Nothing Special   »   [go: up one dir, main page]

WO2024203149A1 - Noise suppression device - Google Patents

Noise suppression device Download PDF

Info

Publication number
WO2024203149A1
WO2024203149A1 PCT/JP2024/008952 JP2024008952W WO2024203149A1 WO 2024203149 A1 WO2024203149 A1 WO 2024203149A1 JP 2024008952 W JP2024008952 W JP 2024008952W WO 2024203149 A1 WO2024203149 A1 WO 2024203149A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
unit
filter
vehicle
noise
Prior art date
Application number
PCT/JP2024/008952
Other languages
French (fr)
Japanese (ja)
Inventor
善之 黒田
繁利 林
徹徳 板橋
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024203149A1 publication Critical patent/WO2024203149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase

Definitions

  • This disclosure relates to a noise suppression device, and in particular to a noise suppression device that can appropriately reduce noise.
  • Patent Document 1 a microphone that picks up noise is installed at a fixed position near the user's ear, which serves as the control point, but there is a risk that noise may not be reduced appropriately if the seat position or the direction of the user's head changes.
  • a noise suppression device includes an acceleration sensor that detects the acceleration of an object that generates sound through vibration, a vibration device that vibrates the object, a filter processing unit that applies noise cancellation filter processing to a sensor signal that is the detection result of the acceleration sensor to generate a drive signal that vibrates the vibration device so as to suppress vibration of the object, a drive unit in which the vibration device is stored, and a base unit that fixes the drive unit to the object, and the acceleration sensor is disposed on the base unit, and the base unit and the drive unit are connected in a detachable manner to form a noise suppression device.
  • the device includes an acceleration sensor that detects the acceleration of an object that generates sound through vibration, a vibration device that vibrates the object, a filter processing unit that applies noise cancellation filter processing to a sensor signal that is the detection result of the acceleration sensor to generate a drive signal that vibrates the vibration device so as to suppress vibration of the object, a drive unit in which the vibration device is stored, and a base unit that fixes the drive unit to the object, and the acceleration sensor is disposed on the base unit, and the base unit and the drive unit are connected in a detachable state.
  • FIG. 1 is a block diagram showing an example of the configuration of a vehicle control system.
  • FIG. 2 is a diagram showing an example of a sensing region.
  • 1 is a diagram illustrating an FF type NC device according to a first embodiment of the present disclosure;
  • FIG. 2 is a functional block diagram illustrating functions realized by an FF type NC device.
  • 5 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 4.
  • FIG. 6 is a functional block diagram for explaining functions realized by the filter design unit of FIGS. 4 and 5.
  • 6 is a flowchart illustrating a filter generation process by the filter generation processing unit in FIG. 5 .
  • FIG. 5 is a flowchart illustrating an NC process performed by the NC device of FIG. 4.
  • 1 is a diagram illustrating an FF-type NC device that is a first modified example of the first embodiment of the present disclosure.
  • FIG. 10 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 9.
  • 13 is a diagram illustrating an FF-type NC device that is a second modified example of the first embodiment of the present disclosure.
  • FIG. 12 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 11.
  • FIG. 13 is a flowchart illustrating a filter generation process by the filter generation processing unit in FIG. 12 .
  • 12 is a flowchart illustrating an NC process performed by the NC device of FIG. 11 .
  • FIG. 13 is a diagram illustrating an FF-type NC device that is a third modified example of the first embodiment of the present disclosure.
  • 16 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 15.
  • 17 is a flowchart illustrating a filter generation process by the filter generation processing unit in FIG. 16 .
  • 16 is a flowchart illustrating NC processing by the NC device of FIG. 15 .
  • FIG. 13 is a diagram illustrating an FF-type NC device which is a fourth modified example of the first embodiment of the present disclosure.
  • 20 is a functional block diagram illustrating an example of the configuration of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 19.
  • FIG. 13 is a diagram illustrating an FB type NC device according to a second embodiment of the present disclosure.
  • FIG. 23 is a diagram illustrating the external configuration of the NC device of FIG. 22. 22 is a diagram for explaining a configuration example of an actuator in the NC apparatus of FIG. 21.
  • FIG. 22 is a diagram for explaining a configuration example of an NC processing unit in the NC apparatus of FIG. 21. 22 is a flowchart illustrating NC processing by the NC device of FIG. 21.
  • 13A to 13C are diagrams illustrating a configuration example of an actuator according to a first modified example of the second embodiment of the present disclosure.
  • 13A to 13C are diagrams illustrating a configuration example of an actuator according to a second modified example of the second embodiment of the present disclosure.
  • 28 is a diagram for explaining a method of installing the actuator of FIG. 27.
  • FIG. 28A to 28C are diagrams illustrating a method for replacing the drive unit of the actuator of FIG. 27.
  • 13A to 13C are diagrams illustrating a configuration example of an actuator according to a third modified example of the second embodiment of the present disclosure.
  • 13A to 13C are diagrams illustrating a configuration example of an actuator according to a fourth modified example of the second embodiment of the present disclosure.
  • FIGS. 13A to 13C are diagrams illustrating a configuration example of an actuator according to a fifth modified example of the second embodiment of the present disclosure.
  • 13A to 13C are diagrams illustrating a configuration example of an actuator according to a sixth modified example of the second embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a configuration example of an actuator according to a seventh modified example of the second embodiment of the present disclosure.
  • 11A and 11B are diagrams illustrating compliance characteristics of a damper of an actuator according to temperature.
  • FIG. 13 is a diagram illustrating a configuration example of an NC processing unit which is an eighth modified example of the second embodiment of the present disclosure.
  • 37 is a flowchart illustrating an operation mode control process by the NC processing unit of FIG. 36.
  • FIG. 13 is a diagram illustrating a configuration example of an NC processing unit which is a ninth modified example of the second embodiment of the present disclosure. 39 is a flowchart illustrating an operation mode control process by the NC processing unit of FIG. 38.
  • FIG. 13 is a diagram illustrating a configuration example of an NC processing unit which is a ninth modified example of the second embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of detection of unevenness on a road surface using LiDAR.
  • FIG. 1 is a diagram illustrating an NC device that combines an FB type NC device and an FF type NC device.
  • 10A and 10B are diagrams illustrating the difference in transmission of sudden sounds between a sensor of an FB type NC device and a sensor of an FF type NC device.
  • FIG. 13 is a diagram illustrating an NC device that combines an FB type NC device and an FF type NC device according to a third embodiment of the present disclosure.
  • FIG. 45 is a functional block diagram illustrating functions realized by the NC device of FIG. 44.
  • 11A and 11B are diagrams illustrating a countermeasure process for a sudden sound.
  • 46 is a flowchart illustrating a sudden sound prevention process performed by the NC device of FIG. 45.
  • FIG. 13 is a diagram illustrating a configuration example of an NC device which is a first modified example of the third embodiment of the present disclosure.
  • 11A and 11B are diagrams illustrating an example of a filter gain of an NC filter that cancels a vibration level when a sudden sound occurs.
  • FIG. 49 is a flowchart illustrating a sudden sound prevention process performed by the NC device of FIG. 48.
  • FIG. 13 is a diagram illustrating a configuration example of an NC device which is a second modified example of the third embodiment of the present disclosure.
  • 52 is a flowchart illustrating a sudden sound prevention process performed by the NC device of FIG. 51.
  • FIG. 13 is a diagram illustrating a configuration example of an NC device which is a third modified example of the third embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an NC device which is a fourth modified example of the third embodiment of the present disclosure.
  • FIG. 55 is a functional block diagram illustrating functions realized by the NC device of FIG. 54.
  • 56 is a flowchart illustrating NC processing by the NC device of FIG. 55.
  • FIG. 13 is a diagram illustrating an NC device which is a fifth modified example of the third embodiment of the present disclosure.
  • FIG. 58 is a functional block diagram illustrating functions realized by the NC device of FIG. 57.
  • 59 is a flowchart illustrating NC processing by the NC device of FIG. 58.
  • FIG. 13 is a diagram illustrating an NC device which is a sixth modified example of the third embodiment of the present disclosure.
  • FIG. 61 is a functional block diagram illustrating functions realized by the NC device of FIG. 60.
  • FIG. 13 is a diagram illustrating an NC device which is a seventh modified example of the third embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a GUI for setting an NC device that is an eighth modified example of the third embodiment of the present disclosure. 2 shows an example of the configuration of a general-purpose computer.
  • FIG. 1 is a block diagram showing an example of the configuration of a vehicle control system 11, which is an example of a mobility device control system to which the present technology is applied.
  • the vehicle control system 11 is provided in the vehicle 1 and performs processing related to the automated driving of the vehicle 1.
  • This automated driving includes driving automation of levels 1 to 5, as well as remote driving and remote assistance of the vehicle 1 by a remote driver.
  • the vehicle control system 11 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a location information acquisition unit 24, an external recognition sensor 25, an in-vehicle sensor 26, a vehicle sensor 27, a memory unit 28, a driving automation control unit 29, a DMS (Driver Monitoring System) 30, an HMI (Human Machine Interface) 31, a vehicle control unit 32, and an NC (Noise Cancelling) device 33.
  • a vehicle control ECU Electronic Control Unit
  • a communication unit 22 a communication unit 22
  • a map information storage unit 23 a location information acquisition unit 24
  • an external recognition sensor 25
  • an in-vehicle sensor 26 a vehicle sensor 27, a memory unit 28, a driving automation control unit 29, a DMS (Driver Monitoring System) 30, an HMI (Human Machine Interface) 31, a vehicle control unit 32, and an NC (Noise Cancelling) device 33.
  • HMI Human Machine Interface
  • NC Noise Cancelling
  • the vehicle control ECU 21, communication unit 22, map information storage unit 23, position information acquisition unit 24, external recognition sensor 25, in-vehicle sensor 26, vehicle sensor 27, memory unit 28, driving automation control unit 29, DMS 30, HMI 31, vehicle control unit 32, and NC device 33 are connected to each other so as to be able to communicate with each other via a communication network 41.
  • the communication network 41 is composed of an in-vehicle communication network or bus that complies with digital two-way communication standards such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), FlexRay (registered trademark), and Ethernet (registered trademark).
  • the communication network 41 may be used differently depending on the type of data being transmitted.
  • CAN may be applied to data related to vehicle control
  • Ethernet may be applied to large-volume data.
  • each part of the vehicle control system 11 may be directly connected without going through the communication network 41, using wireless communication intended for communication over relatively short distances, such as near field communication (NFC) or Bluetooth (registered trademark).
  • NFC near field communication
  • Bluetooth registered trademark
  • the vehicle control ECU 21 is composed of various processors, such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the vehicle control ECU 21 controls all or part of the functions of the vehicle control system 11.
  • the communication unit 22 communicates with various devices inside and outside the vehicle, other vehicles, servers, base stations, etc., and transmits and receives various types of data. At this time, the communication unit 22 can communicate using multiple communication methods.
  • the communication unit 22 communicates with servers (hereinafter referred to as external servers) on an external network via base stations or access points using wireless communication methods such as 5G (fifth generation mobile communication system), LTE (Long Term Evolution), and DSRC (Dedicated Short Range Communications).
  • the external network with which the communication unit 22 communicates is, for example, the Internet, a cloud network, or an operator-specific network.
  • the communication method that the communication unit 22 uses with the external network is not particularly limited as long as it is a wireless communication method that allows digital two-way communication at a communication speed equal to or higher than a predetermined distance.
  • the communication unit 22 can communicate with a terminal present in the vicinity of the vehicle using P2P (Peer To Peer) technology.
  • the terminal present in the vicinity of the vehicle can be, for example, a terminal attached to a mobile object moving at a relatively slow speed, such as a pedestrian or a bicycle, a terminal installed at a fixed position in a store, or an MTC (Machine Type Communication) terminal.
  • the communication unit 22 can also perform V2X communication.
  • V2X communication refers to communication between the vehicle and others, such as vehicle-to-vehicle communication with other vehicles, vehicle-to-infrastructure communication with roadside devices, vehicle-to-home communication with a home, and vehicle-to-pedestrian communication with a terminal carried by a pedestrian, etc.
  • the communication unit 22 can, for example, receive from the outside a program for updating software that controls the operation of the vehicle control system 11 (Over the Air).
  • the communication unit 22 can further receive map information, traffic information, information about the surroundings of the vehicle 1, etc. from the outside.
  • the communication unit 22 can transmit information about the vehicle 1 and information about the surroundings of the vehicle 1 to the outside.
  • Information about the vehicle 1 that the communication unit 22 transmits to the outside includes, for example, data indicating the state of the vehicle 1, recognition results by the recognition unit 73, etc.
  • the communication unit 22 performs communication corresponding to a vehicle emergency notification system such as e-Call.
  • the communication unit 22 receives electromagnetic waves transmitted by a road traffic information and communication system (VICS (Vehicle Information and Communication System) (registered trademark)) such as a radio beacon, optical beacon, or FM multiplex broadcasting.
  • VICS Vehicle Information and Communication System
  • the communication unit 22 can communicate with each device in the vehicle using, for example, wireless communication.
  • the communication unit 22 can perform wireless communication with each device in the vehicle using a communication method that allows digital two-way communication at a communication speed equal to or higher than a predetermined speed via wireless communication, such as wireless LAN, Bluetooth, NFC, or WUSB (Wireless USB).
  • the communication unit 22 can also communicate with each device in the vehicle using wired communication.
  • the communication unit 22 can communicate with each device in the vehicle using wired communication via a cable connected to a connection terminal (not shown).
  • the communication unit 22 can communicate with each device in the vehicle using a communication method that allows digital two-way communication at a communication speed equal to or higher than a predetermined speed via wired communication, such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), or MHL (Mobile High-definition Link).
  • a communication method that allows digital two-way communication at a communication speed equal to or higher than a predetermined speed via wired communication, such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), or MHL (Mobile High-definition Link).
  • the in-vehicle device refers to, for example, a device that is not connected to the communication network 41 inside the vehicle.
  • examples of in-vehicle devices include mobile devices and wearable devices carried by users inside the vehicle, such as the driver, and information devices brought into the vehicle and temporarily installed.
  • the map information storage unit 23 stores one or both of a map acquired from an external source and a map created by the vehicle 1.
  • the map information storage unit 23 stores a three-dimensional high-precision map, a global map that is less accurate than a high-precision map and covers a wide area, etc.
  • High-precision maps include, for example, dynamic maps, point cloud maps, and vector maps.
  • a dynamic map is, for example, a map consisting of four layers of dynamic information, semi-dynamic information, semi-static information, and static information, and is provided to the vehicle 1 from an external server or the like.
  • a point cloud map is a map made up of a point cloud (point group data).
  • a vector map is, for example, a map that is adapted for driving automation by associating traffic information such as the positions of lanes and traffic lights with a point cloud map.
  • the point cloud map and vector map may be provided, for example, from an external server, or may be created in the vehicle 1 based on sensing results from the camera 51, radar 52, LiDAR 53, etc. as a map for matching with a local map described below, and stored in the map information storage unit 23.
  • map data of, for example, an area of several hundred meters square regarding the planned route along which the vehicle 1 will travel is acquired from the external server, etc., in order to reduce communication capacity.
  • the location information acquisition unit 24 receives GNSS signals from Global Navigation Satellite System (GNSS) satellites and acquires location information of the vehicle 1.
  • GNSS Global Navigation Satellite System
  • the acquired location information is supplied to the driving automation control unit 29.
  • the location information acquisition unit 24 is not limited to a method using GNSS signals, and may acquire location information using a beacon, for example.
  • the external recognition sensor 25 includes various sensors used to recognize the situation outside the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11.
  • the type and number of sensors included in the external recognition sensor 25 are arbitrary.
  • the external recognition sensor 25 includes a camera 51, a radar 52, a LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) 53, and an ultrasonic sensor 54.
  • the external recognition sensor 25 may be configured to include one or more types of sensors among the camera 51, the radar 52, the LiDAR 53, and the ultrasonic sensor 54.
  • the number of cameras 51, radars 52, LiDAR 53, and ultrasonic sensors 54 is not particularly limited as long as it is a number that can be realistically installed on the vehicle 1.
  • the types of sensors included in the external recognition sensor 25 are not limited to this example, and the external recognition sensor 25 may include other types of sensors. Examples of the sensing areas of each sensor included in the external recognition sensor 25 will be described later.
  • the imaging method of camera 51 is not particularly limited.
  • cameras of various imaging methods such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, and an infrared camera, which are imaging methods capable of distance measurement, can be applied to camera 51 as necessary.
  • ToF Time Of Flight
  • stereo camera stereo camera
  • monocular camera stereo camera
  • infrared camera infrared camera
  • camera 51 may be a camera simply for acquiring photographic images, without being related to distance measurement.
  • the external recognition sensor 25 can be equipped with an environmental sensor for detecting the environment relative to the vehicle 1.
  • the environmental sensor is a sensor for detecting the environment such as the weather, climate, brightness, etc., and can include various sensors such as a raindrop sensor, fog sensor, sunlight sensor, snow sensor, illuminance sensor, etc.
  • the external recognition sensor 25 includes a microphone that is used to detect sounds around the vehicle 1 and the location of sound sources.
  • the in-vehicle sensor 26 includes various sensors for detecting information inside the vehicle, and supplies sensor data from each sensor to each part of the vehicle control system 11. There are no particular limitations on the types and number of the various sensors included in the in-vehicle sensor 26, so long as they are of the types and number that can be realistically installed in the vehicle 1.
  • the in-vehicle sensor 26 may be equipped with one or more types of sensors including a camera, radar, a seating sensor, a steering wheel sensor, a microphone, and a biometric sensor.
  • the camera equipped in the in-vehicle sensor 26 may be a camera using various imaging methods capable of measuring distances, such as a ToF camera, a stereo camera, a monocular camera, or an infrared camera. Not limited to this, the camera equipped in the in-vehicle sensor 26 may be a camera simply for acquiring captured images, regardless of distance measurement.
  • the biometric sensor equipped in the in-vehicle sensor 26 is provided, for example, on a seat, steering wheel, etc., and detects various types of biometric information of the user.
  • the vehicle sensor 27 includes various sensors for detecting the state of the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11. There are no particular limitations on the types and number of the various sensors included in the vehicle sensor 27, so long as they are of the types and number that can be realistically installed on the vehicle 1.
  • the vehicle sensor 27 includes a speed sensor, an acceleration sensor, an angular velocity sensor (gyro sensor), and an inertial measurement unit (IMU) that integrates these.
  • the vehicle sensor 27 includes a steering angle sensor that detects the steering angle of the steering wheel, a yaw rate sensor, an accelerator sensor that detects the amount of accelerator pedal operation, and a brake sensor that detects the amount of brake pedal operation.
  • the vehicle sensor 27 includes a rotation sensor that detects the number of rotations of the engine or motor, an air pressure sensor that detects the air pressure of the tires, a slip ratio sensor that detects the slip ratio of the tires, and a wheel speed sensor that detects the rotation speed of the wheels.
  • the vehicle sensor 27 includes a battery sensor that detects the remaining charge and temperature of the battery, and an impact sensor that detects external impacts.
  • the memory unit 28 includes at least one of a non-volatile storage medium and a volatile storage medium, and stores data and programs.
  • the memory unit 28 is used, for example, as an EEPROM (Electrically Erasable Programmable Read Only Memory) and a RAM (Random Access Memory), and the storage medium may be a magnetic storage device such as a hard disc drive (HDD), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the memory unit 28 stores various programs and data used by each part of the vehicle control system 11.
  • the memory unit 28 includes an EDR (Event Data Recorder) and a DSSAD (Data Storage System for Automated Driving), and stores information about the vehicle 1 before and after an event such as an accident, and information acquired by the in-vehicle sensor 26.
  • EDR Event Data Recorder
  • DSSAD Data Storage System for Automated Driving
  • the driving automation control unit 29 controls the driving automation function of the vehicle 1.
  • the driving automation control unit 29 includes an analysis unit 61, an action planning unit 62, and an operation control unit 63.
  • the analysis unit 61 performs analysis processing of the vehicle 1 and the surrounding conditions.
  • the analysis unit 61 includes a self-position estimation unit 71, a sensor fusion unit 72, and a recognition unit 73.
  • the self-position estimation unit 71 estimates the self-position of the vehicle 1 based on the sensor data from the external recognition sensor 25 and the high-precision map stored in the map information storage unit 23. For example, the self-position estimation unit 71 generates a local map based on the sensor data from the external recognition sensor 25, and estimates the self-position of the vehicle 1 by matching the local map with the high-precision map.
  • the position of the vehicle 1 is based on, for example, the center of the rear wheel pair axle.
  • the local map is, for example, a three-dimensional high-precision map or an occupancy grid map created using technology such as SLAM (Simultaneous Localization and Mapping).
  • the three-dimensional high-precision map is, for example, the point cloud map described above.
  • the occupancy grid map is a map in which the three-dimensional or two-dimensional space around the vehicle 1 is divided into grids of a predetermined size, and the occupancy state of objects is shown on a grid-by-grid basis.
  • the occupancy state of objects is indicated, for example, by the presence or absence of an object and the probability of its existence.
  • the local map is also used, for example, in the detection and recognition processing of the situation outside the vehicle 1 by the recognition unit 73.
  • the self-position estimation unit 71 may estimate the self-position of the vehicle 1 based on the position information acquired by the position information acquisition unit 24 and the sensor data from the vehicle sensor 27.
  • the sensor fusion unit 72 performs sensor fusion processing to obtain information by combining multiple different types of sensor data (e.g., image data supplied from the camera 51 and sensor data supplied from the radar 52). Methods for combining different types of sensor data include compounding, integration, fusion, and association.
  • the recognition unit 73 executes a detection process to detect the situation outside the vehicle 1, and a recognition process to recognize the situation outside the vehicle 1.
  • the recognition unit 73 performs detection and recognition processing of the situation outside the vehicle 1 based on information from the external recognition sensor 25, information from the self-position estimation unit 71, information from the sensor fusion unit 72, etc.
  • the recognition unit 73 performs detection processing and recognition processing of objects around the vehicle 1.
  • Object detection processing is, for example, processing to detect the presence or absence, size, shape, position, movement, etc. of an object.
  • Object recognition processing is, for example, processing to recognize attributes such as the type of object, and to identify a specific object.
  • detection processing and recognition processing are not necessarily clearly separated, and there may be overlap.
  • the recognition unit 73 detects objects around the vehicle 1 by performing clustering to classify a point cloud based on sensor data from the radar 52, the LiDAR 53, or the like into clusters of points. This allows the presence or absence, size, shape, and position of objects around the vehicle 1 to be detected.
  • the recognition unit 73 detects the movement of objects around the vehicle 1 by performing tracking to follow the movement of clusters of point clouds classified by clustering. This allows the speed and direction of travel (movement vector) of objects around the vehicle 1 to be detected.
  • the recognition unit 73 detects or recognizes vehicles, people, bicycles, obstacles, structures, roads, traffic lights, traffic signs, road markings, etc. based on image data supplied from the camera 51.
  • the recognition unit 73 may also recognize the types of objects around the vehicle 1 by performing recognition processing such as semantic segmentation.
  • the recognition unit 73 can perform recognition processing of traffic rules around the vehicle 1 based on the map stored in the map information storage unit 23, the result of self-location estimation by the self-location estimation unit 71, and the result of recognition of objects around the vehicle 1 by the recognition unit 73. Through this processing, the recognition unit 73 can recognize the positions and states of traffic lights, the contents of traffic signs and road markings, the contents of traffic regulations, and lanes on which travel is possible, etc.
  • the recognition unit 73 can perform recognition processing of the environment around the vehicle 1.
  • the surrounding environment that the recognition unit 73 recognizes may include weather, temperature, humidity, brightness, and road surface conditions.
  • the behavior planning unit 62 creates a behavior plan for the vehicle 1. For example, the behavior planning unit 62 creates the behavior plan by performing route planning and route following processing.
  • Route planning includes global path planning and local path planning.
  • Global path planning involves planning a rough route from the start to the goal.
  • Local path planning also known as trajectory planning, involves generating a trajectory that allows safe and smooth progress in the vicinity of vehicle 1 on the planned route, taking into account the motion characteristics of vehicle 1.
  • Path following is a process of planning operations for traveling safely and accurately along a route planned by a route plan within a planned time.
  • the action planning unit 62 can, for example, calculate the target speed and target angular velocity of the vehicle 1 based on the results of this path following process.
  • the operation control unit 63 controls the operation of the vehicle 1 to realize the action plan created by the action planning unit 62.
  • the operation control unit 63 controls the steering control unit 81, the brake control unit 82, and the drive control unit 83 included in the vehicle control unit 32 described below, to perform lateral vehicle motion control and longitudinal vehicle motion control so that the vehicle 1 proceeds along the trajectory calculated by the trajectory plan.
  • the operation control unit 63 performs control for the purpose of driving automation, such as driver assistance functions such as collision avoidance or impact mitigation, following driving, maintaining vehicle speed, collision warning for the vehicle itself, and lane departure warning for the vehicle itself, and driving without the operation of the driver or a remote driver.
  • driving automation such as driver assistance functions such as collision avoidance or impact mitigation, following driving, maintaining vehicle speed, collision warning for the vehicle itself, and lane departure warning for the vehicle itself, and driving without the operation of the driver or a remote driver.
  • the DMS 30 performs processes such as authenticating the driver and recognizing the driver's state based on the sensor data from the in-vehicle sensors 26 and the input data input to the HMI 31 (described later).
  • Examples of the driver's state to be recognized include physical condition, alertness, concentration, fatigue, line of sight, level of intoxication, driving operation, posture, etc.
  • the DMS 30 may also perform authentication processing for users other than the driver and recognition processing for the status of the users.
  • the DMS 30 may also perform recognition processing for the status inside the vehicle based on sensor data from the in-vehicle sensor 26. Examples of the status inside the vehicle that may be recognized include temperature, humidity, brightness, odor, etc.
  • HMI31 inputs various data and instructions, and displays various data to the user.
  • the HMI 31 is equipped with an input device that allows a person to input data.
  • the HMI 31 generates input signals based on data and instructions input via the input device, and supplies the signals to each part of the vehicle control system 11.
  • the HMI 31 is equipped with input devices such as a touch panel, buttons, switches, and levers. Without being limited to these, the HMI 31 may further be equipped with an input device that allows information to be input by a method other than manual operation, such as voice or gestures.
  • the HMI 31 may use, as an input device, an externally connected device such as a remote control device that uses infrared or radio waves, or a mobile device or wearable device that supports the operation of the vehicle control system 11.
  • the HMI 31 generates visual information, auditory information, and tactile information for the user or the outside of the vehicle.
  • the HMI 31 also performs output control to control the output, output content, output timing, output method, etc. of each piece of generated information.
  • the HMI 31 generates and outputs, as visual information, information indicated by images or light, such as an operation screen, vehicle 1 status display, warning display, and monitor image showing the situation around the vehicle 1.
  • the HMI 31 also generates and outputs, as auditory information, information indicated by sounds, such as voice guidance, warning sounds, and warning messages.
  • the HMI 31 also generates and outputs, as tactile information, information that is imparted to the user's sense of touch by force, vibration, movement, etc.
  • the output device from which the HMI 31 outputs visual information may be, for example, a display device that presents visual information by displaying an image itself, or a projector device that presents visual information by projecting an image.
  • the display device may be a device that displays visual information within the user's field of vision, such as a head-up display, a transmissive display, or a wearable device with an AR (Augmented Reality) function, in addition to a display device having a normal display.
  • the HMI 31 may also use display devices such as a navigation device, instrument panel, CMS (Camera Monitoring System), electronic mirror, lamp, etc., provided in the vehicle 1 as output devices that output visual information.
  • the output device through which the HMI 31 outputs auditory information can be, for example, an audio speaker, headphones, or earphones.
  • Haptic elements using haptic technology can be used as an output device for the HMI 31 to output tactile information.
  • Haptic elements are provided on parts that the user touches, such as the steering wheel and the seat.
  • the vehicle control unit 32 controls each part of the vehicle 1.
  • the vehicle control unit 32 includes a steering control unit 81, a brake control unit 82, a drive control unit 83, a body control unit 84, a light control unit 85, and a horn control unit 86.
  • the steering control unit 81 detects and controls the state of the steering system of the vehicle 1.
  • the steering system includes, for example, a steering mechanism including a steering wheel, an electric power steering, etc.
  • the steering control unit 81 includes, for example, a steering ECU that controls the steering system, an actuator that drives the steering system, etc.
  • the brake control unit 82 detects and controls the state of the brake system of the vehicle 1.
  • the brake system includes, for example, a brake mechanism including a brake pedal, an ABS (Antilock Brake System), a regenerative brake mechanism, etc.
  • the brake control unit 82 includes, for example, a brake ECU that controls the brake system, and an actuator that drives the brake system.
  • the drive control unit 83 detects and controls the state of the drive system of the vehicle 1.
  • the drive system includes, for example, an accelerator pedal, a drive force generating device for generating drive force such as an internal combustion engine or a drive motor, and a drive force transmission mechanism for transmitting the drive force to the wheels.
  • the drive control unit 83 includes, for example, a drive ECU for controlling the drive system, and an actuator for driving the drive system.
  • the body system control unit 84 detects and controls the state of the body system of the vehicle 1.
  • the body system includes, for example, a keyless entry system, a smart key system, a power window device, a power seat, an air conditioning system, an airbag, a seat belt, a shift lever, etc.
  • the body system control unit 84 includes, for example, a body system ECU that controls the body system, an actuator that drives the body system, etc.
  • the light control unit 85 detects and controls the state of various lights of the vehicle 1. Examples of lights to be controlled include headlights, backlights, fog lights, turn signals, brake lights, projections, and bumper displays.
  • the light control unit 85 includes a light ECU that controls the lights, an actuator that drives the lights, and the like.
  • the horn control unit 86 detects and controls the state of the car horn of the vehicle 1.
  • the horn control unit 86 includes, for example, a horn ECU that controls the car horn, an actuator that drives the car horn, etc.
  • the NC (Noise Cancellation or Noise Control) device 33 suppresses noises that occur while driving, such as road noise and wind noise.
  • the detailed configuration of the NC device 33 will be described later in Figure 3 and subsequent figures.
  • FIG. 2 is a diagram showing an example of a sensing area by the camera 51, radar 52, LiDAR 53, ultrasonic sensor 54, etc. of the external recognition sensor 25 in FIG. 1. Note that FIG. 2 shows a schematic view of the vehicle 1 as seen from above, with the left end side being the front end of the vehicle 1 and the right end side being the rear end of the vehicle 1.
  • Sensing area 101F and sensing area 101B show examples of sensing areas of ultrasonic sensors 54. Sensing area 101F covers the periphery of the front end of vehicle 1 with multiple ultrasonic sensors 54. Sensing area 101B covers the periphery of the rear end of vehicle 1 with multiple ultrasonic sensors 54.
  • sensing results in sensing area 101F and sensing area 101B are used, for example, for parking assistance for vehicle 1.
  • Sensing area 102F to sensing area 102B show examples of sensing areas of a short-range or medium-range radar 52. Sensing area 102F covers a position farther in front of the vehicle 1 than sensing area 101F. Sensing area 102B covers a position farther in the rear of the vehicle 1 than sensing area 101B. Sensing area 102L covers the rear periphery of the left side of the vehicle 1. Sensing area 102R covers the rear periphery of the right side of the vehicle 1.
  • the sensing results in sensing area 102F are used, for example, to detect vehicles, pedestrians, etc., that are in front of vehicle 1.
  • the sensing results in sensing area 102B are used, for example, for collision prevention functions behind vehicle 1.
  • the sensing results in sensing area 102L and sensing area 102R are used, for example, to detect objects in blind spots to the sides of vehicle 1.
  • Sensing area 103F to sensing area 103B show examples of sensing areas by camera 51. Sensing area 103F covers a position farther in front of vehicle 1 than sensing area 102F. Sensing area 103B covers a position farther in the rear of vehicle 1 than sensing area 102B. Sensing area 103L covers the periphery of the left side of vehicle 1. Sensing area 103R covers the periphery of the right side of vehicle 1.
  • the sensing results in sensing area 103F can be used, for example, for recognizing traffic signals and traffic signs, lane departure prevention support systems, and automatic headlight control systems.
  • the sensing results in sensing area 103B can be used, for example, for parking assistance and surround view systems.
  • the sensing results in sensing area 103L and sensing area 103R can be used, for example, for surround view systems.
  • Sensing area 104 shows an example of the sensing area of LiDAR 53. Sensing area 104 covers a position farther in front of vehicle 1 than sensing area 103F. On the other hand, sensing area 104 has a narrower range in the left-right direction than sensing area 103F.
  • the sensing results in the sensing area 104 are used, for example, to detect objects such as surrounding vehicles.
  • Sensing area 105 shows an example of the sensing area of long-range radar 52. Sensing area 105 covers a position farther in front of vehicle 1 than sensing area 104. On the other hand, sensing area 105 has a narrower range in the left-right direction than sensing area 104.
  • the sensing results in the sensing area 105 are used, for example, for ACC (Adaptive Cruise Control), emergency braking, collision avoidance, etc.
  • ACC Adaptive Cruise Control
  • emergency braking braking
  • collision avoidance etc.
  • the sensing areas of the cameras 51, radar 52, LiDAR 53, and ultrasonic sensors 54 included in the external recognition sensor 25 may have various configurations other than those shown in FIG. 2. Specifically, the ultrasonic sensor 54 may also sense the sides of the vehicle 1, and the LiDAR 53 may sense the rear of the vehicle 1.
  • the installation positions of the sensors are not limited to the examples described above. The number of sensors may be one or more.
  • spatial noise control (hereinafter referred to as spatial NC) has been attracting attention as a technique for creating quiet spaces.
  • active control also called passive control
  • headphone NC Noise Cancelling
  • the first method senses the vibrations of the noise source and, based on the sensing results, plays an inverse phase sound from the speaker at the sound receiving point (control point), such as the listener's ear, to cancel out the noise.
  • the second method involves sensing the vibrations of the panel that emits (radiates) the noise, and then directly dampening the vibrations of the panel using an actuator (exciter) based on the sensing results.
  • the first method requires a series of signal processing steps to sense vibrations at the noise source and, based on the sensing results, play back on a speaker an anti-phase sound that cancels out the noise and is heard at the sound receiving point (control point).
  • this series of signal processing only needs to be completed before the noise from the noise source is transmitted to the sound receiving point, and is performed using a feedforward method because it is easy to secure the required time.
  • the second method requires sensing the vibration of the panel that emits the noise and directly dampening the panel with an actuator, and because it is difficult to secure the time required for processing, a feedback method is used.
  • the first method which senses the vibrations of a noise source and plays back from a speaker an anti-phase sound that cancels the noise at the sound receiving point, will be referred to simply as the feedforward method (FF method).
  • FF method feedforward method
  • the second method which senses the vibration of the panel that is emitting the noise and directly controls the vibration of the panel using an actuator (exciter), is also simply called the feedback method (FB method).
  • the FF-type NC device 33 is composed of sensors 151-1 to 151-n, an in-vehicle microphone 152, an NC processing unit 153, and a speaker 154.
  • Sensors 151-1 to 151-n are acceleration sensors that sense the vibrations of noise source SN and output sensor signals that are the sensing results to NC processing unit 153. Sensors 151-1 to 151-n may be substituted for vehicle sensor 27 as long as they function as acceleration sensors that sense the vibrations of noise source SN.
  • sensor 151 is assumed to be an acceleration sensor, but it may be something other than an acceleration sensor as long as it detects information about noise, that is, a physical quantity that can capture phenomena such as vibration that can be the source of noise. That is, sensor 151 may be, for example, a sensor that is generally called a vibration sensor and detects displacement, velocity, and acceleration as all physical quantities that make up vibration. Also, sensor 151 may be any of an acceleration sensor, a displacement sensor, and a velocity sensor. Therefore, the sensor signal may include velocity and displacement in addition to acceleration.
  • the in-vehicle microphone 152 is a microphone that picks up sound from within the vehicle cabin and is located, for example, on the ceiling or floor, away from the control point EP, which is the position of the user's ear, and outputs the picked-up sound to the NC processing unit 153 as an audio signal.
  • the NC processing unit 153 reads out a cancellation filter that has been generated in advance in association with the sensor signal, which is the sensing result of the vibration of the noise source SN from the sensors 151-1 to 151-n, and the audio signal from within the vehicle cabin supplied from the vehicle cabin microphone 152, and generates an anti-phase audio AS that cancels (negates) the noise at the control point EP through signal processing using the cancellation filter, and emits the audio from the speaker 154.
  • the NC processing unit 153 stores cancellation filters that have been generated in advance by the filter generation processing of the filter generation processing unit 181 ( Figure 5), and in the noise cancellation (NC) processing, it reads and uses the cancellation filters that correspond to the sensing results of the sensors 151-1 to 151-n and the sound picked up by the in-vehicle microphone 152, generates sound that is in the opposite phase to the picked up sound, and emits it from the speaker 154.
  • the NC processing unit 153 includes a sensor filter design unit 171, a sensor filter set storage unit 172, a cancellation filter set storage unit 173, a corresponding filter acquisition unit 174, and an NC signal calculation unit 175.
  • the filter generation processing unit 181 (FIG. 5) includes a sensor filter design unit 171, a sensor filter set storage unit 172, a cancellation filter set storage unit 173, a correspondence storage processing unit 192, and a cancellation filter design unit 191.
  • the filter generation processing unit 181 also receives audio at the control points picked up by a control point proximity microphone 182 that is installed at the control points only during the filter generation processing.
  • the sensor filter design unit 171 designs an NC filter as a sensor filter that generates an anti-phase sound to cancel the sound picked up by the in-vehicle microphone 152 based on the sensing results of the sensors 151-1 to 151-n and the sound picked up by the in-vehicle microphone 152, both during the filter generation process and the noise cancellation process.
  • the cancellation filter design unit 191 designs an NC filter as a cancellation filter that generates an anti-phase sound to cancel the sound picked up by the in-vehicle microphone 152, based on the sensing results of the sensors 151-1 to 151-n and the sound picked up by the control point proximity microphone 182.
  • the control point is the position of the ear heard by the user, and is the position where noise is to be cancelled during noise cancellation processing.
  • the control point proximity microphone 182 since the user is present during noise cancellation, it is often not possible to properly position the control point proximity microphone 182. For this reason, by placing the control point proximity microphone 182 at the control point only during the filter generation processing, sound is picked up at the position where noise is to be cancelled, and a cancellation filter is designed in advance based on the sound picked up at the control point.
  • the sensor filter design unit 171 and the cancellation filter design unit 191 both have the same basic configuration, and for example, as shown in Figure 6, are equipped with an LMS (Least Mean Square) algorithm processing unit 201.
  • LMS Least Mean Square
  • the LMS algorithm processing unit 201 designs (generates) a sensor filter 203 that generates, in real time, an anti-phase sound that cancels the sound picked up by the in-vehicle microphone 152, which is an error microphone, while driving with variously changing tire and road surface conditions.
  • the LMS algorithm processing unit 201 designs the sensor filter 203 using the LMS algorithm based on the secondary path transfer characteristic S between the cancellation speaker 202, which corresponds to the speaker 154, and the in-vehicle microphone 152 and the estimated or measured value S ⁇ of the secondary path transfer characteristic (S with a hat in the figure).
  • the LMS algorithm processing unit 201 designs a cancellation filter 203 that generates an antiphase sound that cancels the sound picked up by the control point proximity microphone 182, which is the error microphone, in real time when driving with variously changing tire and road conditions, based on the secondary path transfer characteristic S between the cancellation speaker 202 corresponding to the speaker 154 and the control point proximity microphone 182 and the estimated or measured value S ⁇ of the secondary path transfer characteristic.
  • the algorithm for designing the sensor filter and the cancellation filter may be an algorithm other than the LMS algorithm, such as the NLMS (Normalized LMS) algorithm, the RLS (Recursive Least Square) algorithm, and the conjugate gradient algorithm.
  • LMS Normalized LMS
  • RLS Recursive Least Square
  • the correspondence storage processing unit 192 ( Figure 5) associates the sensor filters and cancellation filters generated by the sensor filter design unit 171 and the cancellation filter design unit 191, respectively, with each other during the filter generation process, for example by assigning corresponding IDs, and stores them in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173, respectively.
  • the trigger for the association storage processing unit 192 to associate and store a set of sensor filters and cancellation filters is a timing when the rate of change of the filter coefficients is small and stable. More specifically, the trigger for storing a set of sensor filters and cancellation filters in association is the timing when it is detected that the rate of change between steps of the filter coefficients is less than a certain value, or the timing when it is detected that the rate of change over time of the RMS value of the error microphone signal has fallen below a predetermined value.
  • a log recording all sensing results of the control point proximity microphone 182, the in-vehicle microphone 152, and the sensors 151-1 to 151-n may be collected each time the vehicle is driven under different tire and road surface conditions, and the sensor filter and cancellation filter may be generated by offline operation using the log.
  • an ID may be assigned to each different tire and road surface condition, and the sensor filter and cancellation filter may be stored in association with each other as a set.
  • the corresponding filter acquisition unit 174 of the NC processing unit 153 acquires a sensor filter designed by the sensor filter design unit 171 based on the sensing results of the sensors 151-1 to 151-n and the sound picked up by the in-vehicle microphone 152 during noise cancellation processing
  • the corresponding filter acquisition unit 174 searches for a corresponding sensor filter from the sensor filter set stored in the sensor filter set storage unit 172.
  • the corresponding filter acquisition unit 174 searches for a cancellation filter assigned an ID corresponding to the searched sensor filter from the cancellation filter set storage unit 173, and outputs the cancellation filter to the NC signal calculation unit 175.
  • the method by which the corresponding filter acquisition unit 174 selects a cancellation filter with a corresponding ID from the generated sensor filters during noise cancellation processing may be a method of directly calculating the Euclidean distance between filter coefficients, or a method of converting to coefficients on the frequency axis using FFT or the like and then calculating the distance. If the frequencies that should be emphasized differ between the cancellation filter and the sensor filter, it is desirable to use a distance measure that maximizes the effect of noise cancellation, such as by weighting the distance calculation by frequency.
  • the NC signal calculation unit 175 executes NC (noise cancellation) signal calculation processing based on the cancellation filter supplied by the corresponding filter acquisition unit 174, generates anti-phase audio for canceling the audio at the control point, and emits the audio from the speaker 154.
  • the in-vehicle microphone 152 can be used to indirectly determine the optimal cancellation filter at the control point proximity position that tracks changes in the road surface and tire conditions.
  • step S31 the sensor filter design unit 171 and the cancellation filter design unit 191 of the filter generation processing unit 181 acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
  • step S32 the sensor filter design unit 171 acquires the sound as noise picked up by the in-vehicle microphone 152 as an input signal.
  • step S33 the sensor filter design unit 171 designs an NC filter for generating sound in the opposite phase to the sound as noise from the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152, and outputs it as a sensor filter.
  • step S34 the cancellation filter design unit 191 acquires the noise-based audio picked up by the control point proximity microphone 182 as an input signal.
  • step S35 the cancellation filter design unit 191 designs an NC filter that generates a sound in the opposite phase to the sound as noise from the sensor signals formed by the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the control point proximity microphone 182, and outputs it as a cancellation filter.
  • step S36 the correspondence storage processing unit 192 associates the sensor filter designed by the sensor filter design unit 171 with the cancellation filter designed by the cancellation filter design unit 191, and stores them in the sensor filter set memory unit 172 and the cancellation filter set memory unit 173, respectively.
  • the correspondence storage processing unit 192 assigns a common ID to each of the sensor filter designed by the sensor filter design unit 171 and the cancellation filter designed by the cancellation filter design unit 191, and stores them in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173, respectively, in correspondence with each other.
  • step S37 the sensor filter design unit 171 and the cancellation filter design unit 191 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S31, and the subsequent processes are repeated.
  • step S37 if an instruction to end is given, the process ends.
  • step S56 if termination is instructed, the process ends.
  • the cancellation filter for generating audio in phase with the control point by the filter generation process is stored in a state labeled with a sensor filter. Therefore, in the NC process, by reading and using a cancellation filter labeled with a sensor filter determined from the audio picked up by the in-vehicle microphone 152 and the sensor signal, it is possible to generate and emit audio in phase with the control point of the corresponding conditions, thereby achieving appropriate NC processing.
  • a cancellation filter set for canceling noise detected at the control point which has been generated in advance by the filter generation process, is used to generate anti-phase sound that cancels the noise at the control point, and this sound is emitted from the speaker 154, making it possible to reduce the noise at the control point.
  • the vehicle cabin microphone 152 receives a roaring noise that is unrelated to changes in the road surface or tire conditions, which may cause the accuracy of the filter design in the sensor filter design unit 171 to deteriorate.
  • an exterior microphone may be provided to pick up noise outside the vehicle cabin, and the noise components outside the vehicle cabin picked up by the exterior microphone may be removed from the noise detected by the interior microphone 152, thereby reducing the adverse effects that may be caused by noise such as explosions occurring outside the vehicle.
  • Figures 9 and 10 show example configurations of an NC unit 33 and a filter generation processing unit 181, respectively, in which a microphone is newly installed outside the vehicle cabin.
  • the NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10 differ from the NC device 33 in FIG. 4 and the filter generation processing unit 181 in FIG. 5 in that they each newly include an exterior microphone 211 and calculators 212, 212-1, and 212-2.
  • the calculators 212, 212-1, and 212-2 estimate components that are uncorrelated with the sensor signals (components of pure noise outside the vehicle cabin) that are the sensing results of the sensors 151-1 to 151-n and that are picked up by the exterior microphone 211.
  • the calculators 212, 212-1, and 212-2 subtract and remove the noise components outside the vehicle cabin that correspond to the noise outside the vehicle cabin supplied from the exterior microphone 211 from the noise inside the vehicle cabin supplied from the interior microphone 152, extract the noise components inside the vehicle cabin, and supply them to the sensor filter design unit 171 and the cancellation filter design unit 191.
  • This configuration makes it possible to reduce the adverse effects on the sensor filter design unit 171 and the cancellation filter design unit 191 of noise components outside the vehicle cabin that are transmitted into the vehicle cabin and picked up by the in-vehicle microphone 152.
  • NC processing and filter generation processing by the NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10 are the same as the NC processing and filter generation processing described with reference to the flowcharts in FIG. 7 and FIG. 8, except that the noise components outside the vehicle cabin are estimated from the signal of the noise outside the vehicle cabin picked up by the exterior microphone 211 and are subtracted and removed from the noise inside the vehicle cabin picked up by the interior microphone 152, so a description thereof will be omitted.
  • Second Modification of the First Embodiment>> The above has described an example in which the adverse effects of noise outside the vehicle cabin are reduced by providing an exterior microphone 211 and subtracting and removing the noise components outside the vehicle cabin from the noise inside the vehicle cabin picked up by the interior microphone 152.
  • Sensor filters and cancellation filters basically cancel noise by emitting audio that is in the opposite phase to the noise generated inside the vehicle cabin. Therefore, if a sudden loud sound outside the vehicle causes an inappropriate audio to be generated and emitted as an audio that is in the opposite phase to the noise inside the vehicle cabin, there is a risk that the audio that is emitted will be recognized as noise by the user.
  • the sensor filter design unit 171 and the cancellation filter design unit 191 may not design a filter.
  • the NC processing may be stopped or the immediately preceding cancellation filter may be used as is.
  • FIG. 11 shows an example of the configuration of the NC device 33 that stops NC processing or uses the previous cancellation filter as is when the noise outside the vehicle cabin exceeds a predetermined sound pressure level during NC processing.
  • FIG. 12 also shows an example of the configuration of a filter generation processing unit 181 that, when generating a filter, does not design filters in the sensor filter design unit 171 and the cancellation filter design unit 191 when the noise outside the vehicle cabin is equal to or greater than a predetermined sound pressure level, and stores the results in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173 of the NC device 33 in FIG. 11.
  • the NC device 33 in FIG. 11 and the filter generation processing unit 181 in FIG. 12 differ from the NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10 in that both are newly equipped with an external sound determination unit 221.
  • the exterior sound determination unit 221 calculates the sound pressure level outside the vehicle cabin by performing a sound pressure level calculation process for the noise outside the vehicle cabin, and when the sound pressure level of the noise outside the vehicle cabin is greater than a predetermined threshold value as a result of comparison with the predetermined threshold value, it stops the operation of the sensor filter design unit 171 and the cancellation filter design unit 191.
  • the external sound determination unit 221 calculates the average sound pressure level every second, for example, in a specific band or in the entire band, and in the threshold determination, determines whether the average sound pressure level is greater than a predetermined threshold. If it is greater than the predetermined threshold, the sensor filter design unit 171 and the cancellation filter design unit 191 stop designing the sensor filter and the cancellation filter.
  • the sensor filter and cancellation filter are designed in the sensor filter design unit 171 and the cancellation filter design unit 191, and the sensor filter and cancellation filter are stored in association with each other in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173, respectively.
  • the specified threshold value may be determined in advance by measuring, for example, the noise levels of jet engine sounds, train whistles, horns, sirens, and the passing of large trucks, which are likely to have adverse effects.
  • the comparison with the predetermined threshold value may be made using the cross-correlation between the signals input to the in-vehicle microphone 152 and the outside-vehicle microphone 211.
  • the effect of the noise outside the vehicle cabin on the in-vehicle microphone 152 becomes dominant, and the correlation between the input signals to the in-vehicle microphone 152 and the in-vehicle microphone 211 becomes large.
  • the vehicle exterior sound determination unit 221 therefore calculates the cross-correlation between the input signals to the vehicle interior microphone 152 and the vehicle exterior microphone 211, and when the cross-correlation is greater than a predetermined threshold (for example, there is a strong correlation of 0.7 or more), it may determine that the noise outside the vehicle is large and may adversely affect the filter design, and may stop the design of the sensor filter and the cancellation filter in the sensor filter design unit 171 and the cancellation filter design unit 191.
  • a predetermined threshold for example, there is a strong correlation of 0.7 or more
  • the vehicle exterior sound determination unit 221 in Figures 11 and 12 is configured to be able to acquire input signals from both the vehicle interior microphone 152 and the vehicle exterior microphone 211, and may use either the average sound pressure level of the noise outside the vehicle interior or the cross-correlation of the input signals from the vehicle interior microphone 152 and the vehicle exterior microphone 211 described above to compare the level of the noise outside the vehicle interior with a predetermined threshold value, or may use both to make a determination.
  • step S71 the sensor filter design unit 171 and the cancellation filter design unit 191 of the filter generation processing unit 181 acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
  • step S72 the calculator 212-1 estimates the noise components outside the vehicle cabin in the input signal of the voice as noise inside the vehicle cabin picked up by the interior microphone 152 based on the input signal of the voice as noise outside the vehicle cabin picked up by the exterior microphone 211, subtracts and corrects the noise components, and supplies the result to the sensor filter design unit 171.
  • step S73 the vehicle exterior sound determination unit 221 calculates an average sound pressure level based on the input signal of the audio signal representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211.
  • the vehicle exterior sound determination unit 221 calculates the cross-correlation between the input signal of the audio representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211 and the input signal of the audio representing noise inside the vehicle cabin picked up by the vehicle interior microphone 152.
  • step S74 the external sound determination unit 221 determines whether the average sound pressure level or cross-correlation is greater than a predetermined threshold and whether the noise outside the vehicle cabin is greater than a predetermined level.
  • step S74 If, in step S74, the average sound pressure level or cross-correlation is less than a predetermined threshold and the noise outside the vehicle cabin is deemed to be less than a predetermined level, processing proceeds to step S75.
  • step S75 the sensor filter design unit 171 designs an NC filter from the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the corrected sound picked up by the in-vehicle microphone 152 as noise, and outputs it as a sensor filter.
  • step S76 the calculator 212-2 estimates the noise components outside the vehicle cabin in the input signal of the sound as noise at the control point picked up by the control point proximity microphone 182 based on the input signal of the sound as noise outside the vehicle cabin picked up by the exterior microphone 211, subtracts and corrects the noise components, and supplies the result to the cancellation filter design unit 191.
  • step S77 the cancellation filter design unit 191 designs an NC filter from the sensor signals formed by the sensing results supplied from the sensors 151-1 to 151-n and the corrected input signal of the sound as noise picked up by the control point proximity microphone 182, and outputs it as a cancellation filter.
  • step S78 the correspondence storage processing unit 192 associates the sensor filter designed by the sensor filter design unit 171 with the cancellation filter designed by the cancellation filter design unit 191, and stores them in the sensor filter set memory unit 172 and the cancellation filter set memory unit 173, respectively.
  • step S74 the average sound pressure level or cross-correlation is greater than the predetermined threshold and the noise outside the vehicle cabin is deemed to be greater than the predetermined level
  • steps S75 to S78 the processing of steps S75 to S78 is skipped.
  • the noise outside the vehicle cabin is deemed to be greater than the predetermined level
  • the design of the sensor filter and cancellation filter is stopped because there is a possibility that the noise outside the vehicle cabin will adversely affect the sensor filter and cancellation filter to be designed.
  • step S79 the sensor filter design unit 171 and the cancellation filter design unit 191 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S71, and the subsequent processes are repeated.
  • step S79 if an instruction to end is given, the process ends.
  • a cancellation filter set for canceling noise detected at the control point is generated and stored in association with a sensor filter set for canceling noise detected by the in-vehicle microphone 152.
  • the level of noise outside the vehicle cabin is deemed to be greater than a predetermined level, the design of the sensor filter and cancellation filter is stopped, so that an inappropriate cancellation filter that would be adversely affected is not designed (generated).
  • step S91 the sensor filter design unit 171 and the NC signal calculation unit 175 of the NC processing unit 153 acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
  • step S92 the calculator 212 estimates the noise components outside the vehicle cabin in the input signal of the voice as noise inside the vehicle cabin picked up by the interior microphone 152 based on the input signal of the voice as noise outside the vehicle cabin picked up by the exterior microphone 211, subtracts and corrects the estimated noise components, and supplies the result to the sensor filter design unit 171.
  • step S93 the vehicle exterior sound determination unit 221 calculates an average sound pressure level based on the input signal of the audio signal representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211.
  • the vehicle exterior sound determination unit 221 calculates the cross-correlation between the input signal of the audio signal representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211 and the input signal of the audio signal representing noise inside the vehicle cabin picked up by the vehicle interior microphone 152.
  • step S94 the external sound determination unit 221 determines whether the average sound pressure level or cross-correlation is greater than a predetermined threshold and whether the noise outside the vehicle cabin is greater than a predetermined level.
  • step S94 If, in step S94, the average sound pressure level or cross-correlation is less than a predetermined threshold and the noise outside the vehicle cabin is deemed to be less than a predetermined level, processing proceeds to step S95.
  • step S95 the sensor filter design unit 171 designs an NC filter from the sensor signals formed by the sensing results supplied from the sensors 151-1 to 151-n and the input signal, which is the corrected audio signal as noise picked up by the in-vehicle microphone 152, and outputs it as a sensor filter.
  • step S96 the corresponding filter acquisition unit 174 acquires the sensor filter designed by the sensor filter design unit 171, searches for and acquires the corresponding stored cancellation filter from the cancellation filter set storage unit 173, and outputs it to the NC signal calculation unit 175.
  • step S97 the NC signal calculation unit 175 uses the cancellation filter provided by the corresponding filter acquisition unit 174 and the sensor signal formed from the sensing results provided by the sensors 151-1 to 151-n to generate a sound that is in antiphase with the noise estimated to be observed at the control point, and emits the sound from the speaker 154.
  • step S94 if the external sound determination unit 221 determines that the average sound pressure level or cross-correlation is greater than a predetermined threshold and that the noise outside the vehicle cabin is greater than a predetermined level, steps S95 to S97 are skipped. In other words, if the average sound pressure level or cross-correlation is greater than a predetermined threshold and that the noise outside the vehicle cabin is greater than a predetermined level, a corresponding cancellation filter has not been generated, so the NC processing is essentially stopped. Note that, although an example in which the NC processing is stopped is described here, the cancellation filter used immediately before may be used as is.
  • step S98 the sensor filter design unit 171 and the NC signal calculation unit 175 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S91 and the subsequent processes are repeated.
  • step S98 if termination is instructed, the process ends.
  • a cancellation filter set for canceling noise detected at the control point which has been generated in advance by the filter generation process, is used to generate anti-phase sound that cancels the noise at the control point, and this sound is emitted from the speaker 154, making it possible to reduce the noise at the control point.
  • the level of noise outside the vehicle cabin such as a siren, whistle, horn, or inside a tunnel, is deemed to be greater than a predetermined level, the NC process using the cancellation filter is stopped, so that a cancellation filter that has been adversely affected and generated with an inappropriate design is not used.
  • the following configuration may also be used. That is, the noise inside the vehicle cabin picked up by the in-vehicle microphone 152 when the filter is generated and the sensor signals resulting from sensing by the sensors 151-1 to 151-n are used as student data, and a cancellation filter that generates sound with an opposite phase at the control point and its ID are used as teacher data, and a trained model that infers the ID of the cancellation filter that generates sound with an opposite phase at the control point is generated by pre-training.
  • the pre-generated trained model is used to infer the ID of a cancellation filter that generates an anti-phase sound at the control point from the noise inside the vehicle cabin picked up by the vehicle cabin microphone 152 when the filter is generated and the sensor signals that are the sensing results of the sensors 151-1 to 151-n, and the cancellation filter that corresponds to the ID that is the inferred result is searched for and read out, and the anti-phase sound at the control point is generated and emitted, thereby achieving NC processing at the control point.
  • FIG. 15 shows an example configuration 153' of an NC processing unit that, during NC processing, infers the ID of a cancellation filter for generating antiphase sound at a control point from noise inside the vehicle cabin and sensor signals using a trained model, searches for and reads out a cancellation filter that corresponds to the inferred ID, and performs NC processing using the read cancellation filter.
  • FIG. 16 also shows an example of the configuration of a filter generation processing unit 181' that, during filter generation processing, designs a cancellation filter for generating antiphase sound at a control point from the noise at the control point and the sensor signal, stores the cancellation filter in association with an ID, and learns and stores a trained model that infers the ID of the cancellation filter from the noise in the vehicle cabin and the sensor signal.
  • a filter generation processing unit 181' that, during filter generation processing, designs a cancellation filter for generating antiphase sound at a control point from the noise at the control point and the sensor signal, stores the cancellation filter in association with an ID, and learns and stores a trained model that infers the ID of the cancellation filter from the noise in the vehicle cabin and the sensor signal.
  • the NC processing unit 153 ′ in FIG. 15 includes a DNN inference unit 251 , a learned model memory unit 252 , a filter search unit 253 , a cancellation filter set memory unit 254 , and an NC signal calculation unit 255 .
  • cancellation filter set storage unit 254 and the NC signal calculation unit 255 have the same configuration as the cancellation filter set storage unit 173 and the NC signal calculation unit 175, so their description will be omitted.
  • the DNN inference unit 251 reads out a learned model stored in the learned model storage unit 252, which consists of a DNN (Deep Neural Network) generated by machine learning performed in the DNN learning unit 273.
  • a DNN Deep Neural Network
  • the DNN inference unit 251 functions based on the learned model, and infers the ID of a cancellation filter for generating anti-phase sound at the control point based on the noise inside the vehicle cabin picked up by the in-vehicle microphone 152 and the sensor signals of the sensors 151-1 to 151-n, and outputs the inferred ID to the filter search unit 253.
  • the DNN inference unit 251 outputs the ID of the cancellation filter to the filter search unit 253 as an inference result to generate anti-phase audio at the control point from the noise and sensor signal inside the vehicle cabin.
  • the filter search unit 253 accesses the cancellation filter set storage unit 254, searches for a cancellation filter stored in association with the ID supplied by the DNN inference unit 251, and supplies the searched cancellation filter to the NC signal calculation unit 255.
  • the filter generation processing unit 181' in FIG. 16 includes a trained model storage unit 252, a cancellation filter set storage unit 254, a cancellation filter design unit 271, a filter recording control unit 272, and a DNN learning unit 273.
  • cancellation filter design unit 271 is similar to the cancellation filter design unit 191 in FIG. 12, so its description will be omitted.
  • the filter recording control unit 272 stores the cancellation filter supplied from the cancellation filter design unit 271 in the cancellation filter set storage unit 254. More specifically, when the filter recording control unit 272 detects that the rate of change between steps of the filter coefficient of the generated cancellation filter is less than a certain value, or when it detects that the rate of change over time of the RMS value of the audio signal of the noise picked up by the control point proximity microphone 182 has fallen below a predetermined value, the filter recording control unit 272 records the cancellation filter in association with the ID in the cancellation filter set storage unit 254, and further outputs the cancellation filter as teacher data for the DNN learning unit 273.
  • the DNN learning unit 273 uses the noise inside the vehicle cabin picked up by the in-vehicle microphone 152 and the sensor signal as student data, learns the cancellation filter that generates the antiphase sound at the control point and its ID as teacher data, generates a learned model by pre-learning that infers the ID of the cancellation filter that generates the antiphase sound at the control point, and stores it in the learned model storage unit 252.
  • step S111 the DNN learning unit 273 and the cancellation filter design unit 271 of the filter generation processing unit 181' acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
  • step S112 the cancellation filter design unit 271 acquires the noise-based audio picked up by the control point proximity microphone 182 as an input signal.
  • step S113 the cancellation filter design unit 271 designs an NC filter from the input signal, which is the sensor signal formed by the sensing results supplied from the sensors 151-1 to 151-n and the audio signal as noise picked up by the control point proximity microphone 182, and outputs it as a cancellation filter.
  • step S114 the filter recording control unit 272 associates the cancellation filter designed by the cancellation filter design unit 271 with an ID, stores the cancellation filter in the cancellation filter set storage unit 254, and outputs the cancellation filter ID to the DNN learning unit 273 as teacher data.
  • step S115 the DNN learning unit 273 acquires the noise-containing sound picked up by the in-vehicle microphone 152 as an input signal.
  • step S116 the DNN learning unit 273 uses the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152 as student data, and the cancellation filter and its ID supplied from the filter recording control unit 272 as teacher data, and machine-learns a learned model that infers the ID of the cancellation filter for generating anti-phase sound at the control point from the sensor signal and the input signal of the sound as noise picked up by the in-vehicle microphone 152, and stores the learned model in the learned model storage unit 252.
  • step S117 the DNN learning unit 273 and the cancellation filter design unit 271 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S111, and the subsequent processes are repeated.
  • step S117 if an instruction to end is given, the process ends.
  • a cancellation filter for canceling the noise detected at the control point is designed in association with the ID.
  • machine learning is performed using the designed cancellation filter and its ID as teacher data and the noise detected by the in-vehicle microphone 152 and the sensor signals of sensors 151-1 to 151-n as student data.
  • This machine learning generates a trained model that infers the ID of a cancellation filter for generating sound that is inverse phase to the noise at the control point, from the noise detected by the in-vehicle microphone 152 and the sensor signals of sensors 151-1 to 151-n.
  • step S131 the DNN inference unit 251 and the NC signal calculation unit 255 of the NC processing unit 153' acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
  • step S132 the DNN inference unit 251 acquires the noise-containing sound picked up by the in-vehicle microphone 152 as an input signal.
  • step S133 the DNN inference unit 251 reads out the learned model stored in the learned model storage unit 252, and infers a cancellation filter and its ID for generating anti-phase sound at the control point from the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the noise picked up by the in-vehicle microphone 152, and outputs the ID of the cancellation filter that is the inferred result to the filter search unit 253.
  • step S134 the filter search unit 253 acquires the ID supplied by the DNN inference unit 251, searches the cancellation filter set storage unit 254 for a cancellation filter stored in association with the acquired ID, and outputs the searched cancellation filter to the NC signal calculation unit 255.
  • step S135 the NC signal calculation unit 255 uses the cancellation filter provided by the filter search unit 253 and the sensor signals formed from the sensing results provided by the sensors 151-1 to 151-n to generate sound that is in antiphase with the noise estimated to be observed at the control point, and emits the sound from the speaker 154.
  • step S136 the DNN inference unit 251 and the NC signal calculation unit 255 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S111, and the subsequent processes are repeated.
  • step S136 if an instruction to end is given, the process ends.
  • the ID of the cancellation filter is inferred from the noise inside the vehicle cabin and the sensor signal, and a cancellation filter registered in association with the inferred cancellation filter ID is used to generate an anti-phase sound that cancels the noise at the control point. This sound is then emitted from speaker 154, making it possible to reduce the noise at the control point.
  • the DNN inference unit 251 and the filter search unit 253 enclosed by the dotted line in FIG. 15 can be said to realize the function of providing the NC signal calculation unit 175 with a cancellation filter at the control point based on the sensor signals of the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152.
  • the cancellation filter itself may be inferred based on the noise in the vehicle cabin and the sensor signal, and an anti-phase sound may be generated by the inferred cancellation filter and emitted to achieve NC processing.
  • the cancellation filter itself is used as training data in the machine learning during the filter generation process, and a trained model is generated that infers the cancellation filter itself based on the noise in the vehicle cabin and the sensor signal.
  • an exterior microphone 211 may be provided to pick up noise outside the vehicle cabin and remove the noise components outside the vehicle cabin from the noise inside the vehicle cabin.
  • sensor signals based on the sensing results of on-board sensors including the external recognition sensor 25, the in-vehicle sensor 26, and the vehicle sensor 27 in the vehicle control system 11 may be used.
  • FIG. 19 shows an example of the configuration of the NC device 33 in which, during NC processing, the cancellation filter itself is inferred based on the noise picked up by the in-vehicle microphone 152 and the sensor signals that are the sensing results of the sensors 151-1 to 151-n, and the inferred cancellation filter generates and emits sound of an antiphase, thereby realizing NC processing.
  • FIG. 20 shows an example configuration of a filter generation processing unit 181' in which the cancellation filter itself is used as training data in machine learning during the filter generation process, and a trained model is generated that infers the cancellation filter itself based on the noise in the vehicle cabin and the sensor signal.
  • the NC device 33 in FIG. 19 differs from the NC device 33 in FIG. 15 in that the filter search unit 253 and the cancellation filter set storage unit 254 are deleted, and a DNN inference unit 251' is provided instead of the DNN inference unit 251.
  • the DNN inference unit 251' in FIG. 19 infers the cancellation filter by using the noise signal inside the vehicle cabin from the vehicle interior microphone 152 and the sensor signals of the sensors 151-1 to 151-n, as well as the noise outside the vehicle cabin from the vehicle exterior microphone 211 and the sensor signal consisting of the sensing result of the vehicle-mounted sensor 291. This makes it possible to improve the inference accuracy of the cancellation filter.
  • the filter generation processing unit 181' in FIG. 20 differs from the filter generation processing unit 181' in FIG. 16 in that the filter recording control unit 272 and the cancellation filter set storage unit 254 are deleted, and a cancellation filter design unit 271' and a DNN learning unit 273' are provided instead of the cancellation filter design unit 271 and the DNN learning unit 273, and further, the vehicle exterior sound determination unit 221 described with reference to FIG. 12 is provided.
  • the DNN learning unit 273' learns a learned model that infers the cancellation filter itself, and therefore uses the cancellation filter supplied by the cancellation filter design unit 271' as is as training data, so the filter search unit 253 and cancellation filter set storage unit 254 are unnecessary and have been deleted.
  • the DNN learning unit 273' in FIG. 20 learns a learning model that infers a cancellation filter using the noise outside the vehicle cabin from the exterior microphone 211, the noise at the control point from the control point proximity microphone 182, and the sensor signal consisting of the sensing result of the on-board sensor 291, in addition to the noise signal inside the vehicle cabin from the interior microphone 152 and the sensor signals of the sensors 151-1 to 151-n.
  • This makes it possible to improve the inference accuracy of the cancellation filter using the learned model.
  • learning information such as road conditions and tire pressure in addition to the above-mentioned sensor signals and sounds related to noise, it becomes possible to infer a cancellation filter that has a higher noise reduction effect.
  • the on-board sensor 291 may treat a series of information related to the driving environment, such as road surface images (road surface conditions) captured by the camera 51 of the external recognition sensor 25 described above, weather conditions, date and time information such as day or night, and tire air pressure detected by the vehicle sensor 27, as information related to noise and use it to learn a learning model that infers a cancellation filter.
  • road surface images road surface conditions
  • weather conditions weather conditions
  • date and time information such as day or night
  • tire air pressure detected by the vehicle sensor 27 as information related to noise and use it to learn a learning model that infers a cancellation filter.
  • the cancellation filter design unit 191 when the noise outside the vehicle cabin is greater than a predetermined level as determined by the vehicle exterior sound determination unit 221, it becomes difficult for the cancellation filter design unit 191 to design an appropriate cancellation filter, so the cancellation filter design unit 271' in FIG. 20 stops designing. At this time, the DNN learning unit 273 stops learning because a cancellation filter is not supplied as training data. In this way, when generating a learning model that infers the cancellation filter itself, it is possible to learn by excluding inappropriate training data, thereby improving the inference accuracy of the cancellation filter.
  • the filter generation process by the filter generation processing unit 181' in FIG. 20 is basically the same as the filter generation process described with reference to the flowchart in FIG. 17, except that in addition to the noise signal from the in-vehicle microphone 152 and the sensor signals from the sensors 151-1 to 151-n, the signal from the exterior microphone 211 and the sensor signal from the in-vehicle sensor 291 are added as student data, and the teacher data becomes the cancellation filter itself, so a description of this process will be omitted.
  • the DNN inference unit 251' surrounded by a dotted line can be said to independently realize the function of providing a cancellation filter at the control point to the NC signal calculation unit 175 based on the sensor signals of the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152.
  • the signal from the exterior microphone 211 and the sensor signal from the in-vehicle sensor 291 are added, the determination result from the exterior sound determination unit 221 is supplied to the cancellation filter design unit 271', and the cancellation filter itself is inferred.
  • the basic processing is the same as the NC processing described with reference to the flowchart in FIG. 18, so a description thereof will be omitted.
  • the NC unit 33 in FIG. 15 and FIG. 19 will be mounted as the NC unit 33 of the vehicle control system 11 in a vehicle 1, such as a commercially available passenger car.
  • NC devices 33 are released on the market with trained models and cancellation filter sets installed, over time the conditions at the time of learning will change due to aging of the tires and changes in the road surface, and the trained models and cancellation filter sets originally installed may gradually become unable to provide sufficient noise reduction effects.
  • a separate filter generation process may be performed by another filter generation processing unit 181' under new conditions of tires and road surfaces that were not learned, to generate a learned model and cancellation filter set that conform to the new conditions (based on the sound picked up by the in-vehicle microphone 152 under the new conditions, the sound picked up by the control point microphone 182, and the sensor signal of the sensor 151, or based on the relationship therewith).
  • the feedback type NC device 33 is composed of sensors 311-1 to 311-8, actuators 312-1 to 312-8, and an NC processing unit 313.
  • Figure 21 is a side cross-sectional view of a vehicle 1 provided with two pairs of sensors 311 and actuators 312, and
  • Figure 22 is a front view of the front window (glass) FW of the vehicle 1 as viewed from the front of the vehicle 1.
  • Sensors 311-1 to 311-8 and actuators 312-1 to 312-8 are attached to the edge of the windshield FW with adhesive or the like so as not to obstruct the view of the driver/user.
  • Sensors 311-1 to 311-8 are acceleration sensors that detect vibrations of the front window FW at positions near the corresponding positions, and output sensor signals representing the sensing results to the NC processing unit 313.
  • Actuators 312-1 to 312-8 are attached to positions corresponding to sensors 311-1 to 311-8, respectively, and are controlled by the NC processing unit 313 to vibrate the corresponding front window FW.
  • the NC processing unit 313 When the NC processing unit 313 receives a sensor signal consisting of acceleration information corresponding to vibrations in the front windshield FW supplied from the sensors 311-1 to 311-8, it controls the actuators 312-1 to 312-8 in the corresponding positions to vibrate the front windshield FW in the corresponding locations so as to cancel out the vibrations detected by the sensors 311-1 to 311-8.
  • the feedback type NC device 33 detects vibrations of objects that generate noise, such as panels like the front window FW, and applies a specified NC filter process to the vibration detection results, thereby reducing noise by suppressing the vibration of the object by applying an excitation of the opposite phase to the detected vibration.
  • the feedback NC device 33 can reduce noise even when the vibration source is unknown by forcibly suppressing the vibration of objects such as panels that are already generating noise by using actuators, etc.
  • ⁇ Example of actuator configuration> 23 is a side cross-sectional view of the actuator 312 attached to the front window FW.
  • the sensor 311 on the right side of the figure is paired with the actuator 312.
  • the actuator 312 is composed of an actuator base 321, a voice coil case 322, a voice coil 323, a damper 324, and a voice coil bobbin 325.
  • the actuator base 321 supports the entire actuator 312, and its bottom is attached to the front window FW with adhesive or the like.
  • the voice coil case 322 is a case that covers the entire outer periphery of the voice coil 323 and is integral with the voice coil 323.
  • the voice coil 323 is electrically connected to the NC processing unit 313 by electrical wiring (not shown), and is excited by a drive signal applied from the NC processing unit 313, vibrating in the direction of the arrow in the figure at a frequency according to the frequency of the drive signal, causing the voice coil case 322, which is integral with the voice coil 323, to vibrate in the direction of the arrow in the figure.
  • the damper 324 is a concentric bellows that connects, with a predetermined tension, the outer circumferential side of the cylindrical bobbin 325 with an opening in the vertical direction in the figure, and the inner circumferential side of the voice coil case 322.
  • the damper 324 fixes the voice coil case 322 in a stationary position where the damper 324 is maintained in a substantially horizontal direction, as shown in FIG. 23, when no drive signal is supplied to the voice coil 323.
  • the bellows-shaped damper 324 expands and contracts to limit the range of motion of the voice coil case 322, which vibrates in the vertical direction.
  • the bobbin 325 is cylindrical and functions as the central axis of the actuator 312.
  • the axis 322a of the voice coil case 322 is inserted into the opening at the top in the figure in a state in which it can slide up and down in the figure.
  • the protrusion 321a of the actuator base 321 is inserted into the opening at the bottom of the bobbin 325 in a fixed state.
  • the voice coil 323 vibrates in the vertical direction as indicated by the arrow in the figure, and the shaft 322a of the voice coil case 322, which is configured as one piece with the voice coil 323, vibrates by sliding up and down within the bobbin 325 according to the tension of the damper 324.
  • the NC processing unit 313 performs filtering on the acceleration signal detected by the sensor 311 to achieve a predetermined NC, and adjusts and supplies the drive signal to be applied to the voice coil 323, causing it to vibrate so as to cancel out the vibration of the front window FW detected by the sensor 311.
  • the vibrations that generate noise in the front window FW are countered by the actuator 312, suppressing the vibrations of the front window FW and making it possible to reduce the noise caused by the vibrations.
  • the NC processing unit 313 includes an amplifier 331, an NC filter processing unit 332, and an amplifier 333.
  • the amplifier 331 amplifies the detected acceleration signal supplied by the sensor 311 to a predetermined level and outputs it to the NC filter processing unit 332.
  • the NC filter processing unit 332 applies a predetermined NC filter process to the sensor signal corresponding to the acceleration detected by the sensor 311, which is supplied via the amplifier 331, to generate a drive signal that vibrates at a phase and frequency that cancels out the vibration of the front window FW, and the signal is amplified at a predetermined rate via the amplifier 333 and applied to the actuator 312 (its voice coil 323).
  • a drive signal corresponding to the acceleration detected on the front window FW is applied to the voice coil 323 of the actuator 312 so as to cancel out the vibrations, and the actuator 312 vibrates the front window FW in the vertical direction so as to cancel out the vibrations.
  • the actuator 312 vibrates, the front window FW is vibrated with a force corresponding to the weight of the actuator 312, and the vibration of the front window FW detected by the sensor 311 is cancelled out, the vibration of the front window FW is suppressed, and the noise caused by the vibration of the front window FW is reduced.
  • step S201 the NC filter processing unit 332 of the NC processing unit 313 acquires the sensor signal of the acceleration detected by the sensor 311 via the amplifier 331.
  • step S202 the NC processing unit 313 performs NC filtering on the sensor signal provided by the sensor 311 to set a drive signal that vibrates the voice coil 323.
  • step S203 the NC processing unit 313 applies the drive signal set by the filter processing, which vibrates the voice coil 323, to the actuator 312 via the amplifier 333, causing the actuator 312 to vibrate so as to cancel out the vibration of the front window FW.
  • step S204 it is determined whether or not an instruction to end has been given. If an instruction to end has not been given, the process returns to step S201, and the subsequent steps are repeated. Then, if an instruction to end has been given in step S204, the process ends.
  • the actuator 312 vibrates, which causes the front window FW to vibrate, suppressing the vibration and reducing noise caused by the vibration of the front window FW.
  • FIG. 26 is a side cross-sectional view of an actuator that integrates an actuator and a sensor.
  • the actuator 312A in FIG. 26 is composed of an actuator base 361, a voice coil case 362, a voice coil 363, a damper 364, a voice coil bobbin 365, and a sensor 311'.
  • the actuator base 361, the voice coil case 362, the voice coil 363, the damper 364, and the voice coil bobbin 365 correspond to the actuator base 321, the voice coil case 322, the voice coil 323, the damper 324, and the voice coil bobbin 325 in FIG. 23, respectively.
  • the sensor 311' has the same configuration as the sensor 311 in FIG. 23.
  • the actuator 312A is structured to include the sensor 311', so it is possible to attach both at the same time, halving the labor required for installation.
  • NC processing by actuator 312A in FIG. 26 is omitted because the processing by sensor 311' is similar to the processing by sensor 311, and the processing by actuator 312A is similar to the processing by actuator 312. Note that the same replacement is used in the subsequent processing, so the explanation is also omitted.
  • Second Modification of Second Embodiment>> In the above, we have described a configuration in which the actuator and sensor are integrated. However, when the actuator and sensor are integrated, for example, if a malfunction occurs in voice coil 363, which is the driving part, and it becomes necessary to replace it, it will also be necessary to replace sensor 311', and since even sensor 311' that is not malfunctioning will have to be replaced, the repair costs will be high.
  • the voice coil case 362 and the actuator base 361 may be configured to be detachable, so that if a malfunction occurs in the voice coil 363, only the voice coil case 362 can be replaced.
  • FIG. 27 is a side cross-sectional view of actuator 312B, in which voice coil case 362 and actuator base 361 can be detached. Note that in actuator 312B in FIG. 26, components having the same functions as actuator 312A in FIG. 25 are given the same reference numerals, and their description will be omitted.
  • the actuator 312B in FIG. 27 differs from the actuator 312A in FIG. 26 in that it can be disassembled into a drive unit 312Ba consisting of a voice coil case 362 and a base unit 312Bb consisting of an actuator base 361.
  • a bobbin 373 is provided instead of the bobbin 365.
  • a hole is formed in the shaft 362a of the voice coil case 362, as shown by the arrow, into which the bolt 372 can be inserted, and the bolt passes through the hole to reach the bobbin 373.
  • a base plate 371 is provided at the bottom of the bobbin 373, with a hole 371a provided therein into which the threaded portion 372a of the bolt 372 can be inserted from the top in the figure.
  • the actuator base 361B is provided with a convex portion 361Ba at the center of the top, with a screw hole 361Bb into which the threaded portion 372a of the bolt 372 can be screwed from the top in the figure.
  • the bolt 372 passes through the hole 371a of the base plate 371 provided at the bottom of the bobbin 373 and is screwed into the screw hole 361Bb provided at the top of the convex portion 361a' of the actuator base 361, joining the base plate 371 and the top of the convex portion 361a', and joining and integrating the drive portion 312Ba and the base portion 312Bb consisting of the actuator base 361 to form the actuator 312B.
  • the bolt 372 passes through the hole 371a of the base plate 371 and is screwed into the screw hole 361Bb provided at the top of the protrusion 361Ba of the actuator base 361B, and the drive unit 312Ba and base unit 312Bb are joined together, allowing the work to proceed in this integrated state.
  • the screw portion 372a of the bolt 372 is removed from the screw hole 361Bb provided at the top of the convex portion 361Ba, and only the drive portion 312Ba is removed from the base portion 312Bb and replaced.
  • Figure 30 shows a side cross-sectional view of actuator 312C in which a sensor is provided on voice coil case 362 to detect acceleration related to vibration of voice coil case 362.
  • Actuator 312C in FIG. 30 differs from actuator 312B in FIG. 27 in that a sensor 311'' is newly provided on voice coil case 362 to detect acceleration related to vibration of voice coil case 362.
  • the sensor 311'' detects the acceleration related to the vibration of the voice coil case 362 and outputs it to the NC processing unit 313.
  • the acceleration related to the vibration of the voice coil case 362 is detected, making it possible to recognize the state of vibration applied to the front windshield FW and set the drive signal for the actuator 312C based on this, making it possible to more appropriately suppress the vibration of the front windshield FW and more appropriately reduce the noise caused by the vibration.
  • abnormal vibrations in the voice coil case 362 can be detected based on the acceleration related to the vibration of the voice coil case 362, it becomes possible to detect abnormalities occurring in the voice coil 363.
  • Figure 31 shows a side cross-sectional view of actuator 312D, which has wiring connection sections formed on part of base plate 371 and the top of protrusion 361a', allowing wiring to be connected simply by joining drive section 312Da and base section 312Db.
  • Actuator 312D in FIG. 31 differs from actuator 312B in FIG. 27 in that wiring connection portion 382a is formed in part of the bottom of base plate 371 in the figure, and wiring connection portion 382b is formed in part of the top of protrusion 361Da.
  • the wiring connection parts 382a, 382b are formed in positions facing each other when the drive part 312Da and the base part 312Db are joined by the bolt 372.
  • the wiring connection portion 382b is also connected to a connector 381 formed on the actuator base 361.
  • the NC processing portion 313 can supply a drive signal to the voice coil 363.
  • the electrical connection between the voice coil 363 and the NC processing unit 313 can be completed simply by joining the drive unit 312Da and the base unit 312Db with the bolts 372, making it possible to reduce the labor required for wiring connections when replacing the drive unit 312Da.
  • actuator 312E This is a side cross-sectional view of actuator 312E, which has a screw thread formed on the outer periphery of protrusion 361a of actuator base 361, allowing connection with a connector.
  • the actuator 312E in FIG. 32 differs from the actuator 312B in FIG. 27 in that a screw thread is formed on the outer periphery of the protrusion 361Ea of the actuator base 361E, and the actuator is connected by a cylindrical connector 391 that has a screw thread formed on the inside.
  • the connector 391 is cylindrical and has approximately the same diameter as the convex portion 361Ea and the lower portion 371Eb of the base plate 371E, with a screw thread 391a formed on its inner circumference, and a lid 391b with an opening only at the upper portion in the figure.
  • the opening of the lid 391b has a smaller diameter than the convex portion 361Ea and the lower portion 371Eb of the base plate 371E, and is approximately the same diameter as the bobbin 373, through which the bobbin 373 is inserted.
  • the upper portion 371Ea of the base plate 371E has the same diameter as the bobbin 373, and the lower portion 371Eb is larger in diameter than the bobbin 373 and approximately the same diameter as the convex portion 361Ea, and is connected to the lower end of the bobbin 373 in the figure with an adhesive or the like.
  • the screw threads 391a of the connector 391 and the screw threads formed on the outer periphery of the protrusion 361Ea are screwed together, so that the base plate 371E and the top of the protrusion 361Ea are connected in abutting contact with each other.
  • the screwed connection between the connector 391 and the protrusion 361Ea is released, so that the drive unit 312Ea and the base unit 312Eb can be separated.
  • This configuration makes it possible to attach and detach the drive unit 312Ea and the base unit 312Eb.
  • Figure 33 is a side cross-sectional view of actuator 312F, in which bolt 372 and base plate 371 are integrated.
  • a bolt portion 371Fa is formed on the base plate 371F at the downward direction in the figure, and by fitting into a hole portion 361Fb formed at the top of the protrusion 361Fa of the actuator base 361F, the base plate 371D and the protrusion 361Da are joined, making it possible to connect the drive portion 312Fa and the base portion 312Fb.
  • Figure 34 is a side cross-sectional view of an actuator 312G that has a connector that fits into the protrusion 361Ga of the actuator base 361G in a cap-like shape, and that can connect the drive unit 312Ga and base unit 312Gb by screwing the connector and the protrusion 361Ga together.
  • the drive unit 312Ga and base unit 312Gb are connected by a connector 401 that fits and fixes the protrusion 361Ga of the actuator base 361G in a cap-like shape.
  • the connector 401 has an opening in the upper portion 401a that is smaller in diameter than the protrusion 361Ga and the lower portion 371Gb of the base plate 371G, and has approximately the same diameter as the bobbin 373.
  • the upper portion 371Ga of the base plate 371G has a diameter slightly smaller than that of the bobbin 373, and the lower portion 371Gb has a diameter larger than that of the bobbin 373 and is approximately the same diameter as the protruding portion 361Ga.
  • the connector 401 is configured like a cap that fits over the entire head of the convex portion 361Ga when the base plate 371G is placed on the top of the convex portion 361Ga.
  • the convex portion 361Ga has screw holes 361Gb-1 and 361Gb-2 formed on the side, and screws 402-1 and 402-2 are inserted through the side of the connector 401, which is cap-shaped and covers the top of the convex portion 361Ga, and screwed into the screw holes 361Gb-1 and 361Gb-2 of the convex portion 361Ga, so that the connector 401 and the convex portion 361Ga are fixed in a connected state.
  • the connector 401 is connected and fixed to the top of the protrusion 361Ga of the actuator base 361G, making it possible to connect the drive unit 312Ga to the base unit 312Gb.
  • actuators 312, 312A to 312G described in the second embodiment have different structures, but the operation and processing in the NC processing described with reference to the flowchart in FIG. 25, for example, are all the same. Therefore, in the following, when describing the processing, actuator 312 will be used as a representative explanation as necessary, but the actuator will function in the same way even if actuator 312 is replaced with any of actuators 312A to 312G.
  • the vibration force for each frequency has a larger compliance at high temperatures and a smaller compliance at low temperatures, as shown in FIG. 35.
  • waveform Fh shows the compliance characteristics of damper 364 at high temperatures
  • waveform Fc shows the compliance characteristics of damper 364 at low temperatures.
  • NC filter processing is tailored to the compliance characteristics at a specific ambient temperature, so if the ambient temperature changes and the actuator characteristics change, the original NC performance may not be achieved.
  • the ambient temperature of the actuator 312 may be estimated using an exterior temperature sensor and an interior temperature sensor that are generally mounted on the vehicle 1, and the NC filter may be switched depending on the estimated ambient temperature of the actuator 312. In addition, if the ambient temperature of the actuator 312 exceeds a range in which it can be safely used, the output of the amplifier to the actuator 312 may be muted to protect the actuator 312.
  • FIG. 36 shows an example of the configuration of an NC processing unit 313' that switches the NC filter depending on the ambient temperature of the actuator 312 and mutes the amplifier output to the actuator 312 if the ambient temperature of the actuator 312 exceeds the range in which it can be safely used.
  • the NC processing unit 313' in FIG. 36 includes an amplifier 331, NC filter processing units 332c and 332h, an amplifier 333, switches 421 and 422, and an operation control unit 423.
  • amplifier 331, NC filter processing units 332c and 332h, and amplifier 333 are basically configured to have the same functions as amplifier 331, NC filter processing unit 332, and amplifier 333 in FIG. 24, respectively.
  • the NC filter processing unit 332 performs filtering according to the compliance characteristics of the damper 364 when the ambient temperature is a predetermined value
  • the NC filter processing unit 332c performs filtering for low temperatures according to the compliance characteristics of the damper 364 when the ambient temperature is lower than a predetermined threshold
  • the NC filter processing unit 332h performs filtering for high temperatures according to the compliance characteristics of the damper 364 when the ambient temperature is higher than a predetermined threshold.
  • the operation control unit 423 estimates the ambient temperature of the actuator 312 from the temperature outside the vehicle cabin and the temperature inside the vehicle cabin, which are supplied by an outside vehicle cabin temperature sensor 431 and an inside vehicle cabin temperature sensor 432, respectively, which are mounted on a typical vehicle 1.
  • the operation control unit 423 connects the switch 421 to the terminal 421c so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332c, and switches to an operation mode in which NC filter processing is performed with characteristics lower than the predetermined temperature.
  • the operation control unit 423 connects the switch 421 to the terminal 421h so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332h, and switches to an operation mode in which NC filter processing is performed with characteristics higher than the predetermined temperature.
  • the operation control unit 423 connects the switch 422 to the terminal 422b, and opens the output from the amplifier 333 to ground, switching to an operation mode in which the actuator 312 is essentially muted.
  • the operation control unit 423 connects the switch 422 to the terminal 422a, outputs the output from the amplifier 333 to the actuator 312, and switches to a mode in which normal NC processing is performed.
  • the NC processing unit 313' in FIG. 36 appropriately switches between the NC filter processing units 332c and 332h in accordance with the temperature characteristics based on the ambient temperature of the actuator 312, making it possible to achieve appropriate NC processing. Furthermore, if the ambient temperature of the actuator 312 is not within a range in which the actuator 312 can safely operate, the output from the amplifier 333 is stopped, essentially muting the output, thereby protecting the actuator 312.
  • step S231 the operation control unit 423 estimates the ambient temperature of the actuator 312 from the temperature outside the vehicle cabin and the temperature inside the vehicle cabin, which are supplied by the outside vehicle cabin temperature sensor 431 and the inside vehicle cabin temperature sensor 432, respectively.
  • step S232 the operation control unit 423 determines whether the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can operate safely.
  • step S232 If it is determined in step S232 that the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can operate safely, processing proceeds to step S233.
  • step S233 the operation control unit 423 sets the operation mode to ON, connects the switch 422 to the terminal 422a, and makes it possible for the drive signal output from the amplifier 333 to be supplied to the actuator 312.
  • step S234 the operation control unit 423 determines whether the estimated ambient temperature of the actuator 312 is equal to or lower than the upper limit temperature that can be used with the low-temperature NC filter.
  • step S234 If it is determined in step S234 that the estimated ambient temperature of the actuator 312 is equal to or lower than the upper limit temperature that can be used with the low-temperature NC filter, processing proceeds to step S235.
  • step S235 the operation control unit 423 sets the operation mode to the low temperature NC filter and connects the switch 421 to the terminal 421c so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332c.
  • step S234 if it is determined in step S234 that the estimated ambient temperature of the actuator 312 is not equal to or lower than the upper limit temperature that can be used with the low-temperature NC filter, processing proceeds to step S236.
  • step S236 the operation control unit 423 sets the operation mode to a high-temperature NC filter mode and connects the switch 421 to the terminal 421h so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332h.
  • step S232 If it is determined in step S232 that the estimated ambient temperature of the actuator 312 is not within the temperature range in which the actuator 312 can safely operate, the process proceeds to step S237.
  • step S237 the operation control unit 423 sets the operation mode to OFF, connects the switch 422 to terminal 422b, and sets the output from the amplifier 333 to not be output to the actuator 312, essentially muting the operation mode.
  • step S238 the operation control unit 423 determines whether or not an instruction to end the operation has been given. If an instruction to end the operation has not been given, the process returns to step S231, and the subsequent processes are repeated.
  • step S2308 if an instruction to end is given, the process ends.
  • the above process allows the NC filter processing units 332c and 332h to be appropriately switched and used according to the temperature characteristics based on the ambient temperature of the actuator 312, making it possible to achieve appropriate NC processing. Furthermore, if the ambient temperature of the actuator 312 exceeds the range in which the actuator 312 can safely operate, the output of the drive signal from the amplifier 333 is stopped, essentially muting the actuator 312, making it possible to protect the actuator 312.
  • NC processing thereafter is substantially the same as that described with reference to the flowchart in FIG. 25, based on the settings made in the operation mode control processing described with reference to the flowchart in FIG. 37.
  • the filter processing is switched between low and high temperature based on the ambient temperature of the actuator 312, and when it is outside the range in which it can operate safely, the output to the actuator 312 is stopped for protection.
  • the lower limit temperature of the low-temperature NC filter is 0 degrees and the upper limit temperature is less than 20 degrees
  • the lower limit temperature of the high-temperature NC filter is 20 degrees or higher and the upper limit temperature is less than 40 degrees
  • the safe operating temperature range is up to 40 degrees
  • FIG. 38 shows an example configuration of an NC processing unit 313'' that estimates the ambient temperature using a sensor that is always provided in navigation devices installed in many vehicles 1, and can switch to NC filter processing that corresponds to a wider range of temperature characteristics based on the estimation result.
  • the NC processing unit 313'' includes an amplifier 331, NC filter processing units 332-1 to 332-n, an amplifier 333, a switching unit 421', a switch 422, an operation control unit 423', and a sun direction calculation unit 441.
  • the amplifier 331, the NC filter processing units 332-1 to 332-n, and the amplifier 333 have the same functions as the amplifier 331, the NC filter processing unit 332, and the amplifier 333 in FIG. 24, respectively.
  • NC filter processing units 332-1 to 332-n perform filter processing according to the compliance characteristics of the damper 364, which are set for each fine range of the ambient temperature of the actuator 312.
  • the switching unit 421' has a configuration corresponding to the switch 421 in FIG. 36, and is controlled by the operation control unit 423' to be connected to the NC filter processing unit 332 that corresponds to the estimated ambient temperature of the actuator 312.
  • the switch 422 has the same configuration as that in FIG. 36.
  • the sun direction calculation unit 441 obtains direction information from a compass 451, which is a sensor typically installed in navigation devices, obtains position information from a GPS 452, and obtains date and time information 453 based on the time information obtained by the GPS 452, thereby calculating the sun direction at the current position and outputting the result to the operation control unit 423'.
  • a compass 451 which is a sensor typically installed in navigation devices
  • the operation control unit 423' has the same basic functions as the operation control unit 423, but instead of temperature information from the exterior temperature sensor 431 and the interior temperature sensor 432, it acquires information on the direction of the sun supplied from the sun direction calculation unit 441.
  • the operation control unit 423 estimates the ambient temperature of the actuator 312 by estimating the irradiation conditions of direct sunlight based on the information on the direction of the sun supplied from the sun direction calculation unit 441.
  • the operation control unit 423' selects an NC filter processing unit 332 in a usable temperature range based on the estimated ambient temperature of the actuator 312, applies NC filter processing to the acceleration sensor signal from the amplifier 331, and generates a drive signal for driving the actuator 312, which is output via the amplifier 333.
  • step S251 the sun direction calculation unit 441 acquires direction information from the compass 451, acquires position information from the GPS 452, acquires date and time information 453 based on the time information acquired by the GPS 452, calculates the sun direction at the current position from this information, and outputs it to the operation control unit 423'.
  • step S252 the operation control unit 423' estimates the direct sunlight irradiation conditions based on the solar direction provided by the solar direction calculation unit 441, and estimates the ambient temperature of the actuator 312 from the estimation result.
  • step S253 the operation control unit 423' determines whether the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can operate safely.
  • step S253 If it is determined in step S253 that the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can safely operate, processing proceeds to step S254.
  • step S254 the operation control unit 423' sets the operation mode to ON, connects the switch 422 to the terminal 422a, and makes it possible for the drive signal output via the amplifier 333 to be output to the actuator 312.
  • step S255 the operation control unit 423' sets the NC filter processing mode by the NC filter processing unit 332 that corresponds to the estimated ambient temperature of the actuator 312, among the NC filter processing units 332-1 to 322-n, and supplies the sensor signal from the amplifier 331.
  • step S253 If it is determined in step S253 that the estimated ambient temperature of the actuator 312 is not within the temperature range in which the actuator 312 can safely operate, the process proceeds to step S256.
  • step S256 the operation control unit 423' sets the operation mode to OFF, connects the switch 422 to the terminal 422b, and sets the output from the amplifier 333 to be not output to the actuator 312, essentially muting the operation mode.
  • step S257 the operation control unit 423' determines whether or not an instruction to end the operation has been given. If an instruction to end the operation has not been given, the process returns to step S251, and the subsequent processes are repeated.
  • step S257 if an instruction to end is given, the process ends.
  • NC filter processing units 332-1 to 332-n perform NC filter processing with temperature characteristics corresponding to the estimated ambient temperature based on the ambient temperature of actuator 312, making it possible to realize appropriate NC processing. Furthermore, if the ambient temperature of actuator 312 exceeds the range in which actuator 312 can safely operate, output from amplifier 333 is stopped, essentially muting the output, making it possible to protect actuator 312.
  • Figure 40 shows an example configuration of an NC processing unit 313''' in which actuator 312 information is uploaded to the cloud in association with position information and various other information, and the NC filter processing unit 332 is switched based on that information.
  • the NC processing unit 313'' in FIG. 40 differs from the NC processing unit 313'' in FIG. 38 in that the sun direction calculation unit 441 has been deleted, and the operation control unit 423'' has been replaced with an operation control unit 423'', and a current sensor 462 has been provided between the switch 422 and the actuator.
  • the operation control unit 423'' has the same basic functions as the operation control unit 423', but rather than controlling the changeover unit 421' and the switch 422 based on the ambient temperature of the actuator 312, it controls them based on the signal from the sensor 311, position information, road conditions, time and date information, the vehicle's traveling speed, the NC filter coefficient, traffic information (traffic jams and occurrence of traffic accidents), road surface unevenness information from the LiDAR 461 (or camera), the drive signal for the actuator 312, and abnormality detection information for the actuator.
  • the operation control unit 423'' accesses the cloud server 472 via an information terminal 471 such as a smartphone using a short-range communication means such as Bluetooth (registered trademark).
  • a short-range communication means such as Bluetooth (registered trademark).
  • information on the NC filter processing unit 332 and NC filter coefficients that are optimal for reducing noise identified from information such as the sensor 311 signal, location information, road conditions, time and date information, vehicle travel speed, and traffic information (occurrence of traffic jams and traffic accidents) is registered. This is information on the NC filter processing unit 332 that is optimal for reducing identified noise based on information identifying noise uploaded from other vehicles 1 in association with location information.
  • the operation control unit 423'' may access the cloud server 472 via the information terminal 471, and select the most suitable information for the NC filter processing unit 332 based on conditions such as the signal from its own sensor 311, location information, road conditions, time and date information, the vehicle's traveling speed, and traffic information (occurrence of traffic jams and traffic accidents), and control and switch the switching unit 421' to use the corresponding NC filter processing unit 332.
  • the operation control unit 423'' may download the NC filter coefficients required to realize the optimal NC filter processing unit 332 from the cloud server 472 and update the NC filter coefficients in the NC filter processing units 332-1 to 322-n that it owns.
  • the operation control unit 423'' may also upload information about road surface irregularities obtained from the LiDAR 461 (or a camera) etc. in association with the location information.
  • LiDAR 461-1 may be provided in front of vehicle 481, and point cloud information of area ZF through which the vehicle is about to travel may be obtained to obtain unevenness information for area ZF.
  • LiDAR 461-2 may be provided behind vehicle 481 to obtain unevenness information for area ZR so that point cloud information for area ZR through which the vehicle will travel when backing up may be obtained.
  • the operation control unit 423'' may upload unevenness information for areas ZF, ZR, etc., together with position information, for example.
  • the operation control unit 423'' also compares the drive signal of the actuator 312 with the current value detected by the current sensor 462, and if they do not match, it can detect an abnormality in the actuator due to a broken wire or the like, and may also upload this actuator abnormality detection information.
  • the optimal NC filter processing unit 332 is registered based on this information in accordance with the anticipated noise level for each location, driving conditions, etc., and this enables the operation control unit 423'' in the vehicle 1 used by a general user to select the optimal NC filter processing unit 332 based on its own location information and driving conditions.
  • FIG. 42 shows an example of the configuration of an NC unit 33 realized for a vehicle 1 by combining a feedback-type NC unit 33B and a feedforward-type NC unit 33F.
  • the FB type NC device 33B is composed of a sensor 311, an actuator 312 (which may be any of 312A to 312F), and an FBNC processing unit 313.
  • the FBNC processing unit 313 has a configuration corresponding to the NC processing unit 313, but hereafter it will be referred to as the FBNC processing unit 313 to make it easier to recognize that it is part of the FB type NC device 33.
  • the FF type NC device 33F is composed of a sensor 151, an FFNC processing unit 153 (or 153'), and a speaker 154.
  • the FFNC processing unit 153 corresponds to the NC processing unit 153, but hereafter it will be referred to as the FFNC processing unit 153 to make it easier to recognize that it is the FF type NC device 33F.
  • the NC unit 33 for the vehicle 1 combines the FB type NC unit 33B and the FF type NC unit 33F, making it possible to appropriately reduce both noise that can only be reduced by the FB type NC unit 33B and noise that can only be reduced by the FF type NC unit 33F.
  • the FF type NC device 33F described above has one of the configurations related to the first embodiment described above
  • the FB type NC device 33B has one of the configurations related to the second embodiment described above.
  • the in-vehicle microphone 152 is not essential to the configuration of an FF type NC device, and it may be configured to realize feedback type NC processing only from the sensor signals of the other sensors 151.
  • the NC processing section 313 performs NC processing after the sudden sound is input to the sensor 311, so even if a protective function such as muting is provided, the processing may not be completed in time, and abnormal noise may occur.
  • a protective function such as muting
  • the processing may not be completed in time, and abnormal noise may occur.
  • the FB type NC device 33F alone, not only is it not possible to adequately reduce noise caused by a sudden sound, but there is also a risk of unpleasant abnormal noise being generated.
  • the FB type NC unit 33B does not have a mechanism for detecting the sudden sounds that cause abnormal noises in advance, making it difficult to take measures to prevent the occurrence of abnormal noises.
  • ⁇ Transmission of sudden sounds> 42 when a sudden sound occurs as a tire goes over a step, the part of the tire that comes into contact with the step becomes the vibration source SN of the sudden sound.
  • the vibration source SN is the tire, focusing on the vibration propagation path RB from the vibration source SN to the sensor 311 of the FB type NC device 33B and the vibration propagation path RF to the sensor 151 of the FF type NC device 33F, it is clear that the vibration propagation path RF is shorter than the vibration propagation path RB.
  • the sensor 151 of the FF type NC device 33F is installed near the tires, which are the vibration source SN of road noise. As with road noise, the vibration source SN of the input of sudden noise caused by bumps is also near the tires, so the vibration transmission path RF to the sensor 151 of the FF type NC device F is shorter than the vibration transmission path RB to the sensor 311 of the FB type NC device 33B.
  • the sudden sound transmitted from the vibration source is transmitted to the sensor 151 of the FF type NC unit 33F a predetermined time ⁇ T according to the difference in the vibration transmission path before the sensor 311 of the FB type NC unit 33B.
  • the upper part shows how the vibration of a sudden sound from the tire is transmitted to the FB sensor 311 and the FF sensor 151 via their respective vibration transmission paths.
  • the middle part shows the time that has elapsed since the sudden sound occurred in the sensor 151 (FF sensor) of the feedforward type NC device 33F and the waveform of the detection value.
  • the lower part shows the time that has elapsed since the sudden sound occurred in the sensor 151 (FB sensor) of the feedback type NC device 33B and the waveform of the detection value.
  • the timing at which the sudden sound is detected by sensor 151 is earlier than the timing at which the sudden sound is detected by sensor 311 (FB sensor) by a predetermined time ⁇ T that corresponds to the difference between the vibration propagation paths RF and RB.
  • the FB type NC device 33B uses the detection information from the sensor 151 (FF sensor), which can detect a sudden sound earlier than its own sensor 311, and mutes the output level to the actuator 312 within the predetermined time ⁇ T before it reaches the sensor 311 (FB sensor), making it possible to avoid the generation of abnormal noise.
  • FF sensor the sensor 151
  • FB sensor the sensor 311
  • FIG. 44 is an image diagram of the NC unit 33H that is mounted on the vehicle 1 and is configured by combining an FF type NC unit and an FB type NC unit
  • FIG. 45 is a block diagram of the NC unit 33H.
  • the sensor 151 of the FF type NC unit 33FF is written as the FF sensor 151, and will be referred to in the same manner hereinafter.
  • the sensor 311 of the feedback type NC unit 33FB is written as the FB sensor 311, and will be referred to in the same manner hereinafter.
  • the NC unit 33H in FIG. 44 differs from the NC unit 33 in FIG. 42 in that, instead of a combination of the FF type NC unit 33F and the FB type NC unit 33B, the NC unit 33H in FIG. 44 combines the FF type NC unit 33FF and the FB type NC unit 33FB, and further includes a sudden sound detection unit 501.
  • the FB type NC device 33FB differs from the FB type NC device 33B in that, in addition to the sensor 311, the actuator 312, and the FBNC processing unit 313, a volume adjustment unit 502 is provided that is controlled by the sudden sound detection unit 501 and adjusts the volume of the actuator drive signal output from the FBNC processing unit 313.
  • the FF type NC device 33FF has the same basic configuration as the FF type NC device 33F, but the sensor signal of the FF sensor 151 is output not only to the FFNC processing unit 153 but also to the sudden sound detection unit 501.
  • the sudden sound detection unit 501 When the sudden sound detection unit 501 detects the occurrence of a sudden sound based on the sensor signal of the FF sensor 151, it controls the volume adjustment unit 502 in the NC device 33FB for a specified period of time to reduce the volume to a level close to mute and suppress noise caused by the sudden sound.
  • the sudden sound detection unit 501 controls the volume adjustment unit 502 for a predetermined period of time including the timing when a predetermined time ⁇ T has elapsed since the sudden sound was detected by the FF sensor 151 and until the sudden sound is detected by the FB sensor 311, to reduce the volume of the drive signal to the actuator 312 to a mute (or close to mute) level.
  • NC processing will be stopped even in sections where no sudden sounds are occurring, so there is a possibility that the noise will continue to be perceived.
  • the volume is set to be reduced to a mute (or close to mute) level until the sudden sound is detected by the FB sensor 311, and then increased to, for example, about half the reference value.
  • the feedback type NC device 33FB can continue NC processing while minimizing abnormal sounds caused by the operation of the actuator 312, even if a sudden sound is detected by the FB sensor 311.
  • the upper and middle waveforms show the change in detection level over time when the FF sensor 151 and the FB sensor 311 detect a sudden sound, respectively.
  • the lower waveform shows the change in the volume of the drive signal for the actuator 312, which is adjusted by the volume adjustment unit 502 at the timing corresponding to the upper and middle waveforms.
  • step S301 the sudden sound detection unit 501 controls the volume adjustment unit 502 to set the volume of the actuator drive signal output from the FBNC processing unit 313 to a reference value.
  • step S302 the sudden sound detection unit 501 acquires a sensor signal from the FF sensor 151.
  • step S303 the sudden sound detection unit 501 determines whether or not a sudden sound has occurred based on the sensor signal from the FF sensor 151.
  • step S303 If it is determined in step S303 that a sudden sound has occurred, processing proceeds to step S304.
  • step S304 the sudden sound detection unit 501 determines whether or not sudden sounds are occurring continuously and periodically based on the sensor signal.
  • step S304 If it is determined in step S304 that sudden sounds are occurring continuously and periodically, processing proceeds to step S305.
  • step S305 the sudden sound detection unit 501 controls the volume adjustment unit 502 to reduce the volume of the drive signal for the actuator 312 output from the FBNC processing unit 313 to a level close to mute.
  • step S306 the sudden sound detection unit 501 determines whether or not it is time for the FB sensor 311 to detect a sudden sound based on the time that has elapsed since the FF sensor 151 detected the sudden sound, and repeats the same process until that time.
  • step S306 If it is determined in step S306 that the timing has come for the FB sensor 311 to detect a sudden sound, the process proceeds to step S307.
  • step S307 the sudden sound detection unit 501 controls the volume adjustment unit 502 to set the volume of the drive signal of the actuator 312 output from the FBNC processing unit 313 to approximately half the reference value.
  • step S308 the sudden sound detection unit 501 determines whether the FF sensor 151 has finished detecting the sudden sound, a predetermined time has elapsed, and the FB sensor 311 has stopped detecting the sudden sound, and repeats the same process until the FF sensor 151 has finished detecting the sudden sound and the predetermined time has elapsed.
  • step S308 If it is determined in step S308 that the FF sensor 151 has finished detecting the sudden sound and the predetermined time has elapsed, the process proceeds to step S309.
  • step S309 the sudden sound detection unit 501 controls the volume adjustment unit 502 to return the volume of the drive signal of the actuator 312 output from the FBNC processing unit 313 to the reference value.
  • step S304 if it is determined in step S304 that sudden sounds are not occurring continuously and periodically, processing proceeds to step S311.
  • step S311 the sudden sound detection unit 501 controls the volume adjustment unit 502 to reduce the volume of the drive signal for the actuator 312 output from the FBNC processing unit 313 to a level close to mute.
  • step S312 the sudden sound detection unit 501 determines whether a predetermined time has elapsed since the FF sensor 151 detected the sudden sound, which is longer than the time the FB sensor 311 detected the sudden sound, and repeats the same process until the FF sensor 151 stops detecting the sudden sound and the predetermined time has elapsed.
  • step S312 If it is determined in step S312 that a predetermined time has elapsed since the FF sensor 151 detected the sudden sound, which is longer than the time the FB sensor 311 detected the sudden sound, the process proceeds to step S309.
  • step S303 If it is determined in step S303 that a sudden sound has not occurred, steps S304 to S309 and steps S311 and S312 are skipped.
  • step S313 the sudden sound detection unit 501 determines whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S301, and the subsequent steps are repeated.
  • step S313 when an instruction to end the process is given, the process ends.
  • the drive signal of the actuator 312 is reduced to a state close to mute until a predetermined time including the timing when the sudden sound is detected by the FB sensor 311, making it possible to suppress the generation of abnormal noise due to the sudden sound.
  • the drive signal of the actuator 312 is reduced to a state close to muted until the sudden sound is detected by the FB sensor 311, and then the drive signal is reduced to about half the reference value until the sudden sound detection ends and the sudden sound is no longer detected by the FB sensor 311. This makes it possible to continue NC processing while minimizing the impact of abnormal noise caused by sudden sounds.
  • the volume of the drive signal may be reduced by selectively using a band-cut filter that is suitable for the waveform of the sudden sound detected by the FF sensor 151.
  • FIG. 48 shows an example of the configuration of an NC processing unit 33H' that selectively uses a band-cut filter suited to the waveform of the sudden sound detected by the FF sensor 151 to reduce the volume of the drive signal.
  • the NC processing unit 33H' in FIG. 48 differs from the NC processing unit 33H in FIG. 44 in that a sudden sound detection unit 501', a filter search unit 511, a cutoff filter set storage unit 512, and a band cutoff processing unit 521 are provided instead of the sudden sound detection unit 501 and the volume adjustment unit 502.
  • the sudden sound detection unit 501' has the same basic functions as the sudden sound detection unit 501, but is equipped with a frequency analysis unit 501a.
  • the frequency analysis unit 501a is controlled to perform frequency analysis on the waveform of the sudden sound, and the analysis result is output to the filter search unit 511.
  • the filter search unit 511 accesses the cutoff filter set storage unit 512, which stores cutoff filters corresponding to various band characteristics, and searches for a cutoff filter with the corresponding band characteristics based on the analysis results, and supplies the searched filter to the band cutoff processing unit 521 of the NC unit 33FB.
  • the band blocking processing unit 521 performs band blocking processing using a blocking filter supplied by the filter search unit 511 on the drive signal output from the FBNC processing unit 313 to the actuator 312, and outputs the result.
  • the filter search unit 511 searches the cutoff filter set storage unit 512 for a cutoff filter that has a filter gain with band characteristics such as those shown in the lower part of Figure 49, which cancels out the band characteristics shown in the waveform in the upper part of Figure 49, and supplies the cutoff filter to the band cutoff processing unit 521.
  • step S331 the filter search unit 511 controls the band cutoff processing unit 521 to stop processing by the cutoff filter, and sets the volume of the actuator drive signal output by the FBNC processing unit 313 to a reference value.
  • step S332 the sudden sound detection unit 501' acquires a sensor signal from the FF sensor 151.
  • step S333 the sudden sound detection unit 501' determines whether or not a sudden sound has occurred based on the sensor signal from the FF sensor 151.
  • step S333 If it is determined in step S333 that a sudden sound has occurred, processing proceeds to step S334.
  • step S334 the sudden sound detection unit 501' controls the frequency analysis unit 501a to perform frequency analysis on the waveform indicating the sudden sound, and outputs the analysis result to the filter search unit 511.
  • step S335 the filter search unit 511 accesses the cutoff filter set storage unit 512, searches for a cutoff filter with corresponding band characteristics based on the analysis results, and supplies the searched filter to the band cutoff processing unit 521 of the NC unit 33FB.
  • step S336 the band blocking processing unit 521 performs band blocking processing using the blocking filter supplied by the filter search unit 511 on the drive signal output from the FBNC processing unit 313 to the actuator 312 for a predetermined period of time, and outputs the result to the actuator 312.
  • step S337 the band blocking processing unit 521 stops the band blocking processing and sets the volume of the actuator drive signal output by the FBNC processing unit 313 to a reference value.
  • step S333 determines whether a sudden sound has not occurred. If it is determined in step S333 that a sudden sound has not occurred, steps S334 to S337 are skipped.
  • step S338 the sudden sound detection unit 501' determines whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S331, and the subsequent steps are repeated.
  • step S3308 when an instruction to end the process is given, the process ends.
  • the frequency characteristics are analyzed from the waveform of the sudden sound, and the corresponding band-cut filter performs band-cut processing on the drive signal output from the FBNC processing unit 313 to the actuator 312, making it possible to suppress the generation of abnormal noise due to the sudden sound.
  • FIG. 51 shows an example of the configuration of an NC processing unit 33H'' that performs parallel processing using band-stop filters with multiple band characteristics, and then selectively outputs a drive signal based on the frequency analysis results.
  • the NC processing unit 33H'' in FIG. 51 differs from the NC processing unit 33H' in FIG. 48 in that the blocking filter set storage unit 512 and the band blocking processing unit 521 have been deleted, and a first band blocking filter 531-1 through an m-th band blocking filter 531-m and a selection unit (SEL) 532 have been provided.
  • the blocking filter set storage unit 512 and the band blocking processing unit 521 have been deleted, and a first band blocking filter 531-1 through an m-th band blocking filter 531-m and a selection unit (SEL) 532 have been provided.
  • the first band blocking filter 531-1 through the m-th band blocking filter 531-m are band blocking filters with various band characteristics stored in the blocking filter set storage unit 512, and perform the respective band blocking filter processing on the drive signal output from the FBNC processing unit 313 to the actuator 312, and output the result to the selection unit 532. Note that drive signals that have not been processed by the band blocking filters are also supplied to the selection unit 532.
  • the selection unit 532 is controlled by the filter search unit 511, and outputs to the actuator 312, from among the drive signals that have been filtered by the first band-cut filter 531-1 through the m-th band-cut filter 531-m, a drive signal that has been subjected to band-cut filter processing with corresponding band characteristics based on the frequency analysis results.
  • the selection unit 532 may switch the filter path by switching if low delay is the goal, but may also switch from the current filter path to the next filter path by cross-fading.
  • step S341 the sudden sound detection unit 501' controls the selection unit 532 to select a drive signal that has not been processed by a band cutoff filter, and output it to the actuator 312.
  • the first band cutoff filter 531-1 to the m-th band cutoff filter 531-m perform band cutoff filter processing on the drive signal according to their respective band characteristics, and continue to output the result to the selection unit 532.
  • step S342 the sudden sound detection unit 501' acquires a sensor signal from the FF sensor 151.
  • step S343 the sudden sound detection unit 501' determines whether or not a sudden sound has occurred based on the sensor signal from the FF sensor 151.
  • step S343 If it is determined in step S343 that a sudden sound has occurred, processing proceeds to step S344.
  • step S344 the sudden sound detection unit 501' controls the frequency analysis unit 501a to perform frequency analysis on the waveform indicating the sudden sound, and outputs the analysis result to the filter search unit 511.
  • step S345 the filter search unit 511 controls the selection unit 532 based on the frequency analysis result to select the drive signal that has been subjected to band-stop filter processing corresponding to the frequency analysis result from among the drive signals that have been subjected to band-stop filter processing by the first band-stop filter 531-1 to the mth band-stop filter 531-m for a predetermined period of time, and outputs the drive signal to the actuator 312.
  • step S346 the selection unit 532 selects the drive signal that has not been processed by the band-blocking filter and outputs it to the actuator 312.
  • step S347 the sudden sound detection unit 501' determines whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S342, and the subsequent steps are repeated.
  • step S347 when an instruction to end the process is given, the process ends.
  • the above process makes it possible to selectively output to the actuator 312 a drive signal that has been subjected to band-stop filter processing with band characteristics immediately based on the frequency analysis results, eliminating the need to reload a band-stop filter with different band characteristics based on the frequency analysis results. As a result, it is possible to improve the speed of sudden sound prevention processing, and to suppress NC processing failures due to delays.
  • FIG. 53 shows an example configuration of an NC device 33H''' in which the sudden sound detection unit 501 detects unevenness in the road surface based on point cloud information detected by a LiDAR 541 that senses the road surface while traveling, in addition to the sensor signal from the FF sensor 151, and determines the presence or absence of a sudden sound based on the detected unevenness of the road surface.
  • the change in road surface conditions can be compared with the case where only the acceleration sensor is used, making it possible to determine in advance whether or not a sudden sound has occurred.
  • a composite process may be performed in which the volume of the drive signal is muted first, and then a band-blocking filter is selected based on the sensor signal of the FF sensor 151.
  • the sudden sound countermeasure processing performed when a sudden sound is detected by the LiDAR 541 is the processing described with reference to the flowchart in FIG. 47, and the processing for selecting a band-blocking filter by the sensor signal of the FF sensor 151 is the processing described with reference to the flowchart in FIG. 50, so the description thereof will be omitted.
  • Figures 54 and 55 show an example of the configuration of an NC device 33H'''' that performs NC processing by an FF type NC processing unit 33FF using the sensor signal of the FB sensor 311.
  • the NC unit 33H'''' in Figures 54 and 55 differs from the NC unit 33H in Figures 44 and 45 in that the NC unit 33FF is newly provided with an FB sensor-using FFNC processing unit 551 and an adder 552.
  • the FFNC processing unit using FB sensor 551 basically has the same functions as the FFNC processing unit 153, but differs in that it uses the sensor signal of the FB sensor 311 instead of the sensor signal of the FF sensor 151 for NC processing.
  • the noise NS indicated by the dashed line, emitted from the front windshield FW is expected to reach the control point EP via acoustic spatial propagation.
  • the FF-type NC processing unit 33FF performs NC processing based on the sensor signal of the FB sensor 311, thereby realizing NC processing by canceling out the noise NS with the opposite phase sound AS at the control point EP.
  • the FB sensor-using FFNC processing unit 551 generates an anti-phase sound using the sensor signal of the FB sensor 311 and outputs it to the adder 552.
  • the adder 552 adds the opposite phase sound generated by the FFNC processing unit 153 based on the sensor signal of the FF sensor 151 and the opposite phase sound generated by the FB sensor using FFNC processing unit 551 using the sensor signal of the FB sensor 311, and outputs the result as sound from the speaker 154.
  • the FF type NC device 33FF can reduce both the anticipated noise detected by the FF sensor 151 and the unknown noise detected by the FB sensor 311.
  • step S351 the FFNC processing unit 153 executes FFNC (feedforward noise cancellation) processing using the FF sensor, generates an antiphase sound at the control point based on the sensor signal of the FF sensor 151, and outputs it to the adder 552.
  • FFNC feedforward noise cancellation
  • the FFNC (feedforward noise cancellation) processing using the FF sensor is, for example, the NC processing of each component in the first embodiment.
  • step S352 the FB sensor using FFNC processing unit 551 executes FB sensor using FFNC processing, generates an anti-phase sound at the control point based on the sensor signal of the FB sensor 311, and outputs it to the adder 552.
  • the FB sensor using FFNC (feed-forward type noise cancellation) processing is, for example, NC processing of each component in the first embodiment using the sensor signal of the FB sensor 311.
  • step S353 the adder 552 adds the out-of-phase sound at the control point generated by the FFNC processing using the FF sensor and the out-of-phase sound at the control point generated by the FFNC processing using the FB sensor, and emits the result from the speaker 154 toward the control point.
  • the above process makes it possible for the FF-type NC device 33FF to reduce both the anticipated noise detected by the sensor 151 and the unknown noise detected by the sensor 311.
  • the sensor signal of the FB sensor 311 has been used in the FB type NC unit 33FB, but the sensor signal of the FF sensor 151 may be used to execute NC processing by the FB type NC unit 33FB.
  • Figures 57 and 58 show an example configuration of NC unit 33H'''''' that executes NC processing by FB type NC unit 33FB using the sensor signal of FF sensor 151.
  • the NC unit 33H''''''' in Figures 57 and 58 differs from the NC unit 33H in Figures 44 and 45 in that the NC unit 33FB is newly provided with an FF sensor-using FBNC processing unit 571 and an adder 572.
  • the FF sensor-using FBNC processing unit 571 basically has the same functions as the FBNC processing unit 313, but differs in that it uses the sensor signal of the FF sensor 151 instead of the sensor signal of the FB sensor 311 for NC processing.
  • the vibration-induced noise that propagates to the front windshield FW and is emitted is not limited to unknown noise, but is thought to include a certain amount of known noise as input.
  • the sensor signal from the FF sensor 151 is used to vibrate the actuator 312, which allows the FBNC processing unit 313 to focus resources on countermeasures against noise emitted by unknown noise, and is expected to improve the NC performance of the feedback type NC device 33FB.
  • the FF sensor-using FBNC processing unit 571 generates a drive signal for the actuator 312 using the sensor signal of the FF sensor 151 and outputs it to the adder 552.
  • the adder 572 adds together the actuator drive signal generated by the FBNC processing unit 313 based on the sensor signal of the FB sensor 311 and the actuator drive signal generated by the FF sensor using FBNC processing unit 571 using the sensor signal of the FF sensor 151, and supplies the result to the actuator 312 via the volume adjustment unit 502 to vibrate it.
  • NC processing by FB type NC device in Fig. 58 will be described with reference to the flowchart in FIG.
  • step S371 the FBNC processing unit 313 executes FBNC (feedback type noise cancellation) processing using the FB sensor, generates an actuator drive signal based on the sensor signal of the FB sensor 311, and outputs it to the adder 572.
  • FBNC feedback type noise cancellation
  • the FB sensor use FFNC (feedback type noise cancellation) processing is, for example, the NC processing of each component in the second embodiment.
  • step S372 the FF sensor using FBNC processing unit 571 executes FF sensor using FBNC processing, generates a drive signal for the actuator 312 based on the sensor signal of the FF sensor 151, and outputs it to the adder 572.
  • the FF sensor using FBNC (feedback type noise cancellation) processing is, for example, NC processing of each component in the second embodiment using the sensor signal of the FF sensor 151.
  • step S373 the actuator drive signal generated by the FBNC processing unit 313 based on the sensor signal of the FB sensor 311 is added to the actuator drive signal generated by the FF sensor using FBNC processing unit 571 using the sensor signal of the FF sensor 151, and the result is supplied to the actuator 312 via the volume adjustment unit 502 to vibrate it.
  • the FB type NC device 33FB is able to reduce both the anticipated noise detected by the sensor 151 and the unknown noise detected by the sensor 311.
  • the number of FF type NC units 33FF and FB type NC units 33FB may be other than the above combination, and the sensor signal of the FF sensor 151 may be used to perform NC processing by the feedback type NC unit 33FB, and the sensor signal of the FB sensor 311 may be used to perform NC processing by the FF type NC processing unit 33FF.
  • Figures 60 and 61 show an example of the configuration of an NC unit 33H''''''', which is configured by combining one FF type NC unit 33FF and two FB type NC units 33FB-1 and 33FB-2.
  • the FB type NC unit 33FB-1 is provided on the front window
  • the FB type NC unit 33FB-2 is provided on the roof window.
  • the single FF-type NC unit 33FF executes FF-type NC processing using the sensor signals of the FF sensor 151 as well as the sensor signals of the FB sensors 311-1 and 311-2 of the FB-type NC units 33FB-1 and 33FB-2.
  • the two FB type NC devices 33FB-1 and 33FB-2 also realize FB type NC processing using the sensor signal of the FF sensor 151 in addition to the sensor signals of the FB sensors 311-1 and 311-2, respectively.
  • the FF-type NC device 33FF is equipped with FF sensors 151-1 to 151-x, an in-vehicle microphone 152, an FFNC processor 153, a speaker 154, as well as FB sensor-using FFNC processors 551-1 and 551-2 and adders 552-1 and 552-2.
  • the FB sensor-using FFNC processing unit 551-1 executes FF-type NC processing based on the sensor signals of the FB sensors 311-1-1 to 311-1-y1 of the FB-type NC device 33FB-1, and outputs the processed result, an antiphase sound, to the adder 552-1.
  • the FB sensor-using FFNC processing unit 551-2 executes FF-type NC processing based on the sensor signals of the FB sensors 311-2-1 to 311-2-y1 of the FB-type NC device 33FB-2, and outputs the processed result, an antiphase sound, to the adder 552-2.
  • the adder 552-1 adds the opposite phase audio output from the FFNC processing unit 153 and the opposite phase audio output from the FB sensor using FFNC processing unit 551-1, and outputs the result to the adder 552-2.
  • the adder 552-2 adds the opposite phase sound supplied by the adder 552-1 and the opposite phase sound output from the FB sensor using FFNC processing unit 551-2, and emits the sound from the speaker 154. That is, the adders 552-1 and 552-2 add the opposite phase sounds generated by the FFNC processing unit 153 and the FB sensor using FFNC processing units 551-1 and 551-2, respectively, and emit the sound from the speaker 154.
  • the sudden sound detection unit 501' basically has the same functions as the sudden sound detection unit 501, but when a sudden sound is detected, the sudden sound is suppressed by reducing the volume of the volume adjustment units 502-1 and 502-2 of the FB type NC devices 33FB-1 and 33FB-2.
  • NC processing by the NC unit 33H in Figure 61 is basically the same as the processing described above, so a description of it will be omitted.
  • the presence or absence of a sudden sound may be detected based on not only the sensor signal of the FF sensor 151 but also all of the sensor signals of the FB sensor 311, and the volume of the actuator drive signal may be managed in a centralized manner according to the position of the sensor where the sudden sound is detected, thereby implementing sudden sound countermeasure processing.
  • FIG. 62 shows an example of the configuration of an NC device 33H that detects the presence or absence of a sudden sound based on not only the sensor signal of the FF sensor 151 but also all of the sensor signals of the FB sensor 311, and centrally controls the volume of the actuator drive signal according to the position of the sensor where the sudden sound is detected.
  • the NC unit 33H in FIG. 62 differs from the NC processing unit 33H in FIG. 61 in that a centralized control type sudden sound detection unit 501'' is provided instead of the sudden sound detection unit 501'.
  • the centralized control type sudden sound detection unit 501'' acquires sensor signals from all of the FF sensors 151-1 to 151-x and the FB sensors 311-1-1 to 311-1-y1, and 311-2-1 to 311-2-y2, and determines whether or not a sudden sound has occurred.
  • the sudden sound countermeasure processing is realized by the above-mentioned processing.
  • the volume adjustment units 502-1 and 502-1 are controlled to mute the sound in an order and timing that corresponds to the position of the FB sensor 311 where the sudden sound was detected.
  • the timing at which a sudden sound is detected by the sensor 311-1 of the front windshield FW may be used as a trigger to control the volume adjustment unit 502-2 in the FB type NC device 33FB-2 to reduce the volume in accordance with the timing at which a sudden sound is detected on the roof window, thereby implementing a sudden sound countermeasure process for the FB type NC device 33FB-2.
  • a centralized, centrally controlled type of sudden sound prevention processing can be realized by controlling the volume according to the vibration propagation distance to the feedback type NC device 33FB other than the FB sensor 311 of the front window FB, which has received an input above a predetermined threshold.
  • the out-of-phase audio signal output from the FFNC processing unit 153 and the FB sensor using FFNC processing unit 551 for outputting sound from the speaker 154 can also be considered as a drive signal for driving the speaker 154.
  • a volume adjustment unit X (not shown) corresponding to the volume adjustment unit 502, which adjusts the volume of a drive signal consisting of an audio signal of opposite phase for driving the speaker 154, may be provided, for example, between the adder 552-2 in FIG. 62 and the speaker 154.
  • the centralized control type sudden sound detection unit 501'' may control the volume adjustment unit X (not shown) to adjust the volume of the sound emitted from the speaker 154, for example, to be lower.
  • SW611-1 is a switch that sets whether or not to output the processing results of the FF sensor-using FBNC processing unit on the front window side.
  • SW611-2 is a switch that sets whether or not the centralized control type sudden sound detection unit controls the volume of the drive signal for the actuator on the front window side when it detects a sudden sound.
  • SW611-3 is a switch that sets whether or not to output the processing results of the FF sensor-using FBNC processing unit on the roof window side.
  • SW611-4 is a switch that sets whether or not the centralized control type sudden sound detection unit controls the volume of the drive signal for the actuator on the roof window side when it detects a sudden sound.
  • SW611-1, 611-2, and 611-5 are set to ON, and SW611-3, 611-4, and 611-6 are set to OFF.
  • Figure 64 shows an example of the configuration of a general-purpose computer.
  • This computer has a built-in CPU (Central Processing Unit) 1001.
  • An input/output interface 1005 is connected to the CPU 1001 via a bus 1004.
  • a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
  • an input unit 1006 consisting of input devices such as a keyboard and mouse through which the user inputs operation commands
  • an output unit 1007 which outputs a processing operation screen and images of the processing results to a display device
  • a storage unit 1008 consisting of a hard disk drive for storing programs and various data
  • a communication unit 1009 consisting of a LAN (Local Area Network) adapter and the like, which executes communication processing via a network such as the Internet.
  • LAN Local Area Network
  • a drive 1010 which reads and writes data to removable storage media 1011 such as a magnetic disk (including a flexible disk), an optical disk (including a CD-ROM (Compact Disc-Read Only Memory) and a DVD (Digital Versatile Disc)), a magneto-optical disk (including an MD (Mini Disc)), or a semiconductor memory.
  • removable storage media 1011 such as a magnetic disk (including a flexible disk), an optical disk (including a CD-ROM (Compact Disc-Read Only Memory) and a DVD (Digital Versatile Disc)), a magneto-optical disk (including an MD (Mini Disc)), or a semiconductor memory.
  • the CPU 1001 executes various processes according to a program stored in the ROM 1002, or a program read from a removable storage medium 1011 such as a magnetic disk, optical disk, magneto-optical disk, or semiconductor memory and installed in the storage unit 1008, and loaded from the storage unit 1008 to the RAM 1003.
  • the RAM 1003 also stores data necessary for the CPU 1001 to execute various processes, as appropriate.
  • the CPU 1001 loads a program stored in the storage unit 1008, for example, into the RAM 1003 via the input/output interface 1005 and the bus 1004, and executes the program, thereby performing the above-mentioned series of processes.
  • the program executed by the computer (CPU 1001) can be provided, for example, by recording it on a removable storage medium 1011 such as a package medium.
  • the program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • a program can be installed in the storage unit 1008 via the input/output interface 1005 by inserting the removable storage medium 1011 into the drive 1010.
  • the program can also be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008.
  • the program can be pre-installed in the ROM 1002 or storage unit 1008.
  • the program executed by the computer may be a program in which processing is performed chronologically in the order described in this specification, or a program in which processing is performed in parallel or at the required timing, such as when called.
  • the CPU 1001 in FIG. 64 realizes the functions of the NC unit 33.
  • a system refers to a collection of multiple components (devices, modules (parts), etc.), regardless of whether all the components are in the same housing. Therefore, multiple devices housed in separate housings and connected via a network, and a single device in which multiple modules are housed in a single housing, are both systems.
  • the present disclosure can be configured as a cloud computing system in which a single function is shared and processed collaboratively by multiple devices over a network.
  • each step described in the above flowchart can be executed by a single device, or can be shared and executed by multiple devices.
  • a single step includes multiple processes
  • the processes included in that single step can be executed by a single device, or can be shared and executed by multiple devices.
  • the present disclosure can also be configured as follows.
  • An acceleration sensor that detects the acceleration of an object that emits sound by vibration;
  • a vibration device that vibrates the object;
  • a filter processing unit that performs noise cancellation filtering on a sensor signal that is a detection result of the acceleration sensor, thereby generating a drive signal for exciting the vibration device so as to suppress vibration of the object;
  • a base portion for fixing the driving portion to the object,
  • the acceleration sensor is disposed on the base portion,
  • the noise suppression device wherein the base portion and the drive portion are detachably connected to each other.
  • the noise suppression device according to ⁇ 1>, wherein the base portion and the drive portion are detachably connected to each other by a bolt.
  • the driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin,
  • the bolt connects the base portion and the drive portion by having a screw portion pass through a hole portion provided at the center of the base plate and engage with a screw hole provided at the center of the top of the convex portion.
  • the noise suppression device includes a voice coil, a cylindrical bobbin through which a shaft of the voice coil is inserted and which is slidable, and a base plate provided at a bottom of the bobbin and larger than a diameter of the bobbin,
  • the base portion is provided with a protrusion having a screw thread formed on an outer periphery thereof
  • the connecting device has a cylindrical configuration with approximately the same diameter as the convex portion, a screw thread formed on the inside, and a lid with an opening with approximately the same diameter as the bobbin at the top through which the bobbin is inserted, the base plate is placed under the lid, and when the base plate is abutted against the top of the convex portion, the screw thread of the convex portion and the screw thread formed on the inside of the base plate engage with each other, thereby removably connecting the base portion and
  • the driving unit includes a voice coil, a cylindrical bobbin through which a shaft of the voice coil is inserted and which is slidable, and a base plate provided at a bottom of the bobbin and larger in diameter than the bobbin,
  • the base portion has a protrusion having a screw hole formed on a side surface of an outer periphery thereof
  • the connecting device has a cylindrical configuration having approximately the same diameter as the convex portion, and a lid with an opening having approximately the same diameter as the bobbin is formed at the top, through which the bobbin is inserted, the base plate is placed under the lid, and with the base plate abutting the top of the convex portion, a screw is inserted through the side and engages with the screw hole in the base portion, thereby removably connecting the base portion and the drive unit by the connecting device.
  • the base portion has a convex portion having a screw hole formed at the center of the top of the head
  • the driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin and having a threaded portion;
  • the noise suppression device according to ⁇ 1> wherein the screw portion is screwed into the screw hole of the protrusion, thereby connecting the base portion and the drive portion.
  • the drive unit Further, the acceleration sensor detects the movement of the driving unit, and is different from the acceleration sensor.
  • the noise suppression device further comprising: a sensor for detecting an abnormality in the drive unit based on information regarding vibration of the object obtained from the acceleration sensor and information regarding movement of the drive unit obtained from the other acceleration sensor.
  • a sensor for detecting an abnormality in the drive unit based on information regarding vibration of the object obtained from the acceleration sensor and information regarding movement of the drive unit obtained from the other acceleration sensor.
  • the drive unit Further, the acceleration sensor detects the movement of the driving unit, and is different from the acceleration sensor.
  • the noise suppression device further comprising: a drive signal for exciting the vibration device based on information regarding the vibration of the object obtained from the acceleration sensor and information regarding the movement of the drive unit obtained from the other acceleration sensor.
  • the vibration device has a damper
  • the filter processing unit includes a plurality of units that perform filter processing according to the temperature characteristics of the damper
  • the noise suppression device according to ⁇ 1> further comprising a switching unit that switches among a plurality of filter processing units according to a temperature of the damper.
  • the temperature is a temperature estimated based on a temperature inside the vehicle compartment and a temperature outside the vehicle compartment.
  • the noise suppression device according to ⁇ 11>, wherein the temperature is a temperature of the damper estimated based on direct sunlight determined from a direction of the sun at a current position calculated based on a compass, position information, and date and time information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present disclosure relates to a noise suppression device that makes it possible to appropriately reduce noise at low cost. In the noise suppression device, a base part in which an acceleration sensor is formed and a drive unit in which a voice coil is formed are connected with each other in an attachable/detachable state. This device is applicable to NC devices.

Description

騒音抑制装置Noise suppression devices
 本開示は、騒音抑制装置に関し、特に、騒音を適切に低減できるようにした騒音抑制装置に関する。 This disclosure relates to a noise suppression device, and in particular to a noise suppression device that can appropriately reduce noise.
 従来、車両における車内の騒音を低減する技術として、制御点となるユーザの耳の近傍の位置に騒音を検出するマイク(エラーマイク)を設置し、収音される騒音がキャンセルされるように逆位相の音声を発生させる技術が提案されている(特許文献1参照)。 Conventionally, a technique has been proposed for reducing noise inside a vehicle, in which a microphone (error microphone) that detects noise is placed near the user's ear, which serves as the control point, and an anti-phase sound is generated to cancel the picked-up noise (see Patent Document 1).
 しかしながら、特許文献1の発明においては、制御点となるユーザの耳の近傍の固定位置に、騒音を収音するマイクが設置されることになるが、シートポジションが変化したり、ユーザの頭の向きが変化することにより、適切に騒音を低減させることができない恐れがあった。 However, in the invention of Patent Document 1, a microphone that picks up noise is installed at a fixed position near the user's ear, which serves as the control point, but there is a risk that noise may not be reduced appropriately if the seat position or the direction of the user's head changes.
 そこで、シートポジションやユーザの頭の向きに応じて適応的に騒音を低減させる技術が提案されている(特許文献2参照)。 In response, technology has been proposed that adaptively reduces noise depending on the seat position and the direction of the user's head (see Patent Document 2).
特開平6-332469号公報Japanese Patent Application Publication No. 6-332469 特開2022-59096号公報JP 2022-59096 A
 しかしながら、騒音の音源となるタイヤや路面の状態変化には追従しないので、騒音を適切に低減できない恐れがあった。 However, since it does not follow changes in the condition of the tires or road surface, which are the source of noise, there is a risk that noise will not be reduced appropriately.
 本開示は、このような状況に鑑みてなされたものであり、特に、騒音を適切に低減できるようにするものである。 This disclosure has been made in light of these circumstances, and is intended in particular to enable appropriate noise reduction.
 本開示の一側面の騒音抑制装置は、振動により音を発する物体の加速度を検出する加速度センサと、前記物体を加振する加振装置と、前記加速度センサの検出結果であるセンサ信号にノイズキャンセルフィルタ処理を施すことにより、前記物体の振動を抑制するように前記加振装置を加振させる駆動信号を生成するフィルタ処理部と、前記前記加振装置が格納される駆動部と、前記駆動部を前記物体に固定するベース部とを備え、前記ベース部には、前記加速度センサが配置され、前記ベース部と、前記駆動部とは、着脱可能な状態で接続されている騒音抑制装置である。 A noise suppression device according to one aspect of the present disclosure includes an acceleration sensor that detects the acceleration of an object that generates sound through vibration, a vibration device that vibrates the object, a filter processing unit that applies noise cancellation filter processing to a sensor signal that is the detection result of the acceleration sensor to generate a drive signal that vibrates the vibration device so as to suppress vibration of the object, a drive unit in which the vibration device is stored, and a base unit that fixes the drive unit to the object, and the acceleration sensor is disposed on the base unit, and the base unit and the drive unit are connected in a detachable manner to form a noise suppression device.
 本開示の一側面においては、振動により音を発する物体の加速度を検出する加速度センサと、前記物体を加振する加振装置と、前記加速度センサの検出結果であるセンサ信号にノイズキャンセルフィルタ処理を施すことにより、前記物体の振動を抑制するように前記加振装置を加振させる駆動信号を生成するフィルタ処理部と、前記前記加振装置が格納される駆動部と、前記駆動部を前記物体に固定するベース部とを備え、前記ベース部には、前記加速度センサが配置され、前記ベース部と、前記駆動部とが、着脱可能な状態で接続される。 In one aspect of the present disclosure, the device includes an acceleration sensor that detects the acceleration of an object that generates sound through vibration, a vibration device that vibrates the object, a filter processing unit that applies noise cancellation filter processing to a sensor signal that is the detection result of the acceleration sensor to generate a drive signal that vibrates the vibration device so as to suppress vibration of the object, a drive unit in which the vibration device is stored, and a base unit that fixes the drive unit to the object, and the acceleration sensor is disposed on the base unit, and the base unit and the drive unit are connected in a detachable state.
車両制御システムの構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a vehicle control system. センシング領域の例を示す図である。FIG. 2 is a diagram showing an example of a sensing region. 本開示の第1の実施の形態であるFF方式のNC装置を説明する図である。1 is a diagram illustrating an FF type NC device according to a first embodiment of the present disclosure; FF方式のNC装置により実現される機能を説明する機能ブロック図である。FIG. 2 is a functional block diagram illustrating functions realized by an FF type NC device. 図4のNC装置により使用されるセンサフィルタセットとキャンセルフィルタセットを生成するフィルタ生成処理部の構成例を説明する機能ブロック図である。5 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 4. 図4,図5のフィルタ設計部により実現される機能を説明する機能ブロック図である。FIG. 6 is a functional block diagram for explaining functions realized by the filter design unit of FIGS. 4 and 5. 図5のフィルタ生成処理部によるフィルタ生成処理を説明するフローチャートである。6 is a flowchart illustrating a filter generation process by the filter generation processing unit in FIG. 5 . 図4のNC装置によるNC処理を説明するフローチャートである。5 is a flowchart illustrating an NC process performed by the NC device of FIG. 4. 本開示の第1の実施の形態の第1の変形例であるFF方式のNC装置を説明する図である。1 is a diagram illustrating an FF-type NC device that is a first modified example of the first embodiment of the present disclosure. FIG. 図9のNC装置により使用されるセンサフィルタセットとキャンセルフィルタセットを生成するフィルタ生成処理部の構成例を説明する機能ブロック図である。10 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 9. 本開示の第1の実施の形態の第2の変形例であるFF方式のNC装置を説明する図である。13 is a diagram illustrating an FF-type NC device that is a second modified example of the first embodiment of the present disclosure. FIG. 図11のNC装置により使用されるセンサフィルタセットとキャンセルフィルタセットを生成するフィルタ生成処理部の構成例を説明する機能ブロック図である。12 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 11. 図12のフィルタ生成処理部によるフィルタ生成処理を説明するフローチャートである。13 is a flowchart illustrating a filter generation process by the filter generation processing unit in FIG. 12 . 図11のNC装置によるNC処理を説明するフローチャートである。12 is a flowchart illustrating an NC process performed by the NC device of FIG. 11 . 本開示の第1の実施の形態の第3の変形例であるFF方式のNC装置を説明する図である。FIG. 13 is a diagram illustrating an FF-type NC device that is a third modified example of the first embodiment of the present disclosure. 図15のNC装置により使用されるセンサフィルタセットとキャンセルフィルタセットを生成するフィルタ生成処理部の構成例を説明する機能ブロック図である。16 is a functional block diagram illustrating a configuration example of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 15. 図16のフィルタ生成処理部によるフィルタ生成処理を説明するフローチャートである。17 is a flowchart illustrating a filter generation process by the filter generation processing unit in FIG. 16 . 図15のNC装置によるNC処理を説明するフローチャートである。16 is a flowchart illustrating NC processing by the NC device of FIG. 15 . 本開示の第1の実施の形態の第4の変形例であるFF方式のNC装置を説明する図である。FIG. 13 is a diagram illustrating an FF-type NC device which is a fourth modified example of the first embodiment of the present disclosure. 図19のNC装置により使用されるセンサフィルタセットとキャンセルフィルタセットを生成するフィルタ生成処理部の構成例を説明する機能ブロック図である。20 is a functional block diagram illustrating an example of the configuration of a filter generation processing unit that generates a sensor filter set and a cancellation filter set used by the NC device of FIG. 19. 本開示の第2の実施の形態であるFB方式のNC装置を説明する図である。FIG. 13 is a diagram illustrating an FB type NC device according to a second embodiment of the present disclosure. 図22のNC装置の外観構成を説明する図である。FIG. 23 is a diagram illustrating the external configuration of the NC device of FIG. 22. 図21のNC装置におけるアクチュエータの構成例を説明する図である。22 is a diagram for explaining a configuration example of an actuator in the NC apparatus of FIG. 21. FIG. 図21のNC装置におけるNC処理部の構成例を説明する図である。22 is a diagram for explaining a configuration example of an NC processing unit in the NC apparatus of FIG. 21. 図21のNC装置によるNC処理を説明するフローチャートである。22 is a flowchart illustrating NC processing by the NC device of FIG. 21. 本開示の第2の実施の形態の第1の変形例であるアクチュエータの構成例を説明する図である。13A to 13C are diagrams illustrating a configuration example of an actuator according to a first modified example of the second embodiment of the present disclosure. 本開示の第2の実施の形態の第2の変形例であるアクチュエータの構成例を説明する図である。13A to 13C are diagrams illustrating a configuration example of an actuator according to a second modified example of the second embodiment of the present disclosure. 図27のアクチュエータの設置方法を説明する図である。28 is a diagram for explaining a method of installing the actuator of FIG. 27. FIG. 図27のアクチュエータの駆動部の交換方法を説明する図である。28A to 28C are diagrams illustrating a method for replacing the drive unit of the actuator of FIG. 27. 本開示の第2の実施の形態の第3の変形例であるアクチュエータの構成例を説明する図である。13A to 13C are diagrams illustrating a configuration example of an actuator according to a third modified example of the second embodiment of the present disclosure. 本開示の第2の実施の形態の第4の変形例であるアクチュエータの構成例を説明する図である。13A to 13C are diagrams illustrating a configuration example of an actuator according to a fourth modified example of the second embodiment of the present disclosure. 本開示の第2の実施の形態の第5の変形例であるアクチュエータの構成例を説明する図である。13A to 13C are diagrams illustrating a configuration example of an actuator according to a fifth modified example of the second embodiment of the present disclosure. 本開示の第2の実施の形態の第6の変形例であるアクチュエータの構成例を説明する図である。13A to 13C are diagrams illustrating a configuration example of an actuator according to a sixth modified example of the second embodiment of the present disclosure. 本開示の第2の実施の形態の第7の変形例であるアクチュエータの構成例を説明する図である。FIG. 13 is a diagram illustrating a configuration example of an actuator according to a seventh modified example of the second embodiment of the present disclosure. アクチュエータのダンパーの温度に応じたコンプライアンス特性を説明する図である。11A and 11B are diagrams illustrating compliance characteristics of a damper of an actuator according to temperature. 本開示の第2の実施の形態の第8の変形例であるNC処理部の構成例を説明する図である。FIG. 13 is a diagram illustrating a configuration example of an NC processing unit which is an eighth modified example of the second embodiment of the present disclosure. 図36のNC処理部による動作モード制御処理を説明するフローチャートである。37 is a flowchart illustrating an operation mode control process by the NC processing unit of FIG. 36. 本開示の第2の実施の形態の第9の変形例であるNC処理部の構成例を説明する図である。FIG. 13 is a diagram illustrating a configuration example of an NC processing unit which is a ninth modified example of the second embodiment of the present disclosure. 図38のNC処理部による動作モード制御処理を説明するフローチャートである。39 is a flowchart illustrating an operation mode control process by the NC processing unit of FIG. 38. 本開示の第2の実施の形態の第9の変形例であるNC処理部の構成例を説明する図である。FIG. 13 is a diagram illustrating a configuration example of an NC processing unit which is a ninth modified example of the second embodiment of the present disclosure. LiDARを用いた路面の凹凸の検出例を説明する図である。FIG. 1 is a diagram illustrating an example of detection of unevenness on a road surface using LiDAR. FB方式のNC装置とFF方式のNC装置とを組み合わせたNC装置を説明する図である。FIG. 1 is a diagram illustrating an NC device that combines an FB type NC device and an FF type NC device. FB方式のNC装置のセンサとFF方式のNC装置のセンサと突発音の伝達の違いを説明する図である。10A and 10B are diagrams illustrating the difference in transmission of sudden sounds between a sensor of an FB type NC device and a sensor of an FF type NC device. 本開示の第3の実施の形態であるFB方式のNC装置とFF方式のNC装置とを組み合わせたNC装置を説明する図である。FIG. 13 is a diagram illustrating an NC device that combines an FB type NC device and an FF type NC device according to a third embodiment of the present disclosure. 図44のNC装置により実現される機能を説明する機能ブロック図である。FIG. 45 is a functional block diagram illustrating functions realized by the NC device of FIG. 44. 突発音の対策処理を説明する図である。11A and 11B are diagrams illustrating a countermeasure process for a sudden sound. 図45のNC装置による突発音対策処理を説明するフローチャートである。46 is a flowchart illustrating a sudden sound prevention process performed by the NC device of FIG. 45. 本開示の第3の実施の形態の第1の変形例であるNC装置の構成例を説明する図である。FIG. 13 is a diagram illustrating a configuration example of an NC device which is a first modified example of the third embodiment of the present disclosure. 突発音が発生する際の振動レベルをキャンセルさせるNCフィルタのフィルタゲインの例を説明する図である。11A and 11B are diagrams illustrating an example of a filter gain of an NC filter that cancels a vibration level when a sudden sound occurs. 図48のNC装置による突発音対策処理を説明するフローチャートである。49 is a flowchart illustrating a sudden sound prevention process performed by the NC device of FIG. 48. 本開示の第3の実施の形態の第2の変形例であるNC装置の構成例を説明する図である。FIG. 13 is a diagram illustrating a configuration example of an NC device which is a second modified example of the third embodiment of the present disclosure. 図51のNC装置による突発音対策処理を説明するフローチャートである。52 is a flowchart illustrating a sudden sound prevention process performed by the NC device of FIG. 51. 本開示の第3の実施の形態の第3の変形例であるNC装置の構成例を説明する図である。FIG. 13 is a diagram illustrating a configuration example of an NC device which is a third modified example of the third embodiment of the present disclosure. 本開示の第3の実施の形態の第4の変形例であるNC装置を説明する図である。FIG. 13 is a diagram illustrating an NC device which is a fourth modified example of the third embodiment of the present disclosure. 図54のNC装置により実現される機能を説明する機能ブロック図である。FIG. 55 is a functional block diagram illustrating functions realized by the NC device of FIG. 54. 図55のNC装置によるNC処理を説明するフローチャートである。56 is a flowchart illustrating NC processing by the NC device of FIG. 55. 本開示の第3の実施の形態の第5の変形例であるNC装置を説明する図である。FIG. 13 is a diagram illustrating an NC device which is a fifth modified example of the third embodiment of the present disclosure. 図57のNC装置により実現される機能を説明する機能ブロック図である。FIG. 58 is a functional block diagram illustrating functions realized by the NC device of FIG. 57. 図58のNC装置によるNC処理を説明するフローチャートである。59 is a flowchart illustrating NC processing by the NC device of FIG. 58. 本開示の第3の実施の形態の第6の変形例であるNC装置を説明する図である。FIG. 13 is a diagram illustrating an NC device which is a sixth modified example of the third embodiment of the present disclosure. 図60のNC装置により実現される機能を説明する機能ブロック図である。FIG. 61 is a functional block diagram illustrating functions realized by the NC device of FIG. 60. 本開示の第3の実施の形態の第7の変形例であるNC装置を説明する図である。FIG. 13 is a diagram illustrating an NC device which is a seventh modified example of the third embodiment of the present disclosure. 本開示の第3の実施の形態の第8の変形例であるNC装置を設定するためのGUIを説明する図である。FIG. 13 is a diagram illustrating a GUI for setting an NC device that is an eighth modified example of the third embodiment of the present disclosure. 汎用のコンピュータの構成例を示している。2 shows an example of the configuration of a general-purpose computer.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Below, a preferred embodiment of the present disclosure will be described in detail with reference to the attached drawings. Note that in this specification and drawings, components having substantially the same functional configurations are designated by the same reference numerals to avoid redundant description.
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.車両制御システムの構成例
 2.第1の実施の形態
 3.第1の実施の形態の第1の変形例
 4.第1の実施の形態の第2の変形例
 5.第1の実施の形態の第3の変形例
 6.第1の実施の形態の第4の変形例
 7.第2の実施の形態
 8.第2の実施の形態の第1の変形例
 9.第2の実施の形態の第2の変形例
 10.第2の実施の形態の第3の変形例
 11.第2の実施の形態の第4の変形例
 12.第2の実施の形態の第5の変形例
 13.第2の実施の形態の第6の変形例
 14.第2の実施の形態の第7の変形例
 15.第2の実施の形態の第8の変形例
 16.第2の実施の形態の第9の変形例
 17.第2の実施の形態の第10の変形例
 18.第3の実施の形態
 19.第3の実施の形態の第1の変形例
 20.第3の実施の形態の第2の変形例
 21.第3の実施の形態の第3の変形例
 22.第3の実施の形態の第4の変形例
 23.第3の実施の形態の第5の変形例
 24.第3の実施の形態の第6の変形例
 25.第3の実施の形態の第7の変形例
 26.第3の実施の形態の第8の変形例
 27.ソフトウェアにより実行させる例
Hereinafter, an embodiment of the present technology will be described in the following order.
1. Configuration Example of Vehicle Control System 2. First Embodiment 3. First Modification of the First Embodiment 4. Second Modification of the First Embodiment 5. Third Modification of the First Embodiment 6. Fourth Modification of the First Embodiment 7. Second Embodiment 8. First Modification of the Second Embodiment 9. Second Modification of the Second Embodiment 10. Third Modification of the Second Embodiment 11. Fourth Modification of the Second Embodiment 12. Fifth Modification of the Second Embodiment 13. Sixth Modification of the Second Embodiment 14. Seventh Modification of the Second Embodiment 15. Eighth Modification of the Second Embodiment 16. Ninth Modification of the Second Embodiment 17. Tenth Modification of the Second Embodiment 18. Third Embodiment 19. First Modification of the Third Embodiment 20. Second Modification of the Third Embodiment 21. Third Modification of the Third Embodiment 22. Fourth Modification of the Third Embodiment 23. Fifth Modification of the Third Embodiment 24. Sixth Modification of the Third Embodiment 25. Seventh Modification of the Third Embodiment 26. Eighth Modification of the Third Embodiment 27. Example of Execution by Software
 <<1.車両制御システムの構成例>>
 図1は、本技術が適用される移動装置制御システムの一例である車両制御システム11の構成例を示すブロック図である。
<<1. Configuration example of vehicle control system>>
FIG. 1 is a block diagram showing an example of the configuration of a vehicle control system 11, which is an example of a mobility device control system to which the present technology is applied.
 車両制御システム11は、車両1に設けられ、車両1の運転自動化に関わる処理を行う。この運転自動化には、レベル1乃至レベル5の運転自動化、及び、遠隔運転者による車両1の遠隔運転及び遠隔支援が含まれる。 The vehicle control system 11 is provided in the vehicle 1 and performs processing related to the automated driving of the vehicle 1. This automated driving includes driving automation of levels 1 to 5, as well as remote driving and remote assistance of the vehicle 1 by a remote driver.
 車両制御システム11は、車両制御ECU(Electronic Control Unit)21、通信部22、地図情報蓄積部23、位置情報取得部24、外部認識センサ25、車内センサ26、車両センサ27、記憶部28、運転自動化制御部29、DMS(Driver Monitoring System)30、HMI(Human Machine Interface)31、車両制御部32、及び、NC(Noise Cancelling)装置33を備える。 The vehicle control system 11 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a location information acquisition unit 24, an external recognition sensor 25, an in-vehicle sensor 26, a vehicle sensor 27, a memory unit 28, a driving automation control unit 29, a DMS (Driver Monitoring System) 30, an HMI (Human Machine Interface) 31, a vehicle control unit 32, and an NC (Noise Cancelling) device 33.
 車両制御ECU21、通信部22、地図情報蓄積部23、位置情報取得部24、外部認識センサ25、車内センサ26、車両センサ27、記憶部28、運転自動化制御部29、DMS30、HMI31、車両制御部32、及び、NC装置33は、通信ネットワーク41を介して相互に通信可能に接続されている。通信ネットワーク41は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、FlexRay(登録商標)、イーサネット(登録商標)といったデジタル双方向通信の規格に準拠した車載通信ネットワークやバス等により構成される。通信ネットワーク41は、伝送されるデータの種類によって使い分けられてもよい。例えば、車両制御に関するデータに対してCANが適用され、大容量データに対してイーサネットが適用されるようにしてもよい。なお、車両制御システム11の各部は、通信ネットワーク41を介さずに、例えば近距離無線通信(NFC(Near Field Communication))やBluetooth(登録商標)といった比較的近距離での通信を想定した無線通信を用いて直接的に接続される場合もある。 The vehicle control ECU 21, communication unit 22, map information storage unit 23, position information acquisition unit 24, external recognition sensor 25, in-vehicle sensor 26, vehicle sensor 27, memory unit 28, driving automation control unit 29, DMS 30, HMI 31, vehicle control unit 32, and NC device 33 are connected to each other so as to be able to communicate with each other via a communication network 41. The communication network 41 is composed of an in-vehicle communication network or bus that complies with digital two-way communication standards such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), FlexRay (registered trademark), and Ethernet (registered trademark). The communication network 41 may be used differently depending on the type of data being transmitted. For example, CAN may be applied to data related to vehicle control, and Ethernet may be applied to large-volume data. In addition, each part of the vehicle control system 11 may be directly connected without going through the communication network 41, using wireless communication intended for communication over relatively short distances, such as near field communication (NFC) or Bluetooth (registered trademark).
 なお、以下、車両制御システム11の各部が、通信ネットワーク41を介して通信を行う場合、通信ネットワーク41の記載を省略するものとする。例えば、車両制御ECU21と通信部22が通信ネットワーク41を介して通信を行う場合、単に車両制御ECU21と通信部22とが通信を行うと記載する。 Note that, hereinafter, when each part of the vehicle control system 11 communicates via the communication network 41, the description of the communication network 41 will be omitted. For example, when the vehicle control ECU 21 and the communication unit 22 communicate via the communication network 41, it will simply be described as the vehicle control ECU 21 and the communication unit 22 communicating with each other.
 車両制御ECU21は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)といった各種のプロセッサにより構成される。車両制御ECU21は、車両制御システム11全体又は一部の機能の制御を行う。 The vehicle control ECU 21 is composed of various processors, such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The vehicle control ECU 21 controls all or part of the functions of the vehicle control system 11.
 通信部22は、車内及び車外の様々な機器、他の車両、サーバ、基地局等と通信を行い、各種のデータの送受信を行う。このとき、通信部22は、複数の通信方式を用いて通信を行うことができる。 The communication unit 22 communicates with various devices inside and outside the vehicle, other vehicles, servers, base stations, etc., and transmits and receives various types of data. At this time, the communication unit 22 can communicate using multiple communication methods.
 通信部22が実行可能な車外との通信について、概略的に説明する。通信部22は、例えば、5G(第5世代移動通信システム)、LTE(Long Term Evolution)、DSRC(Dedicated Short Range Communications)等の無線通信方式により、基地局又はアクセスポイントを介して、外部ネットワーク上に存在するサーバ(以下、外部のサーバと呼ぶ)等と通信を行う。通信部22が通信を行う外部ネットワークは、例えば、インターネット、クラウドネットワーク、又は、事業者固有のネットワーク等である。通信部22が外部ネットワークに対して行う通信方式は、所定以上の通信速度、且つ、所定以上の距離間でデジタル双方向通信が可能な無線通信方式であれば、特に限定されない。 The following provides an overview of the communications with the outside of the vehicle that can be performed by the communication unit 22. The communication unit 22 communicates with servers (hereinafter referred to as external servers) on an external network via base stations or access points using wireless communication methods such as 5G (fifth generation mobile communication system), LTE (Long Term Evolution), and DSRC (Dedicated Short Range Communications). The external network with which the communication unit 22 communicates is, for example, the Internet, a cloud network, or an operator-specific network. The communication method that the communication unit 22 uses with the external network is not particularly limited as long as it is a wireless communication method that allows digital two-way communication at a communication speed equal to or higher than a predetermined distance.
 また例えば、通信部22は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末と通信を行うことができる。自車の近傍に存在する端末は、例えば、歩行者や自転車等の比較的低速で移動する移動体が装着する端末、店舗等に位置が固定されて設置される端末、又は、MTC(Machine Type Communication)端末である。さらに、通信部22は、V2X通信を行うこともできる。V2X通信とは、例えば、他の車両との間の車車間(Vehicle to Vehicle)通信、路側器等との間の路車間(Vehicle to Infrastructure)通信、家との間(Vehicle to Home)の通信、及び、歩行者が所持する端末等との間の歩車間(Vehicle to Pedestrian)通信等の、自車と他との通信をいう。 Furthermore, for example, the communication unit 22 can communicate with a terminal present in the vicinity of the vehicle using P2P (Peer To Peer) technology. The terminal present in the vicinity of the vehicle can be, for example, a terminal attached to a mobile object moving at a relatively slow speed, such as a pedestrian or a bicycle, a terminal installed at a fixed position in a store, or an MTC (Machine Type Communication) terminal. Furthermore, the communication unit 22 can also perform V2X communication. V2X communication refers to communication between the vehicle and others, such as vehicle-to-vehicle communication with other vehicles, vehicle-to-infrastructure communication with roadside devices, vehicle-to-home communication with a home, and vehicle-to-pedestrian communication with a terminal carried by a pedestrian, etc.
 通信部22は、例えば、車両制御システム11の動作を制御するソフトウェアを更新するためのプログラムを外部から受信することができる(Over The Air)。通信部22は、さらに、地図情報、交通情報、車両1の周囲の情報等を外部から受信することができる。また例えば、通信部22は、車両1に関する情報や、車両1の周囲の情報等を外部に送信することができる。通信部22が外部に送信する車両1に関する情報としては、例えば、車両1の状態を示すデータ、認識部73による認識結果等がある。さらに例えば、通信部22は、eコール等の車両緊急通報システムに対応した通信を行う。 The communication unit 22 can, for example, receive from the outside a program for updating software that controls the operation of the vehicle control system 11 (Over the Air). The communication unit 22 can further receive map information, traffic information, information about the surroundings of the vehicle 1, etc. from the outside. Also, for example, the communication unit 22 can transmit information about the vehicle 1 and information about the surroundings of the vehicle 1 to the outside. Information about the vehicle 1 that the communication unit 22 transmits to the outside includes, for example, data indicating the state of the vehicle 1, recognition results by the recognition unit 73, etc. Furthermore, for example, the communication unit 22 performs communication corresponding to a vehicle emergency notification system such as e-Call.
 例えば、通信部22は、電波ビーコン、光ビーコン、FM多重放送等の道路交通情報通信システム(VICS(Vehicle Information and Communication System)(登録商標))により送信される電磁波を受信する。 For example, the communication unit 22 receives electromagnetic waves transmitted by a road traffic information and communication system (VICS (Vehicle Information and Communication System) (registered trademark)) such as a radio beacon, optical beacon, or FM multiplex broadcasting.
 通信部22が実行可能な車内との通信について、概略的に説明する。通信部22は、例えば無線通信を用いて、車内の各機器と通信を行うことができる。通信部22は、例えば、無線LAN、Bluetooth、NFC、WUSB(Wireless USB)といった、無線通信により所定以上の通信速度でデジタル双方向通信が可能な通信方式により、車内の機器と無線通信を行うことができる。これに限らず、通信部22は、有線通信を用いて車内の各機器と通信を行うこともできる。例えば、通信部22は、図示しない接続端子に接続されるケーブルを介した有線通信により、車内の各機器と通信を行うことができる。通信部22は、例えば、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)(登録商標)、MHL(Mobile High-definition Link)といった、有線通信により所定以上の通信速度でデジタル双方向通信が可能な通信方式により、車内の各機器と通信を行うことができる。 The following provides an overview of the communication that the communication unit 22 can perform with the inside of the vehicle. The communication unit 22 can communicate with each device in the vehicle using, for example, wireless communication. The communication unit 22 can perform wireless communication with each device in the vehicle using a communication method that allows digital two-way communication at a communication speed equal to or higher than a predetermined speed via wireless communication, such as wireless LAN, Bluetooth, NFC, or WUSB (Wireless USB). Not limited to this, the communication unit 22 can also communicate with each device in the vehicle using wired communication. For example, the communication unit 22 can communicate with each device in the vehicle using wired communication via a cable connected to a connection terminal (not shown). The communication unit 22 can communicate with each device in the vehicle using a communication method that allows digital two-way communication at a communication speed equal to or higher than a predetermined speed via wired communication, such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), or MHL (Mobile High-definition Link).
 ここで、車内の機器とは、例えば、車内において通信ネットワーク41に接続されていない機器を指す。車内の機器としては、例えば、運転者等の車内の利用者が所持するモバイル機器やウェアラブル機器、車内に持ち込まれ一時的に設置される情報機器等が想定される。 Here, the in-vehicle device refers to, for example, a device that is not connected to the communication network 41 inside the vehicle. Examples of in-vehicle devices include mobile devices and wearable devices carried by users inside the vehicle, such as the driver, and information devices brought into the vehicle and temporarily installed.
 地図情報蓄積部23は、外部から取得した地図及び車両1で作成した地図の一方又は両方を蓄積する。例えば、地図情報蓄積部23は、3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ等を蓄積する。 The map information storage unit 23 stores one or both of a map acquired from an external source and a map created by the vehicle 1. For example, the map information storage unit 23 stores a three-dimensional high-precision map, a global map that is less accurate than a high-precision map and covers a wide area, etc.
 高精度地図は、例えば、ダイナミックマップ、ポイントクラウドマップ、ベクターマップ等である。ダイナミックマップは、例えば、動的情報、準動的情報、準静的情報、静的情報の4層からなる地図であり、外部のサーバ等から車両1に提供される。ポイントクラウドマップは、ポイントクラウド(点群データ)により構成される地図である。ベクターマップは、例えば、車線や信号機の位置といった交通情報等をポイントクラウドマップに対応付け、運転自動化に適合させた地図である。 High-precision maps include, for example, dynamic maps, point cloud maps, and vector maps. A dynamic map is, for example, a map consisting of four layers of dynamic information, semi-dynamic information, semi-static information, and static information, and is provided to the vehicle 1 from an external server or the like. A point cloud map is a map made up of a point cloud (point group data). A vector map is, for example, a map that is adapted for driving automation by associating traffic information such as the positions of lanes and traffic lights with a point cloud map.
 ポイントクラウドマップ及びベクターマップは、例えば、外部のサーバ等から提供されてもよいし、カメラ51、レーダ52、LiDAR53等によるセンシング結果に基づいて、後述するローカルマップとのマッチングを行うための地図として車両1で作成され、地図情報蓄積部23に蓄積されてもよい。また、外部のサーバ等から高精度地図が提供される場合、通信容量を削減するため、車両1がこれから走行する計画経路に関する、例えば数百メートル四方の地図データが外部のサーバ等から取得される。 The point cloud map and vector map may be provided, for example, from an external server, or may be created in the vehicle 1 based on sensing results from the camera 51, radar 52, LiDAR 53, etc. as a map for matching with a local map described below, and stored in the map information storage unit 23. In addition, when a high-precision map is provided from an external server, etc., map data of, for example, an area of several hundred meters square regarding the planned route along which the vehicle 1 will travel is acquired from the external server, etc., in order to reduce communication capacity.
 位置情報取得部24は、GNSS(Global Navigation Satellite System)衛星からGNSS信号を受信し、車両1の位置情報を取得する。取得した位置情報は、運転自動化制御部29に供給される。なお、位置情報取得部24は、GNSS信号を用いた方式に限定されず、例えば、ビーコンを用いて位置情報を取得してもよい。 The location information acquisition unit 24 receives GNSS signals from Global Navigation Satellite System (GNSS) satellites and acquires location information of the vehicle 1. The acquired location information is supplied to the driving automation control unit 29. Note that the location information acquisition unit 24 is not limited to a method using GNSS signals, and may acquire location information using a beacon, for example.
 外部認識センサ25は、車両1の外部の状況の認識に用いられる各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。外部認識センサ25が備えるセンサの種類や数は任意である。 The external recognition sensor 25 includes various sensors used to recognize the situation outside the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11. The type and number of sensors included in the external recognition sensor 25 are arbitrary.
 例えば、外部認識センサ25は、カメラ51、レーダ52、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)53、及び、超音波センサ54を備える。これに限らず、外部認識センサ25は、カメラ51、レーダ52、LiDAR53、及び、超音波センサ54のうち1種類以上のセンサを備える構成でもよい。カメラ51、レーダ52、LiDAR53、及び、超音波センサ54の数は、現実的に車両1に設置可能な数であれば特に限定されない。また、外部認識センサ25が備えるセンサの種類は、この例に限定されず、外部認識センサ25は、他の種類のセンサを備えてもよい。外部認識センサ25が備える各センサのセンシング領域の例は、後述する。 For example, the external recognition sensor 25 includes a camera 51, a radar 52, a LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) 53, and an ultrasonic sensor 54. Without being limited to this, the external recognition sensor 25 may be configured to include one or more types of sensors among the camera 51, the radar 52, the LiDAR 53, and the ultrasonic sensor 54. The number of cameras 51, radars 52, LiDAR 53, and ultrasonic sensors 54 is not particularly limited as long as it is a number that can be realistically installed on the vehicle 1. Furthermore, the types of sensors included in the external recognition sensor 25 are not limited to this example, and the external recognition sensor 25 may include other types of sensors. Examples of the sensing areas of each sensor included in the external recognition sensor 25 will be described later.
 なお、カメラ51の撮影方式は、特に限定されない。例えば、測距が可能な撮影方式であるToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった各種の撮影方式のカメラを、必要に応じてカメラ51に適用することができる。これに限らず、カメラ51は、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。 The imaging method of camera 51 is not particularly limited. For example, cameras of various imaging methods, such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, and an infrared camera, which are imaging methods capable of distance measurement, can be applied to camera 51 as necessary. However, the present invention is not limited to this, and camera 51 may be a camera simply for acquiring photographic images, without being related to distance measurement.
 また、例えば、外部認識センサ25は、車両1に対する環境を検出するための環境センサを備えることができる。環境センサは、天候、気象、明るさ等の環境を検出するためのセンサであって、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ、照度センサ等の各種センサを含むことができる。 Furthermore, for example, the external recognition sensor 25 can be equipped with an environmental sensor for detecting the environment relative to the vehicle 1. The environmental sensor is a sensor for detecting the environment such as the weather, climate, brightness, etc., and can include various sensors such as a raindrop sensor, fog sensor, sunlight sensor, snow sensor, illuminance sensor, etc.
 さらに、例えば、外部認識センサ25は、車両1の周囲の音や音源の位置の検出等に用いられるマイクロフォンを備える。 Furthermore, for example, the external recognition sensor 25 includes a microphone that is used to detect sounds around the vehicle 1 and the location of sound sources.
 車内センサ26は、車内の情報を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車内センサ26が備える各種センサの種類や数は、現実的に車両1に設置可能な種類や数であれば特に限定されない。 The in-vehicle sensor 26 includes various sensors for detecting information inside the vehicle, and supplies sensor data from each sensor to each part of the vehicle control system 11. There are no particular limitations on the types and number of the various sensors included in the in-vehicle sensor 26, so long as they are of the types and number that can be realistically installed in the vehicle 1.
 例えば、車内センサ26は、カメラ、レーダ、着座センサ、ステアリングホイールセンサ、マイクロフォン、生体センサのうち1種類以上のセンサを備えることができる。車内センサ26が備えるカメラとしては、例えば、ToFカメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった、測距可能な各種の撮影方式のカメラを用いることができる。これに限らず、車内センサ26が備えるカメラは、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。車内センサ26が備える生体センサは、例えば、シートやステアリングホイール等に設けられ、利用者の各種の生体情報を検出する。 For example, the in-vehicle sensor 26 may be equipped with one or more types of sensors including a camera, radar, a seating sensor, a steering wheel sensor, a microphone, and a biometric sensor. The camera equipped in the in-vehicle sensor 26 may be a camera using various imaging methods capable of measuring distances, such as a ToF camera, a stereo camera, a monocular camera, or an infrared camera. Not limited to this, the camera equipped in the in-vehicle sensor 26 may be a camera simply for acquiring captured images, regardless of distance measurement. The biometric sensor equipped in the in-vehicle sensor 26 is provided, for example, on a seat, steering wheel, etc., and detects various types of biometric information of the user.
 車両センサ27は、車両1の状態を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車両センサ27が備える各種センサの種類や数は、現実的に車両1に設置可能な種類や数であれば特に限定されない。 The vehicle sensor 27 includes various sensors for detecting the state of the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11. There are no particular limitations on the types and number of the various sensors included in the vehicle sensor 27, so long as they are of the types and number that can be realistically installed on the vehicle 1.
 例えば、車両センサ27は、速度センサ、加速度センサ、角速度センサ(ジャイロセンサ)、及び、それらを統合した慣性計測装置(IMU(Inertial Measurement Unit))を備える。例えば、車両センサ27は、ステアリングホイールの操舵角を検出する操舵角センサ、ヨーレートセンサ、アクセルペダルの操作量を検出するアクセルセンサ、及び、ブレーキペダルの操作量を検出するブレーキセンサを備える。例えば、車両センサ27は、エンジンやモータの回転数を検出する回転センサ、タイヤの空気圧を検出する空気圧センサ、タイヤのスリップ率を検出するスリップ率センサ、及び、車輪の回転速度を検出する車輪速センサを備える。例えば、車両センサ27は、バッテリの残量及び温度を検出するバッテリセンサ、並びに、外部からの衝撃を検出する衝撃センサを備える。 For example, the vehicle sensor 27 includes a speed sensor, an acceleration sensor, an angular velocity sensor (gyro sensor), and an inertial measurement unit (IMU) that integrates these. For example, the vehicle sensor 27 includes a steering angle sensor that detects the steering angle of the steering wheel, a yaw rate sensor, an accelerator sensor that detects the amount of accelerator pedal operation, and a brake sensor that detects the amount of brake pedal operation. For example, the vehicle sensor 27 includes a rotation sensor that detects the number of rotations of the engine or motor, an air pressure sensor that detects the air pressure of the tires, a slip ratio sensor that detects the slip ratio of the tires, and a wheel speed sensor that detects the rotation speed of the wheels. For example, the vehicle sensor 27 includes a battery sensor that detects the remaining charge and temperature of the battery, and an impact sensor that detects external impacts.
 記憶部28は、不揮発性の記憶媒体及び揮発性の記憶媒体のうち少なくとも一方を含み、データやプログラムを記憶する。記憶部28は、例えばEEPROM(Electrically Erasable Programmable Read Only Memory)及びRAM(Random Access Memory)として用いられ、記憶媒体としては、HDD(Hard Disc Drive)といった磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイスを適用することができる。記憶部28は、車両制御システム11の各部が用いる各種プログラムやデータを記憶する。例えば、記憶部28は、EDR(Event Data Recorder)やDSSAD(Data Storage System for Automated Driving)を備え、事故等のイベントの前後の車両1の情報や車内センサ26によって取得された情報を記憶する。 The memory unit 28 includes at least one of a non-volatile storage medium and a volatile storage medium, and stores data and programs. The memory unit 28 is used, for example, as an EEPROM (Electrically Erasable Programmable Read Only Memory) and a RAM (Random Access Memory), and the storage medium may be a magnetic storage device such as a hard disc drive (HDD), a semiconductor storage device, an optical storage device, or a magneto-optical storage device. The memory unit 28 stores various programs and data used by each part of the vehicle control system 11. For example, the memory unit 28 includes an EDR (Event Data Recorder) and a DSSAD (Data Storage System for Automated Driving), and stores information about the vehicle 1 before and after an event such as an accident, and information acquired by the in-vehicle sensor 26.
 運転自動化制御部29は、車両1の運転自動化機能の制御を行う。例えば、運転自動化制御部29は、分析部61、行動計画部62、及び、動作制御部63を備える。 The driving automation control unit 29 controls the driving automation function of the vehicle 1. For example, the driving automation control unit 29 includes an analysis unit 61, an action planning unit 62, and an operation control unit 63.
 分析部61は、車両1及び周囲の状況の分析処理を行う。分析部61は、自己位置推定部71、センサフュージョン部72、及び、認識部73を備える。 The analysis unit 61 performs analysis processing of the vehicle 1 and the surrounding conditions. The analysis unit 61 includes a self-position estimation unit 71, a sensor fusion unit 72, and a recognition unit 73.
 自己位置推定部71は、外部認識センサ25からのセンサデータ、及び、地図情報蓄積部23に蓄積されている高精度地図に基づいて、車両1の自己位置を推定する。例えば、自己位置推定部71は、外部認識センサ25からのセンサデータに基づいてローカルマップを生成し、ローカルマップと高精度地図とのマッチングを行うことにより、車両1の自己位置を推定する。車両1の位置は、例えば、後輪対車軸の中心が基準とされる。 The self-position estimation unit 71 estimates the self-position of the vehicle 1 based on the sensor data from the external recognition sensor 25 and the high-precision map stored in the map information storage unit 23. For example, the self-position estimation unit 71 generates a local map based on the sensor data from the external recognition sensor 25, and estimates the self-position of the vehicle 1 by matching the local map with the high-precision map. The position of the vehicle 1 is based on, for example, the center of the rear wheel pair axle.
 ローカルマップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いて作成される3次元の高精度地図、占有格子地図(Occupancy Grid Map)等である。3次元の高精度地図は、例えば、上述したポイントクラウドマップ等である。占有格子地図は、車両1の周囲の3次元又は2次元の空間を所定の大きさのグリッド(格子)に分割し、グリッド単位で物体の占有状態を示す地図である。物体の占有状態は、例えば、物体の有無や存在確率により示される。ローカルマップは、例えば、認識部73による車両1の外部の状況の検出処理及び認識処理にも用いられる。 The local map is, for example, a three-dimensional high-precision map or an occupancy grid map created using technology such as SLAM (Simultaneous Localization and Mapping). The three-dimensional high-precision map is, for example, the point cloud map described above. The occupancy grid map is a map in which the three-dimensional or two-dimensional space around the vehicle 1 is divided into grids of a predetermined size, and the occupancy state of objects is shown on a grid-by-grid basis. The occupancy state of objects is indicated, for example, by the presence or absence of an object and the probability of its existence. The local map is also used, for example, in the detection and recognition processing of the situation outside the vehicle 1 by the recognition unit 73.
 なお、自己位置推定部71は、位置情報取得部24により取得される位置情報、及び、車両センサ27からのセンサデータに基づいて、車両1の自己位置を推定してもよい。 The self-position estimation unit 71 may estimate the self-position of the vehicle 1 based on the position information acquired by the position information acquisition unit 24 and the sensor data from the vehicle sensor 27.
 センサフュージョン部72は、複数の異なる種類のセンサデータ(例えば、カメラ51から供給される画像データ、及び、レーダ52から供給されるセンサデータ)を組み合わせて、情報を得るセンサフュージョン処理を行う。異なる種類のセンサデータを組合せる方法としては、複合、統合、融合、連合等がある。 The sensor fusion unit 72 performs sensor fusion processing to obtain information by combining multiple different types of sensor data (e.g., image data supplied from the camera 51 and sensor data supplied from the radar 52). Methods for combining different types of sensor data include compounding, integration, fusion, and association.
 認識部73は、車両1の外部の状況の検出を行う検出処理、及び、車両1の外部の状況の認識を行う認識処理を実行する。 The recognition unit 73 executes a detection process to detect the situation outside the vehicle 1, and a recognition process to recognize the situation outside the vehicle 1.
 例えば、認識部73は、外部認識センサ25からの情報、自己位置推定部71からの情報、センサフュージョン部72からの情報等に基づいて、車両1の外部の状況の検出処理及び認識処理を行う。 For example, the recognition unit 73 performs detection and recognition processing of the situation outside the vehicle 1 based on information from the external recognition sensor 25, information from the self-position estimation unit 71, information from the sensor fusion unit 72, etc.
 具体的には、例えば、認識部73は、車両1の周囲の物体の検出処理及び認識処理等を行う。物体の検出処理とは、例えば、物体の有無、大きさ、形、位置、動き等を検出する処理である。物体の認識処理とは、例えば、物体の種類等の属性を認識したり、特定の物体を識別したりする処理である。ただし、検出処理と認識処理とは、必ずしも明確に分かれるものではなく、重複する場合がある。 Specifically, for example, the recognition unit 73 performs detection processing and recognition processing of objects around the vehicle 1. Object detection processing is, for example, processing to detect the presence or absence, size, shape, position, movement, etc. of an object. Object recognition processing is, for example, processing to recognize attributes such as the type of object, and to identify a specific object. However, detection processing and recognition processing are not necessarily clearly separated, and there may be overlap.
 例えば、認識部73は、レーダ52又はLiDAR53等によるセンサデータに基づくポイントクラウドを点群の塊毎に分類するクラスタリングを行うことにより、車両1の周囲の物体を検出する。これにより、車両1の周囲の物体の有無、大きさ、形状、位置が検出される。 For example, the recognition unit 73 detects objects around the vehicle 1 by performing clustering to classify a point cloud based on sensor data from the radar 52, the LiDAR 53, or the like into clusters of points. This allows the presence or absence, size, shape, and position of objects around the vehicle 1 to be detected.
 例えば、認識部73は、クラスタリングにより分類された点群の塊の動きを追従するトラッキングを行うことにより、車両1の周囲の物体の動きを検出する。これにより、車両1の周囲の物体の速度及び進行方向(移動ベクトル)が検出される。 For example, the recognition unit 73 detects the movement of objects around the vehicle 1 by performing tracking to follow the movement of clusters of point clouds classified by clustering. This allows the speed and direction of travel (movement vector) of objects around the vehicle 1 to be detected.
 例えば、認識部73は、カメラ51から供給される画像データに基づいて、車両、人、自転車、障害物、構造物、道路、信号機、交通標識、道路標示等を検出又は認識する。また、認識部73は、セマンティックセグメンテーション等の認識処理を行うことにより、車両1の周囲の物体の種類を認識してもよい。 For example, the recognition unit 73 detects or recognizes vehicles, people, bicycles, obstacles, structures, roads, traffic lights, traffic signs, road markings, etc. based on image data supplied from the camera 51. The recognition unit 73 may also recognize the types of objects around the vehicle 1 by performing recognition processing such as semantic segmentation.
 例えば、認識部73は、地図情報蓄積部23に蓄積されている地図、自己位置推定部71による自己位置の推定結果、及び、認識部73による車両1の周囲の物体の認識結果に基づいて、車両1の周囲の交通ルールの認識処理を行うことができる。認識部73は、この処理により、信号機の位置及び状態、交通標識及び道路標示の内容、交通規制の内容、並びに、走行可能な車線等を認識することができる。 For example, the recognition unit 73 can perform recognition processing of traffic rules around the vehicle 1 based on the map stored in the map information storage unit 23, the result of self-location estimation by the self-location estimation unit 71, and the result of recognition of objects around the vehicle 1 by the recognition unit 73. Through this processing, the recognition unit 73 can recognize the positions and states of traffic lights, the contents of traffic signs and road markings, the contents of traffic regulations, and lanes on which travel is possible, etc.
 例えば、認識部73は、車両1の周囲の環境の認識処理を行うことができる。認識部73が認識対象とする周囲の環境としては、天候、気温、湿度、明るさ、及び、路面の状態等が想定される。 For example, the recognition unit 73 can perform recognition processing of the environment around the vehicle 1. The surrounding environment that the recognition unit 73 recognizes may include weather, temperature, humidity, brightness, and road surface conditions.
 行動計画部62は、車両1の行動計画を作成する。例えば、行動計画部62は、経路計画、経路追従の処理を行うことにより、行動計画を作成する。 The behavior planning unit 62 creates a behavior plan for the vehicle 1. For example, the behavior planning unit 62 creates the behavior plan by performing route planning and route following processing.
 なお、経路計画は、広域的パスプランニング(Global path planning)及び局所的パスプランニング(Local path planning)を含む。広域的パスプランニングは、スタートからゴールまでの大まかな経路を計画する処理を含む。局所的パスプランニングは、軌道計画とも言われ、計画した経路において、車両1の運動特性を考慮して、車両1の近傍で安全かつ滑らかに進行することが可能な軌道生成を行う処理を含む。 Route planning includes global path planning and local path planning. Global path planning involves planning a rough route from the start to the goal. Local path planning, also known as trajectory planning, involves generating a trajectory that allows safe and smooth progress in the vicinity of vehicle 1 on the planned route, taking into account the motion characteristics of vehicle 1.
 経路追従とは、経路計画により計画された経路を計画された時間内で安全かつ正確に走行するための動作を計画する処理である。行動計画部62は、例えば、この経路追従の処理の結果に基づき、車両1の目標速度と目標角速度を計算することができる。 Path following is a process of planning operations for traveling safely and accurately along a route planned by a route plan within a planned time. The action planning unit 62 can, for example, calculate the target speed and target angular velocity of the vehicle 1 based on the results of this path following process.
 動作制御部63は、行動計画部62により作成された行動計画を実現するために、車両1の動作を制御する。 The operation control unit 63 controls the operation of the vehicle 1 to realize the action plan created by the action planning unit 62.
 例えば、動作制御部63は、後述する車両制御部32に含まれる、ステアリング制御部81、ブレーキ制御部82、及び、駆動制御部83を制御して、軌道計画により計算された軌道を車両1が進行するように、横方向車両運動制御及び縦方向車両運動制御を行う。例えば、動作制御部63は、衝突回避又は衝撃緩和、追従走行、車速維持走行、自車の衝突警告、自車のレーン逸脱警告等の運転者支援機能や、運転者又は遠隔運転者の操作によらない走行等の運転自動化を目的とした制御を行う。 For example, the operation control unit 63 controls the steering control unit 81, the brake control unit 82, and the drive control unit 83 included in the vehicle control unit 32 described below, to perform lateral vehicle motion control and longitudinal vehicle motion control so that the vehicle 1 proceeds along the trajectory calculated by the trajectory plan. For example, the operation control unit 63 performs control for the purpose of driving automation, such as driver assistance functions such as collision avoidance or impact mitigation, following driving, maintaining vehicle speed, collision warning for the vehicle itself, and lane departure warning for the vehicle itself, and driving without the operation of the driver or a remote driver.
 DMS30は、車内センサ26からのセンサデータ、及び、後述するHMI31に入力される入力データ等に基づいて、運転者の認証処理、及び、運転者の状態の認識処理等を行う。認識対象となる運転者の状態としては、例えば、体調、覚醒度、集中度、疲労度、視線方向、酩酊度、運転操作、姿勢等が想定される。 The DMS 30 performs processes such as authenticating the driver and recognizing the driver's state based on the sensor data from the in-vehicle sensors 26 and the input data input to the HMI 31 (described later). Examples of the driver's state to be recognized include physical condition, alertness, concentration, fatigue, line of sight, level of intoxication, driving operation, posture, etc.
 なお、DMS30が、運転者以外の利用者の認証処理、及び、当該利用者の状態の認識処理を行うようにしてもよい。また、例えば、DMS30が、車内センサ26からのセンサデータに基づいて、車内の状況の認識処理を行うようにしてもよい。認識対象となる車内の状況としては、例えば、気温、湿度、明るさ、臭い等が想定される。 The DMS 30 may also perform authentication processing for users other than the driver and recognition processing for the status of the users. For example, the DMS 30 may also perform recognition processing for the status inside the vehicle based on sensor data from the in-vehicle sensor 26. Examples of the status inside the vehicle that may be recognized include temperature, humidity, brightness, odor, etc.
 HMI31は、各種のデータや指示等の入力と、各種のデータの利用者への提示を行う。 HMI31 inputs various data and instructions, and displays various data to the user.
 HMI31によるデータの入力について、概略的に説明する。HMI31は、人がデータを入力するための入力デバイスを備える。HMI31は、入力デバイスにより入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム11の各部に供給する。HMI31は、入力デバイスとして、例えばタッチパネル、ボタン、スイッチ、及び、レバーといった操作子を備える。これに限らず、HMI31は、音声やジェスチャ等により手動操作以外の方法で情報を入力可能な入力デバイスをさらに備えてもよい。さらに、HMI31は、例えば、赤外線又は電波を利用したリモートコントロール装置や、車両制御システム11の操作に対応したモバイル機器又はウェアラブル機器等の外部接続機器を入力デバイスとして用いてもよい。 The following provides an overview of data input using the HMI 31. The HMI 31 is equipped with an input device that allows a person to input data. The HMI 31 generates input signals based on data and instructions input via the input device, and supplies the signals to each part of the vehicle control system 11. The HMI 31 is equipped with input devices such as a touch panel, buttons, switches, and levers. Without being limited to these, the HMI 31 may further be equipped with an input device that allows information to be input by a method other than manual operation, such as voice or gestures. Furthermore, the HMI 31 may use, as an input device, an externally connected device such as a remote control device that uses infrared or radio waves, or a mobile device or wearable device that supports the operation of the vehicle control system 11.
 HMI31によるデータの提示について、概略的に説明する。HMI31は、利用者又は車外に対する視覚情報、聴覚情報、及び、触覚情報の生成を行う。また、HMI31は、生成された各情報の出力、出力内容、出力タイミング及び出力方法等を制御する出力制御を行う。HMI31は、視覚情報として、例えば、操作画面、車両1の状態表示、警告表示、車両1の周囲の状況を示すモニタ画像等の画像や光により示される情報を生成及び出力する。また、HMI31は、聴覚情報として、例えば、音声ガイダンス、警告音、警告メッセージ等の音により示される情報を生成及び出力する。さらに、HMI31は、触覚情報として、例えば、力、振動、動き等により利用者の触覚に与えられる情報を生成及び出力する。 The presentation of data by the HMI 31 will be briefly described below. The HMI 31 generates visual information, auditory information, and tactile information for the user or the outside of the vehicle. The HMI 31 also performs output control to control the output, output content, output timing, output method, etc. of each piece of generated information. The HMI 31 generates and outputs, as visual information, information indicated by images or light, such as an operation screen, vehicle 1 status display, warning display, and monitor image showing the situation around the vehicle 1. The HMI 31 also generates and outputs, as auditory information, information indicated by sounds, such as voice guidance, warning sounds, and warning messages. The HMI 31 also generates and outputs, as tactile information, information that is imparted to the user's sense of touch by force, vibration, movement, etc.
 HMI31が視覚情報を出力する出力デバイスとしては、例えば、自身が画像を表示することで視覚情報を提示する表示装置や、画像を投影することで視覚情報を提示するプロジェクタ装置を適用することができる。なお、表示装置は、通常のディスプレイを有する表示装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)機能を備えるウエアラブルデバイスといった、利用者の視界内に視覚情報を表示する装置であってもよい。また、HMI31は、車両1に設けられるナビゲーション装置、インストルメントパネル、CMS(Camera Monitoring System)、電子ミラー、ランプ等が有する表示デバイスを、視覚情報を出力する出力デバイスとして用いることも可能である。 The output device from which the HMI 31 outputs visual information may be, for example, a display device that presents visual information by displaying an image itself, or a projector device that presents visual information by projecting an image. Note that the display device may be a device that displays visual information within the user's field of vision, such as a head-up display, a transmissive display, or a wearable device with an AR (Augmented Reality) function, in addition to a display device having a normal display. The HMI 31 may also use display devices such as a navigation device, instrument panel, CMS (Camera Monitoring System), electronic mirror, lamp, etc., provided in the vehicle 1 as output devices that output visual information.
 HMI31が聴覚情報を出力する出力デバイスとしては、例えば、オーディオスピーカ、ヘッドホン、イヤホンを適用することができる。 The output device through which the HMI 31 outputs auditory information can be, for example, an audio speaker, headphones, or earphones.
 HMI31が触覚情報を出力する出力デバイスとしては、例えば、ハプティクス技術を用いたハプティクス素子を適用することができる。ハプティクス素子は、例えば、ステアリングホイール、シートといった、利用者が接触する部分に設けられる。 Haptic elements using haptic technology can be used as an output device for the HMI 31 to output tactile information. Haptic elements are provided on parts that the user touches, such as the steering wheel and the seat.
 車両制御部32は、車両1の各部の制御を行う。車両制御部32は、ステアリング制御部81、ブレーキ制御部82、駆動制御部83、ボディ系制御部84、ライト制御部85、及び、ホーン制御部86を備える。 The vehicle control unit 32 controls each part of the vehicle 1. The vehicle control unit 32 includes a steering control unit 81, a brake control unit 82, a drive control unit 83, a body control unit 84, a light control unit 85, and a horn control unit 86.
 ステアリング制御部81は、車両1のステアリングシステムの状態の検出及び制御等を行う。ステアリングシステムは、例えば、ステアリングホイール等を備えるステアリング機構、電動パワーステアリング等を備える。ステアリング制御部81は、例えば、ステアリングシステムの制御を行うステアリングECU、ステアリングシステムの駆動を行うアクチュエータ等を備える。 The steering control unit 81 detects and controls the state of the steering system of the vehicle 1. The steering system includes, for example, a steering mechanism including a steering wheel, an electric power steering, etc. The steering control unit 81 includes, for example, a steering ECU that controls the steering system, an actuator that drives the steering system, etc.
 ブレーキ制御部82は、車両1のブレーキシステムの状態の検出及び制御等を行う。ブレーキシステムは、例えば、ブレーキペダル等を含むブレーキ機構、ABS(Antilock Brake System)、回生ブレーキ機構等を備える。ブレーキ制御部82は、例えば、ブレーキシステムの制御を行うブレーキECU、ブレーキシステムの駆動を行うアクチュエータ等を備える。 The brake control unit 82 detects and controls the state of the brake system of the vehicle 1. The brake system includes, for example, a brake mechanism including a brake pedal, an ABS (Antilock Brake System), a regenerative brake mechanism, etc. The brake control unit 82 includes, for example, a brake ECU that controls the brake system, and an actuator that drives the brake system.
 駆動制御部83は、車両1の駆動システムの状態の検出及び制御等を行う。駆動システムは、例えば、アクセルペダル、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構等を備える。駆動制御部83は、例えば、駆動システムの制御を行う駆動ECU、駆動システムの駆動を行うアクチュエータ等を備える。 The drive control unit 83 detects and controls the state of the drive system of the vehicle 1. The drive system includes, for example, an accelerator pedal, a drive force generating device for generating drive force such as an internal combustion engine or a drive motor, and a drive force transmission mechanism for transmitting the drive force to the wheels. The drive control unit 83 includes, for example, a drive ECU for controlling the drive system, and an actuator for driving the drive system.
 ボディ系制御部84は、車両1のボディ系システムの状態の検出及び制御等を行う。ボディ系システムは、例えば、キーレスエントリシステム、スマートキーシステム、パワーウインドウ装置、パワーシート、空調装置、エアバッグ、シートベルト、シフトレバー等を備える。ボディ系制御部84は、例えば、ボディ系システムの制御を行うボディ系ECU、ボディ系システムの駆動を行うアクチュエータ等を備える。 The body system control unit 84 detects and controls the state of the body system of the vehicle 1. The body system includes, for example, a keyless entry system, a smart key system, a power window device, a power seat, an air conditioning system, an airbag, a seat belt, a shift lever, etc. The body system control unit 84 includes, for example, a body system ECU that controls the body system, an actuator that drives the body system, etc.
 ライト制御部85は、車両1の各種のライトの状態の検出及び制御等を行う。制御対象となるライトとしては、例えば、ヘッドライト、バックライト、フォグライト、ターンシグナル、ブレーキライト、プロジェクション、バンパーの表示等が想定される。ライト制御部85は、ライトの制御を行うライトECU、ライトの駆動を行うアクチュエータ等を備える。 The light control unit 85 detects and controls the state of various lights of the vehicle 1. Examples of lights to be controlled include headlights, backlights, fog lights, turn signals, brake lights, projections, and bumper displays. The light control unit 85 includes a light ECU that controls the lights, an actuator that drives the lights, and the like.
 ホーン制御部86は、車両1のカーホーンの状態の検出及び制御等を行う。ホーン制御部86は、例えば、カーホーンの制御を行うホーンECU、カーホーンの駆動を行うアクチュエータ等を備える。 The horn control unit 86 detects and controls the state of the car horn of the vehicle 1. The horn control unit 86 includes, for example, a horn ECU that controls the car horn, an actuator that drives the car horn, etc.
 NC(Noise Cancel or Noise Control)装置33は、ロードノイズや風切音など走行中に発生する騒音を抑制する。尚、NC装置33の詳細な構成については、図3以降において後述する。 The NC (Noise Cancellation or Noise Control) device 33 suppresses noises that occur while driving, such as road noise and wind noise. The detailed configuration of the NC device 33 will be described later in Figure 3 and subsequent figures.
 図2は、図1の外部認識センサ25のカメラ51、レーダ52、LiDAR53、及び、超音波センサ54等によるセンシング領域の例を示す図である。なお、図2において、車両1を上面から見た様子が模式的に示され、左端側が車両1の前端(フロント)側であり、右端側が車両1の後端(リア)側となっている。 FIG. 2 is a diagram showing an example of a sensing area by the camera 51, radar 52, LiDAR 53, ultrasonic sensor 54, etc. of the external recognition sensor 25 in FIG. 1. Note that FIG. 2 shows a schematic view of the vehicle 1 as seen from above, with the left end side being the front end of the vehicle 1 and the right end side being the rear end of the vehicle 1.
 センシング領域101F及びセンシング領域101Bは、超音波センサ54のセンシング領域の例を示している。センシング領域101Fは、複数の超音波センサ54によって車両1の前端周辺をカバーしている。センシング領域101Bは、複数の超音波センサ54によって車両1の後端周辺をカバーしている。 Sensing area 101F and sensing area 101B show examples of sensing areas of ultrasonic sensors 54. Sensing area 101F covers the periphery of the front end of vehicle 1 with multiple ultrasonic sensors 54. Sensing area 101B covers the periphery of the rear end of vehicle 1 with multiple ultrasonic sensors 54.
 センシング領域101F及びセンシング領域101Bにおけるセンシング結果は、例えば、車両1の駐車支援等に用いられる。 The sensing results in sensing area 101F and sensing area 101B are used, for example, for parking assistance for vehicle 1.
 センシング領域102F乃至センシング領域102Bは、短距離又は中距離用のレーダ52のセンシング領域の例を示している。センシング領域102Fは、車両1の前方において、センシング領域101Fより遠い位置までカバーしている。センシング領域102Bは、車両1の後方において、センシング領域101Bより遠い位置までカバーしている。センシング領域102Lは、車両1の左側面の後方の周辺をカバーしている。センシング領域102Rは、車両1の右側面の後方の周辺をカバーしている。 Sensing area 102F to sensing area 102B show examples of sensing areas of a short-range or medium-range radar 52. Sensing area 102F covers a position farther in front of the vehicle 1 than sensing area 101F. Sensing area 102B covers a position farther in the rear of the vehicle 1 than sensing area 101B. Sensing area 102L covers the rear periphery of the left side of the vehicle 1. Sensing area 102R covers the rear periphery of the right side of the vehicle 1.
 センシング領域102Fにおけるセンシング結果は、例えば、車両1の前方に存在する車両や歩行者等の検出等に用いられる。センシング領域102Bにおけるセンシング結果は、例えば、車両1の後方の衝突防止機能等に用いられる。センシング領域102L及びセンシング領域102Rにおけるセンシング結果は、例えば、車両1の側方の死角における物体の検出等に用いられる。 The sensing results in sensing area 102F are used, for example, to detect vehicles, pedestrians, etc., that are in front of vehicle 1. The sensing results in sensing area 102B are used, for example, for collision prevention functions behind vehicle 1. The sensing results in sensing area 102L and sensing area 102R are used, for example, to detect objects in blind spots to the sides of vehicle 1.
 センシング領域103F乃至センシング領域103Bは、カメラ51によるセンシング領域の例を示している。センシング領域103Fは、車両1の前方において、センシング領域102Fより遠い位置までカバーしている。センシング領域103Bは、車両1の後方において、センシング領域102Bより遠い位置までカバーしている。センシング領域103Lは、車両1の左側面の周辺をカバーしている。センシング領域103Rは、車両1の右側面の周辺をカバーしている。 Sensing area 103F to sensing area 103B show examples of sensing areas by camera 51. Sensing area 103F covers a position farther in front of vehicle 1 than sensing area 102F. Sensing area 103B covers a position farther in the rear of vehicle 1 than sensing area 102B. Sensing area 103L covers the periphery of the left side of vehicle 1. Sensing area 103R covers the periphery of the right side of vehicle 1.
 センシング領域103Fにおけるセンシング結果は、例えば、信号機や交通標識の認識、車線逸脱防止支援システム、自動ヘッドライト制御システムに用いることができる。センシング領域103Bにおけるセンシング結果は、例えば、駐車支援、及び、サラウンドビューシステムに用いることができる。センシング領域103L及びセンシング領域103Rにおけるセンシング結果は、例えば、サラウンドビューシステムに用いることができる。 The sensing results in sensing area 103F can be used, for example, for recognizing traffic signals and traffic signs, lane departure prevention support systems, and automatic headlight control systems. The sensing results in sensing area 103B can be used, for example, for parking assistance and surround view systems. The sensing results in sensing area 103L and sensing area 103R can be used, for example, for surround view systems.
 センシング領域104は、LiDAR53のセンシング領域の例を示している。センシング領域104は、車両1の前方において、センシング領域103Fより遠い位置までカバーしている。一方、センシング領域104は、センシング領域103Fより左右方向の範囲が狭くなっている。 Sensing area 104 shows an example of the sensing area of LiDAR 53. Sensing area 104 covers a position farther in front of vehicle 1 than sensing area 103F. On the other hand, sensing area 104 has a narrower range in the left-right direction than sensing area 103F.
 センシング領域104におけるセンシング結果は、例えば、周辺車両等の物体検出に用いられる。 The sensing results in the sensing area 104 are used, for example, to detect objects such as surrounding vehicles.
 センシング領域105は、長距離用のレーダ52のセンシング領域の例を示している。センシング領域105は、車両1の前方において、センシング領域104より遠い位置までカバーしている。一方、センシング領域105は、センシング領域104より左右方向の範囲が狭くなっている。 Sensing area 105 shows an example of the sensing area of long-range radar 52. Sensing area 105 covers a position farther in front of vehicle 1 than sensing area 104. On the other hand, sensing area 105 has a narrower range in the left-right direction than sensing area 104.
 センシング領域105におけるセンシング結果は、例えば、ACC(Adaptive Cruise Control)、緊急ブレーキ、衝突回避等に用いられる。 The sensing results in the sensing area 105 are used, for example, for ACC (Adaptive Cruise Control), emergency braking, collision avoidance, etc.
 なお、外部認識センサ25が含むカメラ51、レーダ52、LiDAR53、及び、超音波センサ54の各センサのセンシング領域は、図2以外に各種の構成をとってもよい。具体的には、超音波センサ54が車両1の側方もセンシングするようにしてもよいし、LiDAR53が車両1の後方をセンシングするようにしてもよい。また、各センサの設置位置は、上述した各例に限定されない。また、各センサの数は、1つでもよいし、複数であってもよい。 The sensing areas of the cameras 51, radar 52, LiDAR 53, and ultrasonic sensors 54 included in the external recognition sensor 25 may have various configurations other than those shown in FIG. 2. Specifically, the ultrasonic sensor 54 may also sense the sides of the vehicle 1, and the LiDAR 53 may sense the rear of the vehicle 1. The installation positions of the sensors are not limited to the examples described above. The number of sensors may be one or more.
 <<2.第1の実施の形態>>
 近年、静寂な空間を作り出す技術として空間ノイズコントロール(以下、空間NC)という技術が注目されている。
<<2. First embodiment>>
In recent years, a technology called spatial noise control (hereinafter referred to as spatial NC) has been attracting attention as a technique for creating quiet spaces.
 空間の静音化を行う際、従来のヘッドホンNC(Noise Cancelling)等で用いられているアクティブ制御(能動制御とも称される)が、パッシブ制御では効果が薄いとされている低域の周波数帯域にて、有効な手段として挙げられている。 When trying to quiet a space, active control (also called passive control), which is used in conventional headphone NC (Noise Cancelling), is cited as an effective method in the low frequency range where passive control is considered to be less effective.
 この空間NCは、近年では特にモビリティ向けのアプリケーションに対して応用が期待されている。これは、モビリティに対しては環境対応のため、車体に対する軽量化が求められていることが理由として挙げられる。つまり、従来は吸音材を付加する事によって達成していた静寂性に対して、吸音材を含め様々な構成を省いて軽量化することによって、ボディの振動由来のノイズが顕著になる傾向にあり、結果としてアクティブ制御による静音化への関心が高まっている。 In recent years, spatial NC is expected to be used in mobility applications in particular. One reason for this is the demand for lightweight vehicle bodies in order to be environmentally friendly for mobility vehicles. In other words, whereas quietness was previously achieved by adding sound-absorbing materials, by reducing weight by removing various components, including sound-absorbing materials, noise caused by body vibrations tends to become more noticeable, and as a result, interest in noise reduction through active control is growing.
 車室内向けのアクティブ制御による静音化手法としては、大きく2種類の方式が存在する。第1の方式は、騒音源の振動をセンシングして、センシング結果に基づいて、聴視者の耳などである受音点(制御点)において、騒音をキャンセルさせるような逆位相の音声をスピーカから再生する方式である。 There are two main types of active noise reduction methods for the vehicle interior. The first method senses the vibrations of the noise source and, based on the sensing results, plays an inverse phase sound from the speaker at the sound receiving point (control point), such as the listener's ear, to cancel out the noise.
 また、第2の方式は、騒音を放音(放射)する元となるパネルの振動をセンシングし、センシング結果に基づいて、パネルを直接アクチュエータ(エキサイタ)で制振する方式である。 The second method involves sensing the vibrations of the panel that emits (radiates) the noise, and then directly dampening the vibrations of the panel using an actuator (exciter) based on the sensing results.
 第1の方式は、騒音源における振動をセンシングし、センシング結果に基づいて、受音点(制御点)において聴視される、騒音をキャンセルさせるような逆位相の音声をスピーカで再生させるまでの一連の信号処理が必要となるが、その一連の信号処理は、騒音源からの騒音が受音点に伝搬されるまでになされればよく、必要とされる時間を確保し易いため、フィードフォワード方式でなされる。 The first method requires a series of signal processing steps to sense vibrations at the noise source and, based on the sensing results, play back on a speaker an anti-phase sound that cancels out the noise and is heard at the sound receiving point (control point). However, this series of signal processing only needs to be completed before the noise from the noise source is transmitted to the sound receiving point, and is performed using a feedforward method because it is easy to secure the required time.
 一方、第2の方式は、騒音を放音するパネルの振動をセンシングして、パネルを直接アクチュエータで制振する必要があり、処理に必要な時間の確保が難しいため、フィードバック方式でなされる。 On the other hand, the second method requires sensing the vibration of the panel that emits the noise and directly dampening the panel with an actuator, and because it is difficult to secure the time required for processing, a feedback method is used.
 以降においては、騒音源の振動をセンシングして、受音点における騒音をキャンセルさせるような逆位相の音声をスピーカから再生する第1の方式については、単に、フィードフォワード方式(FF方式)とも称するものとする。 Hereinafter, the first method, which senses the vibrations of a noise source and plays back from a speaker an anti-phase sound that cancels the noise at the sound receiving point, will be referred to simply as the feedforward method (FF method).
 また、騒音を放射する元となるパネルの振動をセンシングし、パネルを直接アクチュエータ(エキサイタ)で制振する第2の方式については、単に、フィードバック方式(FB方式)とも称する。 The second method, which senses the vibration of the panel that is emitting the noise and directly controls the vibration of the panel using an actuator (exciter), is also simply called the feedback method (FB method).
 まず、第1の実施の形態の構成例として、FF方式のNC装置33について説明する。 First, we will explain the FF type NC device 33 as a configuration example of the first embodiment.
 より具体的には、図3で示されるように、FF方式のNC装置33は、センサ151-1乃至151-n、車室内マイク152、NC処理部153、およびスピーカ154より構成される。 More specifically, as shown in FIG. 3, the FF-type NC device 33 is composed of sensors 151-1 to 151-n, an in-vehicle microphone 152, an NC processing unit 153, and a speaker 154.
 センサ151-1乃至151-nは、騒音源SNの振動をセンシングする加速度センサであり、センシング結果となるセンサ信号をNC処理部153に出力する。センサ151-1乃至151-nは、騒音源SNの振動をセンシングする加速度センサとして機能するものであれば、車両センサ27を代用するようにしてもよい。 Sensors 151-1 to 151-n are acceleration sensors that sense the vibrations of noise source SN and output sensor signals that are the sensing results to NC processing unit 153. Sensors 151-1 to 151-n may be substituted for vehicle sensor 27 as long as they function as acceleration sensors that sense the vibrations of noise source SN.
 以降において、センサ151-1乃至151-nについて特に区別する必要がない場合、単に、センサ151とも称するものとし、その他の構成についても同様に称するものとする。また、センサ151は、ここでは、加速度センサであるものとするが、ノイズに関する情報、すなわち、ノイズの音源となり得る振動等の現象を捉えることが可能な物理量を検出するものであれば、加速度センサ以外でもよい。すなわち、センサ151は、例えば、一般に振動センサと呼ばれる、変位、速度、および加速度を、振動を構成する物理量として全て検出するセンサでもよい。また、センサ151は、加速度センサ、変位センサ、および速度センサのいずれでもよい。このため、センサ信号は、加速度に加えて、速度や変位などが含まれてもよい。 Hereinafter, when there is no need to distinguish between sensors 151-1 to 151-n, they will be simply referred to as sensor 151, and the same applies to other components. Also, here, sensor 151 is assumed to be an acceleration sensor, but it may be something other than an acceleration sensor as long as it detects information about noise, that is, a physical quantity that can capture phenomena such as vibration that can be the source of noise. That is, sensor 151 may be, for example, a sensor that is generally called a vibration sensor and detects displacement, velocity, and acceleration as all physical quantities that make up vibration. Also, sensor 151 may be any of an acceleration sensor, a displacement sensor, and a velocity sensor. Therefore, the sensor signal may include velocity and displacement in addition to acceleration.
 車室内マイク152は、車室内における、例えば、天井や床等の、ユーザの耳の位置である制御点EPから離れた位置に設けられた車室内の音声を収音するマイクであり、収音した音声を音声信号としてNC処理部153に出力する。 The in-vehicle microphone 152 is a microphone that picks up sound from within the vehicle cabin and is located, for example, on the ceiling or floor, away from the control point EP, which is the position of the user's ear, and outputs the picked-up sound to the NC processing unit 153 as an audio signal.
 NC処理部153は、センサ151-1乃至151-nからの騒音源SNの振動のセンシング結果であるセンサ信号と、車室内マイク152より供給される車室内の音声信号とに基づいて、対応付けて予め生成されているキャンセルフィルタを読み出し、キャンセルフィルタによる信号処理により、制御点EPにおいて、騒音をキャンセルする(騒音を打ち消す)逆位相の音声ASを生成してスピーカ154より放音させる。 The NC processing unit 153 reads out a cancellation filter that has been generated in advance in association with the sensor signal, which is the sensing result of the vibration of the noise source SN from the sensors 151-1 to 151-n, and the audio signal from within the vehicle cabin supplied from the vehicle cabin microphone 152, and generates an anti-phase audio AS that cancels (negates) the noise at the control point EP through signal processing using the cancellation filter, and emits the audio from the speaker 154.
 このような構成により、制御点EPにおいては、騒音源SNより発生される騒音NSが、スピーカ154より放音される逆位相の音声ASによりキャンセルされるので、ユーザの耳で視聴される騒音が低減されることになる。尚、NC処理部153の詳細な構成については、図4を参照して詳細を後述する。 With this configuration, at the control point EP, the noise NS generated by the noise source SN is cancelled by the antiphase sound AS emitted from the speaker 154, so the noise heard by the user's ears is reduced. The detailed configuration of the NC processing unit 153 will be described later in detail with reference to FIG. 4.
 <NC装置により実現される機能>
 次に、図4を参照して、NC装置33により実現される機能について説明する。尚、NC装置33により実現される機能を説明するにあたって、NC処理部153において使用されるキャンセルフィルタを生成するためのフィルタ生成処理部181の構成例についても、図5を参照して併せて説明する。また、図5のフィルタ生成処理部181において、NC処理部153における構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
<Functions realized by NC units>
Next, functions realized by the NC device 33 will be described with reference to Fig. 4. In describing the functions realized by the NC device 33, a configuration example of a filter generation processing unit 181 for generating a cancellation filter used in the NC processing unit 153 will also be described with reference to Fig. 5. In the filter generation processing unit 181 in Fig. 5, components having the same functions as those in the NC processing unit 153 are denoted by the same reference numerals, and descriptions thereof will be omitted as appropriate.
 NC処理部153は、フィルタ生成処理部181(図5)のフィルタ生成処理により予め生成されたキャンセルフィルタを記憶しており、ノイズキャンセル(NC)処理において、センサ151-1乃至151-nのセンシング結果、および車室内マイク152により収音される音声に対応するキャンセルフィルタを読み出して使用し、収音した音声と逆位相の音声を生成してスピーカ154より放音する。 The NC processing unit 153 stores cancellation filters that have been generated in advance by the filter generation processing of the filter generation processing unit 181 (Figure 5), and in the noise cancellation (NC) processing, it reads and uses the cancellation filters that correspond to the sensing results of the sensors 151-1 to 151-n and the sound picked up by the in-vehicle microphone 152, generates sound that is in the opposite phase to the picked up sound, and emits it from the speaker 154.
 より詳細には、NC処理部153は、センサフィルタ設計部171、センサフィルタセット記憶部172、キャンセルフィルタセット記憶部173、対応フィルタ取得部174、および、NC信号計算部175を備えている。 More specifically, the NC processing unit 153 includes a sensor filter design unit 171, a sensor filter set storage unit 172, a cancellation filter set storage unit 173, a corresponding filter acquisition unit 174, and an NC signal calculation unit 175.
 また、フィルタ生成処理部181(図5)は、センサフィルタ設計部171、センサフィルタセット記憶部172、キャンセルフィルタセット記憶部173、対応付け格納処理部192、および、キャンセルフィルタ設計部191を備えている。また、フィルタ生成処理部181には、フィルタ生成処理時にのみ制御点に設置される制御点近接マイク182により制御点における音声が収音されて供給される。 The filter generation processing unit 181 (FIG. 5) includes a sensor filter design unit 171, a sensor filter set storage unit 172, a cancellation filter set storage unit 173, a correspondence storage processing unit 192, and a cancellation filter design unit 191. The filter generation processing unit 181 also receives audio at the control points picked up by a control point proximity microphone 182 that is installed at the control points only during the filter generation processing.
 センサフィルタ設計部171は、フィルタ生成処理時およびノイズキャンセル処理時のいずれにおいても、センサ151-1乃至151-nのセンシング結果、および車室内マイク152により収音される音声に基づいて、車室内マイク152で収音される音声をキャンセルするための逆位相の音声を生成するNCフィルタをセンサフィルタとして設計する。 The sensor filter design unit 171 designs an NC filter as a sensor filter that generates an anti-phase sound to cancel the sound picked up by the in-vehicle microphone 152 based on the sensing results of the sensors 151-1 to 151-n and the sound picked up by the in-vehicle microphone 152, both during the filter generation process and the noise cancellation process.
 キャンセルフィルタ設計部191は、フィルタ生成処理時において、センサ151-1乃至151-nのセンシング結果、および制御点近接マイク182により収音される音声に基づいて、車室内マイク152で収音される音声をキャンセルするための逆位相の音声を生成するNCフィルタをキャンセルフィルタとして設計する。 During the filter generation process, the cancellation filter design unit 191 designs an NC filter as a cancellation filter that generates an anti-phase sound to cancel the sound picked up by the in-vehicle microphone 152, based on the sensing results of the sensors 151-1 to 151-n and the sound picked up by the control point proximity microphone 182.
 制御点は、ユーザにより聴視される耳の位置であり、ノイズキャンセル処理時において、ノイズをキャンセルしたい位置である。しかしながら、ノイズキャンセル時には、ユーザが存在するため、制御点近接マイク182を適切に設けることができないことが多い。そのため、フィルタ生成処理時にのみ制御点近接マイク182を制御点に設置することにより、ノイズをキャンセルしたい位置の音声を収音し、制御点において収音された音声に基づいて予めキャンセルフィルタが設計される。 The control point is the position of the ear heard by the user, and is the position where noise is to be cancelled during noise cancellation processing. However, since the user is present during noise cancellation, it is often not possible to properly position the control point proximity microphone 182. For this reason, by placing the control point proximity microphone 182 at the control point only during the filter generation processing, sound is picked up at the position where noise is to be cancelled, and a cancellation filter is designed in advance based on the sound picked up at the control point.
 センサフィルタ設計部171およびキャンセルフィルタ設計部191は、いずれも基本的な構成は同様であり、例えば、図6で示されるように、LMS(Least Mean Square)アルゴリズム処理部201を備えている。 The sensor filter design unit 171 and the cancellation filter design unit 191 both have the same basic configuration, and for example, as shown in Figure 6, are equipped with an LMS (Least Mean Square) algorithm processing unit 201.
 LMSアルゴリズム処理部201は、タイヤや路面状況を様々に変化させて走行しながら、リアルタイムで、誤差マイクである車室内マイク152で収音される音声がキャンセルされる逆位相の音声を生成するセンサフィルタ203を設計(生成)する。 The LMS algorithm processing unit 201 designs (generates) a sensor filter 203 that generates, in real time, an anti-phase sound that cancels the sound picked up by the in-vehicle microphone 152, which is an error microphone, while driving with variously changing tire and road surface conditions.
 この際、LMSアルゴリズム処理部201は、スピーカ154に相当するキャンセルスピーカ202と車室内マイク152との間の2次経路伝達特性Sおよび2次経路伝達特性の推定値または測定値S^(図中のハット付きのS)に基づいて、LMSアルゴリズムによりセンサフィルタ203を設計する。 In this case, the LMS algorithm processing unit 201 designs the sensor filter 203 using the LMS algorithm based on the secondary path transfer characteristic S between the cancellation speaker 202, which corresponds to the speaker 154, and the in-vehicle microphone 152 and the estimated or measured value S^ of the secondary path transfer characteristic (S with a hat in the figure).
 また、キャンセルフィルタ設計部191についても同様に、LMSアルゴリズム処理部201が、スピーカ154に相当するキャンセルスピーカ202と制御点近接マイク182との間の2次経路伝達特性Sおよび2次経路伝達特性の推定値または測定値S^に基づいて、タイヤや路面状況を様々に変化させながら走行する際に、リアルタイムで、誤差マイクである制御点近接マイク182で収音される音声がキャンセルされる逆位相の音声を生成するキャンセルフィルタ203を設計する。 Similarly, in the cancellation filter design unit 191, the LMS algorithm processing unit 201 designs a cancellation filter 203 that generates an antiphase sound that cancels the sound picked up by the control point proximity microphone 182, which is the error microphone, in real time when driving with variously changing tire and road conditions, based on the secondary path transfer characteristic S between the cancellation speaker 202 corresponding to the speaker 154 and the control point proximity microphone 182 and the estimated or measured value S^ of the secondary path transfer characteristic.
 尚、センサフィルタおよびキャンセルフィルタを設計するアルゴリズムについては、LMSアルゴリズム以外のアルゴリズムでもよく、例えば、NLMS(Normalized LMS)アルゴリズム、RLS(Recursive Least Square)アルゴリズム、および共役勾配アルゴリズムでもよい。 In addition, the algorithm for designing the sensor filter and the cancellation filter may be an algorithm other than the LMS algorithm, such as the NLMS (Normalized LMS) algorithm, the RLS (Recursive Least Square) algorithm, and the conjugate gradient algorithm.
 対応付け格納処理部192(図5)は、フィルタ生成処理時において、センサフィルタ設計部171およびキャンセルフィルタ設計部191のそれぞれで生成されるセンサフィルタと、キャンセルフィルタとを対応するIDを付与するなどして対応付けて、それぞれセンサフィルタセット記憶部172、およびキャンセルフィルタセット記憶部173に格納する。 The correspondence storage processing unit 192 (Figure 5) associates the sensor filters and cancellation filters generated by the sensor filter design unit 171 and the cancellation filter design unit 191, respectively, with each other during the filter generation process, for example by assigning corresponding IDs, and stores them in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173, respectively.
 リアルタイム動作時に、対応付け格納処理部192が、センサフィルタおよびキャンセルフィルタのセットを対応付けて格納するトリガは、フィルタ係数の変化率が少なく安定したタイミングとなる。より具体的には、センサフィルタおよびキャンセルフィルタのセットが対応付けて格納されるトリガは、フィルタ係数のステップ間の変化率が一定値未満に収まっていることが検出されるタイミング、または、誤差マイク信号のRMS値の時間変化率が所定の値を下回ったことが検出されるタイミングなどである。 During real-time operation, the trigger for the association storage processing unit 192 to associate and store a set of sensor filters and cancellation filters is a timing when the rate of change of the filter coefficients is small and stable. More specifically, the trigger for storing a set of sensor filters and cancellation filters in association is the timing when it is detected that the rate of change between steps of the filter coefficients is less than a certain value, or the timing when it is detected that the rate of change over time of the RMS value of the error microphone signal has fallen below a predetermined value.
 また、センサフィルタおよびキャンセルフィルタの生成は必ずしもリアルタイムでなくてもよく、異なるタイヤや路面の条件で走行するごとに制御点近接マイク182、車室内マイク152、およびセンサ151-1乃至151-nの全てのセンシング結果を記録したログが収集されるようにしておき、ログを用いたオフライン動作でセンサフィルタおよびキャンセルフィルタが生成されるようにしても良い。この場合は、異なるタイヤや路面の条件ごとIDを割り付けて、センサフィルタおよびキャンセルフィルタのセットとして対応付けて格納されれば良い。 Furthermore, the generation of the sensor filter and cancellation filter does not necessarily have to be done in real time. A log recording all sensing results of the control point proximity microphone 182, the in-vehicle microphone 152, and the sensors 151-1 to 151-n may be collected each time the vehicle is driven under different tire and road surface conditions, and the sensor filter and cancellation filter may be generated by offline operation using the log. In this case, an ID may be assigned to each different tire and road surface condition, and the sensor filter and cancellation filter may be stored in association with each other as a set.
 NC処理部153の対応フィルタ取得部174は、ノイズキャンセル処理時において、センサフィルタ設計部171により、センサ151-1乃至151-nのセンシング結果、および車室内マイク152により収音される音声に基づいて設計されたセンサフィルタを取得すると、センサフィルタセット記憶部172に格納されたセンサフィルタセットから対応するセンサフィルタを検索する。そして、対応フィルタ取得部174は、検索したセンサフィルタと対応するIDが付与されたキャンセルフィルタを、キャンセルフィルタセット記憶部173から検索し、NC信号計算部175に出力する。 When the corresponding filter acquisition unit 174 of the NC processing unit 153 acquires a sensor filter designed by the sensor filter design unit 171 based on the sensing results of the sensors 151-1 to 151-n and the sound picked up by the in-vehicle microphone 152 during noise cancellation processing, the corresponding filter acquisition unit 174 searches for a corresponding sensor filter from the sensor filter set stored in the sensor filter set storage unit 172. The corresponding filter acquisition unit 174 then searches for a cancellation filter assigned an ID corresponding to the searched sensor filter from the cancellation filter set storage unit 173, and outputs the cancellation filter to the NC signal calculation unit 175.
 対応フィルタ取得部174が、ノイズキャンセル処理時において、生成されたセンサフィルタから対応するIDが付与されたキャンセルフィルタを選択する方法としては、フィルタ係数同士から直接ユークリッド距離を求める方法や、FFTなどで周波数軸上の係数に変換してから距離を求める方法でもよい。キャンセルフィルタとセンサフィルタとで重視すべき周波数が異なるような場合には、距離計算に周波数重みを持たせるなど、ノイズキャンセリングの効果が最大となるような距離尺度が用いられる事が望ましい。 The method by which the corresponding filter acquisition unit 174 selects a cancellation filter with a corresponding ID from the generated sensor filters during noise cancellation processing may be a method of directly calculating the Euclidean distance between filter coefficients, or a method of converting to coefficients on the frequency axis using FFT or the like and then calculating the distance. If the frequencies that should be emphasized differ between the cancellation filter and the sensor filter, it is desirable to use a distance measure that maximizes the effect of noise cancellation, such as by weighting the distance calculation by frequency.
 NC信号計算部175は、対応フィルタ取得部174より供給されたキャンセルフィルタに基づいて、NC(ノイズキャンセル)信号計算処理を実行して、制御点における音声をキャンセルするための逆位相の音声を生成し、スピーカ154より放音する。 The NC signal calculation unit 175 executes NC (noise cancellation) signal calculation processing based on the cancellation filter supplied by the corresponding filter acquisition unit 174, generates anti-phase audio for canceling the audio at the control point, and emits the audio from the speaker 154.
 このような構成により、ノイズキャンセル時には、制御点近接マイク182が設けられていない状態であっても、車室内マイク152を利用することで路面やタイヤの状態変化に追従した制御点近接位置における最適なキャンセルフィルタを間接的に求める事が可能となる。 With this configuration, even if the control point proximity microphone 182 is not installed during noise cancellation, the in-vehicle microphone 152 can be used to indirectly determine the optimal cancellation filter at the control point proximity position that tracks changes in the road surface and tire conditions.
 これにより、制御点である耳から離れた位置の任意の位置に車室内マイク152を配置するだけで制御点のノイズキャンセル処理を高精度に実現することが可能となる。また、制御点近接マイク182を設けることなく車室内マイク152を配置するだけでも、高い周波数の騒音に対して十分な消音効果を得ることが可能となる。 As a result, it is possible to achieve highly accurate noise cancellation processing of the control point simply by placing the in-vehicle microphone 152 at any position away from the ear, which is the control point. Also, simply placing the in-vehicle microphone 152 without providing a control point proximity microphone 182 makes it possible to obtain a sufficient noise canceling effect against high-frequency noise.
 <図5のフィルタ生成処理部によるフィルタ生成処理>
 次に、図7のフローチャートを参照して、図5のフィルタ生成処理部181によるフィルタ生成処理について説明する。尚、この処理は、図5のフィルタ生成処理部181が車両1にNC装置33に代えて搭載された状態で、タイヤや路面状況を様々なに変化させながら走行中になされる処理であるものとする。ただし、センサ151-1乃至151-n、車室内マイク152、および制御点近接マイク182が、それぞれ検出する情報が、車両1の走行に伴っていずれもログとして残されているようなときは、それらを利用することでオフラインの状態で実行することも可能である。
<Filter Generation Processing by the Filter Generation Processing Unit in FIG. 5>
Next, the filter generation process by the filter generation processing unit 181 in Fig. 5 will be described with reference to the flowchart in Fig. 7. Note that this process is performed while the vehicle 1 is traveling with various changes in tire and road surface conditions, with the filter generation processing unit 181 in Fig. 5 mounted on the vehicle 1 in place of the NC device 33. However, when the information detected by the sensors 151-1 to 151-n, the in-vehicle microphone 152, and the control point proximity microphone 182 is all left as a log as the vehicle 1 travels, it is also possible to perform the process offline by utilizing the information.
 ステップS31において、フィルタ生成処理部181のセンサフィルタ設計部171およびキャンセルフィルタ設計部191は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を取得する。 In step S31, the sensor filter design unit 171 and the cancellation filter design unit 191 of the filter generation processing unit 181 acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
 ステップS32において、センサフィルタ設計部171は、車室内マイク152により収音された騒音としての音声を入力信号として取得する。 In step S32, the sensor filter design unit 171 acquires the sound as noise picked up by the in-vehicle microphone 152 as an input signal.
 ステップS33において、センサフィルタ設計部171は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、車室内マイク152により収音された騒音としての音声の入力信号とから、騒音としての音声の逆位相の音声を生成するためのNCフィルタを設計し、センサフィルタとして出力する。 In step S33, the sensor filter design unit 171 designs an NC filter for generating sound in the opposite phase to the sound as noise from the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152, and outputs it as a sensor filter.
 ステップS34において、キャンセルフィルタ設計部191は、制御点近接マイク182により収音された騒音からなる音声を入力信号として取得する。 In step S34, the cancellation filter design unit 191 acquires the noise-based audio picked up by the control point proximity microphone 182 as an input signal.
 ステップS35において、キャンセルフィルタ設計部191は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、制御点近接マイク182により収音された騒音としての音声の入力信号とから、騒音としての音声の逆位相の音声を生成するNCフィルタを設計し、キャンセルフィルタとして出力する。 In step S35, the cancellation filter design unit 191 designs an NC filter that generates a sound in the opposite phase to the sound as noise from the sensor signals formed by the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the control point proximity microphone 182, and outputs it as a cancellation filter.
 ステップS36において、対応付け格納処理部192は、センサフィルタ設計部171により設計されたセンサフィルタと、キャンセルフィルタ設計部191により設計されたキャンセルフィルタとを対応付けて、それぞれセンサフィルタセット記憶部172、およびキャンセルフィルタセット記憶部173に格納する。 In step S36, the correspondence storage processing unit 192 associates the sensor filter designed by the sensor filter design unit 171 with the cancellation filter designed by the cancellation filter design unit 191, and stores them in the sensor filter set memory unit 172 and the cancellation filter set memory unit 173, respectively.
 対応付け格納処理部192は、例えば、センサフィルタ設計部171により設計されたセンサフィルタと、キャンセルフィルタ設計部191により設計されたキャンセルフィルタとのそれぞれに共通のIDを付与することにより、双方を対応付けて、それぞれセンサフィルタセット記憶部172、およびキャンセルフィルタセット記憶部173に格納する。 The correspondence storage processing unit 192, for example, assigns a common ID to each of the sensor filter designed by the sensor filter design unit 171 and the cancellation filter designed by the cancellation filter design unit 191, and stores them in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173, respectively, in correspondence with each other.
 ステップS37において、センサフィルタ設計部171およびキャンセルフィルタ設計部191は、処理の終了が指示さたか否かを判定し、終了の指示がなされていない場合、処理は、ステップS31に戻り、それ以降の処理が繰り返される。 In step S37, the sensor filter design unit 171 and the cancellation filter design unit 191 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S31, and the subsequent processes are repeated.
 そして、ステップS37において、終了が指示された場合、処理は終了する。 Then, in step S37, if an instruction to end is given, the process ends.
 以上の処理により、制御点近接マイク182が設置されている状態で、制御点で検出される騒音をキャンセルするためのキャンセルフィルタセットが、車室内マイク152において検出される騒音をキャンセルするためのセンサフィルタセットと対応付けて生成されて格納される。 By the above process, when the control point proximity microphone 182 is installed, a cancellation filter set for canceling noise detected at the control point is generated and stored in association with a sensor filter set for canceling noise detected by the in-vehicle microphone 152.
 すなわち、上述したフィルタ生成処理では、車室内マイク152において収音された音声の逆位相の音声を生成するためのセンサフィルタは、同一のセンサ信号と制御点近接マイク182で収音された音声とからなるNC処理の対象となる制御点における逆位相の音声を生成するためのキャンセルフィルタのラベルとして求められている。このため、センサフィルタとキャンセルフィルタとが対応付けて記憶されることで、キャンセルフィルタにセンサフィルタからなるラベルが付与されて格納されたことになる。 In other words, in the above-mentioned filter generation process, the sensor filter for generating audio of the opposite phase to the audio picked up by the in-vehicle microphone 152 is required as the label of the cancellation filter for generating audio of the opposite phase at the control point that is the target of NC processing consisting of the same sensor signal and the audio picked up by the control point proximity microphone 182. Therefore, by storing the sensor filter and the cancellation filter in correspondence with each other, the cancellation filter is assigned a label consisting of the sensor filter and stored.
 <図4のNC装置によるNC処理>
 次に、図8のフローチャートを参照して、図4のNC装置33によるNC処理について説明する。尚、この処理は、図7のフローチャートを参照して説明した処理によりセンサフィルタとキャンセルフィルタとが対応付けて、センサフィルタセット記憶部172およびキャンセルフィルタセット記憶部173に格納されていることを前提とする。
<NC processing by the NC unit in Figure 4>
Next, the NC processing by the NC device 33 in Fig. 4 will be described with reference to the flowchart in Fig. 8. Note that this processing is premised on the fact that the sensor filters and cancellation filters have been associated with each other and stored in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173 by the processing described with reference to the flowchart in Fig. 7.
 ステップS51において、NC処理部153のセンサフィルタ設計部171およびNC信号計算部175は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を取得する。 In step S51, the sensor filter design unit 171 and the NC signal calculation unit 175 of the NC processing unit 153 acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
 ステップS52において、センサフィルタ設計部171は、車室内マイク152により収音された騒音としての音声を入力信号として取得する。 In step S52, the sensor filter design unit 171 acquires the sound as noise picked up by the in-vehicle microphone 152 as an input signal.
 ステップS53において、センサフィルタ設計部171は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、車室内マイク152により収音された騒音としての音声の入力信号とから、騒音としての音声と逆位相の音声を生成するためのNCフィルタを設計し、センサフィルタとして出力する。 In step S53, the sensor filter design unit 171 designs an NC filter for generating sound in antiphase with the sound as noise from the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152, and outputs it as a sensor filter.
 ステップS54において、対応フィルタ取得部174は、センサフィルタ設計部171により設計されたセンサフィルタを取得し、対応付けて記憶されているキャンセルフィルタをキャンセルフィルタセット記憶部173から検索して取得する。 In step S54, the corresponding filter acquisition unit 174 acquires the sensor filter designed by the sensor filter design unit 171, and searches for and acquires the corresponding stored cancellation filter from the cancellation filter set storage unit 173.
 より詳細には、対応フィルタ取得部174は、センサフィルタ設計部171により設計されたセンサフィルタと対応するセンサフィルタを、センサフィルタセット記憶部172から検索する。 More specifically, the corresponding filter acquisition unit 174 searches the sensor filter set storage unit 172 for a sensor filter that corresponds to the sensor filter designed by the sensor filter design unit 171.
 そして、対応フィルタ取得部174は、検索されたセンサフィルタのIDと対応付けて格納されているキャンセルフィルタを、キャンセルフィルタセット記憶部173から読み出してNC信号計算部175に出力する。 Then, the corresponding filter acquisition unit 174 reads out the cancellation filter stored in association with the ID of the searched sensor filter from the cancellation filter set storage unit 173 and outputs it to the NC signal calculation unit 175.
 ステップS55において、NC信号計算部175は、対応フィルタ取得部174より供給されるキャンセルフィルタを利用して、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を利用して、制御点において観測されることが推定される騒音と逆位相の音声を生成し、スピーカ154より放音し、NC処理を実現する。 In step S55, the NC signal calculation unit 175 uses the cancellation filter provided by the corresponding filter acquisition unit 174 and the sensor signals formed from the sensing results provided by the sensors 151-1 to 151-n to generate sound that is in antiphase with the noise estimated to be observed at the control point, and emits the sound from the speaker 154 to achieve NC processing.
 ステップS56において、センサフィルタ設計部171およびNC信号計算部175は、処理の終了が指示さたか否かを判定し、終了の指示がなされていない場合、処理は、ステップS51に戻り、それ以降の処理が繰り返される。 In step S56, the sensor filter design unit 171 and the NC signal calculation unit 175 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S51 and the subsequent processes are repeated.
 そして、ステップS56において、終了が指示された場合、処理は終了する。 Then, in step S56, if termination is instructed, the process ends.
 上述したように、フィルタ生成処理により制御点の逆位相の音声を生成するためのキャンセルフィルタは、センサフィルタによりラベリングされた状態で格納されている。このため、NC処理において、車室内マイク152で収音された音声と、センサ信号とから求められるセンサフィルタでラベリングされたキャンセルフィルタを読み出して用いることにより、対応する条件の制御点における逆位相の音声を生成して放音することで適切にNC処理を実現することが可能となる。 As described above, the cancellation filter for generating audio in phase with the control point by the filter generation process is stored in a state labeled with a sensor filter. Therefore, in the NC process, by reading and using a cancellation filter labeled with a sensor filter determined from the audio picked up by the in-vehicle microphone 152 and the sensor signal, it is possible to generate and emit audio in phase with the control point of the corresponding conditions, thereby achieving appropriate NC processing.
 結果として、NC処理時において、制御点近接マイク182が設置されていない状態でも、予めフィルタ生成処理により生成された制御点で検出される騒音をキャンセルするためのキャンセルフィルタセットを用いて、制御点における騒音をキャンセルする逆位相の音声を生成して、スピーカ154より放音することで、制御点における騒音を低減させることが可能となる。 As a result, during NC processing, even if the control point proximity microphone 182 is not installed, a cancellation filter set for canceling noise detected at the control point, which has been generated in advance by the filter generation process, is used to generate anti-phase sound that cancels the noise at the control point, and this sound is emitted from the speaker 154, making it possible to reduce the noise at the control point.
 尚、以上の処理により、図4の点線で囲まれるセンサフィルタ設計部171および対応フィルタ取得部174は、センサ151-1乃至151-nのセンサ信号と、車室内マイク152により収音された騒音としての音声の入力信号とに基づいて、NC信号計算部175に対して、制御点におけるキャンセルフィルタを提供する機能を実現していると言える。 It can be said that through the above processing, the sensor filter design unit 171 and the corresponding filter acquisition unit 174, which are surrounded by dotted lines in FIG. 4, realize the function of providing the NC signal calculation unit 175 with a cancellation filter at the control point based on the sensor signals of the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152.
 <<3.第1の実施の形態の第1の変形例>>
 以上においては、フィルタ生成処理時に、車室内マイク152により収音される騒音をキャンセルするためのセンサフィルタを生成し、制御点近接マイク182により収音される騒音をキャンセルするためのキャンセルフィルタと対応付けて格納し、NC処理時に、車室内マイク152により収音される騒音をキャンセルするためのセンサフィルタと対応付けて格納されたキャンセルフィルタを読み出して、制御点における騒音と逆位相となる音声を生成して放音することで、制御点近接マイク182がない状態でも制御点における騒音を適切にキャンセルできるようにしたNC装置33の構成例について説明してきた。
<<3. First Modification of the First Embodiment>>
In the above, an example configuration of the NC device 33 has been described in which, during the filter generation process, a sensor filter for canceling noise picked up by the in-vehicle microphone 152 is generated and stored in association with a cancellation filter for canceling noise picked up by the control point proximity microphone 182, and, during the NC process, the cancellation filter stored in association with the sensor filter for canceling noise picked up by the in-vehicle microphone 152 is read out and a sound that is in antiphase with the noise at the control point is generated and emitted, thereby enabling the noise at the control point to be appropriately canceled even when the control point proximity microphone 182 is not present.
 しかしながら、例えば、トンネル内走行時等、車室外から車室内に伝達される騒音が、平常時に比べて大きい場合がある。この場合、車室内マイク152には、路面やタイヤの状態変化とは無関係な、爆音に近い騒音が入力されることになるため、センサフィルタ設計部171において、フィルタ設計の精度が悪化してしまう可能性がある。 However, for example, when driving through a tunnel, noise transmitted from outside the vehicle cabin to the vehicle cabin may be louder than normal. In this case, the vehicle cabin microphone 152 receives a roaring noise that is unrelated to changes in the road surface or tire conditions, which may cause the accuracy of the filter design in the sensor filter design unit 171 to deteriorate.
 そこで、車室外マイクを設けるようにして、車室外の騒音を収音し、車室内マイク152で検出される騒音から、車室外マイクにおいて収音される車室外の騒音成分を除去することにより、車外において発生する爆音等の騒音により生じる可能性のある悪影響を低減させるようにしてもよい。 In this regard, an exterior microphone may be provided to pick up noise outside the vehicle cabin, and the noise components outside the vehicle cabin picked up by the exterior microphone may be removed from the noise detected by the interior microphone 152, thereby reducing the adverse effects that may be caused by noise such as explosions occurring outside the vehicle.
 図9,図10は、それぞれ車室外にマイクを新たに設けるようにしたNC装置33およびフィルタ生成処理部181の構成例を示している。 Figures 9 and 10 show example configurations of an NC unit 33 and a filter generation processing unit 181, respectively, in which a microphone is newly installed outside the vehicle cabin.
 尚、図9のNC装置33、および図10のフィルタ生成処理部181において、図4のNC装置33、および図5のフィルタ生成処理部181における構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は省略する。 In the NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10, components having the same functions as those in the NC device 33 in FIG. 4 and the filter generation processing unit 181 in FIG. 5 are given the same reference numerals, and their description will be omitted.
 図9のNC装置33、および図10のフィルタ生成処理部181において、図4のNC装置33、および図5のフィルタ生成処理部181と異なる点は、いずれにも新たに車室外マイク211および演算器212,212-1,212-2が設けられている点である。 The NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10 differ from the NC device 33 in FIG. 4 and the filter generation processing unit 181 in FIG. 5 in that they each newly include an exterior microphone 211 and calculators 212, 212-1, and 212-2.
 車室外マイク211は、車両1の後方など、走行時の風雨の影響を受けにくい位置に設置されるものであり、車室外騒音を収音し、演算器212,212-1,212-2に供給する。 The exterior microphone 211 is installed in a position that is less susceptible to wind and rain while driving, such as the rear of the vehicle 1, and picks up noise outside the vehicle and supplies the noise to the calculators 212, 212-1, and 212-2.
 演算器212,212-1,212-2は、車室外マイク211により収音された、センサ151-1乃至151-nのセンシング結果であるセンサ信号と無相関な成分(純粋な車室外の騒音の成分)を推定する。 The calculators 212, 212-1, and 212-2 estimate components that are uncorrelated with the sensor signals (components of pure noise outside the vehicle cabin) that are the sensing results of the sensors 151-1 to 151-n and that are picked up by the exterior microphone 211.
 さらに、演算器212,212-1,212-2は、車室内マイク152より供給される車室内の騒音から、車室外マイク211より供給される車室外の騒音に対応する、車室外の騒音の成分を減算することで除去し、車室内の騒音成分を抽出して、センサフィルタ設計部171およびキャンセルフィルタ設計部191に供給する。 Furthermore, the calculators 212, 212-1, and 212-2 subtract and remove the noise components outside the vehicle cabin that correspond to the noise outside the vehicle cabin supplied from the exterior microphone 211 from the noise inside the vehicle cabin supplied from the interior microphone 152, extract the noise components inside the vehicle cabin, and supply them to the sensor filter design unit 171 and the cancellation filter design unit 191.
 このような構成により、車室外の騒音成分が、車室内に伝達され車室内マイク152に収音されてしまう車室外の騒音成分により、センサフィルタ設計部171およびキャンセルフィルタ設計部191に与える悪影響を低減することが可能となる。 This configuration makes it possible to reduce the adverse effects on the sensor filter design unit 171 and the cancellation filter design unit 191 of noise components outside the vehicle cabin that are transmitted into the vehicle cabin and picked up by the in-vehicle microphone 152.
 尚、図9のNC装置33および図10のフィルタ生成処理部181によるNC処理およびフィルタ生成処理については、車室外マイク211により収音された車室外の騒音の信号から車室外の騒音成分が推定され、車室内マイク152により収音された車室内の騒音から減算されて除去される点を除き、図7,図8のフローチャートを参照して説明したNC処理およびフィルタ生成処理と同様であるので、その説明は省略する。 The NC processing and filter generation processing by the NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10 are the same as the NC processing and filter generation processing described with reference to the flowcharts in FIG. 7 and FIG. 8, except that the noise components outside the vehicle cabin are estimated from the signal of the noise outside the vehicle cabin picked up by the exterior microphone 211 and are subtracted and removed from the noise inside the vehicle cabin picked up by the interior microphone 152, so a description thereof will be omitted.
 <<4.第1の実施の形態の第2の変形例>>
 以上においては、車室外マイク211を設けるようにして、車室外の騒音成分を車室内マイク152により収音された車室内の騒音から減算して除去することで、車室外の騒音による悪影響を低減させる例について説明してきた。
<<4. Second Modification of the First Embodiment>>
The above has described an example in which the adverse effects of noise outside the vehicle cabin are reduced by providing an exterior microphone 211 and subtracting and removing the noise components outside the vehicle cabin from the noise inside the vehicle cabin picked up by the interior microphone 152.
 しかしながら、車室外の音声(騒音)には、クラクションや近接の大型トラックの通過音など、突発的に大音響なることが避けられない音声が発生する場合がある。このような場合、車室内マイク152への入力に対し、車室外の騒音による影響が支配的になり、演算器212,212-1,212-2により車室内マイク152により入力される車室外の騒音成分を推定して減算しただけでは、車室外の騒音による悪影響を十分に低減できなくなる可能性がある。 However, there are cases where the sounds (noise) outside the vehicle cabin are unavoidably loud, such as honking or the sound of a nearby large truck passing by. In such cases, the influence of the noise outside the vehicle cabin becomes dominant over the input to the in-vehicle microphone 152, and it may not be possible to sufficiently reduce the adverse effects of the noise outside the vehicle cabin simply by estimating and subtracting the noise components outside the vehicle cabin input by the in-vehicle microphone 152 using the calculators 212, 212-1, and 212-2.
 センサフィルタやキャンセルフィルタは、基本的には車室内において発生する騒音の逆位相の音声を放音することで騒音をキャンセルさせるものであるため、車室外の突発的な大音響による影響を受けて、車室内の騒音の逆位相の音声として、不適切な音声が生成されて発せられると、ユーザにはノイズと認識される音声が放音されてしまう恐れがある。 Sensor filters and cancellation filters basically cancel noise by emitting audio that is in the opposite phase to the noise generated inside the vehicle cabin. Therefore, if a sudden loud sound outside the vehicle causes an inappropriate audio to be generated and emitted as an audio that is in the opposite phase to the noise inside the vehicle cabin, there is a risk that the audio that is emitted will be recognized as noise by the user.
 そこで、フィルタ生成処理時において、車室外の騒音が所定の音圧レベル以上であるときには、センサフィルタ設計部171およびキャンセルフィルタ設計部191におけるフィルタの設計を行わないようにしてもよい。また、これに対応して、NC処理時には、NC処理を停止したり、直前のキャンセルフィルタをそのまま使用するようにしてもよい。 Therefore, during the filter generation process, when the noise outside the vehicle cabin is equal to or greater than a predetermined sound pressure level, the sensor filter design unit 171 and the cancellation filter design unit 191 may not design a filter. Correspondingly, during NC processing, the NC processing may be stopped or the immediately preceding cancellation filter may be used as is.
 図11は、NC処理時において、車室外の騒音が所定の音圧レベル以上であるときには、NC処理を停止したり、直前のキャンセルフィルタをそのまま使用するようにしたNC装置33の構成例を示している。 FIG. 11 shows an example of the configuration of the NC device 33 that stops NC processing or uses the previous cancellation filter as is when the noise outside the vehicle cabin exceeds a predetermined sound pressure level during NC processing.
 また、図12は、フィルタ生成時において、車室外の騒音が所定の音圧レベル以上であるときには、センサフィルタ設計部171およびキャンセルフィルタ設計部191におけるフィルタの設計を行わないようにして、図11のNC装置33のセンサフィルタセット記憶部172およびキャンセルフィルタセット記憶部173に格納するフィルタ生成処理部181の構成例を示している。 FIG. 12 also shows an example of the configuration of a filter generation processing unit 181 that, when generating a filter, does not design filters in the sensor filter design unit 171 and the cancellation filter design unit 191 when the noise outside the vehicle cabin is equal to or greater than a predetermined sound pressure level, and stores the results in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173 of the NC device 33 in FIG. 11.
 尚、図11のNC装置33、および図12のフィルタ生成処理部181において、図9のNC装置33、および図10のフィルタ生成処理部181における構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は省略する。 In the NC device 33 in FIG. 11 and the filter generation processing unit 181 in FIG. 12, components having the same functions as those in the NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10 are given the same reference numerals, and their description will be omitted.
 図11のNC装置33、および図12のフィルタ生成処理部181において、図9のNC装置33、および図10のフィルタ生成処理部181と異なる点は、いずれにも新たに車室外音判定部221が設けられている点である。 The NC device 33 in FIG. 11 and the filter generation processing unit 181 in FIG. 12 differ from the NC device 33 in FIG. 9 and the filter generation processing unit 181 in FIG. 10 in that both are newly equipped with an external sound determination unit 221.
 車室外音判定部221は、車室外の騒音の音圧レベル算出処理により車室外の音圧レベルを算出し、所定の閾値との比較により、車室外の騒音の音圧レベルが所定の閾値よりも大きい時には、センサフィルタ設計部171およびキャンセルフィルタ設計部191の動作を停止させるようにする。 The exterior sound determination unit 221 calculates the sound pressure level outside the vehicle cabin by performing a sound pressure level calculation process for the noise outside the vehicle cabin, and when the sound pressure level of the noise outside the vehicle cabin is greater than a predetermined threshold value as a result of comparison with the predetermined threshold value, it stops the operation of the sensor filter design unit 171 and the cancellation filter design unit 191.
 より詳細には、車室外音判定部221は、例えば、特定の帯域、または、全帯域において、1秒ごとに平均音圧レベルを算出し、閾値判定において、平均音圧レベルが、所定の閾値よりも大きいか否かを判定し、所定の閾値よりも大きい場合、センサフィルタ設計部171およびキャンセルフィルタ設計部191におけるセンサフィルタおよびキャンセルフィルタの設計を停止させる。 More specifically, the external sound determination unit 221 calculates the average sound pressure level every second, for example, in a specific band or in the entire band, and in the threshold determination, determines whether the average sound pressure level is greater than a predetermined threshold. If it is greater than the predetermined threshold, the sensor filter design unit 171 and the cancellation filter design unit 191 stop designing the sensor filter and the cancellation filter.
 一方で、平均音圧レベルが所定の閾値よりも小さい場合、センサフィルタ設計部171およびキャンセルフィルタ設計部191におけるセンサフィルタおよびキャンセルフィルタの設計が行われるようにして、センサフィルタセット記憶部172、およびキャンセルフィルタセット記憶部173のそれぞれにセンサフィルタおよびキャンセルフィルタが対応付けて格納されるようにする。 On the other hand, if the average sound pressure level is smaller than the predetermined threshold, the sensor filter and cancellation filter are designed in the sensor filter design unit 171 and the cancellation filter design unit 191, and the sensor filter and cancellation filter are stored in association with each other in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173, respectively.
 所定の閾値は、例えば、悪影響が想定されるようなジェットエンジン音、汽笛、クラクション、サイレン、および大型トラックの通過時の騒音レベル等を事前計測し、決定しておくようにしてもよい。 The specified threshold value may be determined in advance by measuring, for example, the noise levels of jet engine sounds, train whistles, horns, sirens, and the passing of large trucks, which are likely to have adverse effects.
 また、所定の閾値との比較については、平均音圧レベルを用いる以外にも、車室内マイク152と車室外マイク211への入力される信号の、相互相関を用いて判定を行ってもよい。 In addition, in addition to using the average sound pressure level, the comparison with the predetermined threshold value may be made using the cross-correlation between the signals input to the in-vehicle microphone 152 and the outside-vehicle microphone 211.
 例えば、車室外騒音が大きい場合や車の窓が開いている場合、車室内マイク152における車室外の騒音の影響が支配的になるので、車室内マイク152と車室外マイク211への入力信号の相関が大きくなる。 For example, when the noise outside the vehicle cabin is loud or when the vehicle windows are open, the effect of the noise outside the vehicle cabin on the in-vehicle microphone 152 becomes dominant, and the correlation between the input signals to the in-vehicle microphone 152 and the in-vehicle microphone 211 becomes large.
 そこで、車室外音判定部221は、車室内マイク152と車室外マイク211への入力信号の相互相関を求め、相互相関が所定の閾値より大きい(例えば0.7以上の強い相関がある)ときには、車室外の騒音が大きく、フィルタの設計に悪影響を与える可能性があるものとみなし、センサフィルタ設計部171およびキャンセルフィルタ設計部191におけるセンサフィルタおよびキャンセルフィルタの設計を停止させるようにしてもよい。 The vehicle exterior sound determination unit 221 therefore calculates the cross-correlation between the input signals to the vehicle interior microphone 152 and the vehicle exterior microphone 211, and when the cross-correlation is greater than a predetermined threshold (for example, there is a strong correlation of 0.7 or more), it may determine that the noise outside the vehicle is large and may adversely affect the filter design, and may stop the design of the sensor filter and the cancellation filter in the sensor filter design unit 171 and the cancellation filter design unit 191.
 尚、図11,図12の車室外音判定部221には、車室内マイク152と車室外マイク211とのそれぞれからの入力信号を取得できる構成とされており、上述した車室外の騒音の平均音圧レベルおよび車室内マイク152と車室外マイク211との入力信号の相互相関のいずれを用いて、車室外の騒音のレベルと所定の閾値との比較をしてもよく、両方を使用して判定するようにしてもよい。 The vehicle exterior sound determination unit 221 in Figures 11 and 12 is configured to be able to acquire input signals from both the vehicle interior microphone 152 and the vehicle exterior microphone 211, and may use either the average sound pressure level of the noise outside the vehicle interior or the cross-correlation of the input signals from the vehicle interior microphone 152 and the vehicle exterior microphone 211 described above to compare the level of the noise outside the vehicle interior with a predetermined threshold value, or may use both to make a determination.
 <図12のフィルタ生成処理部によるフィルタ生成処理>
 次に、図13のフローチャートを参照して、図12のフィルタ生成処理部181によるフィルタ生成処理について説明する。
<Filter Generation Processing by the Filter Generation Processing Unit in FIG. 12>
Next, the filter generation process performed by the filter generation processing unit 181 in FIG. 12 will be described with reference to the flowchart in FIG.
 ステップS71において、フィルタ生成処理部181のセンサフィルタ設計部171およびキャンセルフィルタ設計部191は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を取得する。 In step S71, the sensor filter design unit 171 and the cancellation filter design unit 191 of the filter generation processing unit 181 acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
 ステップS72において、演算器212-1は、車室外マイク211により収音された車室外の騒音としての音声の入力信号に基づいて、車室内マイク152により収音された車室内の騒音としての音声の入力信号における車室外の騒音成分を推定し、減算して補正し、センサフィルタ設計部171に供給する。 In step S72, the calculator 212-1 estimates the noise components outside the vehicle cabin in the input signal of the voice as noise inside the vehicle cabin picked up by the interior microphone 152 based on the input signal of the voice as noise outside the vehicle cabin picked up by the exterior microphone 211, subtracts and corrects the noise components, and supplies the result to the sensor filter design unit 171.
 ステップS73において、車室外音判定部221は、車室外マイク211により収音された車室外の騒音としての音声信号の入力信号に基づいて、平均音圧レベルを算出する。または、車室外音判定部221は、車室外マイク211により収音された車室外の騒音としての音声の入力信号と、車室内マイク152により収音された車室内の騒音としての音声の入力信号との相互相関を算出する。 In step S73, the vehicle exterior sound determination unit 221 calculates an average sound pressure level based on the input signal of the audio signal representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211. Alternatively, the vehicle exterior sound determination unit 221 calculates the cross-correlation between the input signal of the audio representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211 and the input signal of the audio representing noise inside the vehicle cabin picked up by the vehicle interior microphone 152.
 ステップS74において、車室外音判定部221は、平均音圧レベルまたは相互相関が所定の閾値よりも大きく、車室外の騒音が所定レベルよりも大きいか否かを判定する。 In step S74, the external sound determination unit 221 determines whether the average sound pressure level or cross-correlation is greater than a predetermined threshold and whether the noise outside the vehicle cabin is greater than a predetermined level.
 ステップS74において、平均音圧レベルまたは相互相関が所定の閾値よりも小さく、車室外の騒音が所定レベルよりも小さいとみなされた場合、処理は、ステップS75に進む。 If, in step S74, the average sound pressure level or cross-correlation is less than a predetermined threshold and the noise outside the vehicle cabin is deemed to be less than a predetermined level, processing proceeds to step S75.
 ステップS75において、センサフィルタ設計部171は、センサフィルタ設計部171は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、補正された車室内マイク152により収音された騒音としての音声の入力信号とから、NCフィルタを設計し、センサフィルタとして出力する。 In step S75, the sensor filter design unit 171 designs an NC filter from the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the corrected sound picked up by the in-vehicle microphone 152 as noise, and outputs it as a sensor filter.
 ステップS76において、演算器212-2は、車室外マイク211により収音された車室外の騒音としての音声の入力信号に基づいて、制御点近接マイク182により収音された制御点の騒音としての音声の入力信号における車室外の騒音成分を推定し、減算して補正し、キャンセルフィルタ設計部191に供給する。 In step S76, the calculator 212-2 estimates the noise components outside the vehicle cabin in the input signal of the sound as noise at the control point picked up by the control point proximity microphone 182 based on the input signal of the sound as noise outside the vehicle cabin picked up by the exterior microphone 211, subtracts and corrects the noise components, and supplies the result to the cancellation filter design unit 191.
 ステップS77において、キャンセルフィルタ設計部191は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、補正された、制御点近接マイク182により収音された騒音としての音声の入力信号とからNCフィルタを設計し、キャンセルフィルタとして出力する。 In step S77, the cancellation filter design unit 191 designs an NC filter from the sensor signals formed by the sensing results supplied from the sensors 151-1 to 151-n and the corrected input signal of the sound as noise picked up by the control point proximity microphone 182, and outputs it as a cancellation filter.
 ステップS78において、対応付け格納処理部192は、センサフィルタ設計部171により設計されたセンサフィルタと、キャンセルフィルタ設計部191により設計されたキャンセルフィルタとを対応付けて、それぞれセンサフィルタセット記憶部172、およびキャンセルフィルタセット記憶部173に格納する。 In step S78, the correspondence storage processing unit 192 associates the sensor filter designed by the sensor filter design unit 171 with the cancellation filter designed by the cancellation filter design unit 191, and stores them in the sensor filter set memory unit 172 and the cancellation filter set memory unit 173, respectively.
 一方、ステップS74において、平均音圧レベルまたは相互相関が所定の閾値よりも大きく、車室外の騒音が所定レベルよりも大きいとみなされた場合、ステップS75乃至S78の処理がスキップされる。すなわち、車室外の騒音が所定レベルよりも大きいとみなされた場合、設計されるセンサフィルタやキャンセルフィルタには、車室外の騒音による悪影響が出る可能性があるので、設計が停止される。 On the other hand, if in step S74 the average sound pressure level or cross-correlation is greater than the predetermined threshold and the noise outside the vehicle cabin is deemed to be greater than the predetermined level, the processing of steps S75 to S78 is skipped. In other words, if the noise outside the vehicle cabin is deemed to be greater than the predetermined level, the design of the sensor filter and cancellation filter is stopped because there is a possibility that the noise outside the vehicle cabin will adversely affect the sensor filter and cancellation filter to be designed.
 ステップS79において、センサフィルタ設計部171およびキャンセルフィルタ設計部191は、処理の終了が指示さたか否かを判定し、終了の指示がなされていない場合、処理は、ステップS71に戻り、それ以降の処理が繰り返される。 In step S79, the sensor filter design unit 171 and the cancellation filter design unit 191 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S71, and the subsequent processes are repeated.
 そして、ステップS79において、終了が指示された場合、処理は終了する。 Then, in step S79, if an instruction to end is given, the process ends.
 以上の処理により、制御点近接マイク182が設置されている状態で、制御点で検出される騒音をキャンセルするためのキャンセルフィルタセットが、車室内マイク152において検出される騒音をキャンセルするためのセンサフィルタセットと対応付けて生成されて格納される。この際、車室外の騒音のレベルが所定レベルよりも大きいとみなされるときには、センサフィルタやキャンセルフィルタの設計が停止されることになるので、悪影響を受けて不適切なキャンセルフィルタが設計(生成)されない。 By the above process, when the control point proximity microphone 182 is installed, a cancellation filter set for canceling noise detected at the control point is generated and stored in association with a sensor filter set for canceling noise detected by the in-vehicle microphone 152. At this time, when the level of noise outside the vehicle cabin is deemed to be greater than a predetermined level, the design of the sensor filter and cancellation filter is stopped, so that an inappropriate cancellation filter that would be adversely affected is not designed (generated).
 <図11のNC装置によるNC処理>
 次に、図14のフローチャートを参照して、図4のNC装置33によるNC処理について説明する。尚、この処理は、図7のフローチャートを参照して説明した処理によりセンサフィルタとキャンセルフィルタとが対応付けて、センサフィルタセット記憶部172およびキャンセルフィルタセット記憶部173に格納されていることを前提とする。
<NC processing by the NC device in FIG. 11>
Next, the NC processing by the NC device 33 in Fig. 4 will be described with reference to the flowchart in Fig. 14. Note that this processing is premised on the fact that the sensor filters and cancellation filters have been associated with each other and stored in the sensor filter set storage unit 172 and the cancellation filter set storage unit 173 by the processing described with reference to the flowchart in Fig. 7.
 ステップS91において、NC処理部153のセンサフィルタ設計部171およびNC信号計算部175は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を取得する。 In step S91, the sensor filter design unit 171 and the NC signal calculation unit 175 of the NC processing unit 153 acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
 ステップS92において、演算器212は、車室外マイク211により収音された車室外の騒音としての音声の入力信号に基づいて、車室内マイク152により収音された車室内の騒音としての音声の入力信号における車室外の騒音成分を推定し、減算して補正し、センサフィルタ設計部171に供給する。 In step S92, the calculator 212 estimates the noise components outside the vehicle cabin in the input signal of the voice as noise inside the vehicle cabin picked up by the interior microphone 152 based on the input signal of the voice as noise outside the vehicle cabin picked up by the exterior microphone 211, subtracts and corrects the estimated noise components, and supplies the result to the sensor filter design unit 171.
 ステップS93において、車室外音判定部221は、車室外マイク211により収音された車室外の騒音としての音声信号の入力信号に基づいて、平均音圧レベルを算出する。または、車室外音判定部221は、車室外マイク211により収音された車室外の騒音としての音声信号の入力信号と、車室内マイク152により収音された車室内の騒音としての音声信号の入力信号との相互相関を算出する。 In step S93, the vehicle exterior sound determination unit 221 calculates an average sound pressure level based on the input signal of the audio signal representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211. Alternatively, the vehicle exterior sound determination unit 221 calculates the cross-correlation between the input signal of the audio signal representing noise outside the vehicle cabin picked up by the vehicle exterior microphone 211 and the input signal of the audio signal representing noise inside the vehicle cabin picked up by the vehicle interior microphone 152.
 ステップS94において、車室外音判定部221は、平均音圧レベルまたは相互相関が所定の閾値よりも大きく、車室外の騒音が所定レベルよりも大きいか否かを判定する。 In step S94, the external sound determination unit 221 determines whether the average sound pressure level or cross-correlation is greater than a predetermined threshold and whether the noise outside the vehicle cabin is greater than a predetermined level.
 ステップS94において、平均音圧レベルまたは相互相関が所定の閾値よりも小さく、車室外の騒音が所定レベルよりも小さいとみなされた場合、処理は、ステップS95に進む。 If, in step S94, the average sound pressure level or cross-correlation is less than a predetermined threshold and the noise outside the vehicle cabin is deemed to be less than a predetermined level, processing proceeds to step S95.
 ステップS95において、センサフィルタ設計部171は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、補正された車室内マイク152により収音された騒音としての音声信号を入力信号とからNCフィルタを設計し、センサフィルタとして出力する。 In step S95, the sensor filter design unit 171 designs an NC filter from the sensor signals formed by the sensing results supplied from the sensors 151-1 to 151-n and the input signal, which is the corrected audio signal as noise picked up by the in-vehicle microphone 152, and outputs it as a sensor filter.
 ステップS96において、対応フィルタ取得部174は、センサフィルタ設計部171により設計されたセンサフィルタを取得し、対応付けて記憶されているキャンセルフィルタをキャンセルフィルタセット記憶部173から検索して取得し、NC信号計算部175に出力する。 In step S96, the corresponding filter acquisition unit 174 acquires the sensor filter designed by the sensor filter design unit 171, searches for and acquires the corresponding stored cancellation filter from the cancellation filter set storage unit 173, and outputs it to the NC signal calculation unit 175.
 ステップS97において、NC信号計算部175は、対応フィルタ取得部174より供給されるキャンセルフィルタを利用して、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を利用して、制御点において観測されることが推定される騒音と逆位相の音声を生成し、スピーカ154より放音する。 In step S97, the NC signal calculation unit 175 uses the cancellation filter provided by the corresponding filter acquisition unit 174 and the sensor signal formed from the sensing results provided by the sensors 151-1 to 151-n to generate a sound that is in antiphase with the noise estimated to be observed at the control point, and emits the sound from the speaker 154.
 尚、ステップS94において、車室外音判定部221は、平均音圧レベルまたは相互相関が所定の閾値よりも大きく、車室外の騒音が所定レベルよりも大きいと判定された場合、ステップS95乃至S97の処理がスキップされる。すなわち、平均音圧レベルまたは相互相関が所定の閾値よりも大きく、車室外の騒音が所定レベルよりも大きいと判定された場合、対応するキャンセルフィルタが生成されていないので、実質的に、NC処理が停止した状態とされる。なお、ここでは、NC処理が停止する例について説明しているが、直前に使用していたキャンセルフィルタをそのまま使用するようにしてもよい。 In step S94, if the external sound determination unit 221 determines that the average sound pressure level or cross-correlation is greater than a predetermined threshold and that the noise outside the vehicle cabin is greater than a predetermined level, steps S95 to S97 are skipped. In other words, if the average sound pressure level or cross-correlation is greater than a predetermined threshold and that the noise outside the vehicle cabin is greater than a predetermined level, a corresponding cancellation filter has not been generated, so the NC processing is essentially stopped. Note that, although an example in which the NC processing is stopped is described here, the cancellation filter used immediately before may be used as is.
 ステップS98において、センサフィルタ設計部171およびNC信号計算部175は、処理の終了が指示さたか否かを判定し、終了の指示がなされていない場合、処理は、ステップS91に戻り、それ以降の処理が繰り返される。 In step S98, the sensor filter design unit 171 and the NC signal calculation unit 175 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S91 and the subsequent processes are repeated.
 そして、ステップS98において、終了が指示された場合、処理は終了する。 Then, in step S98, if termination is instructed, the process ends.
 以上の処理により、制御点近接マイク182が設置されていない状態でも、予めフィルタ生成処理により生成された制御点で検出される騒音をキャンセルするためのキャンセルフィルタセットを用いて、制御点における騒音をキャンセルする逆位相の音声を生成して、スピーカ154より放音することで、制御点における騒音を低減させることが可能となる。また、サイレン、汽笛、クラクション、トンネル内など、車室外の騒音のレベルが所定レベルよりも大きいとみなされるときには、キャンセルフィルタを用いたNC処理が停止されることになるので、悪影響を受けて不適切な設計により生成されたキャンセルフィルタが使用されない。 By the above process, even when the control point proximity microphone 182 is not installed, a cancellation filter set for canceling noise detected at the control point, which has been generated in advance by the filter generation process, is used to generate anti-phase sound that cancels the noise at the control point, and this sound is emitted from the speaker 154, making it possible to reduce the noise at the control point. Also, when the level of noise outside the vehicle cabin, such as a siren, whistle, horn, or inside a tunnel, is deemed to be greater than a predetermined level, the NC process using the cancellation filter is stopped, so that a cancellation filter that has been adversely affected and generated with an inappropriate design is not used.
 なお、ここでは、車室外の騒音が所定レベルよりも大きいとみなされた場合、NC処理が停止する例について説明しているが、直前に使用していたキャンセルフィルタをそのまま使用するようにしてもよい。 Note that, although an example is described here in which the NC process stops when the noise outside the vehicle cabin is deemed to be greater than a predetermined level, the cancellation filter that was used immediately before may be used as is.
 <<5.第1の実施の形態の第3の変形例>>
 以上においては、フィルタ生成処理時にセンサフィルタおよびキャンセルフィルタを予め対応付けて設計し、NC処理時に設計されるセンサフィルタと対応するキャンセルフィルタを読み出して、読み出したキャンセルフィルタを利用して逆位相の音声を生成し、放音することでNCを実現させる例について説明してきた。
<<5. Third Modification of the First Embodiment>>
In the above, an example has been described in which a sensor filter and a cancellation filter are designed in advance in correspondence with each other during the filter generation process, a cancellation filter corresponding to the sensor filter designed during NC processing is read out, and an anti-phase sound is generated and emitted using the read cancellation filter, thereby achieving NC.
 しかしながら、以下のような構成としてもよい。すなわち、フィルタ生成時に車室内マイク152により収音される車室内の騒音と、センサ151-1乃至151-nのセンシング結果となるセンサ信号を生徒データとし、制御点における逆位相の音声を生成するキャンセルフィルタとそのIDを教師データとして、制御点における逆位相の音声を生成するキャンセルフィルタのIDを推論する学習済モデルを予め学習により生成する。 However, the following configuration may also be used. That is, the noise inside the vehicle cabin picked up by the in-vehicle microphone 152 when the filter is generated and the sensor signals resulting from sensing by the sensors 151-1 to 151-n are used as student data, and a cancellation filter that generates sound with an opposite phase at the control point and its ID are used as teacher data, and a trained model that infers the ID of the cancellation filter that generates sound with an opposite phase at the control point is generated by pre-training.
 そして、NC処理時には、予め生成された学習済モデルにより、フィルタ生成時に車室内マイク152により収音される車室内の騒音と、センサ151-1乃至151-nのセンシング結果となるセンサ信号から、制御点における逆位相の音声を生成するキャンセルフィルタのIDを推論させ、推論結果となるIDと対応するキャンセルフィルタを検索して読み出し、制御点における逆位相の音声を生成させて、放音することで、制御点におけるNC処理を実現するようにしてもよい。 Then, during NC processing, the pre-generated trained model is used to infer the ID of a cancellation filter that generates an anti-phase sound at the control point from the noise inside the vehicle cabin picked up by the vehicle cabin microphone 152 when the filter is generated and the sensor signals that are the sensing results of the sensors 151-1 to 151-n, and the cancellation filter that corresponds to the ID that is the inferred result is searched for and read out, and the anti-phase sound at the control point is generated and emitted, thereby achieving NC processing at the control point.
 図15は、NC処理時において、車室内の騒音と、センサ信号とから、学習済みモデルにより、制御点における逆位相の音声を生成するためのキャンセルフィルタのIDを推論し、推論結果となるIDと対応するキャンセルフィルタを検索して読み出し、読み出したキャンセルフィルタによりNC処理を実現するようにしたNC処理部の構成例153’を示している。 FIG. 15 shows an example configuration 153' of an NC processing unit that, during NC processing, infers the ID of a cancellation filter for generating antiphase sound at a control point from noise inside the vehicle cabin and sensor signals using a trained model, searches for and reads out a cancellation filter that corresponds to the inferred ID, and performs NC processing using the read cancellation filter.
 また、図16は、フィルタ生成処理時において、制御点の騒音とセンサ信号とから、制御点における逆位相の音声を生成するためのキャンセルフィルタを設計してIDと対応付けて格納すると共に、車室内の騒音とセンサ信号とからキャンセルフィルタのIDを推論する学習済モデルを学習させて記憶するようにしたフィルタ生成処理部181’の構成例を示している。 FIG. 16 also shows an example of the configuration of a filter generation processing unit 181' that, during filter generation processing, designs a cancellation filter for generating antiphase sound at a control point from the noise at the control point and the sensor signal, stores the cancellation filter in association with an ID, and learns and stores a trained model that infers the ID of the cancellation filter from the noise in the vehicle cabin and the sensor signal.
 図15のNC処理部153’は、DNN推論部251、学習済モデル記憶部252、フィルタ検索部253、キャンセルフィルタセット記憶部254、およびNC信号計算部255を
備えている。
The NC processing unit 153 ′ in FIG. 15 includes a DNN inference unit 251 , a learned model memory unit 252 , a filter search unit 253 , a cancellation filter set memory unit 254 , and an NC signal calculation unit 255 .
 尚、キャンセルフィルタセット記憶部254、およびNC信号計算部255は、キャンセルフィルタセット記憶部173、およびNC信号計算部175と同一の構成であるので、その説明は省略する。 Note that the cancellation filter set storage unit 254 and the NC signal calculation unit 255 have the same configuration as the cancellation filter set storage unit 173 and the NC signal calculation unit 175, so their description will be omitted.
 DNN推論部251は、図16のフィルタ生成処理部181’によるフィルタ生成時に、DNN学習部273においてなされる機械学習により生成されるDNN(Deep Neural Network)からなる学習済モデル記憶部252に記憶された学習済モデルを読み出す。 When a filter is generated by the filter generation processing unit 181' in FIG. 16, the DNN inference unit 251 reads out a learned model stored in the learned model storage unit 252, which consists of a DNN (Deep Neural Network) generated by machine learning performed in the DNN learning unit 273.
 そして、DNN推論部251は、学習済モデルに基づいて機能し、車室内マイク152により収音される車室内の騒音およびセンサ151-1乃至151-nのセンサ信号に基づいて、制御点における逆位相の音声を生成するためのキャンセルフィルタのIDを推論し、推論結果となるIDをフィルタ検索部253に出力する。 Then, the DNN inference unit 251 functions based on the learned model, and infers the ID of a cancellation filter for generating anti-phase sound at the control point based on the noise inside the vehicle cabin picked up by the in-vehicle microphone 152 and the sensor signals of the sensors 151-1 to 151-n, and outputs the inferred ID to the filter search unit 253.
 このため、DNN推論部251は、車室内の騒音およびセンサ信号から、制御点における逆位相の音声を生成するためキャンセルフィルタのIDを推論結果としてフィルタ検索部253に出力する。 For this reason, the DNN inference unit 251 outputs the ID of the cancellation filter to the filter search unit 253 as an inference result to generate anti-phase audio at the control point from the noise and sensor signal inside the vehicle cabin.
 フィルタ検索部253は、キャンセルフィルタセット記憶部254にアクセスし、DNN推論部251より供給されるIDと対応付けて格納されているキャンセルフィルタを検索し、検索したキャンセルフィルタをNC信号計算部255に供給する。 The filter search unit 253 accesses the cancellation filter set storage unit 254, searches for a cancellation filter stored in association with the ID supplied by the DNN inference unit 251, and supplies the searched cancellation filter to the NC signal calculation unit 255.
 図16のフィルタ生成処理部181’は、学習済モデル記憶部252、キャンセルフィルタセット記憶部254、キャンセルフィルタ設計部271、フィルタ記録制御部272、およびDNN学習部273を備えている。 The filter generation processing unit 181' in FIG. 16 includes a trained model storage unit 252, a cancellation filter set storage unit 254, a cancellation filter design unit 271, a filter recording control unit 272, and a DNN learning unit 273.
 尚、キャンセルフィルタ設計部271は、図12のキャンセルフィルタ設計部191と同様であるので、その説明は省略する。 Note that the cancellation filter design unit 271 is similar to the cancellation filter design unit 191 in FIG. 12, so its description will be omitted.
 フィルタ記録制御部272は、キャンセルフィルタ設計部271より供給されるキャンセルフィルタをキャンセルフィルタセット記憶部254に格納する。より詳細には、フィルタ記録制御部272は、生成されたキャンセルフィルタのフィルタ係数のステップ間の変化率が一定値未満に収まっていることを検出したとき、または、制御点近接マイク182により収音される騒音の音声信号のRMS値の時間変化率が所定の値を下回ったことを検出したときなどのタイミングでキャンセルフィルタセット記憶部254に、IDと対応付けて、キャンセルフィルタを記録するとともに、さらに、DNN学習部273の教師データとして出力する。 The filter recording control unit 272 stores the cancellation filter supplied from the cancellation filter design unit 271 in the cancellation filter set storage unit 254. More specifically, when the filter recording control unit 272 detects that the rate of change between steps of the filter coefficient of the generated cancellation filter is less than a certain value, or when it detects that the rate of change over time of the RMS value of the audio signal of the noise picked up by the control point proximity microphone 182 has fallen below a predetermined value, the filter recording control unit 272 records the cancellation filter in association with the ID in the cancellation filter set storage unit 254, and further outputs the cancellation filter as teacher data for the DNN learning unit 273.
 キャンセルフィルタと対応付けて設定されるIDは、類似するキャンセルフィルタが近接するIDとなるようにキャンセルフィルタの類似度に応じた配列にする、または、キャンセルフィルタ間の距離尺度と相関する量をIDとして用いるなど、DNN推論部251の推論結果の誤差に起因するNC処理の性能劣化が小さくなるよう考慮することが望ましい。 It is desirable to consider minimizing the degradation of performance of NC processing due to errors in the inference results of the DNN inference unit 251, such as arranging the IDs associated with the cancellation filters according to the similarity of the cancellation filters so that similar cancellation filters have close IDs, or using a quantity that correlates with the distance measure between cancellation filters as the ID.
 DNN学習部273は、車室内マイク152により収音される車室内の騒音とセンサ信号を生徒データとし、制御点における逆位相の音声を生成するキャンセルフィルタとそのIDを教師データとして学習し、制御点における逆位相の音声を生成するキャンセルフィルタのIDを推論する学習済モデルを予め学習により生成し、学習済モデル記憶部252に格納する。 The DNN learning unit 273 uses the noise inside the vehicle cabin picked up by the in-vehicle microphone 152 and the sensor signal as student data, learns the cancellation filter that generates the antiphase sound at the control point and its ID as teacher data, generates a learned model by pre-learning that infers the ID of the cancellation filter that generates the antiphase sound at the control point, and stores it in the learned model storage unit 252.
 <図16のフィルタ生成処理部によるフィルタ生成処理>
 次に、図17のフローチャートを参照して、図16のフィルタ生成処理部181’によるフィルタ生成処理について説明する。
<Filter Generation Processing by the Filter Generation Processing Unit in FIG. 16>
Next, the filter generation process performed by the filter generation processing unit 181' in FIG. 16 will be described with reference to the flowchart in FIG.
 ステップS111において、フィルタ生成処理部181’のDNN学習部273およびキャンセルフィルタ設計部271は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を取得する。 In step S111, the DNN learning unit 273 and the cancellation filter design unit 271 of the filter generation processing unit 181' acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
 ステップS112において、キャンセルフィルタ設計部271は、制御点近接マイク182により収音された騒音からなる音声を入力信号として取得する。 In step S112, the cancellation filter design unit 271 acquires the noise-based audio picked up by the control point proximity microphone 182 as an input signal.
 ステップS113において、キャンセルフィルタ設計部271は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、制御点近接マイク182により収音された騒音としての音声信号を入力信号とからNCフィルタを設計し、キャンセルフィルタとして出力する。 In step S113, the cancellation filter design unit 271 designs an NC filter from the input signal, which is the sensor signal formed by the sensing results supplied from the sensors 151-1 to 151-n and the audio signal as noise picked up by the control point proximity microphone 182, and outputs it as a cancellation filter.
 ステップS114において、フィルタ記録制御部272は、キャンセルフィルタ設計部271により設計されたキャンセルフィルタをIDと対応付けて、キャンセルフィルタセット記憶部254に格納すると共に、キャンセルフィルタのIDを教師データとしてDNN学習部273に出力する。 In step S114, the filter recording control unit 272 associates the cancellation filter designed by the cancellation filter design unit 271 with an ID, stores the cancellation filter in the cancellation filter set storage unit 254, and outputs the cancellation filter ID to the DNN learning unit 273 as teacher data.
 ステップS115において、DNN学習部273は、車室内マイク152により収音された騒音としての音声を入力信号として取得する。 In step S115, the DNN learning unit 273 acquires the noise-containing sound picked up by the in-vehicle microphone 152 as an input signal.
 ステップS116において、DNN学習部273は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、車室内マイク152により収音された騒音としての音声の入力信号とを生徒データとし、フィルタ記録制御部272より供給されるキャンセルフィルタとそのIDを教師データとして、センサ信号と車室内マイク152により収音された騒音としての音声の入力信号から、制御点における逆位相の音声を生成するためのキャンセルフィルタのIDを推論する学習済モデルを機械学習させて、学習済モデル記憶部252に記憶させる。 In step S116, the DNN learning unit 273 uses the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152 as student data, and the cancellation filter and its ID supplied from the filter recording control unit 272 as teacher data, and machine-learns a learned model that infers the ID of the cancellation filter for generating anti-phase sound at the control point from the sensor signal and the input signal of the sound as noise picked up by the in-vehicle microphone 152, and stores the learned model in the learned model storage unit 252.
 ステップS117において、DNN学習部273およびキャンセルフィルタ設計部271は、処理の終了が指示さたか否かを判定し、終了の指示がなされていない場合、処理は、ステップS111に戻り、それ以降の処理が繰り返される。 In step S117, the DNN learning unit 273 and the cancellation filter design unit 271 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S111, and the subsequent processes are repeated.
 そして、ステップS117において、終了が指示された場合、処理は終了する。 Then, in step S117, if an instruction to end is given, the process ends.
 以上の処理により、制御点近接マイク182が設置されている状態で、制御点で検出される騒音をキャンセルするためのキャンセルフィルタがIDと対応付けて設計される。また、設計されたキャンセルフィルタとそのIDを教師データとし、車室内マイク152において検出される騒音と、センサ151-1乃至151-nのセンサ信号とを生徒データとした機械学習がなされる。この機械学習により、車室内マイク152において検出される騒音と、センサ151-1乃至151-nのセンサ信号とから、制御点における騒音と逆位相の音声を生成するためのキャンセルフィルタのIDを推論する学習済モデルが生成される。 By the above process, with the control point proximity microphone 182 installed, a cancellation filter for canceling the noise detected at the control point is designed in association with the ID. In addition, machine learning is performed using the designed cancellation filter and its ID as teacher data and the noise detected by the in-vehicle microphone 152 and the sensor signals of sensors 151-1 to 151-n as student data. This machine learning generates a trained model that infers the ID of a cancellation filter for generating sound that is inverse phase to the noise at the control point, from the noise detected by the in-vehicle microphone 152 and the sensor signals of sensors 151-1 to 151-n.
 <図15のNC装置によるNC処理>
 次に、図18のフローチャートを参照して、図15のNC装置33によるNC処理について説明する。尚、この処理は、図17のフローチャートを参照して説明した処理によりキャンセルフィルタが設計されて、キャンセルフィルタセット記憶部254に格納されていることを前提とする。
<NC processing by the NC device in FIG. 15>
Next, the NC processing by the NC device 33 in Fig. 15 will be described with reference to the flowchart in Fig. 18. Note that this processing is premised on the fact that the cancellation filter has been designed by the processing described with reference to the flowchart in Fig. 17 and stored in the cancellation filter set storage unit 254.
 ステップS131において、NC処理部153’のDNN推論部251およびNC信号計算部255は、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を取得する。 In step S131, the DNN inference unit 251 and the NC signal calculation unit 255 of the NC processing unit 153' acquire sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n.
 ステップS132において、DNN推論部251は、車室内マイク152により収音された騒音としての音声を入力信号として取得する。 In step S132, the DNN inference unit 251 acquires the noise-containing sound picked up by the in-vehicle microphone 152 as an input signal.
 ステップS133において、DNN推論部251は、学習済モデル記憶部252に記憶された学習済モデルを読み出して、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号と、車室内マイク152により収音された騒音の入力信号とから、制御点における逆位相の音声を生成するためのキャンセルフィルタとそのIDを推論し、推論結果となるキャンセルフィルタのIDをフィルタ検索部253に出力する。 In step S133, the DNN inference unit 251 reads out the learned model stored in the learned model storage unit 252, and infers a cancellation filter and its ID for generating anti-phase sound at the control point from the sensor signals consisting of the sensing results supplied from the sensors 151-1 to 151-n and the input signal of the noise picked up by the in-vehicle microphone 152, and outputs the ID of the cancellation filter that is the inferred result to the filter search unit 253.
 ステップS134において、フィルタ検索部253は、DNN推論部251より供給されたIDを取得し、取得したIDと対応付けて記憶されているキャンセルフィルタをキャンセルフィルタセット記憶部254から検索し、検索したキャンセルフィルタをNC信号計算部255に出力する。 In step S134, the filter search unit 253 acquires the ID supplied by the DNN inference unit 251, searches the cancellation filter set storage unit 254 for a cancellation filter stored in association with the acquired ID, and outputs the searched cancellation filter to the NC signal calculation unit 255.
 ステップS135において、NC信号計算部255は、フィルタ検索部253より供給されるキャンセルフィルタを利用して、センサ151-1乃至151-nより供給されるセンシング結果からなるセンサ信号を利用して、制御点において観測されることが推定される騒音と逆位相の音声を生成し、スピーカ154より放音する。 In step S135, the NC signal calculation unit 255 uses the cancellation filter provided by the filter search unit 253 and the sensor signals formed from the sensing results provided by the sensors 151-1 to 151-n to generate sound that is in antiphase with the noise estimated to be observed at the control point, and emits the sound from the speaker 154.
 ステップS136において、DNN推論部251およびNC信号計算部255は、処理の終了が指示さたか否かを判定し、終了の指示がなされていない場合、処理は、ステップS111に戻り、それ以降の処理が繰り返される。 In step S136, the DNN inference unit 251 and the NC signal calculation unit 255 determine whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S111, and the subsequent processes are repeated.
 そして、ステップS136において、終了が指示された場合、処理は終了する。 Then, in step S136, if an instruction to end is given, the process ends.
 以上の処理により、車室内の騒音とセンサ信号とからキャンセルフィルタのIDが推論されて、推論されたキャンセルフィルタのIDと対応付けて登録されたキャンセルフィルタが用いられて、制御点における騒音をキャンセルする逆位相の音声が生成されて、スピーカ154より放音されることで、制御点における騒音を低減させることが可能となる。 By the above process, the ID of the cancellation filter is inferred from the noise inside the vehicle cabin and the sensor signal, and a cancellation filter registered in association with the inferred cancellation filter ID is used to generate an anti-phase sound that cancels the noise at the control point. This sound is then emitted from speaker 154, making it possible to reduce the noise at the control point.
 尚、以上の処理により、図15の点線で囲まれるDNN推論部251およびフィルタ検索部253は、センサ151-1乃至151-nのセンサ信号と、車室内マイク152により収音された騒音としての音声の入力信号とに基づいて、NC信号計算部175に対して、制御点におけるキャンセルフィルタを提供する機能を実現していると言える。 Furthermore, through the above processing, the DNN inference unit 251 and the filter search unit 253 enclosed by the dotted line in FIG. 15 can be said to realize the function of providing the NC signal calculation unit 175 with a cancellation filter at the control point based on the sensor signals of the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152.
 <<6.第1の実施の形態の第4の変形例>>
 以上においては、フィルタ生成処理時において、キャンセルフィルタを生成すると共に、機械学習により、車室内の騒音とセンサ信号に基づいてキャンセルフィルタのIDを推論する学習済モデルを生成し、NC処理時において、車室内の騒音とセンサ信号に基づいてキャンセルフィルタのIDを推論して、IDと対応付けて登録されたキャンセルフィルタが読み出されて、逆位相の音声が生成され、放音されることでNCが実現される例について説明してきた。
<<6. Fourth Modification of the First Embodiment>>
In the above, an example has been described in which a cancellation filter is generated during the filter generation process, and a trained model is generated by machine learning to infer the ID of the cancellation filter based on the noise in the vehicle cabin and the sensor signal, and during the NC process, the ID of the cancellation filter is inferred based on the noise in the vehicle cabin and the sensor signal, the cancellation filter registered in association with the ID is read out, and an antiphase sound is generated and emitted, thereby achieving NC.
 しかしながら、NC処理時において、車室内の騒音とセンサ信号に基づいてキャンセルフィルタそのものが推論されて、推論されたキャンセルフィルタで逆位相の音声が生成され、放音されることでNC処理が実現されるようにしてもよい。この場合、フィルタ生成処理時の機械学習において、教師データとしてキャンセルフィルタそのものが用いられて、車室内の騒音とセンサ信号に基づいてキャンセルフィルタそのものを推論する学習済モデルが生成される。 However, during NC processing, the cancellation filter itself may be inferred based on the noise in the vehicle cabin and the sensor signal, and an anti-phase sound may be generated by the inferred cancellation filter and emitted to achieve NC processing. In this case, the cancellation filter itself is used as training data in the machine learning during the filter generation process, and a trained model is generated that infers the cancellation filter itself based on the noise in the vehicle cabin and the sensor signal.
 また、NC処理時およびフィルタ生成処理時において、必要に応じて、図9乃至図12を参照して説明したように、車室外マイク211を設けるようにして、車室外の騒音が収音されて、車室内の騒音における車室外の騒音成分が除去されるようにしてもよい。 Furthermore, during NC processing and filter generation processing, as necessary, as described with reference to Figures 9 to 12, an exterior microphone 211 may be provided to pick up noise outside the vehicle cabin and remove the noise components outside the vehicle cabin from the noise inside the vehicle cabin.
 さらに、センサ151-1乃至151-nに加えて、車両制御システム11における外部認識センサ25、車内センサ26、および車両センサ27等を含む車載センサのセンシング結果からなるセンサ信号が用いられるようにしてもよい。 Furthermore, in addition to the sensors 151-1 to 151-n, sensor signals based on the sensing results of on-board sensors including the external recognition sensor 25, the in-vehicle sensor 26, and the vehicle sensor 27 in the vehicle control system 11 may be used.
 図19は、NC処理時において、車室内マイク152で収音された騒音とセンサ151-1乃至151-nのセンシング結果であるセンサ信号に基づいてキャンセルフィルタそのものが推論されて、推論されたキャンセルフィルタで逆位相の音声が生成され、放音されることでNC処理が実現されるようにしたNC装置33の構成例を示している。 FIG. 19 shows an example of the configuration of the NC device 33 in which, during NC processing, the cancellation filter itself is inferred based on the noise picked up by the in-vehicle microphone 152 and the sensor signals that are the sensing results of the sensors 151-1 to 151-n, and the inferred cancellation filter generates and emits sound of an antiphase, thereby realizing NC processing.
 また、図20は、フィルタ生成処理時の機械学習において、教師データとしてキャンセルフィルタそのものが用いられて、車室内の騒音とセンサ信号に基づいてキャンセルフィルタそのものを推論する学習済モデルが生成されるフィルタ生成処理部181’の構成例を示している。 FIG. 20 shows an example configuration of a filter generation processing unit 181' in which the cancellation filter itself is used as training data in machine learning during the filter generation process, and a trained model is generated that infers the cancellation filter itself based on the noise in the vehicle cabin and the sensor signal.
 尚、図19のNC装置33および図20のフィルタ生成処理部181’において、図15のNC装置33および図16のフィルタ生成処理部181’における構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。 In addition, in the NC device 33 in FIG. 19 and the filter generation processing unit 181' in FIG. 20, components having the same functions as those in the NC device 33 in FIG. 15 and the filter generation processing unit 181' in FIG. 16 are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
 すなわち、図19のNC装置33において、図15のNC装置33と異なる点は、フィルタ検索部253およびキャンセルフィルタセット記憶部254が削除され、DNN推論部251に代えて、DNN推論部251’を備えた点である。 In other words, the NC device 33 in FIG. 19 differs from the NC device 33 in FIG. 15 in that the filter search unit 253 and the cancellation filter set storage unit 254 are deleted, and a DNN inference unit 251' is provided instead of the DNN inference unit 251.
 すなわち、DNN推論部251’は、NC処理において、キャンセルフィルタそのものを推論するので、推論結果となるキャンセルフィルタをNC信号計算部255に出力するのみでよいので、フィルタ検索部253およびキャンセルフィルタセット記憶部254が不要となり、削除されている。 In other words, since the DNN inference unit 251' infers the cancellation filter itself in the NC processing, it is only necessary to output the cancellation filter resulting from the inference to the NC signal calculation unit 255, and therefore the filter search unit 253 and cancellation filter set storage unit 254 are unnecessary and have been deleted.
 また、図19のDNN推論部251’は、車室内マイク152からの車室内の騒音の信号、およびセンサ151-1乃至151-nのセンサ信号に加えて、車室外マイク211からの車室外の騒音および車載センサ291のセンシング結果からなるセンサ信号も併せて利用して、キャンセルフィルタを推論している。これにより、キャンセルフィルタの推論精度を向上させることが可能となる。 The DNN inference unit 251' in FIG. 19 infers the cancellation filter by using the noise signal inside the vehicle cabin from the vehicle interior microphone 152 and the sensor signals of the sensors 151-1 to 151-n, as well as the noise outside the vehicle cabin from the vehicle exterior microphone 211 and the sensor signal consisting of the sensing result of the vehicle-mounted sensor 291. This makes it possible to improve the inference accuracy of the cancellation filter.
 さらに、図20のフィルタ生成処理部181’において、図16のフィルタ生成処理部181’と異なる点は、フィルタ記録制御部272およびキャンセルフィルタセット記憶部254が削除され、キャンセルフィルタ設計部271およびDNN学習部273に代えて、キャンセルフィルタ設計部271’およびDNN学習部273’が設けられ、さらに、図12を参照して説明した車室外音判定部221が設けられた点である。 Furthermore, the filter generation processing unit 181' in FIG. 20 differs from the filter generation processing unit 181' in FIG. 16 in that the filter recording control unit 272 and the cancellation filter set storage unit 254 are deleted, and a cancellation filter design unit 271' and a DNN learning unit 273' are provided instead of the cancellation filter design unit 271 and the DNN learning unit 273, and further, the vehicle exterior sound determination unit 221 described with reference to FIG. 12 is provided.
 すなわち、DNN学習部273’は、フィルタ生成処理において、キャンセルフィルタそのものを推論する学習済モデルを学習させるので、キャンセルフィルタ設計部271’より供給されるキャンセルフィルタをそのまま教師データとして使用するので、フィルタ検索部253およびキャンセルフィルタセット記憶部254が不要となり、削除されている。 In other words, in the filter generation process, the DNN learning unit 273' learns a learned model that infers the cancellation filter itself, and therefore uses the cancellation filter supplied by the cancellation filter design unit 271' as is as training data, so the filter search unit 253 and cancellation filter set storage unit 254 are unnecessary and have been deleted.
 また、図20のDNN学習部273’は、車室内マイク152からの車室内の騒音の信号、およびセンサ151-1乃至151-nのセンサ信号に加えて、車室外マイク211からの車室外の騒音、制御点近接マイク182からの制御点における騒音、車載センサ291のセンシング結果からなるセンサ信号も併せて利用して、キャンセルフィルタを推論する学習モデルを学習させている。これにより、学習済モデルを用いたキャンセルフィルタの推論精度を向上させることが可能となる。さらに、上述したセンサ信号や騒音に係る音声の他、路面状況やタイヤ空気圧などの情報も併せた学習により、ノイズを低減させる効果を、より高いものとするキャンセルフィルタを推論することができるようになる。したがって、例えば、車載センサ291には、上述した外部認識センサ25のカメラ51により撮像される路面の画像(路面状況)、天候状況、昼夜等の日時情報や、車両センサ27により検出されるタイヤ空気圧などの一連の走行環境に係る情報も、ノイズに関する情報として扱うようにして、キャンセルフィルタを推論する学習モデルの学習に利用されるようにしてもよい。 The DNN learning unit 273' in FIG. 20 learns a learning model that infers a cancellation filter using the noise outside the vehicle cabin from the exterior microphone 211, the noise at the control point from the control point proximity microphone 182, and the sensor signal consisting of the sensing result of the on-board sensor 291, in addition to the noise signal inside the vehicle cabin from the interior microphone 152 and the sensor signals of the sensors 151-1 to 151-n. This makes it possible to improve the inference accuracy of the cancellation filter using the learned model. Furthermore, by learning information such as road conditions and tire pressure in addition to the above-mentioned sensor signals and sounds related to noise, it becomes possible to infer a cancellation filter that has a higher noise reduction effect. Therefore, for example, the on-board sensor 291 may treat a series of information related to the driving environment, such as road surface images (road surface conditions) captured by the camera 51 of the external recognition sensor 25 described above, weather conditions, date and time information such as day or night, and tire air pressure detected by the vehicle sensor 27, as information related to noise and use it to learn a learning model that infers a cancellation filter.
 さらに、図20のキャンセルフィルタ設計部271’は、車室外音判定部221より車室外の騒音が所定レベルよりも大きいときには、キャンセルフィルタ設計部191において適切なキャンセルフィルタの設計が困難な状況となるため、設計を停止させる。このとき、DNN学習部273は、教師データとしてのキャンセルフィルタの供給がなされないことになるため、学習を停止する。このようにすることで、キャンセルフィルタそのものを推論する学習モデルを生成するにあたって、不適切な教師データを除外して学習することができるので、キャンセルフィルタの推論精度を向上させることが可能となる。 Furthermore, when the noise outside the vehicle cabin is greater than a predetermined level as determined by the vehicle exterior sound determination unit 221, it becomes difficult for the cancellation filter design unit 191 to design an appropriate cancellation filter, so the cancellation filter design unit 271' in FIG. 20 stops designing. At this time, the DNN learning unit 273 stops learning because a cancellation filter is not supplied as training data. In this way, when generating a learning model that infers the cancellation filter itself, it is possible to learn by excluding inappropriate training data, thereby improving the inference accuracy of the cancellation filter.
 尚、図20のフィルタ生成処理部181’によるフィルタ生成処理については、生徒データとして、車室内マイク152からの騒音の信号、およびセンサ151-1乃至151-nのセンサ信号に加えて、車室外マイク211からの信号および車載センサ291からのセンサ信号が増えて、教師データがキャンセルフィルタそのものになる点を除き、基本的に図17のフローチャートを参照して説明したフィルタ生成処理と同様であるので、その説明は省略する。 The filter generation process by the filter generation processing unit 181' in FIG. 20 is basically the same as the filter generation process described with reference to the flowchart in FIG. 17, except that in addition to the noise signal from the in-vehicle microphone 152 and the sensor signals from the sensors 151-1 to 151-n, the signal from the exterior microphone 211 and the sensor signal from the in-vehicle sensor 291 are added as student data, and the teacher data becomes the cancellation filter itself, so a description of this process will be omitted.
 また、図19のNC処理部153’においては、点線で囲まれたDNN推論部251’が単独で、センサ151-1乃至151-nのセンサ信号と、車室内マイク152により収音された騒音としての音声の入力信号とに基づいて、NC信号計算部175に対して、制御点におけるキャンセルフィルタを提供する機能を実現していると言える。 In addition, in the NC processing unit 153' in FIG. 19, the DNN inference unit 251' surrounded by a dotted line can be said to independently realize the function of providing a cancellation filter at the control point to the NC signal calculation unit 175 based on the sensor signals of the sensors 151-1 to 151-n and the input signal of the sound as noise picked up by the in-vehicle microphone 152.
 また、図19のNC装置33によるNC処理については、車室内マイク152からの騒音の信号、およびセンサ151-1乃至151-nのセンサ信号に加えて、車室外マイク211からの信号および車載センサ291からのセンサ信号が増えて、車室外音判定部221からの判定結果がキャンセルフィルタ設計部271’に供給され、キャンセルフィルタそのものが推論される点を除き、基本的な処理は、図18のフローチャートを参照して説明したNC処理と同様であるので、その説明は省略する。 Furthermore, with regard to the NC processing by the NC device 33 in FIG. 19, in addition to the noise signal from the in-vehicle microphone 152 and the sensor signals from the sensors 151-1 to 151-n, the signal from the exterior microphone 211 and the sensor signal from the in-vehicle sensor 291 are added, the determination result from the exterior sound determination unit 221 is supplied to the cancellation filter design unit 271', and the cancellation filter itself is inferred. Except for this, the basic processing is the same as the NC processing described with reference to the flowchart in FIG. 18, so a description thereof will be omitted.
 さらに、図15の学習済モデル記憶部252、および学習済モデル記憶部252’に格納される学習済モデル、並びに、図15のキャンセルフィルタセット記憶部254に格納されるキャンセルフィルタセットについては、図15,図19のNC装置33は主に市販の乗用車等の車両1における車両制御システム11のNC装置33として搭載される事が想定されるものである。 Furthermore, with regard to the trained model stored in the trained model storage unit 252 and trained model storage unit 252' in FIG. 15, and the cancellation filter set stored in the cancellation filter set storage unit 254 in FIG. 15, it is assumed that the NC unit 33 in FIG. 15 and FIG. 19 will be mounted as the NC unit 33 of the vehicle control system 11 in a vehicle 1, such as a commercially available passenger car.
 このため、一度、市場のNC装置33に、学習済モデルやキャンセルフィルタセットが搭載された状態で出回ると、時間の経過に従って、タイヤの経年変化や路面変化により学習時の条件が変化してしまい、当初に搭載されていた学習済モデルやキャンセルフィルタセットでは、徐々に十分な騒音低減効果が得られない状態となってしまう可能性がある。 For this reason, once NC devices 33 are released on the market with trained models and cancellation filter sets installed, over time the conditions at the time of learning will change due to aging of the tires and changes in the road surface, and the trained models and cancellation filter sets originally installed may gradually become unable to provide sufficient noise reduction effects.
 そのような場合は、学習外だったタイヤや路面の新たな条件で、他のフィルタ生成処理部181’によりフィルタ生成処理を別途行うことで、新たな条件に則した(新たな条件での車室内マイク152により収音された音声、制御点マイク182により収音された音声、およびセンサ151のセンサ信号に基づいた、または、それらとの関係性に基づいた)学習済モデルやキャンセルフィルタセットを生成するようにしてもよい。 In such a case, a separate filter generation process may be performed by another filter generation processing unit 181' under new conditions of tires and road surfaces that were not learned, to generate a learned model and cancellation filter set that conform to the new conditions (based on the sound picked up by the in-vehicle microphone 152 under the new conditions, the sound picked up by the control point microphone 182, and the sensor signal of the sensor 151, or based on the relationship therewith).
 すなわち、このように新たな条件で生成された学習済モデルやキャンセルフィルタセットが、クラウドサーバ等を介して、NC装置33に配信されるようにすることで、学習済モデルやキャンセルフィルタセットをアップデートすることが可能となるので、経年変化により条件が変化しても、騒音低減効果を十分に得られるようにすることが可能となる。 In other words, by distributing the trained model and cancellation filter set generated under new conditions to the NC device 33 via a cloud server or the like, it becomes possible to update the trained model and cancellation filter set, so that a sufficient noise reduction effect can be obtained even if the conditions change due to aging.
 <<7.第2の実施の形態>>
 <フィードバック方式NC装置>
 以上においては、FF方式NC装置について説明してきたが、次に、本開示のNC装置33の第2の実施の形態の構成例として、フィードバック方式NC装置について説明する。
<<7. Second embodiment>>
<Feedback type NC device>
The FF type NC device has been described above. Next, a feedback type NC device will be described as a configuration example of a second embodiment of the NC device 33 of the present disclosure.
 より具体的には、フィードバック方式のNC装置33は、図21,図22で示されるように、センサ311-1乃至311-8、アクチュエータ312-1乃至312-8、およびNC処理部313より構成される。尚、図21は、2組のセンサ311とアクチュエータ312が設けられた車両1の側面断面図であり、図22は、車両1のフロントウィンドウ(ガラス)FWを車両1の正面から見た正面図である。 More specifically, as shown in Figures 21 and 22, the feedback type NC device 33 is composed of sensors 311-1 to 311-8, actuators 312-1 to 312-8, and an NC processing unit 313. Note that Figure 21 is a side cross-sectional view of a vehicle 1 provided with two pairs of sensors 311 and actuators 312, and Figure 22 is a front view of the front window (glass) FW of the vehicle 1 as viewed from the front of the vehicle 1.
 センサ311-1乃至311-8およびアクチュエータ312-1乃至312-8は、運転者であるユーザの視界を遮ることがないように、フロントウィンドウFWの辺縁部にそれぞれが対になるように接着剤等により貼り付けられている。 Sensors 311-1 to 311-8 and actuators 312-1 to 312-8 are attached to the edge of the windshield FW with adhesive or the like so as not to obstruct the view of the driver/user.
 センサ311-1乃至311-8は、それぞれ対応する近傍の位置におけるフロントウィンドウFWの振動を検出する加速度センサであり、センシング結果からなるセンサ信号をNC処理部313に出力する。 Sensors 311-1 to 311-8 are acceleration sensors that detect vibrations of the front window FW at positions near the corresponding positions, and output sensor signals representing the sensing results to the NC processing unit 313.
 アクチュエータ312-1乃至312-8は、それぞれセンサ311-1乃至311-8と対応する位置に貼り付けられるものであり、NC処理部313により制御されて、それぞれの対応するフロントウィンドウFWを加振する。 Actuators 312-1 to 312-8 are attached to positions corresponding to sensors 311-1 to 311-8, respectively, and are controlled by the NC processing unit 313 to vibrate the corresponding front window FW.
 NC処理部313は、センサ311-1乃至311-8より供給されるフロントウィンドウFWにおける振動に対応する加速度の情報からなるセンサ信号を取得すると、対応する位置のアクチュエータ312-1乃至312-8を制御して、センサ311-1乃至311-8において検出された振動を打ち消すように、該当箇所のフロントウィンドウFWを加振させる。 When the NC processing unit 313 receives a sensor signal consisting of acceleration information corresponding to vibrations in the front windshield FW supplied from the sensors 311-1 to 311-8, it controls the actuators 312-1 to 312-8 in the corresponding positions to vibrate the front windshield FW in the corresponding locations so as to cancel out the vibrations detected by the sensors 311-1 to 311-8.
 フィードバック式NC装置33は、このような構成により、騒音を発する、フロントウィンドウFWのようなパネル等の物体の振動を検出し、振動の検出結果に対して、所定のNCフィルタ処理を施すことで、検出された振動に対して逆位相の加振を加えることにより物体の振動を抑制することで騒音を低減させるものである。 The feedback type NC device 33, with this configuration, detects vibrations of objects that generate noise, such as panels like the front window FW, and applies a specified NC filter process to the vibration detection results, thereby reducing noise by suppressing the vibration of the object by applying an excitation of the opposite phase to the detected vibration.
 フィードバック式NC装置33は、フィードフォワード方式NC装置33のようにタイヤなど騒音を発生させる振動源がわかっていることが前提となるNC処理とは異なり、振動源が未知の騒音であっても、既に騒音を発生させているパネル等の物体の振動をアクチュエータ等で加振することで強制的に抑制することで、騒音を低減させることができる。 Unlike NC processing such as the feedforward NC device 33, which assumes that the vibration source that generates the noise, such as tires, is known, the feedback NC device 33 can reduce noise even when the vibration source is unknown by forcibly suppressing the vibration of objects such as panels that are already generating noise by using actuators, etc.
 <アクチュエータの構成例>
 図23は、フロントウィンドウFW上に貼り付けられた状態で設置されたアクチュエータ312の側面断面図である。尚、図中右側のセンサ311は、アクチュエータ312と対になるものである。
<Example of actuator configuration>
23 is a side cross-sectional view of the actuator 312 attached to the front window FW. The sensor 311 on the right side of the figure is paired with the actuator 312.
 アクチュエータ312は、アクチュエータベース321、ボイスコイルケース322、ボイスコイル323、ダンパ324、およびボイスコイルボビン325より構成される。 The actuator 312 is composed of an actuator base 321, a voice coil case 322, a voice coil 323, a damper 324, and a voice coil bobbin 325.
 アクチュエータベース321は、アクチュエータ312全体を支えるものであり、底部が接着剤などによりフロントウィンドウFWに貼り付けられている。 The actuator base 321 supports the entire actuator 312, and its bottom is attached to the front window FW with adhesive or the like.
 ボイスコイルケース322は、ボイスコイル323の外周部の全体を覆う、ボイスコイル323と一体の構成とされるケースである。 The voice coil case 322 is a case that covers the entire outer periphery of the voice coil 323 and is integral with the voice coil 323.
 ボイスコイル323は、図示せぬ電気配線によりNC処理部313と電気的に接続されており、NC処理部313より印可される駆動信号により励磁され、駆動信号の周波数に応じた頻度で図中の矢印方向に振動し、これによりボイスコイル323と一体の構成とされているボイスコイルケース322が図中の矢印方向に振動する。 The voice coil 323 is electrically connected to the NC processing unit 313 by electrical wiring (not shown), and is excited by a drive signal applied from the NC processing unit 313, vibrating in the direction of the arrow in the figure at a frequency according to the frequency of the drive signal, causing the voice coil case 322, which is integral with the voice coil 323, to vibrate in the direction of the arrow in the figure.
 ダンパ324は、図中の上下方向に開口部を備える筒状のボビン325の外周側側面と、ボイスコイルケース322の内周側側面とを、所定のテンションで接続する、同心円状の蛇腹である。ダンパ324は、所定のテンションでボビン325の外周側側面と、ボイスコイルケース322の内周側側面とを接続することにより、ボイスコイル323に駆動信号が供給されていない状態であるときには、図23で示されるように、ダンパ324がほぼ水平方向に維持された状態となる定常位置にボイスコイルケース322を固定する。また、ボイスコイル323に駆動信号が供給されている場合、蛇腹状のダンパ324が伸縮しながら上下方向に振動するボイスコイルケース322の可動範囲を制限する。 The damper 324 is a concentric bellows that connects, with a predetermined tension, the outer circumferential side of the cylindrical bobbin 325 with an opening in the vertical direction in the figure, and the inner circumferential side of the voice coil case 322. By connecting the outer circumferential side of the bobbin 325 and the inner circumferential side of the voice coil case 322 with a predetermined tension, the damper 324 fixes the voice coil case 322 in a stationary position where the damper 324 is maintained in a substantially horizontal direction, as shown in FIG. 23, when no drive signal is supplied to the voice coil 323. When a drive signal is supplied to the voice coil 323, the bellows-shaped damper 324 expands and contracts to limit the range of motion of the voice coil case 322, which vibrates in the vertical direction.
 ボビン325は、筒状の構成であって、アクチュエータ312の中心軸として機能するものであり、図中上部の開口部には、ボイスコイルケース322の軸322aが、図中の上下方向に摺動可能な状態で挿通される。また、ボビン325の図中下部の開口部には、アクチュエータベース321の凸部321aが固定された状態で挿通された構成とされている。 The bobbin 325 is cylindrical and functions as the central axis of the actuator 312. The axis 322a of the voice coil case 322 is inserted into the opening at the top in the figure in a state in which it can slide up and down in the figure. The protrusion 321a of the actuator base 321 is inserted into the opening at the bottom of the bobbin 325 in a fixed state.
 このような構成により、NC処理部313から所定の電圧で、かつ、所定の周波数の駆動信号が供給されると、ボイスコイル323が、図中の矢印で示されるように上下方向に振動し、ボイスコイル323と一体化した構成とされるボイスコイルケース322の軸322aが、ボビン325内において、ダンパ324のテンションに応じて上下にスライドすることで振動する。 With this configuration, when a drive signal of a predetermined voltage and a predetermined frequency is supplied from the NC processing unit 313, the voice coil 323 vibrates in the vertical direction as indicated by the arrow in the figure, and the shaft 322a of the voice coil case 322, which is configured as one piece with the voice coil 323, vibrates by sliding up and down within the bobbin 325 according to the tension of the damper 324.
 このようにボイスコイルケース322が振動することで、ボイスコイル323を含むボイスコイルケース322の重さに応じた力が、アクチュエータベース321を介してフロントウィンドウFWに加わることで、フロントウィンドウFWが加振される。 When the voice coil case 322 vibrates in this manner, a force corresponding to the weight of the voice coil case 322 including the voice coil 323 is applied to the front window FW via the actuator base 321, causing the front window FW to vibrate.
 NC処理部313は、センサ311において検出された加速度の信号に所定のNCを実現するためのフィルタ処理を施して、ボイスコイル323に印可する駆動信号を調整して供給し、センサ311で検出されたフロントウィンドウFWの振動を打ち消すように加振させる。 The NC processing unit 313 performs filtering on the acceleration signal detected by the sensor 311 to achieve a predetermined NC, and adjusts and supplies the drive signal to be applied to the voice coil 323, causing it to vibrate so as to cancel out the vibration of the front window FW detected by the sensor 311.
 結果として、フロントウィンドウFWで生じた騒音を発する振動が、アクチュエータ312により打ち消されることにより、フロントウィンドウFWの振動が抑制され、振動に起因して発生する騒音を低減することが可能となる。 As a result, the vibrations that generate noise in the front window FW are countered by the actuator 312, suppressing the vibrations of the front window FW and making it possible to reduce the noise caused by the vibrations.
 <NC処理部の構成例>
 次に、図24を参照して、NC処理部313の構成例について説明する。NC処理部313は、増幅器331、NCフィルタ処理部332、および増幅器333より構成される。
<Example of NC processing section configuration>
24, an example of the configuration of the NC processing unit 313 will be described. The NC processing unit 313 includes an amplifier 331, an NC filter processing unit 332, and an amplifier 333.
 増幅器331は、センサ311より供給される検出された加速度の信号を所定のレベルまで増幅してNCフィルタ処理部332に出力する。 The amplifier 331 amplifies the detected acceleration signal supplied by the sensor 311 to a predetermined level and outputs it to the NC filter processing unit 332.
 NCフィルタ処理部332は、増幅器331を介して供給されるセンサ311で検出された加速度に対応するセンサ信号に対して所定のNCフィルタ処理を施すことにより、フロントウィンドウFWの振動が打ち消されるような、位相や周波数で振動するような駆動信号を発生し、増幅器333を介して所定の割合で増幅させてアクチュエータ312(のボイスコイル323)に印可する。 The NC filter processing unit 332 applies a predetermined NC filter process to the sensor signal corresponding to the acceleration detected by the sensor 311, which is supplied via the amplifier 331, to generate a drive signal that vibrates at a phase and frequency that cancels out the vibration of the front window FW, and the signal is amplified at a predetermined rate via the amplifier 333 and applied to the actuator 312 (its voice coil 323).
 これにより、アクチュエータ312のボイスコイル323には、フロントウィンドウFWにおいて検出された加速度に対応する、振動が打ち消されるように駆動信号が印可されるので、アクチュエータ312がフロントウィンドウFWに対して振動を打ち消すように垂直方向に加振する。 As a result, a drive signal corresponding to the acceleration detected on the front window FW is applied to the voice coil 323 of the actuator 312 so as to cancel out the vibrations, and the actuator 312 vibrates the front window FW in the vertical direction so as to cancel out the vibrations.
 結果として、アクチュエータ312が振動することにより、アクチュエータ312の重みに応じた力で、フロントウィンドウFWが加振され、センサ311により検出されたフロントウィンドウFWの振動が打ち消されて、フロントウィンドウFWの振動が抑制されて、フロントウィンドウFWの振動に起因して発生する騒音が低減される。 As a result, when the actuator 312 vibrates, the front window FW is vibrated with a force corresponding to the weight of the actuator 312, and the vibration of the front window FW detected by the sensor 311 is cancelled out, the vibration of the front window FW is suppressed, and the noise caused by the vibration of the front window FW is reduced.
 <センサとアクチュエータによるNC処理>
 次に、図25のフローチャートを参照して、図23,図24のセンサ311とアクチュエータ312によるNC処理について説明する。
<NC processing using sensors and actuators>
Next, the NC processing by the sensor 311 and the actuator 312 in FIGS. 23 and 24 will be described with reference to the flow chart in FIG.
 ステップS201において、NC処理部313のNCフィルタ処理部332は、増幅器331を介して、センサ311により検出される加速度のセンサ信号を取得する。 In step S201, the NC filter processing unit 332 of the NC processing unit 313 acquires the sensor signal of the acceleration detected by the sensor 311 via the amplifier 331.
 ステップS202において、NC処理部313は、センサ311より供給されたセンサ信号に対してNCフィルタ処理を施すことにより、ボイスコイル323を振動させる駆動信号を設定する。 In step S202, the NC processing unit 313 performs NC filtering on the sensor signal provided by the sensor 311 to set a drive signal that vibrates the voice coil 323.
 ステップS203において、NC処理部313は、フィルタ処理により設定したボイスコイル323を振動させる駆動信号を、増幅器333を介してアクチュエータ312に印可して、アクチュエータ312を振動させてフロントウィンドウFWの振動を打ち消すように加振させる。 In step S203, the NC processing unit 313 applies the drive signal set by the filter processing, which vibrates the voice coil 323, to the actuator 312 via the amplifier 333, causing the actuator 312 to vibrate so as to cancel out the vibration of the front window FW.
 ステップS204において、終了が指示されたか否かを判定し、終了が指示されない場合、処理は、ステップS201に戻り、それ以降の処理が繰り返される。そして、ステップS204において、終了が指示された場合、処理は終了する。 In step S204, it is determined whether or not an instruction to end has been given. If an instruction to end has not been given, the process returns to step S201, and the subsequent steps are repeated. Then, if an instruction to end has been given in step S204, the process ends.
 以上の処理により、アクチュエータ312が振動することで、フロントウィンドウFWが加振されるので、振動が抑制されて、フロントウィンドウFWの振動に起因する騒音が低減される。 By performing the above process, the actuator 312 vibrates, which causes the front window FW to vibrate, suppressing the vibration and reducing noise caused by the vibration of the front window FW.
 <<8.第2の実施の形態の第1の変形例>>
 以上のようにFB方式のNC装置33について説明してきたが、図23のアクチュエータ312を用いた場合、同数のセンサ311と対にして、図22で示されるように、各8個設置するときには、合計16個の部品をフロントウィンドウFWの外周部に沿って張り付ける必要があるため設置に係る工数が大きい。
<<8. First Modification of the Second Embodiment>>
The FB type NC unit 33 has been described above. When the actuators 312 in FIG. 23 are used and eight of each type are installed in pairs with the same number of sensors 311 as shown in FIG. 22, a total of 16 parts need to be attached along the outer periphery of the front windshield FW, which means a large number of installation steps.
 そこで、アクチュエータとセンサとを一体化した構造とすることで、設置に係る工数を低減させることが考えられる。 Therefore, it is conceivable that by integrating the actuator and sensor into a structure, it would be possible to reduce the amount of work required for installation.
 図26は、アクチュエータとセンサとを一体化したアクチュエータの側面断面図である。図26のアクチュエータ312Aは、アクチュエータベース361、ボイスコイルケース362、ボイスコイル363、ダンパ364、およびボイスコイルボビン365、並びに、センサ311’より構成される。 FIG. 26 is a side cross-sectional view of an actuator that integrates an actuator and a sensor. The actuator 312A in FIG. 26 is composed of an actuator base 361, a voice coil case 362, a voice coil 363, a damper 364, a voice coil bobbin 365, and a sensor 311'.
 尚、アクチュエータベース361、ボイスコイルケース362、ボイスコイル363、ダンパ364、およびボイスコイルボビン365は、それぞれ図23のアクチュエータベース321、ボイスコイルケース322、ボイスコイル323、ダンパ324、およびボイスコイルボビン325と対応する構成である。また、センサ311’は、図23のセンサ311と同一の構成である。 The actuator base 361, the voice coil case 362, the voice coil 363, the damper 364, and the voice coil bobbin 365 correspond to the actuator base 321, the voice coil case 322, the voice coil 323, the damper 324, and the voice coil bobbin 325 in FIG. 23, respectively. The sensor 311' has the same configuration as the sensor 311 in FIG. 23.
 このような構成とすることにより、フロントウィンドウFWへの設置については、アクチュエータ312Aがセンサ311’を含む構造となるため、両者を同時に貼り付けることが可能となり、設置作業に係る工数を半分にすることが可能となる。 By configuring it in this way, when installing it on the front windshield FW, the actuator 312A is structured to include the sensor 311', so it is possible to attach both at the same time, halving the labor required for installation.
 尚、図26のアクチュエータ312AによるNC処理については、センサ311’の処理が、センサ311による処理と同様の処理であり、アクチュエータ312Aの処理が、アクチュエータ312の処理と同様の処理であるので、その説明は省略する。尚、以降においても同様の入れ替えにより実現されるので、同様に説明は省略する。 Note that the NC processing by actuator 312A in FIG. 26 is omitted because the processing by sensor 311' is similar to the processing by sensor 311, and the processing by actuator 312A is similar to the processing by actuator 312. Note that the same replacement is used in the subsequent processing, so the explanation is also omitted.
 <<9.第2の実施の形態の第2の変形例>>
 以上においては、アクチュエータとセンサとを一体化した構成について説明してきたが、アクチュエータとセンサを一体化した場合、例えば、駆動部分となるボイスコイル363に故障が発生し、交換する必要があるときには、センサ311’も併せた交換が必要となり、故障していないセンサ311’も交換することになるので、修理費用が高くなる。
<<9. Second Modification of Second Embodiment>>
In the above, we have described a configuration in which the actuator and sensor are integrated. However, when the actuator and sensor are integrated, for example, if a malfunction occurs in voice coil 363, which is the driving part, and it becomes necessary to replace it, it will also be necessary to replace sensor 311', and since even sensor 311' that is not malfunctioning will have to be replaced, the repair costs will be high.
 そこで、ボイスコイルケース362と、アクチュエータベース361とを着脱できる構成とし、ボイスコイル363に故障が発生した場合には、ボイスコイルケース362のみを交換できるような構成としてもよい。 Therefore, the voice coil case 362 and the actuator base 361 may be configured to be detachable, so that if a malfunction occurs in the voice coil 363, only the voice coil case 362 can be replaced.
 図27は、ボイスコイルケース362と、アクチュエータベース361とを着脱できるようにしたアクチュエータ312Bの側面断面図である。尚、図26のアクチュエータ312Bにおいて、図25のアクチュエータ312Aと同一の機能を備えた構成については、同一の符号を付しており、その説明は省略する。 FIG. 27 is a side cross-sectional view of actuator 312B, in which voice coil case 362 and actuator base 361 can be detached. Note that in actuator 312B in FIG. 26, components having the same functions as actuator 312A in FIG. 25 are given the same reference numerals, and their description will be omitted.
 図27のアクチュエータ312Bにおいて、図26のアクチュエータ312Aと異なる点は、ボイスコイルケース362からなる駆動部312Baとアクチュエータベース361からなるベース部312Bbとに分解可能な構成とされている点である。 The actuator 312B in FIG. 27 differs from the actuator 312A in FIG. 26 in that it can be disassembled into a drive unit 312Ba consisting of a voice coil case 362 and a base unit 312Bb consisting of an actuator base 361.
 また、図27のアクチュエータ312Bにおいては、ボビン365に代えて、ボビン373が設けられている。ボイスコイルケース362の軸362aには、矢印で示されるように、ボルト372を内挿可能な孔が形成されており、孔を抜けるとボビン373に達する。ボビン373の底部には、図中の上からボルト372のネジ部372aを挿通可能な孔部371aが設けられたベースプレート371が設けられている。アクチュエータベース361Bには、図中の上からボルト372のネジ部372aを羅合可能なネジ穴361Bbを頭頂部の中心位置に備えた凸部361Baが設けられている。 Also, in the actuator 312B of FIG. 27, a bobbin 373 is provided instead of the bobbin 365. A hole is formed in the shaft 362a of the voice coil case 362, as shown by the arrow, into which the bolt 372 can be inserted, and the bolt passes through the hole to reach the bobbin 373. A base plate 371 is provided at the bottom of the bobbin 373, with a hole 371a provided therein into which the threaded portion 372a of the bolt 372 can be inserted from the top in the figure. The actuator base 361B is provided with a convex portion 361Ba at the center of the top, with a screw hole 361Bb into which the threaded portion 372a of the bolt 372 can be screwed from the top in the figure.
 このような構成により、ボルト372が、ボビン373の底部に設けられたベースプレート371の孔部371aを貫通して、アクチュエータベース361の凸部361a’の頭頂部に設けられたネジ穴361Bbに羅合されることにより、ベースプレート371と凸部361a’の頭頂部とが接合されて、駆動部312Baとアクチュエータベース361からなるベース部312Bbとが接合され、一体化して、アクチュエータ312Bが構成される。 With this configuration, the bolt 372 passes through the hole 371a of the base plate 371 provided at the bottom of the bobbin 373 and is screwed into the screw hole 361Bb provided at the top of the convex portion 361a' of the actuator base 361, joining the base plate 371 and the top of the convex portion 361a', and joining and integrating the drive portion 312Ba and the base portion 312Bb consisting of the actuator base 361 to form the actuator 312B.
 逆に、ボルト372のネジ部372aが、ボビン373の底部に設けられたベースプレート371の孔部371aおよびアクチュエータベース361Bの凸部361Baの頭頂部に設けられたネジ穴361Bbから引き抜かれることにより、ベースプレート371と凸部361Baの頭頂部との接合が開放されるので、駆動部312Baとベース部312Bbとが分解可能な状態となる。 Conversely, when the threaded portion 372a of the bolt 372 is pulled out from the hole 371a of the base plate 371 provided at the bottom of the bobbin 373 and the threaded hole 361Bb provided at the top of the convex portion 361Ba of the actuator base 361B, the connection between the base plate 371 and the top of the convex portion 361Ba is released, and the drive portion 312Ba and the base portion 312Bb become disassembled.
 このような構成により、アクチュエータ312BをフロントウィンドウFWに設置する際には、図28で示されるように、ボルト372がベースプレート371の孔部371aを貫通して、アクチュエータベース361Bの凸部361Baの頭頂部に設けられたネジ穴361Bbに羅合された状態とし、駆動部312Baとベース部312Bbとが接合されて、一体化した状態のまま作業を進めるようにする。 With this configuration, when installing the actuator 312B on the front windshield FW, as shown in FIG. 28, the bolt 372 passes through the hole 371a of the base plate 371 and is screwed into the screw hole 361Bb provided at the top of the protrusion 361Ba of the actuator base 361B, and the drive unit 312Ba and base unit 312Bb are joined together, allowing the work to proceed in this integrated state.
 このようにすることで、センサ311’を含めた状態でアクチュエータ312Bを設置することが可能となり、設置に係る工数を低減させることが可能となる。 By doing this, it becomes possible to install the actuator 312B including the sensor 311', which makes it possible to reduce the amount of work required for installation.
 また、ボイスコイル363に故障が発生して、交換が必要な場合については、図29で示されるように、ボルト372のネジ部372aを凸部361Baの頭頂部に設けられたネジ穴361Bbから外すことにより、駆動部312Baだけをベース部312Bbから外して交換する。 Also, if the voice coil 363 malfunctions and needs to be replaced, as shown in FIG. 29, the screw portion 372a of the bolt 372 is removed from the screw hole 361Bb provided at the top of the convex portion 361Ba, and only the drive portion 312Ba is removed from the base portion 312Bb and replaced.
 この場合、ベース部312Bbは、フロントウィンドウFWに接着された状態のままであるため、新たな駆動部312Baを、ボルト372を使ってベース部312Bbに接続するだけで交換が可能となるので、再度位置決めをするような作業が不要となる。また、センサ311’に異常がない場合については、それまでに使用していたものをそのまま流用することができるので、交換に係るコストと手間を低減させることが可能となる。 In this case, since the base part 312Bb remains attached to the front window FW, replacement is possible simply by connecting a new drive part 312Ba to the base part 312Bb using the bolts 372, eliminating the need for repositioning. Also, if there is no abnormality in the sensor 311', the one that was previously in use can be reused as is, making it possible to reduce the cost and effort involved in replacement.
 <<10.第2の実施の形態の第3の変形例>>
 以上においては、アクチュエータベース361上に、フロントウィンドウFWの振動に係る加速度を検出するための1個のセンサ311’が設けられたアクチュエータ312Bについて説明してきたが、ボイスコイルケース362上に、ボイスコイルケース362の振動に係る加速度を検出するセンサを設けるようにしてもよい。
<<10. Third Modification of Second Embodiment>>
In the above, we have described the actuator 312B in which one sensor 311' for detecting acceleration related to the vibration of the front window FW is provided on the actuator base 361, but it is also possible to provide a sensor on the voice coil case 362 to detect acceleration related to the vibration of the voice coil case 362.
 図30は、ボイスコイルケース362上に、ボイスコイルケース362の振動に係る加速度を検出するセンサが設けられたアクチュエータ312Cの側面断面図を示している。 Figure 30 shows a side cross-sectional view of actuator 312C in which a sensor is provided on voice coil case 362 to detect acceleration related to vibration of voice coil case 362.
 図30のアクチュエータ312Cにおいて、図27のアクチュエータ312Bと異なる点は、ボイスコイルケース362上に、ボイスコイルケース362の振動に係る加速度を検出するセンサ311’’が新たに設けられている点である。 Actuator 312C in FIG. 30 differs from actuator 312B in FIG. 27 in that a sensor 311'' is newly provided on voice coil case 362 to detect acceleration related to vibration of voice coil case 362.
 センサ311’’は、ボイスコイルケース362の振動に係る加速度を検出し、NC処理部313に出力する。 The sensor 311'' detects the acceleration related to the vibration of the voice coil case 362 and outputs it to the NC processing unit 313.
 このような構成により、ボイスコイルケース362の振動に係る加速度が検出されるので、フロントウィンドウFWへの加振の状態を認識することができ、これを踏まえてアクチュエータ312Cの駆動信号を設定することが可能となるので、より適切にフロントウィンドウFWの振動を抑制し、より適切に振動に起因して発生する騒音を低減することが可能となる。また、ボイスコイルケース362の振動に係る加速度に基づいて、ボイルコイルケース362における異常な振動を検出できるので、ボイスコイル363に発生する異変を検出することが可能となる。 With this configuration, the acceleration related to the vibration of the voice coil case 362 is detected, making it possible to recognize the state of vibration applied to the front windshield FW and set the drive signal for the actuator 312C based on this, making it possible to more appropriately suppress the vibration of the front windshield FW and more appropriately reduce the noise caused by the vibration. In addition, because abnormal vibrations in the voice coil case 362 can be detected based on the acceleration related to the vibration of the voice coil case 362, it becomes possible to detect abnormalities occurring in the voice coil 363.
 <<11.第2の実施の形態の第4の変形例>>
 以上においては、ボイスコイル363への配線については、接続作業が別途必要となることが前提となる構成について説明してきたが、当接するベースプレート371と、凸部361a’の頭頂部との一部に配線接続部を構成し、駆動部312Baとベース部312Bbとを接合するだけで、配線の接続ができるようにしてもよい。
<<11. Fourth Modification of the Second Embodiment>>
In the above, a configuration has been described that assumes that separate connection work is required for wiring to the voice coil 363, but it is also possible to form a wiring connection portion on a part of the abutting base plate 371 and the top of the convex portion 361a', and to connect the wiring simply by joining the drive portion 312Ba and the base portion 312Bb.
 図31は、ベースプレート371と、凸部361a’の頭頂部との一部に配線接続部を構成し、駆動部312Daとベース部312Dbとを接合するだけで、配線の接続ができるようにしたアクチュエータ312Dの側面断面図を示している。 Figure 31 shows a side cross-sectional view of actuator 312D, which has wiring connection sections formed on part of base plate 371 and the top of protrusion 361a', allowing wiring to be connected simply by joining drive section 312Da and base section 312Db.
 図31のアクチュエータ312Dにおいて、図27のアクチュエータ312Bと異なる点は、ベースプレート371の図中下部の一部に配線接続部382aが形成され、凸部361Daの頭頂部の一部に配線接続部382bが形成されている点である。 Actuator 312D in FIG. 31 differs from actuator 312B in FIG. 27 in that wiring connection portion 382a is formed in part of the bottom of base plate 371 in the figure, and wiring connection portion 382b is formed in part of the top of protrusion 361Da.
 配線接続部382a,382bは、ボルト372により駆動部312Daとベース部312Dbとを接合する際に、相互に対向する位置に形成されている。 The wiring connection parts 382a, 382b are formed in positions facing each other when the drive part 312Da and the base part 312Db are joined by the bolt 372.
 また、配線接続部382bは、アクチュエータベース361上に形成されたコネクタ381と接続されている。NC処理部313との図示せぬ配線が、コネクタ381と接続されることにより、NC処理部313は、ボイスコイル363への駆動信号を供給することができる。 The wiring connection portion 382b is also connected to a connector 381 formed on the actuator base 361. When the wiring (not shown) to the NC processing portion 313 is connected to the connector 381, the NC processing portion 313 can supply a drive signal to the voice coil 363.
 このような構成により、駆動部312Daとベース部312Dbとが、ボルト372により接合されるだけで、ボイスコイル363とNC処理部313との電気的な接続作業を完了させることができ、駆動部312Daの交換に際して必要となる配線接続に係る作業工数を低減させることが可能となる。 With this configuration, the electrical connection between the voice coil 363 and the NC processing unit 313 can be completed simply by joining the drive unit 312Da and the base unit 312Db with the bolts 372, making it possible to reduce the labor required for wiring connections when replacing the drive unit 312Da.
 <<12.第2の実施の形態の第5の変形例>>
 以上においては、駆動部312Daとベース部312Dbとの物理的接合と、電気的接合とを、ボルト372を用いるだけで同時に実現できる例について説明してきたが、アクチュエータベース361Dの凸部361Daの外周部にネジ山を形成して、接続具により両者を接続できるようにしてもよい。
<<12. Fifth Modification of the Second Embodiment>>
The above describes an example in which the physical connection and electrical connection between the drive unit 312Da and the base unit 312Db can be achieved simultaneously by simply using the bolt 372, but it is also possible to form a screw thread on the outer periphery of the convex portion 361Da of the actuator base 361D so that the two can be connected by a connector.
 アクチュエータベース361の凸部361aの外周部にネジ山を形成して、接続具により接続できるようにしたアクチュエータ312Eの側面断面図である。 This is a side cross-sectional view of actuator 312E, which has a screw thread formed on the outer periphery of protrusion 361a of actuator base 361, allowing connection with a connector.
 図32のアクチュエータ312Eにおいて、図27のアクチュエータ312Bと異なる点は、アクチュエータベース361Eの凸部361Eaの外周部にネジ山が形成されており、内側にネジ山が形成された筒状の接続具391により接続されている点である。 The actuator 312E in FIG. 32 differs from the actuator 312B in FIG. 27 in that a screw thread is formed on the outer periphery of the protrusion 361Ea of the actuator base 361E, and the actuator is connected by a cylindrical connector 391 that has a screw thread formed on the inside.
 接続具391は、凸部361Eaおよびベースプレート371Eの下部371Ebと略同径の筒状の構成であり、その内周部にネジ山391aが形成され、図中の上部にのみ開口部を備えた蓋391bが形成されている。蓋391bの開口部は、凸部361Eaおよびベースプレート371Eの下部371Ebよりも小さな径であって、ボビン373とほぼ同径の開口部とされ、ボビン373を挿通している。さらに、ベースプレート371Eは、上部371Eaがボビン373と同径であり、下部371Ebがボビン373の径よりも大きく、凸部361Eaと略同径とされ、ボビン373の図中の下端部において接着剤等により接続されている。 The connector 391 is cylindrical and has approximately the same diameter as the convex portion 361Ea and the lower portion 371Eb of the base plate 371E, with a screw thread 391a formed on its inner circumference, and a lid 391b with an opening only at the upper portion in the figure. The opening of the lid 391b has a smaller diameter than the convex portion 361Ea and the lower portion 371Eb of the base plate 371E, and is approximately the same diameter as the bobbin 373, through which the bobbin 373 is inserted. Furthermore, the upper portion 371Ea of the base plate 371E has the same diameter as the bobbin 373, and the lower portion 371Eb is larger in diameter than the bobbin 373 and approximately the same diameter as the convex portion 361Ea, and is connected to the lower end of the bobbin 373 in the figure with an adhesive or the like.
 このため、接続具391のネジ山391aと、凸部361Eaの外周部に形成されたネジ山とが羅合されることにより、ベースプレート371Eと凸部361Eaの頭頂部とが当接した状態で接続される。また、接続具391と凸部361Eaとの羅合が開放されることにより、駆動部312Eaとベース部312Ebとを分離することができる。 As a result, the screw threads 391a of the connector 391 and the screw threads formed on the outer periphery of the protrusion 361Ea are screwed together, so that the base plate 371E and the top of the protrusion 361Ea are connected in abutting contact with each other. In addition, the screwed connection between the connector 391 and the protrusion 361Ea is released, so that the drive unit 312Ea and the base unit 312Eb can be separated.
 このような構成により、駆動部312Eaとベース部312Ebとを着脱することが可能となる。 This configuration makes it possible to attach and detach the drive unit 312Ea and the base unit 312Eb.
 <<13.第2の実施の形態の第6の変形例>>
 以上においては、アクチュエータベース361Cの凸部361Caの外周部にネジ山を形成して、接続具391により接続できるようにする例について説明してきたが、ボルト372とベースプレート371とを一体化した構造にしてもよい。
<<13. Sixth Modification of the Second Embodiment>>
In the above, an example has been described in which a screw thread is formed on the outer periphery of the protrusion 361Ca of the actuator base 361C so as to enable connection using the connector 391, but the bolt 372 and the base plate 371 may also be integrated into one structure.
 図33は、ボルト372とベースプレート371とを一体化したアクチュエータ312Fの側面断面図である。 Figure 33 is a side cross-sectional view of actuator 312F, in which bolt 372 and base plate 371 are integrated.
 図33のアクチュエータ312Fにおいては、ベースプレート371Fの図中下方向にボルト部371Faが形成されており、アクチュエータベース361Fの凸部361Faの頭頂部に形成された穴部361Fbに羅合することで、ベースプレート371Dと凸部361Daとが接合されて、駆動部312Faとベース部312Fbとを接続することが可能となる。 In the actuator 312F in FIG. 33, a bolt portion 371Fa is formed on the base plate 371F at the downward direction in the figure, and by fitting into a hole portion 361Fb formed at the top of the protrusion 361Fa of the actuator base 361F, the base plate 371D and the protrusion 361Da are joined, making it possible to connect the drive portion 312Fa and the base portion 312Fb.
 <<14.第2の実施の形態の第7の変形例>>
 以上においては、ボルト372とベースプレート371とを一体化した構造となる例について説明してきたが、図32の接続具391の内側にネジ山を設けず、アクチュエータベース361の凸部361aの頭頂部をキャップ状に嵌め込んだ状態で別途ネジ止めするような構成としてもよい。
<<14. Seventh Modification of the Second Embodiment>>
In the above, an example has been described in which the bolt 372 and the base plate 371 are integrated into one structure. However, it is also possible to use a structure in which no threads are provided on the inside of the connector 391 in FIG. 32, and the top of the convex portion 361a of the actuator base 361 is fitted in a cap-like shape and then screwed in place separately.
 図34は、アクチュエータベース361Gの凸部361Gaをキャップ状に嵌め込む接続具を設け、接続具と凸部361Gaとをネジ止めすることで駆動部312Gaとベース部312Gbとを接続できるようにしたアクチュエータ312Gの側面断面図である。 Figure 34 is a side cross-sectional view of an actuator 312G that has a connector that fits into the protrusion 361Ga of the actuator base 361G in a cap-like shape, and that can connect the drive unit 312Ga and base unit 312Gb by screwing the connector and the protrusion 361Ga together.
 図34のアクチュエータ312Gにおいては、駆動部312Gaとベース部312Gbとが、アクチュエータベース361Gの凸部361Gaをキャップ状に嵌め込んで固定する接続具401により接続されている。 In the actuator 312G in FIG. 34, the drive unit 312Ga and base unit 312Gb are connected by a connector 401 that fits and fixes the protrusion 361Ga of the actuator base 361G in a cap-like shape.
 接続具401には、上部401aに、凸部361Gaおよびベースプレート371Gの下部371Gbよりも小さな径であって、ボビン373と略同径の開口部が形成されている。 The connector 401 has an opening in the upper portion 401a that is smaller in diameter than the protrusion 361Ga and the lower portion 371Gb of the base plate 371G, and has approximately the same diameter as the bobbin 373.
 ベースプレート371Gは、上部371Gaがボビン373径よりもやや小さい径であり、下部371Gbがボビン373の径よりも大きく、凸部361Gaと略同径とされている。 The upper portion 371Ga of the base plate 371G has a diameter slightly smaller than that of the bobbin 373, and the lower portion 371Gb has a diameter larger than that of the bobbin 373 and is approximately the same diameter as the protruding portion 361Ga.
 接続具401は、凸部361Gaの頭頂部にベースプレート371Gを置いた状態で、凸部361Gaの頭部全体を嵌め込むようなキャップ状の構成とされている。 The connector 401 is configured like a cap that fits over the entire head of the convex portion 361Ga when the base plate 371G is placed on the top of the convex portion 361Ga.
 凸部361Gaには、側面にネジ穴361Gb-1,361Gb-2が形成されており、キャップ状に凸部361Gaの頭頂部に被されている接続具401の側面部を貫通して、凸部361Gaのネジ穴361Gb-1,361Gb-2にネジ402-1,402-2が挿通され羅合されることで、接続具401と、凸部361Gaとが接続された状態で固定される。 The convex portion 361Ga has screw holes 361Gb-1 and 361Gb-2 formed on the side, and screws 402-1 and 402-2 are inserted through the side of the connector 401, which is cap-shaped and covers the top of the convex portion 361Ga, and screwed into the screw holes 361Gb-1 and 361Gb-2 of the convex portion 361Ga, so that the connector 401 and the convex portion 361Ga are fixed in a connected state.
 このように接続具401とアクチュエータベース361Gの凸部361Gaの頭頂部とが接続されて固定されることにより、駆動部312Gaとベース部312Gbとを接続することが可能となる。 In this way, the connector 401 is connected and fixed to the top of the protrusion 361Ga of the actuator base 361G, making it possible to connect the drive unit 312Ga to the base unit 312Gb.
 また、ネジ402-1,402-2をネジ穴361Gb-1,361Gb-2から外すと、接続具401と凸部361Gaとの接続状態は開放されることになるので、駆動部312Gaとベース部312Gbとの接続状態も開放されることで、双方を分離することが可能となる。 Furthermore, when the screws 402-1 and 402-2 are removed from the screw holes 361Gb-1 and 361Gb-2, the connection between the connector 401 and the protrusion 361Ga is released, and the connection between the drive unit 312Ga and the base unit 312Gb is also released, making it possible to separate the two.
 尚、第2の実施の形態において説明した、アクチュエータ312,312A乃至312Gは、構造が異なるものであるが、例えば、図25のフローチャートを参照して説明したNC処理における動作や処理については、いずれも同一である。そこで、以降において、処理を説明する上では、必要に応じて、アクチュエータ312を代表して説明に用いるものとするが、アクチュエータ312をアクチュエータ312A乃至312Gのいずれかに交換しても同様に機能する。 The actuators 312, 312A to 312G described in the second embodiment have different structures, but the operation and processing in the NC processing described with reference to the flowchart in FIG. 25, for example, are all the same. Therefore, in the following, when describing the processing, actuator 312 will be used as a representative explanation as necessary, but the actuator will function in the same way even if actuator 312 is replaced with any of actuators 312A to 312G.
 <<15.第2の実施の形態の第8の変形例>>
 以上においては、NC処理部313が、センサ311からのセンシング結果であるセンサ信号にNCフィルタ処理を施すことにより駆動信号を生成して、アクチュエータ312に供給し、動作させる例について説明してきた。
<<15. Eighth Modification of Second Embodiment>>
In the above, an example has been described in which the NC processing unit 313 generates a drive signal by performing NC filtering on the sensor signal, which is the sensing result from the sensor 311, and supplies the drive signal to the actuator 312 to operate it.
 しかしながら、アクチュエータ312の加振力の周波数特性は周囲温度に依存することが知られている。 However, it is known that the frequency characteristics of the vibration force of actuator 312 depend on the ambient temperature.
 より詳細には、ダンパ364のコンプライアンスが温度に依存するため、例えば、周波数毎の加振力は、図35で示されるように、高温時の方が、コンプライアンスが大きく、低温時の方がコンプライアンス小さい。 More specifically, since the compliance of the damper 364 depends on the temperature, for example, the vibration force for each frequency has a larger compliance at high temperatures and a smaller compliance at low temperatures, as shown in FIG. 35.
 尚、図35においては、波形Fhが、ダンパ364の高温時のコンプライアンス特性を示しており、波形Fcが、ダンパ364の低温時のコンプライアンス特性を示している。 In FIG. 35, waveform Fh shows the compliance characteristics of damper 364 at high temperatures, and waveform Fc shows the compliance characteristics of damper 364 at low temperatures.
 このため、NCフィルタ処理は、特定の周囲温度におけるコンプライアンス特性に合わせた処理となるため、周囲温度が変化してアクチュエータ特性が変化すると、本来のNC性能が発揮できない可能性がある。 As a result, NC filter processing is tailored to the compliance characteristics at a specific ambient temperature, so if the ambient temperature changes and the actuator characteristics change, the original NC performance may not be achieved.
 そこで、一般的に車両1に搭載されている、車室外温度センサ及び車室内温度センサを用いてアクチュエータ312の周囲温度を推定し、推定されたアクチュエータ312の周囲温度に応じてNCフィルタを切り替えるようにしてもよい。また、アクチュエータ312の周囲温度が、安全に使用可能な範囲を超えた場合、アクチュエータ312を保護するため、アクチュエータ312への増幅器の出力をミュートするようにしてもよい。 In view of this, the ambient temperature of the actuator 312 may be estimated using an exterior temperature sensor and an interior temperature sensor that are generally mounted on the vehicle 1, and the NC filter may be switched depending on the estimated ambient temperature of the actuator 312. In addition, if the ambient temperature of the actuator 312 exceeds a range in which it can be safely used, the output of the amplifier to the actuator 312 may be muted to protect the actuator 312.
 図36は、アクチュエータ312の周囲温度に応じてNCフィルタを切り替えると共に、アクチュエータ312の周囲温度が、安全に使用可能な範囲を超えた場合、アクチュエータ312への増幅器の出力をミュートするようにしたNC処理部313’の構成例を示している。 FIG. 36 shows an example of the configuration of an NC processing unit 313' that switches the NC filter depending on the ambient temperature of the actuator 312 and mutes the amplifier output to the actuator 312 if the ambient temperature of the actuator 312 exceeds the range in which it can be safely used.
 図36のNC処理部313’は、増幅器331、NCフィルタ処理部332c,332h、増幅器333、スイッチ421,422、および動作制御部423を備えている。 The NC processing unit 313' in FIG. 36 includes an amplifier 331, NC filter processing units 332c and 332h, an amplifier 333, switches 421 and 422, and an operation control unit 423.
 尚、増幅器331、NCフィルタ処理部332c,332h、増幅器333は、それぞれ基本的に、図24の増幅器331、NCフィルタ処理部332、増幅器333と同一の機能を備えた構成である。 Furthermore, amplifier 331, NC filter processing units 332c and 332h, and amplifier 333 are basically configured to have the same functions as amplifier 331, NC filter processing unit 332, and amplifier 333 in FIG. 24, respectively.
 ただし、NCフィルタ処理部332は、所定の周囲温度であるときのダンパ364のコンプライアンス特性に応じたフィルタ処理を行うのに対して、NCフィルタ処理部332cは、周囲温度が所定の閾値よりも低いときのダンパ364のコンプライアンス特性に応じた低温用のフィルタ処理を行い、NCフィルタ処理部332hは、周囲温度が所定の閾値よりも高いときのダンパ364のコンプライアンス特性に応じた高温用のフィルタ処理を行う。 However, while the NC filter processing unit 332 performs filtering according to the compliance characteristics of the damper 364 when the ambient temperature is a predetermined value, the NC filter processing unit 332c performs filtering for low temperatures according to the compliance characteristics of the damper 364 when the ambient temperature is lower than a predetermined threshold, and the NC filter processing unit 332h performs filtering for high temperatures according to the compliance characteristics of the damper 364 when the ambient temperature is higher than a predetermined threshold.
 動作制御部423は、一般的な車両1に搭載される車室外温度センサ431及び車室内温度センサ432のそれぞれより供給される車室外の温度と、車室内の温度とからアクチュエータ312の周囲温度を推定する。 The operation control unit 423 estimates the ambient temperature of the actuator 312 from the temperature outside the vehicle cabin and the temperature inside the vehicle cabin, which are supplied by an outside vehicle cabin temperature sensor 431 and an inside vehicle cabin temperature sensor 432, respectively, which are mounted on a typical vehicle 1.
 動作制御部423は、アクチュエータ312の周囲温度が所定の閾値よりも低い場合、スイッチ421を端子421cと接続して、増幅器331からのセンサ信号がNCフィルタ処理部332cに供給されるようにして、所定の温度よりも低い特性でのNCフィルタ処理が実行される動作モードに切り替える。 When the ambient temperature of the actuator 312 is lower than a predetermined threshold, the operation control unit 423 connects the switch 421 to the terminal 421c so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332c, and switches to an operation mode in which NC filter processing is performed with characteristics lower than the predetermined temperature.
 動作制御部423は、アクチュエータ312の周囲温度が所定の閾値よりも高い場合、スイッチ421を端子421hと接続して、増幅器331からのセンサ信号がNCフィルタ処理部332hに供給されるようにして、所定の温度よりも高い特性でのNCフィルタ処理が実行される動作モードに切り替える。 When the ambient temperature of the actuator 312 is higher than a predetermined threshold, the operation control unit 423 connects the switch 421 to the terminal 421h so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332h, and switches to an operation mode in which NC filter processing is performed with characteristics higher than the predetermined temperature.
 動作制御部423は、アクチュエータ312の周囲温度がアクチュエータの安全に動作可能な範囲内ではない場合、スイッチ422を端子422bと接続して、増幅器333からの出力をグランドに開放してアクチュエータ312を実質的にミュートする動作モードに切り替える。 If the ambient temperature of the actuator 312 is not within the range in which the actuator can safely operate, the operation control unit 423 connects the switch 422 to the terminal 422b, and opens the output from the amplifier 333 to ground, switching to an operation mode in which the actuator 312 is essentially muted.
 動作制御部423は、アクチュエータ312の周囲温度がアクチュエータの安全に動作可能な範囲内である場合、スイッチ422を端子422aと接続して、増幅器333からの出力をアクチュエータ312に出力させ、通常通りのNC処理を実行させるモードに切り替える。 When the ambient temperature of the actuator 312 is within the range in which the actuator can safely operate, the operation control unit 423 connects the switch 422 to the terminal 422a, outputs the output from the amplifier 333 to the actuator 312, and switches to a mode in which normal NC processing is performed.
 このような構成により、図36のNC処理部313’は、アクチュエータ312の周囲温度に基づいて、NCフィルタ処理部332c,332hが温度特性に応じて適切に切り替えて使用されるので、適切なNC処理を実現することが可能となる。また、アクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な範囲内ではない場合は、増幅器333からの出力を停止することで実質的にミュートして、アクチュエータ312を保護する。 With this configuration, the NC processing unit 313' in FIG. 36 appropriately switches between the NC filter processing units 332c and 332h in accordance with the temperature characteristics based on the ambient temperature of the actuator 312, making it possible to achieve appropriate NC processing. Furthermore, if the ambient temperature of the actuator 312 is not within a range in which the actuator 312 can safely operate, the output from the amplifier 333 is stopped, essentially muting the output, thereby protecting the actuator 312.
 <図36のNC処理部による動作モード制御処理>
 次に、図37のフローチャートを参照して、図36のNC処理部313’による動作モード制御処理について説明する。
<Operation mode control process by the NC processing unit in FIG. 36>
Next, the operation mode control process by the NC processing unit 313' in FIG. 36 will be described with reference to the flowchart in FIG.
 ステップS231において、動作制御部423は、車室外温度センサ431及び車室内温度センサ432のそれぞれより供給される車室外の温度と、車室内の温度とからアクチュエータ312の周囲温度を推定する。 In step S231, the operation control unit 423 estimates the ambient temperature of the actuator 312 from the temperature outside the vehicle cabin and the temperature inside the vehicle cabin, which are supplied by the outside vehicle cabin temperature sensor 431 and the inside vehicle cabin temperature sensor 432, respectively.
 ステップS232において、動作制御部423は、推定されたアクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な温度範囲内であるか否かを判定する。 In step S232, the operation control unit 423 determines whether the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can operate safely.
 ステップS232において、推定されたアクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な温度範囲内であると判定された場合、処理は、ステップS233に進む。 If it is determined in step S232 that the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can operate safely, processing proceeds to step S233.
 ステップS233において、動作制御部423は、動作モードをオンに設定し、スイッチ422を端子422aに接続し、増幅器333から出力される駆動信号がアクチュエータ312に供給可能な状態とする。 In step S233, the operation control unit 423 sets the operation mode to ON, connects the switch 422 to the terminal 422a, and makes it possible for the drive signal output from the amplifier 333 to be supplied to the actuator 312.
 ステップS234において、動作制御部423は、推定されたアクチュエータ312の周囲温度が、低温用NCフィルタで使用可能な上限温度以下であるか否かを判定する。 In step S234, the operation control unit 423 determines whether the estimated ambient temperature of the actuator 312 is equal to or lower than the upper limit temperature that can be used with the low-temperature NC filter.
 ステップS234において、推定されたアクチュエータ312の周囲温度が、低温用NCフィルタで使用可能な上限温度以下であると判定された場合、処理は、ステップS235に進む。 If it is determined in step S234 that the estimated ambient temperature of the actuator 312 is equal to or lower than the upper limit temperature that can be used with the low-temperature NC filter, processing proceeds to step S235.
 ステップS235において、動作制御部423は、低温用のNCフィルタでの動作モードに設定し、スイッチ421を端子421cと接続して、増幅器331からのセンサ信号がNCフィルタ処理部332cに供給されるようにする。 In step S235, the operation control unit 423 sets the operation mode to the low temperature NC filter and connects the switch 421 to the terminal 421c so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332c.
 一方、ステップS234において、推定されたアクチュエータ312の周囲温度が、低温用NCフィルタで使用可能な上限温度以下ではないと判定された場合、処理は、ステップS236に進む。 On the other hand, if it is determined in step S234 that the estimated ambient temperature of the actuator 312 is not equal to or lower than the upper limit temperature that can be used with the low-temperature NC filter, processing proceeds to step S236.
 ステップS236において、動作制御部423は、高温用のNCフィルタでの動作モードに設定し、スイッチ421を端子421hと接続して、増幅器331からのセンサ信号がNCフィルタ処理部332hに供給されるようにする。 In step S236, the operation control unit 423 sets the operation mode to a high-temperature NC filter mode and connects the switch 421 to the terminal 421h so that the sensor signal from the amplifier 331 is supplied to the NC filter processing unit 332h.
 また、ステップS232において、推定されたアクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な温度範囲内ではないと判定された場合、処理は、ステップS237に進む。 If it is determined in step S232 that the estimated ambient temperature of the actuator 312 is not within the temperature range in which the actuator 312 can safely operate, the process proceeds to step S237.
 ステップS237において、動作制御部423は、動作モードをオフに設定し、スイッチ422を端子422bに接続し、増幅器333からの出力がアクチュエータ312に出力されない、実質的にミュートとなるように設定する。 In step S237, the operation control unit 423 sets the operation mode to OFF, connects the switch 422 to terminal 422b, and sets the output from the amplifier 333 to not be output to the actuator 312, essentially muting the operation mode.
 ステップS238において、動作制御部423は、動作の終了が指示されたか否かを判定し、終了が指示されていない場合、処理は、ステップS231に戻り、それ以降の処理が繰り返される。 In step S238, the operation control unit 423 determines whether or not an instruction to end the operation has been given. If an instruction to end the operation has not been given, the process returns to step S231, and the subsequent processes are repeated.
 そして、ステップS238において、終了が指示された場合、処理は終了する。 Then, in step S238, if an instruction to end is given, the process ends.
 以上の処理により、アクチュエータ312の周囲温度に基づいて、NCフィルタ処理部332c,332hが温度特性に応じて適切に切り替えて使用されるので、適切なNC処理を実現することが可能となる。また、アクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な範囲を超えている場合は、増幅器333からの駆動信号の出力を停止することで実質的にミュートして、アクチュエータ312を保護することが可能となる。 The above process allows the NC filter processing units 332c and 332h to be appropriately switched and used according to the temperature characteristics based on the ambient temperature of the actuator 312, making it possible to achieve appropriate NC processing. Furthermore, if the ambient temperature of the actuator 312 exceeds the range in which the actuator 312 can safely operate, the output of the drive signal from the amplifier 333 is stopped, essentially muting the actuator 312, making it possible to protect the actuator 312.
 尚、以降におけるNC処理については、図37のフローチャートを参照して説明した動作モード制御処理においてなされた設定に基づいて、実質的に、図25のフローチャートを参照して説明した処理がなされる。ただし、フィルタ処理は、アクチュエータ312の周囲温度に基づいて低温用と高温用とが切り替えて使用されると共に、安全に動作可能な範囲外であるときには、アクチュエータ312への出力が停止されて保護される。 In addition, the NC processing thereafter is substantially the same as that described with reference to the flowchart in FIG. 25, based on the settings made in the operation mode control processing described with reference to the flowchart in FIG. 37. However, the filter processing is switched between low and high temperature based on the ambient temperature of the actuator 312, and when it is outside the range in which it can operate safely, the output to the actuator 312 is stopped for protection.
 例えば、低温用のNCフィルタの下限温度が0度で、かつ、上限温度が20度未満であり、高温用のNCフィルタの下限温度が20度以上で、かつ、上限温度が40度未満であり、安全に動作可能な温度範囲が40度まである場合、アクチュエータ312の周囲温度が0~20度であるときには、低温用のNCフィルタ処理がなされ、20~40度であるときには、高温用のNCフィルタ処理がなされ、0度未満、または、40度超のときには、ミュートされる。 For example, if the lower limit temperature of the low-temperature NC filter is 0 degrees and the upper limit temperature is less than 20 degrees, the lower limit temperature of the high-temperature NC filter is 20 degrees or higher and the upper limit temperature is less than 40 degrees, and the safe operating temperature range is up to 40 degrees, then when the ambient temperature of the actuator 312 is between 0 and 20 degrees, low-temperature NC filter processing is performed, when it is between 20 and 40 degrees, high-temperature NC filter processing is performed, and when it is less than 0 degrees or more than 40 degrees, it is muted.
 <<16.第2の実施の形態の第9の変形例>>
 以上においては、一般的な車室内温度センサと車室外温度センサとを用いて、アクチュエータの周囲温度を推定し、推定結果に基づいて、NCフィルタを切り替えると共に、安全に動作できない温度範囲であるときはアクチュエータ312への制御信号の供給を停止する例について説明してきた。
<<16. Ninth Modification of the Second Embodiment>>
In the above, an example has been described in which the ambient temperature of the actuator is estimated using a general interior temperature sensor and an exterior temperature sensor, and the NC filter is switched based on the estimation result, and the supply of a control signal to the actuator 312 is stopped when the temperature is within a range in which safe operation is not possible.
 ところで、温度センサからの信号は必ずしも得ることができない場合もあり、このような場合、上述した処理は実現できない。しかしながら、昨今においては、多くの車両1にナビゲーション装置が搭載されていることから、ナビゲーション装置に必ず備えられるセンサからのセンサ信号を用いるようにして、周囲温度を推定することができれば、上述した処理は実現できるようになる。また、ダンパ364のコンプライアンス特性は、小さな温度変化でも大きく変化するものであり、周囲温度に基づいて、細かい温度範囲毎に、より多くのNCフィルタに切り替えられることが望ましい。 However, there are cases where a signal from a temperature sensor cannot always be obtained, and in such cases the above-mentioned processing cannot be realized. However, since many vehicles 1 nowadays are equipped with navigation devices, if the ambient temperature can be estimated using a sensor signal from a sensor that is always provided in the navigation device, the above-mentioned processing can be realized. In addition, the compliance characteristics of the damper 364 change significantly even with a small change in temperature, and it is desirable to be able to switch to more NC filters for each fine temperature range based on the ambient temperature.
 図38は、多くの車両1に搭載されるナビゲーション装置に必ず備えられるセンサを用いて周囲温度を推定すると共に、推定結果に基づいて、より多くの温度特性に応じたNCフィルタ処理に切り替えられるようにしたNC処理部313’’の構成例を示している。 FIG. 38 shows an example configuration of an NC processing unit 313'' that estimates the ambient temperature using a sensor that is always provided in navigation devices installed in many vehicles 1, and can switch to NC filter processing that corresponds to a wider range of temperature characteristics based on the estimation result.
 NC処理部313’’は、増幅器331、NCフィルタ処理部332-1乃至332-n、増幅器333、切替部421’、スイッチ422、動作制御部423’、および太陽方向計算部441を備えている。 The NC processing unit 313'' includes an amplifier 331, NC filter processing units 332-1 to 332-n, an amplifier 333, a switching unit 421', a switch 422, an operation control unit 423', and a sun direction calculation unit 441.
 尚、増幅器331、NCフィルタ処理部332-1乃至332-n、増幅器333は、それぞれ、図24の増幅器331、NCフィルタ処理部332、増幅器333と同一の機能を備えた構成である。 Note that the amplifier 331, the NC filter processing units 332-1 to 332-n, and the amplifier 333 have the same functions as the amplifier 331, the NC filter processing unit 332, and the amplifier 333 in FIG. 24, respectively.
 ただし、NCフィルタ処理部332-1乃至332-nは、アクチュエータ312の周囲温度の細かい温度範囲毎に設定されるダンパ364のコンプライアンス特性に応じたフィルタ処理を行う。 However, the NC filter processing units 332-1 to 332-n perform filter processing according to the compliance characteristics of the damper 364, which are set for each fine range of the ambient temperature of the actuator 312.
 切替部421’は、図36のスイッチ421と対応する構成であり、動作制御部423’により制御されて、推定されたアクチュエータ312の周囲温度に対応したNCフィルタ処理部332に接続される。スイッチ422は、図36における構成と同一の構成である。 The switching unit 421' has a configuration corresponding to the switch 421 in FIG. 36, and is controlled by the operation control unit 423' to be connected to the NC filter processing unit 332 that corresponds to the estimated ambient temperature of the actuator 312. The switch 422 has the same configuration as that in FIG. 36.
 太陽方向計算部441は、ナビゲーション装置に一般的に搭載されるセンサであるコンパス451から方向の情報を取得し、GPS452から位置情報を取得し、GPS452により取得される時刻情報に基づいた日付時刻情報453を取得することにより、現在位置における太陽方向を計算し、動作制御部423’に出力する。 The sun direction calculation unit 441 obtains direction information from a compass 451, which is a sensor typically installed in navigation devices, obtains position information from a GPS 452, and obtains date and time information 453 based on the time information obtained by the GPS 452, thereby calculating the sun direction at the current position and outputting the result to the operation control unit 423'.
 動作制御部423’は、基本的な機能は動作制御部423と同一であるが、車室外温度センサ431と車室内温度センサ432からの温度の情報に代えて、太陽方向計算部441より供給される太陽の方向の情報を取得する。動作制御部423は、太陽方向計算部441より供給される太陽の方向の情報に基づいて、直射日光の照射状況を推定することにより、アクチュエータ312の周囲温度を推定する。 The operation control unit 423' has the same basic functions as the operation control unit 423, but instead of temperature information from the exterior temperature sensor 431 and the interior temperature sensor 432, it acquires information on the direction of the sun supplied from the sun direction calculation unit 441. The operation control unit 423 estimates the ambient temperature of the actuator 312 by estimating the irradiation conditions of direct sunlight based on the information on the direction of the sun supplied from the sun direction calculation unit 441.
 このように温度センサを用いないようにすることで、温度センサが設けられていない車両1に対しても対応することが可能になると共に、配線の設置コストを低減させることが可能となる。 By not using a temperature sensor in this way, it is possible to accommodate vehicles 1 that are not equipped with a temperature sensor, and it is also possible to reduce the cost of installing wiring.
 動作制御部423’は、推定されたアクチュエータ312の周囲温度に基づいて、使用可能な温度範囲のNCフィルタ処理部332を選択し、増幅器331からの加速度のセンサ信号に対してNCフィルタ処理を掛けて、アクチュエータ312を駆動させるための駆動信号を生成して増幅器333を介して出力させる。 The operation control unit 423' selects an NC filter processing unit 332 in a usable temperature range based on the estimated ambient temperature of the actuator 312, applies NC filter processing to the acceleration sensor signal from the amplifier 331, and generates a drive signal for driving the actuator 312, which is output via the amplifier 333.
 <図38のNC処理部による動作モード制御処理>
 次に、図39のフローチャートを参照して、図38のNC処理部313’’による動作モード制御処理について説明する。
<Operation mode control process by the NC processing unit in FIG. 38>
Next, the operation mode control process by the NC processing unit 313'' in FIG. 38 will be described with reference to the flowchart in FIG.
 ステップS251において、太陽方向計算部441は、コンパス451から方向の情報を取得し、GPS452から位置情報を取得し、GPS452により取得される時刻情報に基づいた日付時刻情報453を取得して、これらの情報から現在位置における太陽方向を計算し、動作制御部423’に出力する。 In step S251, the sun direction calculation unit 441 acquires direction information from the compass 451, acquires position information from the GPS 452, acquires date and time information 453 based on the time information acquired by the GPS 452, calculates the sun direction at the current position from this information, and outputs it to the operation control unit 423'.
 ステップS252において、動作制御部423’は、太陽方向計算部441より供給される太陽方向に基づいて、直射日光の照射状況を推定し、推定結果からアクチュエータ312の周囲温度を推定する。 In step S252, the operation control unit 423' estimates the direct sunlight irradiation conditions based on the solar direction provided by the solar direction calculation unit 441, and estimates the ambient temperature of the actuator 312 from the estimation result.
 ステップS253において、動作制御部423’は、推定されたアクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な温度範囲内であるか否かを判定する。 In step S253, the operation control unit 423' determines whether the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can operate safely.
 ステップS253において、推定されたアクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な温度範囲内であると判定された場合、処理は、ステップS254に進む。 If it is determined in step S253 that the estimated ambient temperature of the actuator 312 is within a temperature range in which the actuator 312 can safely operate, processing proceeds to step S254.
 ステップS254において、動作制御部423’は、動作モードをオンに設定し、スイッチ422を端子422aに接続し、増幅器333を介して出力される駆動信号がアクチュエータ312に出力可能な状態とする。 In step S254, the operation control unit 423' sets the operation mode to ON, connects the switch 422 to the terminal 422a, and makes it possible for the drive signal output via the amplifier 333 to be output to the actuator 312.
 ステップS255において、動作制御部423’は、NCフィルタ処理部332-1乃至322-nのうち、推定されたアクチュエータ312の周囲温度に対応するNCフィルタ処理部332によるNCフィルタ処理モードに設定し、増幅器331からのセンサ信号が供給されるようにする。 In step S255, the operation control unit 423' sets the NC filter processing mode by the NC filter processing unit 332 that corresponds to the estimated ambient temperature of the actuator 312, among the NC filter processing units 332-1 to 322-n, and supplies the sensor signal from the amplifier 331.
 また、ステップS253において、推定されたアクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な温度範囲内ではないと判定された場合、処理は、ステップS256に進む。 If it is determined in step S253 that the estimated ambient temperature of the actuator 312 is not within the temperature range in which the actuator 312 can safely operate, the process proceeds to step S256.
 ステップS256において、動作制御部423’は、動作モードをオフに設定し、スイッチ422を端子422bに接続し、増幅器333からの出力がアクチュエータ312に出力されない、実質的にミュートとなるように設定する。 In step S256, the operation control unit 423' sets the operation mode to OFF, connects the switch 422 to the terminal 422b, and sets the output from the amplifier 333 to be not output to the actuator 312, essentially muting the operation mode.
 ステップS257において、動作制御部423’は、動作の終了が指示されたか否かを判定し、終了が指示されていない場合、処理は、ステップS251に戻り、それ以降の処理が繰り返される。 In step S257, the operation control unit 423' determines whether or not an instruction to end the operation has been given. If an instruction to end the operation has not been given, the process returns to step S251, and the subsequent processes are repeated.
 そして、ステップS257において、終了が指示された場合、処理は終了する。 Then, in step S257, if an instruction to end is given, the process ends.
 以上の処理により、アクチュエータ312の周囲温度に基づいて、NCフィルタ処理部332-1乃至332-nのうち、推定された周囲温度と対応する温度特性のNCフィルタ処理がなされるので、適切なNC処理を実現することが可能となる。また、アクチュエータ312の周囲温度が、アクチュエータ312が安全に動作可能な範囲を超えている場合は、増幅器333からの出力を停止することで実質的にミュートして、アクチュエータ312を保護することが可能となる。 By the above process, NC filter processing units 332-1 to 332-n perform NC filter processing with temperature characteristics corresponding to the estimated ambient temperature based on the ambient temperature of actuator 312, making it possible to realize appropriate NC processing. Furthermore, if the ambient temperature of actuator 312 exceeds the range in which actuator 312 can safely operate, output from amplifier 333 is stopped, essentially muting the output, making it possible to protect actuator 312.
 <<17.第2の実施の形態の第10の変形例>>
 以上においては、アクチュエータの周囲温度を推定し、推定結果に基づいて、NCフィルタを切り替えると共に、安全に動作できない温度範囲であるときはアクチュエータ312への制御信号の供給を停止する例について説明してきた。
<<17. Tenth Modification of the Second Embodiment>>
In the above, an example has been described in which the ambient temperature of the actuator is estimated, the NC filter is switched based on the estimation result, and the supply of a control signal to the actuator 312 is stopped when the temperature is within a range in which safe operation is not possible.
 しかしながら、位置情報や走行情報などの各種の情報と対応付けてアクチュエータ312の情報をクラウドにアップロードし、それらの情報に基づいて、NCフィルタ処理部332が切り替えられるようにしてもよい。 However, it is also possible to upload information about the actuator 312 to the cloud in association with various types of information such as position information and driving information, and to switch the NC filter processing unit 332 based on that information.
 図40は、位置情報や各種の情報と対応付けてアクチュエータ312の情報をクラウドにアップロードし、それらの情報に基づいて、NCフィルタ処理部332が切り替えられるようにしたNC処理部313’’’の構成例を示している。 Figure 40 shows an example configuration of an NC processing unit 313''' in which actuator 312 information is uploaded to the cloud in association with position information and various other information, and the NC filter processing unit 332 is switched based on that information.
 図40のNC処理部313’’’において、図38のNC処理部313’’と異なる点は、太陽方向計算部441が削除され、動作制御部423’に代えて、動作制御部423’’が設けられると共に、スイッチ422とアクチュエータとの間に電流センサ462が設けられた点である。 The NC processing unit 313'' in FIG. 40 differs from the NC processing unit 313'' in FIG. 38 in that the sun direction calculation unit 441 has been deleted, and the operation control unit 423'' has been replaced with an operation control unit 423'', and a current sensor 462 has been provided between the switch 422 and the actuator.
 動作制御部423’’は、基本的な機能において動作制御部423’と同様であるが、アクチュエータ312の周囲温度に基づいて、切替部421’およびスイッチ422を制御するのではなく、センサ311の信号、位置情報、道路状況、時刻・日付情報、自動車の走行速度、NC Filter係数、交通情報(渋滞・交通事故の発生)、LiDAR461(もしくはカメラ)からの路面の凹凸情報、アクチュエータ312の駆動信号、およびアクチュエータの異常検知情報に基づいて制御する。 The operation control unit 423'' has the same basic functions as the operation control unit 423', but rather than controlling the changeover unit 421' and the switch 422 based on the ambient temperature of the actuator 312, it controls them based on the signal from the sensor 311, position information, road conditions, time and date information, the vehicle's traveling speed, the NC filter coefficient, traffic information (traffic jams and occurrence of traffic accidents), road surface unevenness information from the LiDAR 461 (or camera), the drive signal for the actuator 312, and abnormality detection information for the actuator.
 例えば、動作制御部423’’は、ブルートゥース(登録商標)などの近距離通信手段によりスマートフォンなどの情報端末471を介してクラウドサーバ472にアクセスする。 For example, the operation control unit 423'' accesses the cloud server 472 via an information terminal 471 such as a smartphone using a short-range communication means such as Bluetooth (registered trademark).
 クラウドサーバ472には、センサ311の信号、位置情報、道路状況、時刻・日付情報、自動車の走行速度、交通情報(渋滞・交通事故の発生)等の情報から特定される騒音を低減させる上で最適なNCフィルタ処理部332やNCフィルタ係数の情報が登録されている。これは、他の車両1から位置情報と対応付けてアップロードされた騒音を特定する情報に基づいて、特定された騒音を低減させる上で最適なNCフィルタ処理部332の情報である。 In the cloud server 472, information on the NC filter processing unit 332 and NC filter coefficients that are optimal for reducing noise identified from information such as the sensor 311 signal, location information, road conditions, time and date information, vehicle travel speed, and traffic information (occurrence of traffic jams and traffic accidents) is registered. This is information on the NC filter processing unit 332 that is optimal for reducing identified noise based on information identifying noise uploaded from other vehicles 1 in association with location information.
 動作制御部423’’は、情報端末471を介してクラウドサーバ472にアクセスし、自らのセンサ311の信号、位置情報、道路状況、時刻・日付情報、自動車の走行速度、および交通情報(渋滞・交通事故の発生)等の条件に基づいて、最適なNCフィルタ処理部332の情報を選択し、対応するNCフィルタ処理部332を使用するように切替部421’を制御して切り替えるようにしてもよい。 The operation control unit 423'' may access the cloud server 472 via the information terminal 471, and select the most suitable information for the NC filter processing unit 332 based on conditions such as the signal from its own sensor 311, location information, road conditions, time and date information, the vehicle's traveling speed, and traffic information (occurrence of traffic jams and traffic accidents), and control and switch the switching unit 421' to use the corresponding NC filter processing unit 332.
 また、最適なNCフィルタ処理部332を備えていない場合については、動作制御部423’’は、最適なNCフィルタ処理部332を実現する上で必要なNCフィルタ係数をクラウドサーバ472からダウンロードして、自らの保有するNCフィルタ処理部332-1乃至322-nにおけるNCフィルタ係数をアップデートするようにしてもよい。 In addition, if the optimal NC filter processing unit 332 is not provided, the operation control unit 423'' may download the NC filter coefficients required to realize the optimal NC filter processing unit 332 from the cloud server 472 and update the NC filter coefficients in the NC filter processing units 332-1 to 322-n that it owns.
 動作制御部423’’は、LiDAR461(もしくはカメラ)などから得られる路面の凹凸情報も、位置情報と対応付けてアップロードするようにしてもよい。 The operation control unit 423'' may also upload information about road surface irregularities obtained from the LiDAR 461 (or a camera) etc. in association with the location information.
 例えば、図41で示されるように車両481の前方にLiDAR461-1を設け、走行しようとする領域ZFのポイントクラウド情報を取得することで、領域ZFの凹凸情報を取得するようにしてもよい。バックする際のこれから走行する領域ZRにおけるポイントクラウド情報を取得できるように、車両481の後方にLiDAR461-2を設け、領域ZRの凹凸情報を取得してもよい。動作制御部423’’は、領域ZF,ZRなどの凹凸情報を例えば、位置情報と共にアップロードするようにしてもよい。 For example, as shown in FIG. 41, LiDAR 461-1 may be provided in front of vehicle 481, and point cloud information of area ZF through which the vehicle is about to travel may be obtained to obtain unevenness information for area ZF. LiDAR 461-2 may be provided behind vehicle 481 to obtain unevenness information for area ZR so that point cloud information for area ZR through which the vehicle will travel when backing up may be obtained. The operation control unit 423'' may upload unevenness information for areas ZF, ZR, etc., together with position information, for example.
 また、動作制御部423’’は、アクチュエータ312の駆動信号と、電流センサ462により検出される電流値とを比較して、一致しない場合、断線などによりアクチュエータの異常を検知することができるので、このアクチュエータ異常検知情報も併せてアップロードするようにしてもよい。 The operation control unit 423'' also compares the drive signal of the actuator 312 with the current value detected by the current sensor 462, and if they do not match, it can detect an abnormality in the actuator due to a broken wire or the like, and may also upload this actuator abnormality detection information.
 クラウドサーバ472においては、これらの情報に基づいて、それぞれの位置や走行条件等により想定される騒音に合わせて最適なNCフィルタ処理部332が登録されるようにすることで、一般のユーザが使用する車両1における動作制御部423’’は、自らの位置情報と走行条件に基づいて、最適なNCフィルタ処理部332を選択することが可能となる。 In the cloud server 472, the optimal NC filter processing unit 332 is registered based on this information in accordance with the anticipated noise level for each location, driving conditions, etc., and this enables the operation control unit 423'' in the vehicle 1 used by a general user to select the optimal NC filter processing unit 332 based on its own location information and driving conditions.
 <<18.第3の実施の形態>>
 <FF方式NC装置とFB方式NC装置との組み合わせ>
 以上においては、第1の実施の形態として、FF方式のNC装置について説明し、第2の実施の形態として、FB方式のNC装置について説明してきた。
<<18. Third embodiment>>
<Combination of FF type NC unit and FB type NC unit>
In the above, an FF type NC device has been described as the first embodiment, and an FB type NC device has been described as the second embodiment.
 しかしながら、これら双方を組み合わせることにより、より適切な騒音の低減を実現することができる。 However, by combining both of these, more appropriate noise reduction can be achieved.
 図42は、車両1に対して、フィードバック方式のNC装置33Bとフィードフォワード方式のNC装置33Fとが組み合わせて構成されることで実現されるNC装置33の構成例を示している。 FIG. 42 shows an example of the configuration of an NC unit 33 realized for a vehicle 1 by combining a feedback-type NC unit 33B and a feedforward-type NC unit 33F.
 ここで、FB方式のNC装置33Bは、センサ311、アクチュエータ312(312A乃至312Fのいずれでもよい)、FBNC処理部313より構成される。尚、FBNC処理部313は、NC処理部313と対応する構成であるが、以降においては、FB方式のNC装置33のものであることを認識し易くするため、FBNC処理部313と称する。 Here, the FB type NC device 33B is composed of a sensor 311, an actuator 312 (which may be any of 312A to 312F), and an FBNC processing unit 313. Note that the FBNC processing unit 313 has a configuration corresponding to the NC processing unit 313, but hereafter it will be referred to as the FBNC processing unit 313 to make it easier to recognize that it is part of the FB type NC device 33.
 また、FF方式のNC装置33Fは、センサ151、FFNC処理部153(153’でもよい)、スピーカ154より構成される。尚、FFNC処理部153は、NC処理部153と対応する構成であるが、以降においては、FF方式のNC装置33Fのものであることを認識し易くするため、FFNC処理部153と称する。 Furthermore, the FF type NC device 33F is composed of a sensor 151, an FFNC processing unit 153 (or 153'), and a speaker 154. Note that the FFNC processing unit 153 corresponds to the NC processing unit 153, but hereafter it will be referred to as the FFNC processing unit 153 to make it easier to recognize that it is the FF type NC device 33F.
 以上のように、図42に示されるように、車両1に対して、FB方式のNC装置33BとFF方式のNC装置33Fとが組み合わされたNC装置33により、FB方式のNC装置33Bでなければ低減できない騒音と、FF方式のNC装置33Fでなければ低減できない騒音との両方を適切に低減させることが可能となる。 As described above, as shown in FIG. 42, the NC unit 33 for the vehicle 1 combines the FB type NC unit 33B and the FF type NC unit 33F, making it possible to appropriately reduce both noise that can only be reduced by the FB type NC unit 33B and noise that can only be reduced by the FF type NC unit 33F.
 尚、以降においては、上述してきたFF方式のNC装置33Fは、上述した第1の実施の形態に係る構成のいずれかであり、FB方式のNC装置33Bは、上述した第2の実施の形態に係る構成のいずれかであることを前提として説明を進めるものとする。 In the following, we will assume that the FF type NC device 33F described above has one of the configurations related to the first embodiment described above, and the FB type NC device 33B has one of the configurations related to the second embodiment described above.
 しかしながら、必ずしも第1の実施の形態および第2の実施の形態における構成と同一である必要はなく、一般的なFF方式のNC装置やFB方式のNC装置であってもよい。例えば、FF方式のNC装置の構成として車室内マイク152は必須ではなく、その他のセンサ151のセンサ信号のみからフィードバック方式のNC処理を実現するような構成であってもよい。 However, it does not necessarily have to be the same as the configuration in the first and second embodiments, and it may be a general FF type NC device or FB type NC device. For example, the in-vehicle microphone 152 is not essential to the configuration of an FF type NC device, and it may be configured to realize feedback type NC processing only from the sensor signals of the other sensors 151.
 <FF方式のNC装置とFB方式のNC装置との組み合わせの応用例>
 ところで、段差を超える際に発生する突発音は、振幅が大きく、かつ、非定常な騒音であり、NC装置33により適切に低減されることが望まれる騒音と言える。
<Application example of a combination of FF type NC unit and FB type NC unit>
Incidentally, the sudden noise generated when going over a step has a large amplitude and is unsteady, and it can be said that this type of noise should desirably be appropriately reduced by the NC device 33 .
 しかしながら、FB方式のNC装置33では、突発音がセンサ311に入力された後にNC処理部313がNC処理を実施するため、仮にミュートといった保護機能を設けても処理が間に合わず、異音が発生する可能性がある。つまり、FB方式のNC装置33F単体では、突発音からなる騒音が発生すると適切に低減できないのみならず、不快な異音を発生させる恐れがある。 However, in the FB type NC device 33, the NC processing section 313 performs NC processing after the sudden sound is input to the sensor 311, so even if a protective function such as muting is provided, the processing may not be completed in time, and abnormal noise may occur. In other words, with the FB type NC device 33F alone, not only is it not possible to adequately reduce noise caused by a sudden sound, but there is also a risk of unpleasant abnormal noise being generated.
 FB方式のNC装置33Bは、異音の原因となる突発音を先行して取得する機構を備えていないため、異音の発生を対策することが難しい。 The FB type NC unit 33B does not have a mechanism for detecting the sudden sounds that cause abnormal noises in advance, making it difficult to take measures to prevent the occurrence of abnormal noises.
 そこで、FF方式のNC装置33FとFB方式のNC装置33Bとが組み合わされた構成を応用することにより、突発音からなる騒音に対しても、FB方式のNC装置33Bにおいて適切にNC処理を実現できるようにしてもよい。 Therefore, by applying a configuration that combines the FF type NC device 33F and the FB type NC device 33B, it is possible to make it possible to perform appropriate NC processing in the FB type NC device 33B even in the case of noise that is a sudden sound.
 <突発音の伝達>
 図42で示されるように、タイヤが段差を超えることで突発音が発生する場合、段差に接するタイヤ部分が突発音の振動源SNとなる。振動源SNがタイヤとなる場合、振動源SNからFB方式のNC装置33Bのセンサ311までの振動伝搬経路RBと、FF方式のNC装置33Fのセンサ151までの振動伝搬経路RFとに注目すると、振動伝搬経路RFが、振動伝搬経路RBより短いことが明らかである。
<Transmission of sudden sounds>
42, when a sudden sound occurs as a tire goes over a step, the part of the tire that comes into contact with the step becomes the vibration source SN of the sudden sound. When the vibration source SN is the tire, focusing on the vibration propagation path RB from the vibration source SN to the sensor 311 of the FB type NC device 33B and the vibration propagation path RF to the sensor 151 of the FF type NC device 33F, it is clear that the vibration propagation path RF is shorter than the vibration propagation path RB.
 これは、FF方式のNC装置33Fのセンサ151が、ロードノイズの振動源SNであるタイヤの近くに設置されている為である。段差由来の突発音の入力もロードノイズ同様に振動源SNはタイヤ付近であるので、FF方式のNC装置Fのセンサ151までの振動伝達経路RFの方が、FB方式のNC装置33Bのセンサ311までの振動伝達経路RBよりも短い。 This is because the sensor 151 of the FF type NC device 33F is installed near the tires, which are the vibration source SN of road noise. As with road noise, the vibration source SN of the input of sudden noise caused by bumps is also near the tires, so the vibration transmission path RF to the sensor 151 of the FF type NC device F is shorter than the vibration transmission path RB to the sensor 311 of the FB type NC device 33B.
 したがって、振動源から伝達される突発音は、図43で示されるように、FB方式のNC装置33Bのセンサ311よりも、振動伝達経路の差に応じた所定時間ΔTだけ先に、FF方式のNC装置33Fのセンサ151に伝達される。 Therefore, as shown in FIG. 43, the sudden sound transmitted from the vibration source is transmitted to the sensor 151 of the FF type NC unit 33F a predetermined time ΔT according to the difference in the vibration transmission path before the sensor 311 of the FB type NC unit 33B.
 尚、図43においては、上段にタイヤからの突発音の振動が、それぞれの振動伝達経路を介してFBセンサ311およびFFセンサ151に伝達される様子が示されている。また、中段には、フィードフォワード方式のNC装置33Fのセンサ151(FFセンサ)における突発音が発生してからの経過時間と検出値の波形が示されている。さらに、下段には、フィードバック方式のNC装置33Bのセンサ151(FBセンサ)における突発音が発生してからの経過時間と検出値の波形が示されている。 In addition, in Figure 43, the upper part shows how the vibration of a sudden sound from the tire is transmitted to the FB sensor 311 and the FF sensor 151 via their respective vibration transmission paths. The middle part shows the time that has elapsed since the sudden sound occurred in the sensor 151 (FF sensor) of the feedforward type NC device 33F and the waveform of the detection value. Furthermore, the lower part shows the time that has elapsed since the sudden sound occurred in the sensor 151 (FB sensor) of the feedback type NC device 33B and the waveform of the detection value.
 図43で示されるように、センサ151(FFセンサ)において突発音が検出されるタイミングは、振動伝搬経路RF,RBの双方の差分に対応する所定時間ΔTだけセンサ311(FBセンサ)で検出されるタイミングよりも早い。 As shown in FIG. 43, the timing at which the sudden sound is detected by sensor 151 (FF sensor) is earlier than the timing at which the sudden sound is detected by sensor 311 (FB sensor) by a predetermined time ΔT that corresponds to the difference between the vibration propagation paths RF and RB.
 つまり、FB方式のNC装置33Bは、自らのセンサ311よりも早いタイミングで突発音を検出することができるセンサ151(FFセンサ)の検出情報を利用することで、センサ311(FBセンサ)に到達するまでの所定時間ΔT内に、アクチュエータ312への出力レベルにミュート掛けることで、異音の発生を回避することが可能となる。 In other words, the FB type NC device 33B uses the detection information from the sensor 151 (FF sensor), which can detect a sudden sound earlier than its own sensor 311, and mutes the output level to the actuator 312 within the predetermined time ΔT before it reaches the sensor 311 (FB sensor), making it possible to avoid the generation of abnormal noise.
 換言すれば、ロードノイズを収音する為に設置されたセンサ151(FFセンサ)の検出信号を、FF方式のNC装置33Fで使用した上で、さらに、FB方式のNC装置33Bでも使用することにより、FB方式のNC装置33Bにおいても突発音を先行して取得することが可能となり、突発音により生じてしまう異音の発生を抑制することが可能となる。 In other words, by using the detection signal of the sensor 151 (FF sensor) installed to pick up road noise in the FF type NC device 33F and then in the FB type NC device 33B, it becomes possible for the FB type NC device 33B to obtain the sudden sound in advance, making it possible to suppress the occurrence of abnormal sounds caused by the sudden sound.
 <FB方式のNC装置における突発音を対策するようにしたNC装置の構成例>
 次に、図44,図45を参照して、FF方式のNC装置とFB方式のNC装置とを組み合わせた構成を応用することにより、FB方式のNC装置における突発音を対策して適切なNC処理を実現できるようにしたNC装置の構成例について説明する。
<Example of the configuration of an NC device that prevents sudden noise in an FB type NC device>
Next, with reference to Figures 44 and 45, an example of the configuration of an NC device that can realize appropriate NC processing by applying a configuration that combines an FF type NC device and an FB type NC device and thereby countering sudden sounds in the FB type NC device will be described.
 尚、図44のNC装置33Hにおいて、図42のNC装置33と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。また、図44は、車両1に搭載される、FF方式のNC装置とFB方式のNC装置とを組み合わせた構成からなるNC装置33Hのイメージ図であり、図45は、NC装置33Hのブロック図である。 In addition, in the NC unit 33H in FIG. 44, components having the same functions as the NC unit 33 in FIG. 42 are given the same reference numerals, and their explanation will be omitted as appropriate. Also, FIG. 44 is an image diagram of the NC unit 33H that is mounted on the vehicle 1 and is configured by combining an FF type NC unit and an FB type NC unit, and FIG. 45 is a block diagram of the NC unit 33H.
 図45においては、FF方式のNC装置33FFのセンサ151については、FFセンサ151と表記されており、以降において同様に称する。また、フィードバック方式のNC装置33FBのセンサ311については、FBセンサ311と表記されており、以降において同様に称する。 In FIG. 45, the sensor 151 of the FF type NC unit 33FF is written as the FF sensor 151, and will be referred to in the same manner hereinafter. Also, the sensor 311 of the feedback type NC unit 33FB is written as the FB sensor 311, and will be referred to in the same manner hereinafter.
 図44のNC装置33Hにおいて、図42のNC装置33と異なる点は、FF方式のNC装置33FおよびFB方式のNC装置33Bとが組み合わされた構成に代えて、FF方式のNC装置33FFおよびFB方式のNC装置33FBとが組み合わされた構成とされ、さらに、突発音検出部501を備えた点である。 The NC unit 33H in FIG. 44 differs from the NC unit 33 in FIG. 42 in that, instead of a combination of the FF type NC unit 33F and the FB type NC unit 33B, the NC unit 33H in FIG. 44 combines the FF type NC unit 33FF and the FB type NC unit 33FB, and further includes a sudden sound detection unit 501.
 また、FB方式のNC装置33FBにおいて、FB方式のNC装置33Bと異なる点は、センサ311、アクチュエータ312、およびFBNC処理部313に加えて、突発音検出部501により制御され、FBNC処理部313より出力されるアクチュエータの駆動信号のボリュームを調整するボリューム調整部502が設けられた点である。 Furthermore, the FB type NC device 33FB differs from the FB type NC device 33B in that, in addition to the sensor 311, the actuator 312, and the FBNC processing unit 313, a volume adjustment unit 502 is provided that is controlled by the sudden sound detection unit 501 and adjusts the volume of the actuator drive signal output from the FBNC processing unit 313.
 尚、FF方式のNC装置33FFは、FF方式のNC装置33Fと基本的な構成は同一であるが、FFセンサ151のセンサ信号がFFNC処理部153のみならず、突発音検出部501にも出力される。 The FF type NC device 33FF has the same basic configuration as the FF type NC device 33F, but the sensor signal of the FF sensor 151 is output not only to the FFNC processing unit 153 but also to the sudden sound detection unit 501.
 突発音検出部501は、FFセンサ151のセンサ信号に基づいて、突発音が発生したことを検出すると、所定期間について、NC装置33FBにおけるボリューム調整部502を制御して、ボリュームをミュートに近いレベルまで小さくして突発音に起因して発するノイズを抑制する。 When the sudden sound detection unit 501 detects the occurrence of a sudden sound based on the sensor signal of the FF sensor 151, it controls the volume adjustment unit 502 in the NC device 33FB for a specified period of time to reduce the volume to a level close to mute and suppress noise caused by the sudden sound.
 より詳細には、突発音が1回のみの単発である場合(または、発生頻度が低い場合)については、図46の左部で示されるように、突発音検出部501は、FFセンサ151において突発音が検出されたタイミングから、FBセンサ311により突発音が検出される所定時間ΔTを経過したタイミングを含む所定期間だけボリューム調整部502を制御して、アクチュエータ312への駆動信号のボリュームをミュート(または、ミュートに近い)レベルまで小さくする。 More specifically, if the sudden sound is a single sound (or occurs infrequently), as shown in the left part of FIG. 46, the sudden sound detection unit 501 controls the volume adjustment unit 502 for a predetermined period of time including the timing when a predetermined time ΔT has elapsed since the sudden sound was detected by the FF sensor 151 and until the sudden sound is detected by the FB sensor 311, to reduce the volume of the drive signal to the actuator 312 to a mute (or close to mute) level.
 これにより、FB方式のNC装置33FBは、FBセンサ311により突発音が検出されても、アクチュエータ312の動作が実質的にミュート状態となることにより、異音の発生が抑制される。 As a result, even if the FB type NC device 33FB detects a sudden sound by the FB sensor 311, the operation of the actuator 312 is essentially muted, thereby suppressing the generation of abnormal noise.
 また、路面状況によっては周期的に段差が発生するようなケースも考えられる。このような場合、突発音が連続的に検出される限りミュート処理がなされると、突発音が発生していない区間においてもNC処理が停止されることになるので、ノイズが知覚されてしまう状態が継続してしまう可能性がある。 Also, depending on the road conditions, there may be cases where bumps occur periodically. In such cases, if muting is performed as long as sudden sounds are continuously detected, NC processing will be stopped even in sections where no sudden sounds are occurring, so there is a possibility that the noise will continue to be perceived.
 そこで、図46の右部で示されるように、突発音が連続して発生する場合、FBセンサ311により突発音が検出されるタイミングまでミュート(または、ミュートに近い)レベルまで小さくした後、例えば、基準値の半分程度までボリュームが大きくなるように設定する。このようにすることで、フィードバック方式のNC装置33FBは、FBセンサ311により突発音が検出されても、アクチュエータ312の動作することで発する異音を極力抑えながら、NC処理を継続させることが可能となる。 As shown in the right part of Figure 46, when sudden sounds occur consecutively, the volume is set to be reduced to a mute (or close to mute) level until the sudden sound is detected by the FB sensor 311, and then increased to, for example, about half the reference value. By doing this, the feedback type NC device 33FB can continue NC processing while minimizing abnormal sounds caused by the operation of the actuator 312, even if a sudden sound is detected by the FB sensor 311.
 尚、図46においては、上段および中段の波形がそれぞれFFセンサ151およびFBセンサ311の突発音を検出するときの時系列の検出レベルの変化を示す波形である。また、下段の波形は、上段および中段の波形と対応するタイミングにおいてボリューム調整部502により調整されるアクチュエータ312の駆動信号のボリュームの変化を示している。 In FIG. 46, the upper and middle waveforms show the change in detection level over time when the FF sensor 151 and the FB sensor 311 detect a sudden sound, respectively. The lower waveform shows the change in the volume of the drive signal for the actuator 312, which is adjusted by the volume adjustment unit 502 at the timing corresponding to the upper and middle waveforms.
 <図45のNC処理部による突発音対策処理>
 次に、図47のフローチャートを参照して、図45のNC装置33Hによる突発音対策処理について説明する。尚、NC装置33FB,33FFは、それぞれ上述したNC処理を実行している。
<Countermeasures against sudden noise by the NC processing unit in FIG. 45>
Next, the sudden sound prevention process by the NC unit 33H in Fig. 45 will be described with reference to the flowchart in Fig. 47. The NC units 33FB and 33FF each execute the above-mentioned NC process.
 ステップS301において、突発音検出部501は、ボリューム調整部502を制御して、FBNC処理部313より出力されるアクチュエータの駆動信号のボリュームを基準値に設定する。 In step S301, the sudden sound detection unit 501 controls the volume adjustment unit 502 to set the volume of the actuator drive signal output from the FBNC processing unit 313 to a reference value.
 ステップS302において、突発音検出部501は、FFセンサ151よりセンサ信号を取得する。 In step S302, the sudden sound detection unit 501 acquires a sensor signal from the FF sensor 151.
 ステップS303において、突発音検出部501は、FFセンサ151からのセンサ信号に基づいて、突発音が発生しているか否かを判定する。 In step S303, the sudden sound detection unit 501 determines whether or not a sudden sound has occurred based on the sensor signal from the FF sensor 151.
 ステップS303において、突発音が発生していると判定された場合、処理は、ステップS304に進む。 If it is determined in step S303 that a sudden sound has occurred, processing proceeds to step S304.
 ステップS304において、突発音検出部501は、センサ信号に基づいて、突発音が連続して周期的に発生しているか否かを判定する。 In step S304, the sudden sound detection unit 501 determines whether or not sudden sounds are occurring continuously and periodically based on the sensor signal.
 ステップS304において、突発音が連続して周期的に発生していると判定された場合、処理は、ステップS305に進む。 If it is determined in step S304 that sudden sounds are occurring continuously and periodically, processing proceeds to step S305.
 ステップS305において、突発音検出部501は、ボリューム調整部502を制御して、FBNC処理部313より出力されるアクチュエータ312の駆動信号のボリュームをミュートに近いレベルに低減する。 In step S305, the sudden sound detection unit 501 controls the volume adjustment unit 502 to reduce the volume of the drive signal for the actuator 312 output from the FBNC processing unit 313 to a level close to mute.
 ステップS306において、突発音検出部501は、FFセンサ151が突発音を検出したタイミングからの経過時間に基づいて、FBセンサ311において突発音が検出されるタイミングになったか否かを判定し、そのタイミングまで、同様の処理を繰り返す。 In step S306, the sudden sound detection unit 501 determines whether or not it is time for the FB sensor 311 to detect a sudden sound based on the time that has elapsed since the FF sensor 151 detected the sudden sound, and repeats the same process until that time.
 ステップS306において、FBセンサ311において突発音が検出されるタイミングになったと判定された場合、処理は、ステップS307に進む。 If it is determined in step S306 that the timing has come for the FB sensor 311 to detect a sudden sound, the process proceeds to step S307.
 ステップS307において、突発音検出部501は、ボリューム調整部502を制御して、FBNC処理部313より出力されるアクチュエータ312の駆動信号のボリュームを基準値の半分程度に設定する。 In step S307, the sudden sound detection unit 501 controls the volume adjustment unit 502 to set the volume of the drive signal of the actuator 312 output from the FBNC processing unit 313 to approximately half the reference value.
 ステップS308において、突発音検出部501は、FFセンサ151が突発音の検出が終了して、かつ、所定時間が経過して、FBセンサ311での突発音の検出が停止したタイミングとなったか否かを判定し、FFセンサ151が突発音の検出が終了して、かつ、所定時間が経過するまで、同様の処理を繰り返す。 In step S308, the sudden sound detection unit 501 determines whether the FF sensor 151 has finished detecting the sudden sound, a predetermined time has elapsed, and the FB sensor 311 has stopped detecting the sudden sound, and repeats the same process until the FF sensor 151 has finished detecting the sudden sound and the predetermined time has elapsed.
 そして、ステップS308において、FFセンサ151が突発音の検出が終了して、かつ、所定時間が経過したと判定された場合、処理は、ステップS309に進む。 If it is determined in step S308 that the FF sensor 151 has finished detecting the sudden sound and the predetermined time has elapsed, the process proceeds to step S309.
 ステップS309において、突発音検出部501は、ボリューム調整部502を制御して、FBNC処理部313より出力されるアクチュエータ312の駆動信号のボリュームを基準値に戻す。 In step S309, the sudden sound detection unit 501 controls the volume adjustment unit 502 to return the volume of the drive signal of the actuator 312 output from the FBNC processing unit 313 to the reference value.
 一方、ステップS304において、突発音が連続して周期的に発生していないと判定された場合、処理は、ステップS311に進む。 On the other hand, if it is determined in step S304 that sudden sounds are not occurring continuously and periodically, processing proceeds to step S311.
 ステップS311において、突発音検出部501は、ボリューム調整部502を制御して、FBNC処理部313より出力されるアクチュエータ312の駆動信号のボリュームをミュートに近いレベルに低減する。 In step S311, the sudden sound detection unit 501 controls the volume adjustment unit 502 to reduce the volume of the drive signal for the actuator 312 output from the FBNC processing unit 313 to a level close to mute.
 ステップS312において、突発音検出部501は、FFセンサ151が突発音を検出したタイミングからFBセンサ311により突発音が検出されるタイミングよりも長い所定時間がしたか否かを判定し、FFセンサ151が突発音の検出が終了して、かつ、所定時間が経過するまで、同様の処理を繰り返す。 In step S312, the sudden sound detection unit 501 determines whether a predetermined time has elapsed since the FF sensor 151 detected the sudden sound, which is longer than the time the FB sensor 311 detected the sudden sound, and repeats the same process until the FF sensor 151 stops detecting the sudden sound and the predetermined time has elapsed.
 ステップS312において、FFセンサ151が突発音を検出したタイミングからFBセンサ311により突発音が検出されるタイミングよりも長い所定時間がしたと判定された場合、処理は、ステップS309に進む。 If it is determined in step S312 that a predetermined time has elapsed since the FF sensor 151 detected the sudden sound, which is longer than the time the FB sensor 311 detected the sudden sound, the process proceeds to step S309.
 尚、ステップS303において、突発音が発生していないと判定された場合、ステップS304乃至S309およびステップS311,S312の処理がスキップされる。 If it is determined in step S303 that a sudden sound has not occurred, steps S304 to S309 and steps S311 and S312 are skipped.
 ステップS313において、突発音検出部501は、処理の終了が指示されたか否かを判定し、終了が指示されていない場合、処理は、ステップS301に戻り、それ以降の処理が繰り返される。 In step S313, the sudden sound detection unit 501 determines whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S301, and the subsequent steps are repeated.
 そして、ステップS313において、処理の終了が指示されると、処理が終了する。 Then, in step S313, when an instruction to end the process is given, the process ends.
 以上の処理により、FFセンサ151により単発の突発音が検出されると、FBセンサ311により突発音が検出されるタイミングを含む所定時間までアクチュエータ312の駆動信号がミュートに近い状態まで低減されることになるので、突発音による異音の発生を抑制することが可能となる。 By the above process, when a single sudden sound is detected by the FF sensor 151, the drive signal of the actuator 312 is reduced to a state close to mute until a predetermined time including the timing when the sudden sound is detected by the FB sensor 311, making it possible to suppress the generation of abnormal noise due to the sudden sound.
 また、FFセンサ151により周期的に連続する突発音が検出されると、FBセンサ311により突発音が検出されるタイミングまでアクチュエータ312の駆動信号がミュートに近い状態まで低減された後、突発音の検出が終了して、FBセンサ311において突発音が検出されないタイミングまで、駆動信号が基準値の半分程度にまで低減されるので、突発音による異音の影響を最小限にしつつ、NC処理を継続することが可能となる。 In addition, when the FF sensor 151 detects a sudden sound that continues periodically, the drive signal of the actuator 312 is reduced to a state close to muted until the sudden sound is detected by the FB sensor 311, and then the drive signal is reduced to about half the reference value until the sudden sound detection ends and the sudden sound is no longer detected by the FB sensor 311. This makes it possible to continue NC processing while minimizing the impact of abnormal noise caused by sudden sounds.
 <<19.第3の実施の形態の第1の変形例>>
 以上においては、突発音が検出されると所定期間FBNC処理部313よりアクチュエータ312に出力される駆動信号のボリュームを低減することで、突発音に起因する異音の発生を抑制する例について説明してきた。
<<19. First Modification of the Third Embodiment>>
In the above, an example has been described in which, when a sudden sound is detected, the volume of the drive signal output from the FBNC processing unit 313 to the actuator 312 is reduced for a predetermined period of time to suppress the generation of abnormal noise caused by the sudden sound.
 しかしながら、駆動信号のボリュームを低減するにあたっては、FFセンサ151により検出される突発音の波形に適した帯域遮断フィルタを選択的に利用して低減させるようにしてもよい。 However, the volume of the drive signal may be reduced by selectively using a band-cut filter that is suitable for the waveform of the sudden sound detected by the FF sensor 151.
 図48は、FFセンサ151により検出される突発音の波形に適した帯域遮断フィルタを選択的に利用して駆動信号のボリュームを低減するようにしたNC処理部33H’の構成例である。 FIG. 48 shows an example of the configuration of an NC processing unit 33H' that selectively uses a band-cut filter suited to the waveform of the sudden sound detected by the FF sensor 151 to reduce the volume of the drive signal.
 図48のNC処理部33H’の構成において、図44のNC処理部33Hと同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。 In the configuration of the NC processing unit 33H' in FIG. 48, components having the same functions as those of the NC processing unit 33H in FIG. 44 are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
 図48のNC処理部33H’において、図44のNC処理部33Hと異なる点は、突発音検出部501およびボリューム調整部502に代えて、突発音検出部501’、フィルタ検索部511、遮断フィルタセット記憶部512、および帯域遮断処理部521が設けられた点で異なる。 The NC processing unit 33H' in FIG. 48 differs from the NC processing unit 33H in FIG. 44 in that a sudden sound detection unit 501', a filter search unit 511, a cutoff filter set storage unit 512, and a band cutoff processing unit 521 are provided instead of the sudden sound detection unit 501 and the volume adjustment unit 502.
 突発音検出部501’は、基本的な機能は突発音検出部501と同様であるが、周波数解析部501aを備えており、突発音を検出すると、周波数解析部501aを制御して、突発音の波形を周波数解析し、解析結果をフィルタ検索部511に出力する。 The sudden sound detection unit 501' has the same basic functions as the sudden sound detection unit 501, but is equipped with a frequency analysis unit 501a. When a sudden sound is detected, the frequency analysis unit 501a is controlled to perform frequency analysis on the waveform of the sudden sound, and the analysis result is output to the filter search unit 511.
 フィルタ検索部511は、様々な帯域特性に対応する遮断フィルタを記憶している遮断フィルタセット記憶部512にアクセスし、解析結果に基づいて、対応する帯域特性を備えた遮断フィルタを検索し、NC装置33FBの帯域遮断処理部521に供給する。 The filter search unit 511 accesses the cutoff filter set storage unit 512, which stores cutoff filters corresponding to various band characteristics, and searches for a cutoff filter with the corresponding band characteristics based on the analysis results, and supplies the searched filter to the band cutoff processing unit 521 of the NC unit 33FB.
 帯域遮断処理部521は、FBNC処理部313よりアクチュエータ312に出力される駆動信号に対して、フィルタ検索部511より供給された遮断フィルタによる帯域遮断処理を施して出力する。 The band blocking processing unit 521 performs band blocking processing using a blocking filter supplied by the filter search unit 511 on the drive signal output from the FBNC processing unit 313 to the actuator 312, and outputs the result.
 FFセンサ151より供給される突発音の波形に対する周波数解析結果が、例えば、図49の上段で示されるような振動レベルの波形で示される特性の場合について考える。 Let us consider a case where the frequency analysis result for the waveform of the sudden sound supplied by the FF sensor 151 has characteristics indicated by a vibration level waveform such as that shown in the upper part of Figure 49.
 この場合、フィルタ検索部511は、図49の上段で示されるような波形で示される帯域特性を打ち消すような、例えば、図49の下段で示されるような帯域特性を備えたフィルタゲインとなる遮断フィルタを遮断フィルタセット記憶部512より検索して、帯域遮断処理部521に供給する。 In this case, the filter search unit 511 searches the cutoff filter set storage unit 512 for a cutoff filter that has a filter gain with band characteristics such as those shown in the lower part of Figure 49, which cancels out the band characteristics shown in the waveform in the upper part of Figure 49, and supplies the cutoff filter to the band cutoff processing unit 521.
 <図48のNC処理部による突発音対策処理>
 次に、図50のフローチャートを参照して、図48のNC処理部33H’による突発音対策処理について説明する。
<Sudden sound prevention processing by the NC processing unit in FIG. 48>
Next, the sudden sound countermeasure process by the NC processor 33H' in FIG. 48 will be described with reference to a flow chart in FIG.
 ステップS331において、フィルタ検索部511は、帯域遮断処理部521を制御して、遮断フィルタによる処理を停止させ、FBNC処理部313より出力されるアクチュエータの駆動信号のボリュームを基準値に設定する。 In step S331, the filter search unit 511 controls the band cutoff processing unit 521 to stop processing by the cutoff filter, and sets the volume of the actuator drive signal output by the FBNC processing unit 313 to a reference value.
 ステップS332において、突発音検出部501’は、FFセンサ151よりセンサ信号を取得する。 In step S332, the sudden sound detection unit 501' acquires a sensor signal from the FF sensor 151.
 ステップS333において、突発音検出部501’は、FFセンサ151からのセンサ信号に基づいて、突発音が発生しているか否かを判定する。 In step S333, the sudden sound detection unit 501' determines whether or not a sudden sound has occurred based on the sensor signal from the FF sensor 151.
 ステップS333において、突発音が発生していると判定された場合、処理は、ステップS334に進む。 If it is determined in step S333 that a sudden sound has occurred, processing proceeds to step S334.
 ステップS334において、突発音検出部501’は、周波数解析部501aを制御して、突発音を示す波形を周波数解析させて、解析結果をフィルタ検索部511に出力する。 In step S334, the sudden sound detection unit 501' controls the frequency analysis unit 501a to perform frequency analysis on the waveform indicating the sudden sound, and outputs the analysis result to the filter search unit 511.
 ステップS335において、フィルタ検索部511は、遮断フィルタセット記憶部512にアクセスし、解析結果に基づいて、対応する帯域特性を備えた遮断フィルタを検索し、NC装置33FBの帯域遮断処理部521に供給する。 In step S335, the filter search unit 511 accesses the cutoff filter set storage unit 512, searches for a cutoff filter with corresponding band characteristics based on the analysis results, and supplies the searched filter to the band cutoff processing unit 521 of the NC unit 33FB.
 ステップS336において、帯域遮断処理部521は、所定時間だけ、FBNC処理部313よりアクチュエータ312に出力される駆動信号に対して、フィルタ検索部511より供給された遮断フィルタによる帯域遮断処理を施してアクチュエータ312に出力する。 In step S336, the band blocking processing unit 521 performs band blocking processing using the blocking filter supplied by the filter search unit 511 on the drive signal output from the FBNC processing unit 313 to the actuator 312 for a predetermined period of time, and outputs the result to the actuator 312.
 ステップS337において、帯域遮断処理部521は、帯域遮断処理を停止して、FBNC処理部313より出力されるアクチュエータの駆動信号のボリュームを基準値に設定する。 In step S337, the band blocking processing unit 521 stops the band blocking processing and sets the volume of the actuator drive signal output by the FBNC processing unit 313 to a reference value.
 一方、ステップS333において、突発音が発生していないと判定された場合、ステップS334乃至S337の処理がスキップされる。 On the other hand, if it is determined in step S333 that a sudden sound has not occurred, steps S334 to S337 are skipped.
 ステップS338において、突発音検出部501’は、処理の終了が指示されたか否かを判定し、終了が指示されていない場合、処理は、ステップS331に戻り、それ以降の処理が繰り返される。 In step S338, the sudden sound detection unit 501' determines whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S331, and the subsequent steps are repeated.
 そして、ステップS338において、処理の終了が指示されると、処理が終了する。 Then, in step S338, when an instruction to end the process is given, the process ends.
 以上の処理により、FFセンサ151により突発音が検出されると、突発音の波形から周波数特性が解析されて、対応する帯域遮断フィルタによりFBNC処理部313よりアクチュエータ312に出力される駆動信号に対して帯域遮断処理がなされ、突発音による異音の発生を抑制することが可能となる。 By the above process, when a sudden sound is detected by the FF sensor 151, the frequency characteristics are analyzed from the waveform of the sudden sound, and the corresponding band-cut filter performs band-cut processing on the drive signal output from the FBNC processing unit 313 to the actuator 312, making it possible to suppress the generation of abnormal noise due to the sudden sound.
 <<20.第3の実施の形態の第2の変形例>>
 以上においては、突発音が検出されると周波数解析がなされ、対応する帯域遮断フィルタが選択されて、所定期間FBNC処理部313よりアクチュエータ312に出力される駆動信号に帯域遮断フィルタ処理がなされることで、突発音が発生するタイミングにのみボリュームが低減されて、突発音に起因する異音の発生を抑制する例について説明してきた。
<<20. Second Modification of the Third Embodiment>>
In the above, an example has been described in which, when a sudden sound is detected, frequency analysis is performed, a corresponding band cutoff filter is selected, and band cutoff filter processing is performed on the drive signal output from the FBNC processing unit 313 to the actuator 312 for a predetermined period of time, thereby reducing the volume only at the timing when the sudden sound occurs, thereby suppressing the occurrence of abnormal sounds due to the sudden sound.
 しかしながら、帯域遮断フィルタによる処理がなされる際、周波数解析がなされた上で、対応する帯域遮断フィルタを検索して読み出し、帯域遮断処理部521に供給して帯域遮断処理を行うようにすると、処理の時間が掛かってしまい処理が遅延して適切なNC処理が実現できない恐れがある。 However, when processing using a band-stop filter, if frequency analysis is performed, then the corresponding band-stop filter is searched for and read, and supplied to the band-stop processing unit 521 for band-stop processing, the processing takes time, causing delays in processing and making it difficult to achieve proper NC processing.
 そこで、複数の帯域特性を備えた帯域遮断フィルタにより並列処理を施した上で、周波数解析結果に基づいて選択的に駆動信号を出力するようにしてもよい。 Therefore, it is possible to perform parallel processing using band-stop filters with multiple band characteristics, and then selectively output a drive signal based on the frequency analysis results.
 図51は、複数の帯域特性を備えた帯域遮断フィルタにより並列処理を施した上で、周波数解析結果に基づいて選択的に駆動信号を出力するようにしたNC処理部33H’’の構成例を示している。 FIG. 51 shows an example of the configuration of an NC processing unit 33H'' that performs parallel processing using band-stop filters with multiple band characteristics, and then selectively outputs a drive signal based on the frequency analysis results.
 図51のNC処理部33H’’の構成において、図48のNC処理部33H’と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。 In the configuration of the NC processing unit 33H'' in FIG. 51, components having the same functions as those of the NC processing unit 33H' in FIG. 48 are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
 図51のNC処理部33H’’において、図48のNC処理部33H’と異なる点は、遮断フィルタセット記憶部512、および帯域遮断処理部521が削除され、第1帯域遮断フィルタ531-1乃至第m帯域遮断フィルタ531-m、および選択部(SEL )532が設けられた点で異なる。 The NC processing unit 33H'' in FIG. 51 differs from the NC processing unit 33H' in FIG. 48 in that the blocking filter set storage unit 512 and the band blocking processing unit 521 have been deleted, and a first band blocking filter 531-1 through an m-th band blocking filter 531-m and a selection unit (SEL) 532 have been provided.
 第1帯域遮断フィルタ531-1乃至第m帯域遮断フィルタ531-mは、遮断フィルタセット記憶部512に格納されていた各種の帯域特性を備えた帯域遮断フィルタであり、FBNC処理部313よりアクチュエータ312に出力される駆動信号に対して、それぞれの帯域遮断フィルタ処理を施して選択部532に出力する。尚、帯域遮断フィルタによる処理がなされていない駆動信号も選択部532に供給される。 The first band blocking filter 531-1 through the m-th band blocking filter 531-m are band blocking filters with various band characteristics stored in the blocking filter set storage unit 512, and perform the respective band blocking filter processing on the drive signal output from the FBNC processing unit 313 to the actuator 312, and output the result to the selection unit 532. Note that drive signals that have not been processed by the band blocking filters are also supplied to the selection unit 532.
 選択部532は、フィルタ検索部511により制御され、第1帯域遮断フィルタ531-1乃至第m帯域遮断フィルタ531-mによりフィルタ処理がなされた駆動信号のうち、周波数解析結果に基づいて、対応する帯域特性を備えた帯域遮断フィルタ処理がなされた駆動信号をアクチュエータ312に出力する。 The selection unit 532 is controlled by the filter search unit 511, and outputs to the actuator 312, from among the drive signals that have been filtered by the first band-cut filter 531-1 through the m-th band-cut filter 531-m, a drive signal that has been subjected to band-cut filter processing with corresponding band characteristics based on the frequency analysis results.
 尚、選択部532は、帯域遮断フィルタ531を切り替える際、低遅延を目的とする場合はスイッチングによるフィルタパスの切り替えを行うようにしてもよいが、クロスフェードにより現行のフィルタパスから、次のフィルタパスへと切り替えるようにしてもよい。 When switching the band-blocking filter 531, the selection unit 532 may switch the filter path by switching if low delay is the goal, but may also switch from the current filter path to the next filter path by cross-fading.
 このような構成により、周波数解析結果に基づいて、帯域遮断フィルタをロードすることなく、即座に帯域特性を備えた帯域遮断フィルタ処理がなされた駆動信号を選択的に切替てアクチュエータ312に出力することができる。結果として、処理速度を向上させることができ、遅延によるNC処理の失敗を抑制することが可能となる。 With this configuration, it is possible to selectively switch between drive signals that have been subjected to band-stop filter processing with band characteristics and output them to the actuator 312, based on the frequency analysis results, without loading a band-stop filter. As a result, it is possible to improve the processing speed and suppress failures of NC processing due to delays.
 <図51のNC処理部による突発音対策処理>
 次に、図52のフローチャートを参照して、図51のNC処理部33H’による突発音対策処理について説明する。
<Sudden sound prevention processing by the NC processing unit in FIG. 51>
Next, the sudden sound countermeasure process by the NC processor 33H' in FIG. 51 will be described with reference to the flowchart in FIG.
 ステップS341において、突発音検出部501’は、選択部532を制御して、帯域遮断フィルタによる処理がなされていない駆動信号を選択して、アクチュエータ312に出力させる。尚、このとき、第1帯域遮断フィルタ531-1乃至第m帯域遮断フィルタ531-mは、それぞれの帯域特性により、駆動信号に対して、帯域遮断フィルタ処理を施し、選択部532に出力し続けている。 In step S341, the sudden sound detection unit 501' controls the selection unit 532 to select a drive signal that has not been processed by a band cutoff filter, and output it to the actuator 312. At this time, the first band cutoff filter 531-1 to the m-th band cutoff filter 531-m perform band cutoff filter processing on the drive signal according to their respective band characteristics, and continue to output the result to the selection unit 532.
 ステップS342において、突発音検出部501’は、FFセンサ151よりセンサ信号を取得する。 In step S342, the sudden sound detection unit 501' acquires a sensor signal from the FF sensor 151.
 ステップS343において、突発音検出部501’は、FFセンサ151からのセンサ信号に基づいて、突発音が発生しているか否かを判定する。 In step S343, the sudden sound detection unit 501' determines whether or not a sudden sound has occurred based on the sensor signal from the FF sensor 151.
 ステップS343において、突発音が発生していると判定された場合、処理は、ステップS344に進む。 If it is determined in step S343 that a sudden sound has occurred, processing proceeds to step S344.
 ステップS344において、突発音検出部501’は、周波数解析部501aを制御して、突発音を示す波形を周波数解析させて、解析結果をフィルタ検索部511に出力する。 In step S344, the sudden sound detection unit 501' controls the frequency analysis unit 501a to perform frequency analysis on the waveform indicating the sudden sound, and outputs the analysis result to the filter search unit 511.
 ステップS345において、フィルタ検索部511は、周波数解析結果に基づいて、選択部532を制御して、所定時間だけ第1帯域遮断フィルタ531-1乃至第m帯域遮断フィルタ531-mにより帯域遮断フィルタ処理が施された駆動信号のうち、周波数解析結果に対応する帯域遮断フィルタ処理がなされた駆動信号を選択して、アクチュエータ312に出力させる。 In step S345, the filter search unit 511 controls the selection unit 532 based on the frequency analysis result to select the drive signal that has been subjected to band-stop filter processing corresponding to the frequency analysis result from among the drive signals that have been subjected to band-stop filter processing by the first band-stop filter 531-1 to the mth band-stop filter 531-m for a predetermined period of time, and outputs the drive signal to the actuator 312.
 ステップS346において、選択部532は、帯域遮断フィルタによる処理がなされていない駆動信号を選択して、アクチュエータ312に出力させる。 In step S346, the selection unit 532 selects the drive signal that has not been processed by the band-blocking filter and outputs it to the actuator 312.
 ステップS347において、突発音検出部501’は、処理の終了が指示されたか否かを判定し、終了が指示されていない場合、処理は、ステップS342に戻り、それ以降の処理が繰り返される。 In step S347, the sudden sound detection unit 501' determines whether or not an instruction to end the process has been given. If an instruction to end the process has not been given, the process returns to step S342, and the subsequent steps are repeated.
 そして、ステップS347において、処理の終了が指示されると、処理が終了する。 Then, in step S347, when an instruction to end the process is given, the process ends.
 以上の処理により、周波数解析結果に基づいて、即座に帯域特性を備えた帯域遮断フィルタ処理がなされた駆動信号を選択的にアクチュエータ312に出力することができるので、周波数解析結果に基づいて帯域特性の異なる帯域遮断フィルタをロードし直す必要がなくなる。結果として、突発音対策処理にかかる速度を向上させることができ、遅延によるNC処理の失敗を抑制することが可能となる。 The above process makes it possible to selectively output to the actuator 312 a drive signal that has been subjected to band-stop filter processing with band characteristics immediately based on the frequency analysis results, eliminating the need to reload a band-stop filter with different band characteristics based on the frequency analysis results. As a result, it is possible to improve the speed of sudden sound prevention processing, and to suppress NC processing failures due to delays.
 <<21.第3の実施の形態の第3の変形例>>
 以上においては、FFセンサ151からのセンサ信号に基づいて突発音の有無が判定されてきたが、FFセンサ151以外のセンサを用いて突発音が検出されるようにしてもよい。
<<21. Third Modification of the Third Embodiment>>
In the above, the presence or absence of a sudden sound is determined based on the sensor signal from the FF sensor 151, but a sensor other than the FF sensor 151 may be used to detect a sudden sound.
 図53は、突発音検出部501に対してFFセンサ151からのセンサ信号に加えて、走行中の路面をセンシングするLiDAR541により検出されるポイントクラウド情報に基づいて、路面の凹凸を検出して、検出した路面の凹凸に基づいて突発音の有無を判定するようにしたNC装置33H’’’の構成例を示している。 FIG. 53 shows an example configuration of an NC device 33H''' in which the sudden sound detection unit 501 detects unevenness in the road surface based on point cloud information detected by a LiDAR 541 that senses the road surface while traveling, in addition to the sensor signal from the FF sensor 151, and determines the presence or absence of a sudden sound based on the detected unevenness of the road surface.
 このように、LiDAR541により検出される3Dポイントクラウドに基づいて突発音を検出する場合、路面の状況変化を加速度センサのみを使用した場合と比較して、先行して突発音の有無を判断することができる。 In this way, when detecting a sudden sound based on the 3D point cloud detected by the LiDAR 541, the change in road surface conditions can be compared with the case where only the acceleration sensor is used, making it possible to determine in advance whether or not a sudden sound has occurred.
 また、LiDAR541により検出された路面の凹凸状況から突発音が検出されることが認識されるような場合には、先行して駆動信号のボリュームをミュートした後、後続のFFセンサ151のセンサ信号に基づいて、帯域遮断フィルタを選択するといった、複合的な処理が実施されるようにしてもよい。 Furthermore, when it is recognized that a sudden sound is to be detected from the unevenness of the road surface detected by the LiDAR 541, a composite process may be performed in which the volume of the drive signal is muted first, and then a band-blocking filter is selected based on the sensor signal of the FF sensor 151.
 尚、LiDAR541により突発音が検出されるときになされる突発音対策処理は、図47のフローチャートを参照して説明した処理であり、FFセンサ151のセンサ信号によって帯域遮断フィルタが選択されるようにする処理は、図50のフローチャートを参照して、それぞれ説明した処理であるので、その説明は省略する。 The sudden sound countermeasure processing performed when a sudden sound is detected by the LiDAR 541 is the processing described with reference to the flowchart in FIG. 47, and the processing for selecting a band-blocking filter by the sensor signal of the FF sensor 151 is the processing described with reference to the flowchart in FIG. 50, so the description thereof will be omitted.
 <<22.第3の実施の形態の第4の変形例>>
 以上においては、フィードフォワード方式のNC処理部33FFにおいては、FFセンサ151のセンサ信号が用いられてきたが、FBセンサ311のセンサ信号で、FF方式のNC処理部33FFによるNC処理を実行するようにしてもよい。
<<22. Fourth Modification of the Third Embodiment>>
In the above, the sensor signal of the FF sensor 151 has been used in the feedforward type NC processing unit 33FF, but the NC processing by the FF type NC processing unit 33FF may be performed using the sensor signal of the FB sensor 311.
 図54,図55は、FBセンサ311のセンサ信号で、FF方式のNC処理部33FFによるNC処理を実行するようにしたNC装置33H’’’’の構成例である。 Figures 54 and 55 show an example of the configuration of an NC device 33H'''' that performs NC processing by an FF type NC processing unit 33FF using the sensor signal of the FB sensor 311.
 図54,図55のNC装置33H’’’’において、図44,図45におけるNC装置33Hと異なる点は、NC装置33FFに新たにFBセンサ使用FFNC処理部551および加算器552が設けられた点である。 The NC unit 33H'''' in Figures 54 and 55 differs from the NC unit 33H in Figures 44 and 45 in that the NC unit 33FF is newly provided with an FB sensor-using FFNC processing unit 551 and an adder 552.
 FBセンサ使用FFNC処理部551は、基本的にFFNC処理部153と同一の機能を備えたものであるが、NC処理にあたって、FFセンサ151のセンサ信号ではなく、FBセンサ311のセンサ信号を用いる点で異なる。 The FFNC processing unit using FB sensor 551 basically has the same functions as the FFNC processing unit 153, but differs in that it uses the sensor signal of the FB sensor 311 instead of the sensor signal of the FF sensor 151 for NC processing.
 例えば、図54で示されるように、フロントウィンドウFWから放音された一点鎖線で示されるノイズNSは、音響的な空間伝搬を経て制御点EPに到達すると予想できる。つまり、FF方式のNC処理部33FFにより、ノイズNSと逆位相の音声ASを放音するスピーカ154から制御点EPまでの伝搬距離が、フロントウィンドウFWから放音されたノイズNSの伝搬距離より短い場合、FBセンサ311のセンサ信号に基づいて、FF方式のNC処理部33FFがNC処理することで、制御点EPにおいて、ノイズNSを逆位相の音声ASにより打ち消すことでNC処理を実現することができる。 For example, as shown in FIG. 54, the noise NS, indicated by the dashed line, emitted from the front windshield FW is expected to reach the control point EP via acoustic spatial propagation. In other words, if the propagation distance from the speaker 154, which emits sound AS in the opposite phase to the noise NS, to the control point EP by the FF-type NC processing unit 33FF is shorter than the propagation distance of the noise NS emitted from the front windshield FW, the FF-type NC processing unit 33FF performs NC processing based on the sensor signal of the FB sensor 311, thereby realizing NC processing by canceling out the noise NS with the opposite phase sound AS at the control point EP.
 そこで、FBセンサ使用FFNC処理部551は、FBセンサ311のセンサ信号を用いて逆位相の音声を生成し、加算器552に出力する。 Then, the FB sensor-using FFNC processing unit 551 generates an anti-phase sound using the sensor signal of the FB sensor 311 and outputs it to the adder 552.
 加算器552は、FFNC処理部153によりFFセンサ151のセンサ信号に基づいて生成される逆位相の音声と、FBセンサ使用FFNC処理部551により、FBセンサ311のセンサ信号を用いて生成される逆位相の音声とを加算してスピーカ154から放音させる。 The adder 552 adds the opposite phase sound generated by the FFNC processing unit 153 based on the sensor signal of the FF sensor 151 and the opposite phase sound generated by the FB sensor using FFNC processing unit 551 using the sensor signal of the FB sensor 311, and outputs the result as sound from the speaker 154.
 このような構成により、FF方式のNC装置33FFにより、FFセンサ151で検出される予め想定される騒音と、FBセンサ311により検出される未知の騒音とをいずれも低減させることが可能となる。 With this configuration, the FF type NC device 33FF can reduce both the anticipated noise detected by the FF sensor 151 and the unknown noise detected by the FB sensor 311.
 <図55のFF式のNC装置によるNC処理>
 次に、図56のフローチャートを参照して、図55のFF式のNC装置33FFによるNC処理について説明する。
<NC processing by FF type NC device in Fig. 55>
Next, the NC processing by the FF type NC unit 33FF in FIG. 55 will be described with reference to the flowchart in FIG.
 ステップS351において、FFNC処理部153は、FFセンサ使用FFNC(フィードフォワード式ノイズキャンセル)処理を実行し、FFセンサ151のセンサ信号に基づいて、制御点における逆位相の音声を生成し、加算器552に出力する。尚、FFセンサ使用FFNC(フィードフォワード式ノイズキャンセル)処理は、例えば、第1の実施の形態における各構成のNC処理である。 In step S351, the FFNC processing unit 153 executes FFNC (feedforward noise cancellation) processing using the FF sensor, generates an antiphase sound at the control point based on the sensor signal of the FF sensor 151, and outputs it to the adder 552. Note that the FFNC (feedforward noise cancellation) processing using the FF sensor is, for example, the NC processing of each component in the first embodiment.
 ステップS352において、FBセンサ使用FFNC処理部551は、FBセンサ使用FFNC処理を実行し、FBセンサ311のセンサ信号に基づいて、制御点における逆位相の音声を生成し、加算器552に出力する。尚、FBセンサ使用FFNC(フィードフォワード式ノイズキャンセル)処理は、例えば、FBセンサ311のセンサ信号を用いた、第1の実施の形態における各構成のNC処理である。 In step S352, the FB sensor using FFNC processing unit 551 executes FB sensor using FFNC processing, generates an anti-phase sound at the control point based on the sensor signal of the FB sensor 311, and outputs it to the adder 552. Note that the FB sensor using FFNC (feed-forward type noise cancellation) processing is, for example, NC processing of each component in the first embodiment using the sensor signal of the FB sensor 311.
 ステップS353において、加算器552は、FFセンサ使用FFNC処理で生成された制御点における逆位相の音声と、FBセンサ使用FFNC処理で生成された制御点における逆位相の音声とを加算して、スピーカ154より制御点に向けて放音する。 In step S353, the adder 552 adds the out-of-phase sound at the control point generated by the FFNC processing using the FF sensor and the out-of-phase sound at the control point generated by the FFNC processing using the FB sensor, and emits the result from the speaker 154 toward the control point.
 以上の処理により、FF方式のNC装置33FFにより、センサ151で検出される予め想定される騒音と、センサ311により検出される未知の騒音とをいずれも低減させることが可能となる。 The above process makes it possible for the FF-type NC device 33FF to reduce both the anticipated noise detected by the sensor 151 and the unknown noise detected by the sensor 311.
 <<23.第3の実施の形態の第5の変形例>>
 以上においては、FB方式のNC装置33FBにおいては、FBセンサ311のセンサ信号が用いられてきたが、FFセンサ151のセンサ信号で、FB方式のNC装置33FBによるNC処理を実行するようにしてもよい。
<<23. Fifth Modification of the Third Embodiment>>
In the above, the sensor signal of the FB sensor 311 has been used in the FB type NC unit 33FB, but the sensor signal of the FF sensor 151 may be used to execute NC processing by the FB type NC unit 33FB.
 図57,図58は、FFセンサ151のセンサ信号で、FB方式のNC装置33FBによるNC処理を実行するようにしたNC装置33H’’’’’の構成例である。 Figures 57 and 58 show an example configuration of NC unit 33H'''''' that executes NC processing by FB type NC unit 33FB using the sensor signal of FF sensor 151.
 図57,図58のNC装置33H’’’’’において、図44,図45におけるNC装置33Hと異なる点は、NC装置33FBに新たにFFセンサ使用FBNC処理部571および加算器572が設けられた点である。 The NC unit 33H'''''' in Figures 57 and 58 differs from the NC unit 33H in Figures 44 and 45 in that the NC unit 33FB is newly provided with an FF sensor-using FBNC processing unit 571 and an adder 572.
 FFセンサ使用FBNC処理部571は、基本的にFBNC処理部313と同一の機能を備えたものであるが、NC処理にあたって、FBセンサ311のセンサ信号ではなく、FFセンサ151のセンサ信号を用いる点で異なる。 The FF sensor-using FBNC processing unit 571 basically has the same functions as the FBNC processing unit 313, but differs in that it uses the sensor signal of the FF sensor 151 instead of the sensor signal of the FB sensor 311 for NC processing.
 これまでも述べてきたように、フロントウィンドウFWなどのパネルに対してFB方式のNC処理を行うと、振動源が未知のノイズに対しても制御が可能になる。 As mentioned above, when FB-type NC processing is performed on panels such as the front windshield FW, it becomes possible to control noise with an unknown vibration source.
 一方で、フロントウィンドウFWに伝搬して放音される振動由来のノイズは未知のノイズのみとは限らず、入力がある程度既知のノイズも含んでいると考えられる。 On the other hand, the vibration-induced noise that propagates to the front windshield FW and is emitted is not limited to unknown noise, but is thought to include a certain amount of known noise as input.
 そこで、FFセンサ151はロードノイズの振動源に近いことを考慮し、FFセンサ151のセンサ信号を用いてアクチュエータ312を加振することにより、FBNC処理部313は、未知のノイズにより放音されるノイズの対策にリソースを注力する事が可能になり、フィードバック方式のNC装置33FBのNC性能の向上が期待できる。 Considering that the FF sensor 151 is close to the vibration source of the road noise, the sensor signal from the FF sensor 151 is used to vibrate the actuator 312, which allows the FBNC processing unit 313 to focus resources on countermeasures against noise emitted by unknown noise, and is expected to improve the NC performance of the feedback type NC device 33FB.
 FFセンサ使用FBNC処理部571は、FFセンサ151のセンサ信号を用いてアクチュエータ312の駆動信号を生成し、加算器552に出力する。 The FF sensor-using FBNC processing unit 571 generates a drive signal for the actuator 312 using the sensor signal of the FF sensor 151 and outputs it to the adder 552.
 加算器572は、FBNC処理部313によりFBセンサ311のセンサ信号に基づいて生成されるアクチュエータの駆動信号と、FFセンサ使用FBNC処理部571により、FFセンサ151のセンサ信号を用いて生成されるアクチュエータ312の駆動信号とを加算し、ボリューム調整部502を介してアクチュエータ312に供給し、加振させる。 The adder 572 adds together the actuator drive signal generated by the FBNC processing unit 313 based on the sensor signal of the FB sensor 311 and the actuator drive signal generated by the FF sensor using FBNC processing unit 571 using the sensor signal of the FF sensor 151, and supplies the result to the actuator 312 via the volume adjustment unit 502 to vibrate it.
 このような構成により、FB方式のNC装置33FBにおいて、未知の騒音に含まれる既知の成分を、FFセンサ151のセンサ信号を用いたNC処理で低減させ、純粋な未知の騒音をFBセンサ311のセンサ信号を用いたNC処理で低減させることが可能となり、騒音の低減性能を向上させることが可能となる。 With this configuration, in the FB type NC device 33FB, known components contained in the unknown noise can be reduced by NC processing using the sensor signal of the FF sensor 151, and pure unknown noise can be reduced by NC processing using the sensor signal of the FB sensor 311, making it possible to improve noise reduction performance.
 <図58のFB式のNC装置によるNC処理>
 次に、図59のフローチャートを参照して、図58のFB式のNC装置33FBによるNC処理について説明する。
<NC processing by FB type NC device in Fig. 58>
Next, NC processing by the FB type NC unit 33FB in FIG. 58 will be described with reference to the flowchart in FIG.
 ステップS371において、FBNC処理部313は、FBセンサ使用FBNC(フィードバック式ノイズキャンセル)処理を実行し、FBセンサ311のセンサ信号に基づいて、アクチュエータの駆動信号を生成し、加算器572に出力する。尚、FBセンサ使用FFNC(フィードバック式ノイズキャンセル)処理は、例えば、第2の実施の形態における各構成のNC処理である。 In step S371, the FBNC processing unit 313 executes FBNC (feedback type noise cancellation) processing using the FB sensor, generates an actuator drive signal based on the sensor signal of the FB sensor 311, and outputs it to the adder 572. Note that the FB sensor use FFNC (feedback type noise cancellation) processing is, for example, the NC processing of each component in the second embodiment.
 ステップS372において、FFセンサ使用FBNC処理部571は、FFセンサ使用FBNC処理を実行し、FFセンサ151のセンサ信号に基づいて、アクチュエータ312の駆動信号を生成し、加算器572に出力する。尚、FFセンサ使用FBNC(フィードバック式ノイズキャンセル)処理は、例えば、FFセンサ151のセンサ信号を用いた、第2の実施の形態における各構成のNC処理である。 In step S372, the FF sensor using FBNC processing unit 571 executes FF sensor using FBNC processing, generates a drive signal for the actuator 312 based on the sensor signal of the FF sensor 151, and outputs it to the adder 572. Note that the FF sensor using FBNC (feedback type noise cancellation) processing is, for example, NC processing of each component in the second embodiment using the sensor signal of the FF sensor 151.
 ステップS373において、FBNC処理部313によりFBセンサ311のセンサ信号に基づいて生成されるアクチュエータの駆動信号と、FFセンサ使用FBNC処理部571により、FFセンサ151のセンサ信号を用いて生成されるアクチュエータ312の駆動信号とを加算し、ボリューム調整部502を介してアクチュエータ312に供給し、加振させる。 In step S373, the actuator drive signal generated by the FBNC processing unit 313 based on the sensor signal of the FB sensor 311 is added to the actuator drive signal generated by the FF sensor using FBNC processing unit 571 using the sensor signal of the FF sensor 151, and the result is supplied to the actuator 312 via the volume adjustment unit 502 to vibrate it.
 以上の処理により、FB方式NC装置33FBにより、センサ151で検出される予め想定される騒音と、センサ311により検出される未知の騒音とをいずれも低減させることが可能となる。 By performing the above process, the FB type NC device 33FB is able to reduce both the anticipated noise detected by the sensor 151 and the unknown noise detected by the sensor 311.
 <<24.第3の実施の形態の第6の変形例>>
 以上においては、1個のFF方式NC装置33FFと、1個のFB方式NC装置33FBとを組み合わせて、FFセンサ151のセンサ信号で、FB方式のNC装置33FBによるNC処理を実行するようにしたNC装置33H’’’’’、または、FBセンサ311のセンサ信号で、FF方式のNC処理部33FFによるNC処理を実行するようにしたNC装置33H’’’’の構成例について説明してきた。
<<24. Sixth Modification of the Third Embodiment>>
The above has described an example configuration of an NC unit 33H''''' that combines one FF type NC unit 33FF and one FB type NC unit 33FB to perform NC processing by the FB type NC unit 33FB based on a sensor signal from the FF sensor 151, or an NC unit 33H'''' that performs NC processing by the FF type NC processing unit 33FF based on a sensor signal from the FB sensor 311.
 しかしながら、FF方式のNC装置33FFと、FB方式のNC装置33FBとの数の組み合わせはこれ以外であってもよいし、FFセンサ151のセンサ信号で、フィードバック方式のNC装置33FBによるNC処理を実行すると共に、FBセンサ311のセンサ信号で、FF方式のNC処理部33FFによるNC処理を実行するようにしてもよい。 However, the number of FF type NC units 33FF and FB type NC units 33FB may be other than the above combination, and the sensor signal of the FF sensor 151 may be used to perform NC processing by the feedback type NC unit 33FB, and the sensor signal of the FB sensor 311 may be used to perform NC processing by the FF type NC processing unit 33FF.
 図60,図61は、1個のFF方式のNC装置33FFと、2個のFB方式NC装置33FB-1,33FB-2とを組み合わせて構成されたNC装置33H’’’’’’’の構成例である。この例では、図60で示されるように、FB方式NC装置33FB-1が、フロントウィンドウに設けられ、FB方式NC装置33FB-2がルーフウィンドウに設けられている。 Figures 60 and 61 show an example of the configuration of an NC unit 33H'''''''', which is configured by combining one FF type NC unit 33FF and two FB type NC units 33FB-1 and 33FB-2. In this example, as shown in Figure 60, the FB type NC unit 33FB-1 is provided on the front window, and the FB type NC unit 33FB-2 is provided on the roof window.
 1個のFF方式のNC装置33FFは、FFセンサ151のセンサ信号に加えて、FB方式のNC装置33FB-1,33FB-2のそれぞれのFBセンサ311-1,311-2のセンサ信号でも、FF方式のNC処理を実行する。 The single FF-type NC unit 33FF executes FF-type NC processing using the sensor signals of the FF sensor 151 as well as the sensor signals of the FB sensors 311-1 and 311-2 of the FB-type NC units 33FB-1 and 33FB-2.
 また、2個のFB方式のNC装置33FB-1,33FB-2は、それぞれFBセンサ311-1,311-2のセンサ信号に加えて、FFセンサ151のセンサ信号でもFB式のNC処理を実現する。 The two FB type NC devices 33FB-1 and 33FB-2 also realize FB type NC processing using the sensor signal of the FF sensor 151 in addition to the sensor signals of the FB sensors 311-1 and 311-2, respectively.
 FF式のNC装置33FFは、FFセンサ151-1乃至151-x、車室内マイク152、FFNC処理部153、スピーカ154に加えて、FBセンサ使用FFNC処理部551-1,551-2、および加算器552-1,552-2を備えている。 The FF-type NC device 33FF is equipped with FF sensors 151-1 to 151-x, an in-vehicle microphone 152, an FFNC processor 153, a speaker 154, as well as FB sensor-using FFNC processors 551-1 and 551-2 and adders 552-1 and 552-2.
 FBセンサ使用FFNC処理部551-1は、FB方式のNC装置33FB-1のFBセンサ311-1-1乃至311-1-y1のセンサ信号に基づいて、FF方式のNC処理を実行し、処理結果となる逆位相の音声を加算器552-1に出力する。 The FB sensor-using FFNC processing unit 551-1 executes FF-type NC processing based on the sensor signals of the FB sensors 311-1-1 to 311-1-y1 of the FB-type NC device 33FB-1, and outputs the processed result, an antiphase sound, to the adder 552-1.
 FBセンサ使用FFNC処理部551-2は、FB方式のNC装置33FB-2のFBセンサ311-2-1乃至311-2-y1のセンサ信号に基づいて、FF方式のNC処理を実行し、処理結果となる逆位相の音声を加算器552-2に出力する。 The FB sensor-using FFNC processing unit 551-2 executes FF-type NC processing based on the sensor signals of the FB sensors 311-2-1 to 311-2-y1 of the FB-type NC device 33FB-2, and outputs the processed result, an antiphase sound, to the adder 552-2.
 加算器552-1は、FFNC処理部153より出力される逆位相の音声と、FBセンサ使用FFNC処理部551-1より出力される逆位相の音声とを加算して、加算器552-2に出力する。 The adder 552-1 adds the opposite phase audio output from the FFNC processing unit 153 and the opposite phase audio output from the FB sensor using FFNC processing unit 551-1, and outputs the result to the adder 552-2.
 加算器552-2は、加算器552-1より供給される逆位相の音声と、FBセンサ使用FFNC処理部551-2より出力される逆位相の音声とを加算して、スピーカ154より放音させる。すなわち、加算器552-1,552-2により、FFNC処理部153、およびFBセンサ使用FFNC処理部551-1,551-2のそれぞれにおいて生成された逆位相の音声が加算されて、スピーカ154より放音される。 The adder 552-2 adds the opposite phase sound supplied by the adder 552-1 and the opposite phase sound output from the FB sensor using FFNC processing unit 551-2, and emits the sound from the speaker 154. That is, the adders 552-1 and 552-2 add the opposite phase sounds generated by the FFNC processing unit 153 and the FB sensor using FFNC processing units 551-1 and 551-2, respectively, and emit the sound from the speaker 154.
 FB方式のNC装置33FB-1,33FB-2の個々の構成は、図57,図58における構成と同一であるので、その説明は省略する。 The individual configurations of the FB type NC devices 33FB-1 and 33FB-2 are the same as those shown in Figures 57 and 58, so their explanation will be omitted.
 また、突発音検出部501’は、基本的に突発音検出部501と同一の機能を備えているが、突発音を検出したときの処理については、FB方式のNC装置33FB-1,33FB-2のそれぞれのボリューム調整部502-1,502-2のボリュームを低減させることで、突発音の発生を抑制する。 The sudden sound detection unit 501' basically has the same functions as the sudden sound detection unit 501, but when a sudden sound is detected, the sudden sound is suppressed by reducing the volume of the volume adjustment units 502-1 and 502-2 of the FB type NC devices 33FB-1 and 33FB-2.
 尚、図61のNC装置33HによるNC処理については、基本的に上述してきた処理と同様であるので、説明を省略する。 The NC processing by the NC unit 33H in Figure 61 is basically the same as the processing described above, so a description of it will be omitted.
 <<25.第3の実施の形態の第7の変形例>>
 以上においては、突発音検出部501’が、突発音を検出したときの処理については、FB方式のNC装置33FB-1,33FB-2のそれぞれのボリューム調整部502-1,502-2のボリュームを低減させることで、突発音の発生を抑制する例について説明してきた。
<<25. Seventh Modification of the Third Embodiment>>
In the above, an example has been described in which the sudden sound detection unit 501' detects a sudden sound and then reduces the volume of the volume adjustment units 502-1, 502-2 of the FB type NC units 33FB-1, 33FB-2 to suppress the occurrence of a sudden sound.
 しかしながら、FFセンサ151のセンサ信号のみならず、FBセンサ311の全てのセンサ信号に基づいて、突発音の有無を検出し、突発音が検出されたセンサの位置に応じて、アクチュエータの駆動信号のボリュームを中央集中型に管理するようにして、突発音対策処理を実現するようにしてもよい。 However, the presence or absence of a sudden sound may be detected based on not only the sensor signal of the FF sensor 151 but also all of the sensor signals of the FB sensor 311, and the volume of the actuator drive signal may be managed in a centralized manner according to the position of the sensor where the sudden sound is detected, thereby implementing sudden sound countermeasure processing.
 図62は、FFセンサ151のセンサ信号のみならず、FBセンサ311の全てのセンサ信号に基づいて、突発音の有無を検出し、突発音が検出されたセンサの位置に応じて、アクチュエータの駆動信号のボリュームを集中制御するようにしたNC装置33Hの構成例である。 FIG. 62 shows an example of the configuration of an NC device 33H that detects the presence or absence of a sudden sound based on not only the sensor signal of the FF sensor 151 but also all of the sensor signals of the FB sensor 311, and centrally controls the volume of the actuator drive signal according to the position of the sensor where the sudden sound is detected.
 図62のNC装置33Hにおいて、図61のNC処理装置33Hと異なる点は、突発音検出部501’に代えて、集中制御型突発音検出部501’’が設けられている点である。 The NC unit 33H in FIG. 62 differs from the NC processing unit 33H in FIG. 61 in that a centralized control type sudden sound detection unit 501'' is provided instead of the sudden sound detection unit 501'.
 集中制御型突発音検出部501’’は、FFセンサ151-1乃至151-x、FBセンサ311-1-1乃至311-1-y1,311-2-1乃至311-2-y2の全てからのセンサ信号を取得して、突発音の有無を判断する。 The centralized control type sudden sound detection unit 501'' acquires sensor signals from all of the FF sensors 151-1 to 151-x and the FB sensors 311-1-1 to 311-1-y1, and 311-2-1 to 311-2-y2, and determines whether or not a sudden sound has occurred.
 突発音がFFセンサ151によるものであるときは、上述した処理により突発音対策処理を実現する。 If the sudden sound is caused by the FF sensor 151, the sudden sound countermeasure processing is realized by the above-mentioned processing.
 また、突発音がFBセンサ311のものであるときには、突発音が検出されたFBセンサ311の位置に応じた順序とタイミングでボリューム調整部502-1,502-1を制御してミュートを掛ける。 In addition, when the sudden sound is detected by the FB sensor 311, the volume adjustment units 502-1 and 502-1 are controlled to mute the sound in an order and timing that corresponds to the position of the FB sensor 311 where the sudden sound was detected.
 例えば、トンネル進入時等の気圧の急激な変化が、フロントウィンドウFWのFBセンサ311-1で所定値よりも大きなセンサ信号が検出されることにより、突発音が検出されたとみなされるような場合、空力由来の突発的な振動が発生するケースが想定される。 For example, if a sudden change in air pressure, such as when entering a tunnel, is detected by the FB sensor 311-1 on the front window FW and a sensor signal greater than a predetermined value is detected, it is considered that a sudden sound has been detected, and this may result in sudden vibration due to aerodynamic forces.
 このようなケースにおいては、フロントウィンドウFWのセンサ311-1において突発音が検出されたタイミングをトリガとして、ルーフウィンドウにおいて突発音が検出されるタイミングに合わせて、FB式のNC装置33FB-2におけるボリューム調整部502-2を制御してボリュームを低減させるような処理により、FB式のNC装置33FB-2の突発音対策処理を実現するようにしてもよい。 In such a case, the timing at which a sudden sound is detected by the sensor 311-1 of the front windshield FW may be used as a trigger to control the volume adjustment unit 502-2 in the FB type NC device 33FB-2 to reduce the volume in accordance with the timing at which a sudden sound is detected on the roof window, thereby implementing a sudden sound countermeasure process for the FB type NC device 33FB-2.
 つまり、所定の閾値以上の入力があったフロントウィンドウFBのFBセンサ311を基準に、それ以外のフィードバック式NC装置33FBまでの振動伝搬距離に応じたボリュームの制御を実現することにより、中央集権的な集中制御型の突発音対策処理が実現されるようにしてもよい。 In other words, a centralized, centrally controlled type of sudden sound prevention processing can be realized by controlling the volume according to the vibration propagation distance to the feedback type NC device 33FB other than the FB sensor 311 of the front window FB, which has received an input above a predetermined threshold.
 尚、以上においては、FFセンサ151またはFBセンサ311で検出されるセンサ信号に基づいて、突発音が検出されるとき、アクチュエータの駆動信号のボリュームを調整するようにする例について説明してきた。 In the above, we have described an example in which the volume of the actuator drive signal is adjusted when a sudden sound is detected based on the sensor signal detected by the FF sensor 151 or the FB sensor 311.
 しかしながら、FFセンサ151またはFBセンサ311で検出されるセンサ信号に基づいて、突発音が検出されるとき、スピーカ154から放音される音声のボリュームを調整するようにしてもよい。 However, when a sudden sound is detected based on the sensor signal detected by the FF sensor 151 or the FB sensor 311, the volume of the sound emitted from the speaker 154 may be adjusted.
 すなわち、FFNC処理部153、およびFBセンサ使用FFNC処理部551より出力される、スピーカ154より放音させるための逆位相の音声の信号は、スピーカ154を駆動させるための駆動信号と考えることもできる。 In other words, the out-of-phase audio signal output from the FFNC processing unit 153 and the FB sensor using FFNC processing unit 551 for outputting sound from the speaker 154 can also be considered as a drive signal for driving the speaker 154.
 そこで、スピーカ154を駆動させるための逆位相の音声の信号からなる駆動信号のボリュームを調整する、ボリューム調整部502と対応するボリューム調整部X(図示せず)が、例えば、図62の加算器552-2とスピーカ154との間に設けられるようにしてもよい。 Therefore, a volume adjustment unit X (not shown) corresponding to the volume adjustment unit 502, which adjusts the volume of a drive signal consisting of an audio signal of opposite phase for driving the speaker 154, may be provided, for example, between the adder 552-2 in FIG. 62 and the speaker 154.
 そして、集中制御型突発音検出部501’’が、FFセンサ151またはFBセンサ311で検出されるセンサ信号に基づいて、突発音が検出されるとき、ボリューム調整部X(図示せず)を制御して、スピーカ154から放音される音声のボリュームが、例えば、小さくなるように調整されるようにしてもよい。 Then, when the centralized control type sudden sound detection unit 501'' detects a sudden sound based on the sensor signal detected by the FF sensor 151 or the FB sensor 311, the centralized control type sudden sound detection unit 501'' may control the volume adjustment unit X (not shown) to adjust the volume of the sound emitted from the speaker 154, for example, to be lower.
 <<26.第3の実施の形態の第8の変形例>>
 以上においては、FF方式のNC装置33FFとFB方式のNC装置33FBとを組み合わせて構成する例について説明してきたが、どの機能を使用するか否かについては、自由に設定できるようにしてもよい。
<<26. Eighth Modification of the Third Embodiment>>
Although an example has been described above in which the FF type NC unit 33FF and the FB type NC unit 33FB are combined, it is also possible to freely set which functions are to be used or not.
 例えば、図63で示されるようなGUI601で直感的な操作で自由に設定できるようにしてもよい。 For example, it may be possible to allow the settings to be freely set through intuitive operations using a GUI 601 as shown in FIG. 63.
 図63においては、図62のNC装置33H’’’’’’’の構成が表示され、機能として有効にするか否かをSW611-1乃至611-6等をオンまたはオフにすることで設定することができる。 In Figure 63, the configuration of NC unit 33H'''''''' in Figure 62 is displayed, and whether or not to enable the function can be set by turning on or off SW611-1 to 611-6, etc.
 SW611-1は、フロントウィンドウ側のFFセンサ使用FBNC処理部の処理結果を出力するか否かを設定するスイッチである。 SW611-1 is a switch that sets whether or not to output the processing results of the FF sensor-using FBNC processing unit on the front window side.
 SW611-2は、集中制御型突発音検出部が、突発音を検出したときにフロントウィンドウ側のアクチュエータの駆動信号のボリュームを制御するか否かを設定するスイッチである。 SW611-2 is a switch that sets whether or not the centralized control type sudden sound detection unit controls the volume of the drive signal for the actuator on the front window side when it detects a sudden sound.
 SW611-3は、ルーフウィンドウ側のFFセンサ使用FBNC処理部の処理結果を出力するか否かを設定するスイッチである。 SW611-3 is a switch that sets whether or not to output the processing results of the FF sensor-using FBNC processing unit on the roof window side.
 SW611-4は、集中制御型突発音検出部が、突発音を検出したときにルーフウィンドウ側のアクチュエータの駆動信号のボリュームを制御するか否かを設定するスイッチである。 SW611-4 is a switch that sets whether or not the centralized control type sudden sound detection unit controls the volume of the drive signal for the actuator on the roof window side when it detects a sudden sound.
 SW611-5,611-6は、それぞれ2つのFBセンサ使用FFNC処理部の処理結果を出力するか否かを設定するスイッチである。 SW611-5 and 611-6 are switches that set whether or not to output the processing results of the two FFNC processing units using the FB sensor.
 SW611-1乃至611-6は、一度タップすると実線の枠で表示されてオンに設定されたことが提示され、もう一度タップすると点線の枠で表示されてオフに設定されたことが提示される。 When you tap SW611-1 through 611-6 once, they are displayed in a solid frame to indicate that they are set to on, and when you tap them again, they are displayed in a dotted frame to indicate that they are set to off.
 図63においては、SW611-1,611-2,611-5がオンに設定され、SW611-3,611-4,611-6がオフに設定されていることが提示されている。 In FIG. 63, it is shown that SW611-1, 611-2, and 611-5 are set to ON, and SW611-3, 611-4, and 611-6 are set to OFF.
 <<27.ソフトウェアにより実行させる例>>
 ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のコンピュータなどに、記録媒体からインストールされる。
<<27. Examples of execution by software>>
The above-mentioned series of processes can be executed by hardware, but can also be executed by software. When the series of processes are executed by software, the programs constituting the software are installed from a recording medium into a computer built into dedicated hardware, or into, for example, a general-purpose computer capable of executing various functions by installing various programs.
 図64は、汎用のコンピュータの構成例を示している。このコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタフェース1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。 Figure 64 shows an example of the configuration of a general-purpose computer. This computer has a built-in CPU (Central Processing Unit) 1001. An input/output interface 1005 is connected to the CPU 1001 via a bus 1004. A ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
 入出力インタフェース1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブル記憶媒体1011に対してデータを読み書きするドライブ1010が接続されている。 Connected to the input/output interface 1005 are an input unit 1006 consisting of input devices such as a keyboard and mouse through which the user inputs operation commands, an output unit 1007 which outputs a processing operation screen and images of the processing results to a display device, a storage unit 1008 consisting of a hard disk drive for storing programs and various data, and a communication unit 1009 consisting of a LAN (Local Area Network) adapter and the like, which executes communication processing via a network such as the Internet. Also connected is a drive 1010 which reads and writes data to removable storage media 1011 such as a magnetic disk (including a flexible disk), an optical disk (including a CD-ROM (Compact Disc-Read Only Memory) and a DVD (Digital Versatile Disc)), a magneto-optical disk (including an MD (Mini Disc)), or a semiconductor memory.
 CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブル記憶媒体1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。 The CPU 1001 executes various processes according to a program stored in the ROM 1002, or a program read from a removable storage medium 1011 such as a magnetic disk, optical disk, magneto-optical disk, or semiconductor memory and installed in the storage unit 1008, and loaded from the storage unit 1008 to the RAM 1003. The RAM 1003 also stores data necessary for the CPU 1001 to execute various processes, as appropriate.
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。 In a computer configured as described above, the CPU 1001 loads a program stored in the storage unit 1008, for example, into the RAM 1003 via the input/output interface 1005 and the bus 1004, and executes the program, thereby performing the above-mentioned series of processes.
 コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記憶媒体1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。 The program executed by the computer (CPU 1001) can be provided, for example, by recording it on a removable storage medium 1011 such as a package medium. The program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
 コンピュータでは、プログラムは、リムーバブル記憶媒体1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。 In a computer, a program can be installed in the storage unit 1008 via the input/output interface 1005 by inserting the removable storage medium 1011 into the drive 1010. The program can also be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008. Alternatively, the program can be pre-installed in the ROM 1002 or storage unit 1008.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program in which processing is performed chronologically in the order described in this specification, or a program in which processing is performed in parallel or at the required timing, such as when called.
 尚、図64におけるCPU1001が、NC装置33の機能を実現させる。 The CPU 1001 in FIG. 64 realizes the functions of the NC unit 33.
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 In addition, in this specification, a system refers to a collection of multiple components (devices, modules (parts), etc.), regardless of whether all the components are in the same housing. Therefore, multiple devices housed in separate housings and connected via a network, and a single device in which multiple modules are housed in a single housing, are both systems.
 なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of this disclosure are not limited to the above-described embodiments, and various modifications are possible without departing from the spirit of this disclosure.
 例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present disclosure can be configured as a cloud computing system in which a single function is shared and processed collaboratively by multiple devices over a network.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 In addition, each step described in the above flowchart can be executed by a single device, or can be shared and executed by multiple devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Furthermore, when a single step includes multiple processes, the processes included in that single step can be executed by a single device, or can be shared and executed by multiple devices.
 尚、本開示は、以下のような構成も取ることができる。
<1> 振動により音を発する物体の加速度を検出する加速度センサと、
 前記物体を加振する加振装置と、
 前記加速度センサの検出結果であるセンサ信号にノイズキャンセルフィルタ処理を施すことにより、前記物体の振動を抑制するように前記加振装置を加振させる駆動信号を生成するフィルタ処理部と、
 前記前記加振装置が格納される駆動部と、
 前記駆動部を前記物体に固定するベース部とを備え、
 前記ベース部には、前記加速度センサが配置され、
 前記ベース部と、前記駆動部とは、着脱可能な状態で接続されている
 騒音抑制装置。
<2> 前記ベース部と、前記駆動部とは、ボルトにより着脱可能な状態で接続されている
 <1>に記載の騒音抑制装置。
<3> 前記ベース部には、凸部が形成され、
 前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられたベースプレートとを備え、
 前記ボルトは、ネジ部が、前記ベースプレートの中心位置に設けられた孔部を貫通し、前記凸部の頭頂部の中心位置に設けられたネジ穴と羅合することにより、前記ベース部と、前記駆動部とを接続する
 <2>に記載の騒音抑制装置。
<4> 前記ベースプレートと、前記凸部の前記頭頂部とのそれぞれの対向する位置に、配線接続部が形成される
 <3>に記載の騒音抑制装置。
<5> 前記ベース部と、前記駆動部とは、接続具により着脱可能に接続されている
 <1>に記載の騒音抑制装置。
<6> 前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられ、前記ボビンの径よりも大きなベースプレートとを備え、
 前記ベース部には、外周部にネジ山が形成された凸部が形成され、
 前記接続具は、前記凸部とほぼ同径の筒状の構成であって、内側にネジ山が形成され、上部に前記ボビンを挿通する、前記ボビンと略同径の開口部を備えた蓋が形成され、前記蓋の下に前記ベースプレートが配置され、かつ、前記ベースプレートが前記凸部の頭頂部に当接した状態で、前記凸部のネジ山と、自らの内側に形成されたネジ山とが羅合することで、前記ベース部と、前記駆動部とが、接続具により着脱可能に接続される
 <5>に記載の騒音抑制装置。
<7> 前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられ、前記ボビンの径よりも大きなベースプレートとを備え、
 前記ベース部には、外周部の側面にネジ穴を有する凸部が形成され、
 前記接続具は、前記凸部とほぼ同径の筒状の構成であって、上部に前記ボビンを挿通する、前記ボビンと略同径の開口部を備えた蓋が形成され、前記蓋の下に前記ベースプレートが配置され、かつ、前記ベースプレートが前記凸部の頭頂部に当接した状態で、側面を貫通してネジが挿通されて、前記ベース部の前記ネジ穴とが羅合することで、前記ベース部と、前記駆動部とが、接続具により着脱可能に接続される
 <5>に記載の騒音抑制装置。
<8> 前記ベース部には、頭頂部の中心位置にネジ穴が形成された凸部を有し、
 前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられ、ネジ部を有するベースプレートとを備え、
 前記ネジ部が、前記凸部の前記ネジ穴と羅合することにより、前記ベース部と、前記駆動部とを接続する
 <1>に記載の騒音抑制装置。
<9> 前記駆動部は、
  前記駆動部の動きを検出する、前記加速度センサと異なる、他の加速度センサを更に備え、
  前記加速度センサから得られる、前記物体の振動に関する情報と、前記他の加速度センサから得られる、前記駆動部の動きに関する情報に基づいて、前記駆動部の異変を検知する
 <1>に記載の騒音抑制装置。
<10> 前記駆動部は、
  前記駆動部の動きを検出する、前記加速度センサと異なる、他の加速度センサを更に備え、
  前記加速度センサから得られる、前記物体の振動に関する情報と、前記他の加速度センサから得られる、前記駆動部の動きに関する情報に基づいて、前記加振装置を加振させる駆動信号を生成する
 <1>に記載の騒音抑制装置。
<11> 前記加振装置は、ダンパを有し、
 前記フィルタ処理部は、前記ダンパの温度特性に応じたフィルタ処理をするものが複数に存在し、
 複数のフィルタ処理部のうち、前記ダンパの温度に応じたものに切り替える切替部をさらに備える
 <1>に記載の騒音抑制装置。
<12> 前記温度は、車室内温度および車室外温度に基づいて推定された温度である
 <11>に記載の騒音抑制装置。
<13> 前記温度は、コンパス、位置情報、および日時情報に基づいて計算される現在位置における太陽方向から求められる直射日光に基づいて推定される前記ダンパの温度である
 <11>に記載の騒音抑制装置。
The present disclosure can also be configured as follows.
<1> An acceleration sensor that detects the acceleration of an object that emits sound by vibration;
A vibration device that vibrates the object;
a filter processing unit that performs noise cancellation filtering on a sensor signal that is a detection result of the acceleration sensor, thereby generating a drive signal for exciting the vibration device so as to suppress vibration of the object;
A drive unit in which the vibration device is stored;
a base portion for fixing the driving portion to the object,
The acceleration sensor is disposed on the base portion,
The noise suppression device, wherein the base portion and the drive portion are detachably connected to each other.
<2> The noise suppression device according to <1>, wherein the base portion and the drive portion are detachably connected to each other by a bolt.
<3> A convex portion is formed on the base portion,
The driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin,
The bolt connects the base portion and the drive portion by having a screw portion pass through a hole portion provided at the center of the base plate and engage with a screw hole provided at the center of the top of the convex portion.
<4> The noise suppression device according to <3>, wherein wiring connection portions are formed at opposing positions of the base plate and the top of the protrusion.
<5> The noise suppression device according to <1>, wherein the base portion and the drive portion are detachably connected to each other by a connector.
<6> The driving unit includes a voice coil, a cylindrical bobbin through which a shaft of the voice coil is inserted and which is slidable, and a base plate provided at a bottom of the bobbin and larger than a diameter of the bobbin,
The base portion is provided with a protrusion having a screw thread formed on an outer periphery thereof,
The connecting device has a cylindrical configuration with approximately the same diameter as the convex portion, a screw thread formed on the inside, and a lid with an opening with approximately the same diameter as the bobbin at the top through which the bobbin is inserted, the base plate is placed under the lid, and when the base plate is abutted against the top of the convex portion, the screw thread of the convex portion and the screw thread formed on the inside of the base plate engage with each other, thereby removably connecting the base portion and the drive unit by the connecting device.
<7> The driving unit includes a voice coil, a cylindrical bobbin through which a shaft of the voice coil is inserted and which is slidable, and a base plate provided at a bottom of the bobbin and larger in diameter than the bobbin,
The base portion has a protrusion having a screw hole formed on a side surface of an outer periphery thereof,
The connecting device has a cylindrical configuration having approximately the same diameter as the convex portion, and a lid with an opening having approximately the same diameter as the bobbin is formed at the top, through which the bobbin is inserted, the base plate is placed under the lid, and with the base plate abutting the top of the convex portion, a screw is inserted through the side and engages with the screw hole in the base portion, thereby removably connecting the base portion and the drive unit by the connecting device. The noise suppression device described in <5>.
<8> The base portion has a convex portion having a screw hole formed at the center of the top of the head,
The driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin and having a threaded portion;
The noise suppression device according to <1>, wherein the screw portion is screwed into the screw hole of the protrusion, thereby connecting the base portion and the drive portion.
<9> The drive unit,
Further, the acceleration sensor detects the movement of the driving unit, and is different from the acceleration sensor.
The noise suppression device according to claim 1, further comprising: a sensor for detecting an abnormality in the drive unit based on information regarding vibration of the object obtained from the acceleration sensor and information regarding movement of the drive unit obtained from the other acceleration sensor.
<10> The drive unit,
Further, the acceleration sensor detects the movement of the driving unit, and is different from the acceleration sensor.
The noise suppression device according to claim 1, further comprising: a drive signal for exciting the vibration device based on information regarding the vibration of the object obtained from the acceleration sensor and information regarding the movement of the drive unit obtained from the other acceleration sensor.
<11> The vibration device has a damper,
The filter processing unit includes a plurality of units that perform filter processing according to the temperature characteristics of the damper,
The noise suppression device according to <1>, further comprising a switching unit that switches among a plurality of filter processing units according to a temperature of the damper.
<12> The noise suppression device according to <11>, wherein the temperature is a temperature estimated based on a temperature inside the vehicle compartment and a temperature outside the vehicle compartment.
<13> The noise suppression device according to <11>, wherein the temperature is a temperature of the damper estimated based on direct sunlight determined from a direction of the sun at a current position calculated based on a compass, position information, and date and time information.
 33,33B,33F,33FB,33FF,33H,33H’乃至33H’’’’’’’ NC装置, 151,151-1乃至151-n センサ(FFセンサ), 152 車室内マイク, 153,153’ NC処理部(FFNC処理部), 154 スピーカ, 171 センサフィルタ設計部, 172 センサフィルタセット記憶部, 173 キャンセルフィルタセット記憶部, 174 対応フィルタ取得部, 175 NC信号計算部, 181,181’ フィルタ生成処理部, 182 制御点近接マイク, 191 キャンセルフィルタ設計部, 192 対応付け格納処理部, 211 車室外マイク, 221 車室外音判定部, 251、251’ DNN推論部, 252,252’ 学習済モデル記憶部, 253 フィルタ検索部, 254 キャンセルフィルタ記憶部, 255 NC信号計算部, 271,271’ キャンセルフィルタ設計部, 272 フィルタ記録制御部, 273,273’ DNN学習部, 311,311’,311’’ センサ(FBセンサ), 312,312A乃至312G アクチュエータ, 312Ba乃至312Ga 駆動部, 312Bb乃至312Gb ベース部, 313,313’ NC処理部(FBNC処理部), 331 増幅器, 332,332-1乃至332-n,332c,332h NCフィルタ処理部, 333 増幅器, 371 ベースプレート, 372 ボルト, 382a,382b 配線接続部, 391,401 接続具, 402 ネジ, 421 スイッチ, 421’ 切替部, 422 スイッチ, 423,423’,423’’ 動作制御部, 441 太陽方向計算部, 501,501’ 突発音検出部, 501’’ 集中制御型突発音検出部, 502 ボリューム調整部, 511 フィルタ検索部, 512 遮断フィルタセット記憶部, 531,531-1乃至531-m 第1帯域遮断フィルタ乃至第m帯域遮断フィルタ, 532 選択部, 551 FBセンサ使用FFNC処理部, 552 加算器, 571 FFセンサ使用FBNC処理部, 572 加算器 33, 33B, 33F, 33FB, 33FF, 33H, 33H' to 33H'''''''' NC device, 151, 151-1 to 151-n Sensor (FF sensor), 152 In-vehicle microphone, 153, 153' NC processing unit (FFNC processing unit), 154 Speaker, 171 Sensor filter design unit, 172 Sensor filter set memory unit, 173 Cancellation filter set memory unit, 174 Corresponding filter acquisition unit, 175 NC signal calculation unit, 181, 181' Filter generation processing unit, 182 Control point proximity microphone, 191 Cancellation filter design unit, 192 Correspondence storage processing unit, 211 Vehicle exterior microphone, 221 Vehicle exterior sound determination unit, 251, 251' DNN inference unit, 252, 252' Learned model memory unit, 253 Filter search unit, 254 Cancellation filter memory unit, 255 NC signal calculation unit, 271, 271' Cancellation filter design unit, 272 Filter record control unit, 273, 273' DNN learning unit, 311, 311', 311'' Sensor (FB sensor 312, 312A to 312G actuator, 312Ba to 312Ga drive unit, 312Bb to 312Gb base unit, 313, 313' NC processing unit (FBNC processing unit), 331 amplifier, 332, 332-1 to 332-n, 332c, 332h NC filter processing unit, 333 amplifier, 371 base plate, 372 bolt, 382a, 382b wiring connection unit, 391, 401 connector, 402 screw, 421 switch, 421' switching unit, 422 Switch, 423, 423', 423'', operation control section, 441, sun direction calculation section, 501, 501', sudden sound detection section, 501'', centralized control type sudden sound detection section, 502, volume adjustment section, 511, filter search section, 512, cutoff filter set storage section, 531, 531-1 to 531-m, first band cutoff filter to mth band cutoff filter, 532, selection section, 551, FFNC processing section using FB sensor, 552, adder, 571, FBNC processing section using FF sensor, 572, adder

Claims (13)

  1.  振動により音を発する物体の加速度を検出する加速度センサと、
     前記物体を加振する加振装置と、
     前記加速度センサの検出結果であるセンサ信号にノイズキャンセルフィルタ処理を施すことにより、前記物体の振動を抑制するように前記加振装置を加振させる駆動信号を生成するフィルタ処理部と、
     前記前記加振装置が格納される駆動部と、
     前記駆動部を前記物体に固定するベース部とを備え、
     前記ベース部には、前記加速度センサが配置され、
     前記ベース部と、前記駆動部とは、着脱可能な状態で接続されている
     騒音抑制装置。
    an acceleration sensor that detects the acceleration of an object that produces sound through vibration;
    A vibration device that vibrates the object;
    a filter processing unit that performs noise cancellation filtering on a sensor signal that is a detection result of the acceleration sensor, thereby generating a drive signal for exciting the vibration device so as to suppress vibration of the object;
    A drive unit in which the vibration device is stored;
    a base portion for fixing the driving portion to the object,
    The acceleration sensor is disposed on the base portion,
    The noise suppression device, wherein the base portion and the drive portion are detachably connected to each other.
  2.  前記ベース部と、前記駆動部とは、ボルトにより着脱可能な状態で接続されている
     請求項1に記載の騒音抑制装置。
    The noise suppression device according to claim 1 , wherein the base portion and the drive portion are detachably connected to each other by a bolt.
  3.  前記ベース部には、凸部が形成され、
     前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられたベースプレートとを備え、
     前記ボルトは、ネジ部が、前記ベースプレートの中心位置に設けられた孔部を貫通し、前記凸部の頭頂部の中心位置に設けられたネジ穴と羅合することにより、前記ベース部と、前記駆動部とを接続する
     請求項2に記載の騒音抑制装置。
    A protrusion is formed on the base portion,
    The driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin,
    3. The noise suppression device according to claim 2, wherein the bolt connects the base portion and the drive portion by having a screw portion pass through a hole portion provided at the center of the base plate and mesh with a screw hole provided at the center of the top of the convex portion.
  4.  前記ベースプレートと、前記凸部の前記頭頂部とのそれぞれの対向する位置に、配線接続部が形成される
     請求項3に記載の騒音抑制装置。
    The noise suppression device according to claim 3 , wherein wiring connection portions are formed at opposing positions on the base plate and the top of the protrusion.
  5.  前記ベース部と、前記駆動部とは、接続具により着脱可能に接続されている
     請求項1に記載の騒音抑制装置。
    The noise suppression device according to claim 1 , wherein the base portion and the drive portion are detachably connected to each other by a connector.
  6.  前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられ、前記ボビンの径よりも大きなベースプレートとを備え、
     前記ベース部には、外周部にネジ山が形成された凸部が形成され、
     前記接続具は、前記凸部とほぼ同径の筒状の構成であって、内側にネジ山が形成され、上部に前記ボビンを挿通する、前記ボビンと略同径の開口部を備えた蓋が形成され、前記蓋の下に前記ベースプレートが配置され、かつ、前記ベースプレートが前記凸部の頭頂部に当接した状態で、前記凸部のネジ山と、自らの内側に形成されたネジ山とが羅合することで、前記ベース部と、前記駆動部とが、接続具により着脱可能に接続される
     請求項5に記載の騒音抑制装置。
    The driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin and having a diameter larger than that of the bobbin,
    The base portion is provided with a protrusion having a screw thread formed on an outer periphery thereof,
    6. The noise suppression device according to claim 5, wherein the connecting device is tubular and has approximately the same diameter as the convex portion, a screw thread formed on the inside, and a lid having an opening at the top, the opening being approximately the same diameter as the bobbin, through which the bobbin is inserted, the base plate is positioned under the lid, and when the base plate is in contact with the top of the convex portion, the screw thread of the convex portion engages with the screw thread formed on the inside of the base plate, thereby removably connecting the base portion and the drive portion by the connecting device.
  7.  前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられ、前記ボビンの径よりも大きなベースプレートとを備え、
     前記ベース部には、外周部の側面にネジ穴を有する凸部が形成され、
     前記接続具は、前記凸部とほぼ同径の筒状の構成であって、上部に前記ボビンを挿通する、前記ボビンと略同径の開口部を備えた蓋が形成され、前記蓋の下に前記ベースプレートが配置され、かつ、前記ベースプレートが前記凸部の頭頂部に当接した状態で、側面を貫通してネジが挿通されて、前記ベース部の前記ネジ穴とが羅合することで、前記ベース部と、前記駆動部とが、接続具により着脱可能に接続される
     請求項5に記載の騒音抑制装置。
    The driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin and having a diameter larger than that of the bobbin,
    The base portion has a protrusion having a screw hole formed on a side surface of an outer periphery thereof,
    6. The noise suppression device according to claim 5, wherein the connecting device is tubular and has approximately the same diameter as the convex portion, and a lid is formed at the top with an opening having approximately the same diameter as the bobbin, through which the bobbin is inserted, the base plate is placed under the lid, and with the base plate abutting the top of the convex portion, a screw is inserted through the side and engages with the screw hole in the base portion, thereby detachably connecting the base portion and the drive portion by the connecting device.
  8.  前記ベース部には、頭頂部の中心位置にネジ穴が形成された凸部を有し、
     前記駆動部は、ボイスコイルと、前記ボイスコイルの軸を摺動可能な筒状で挿通するボビンと、前記ボビンの底部に設けられ、ネジ部を有するベースプレートとを備え、
     前記ネジ部が、前記凸部の前記ネジ穴と羅合することにより、前記ベース部と、前記駆動部とを接続する
     請求項1に記載の騒音抑制装置。
    The base portion has a protrusion having a screw hole formed at the center of the top of the head,
    The driving unit includes a voice coil, a bobbin having a cylindrical shape and through which a shaft of the voice coil is inserted so as to be slidable, and a base plate provided at a bottom of the bobbin and having a threaded portion,
    The noise suppression device according to claim 1 , wherein the screw portion is screwed into the screw hole of the protrusion to connect the base portion and the drive portion.
  9.  前記駆動部は、
      前記駆動部の動きを検出する、前記加速度センサと異なる、他の加速度センサを更に備え、
      前記加速度センサから得られる、前記物体の振動に関する情報と、前記他の加速度センサから得られる、前記駆動部の動きに関する情報に基づいて、前記駆動部の異変を検知する
     請求項1に記載の騒音抑制装置。
    The drive unit is
    Further, the acceleration sensor detects the movement of the driving unit, and is different from the acceleration sensor.
    2. The noise suppression device according to claim 1, wherein an abnormality in the drive unit is detected based on information regarding vibration of the object obtained from the acceleration sensor and information regarding movement of the drive unit obtained from the other acceleration sensor.
  10.  前記駆動部は、
      前記駆動部の動きを検出する、前記加速度センサと異なる、他の加速度センサを更に備え、
      前記加速度センサから得られる、前記物体の振動に関する情報と、前記他の加速度センサから得られる、前記駆動部の動きに関する情報に基づいて、前記加振装置を加振させる駆動信号を生成する
     請求項1に記載の騒音抑制装置。
    The drive unit is
    Further, the acceleration sensor detects the movement of the driving unit, and is different from the acceleration sensor.
    The noise suppression device according to claim 1 , further comprising: a drive signal for exciting the vibration of the vibration excitation device, the drive signal being generated based on information regarding vibration of the object obtained from the acceleration sensor and information regarding movement of the drive unit obtained from the other acceleration sensor.
  11.  前記加振装置は、ダンパを有し、
     前記フィルタ処理部は、前記ダンパの温度特性に応じたフィルタ処理をするものが複数に存在し、
     複数のフィルタ処理部のうち、前記ダンパの温度に応じたものに切り替える切替部をさらに備える
     請求項1に記載の騒音抑制装置。
    The vibration device has a damper,
    The filter processing unit includes a plurality of units that perform filter processing according to the temperature characteristics of the damper,
    The noise suppression device according to claim 1 , further comprising a switching unit that switches one of a plurality of filter processing units according to a temperature of the damper.
  12.  前記温度は、車室内温度および車室外温度に基づいて推定された温度である
     請求項11に記載の騒音抑制装置。
    The noise suppression device according to claim 11 , wherein the temperature is an estimated temperature based on an interior temperature and an exterior temperature of the vehicle.
  13.  前記温度は、コンパス、位置情報、および日時情報に基づいて計算される現在位置における太陽方向から求められる直射日光に基づいて推定される前記ダンパの温度である
     請求項11に記載の騒音抑制装置。
    The noise suppression device according to claim 11 , wherein the temperature is a temperature of the damper estimated based on direct sunlight determined from a direction of the sun at a current position calculated based on a compass, position information, and date and time information.
PCT/JP2024/008952 2023-03-31 2024-03-08 Noise suppression device WO2024203149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023058594 2023-03-31
JP2023-058594 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024203149A1 true WO2024203149A1 (en) 2024-10-03

Family

ID=92904479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/008952 WO2024203149A1 (en) 2023-03-31 2024-03-08 Noise suppression device

Country Status (1)

Country Link
WO (1) WO2024203149A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129186A (en) * 1993-11-05 1995-05-19 Nippondenso Co Ltd Active type vibration controlling device
JPH10282966A (en) * 1997-04-09 1998-10-23 Fuji Heavy Ind Ltd Noise attenuation device in automobile compartment
JP2006298352A (en) * 2005-03-22 2006-11-02 Toyo Tire & Rubber Co Ltd Dynamic damper, dynamic damper unit and method for manufacturing the dynamic damper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129186A (en) * 1993-11-05 1995-05-19 Nippondenso Co Ltd Active type vibration controlling device
JPH10282966A (en) * 1997-04-09 1998-10-23 Fuji Heavy Ind Ltd Noise attenuation device in automobile compartment
JP2006298352A (en) * 2005-03-22 2006-11-02 Toyo Tire & Rubber Co Ltd Dynamic damper, dynamic damper unit and method for manufacturing the dynamic damper

Similar Documents

Publication Publication Date Title
US10152884B2 (en) Selective actions in a vehicle based on detected ambient hazard noises
US10650798B2 (en) Electronic device, method and computer program for active noise control inside a vehicle
US20160371977A1 (en) Apparatus, systems, and methods for providing intelligent vehicular systems and services
US20220155400A1 (en) Microphone Array for Sound Source Detection and Location
JP2013198065A (en) Sound presentation device
WO2020129369A1 (en) Calibration device, calibration method, program, calibration system, and calibration target
WO2021060018A1 (en) Signal processing device, signal processing method, program, and moving device
US11897331B2 (en) In-vehicle acoustic monitoring system for driver and passenger
JP7040513B2 (en) Information processing equipment, information processing method and recording medium
JP2019045364A (en) Information processing apparatus, self-position estimation method, and program
US20240069564A1 (en) Information processing device, information processing method, program, and mobile apparatus
WO2019175273A1 (en) Electronic device, method and computer program
WO2024203149A1 (en) Noise suppression device
WO2024203100A1 (en) Noise suppression device, noise suppression method, and program
WO2024203098A1 (en) Noise suppression device, noise suppression method, and program
WO2023204076A1 (en) Acoustic control method and acoustic control device
US20220276655A1 (en) Information processing device, information processing method, and program
US10382862B2 (en) Noise testing in an autonomous vehicle
WO2022004448A1 (en) Information processing device, information processing method, information processing system, and program
US20230356603A1 (en) Information processing apparatus, information processing method, and program
WO2021241261A1 (en) Information processing device, information processing method, program, and learning method
WO2023054090A1 (en) Recognition processing device, recognition processing method, and recognition processing system
WO2024232245A1 (en) Information processing device, information processing method, and program
US20230377108A1 (en) Information processing apparatus, information processing method, and program
WO2022059489A1 (en) Information processing device, information processing method, and program