adsorption tower may be reduced to -0.1 MPaG by a vacuum pump.
 (膜分離法)
 本方法では、COを選択的に透過させる分離膜にバイオガスまたは濃縮ガスを導入し、COを分離する。本方法では、バイオガスまたは濃縮ガスを圧縮して導入し、膜間の分圧差により分離が進行する。分離膜としては、例えば、中空糸状の高分子膜や、ゼオライト等の無機物で構成されるもの等が挙げられる。本方法では、0.8MPaG以上まで圧縮することが好ましい。なお、本方法により分離されたCOにメタンガスが含まれることがあるため、分離されたCOを再度本方法によりCOとメタンガスとに分離して、メタンガスを回収しリサイクルしてもよい。
(Membrane separation method)
In this method, biogas or concentrated gas is introduced into a separation membrane that selectively allows CO2 to permeate, and CO2 is separated. In this method, biogas or concentrated gas is compressed and introduced, and separation proceeds due to the partial pressure difference between the membranes. Examples of separation membranes include hollow fiber polymer membranes and those made of inorganic materials such as zeolite. In this method, it is preferable to compress to 0.8 MPaG or more. Since the CO2 separated by this method may contain methane gas, the separated CO2 may be separated again into CO2 and methane gas by this method, and the methane gas may be recovered and recycled.
 (高圧水吸収法)
 本方法では、高圧条件下において、COを水に吸収させることによりCOを分離する。本方法では、バイオガスまたは濃縮ガスを圧縮して導入し、水への溶解度差により分離が進行する。本方法では、0.9MPaG以上まで圧縮することが好ましい。
(High pressure water absorption method)
In this method, CO2 is separated by absorbing CO2 into water under high pressure conditions. In this method, biogas or concentrated gas is compressed and introduced, and separation proceeds due to the difference in solubility in water. In this method, it is preferable to compress it to 0.9 MPaG or more.
 (化学吸収法)
 本方法では、化学吸収液にバイオガスまたは濃縮ガスを導入し、化学反応させることによりCOを分離する。本方法では、化学吸収液中のアルカリ性化合物とバイオガス中または濃縮ガス中のCOとを反応させることにより分離が進行する。アルカリ性化合物としては、例えば、アミン化合物が挙げられる。
(Chemical absorption method)
In this method, biogas or concentrated gas is introduced into a chemical absorption liquid and CO2 is separated by chemical reaction. In this method, separation proceeds by reacting an alkaline compound in the chemical absorption liquid with CO2 in the biogas or concentrated gas. An example of the alkaline compound is an amine compound.
 第1工程は、少なくとも温度スイング吸着法および圧力スイング吸着法からなる群から選択される1つの方法を含むことが好ましい。第1工程は、複数の分離方法を含むことがより好ましい。例えば、第1工程が2つの分離方法を含む場合、温度スイング吸着法および圧力スイング吸着法からなる群から選択される1つの方法と、膜分離法、高圧水吸収法および化学吸収法からなる群から選択される1つの方法と、の組み合わせであることが好ましい。これらの中でも、膜分離法および温度スイング吸着法による分離がこの順に行われることがより好ましい。なお、濃縮ガスから中間ガスを得る場合、第1工程は、少なくとも温度スイング吸着法および圧力スイング吸着法からなる群から選択される1つの方法を含んでいればよい。 The first step preferably includes at least one method selected from the group consisting of temperature swing adsorption and pressure swing adsorption. It is more preferable that the first step includes a plurality of separation methods. For example, when the first step includes two separation methods, it is preferable that the combination of one method selected from the group consisting of temperature swing adsorption and pressure swing adsorption and one method selected from the group consisting of membrane separation, high pressure water absorption, and chemical absorption is used. Of these, it is more preferable that separation by membrane separation and temperature swing adsorption is performed in this order. Note that when an intermediate gas is obtained from a concentrated gas, it is sufficient that the first step includes at least one method selected from the group consisting of temperature swing adsorption and pressure swing adsorption.
 《第2工程》
 本工程は、中間ガスを蒸留塔により蒸留分離し、液化メタンを得る工程である。本方法は、(1)冷却工程、(2)蒸留工程、(3)凝縮工程を含む。
<<Second step>>
This process involves distilling the intermediate gas in a distillation column to obtain liquefied methane. This process includes (1) a cooling process, (2) a distillation process, and (3) a condensation process.
 (1)冷却工程
 冷却工程とは、第1工程で得られた中間ガスを冷却する工程である。冷却工程に供給される中間ガスの温度は、40℃以下であることが好ましい。冷却工程中の中間ガスの圧力は、例えば、0.1~0.8MPaGである。冷却工程により、中間ガスに含まれるメタンガスの一部が液化されてもよい。冷却工程は、1回のみ行われてもよく、複数回行われてもよい。また、後述する凝縮工程における窒素ガスが、本工程の冷却手段に再利用されてもよい。
(1) Cooling Step The cooling step is a step of cooling the intermediate gas obtained in the first step. The temperature of the intermediate gas supplied to the cooling step is preferably 40° C. or lower. The pressure of the intermediate gas during the cooling step is, for example, 0.1 to 0.8 MPaG. A part of the methane gas contained in the intermediate gas may be liquefied by the cooling step. The cooling step may be performed only once or may be performed multiple times. In addition, the nitrogen gas in the condensation step described below may be reused as a cooling means in this step.
 本工程後の中間ガスは、後述する蒸留工程に導入される前に、圧力が調製されてもよい。本工程時の圧力は、通常、蒸留工程時の圧力よりも大きいため、減圧されることが好ましい。 The pressure of the intermediate gas after this process may be adjusted before it is introduced into the distillation process described below. The pressure during this process is usually higher than the pressure during the distillation process, so it is preferable to reduce the pressure.
 (2)蒸留工程
 蒸留工程とは、中間ガスを蒸留塔に導入し、蒸留を行う工程である。蒸留工程中の蒸留塔内の圧力は、例えば、0.1~0.9MPaGである。
(2) Distillation Step The distillation step is a step in which the intermediate gas is introduced into a distillation column and distilled. The pressure in the distillation column during the distillation step is, for example, 0.1 to 0.9 MPaG.
 本工程により、中間ガスに含まれる窒素ガス(大気圧での沸点:-195.8℃)、酸素ガス(大気圧での沸点:-183℃)およびアルゴンガス(大気圧での沸点:-185.8℃)と、メタンガス(大気圧での沸点:-161.6℃)とが沸点差により分離される。分離されたメタンガスは、通常蒸留塔の塔底部に設置されたリボイラと熱交換することにより、液化メタンとなる。 In this process, the nitrogen gas (boiling point at atmospheric pressure: -195.8°C), oxygen gas (boiling point at atmospheric pressure: -183°C), and argon gas (boiling point at atmospheric pressure: -185.8°C) contained in the intermediate gas are separated from methane gas (boiling point at atmospheric pressure: -161.6°C) due to their difference in boiling points. The separated methane gas is converted into liquefied methane by heat exchange with a reboiler that is usually installed at the bottom of the distillation tower.
 (3)凝縮工程
 凝縮工程とは、蒸留工程で液化されなかったメタンガスをコンデンサにて凝縮し、液化メタンを得る工程である。
(3) Condensation Step The condensation step is a step in which the methane gas that was not liquefied in the distillation step is condensed in a condenser to obtain liquefied methane.
 コンデンサは、蒸留塔の塔頂部に接続され、メタンガスは、該塔頂部からコンデンサに導入される。コンデンサに導入されたメタンガスは凝縮され、少なくともその一部が液化メタンとなる。液化メタンは、再度蒸留塔に戻され、回収される。 The condenser is connected to the top of the distillation tower, and methane gas is introduced into the condenser from the top of the tower. The methane gas introduced into the condenser is condensed, and at least a portion of it becomes liquefied methane. The liquefied methane is returned to the distillation tower and recovered.
 コンデンサに導入されたメタンガスは、例えば、冷媒との熱交換によって凝縮される。冷媒としては、例えば、液体窒素が使用され、液体窒素がコンデンサに供給されることによって本工程が行われる。液体窒素は、例えば、0.5MPaG程度の圧力を掛けられた状態でコンデンサに導入される。 The methane gas introduced into the condenser is condensed, for example, by heat exchange with a refrigerant. For example, liquid nitrogen is used as the refrigerant, and this process is carried out by supplying liquid nitrogen to the condenser. The liquid nitrogen is introduced into the condenser under pressure, for example, of about 0.5 MPaG.
 メタンガスとの熱交換により、液体窒素の一部は気化され窒素ガスとなる。本工程により得られた窒素ガスは、例えば、冷却工程で中間ガスを冷却するための冷媒として再利用されることが好ましい。また、再利用された窒素ガスは、上述の温度スイング吸着法のパージ工程で再利用されることが好ましい。このようにすることで、窒素ガスが有効に利用され、本製造方法全体で使用される窒素ガスの量が削減される。 Part of the liquid nitrogen is vaporized and becomes nitrogen gas through heat exchange with the methane gas. The nitrogen gas obtained in this process is preferably reused, for example, as a refrigerant for cooling the intermediate gas in the cooling process. The reused nitrogen gas is also preferably reused in the purging process of the temperature swing adsorption method described above. In this way, the nitrogen gas is used effectively, and the amount of nitrogen gas used throughout this production method is reduced.
 本工程では、蒸留工程により分離された中間ガス中の窒素ガス、酸素ガスおよびアルゴンガスもコンデンサに導入される。これらの窒素ガス、酸素ガスおよびアルゴンガスは液化されないため、排気されるか、冷却工程で中間ガスを冷却するための冷媒として再利用されてもよい。 In this process, the nitrogen gas, oxygen gas, and argon gas in the intermediate gas separated in the distillation process are also introduced into the condenser. Since these nitrogen gas, oxygen gas, and argon gas are not liquefied, they may be discharged or reused as a refrigerant to cool the intermediate gas in the cooling process.
 <液化メタンの製造装置>
 本実施形態における液化メタンの製造装置は、メタンガス、CO、窒素ガス、酸素ガス、アルゴンガスおよび水分を含むバイオガス、またはバイオガス中のメタンガスを濃縮した濃縮ガスからCOおよび水分を分離して中間ガスを得るための分離装置と、中間ガスを蒸留分離して液化メタンを得るための蒸留装置と、を含む。
<Liquefied methane production equipment>
The liquefied methane production apparatus in this embodiment includes a separation device for obtaining an intermediate gas by separating CO2 and moisture from a biogas containing methane gas, CO2 , nitrogen gas, oxygen gas, argon gas, and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, and a distillation device for distilling and separating the intermediate gas to obtain liquefied methane.
 図1は、本実施形態における液化メタンの製造装置の構成の一例を示す概略図である。以下、液化メタンの製造装置30について説明する。なお、上述の<液化メタンの製造方法>において説明した内容と重複する説明は省略する。 FIG. 1 is a schematic diagram showing an example of the configuration of a liquefied methane production apparatus in this embodiment. The liquefied methane production apparatus 30 will be described below. Note that any explanation that overlaps with the contents explained in the above <Liquefied methane production method> will be omitted.
 《分離装置》
 本装置は、バイオガスまたは濃縮ガスからCOおよび水分を分離して中間ガスを得るための装置である。分離装置しては、例えば、温度スイング吸着分離装置、圧力スイング吸着分離装置等が挙げられる。また、主にCOを分離する装置としては、膜分離装置、高圧水吸収装置、化学吸収装置等が挙げられる。なお、図1は、分離装置として膜分離装置1および温度スイング吸着装置10を示すものとする。
Separation Device
This device is a device for separating CO2 and moisture from biogas or concentrated gas to obtain an intermediate gas. Examples of separation devices include temperature swing adsorption separation devices and pressure swing adsorption separation devices. Devices that mainly separate CO2 include membrane separation devices, high-pressure water absorption devices, and chemical absorption devices. Note that FIG. 1 shows a membrane separation device 1 and a temperature swing adsorption device 10 as separation devices.
 (温度スイング吸着分離装置)
 本装置には、バイオガスまたは濃縮ガスに含まれるCOおよび水分を吸着する吸着塔11が設置されている。吸着塔11には、COおよび水分を吸着するための吸着剤が充填されている。本装置を用いて、上述の温度スイング吸着法による各工程が行われることで、バイオガスまたは濃縮ガスからCOおよび水分が分離される。
(Temperature Swing Adsorption Separation Device)
This apparatus is equipped with an adsorption tower 11 that adsorbs CO2 and moisture contained in the biogas or concentrated gas. The adsorption tower 11 is filled with an adsorbent for adsorbing CO2 and moisture. Using this apparatus, each step of the temperature swing adsorption method described above is performed, thereby separating CO2 and moisture from the biogas or concentrated gas.
 本装置は、加熱手段12を備えていることが好ましい。加熱手段12により、上述の加熱再生工程で使用される不活性ガスが、吸着塔内に充填された吸着剤を再使用可能な程度に加熱される。加熱手段12としては、特に制限はないが、例えば、ヒータ等が挙げられる。 The present apparatus is preferably equipped with a heating means 12. The heating means 12 heats the inert gas used in the above-mentioned thermal regeneration process to such an extent that the adsorbent filled in the adsorption tower can be reused. There are no particular limitations on the heating means 12, but examples include a heater.
 温度スイング吸着分離装置10は、吸着塔11を複数備えていることが好ましい。図1においては、温度スイング吸着分離装置10は2つの吸着塔(吸着塔11a、吸着塔11b)により構成されており、吸着塔11aと吸着塔11bとにバイオガスまたは濃縮ガスが交互に導出されることで、連続的かつ効率的にバイオガスまたは濃縮ガスからのCOおよび水分の分離を可能にしている。 Temperature swing adsorption separation apparatus 10 preferably includes a plurality of adsorption towers 11. In Fig. 1, temperature swing adsorption separation apparatus 10 is configured with two adsorption towers (adsorption tower 11a, adsorption tower 11b), and biogas or concentrated gas is alternately discharged to adsorption tower 11a and adsorption tower 11b, thereby enabling continuous and efficient separation of CO2 and moisture from the biogas or concentrated gas.
 (圧力スイング吸着分離装置)
 本装置(図示せず)には、バイオガスまたは濃縮ガスに含まれるCOおよび水分を吸着する吸着塔が設置されている。吸着塔には、COおよび水分を吸着するための吸着剤が充填されている。本装置を用いて、上述の圧力スイング吸着法による各工程が行われることで、バイオガスまたは濃縮ガスからCOおよび水分が分離される。
(Pressure Swing Adsorption Separation Device)
This apparatus (not shown) is equipped with an adsorption tower that adsorbs CO2 and moisture contained in the biogas or concentrated gas. The adsorption tower is filled with an adsorbent for adsorbing CO2 and moisture. Using this apparatus, each step of the pressure swing adsorption method described above is performed, thereby separating CO2 and moisture from the biogas or concentrated gas.
 (膜分離装置)
 本装置には、バイオガスまたは濃縮ガスに含まれるCOを選択的に透過させるための分離膜モジュール(図示せず)が設置されている。バイオガスまたは濃縮ガスは、圧縮機(図示せず)により分離膜モジュールに導出され、バイオガスまたは濃縮ガスに含まれるCOが分離膜により分離される。なお、膜分離装置により分離されたCOにメタンガスが含まれることがあるため、分離されたCOを再度膜分離装置によりCOとメタンガスとに分離して、メタンガスを回収しリサイクルしてもよい。
(Membrane separation device)
This device is equipped with a separation membrane module (not shown) for selectively allowing CO2 contained in the biogas or concentrated gas to permeate. The biogas or concentrated gas is discharged to the separation membrane module by a compressor (not shown), and the CO2 contained in the biogas or concentrated gas is separated by the separation membrane. Since the CO2 separated by the membrane separation device may contain methane gas, the separated CO2 may be separated again by the membrane separation device into CO2 and methane gas, and the methane gas may be recovered and recycled.
 (高圧水吸収装置)
 本装置(図示せず)には、バイオガスまたは濃縮ガスに含まれるCOを吸収する高圧吸収塔が設置されている。高圧吸収塔には、COを吸収するための水が含まれている。バイオガスまたは濃縮ガスは、圧縮機により高圧吸収塔に導出され、バイオガスまたは濃縮ガスに含まれるCOが分離される。
(High pressure water absorption device)
This apparatus (not shown) is equipped with a high-pressure absorption tower that absorbs the CO2 contained in the biogas or concentrated gas. The high-pressure absorption tower contains water for absorbing the CO2 . The biogas or concentrated gas is delivered to the high-pressure absorption tower by a compressor, and the CO2 contained in the biogas or concentrated gas is separated.
 (化学吸収装置)
 本装置(図示せず)には、バイオガスまたは濃縮ガスに含まれるCOを吸収する吸収塔が設置されている。吸収塔には、COを吸収するための処理液が含まれている。バイオガスまたは濃縮ガスは、吸収塔に導出され、バイオガスまたは濃縮ガスに含まれるCOが分離される。
(Chemical absorption device)
This apparatus (not shown) is equipped with an absorption tower that absorbs the CO2 contained in the biogas or concentrated gas. The absorption tower contains a treatment liquid for absorbing the CO2 . The biogas or concentrated gas is led to the absorption tower, and the CO2 contained in the biogas or concentrated gas is separated.
 分離装置は、少なくとも温度スイング吸着分離装置および圧力スイング吸着分離装置からなる群から選択される1つの装置を含むことが好ましい。分離装置は、複数の分離装置を含むことがより好ましい。例えば、分離装置が2つの分離装置を含む場合、温度スイング吸着分離装置、圧力スイング吸着分離装置からなる群から選択される1つの装置と、膜分離装置、高圧水吸収装置および化学吸収装置からなる群から選択される1つの装置との組み合わせであることが好ましい。これらの中でも、膜分離装置および温度スイング吸着分離装置による分離がこの順に行われることがより好ましい。なお、濃縮ガスから中間ガスを得る場合、分離装置は、少なくとも温度スイング吸着分離装置および圧力スイング吸着分離装置からなる群から選択される1つの分離装置を含んでいればよい。 It is preferable that the separation device includes at least one device selected from the group consisting of a temperature swing adsorption separation device and a pressure swing adsorption separation device. It is more preferable that the separation device includes multiple separation devices. For example, when the separation device includes two separation devices, it is preferable that the separation device is a combination of one device selected from the group consisting of a temperature swing adsorption separation device and a pressure swing adsorption separation device and one device selected from the group consisting of a membrane separation device, a high-pressure water absorption device, and a chemical absorption device. Of these, it is more preferable that separation using the membrane separation device and the temperature swing adsorption separation device is performed in this order. Note that when an intermediate gas is obtained from a concentrated gas, it is sufficient that the separation device includes at least one separation device selected from the group consisting of a temperature swing adsorption separation device and a pressure swing adsorption separation device.
 《蒸留装置》
 本製造装置では、蒸留装置により中間ガスを蒸留分離して液化メタンを得る。図2は、蒸留装置の構成の一例を示す概略図である。以下、図2を参考にして説明する。
Distillation Apparatus
In this production apparatus, the intermediate gas is separated by distillation to obtain liquefied methane. Fig. 2 is a schematic diagram showing an example of the configuration of the distillation apparatus. The following description will be given with reference to Fig. 2.
 分離装置により得られた中間ガスは、例えば、主熱交換器21により冷却される。主熱交換器21においては、後述する窒素ガスを冷媒として再利用することが好ましい。また、後述するように、蒸留塔23で分離され、コンデンサ24で凝縮されなかった窒素ガス、酸素ガスおよびアルゴンガスも、冷媒として再利用されてもよい。なお、主熱交換器21により冷却された中間ガスは、蒸留塔23に導入される前に、例えば、減圧弁(図示せず)等により圧力が調製されてもよい。 The intermediate gas obtained by the separation device is cooled, for example, by the main heat exchanger 21. In the main heat exchanger 21, it is preferable to reuse nitrogen gas, which will be described later, as a refrigerant. In addition, as will be described later, the nitrogen gas, oxygen gas, and argon gas that are separated in the distillation column 23 and not condensed in the condenser 24 may also be reused as refrigerants. Note that the pressure of the intermediate gas cooled by the main heat exchanger 21 may be adjusted, for example, by a pressure reducing valve (not shown) before being introduced into the distillation column 23.
 主熱交換器21により冷却された中間ガスは、蒸留塔23に導入され、蒸留される。蒸留塔23への中間ガスの導入は、蒸留の効率を高める観点から、蒸留塔23の塔中部に導入口を設け、塔中部からされることが好ましい。蒸留塔23で蒸留分離された液化メタンは、蒸留塔23の塔底部より取り出され、貯蔵槽25に送られる。 The intermediate gas cooled by the main heat exchanger 21 is introduced into the distillation tower 23 and distilled. From the viewpoint of increasing the efficiency of distillation, it is preferable that the intermediate gas is introduced into the distillation tower 23 from the center of the tower by providing an inlet at the center of the tower. The liquefied methane distilled and separated in the distillation tower 23 is taken out from the bottom of the distillation tower 23 and sent to the storage tank 25.
 主熱交換器21により冷却された中間ガスは、蒸留塔23に導入される前に、通常蒸留塔23の塔底部に設置されたリボイラ22を通して蒸留塔23に導入される。中間ガスがリボイラ22で冷却されることで、中間ガス中のメタンガスの一部が液化され、中間ガスと液化メタンとが混合した状態で蒸留塔23へと導入される。 Before being introduced into the distillation tower 23, the intermediate gas cooled by the main heat exchanger 21 is usually introduced into the distillation tower 23 through a reboiler 22 installed at the bottom of the distillation tower 23. As the intermediate gas is cooled in the reboiler 22, some of the methane gas in the intermediate gas is liquefied, and the intermediate gas and liquefied methane are introduced into the distillation tower 23 in a mixed state.
 蒸留塔23で液化されなかったメタンガスは、蒸留塔23の塔頂部に接続されたコンデンサ24により凝縮され、少なくともその一部が液化メタンとなる。液化メタンは、再度蒸留塔23に戻され、貯蔵槽25に送られる。 The methane gas that is not liquefied in the distillation tower 23 is condensed by the condenser 24 connected to the top of the distillation tower 23, and at least a portion of it becomes liquefied methane. The liquefied methane is returned to the distillation tower 23 and sent to the storage tank 25.
 コンデンサ24に導入されたメタンガスは、例えば、冷媒との熱交換によって凝縮される。冷媒としては、例えば、液体窒素が使用される。 The methane gas introduced into the condenser 24 is condensed, for example, by heat exchange with a refrigerant. For example, liquid nitrogen is used as the refrigerant.
 メタンガスとの熱交換により、液体窒素の一部は気化され窒素ガスとなる。窒素ガスは、例えば、主熱交換器21において中間ガスを冷却するための冷媒として再利用されることが好ましい。また、主熱交換器21で再利用された窒素ガスは、上述の温度スイング吸着分離装置10で再利用されることが好ましい。 Part of the liquid nitrogen is vaporized and becomes nitrogen gas through heat exchange with the methane gas. The nitrogen gas is preferably reused, for example, as a refrigerant for cooling the intermediate gas in the main heat exchanger 21. In addition, the nitrogen gas reused in the main heat exchanger 21 is preferably reused in the temperature swing adsorption separation device 10 described above.
 蒸留塔23により分離された中間ガス中の窒素ガス、酸素ガスおよびアルゴンガスも、コンデンサ24に導入される。これらの窒素ガス、酸素ガスおよびアルゴンガス等の液化されないガスは、排気されるか、主熱交換器21において中間ガスを冷却するための冷媒として再利用されてもよい。 The nitrogen gas, oxygen gas, and argon gas in the intermediate gas separated by the distillation column 23 are also introduced into the condenser 24. These non-liquefied gases such as nitrogen gas, oxygen gas, and argon gas may be exhausted or reused as a refrigerant to cool the intermediate gas in the main heat exchanger 21.
 本蒸留装置は、液体窒素を保持するためのタンク26を備えていてもよい。液化メタンの融点は-182.5℃であるのに対して、本実施形態において使用される液体窒素は、0.5MPaG程度の圧力を掛けられた状態でコンデンサ24に導入される。この場合の液体窒素は、通常の液体窒素よりも高温(例えば、-180~-175℃)であり、液化メタンの融点に近い。液体窒素の圧力が低下すると、コンデンサ24内で液化メタンが固化するおそれがある。そのため、コンデンサ24内での液体窒素の温度の低下を抑制するために、液体窒素を保管するためのタンク26を設置することで、コンデンサ24の過冷却を防止することができる。 The distillation apparatus may include a tank 26 for holding liquid nitrogen. The melting point of liquefied methane is -182.5°C, whereas the liquid nitrogen used in this embodiment is introduced into the condenser 24 under a pressure of about 0.5 MPaG. The liquid nitrogen in this case is hotter than normal liquid nitrogen (e.g., -180 to -175°C) and is close to the melting point of liquefied methane. If the pressure of the liquid nitrogen drops, there is a risk that the liquefied methane will solidify in the condenser 24. Therefore, by installing a tank 26 for storing liquid nitrogen to suppress a drop in the temperature of the liquid nitrogen in the condenser 24, it is possible to prevent the condenser 24 from overcooling.
 以下、実施例が説明される。ただし以下の例は、請求の範囲を限定するものではない。 The following examples are provided. However, the following examples are not intended to limit the scope of the claims.
 <実施例1>
 図3に示す構成を有する液化メタンの製造装置が準備された。家畜の糞尿由来のバイオガスが準備された。バイオガス中の各ガスの濃度は、表1のポイント1に示す通りである。本実施例においては、上述の製造方法において、第1工程が膜分離法および温度スイング吸着法の順に行われた後、第2工程が行われた。膜分離装置では、分離膜として中空糸膜が、温度スイング吸着分離装置では、吸着剤としてゼオライトが、それぞれ用いられた。主熱交換器における冷媒は、コンデンサでメタンガスと熱交換された液体窒素の一部が気化された窒素ガス、および、蒸留により分離された窒素ガス、酸素ガスおよびアルゴンガスが用いられた。なお、ポイント1におけるバイオガスは、圧縮機によって圧縮されたものとする。
Example 1
A liquefied methane production apparatus having the configuration shown in FIG. 3 was prepared. Biogas derived from livestock manure was prepared. The concentrations of each gas in the biogas are as shown in point 1 of Table 1. In this embodiment, in the above-mentioned production method, the first step was performed in the order of membrane separation method and temperature swing adsorption method, and then the second step was performed. In the membrane separation device, a hollow fiber membrane was used as the separation membrane, and in the temperature swing adsorption separation device, zeolite was used as the adsorbent. As the refrigerant in the main heat exchanger, nitrogen gas obtained by vaporizing a part of the liquid nitrogen that was heat exchanged with methane gas in the condenser, and nitrogen gas, oxygen gas, and argon gas separated by distillation were used. Note that the biogas at point 1 is compressed by a compressor.
 図3中のポイント1~6における流量、圧力、温度および組成を表1に示す。各ポイントにおけるの組成の分析は、ガスクロマトグラフィー((株)ジェイ・サイエンス・ラボ社製、GAS5000F・HPID)により行われた。 The flow rate, pressure, temperature, and composition at points 1 to 6 in Figure 3 are shown in Table 1. The composition at each point was analyzed by gas chromatography (GAS5000F HPID, manufactured by J Science Labs, Inc.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例2>
 図4に示す構成を有する液化メタンの製造装置が準備された。実施例1で使用されたバイオガス中のメタンガスを濃縮した濃縮ガスが準備された。濃縮ガス中の各ガスの濃度は、表2のポイント1に示す通りである。本実施例においては、上述の製造方法において、第1工程が温度スイング吸着法の順に行われた後、第2工程が行われた。第1工程における温度スイング吸着分離装置および第2工程における蒸留装置は、実施例1と同じものが用いられた。なお、ポイント1における濃縮ガスは、圧縮機によって圧縮されたものとする。
Example 2
A liquefied methane production apparatus having the configuration shown in Fig. 4 was prepared. A concentrated gas was prepared by concentrating the methane gas in the biogas used in Example 1. The concentrations of each gas in the concentrated gas are as shown in point 1 of Table 2. In this example, in the above-mentioned production method, the first step was performed in the order of the temperature swing adsorption method, and then the second step was performed. The same temperature swing adsorption separation apparatus in the first step and the distillation apparatus in the second step were used as in Example 1. The concentrated gas at point 1 was compressed by a compressor.
 図4中のポイント1~5における流量、圧力、温度および組成を表2に示す。なお、各ポイントにおけるの組成の分析は、実施例1と同じガスクロマトグラフィーにより行われた。 The flow rate, pressure, temperature, and composition at points 1 to 5 in Figure 4 are shown in Table 2. The composition at each point was analyzed by gas chromatography in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、実施例1において、50体積%のメタンガスを含むバイオガスから、純度99.99%以上の液化メタンが得られた。また、液化メタンの回収率は95体積%であった。 As shown in Table 1, in Example 1, liquefied methane with a purity of 99.99% or more was obtained from biogas containing 50% by volume of methane gas. In addition, the recovery rate of the liquefied methane was 95% by volume.
 表2に示されるように、実施例2において、実施例1と同じバイオガス中のメタンガスを濃縮した濃縮ガスから、純度99.99%以上の液化メタンが得られた。また、液化メタンの回収率は95体積%であった。 As shown in Table 2, in Example 2, liquefied methane with a purity of 99.99% or more was obtained from the concentrated gas obtained by concentrating the methane gas in the same biogas as in Example 1. In addition, the recovery rate of the liquefied methane was 95% by volume.
 このように、本開示に記載の液化メタンの製造方法および製造装置を用いることによって、バイオガスから高純度の液化メタンを製造ことができる。また、本開示においては、廃棄されていた家畜の糞尿を有効活用していることから、持続可能な開発目標(SDGs)の一部活動に貢献することができる。 In this way, by using the liquefied methane production method and production apparatus described in this disclosure, high-purity liquefied methane can be produced from biogas. In addition, this disclosure makes effective use of livestock manure that would otherwise be discarded, which can contribute to some of the activities of the Sustainable Development Goals (SDGs).
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed herein should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 分離膜装置、10 温度スイング吸着分離装置、11,11a,11b 吸着塔、12 加熱手段、20 蒸留装置、21 主熱交換器、22 リボイラ、23 蒸留塔、24 コンデンサ、25 貯蔵槽、26 タンク、30 液化メタンの製造装置。 1 separation membrane device, 10 temperature swing adsorption separation device, 11, 11a, 11b adsorption tower, 12 heating means, 20 distillation device, 21 main heat exchanger, 22 reboiler, 23 distillation tower, 24 condenser, 25 storage tank, 26 tank, 30 liquefied methane production device.

Claims (12)

  1.  メタンガス、炭酸ガス、窒素ガス、酸素ガス、アルゴンガスおよび水分を含むバイオガス、または、前記バイオガス中のメタンガスを濃縮した濃縮ガスから液化メタンを製造する方法であって、
     前記バイオガスまたは前記濃縮ガスから炭酸ガスおよび水分を分離して中間ガスを得る第1工程と、
     前記中間ガスを蒸留塔により蒸留分離し、液化メタンを得る第2工程と、を含む、液化メタンの製造方法。
    A method for producing liquefied methane from a biogas containing methane gas, carbon dioxide gas, nitrogen gas, oxygen gas, argon gas and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, comprising:
    A first step of separating carbon dioxide gas and moisture from the biogas or the concentrated gas to obtain an intermediate gas;
    A second step of distilling and separating the intermediate gas in a distillation column to obtain liquefied methane.
  2.  前記第2工程において、前記蒸留塔の塔頂部に接続されたコンデンサに冷媒として液体窒素が供給される、請求項1に記載の液化メタンの製造方法。 The method for producing liquefied methane according to claim 1, wherein in the second step, liquid nitrogen is supplied as a refrigerant to a condenser connected to the top of the distillation column.
  3.  前記コンデンサで生じる窒素ガスを、前記第2工程において前記中間ガスを冷却するための冷媒として再利用する、請求項2に記載の液化メタンの製造方法。 The method for producing liquefied methane according to claim 2, wherein the nitrogen gas produced in the condenser is reused as a refrigerant for cooling the intermediate gas in the second step.
  4.  前記第1工程は、複数の分離方法を含む、請求項1から3のいずれか1項に記載の液化メタンの製造方法。 The method for producing liquefied methane according to any one of claims 1 to 3, wherein the first step includes a plurality of separation methods.
  5.  前記第1工程において、膜分離法および温度スイング吸着法による分離がこの順に行われる、請求項4に記載の液化メタンの製造方法。 The method for producing liquefied methane according to claim 4, wherein in the first step, separation is performed in this order by membrane separation and temperature swing adsorption.
  6.  前記バイオガスは、家畜の糞尿および食品の残渣からなる群より選択される少なくとも1種を由来とするガスである、請求項1から5のいずれか1項に記載の液化メタンの製造方法。 The method for producing liquefied methane according to any one of claims 1 to 5, wherein the biogas is derived from at least one selected from the group consisting of livestock manure and food waste.
  7.  前記バイオガスは、メタンガスを50体積%以上60体積%以下、炭酸ガスを30体積%以上40体積%以下、窒素ガスを1体積%以上15体積%以下含む、請求項1から6のいずれか1項に記載の液化メタンの製造方法。 The method for producing liquefied methane according to any one of claims 1 to 6, wherein the biogas contains 50% to 60% by volume of methane gas, 30% to 40% by volume of carbon dioxide gas, and 1% to 15% by volume of nitrogen gas.
  8.  メタンガス、炭酸ガス、窒素ガス、酸素ガス、アルゴンガスおよび水分を含むバイオガス、または、前記バイオガス中のメタンガスを濃縮した濃縮ガスから液化メタンを製造するための装置であって、
     前記バイオガスまたは前記濃縮ガスから炭酸ガスおよび水分を分離して中間ガスを得るための分離装置と、
     前記中間ガスを蒸留分離して液化メタンを得るための蒸留装置と、を含む、液化メタンの製造装置。
    An apparatus for producing liquefied methane from a biogas containing methane gas, carbon dioxide gas, nitrogen gas, oxygen gas, argon gas and moisture, or from a concentrated gas obtained by concentrating methane gas in the biogas, comprising:
    A separation device for separating carbon dioxide gas and moisture from the biogas or the concentrated gas to obtain an intermediate gas;
    and a distillation apparatus for distilling and separating the intermediate gas to obtain liquefied methane.
  9.  前記蒸留装置は、蒸留塔および前記蒸留塔の塔頂部に接続されたコンデンサを有し、
     前記コンデンサに冷媒として液体窒素が供給される、請求項8に記載の液化メタンの製造装置。
    The distillation apparatus includes a distillation column and a condenser connected to the top of the distillation column;
    The liquefied methane production apparatus according to claim 8 , wherein liquid nitrogen is supplied to the condenser as a refrigerant.
  10.  前記中間ガスを冷却するための主熱交換器を有し、
     前記コンデンサで生じる窒素ガスを前記主熱交換器で冷媒として再利用する、請求項9に記載の液化メタンの製造装置。
    a main heat exchanger for cooling the intermediate gas;
    The liquefied methane production apparatus according to claim 9, wherein nitrogen gas produced in the condenser is reused as a refrigerant in the main heat exchanger.
  11.  前記分離装置は、複数の分離装置を含む、請求項8から10のいずれか1項に記載の液化メタンの製造装置。 The liquefied methane production apparatus according to any one of claims 8 to 10, wherein the separation device includes a plurality of separation devices.
  12.  前記分離装置は、膜分離装置および温度スイング吸着分離装置を含む、請求項11に記載の液化メタンの製造装置。 The liquefied methane production apparatus according to claim 11, wherein the separation device includes a membrane separation device and a temperature swing adsorption separation device.
PCT/JP2024/009548 2023-03-24 2024-03-12 Liquefied methane production method and liquefied methane production apparatus WO2024203281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-047999 2023-03-24
JP2023047999A JP2024136765A (en) 2023-03-24 2023-03-24 Liquefied methane production method and liquefied methane production apparatus

Publications (1)

Publication Number Publication Date
WO2024203281A1 true WO2024203281A1 (en) 2024-10-03

Family

ID=92904588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/009548 WO2024203281A1 (en) 2023-03-24 2024-03-12 Liquefied methane production method and liquefied methane production apparatus

Country Status (2)

Country Link
JP (1) JP2024136765A (en)
WO (1) WO2024203281A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472203A (en) * 1977-11-21 1979-06-09 Air Prod & Chem Production of liquefied methane
JPS5981483A (en) * 1982-08-30 1984-05-11 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Method of liquefying methane
JP2001162101A (en) * 1999-12-13 2001-06-19 Tokyo Gas Co Ltd Condenser for distillation and distillation column
JP2007297605A (en) * 2006-04-04 2007-11-15 Taiyo Nippon Sanso Corp Method for separating methane, methane separator and methane utilization system
JP2009242773A (en) * 2008-03-14 2009-10-22 Air Water Inc Methane gas concentration device, method therefor, fuel gas production device and method therefor
WO2022162059A1 (en) * 2021-01-29 2022-08-04 Hitachi Zosen Inova Ag Method for removing co2 from a methane-containing gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472203A (en) * 1977-11-21 1979-06-09 Air Prod & Chem Production of liquefied methane
JPS5981483A (en) * 1982-08-30 1984-05-11 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Method of liquefying methane
JP2001162101A (en) * 1999-12-13 2001-06-19 Tokyo Gas Co Ltd Condenser for distillation and distillation column
JP2007297605A (en) * 2006-04-04 2007-11-15 Taiyo Nippon Sanso Corp Method for separating methane, methane separator and methane utilization system
JP2009242773A (en) * 2008-03-14 2009-10-22 Air Water Inc Methane gas concentration device, method therefor, fuel gas production device and method therefor
WO2022162059A1 (en) * 2021-01-29 2022-08-04 Hitachi Zosen Inova Ag Method for removing co2 from a methane-containing gas

Also Published As

Publication number Publication date
JP2024136765A (en) 2024-10-04

Similar Documents

Publication Publication Date Title
AU2016378831B2 (en) Method for producing biomethane by purifying biogas from non-hazardous waste storage facilities and facility for implementing the method
AU2001297607B2 (en) Improved hydrogen and carbon dioxide coproduction
US8268044B2 (en) Separation of a sour syngas stream
CN104607000B (en) C in a kind of oil refinery dry gas2、C3The recovery method of component, light hydrocarbon component and hydrogen
US20240019205A1 (en) Facility for producing gaseous methane by purifying biogas from landfill, combining membranes and cryogenic distillation for landfill biogas upgrading
JP6305868B2 (en) Hydrogen gas purification method and purification apparatus
KR101709867B1 (en) Apparatus for capturing of carbon dioxide
EP0083832A1 (en) Process for separating carbonic acid gas from methane-rich gas
RU2715636C1 (en) Method for cryogenic separation of feed stream containing methane and air gases, device for producing biomethane by cleaning biogas obtained from safe waste (nhwsf) storages which enables to implement method
CS145292A3 (en) Process for preparing extremely pure argon
CA2708530A1 (en) A plant and process for recovering carbon dioxide
US9272963B2 (en) Final biogas purification process
JP6659717B2 (en) Hydrogen recovery method
US20150360165A1 (en) Separation of biologically generated gas streams
KR20090005702A (en) Apparatus for enriching and purifying waste helium gases
WO2024203281A1 (en) Liquefied methane production method and liquefied methane production apparatus
JP3294067B2 (en) Krypton manufacturing method
JP4758711B2 (en) Pretreatment method for gas hydrate production
JP3256811B2 (en) Method for purifying krypton and xenon
JPH10311674A (en) Helium collection method
US11945716B2 (en) Adsorption-based Claus tail gas treatment
US20240343578A1 (en) Helium separation and recovery process
JP2005024214A (en) Fluorine compound gas separating/refining device
JP2024506144A (en) How to remove CO2 from methane-containing gas
KR20240124970A (en) Adsorption-based cloud tail gas treatment