Nothing Special   »   [go: up one dir, main page]

WO2024202932A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2024202932A1
WO2024202932A1 PCT/JP2024/007797 JP2024007797W WO2024202932A1 WO 2024202932 A1 WO2024202932 A1 WO 2024202932A1 JP 2024007797 W JP2024007797 W JP 2024007797W WO 2024202932 A1 WO2024202932 A1 WO 2024202932A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cooler
base plate
case
power conversion
Prior art date
Application number
PCT/JP2024/007797
Other languages
French (fr)
Japanese (ja)
Inventor
耕亮 徳永
啓太郎 石川
健太 荻原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024202932A1 publication Critical patent/WO2024202932A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the disclosure in this specification relates to a power conversion device.
  • Patent document 1 discloses a power conversion device. The contents of the prior art document are incorporated by reference as explanations of the technical elements in this specification.
  • the power conversion device disclosed in Patent Document 1 is equipped with a two-stage cooler.
  • the power conversion device has a structure that dissipates heat from the chips that make up the inverter to both sides.
  • the cooler case is provided with fins for heat dissipation.
  • the case will bend outward, i.e., deform, due to water pressure. If the case bends outward, the gap between the fins and the case will become larger, and more refrigerant will pass through without hitting the fins, reducing heat dissipation. If the case deforms, the adhesion between the case and the chips will decrease, and thermal resistance will increase. Thus, there is a risk that the configuration of Patent Document 1 will reduce heat dissipation. In the above-mentioned perspectives, or in other perspectives not mentioned, further improvements are required for power conversion devices.
  • One disclosed objective is to provide a power conversion device that can suppress a decrease in heat dissipation.
  • the power conversion device disclosed herein is A semiconductor module that configures a power conversion circuit; a first cooler having a first flow path and configured to cool the semiconductor module; a second cooler having a second flow path and cooling the semiconductor module from an opposite side to the first cooler; a first connecting portion having a first connecting flow path communicating with the first flow path and the second flow path; a second connecting portion having a second connecting flow path communicating with the first flow path and the second flow path and providing a bypass path for a portion of the refrigerant together with the first connecting portion;
  • the first cooler includes a case that defines a first flow path and has an opening at a portion that overlaps with the semiconductor module, a base plate that is disposed on the case so as to cover the opening, and pin fins that extend from the base plate into the first flow path; In the arrangement direction of the first connecting portion and the second connecting portion, the length of the base plate is shorter than the length between the outer ends of the first connecting portion and the second connecting portion.
  • the length of the base plate is shorter than the length between the outer ends of the first connecting part and the second connecting part, so deformation of the base plate due to water pressure can be suppressed.
  • a power conversion device can be provided that can suppress a decrease in heat dissipation performance.
  • FIG. 1 is a diagram showing a circuit configuration and a drive system of a power conversion device according to a first embodiment
  • FIG. 2 is a plan view showing the power conversion device.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 .
  • FIG. 3 is a cross-sectional view taken along line IV-IV in FIG. 2 .
  • FIG. FIG. 11 is a plan view showing a power conversion device according to a second embodiment.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7 .
  • the power conversion device of this embodiment is applied, for example, to a moving body that uses a rotating electric machine as a drive source.
  • moving bodies include electric vehicles such as battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs), electric flying objects such as drones and electric vertical take-off and landing aircraft (eVTOLs), ships, construction machinery, and agricultural machinery.
  • BEVs battery electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • eVTOLs electric vertical take-off and landing aircraft
  • a vehicle drive system 1 includes a DC power supply 2 , a motor generator 3 , and a power conversion device 4 .
  • the DC power source 2 is a DC voltage source composed of a chargeable and dischargeable secondary battery.
  • the secondary battery is, for example, a lithium ion battery, a nickel-metal hydride battery, or an organic radical battery.
  • the motor generator 3 is a three-phase AC rotating electric machine.
  • the motor generator 3 functions as a drive source for the vehicle, that is, an electric motor.
  • the motor generator 3 functions as a generator during regeneration.
  • the power conversion device 4 converts power between the DC power source 2 and the motor generator 3.
  • ⁇ Circuit configuration of power conversion device> 1 shows a circuit configuration of a power conversion device 4.
  • the power conversion device 4 includes at least a power conversion circuit.
  • the power conversion circuit in this embodiment is an inverter 5.
  • the power conversion device 4 may further include a smoothing capacitor 6, a drive circuit 7, and the like.
  • the smoothing capacitor 6 mainly smoothes the DC voltage supplied from the DC power supply 2.
  • the smoothing capacitor 6 is connected to the P line 8, which is the high-potential power supply line, and the N line 9, which is the low-potential power supply line.
  • the P line 8 is connected to the positive electrode of the DC power supply 2
  • the N line 9 is connected to the negative electrode of the DC power supply 2.
  • the positive electrode of the smoothing capacitor 6 is connected to the P line 8 between the DC power supply 2 and the inverter 5.
  • the negative electrode of the smoothing capacitor 6 is connected to the N line 9 between the DC power supply 2 and the inverter 5.
  • the smoothing capacitor 6 is connected in parallel to the DC power supply 2.
  • the inverter 5 is a DC-AC conversion circuit. In accordance with switching control by a control circuit (not shown), the inverter 5 converts DC voltage into three-phase AC voltage and outputs it to the motor generator 3. This drives the motor generator 3 to generate a predetermined torque. During regenerative braking of the vehicle, the inverter 5 converts the three-phase AC voltage generated by the motor generator 3 in response to rotational force from the wheels into DC voltage in accordance with switching control by the control circuit and outputs it to the P line 8. In this way, the inverter 5 performs bidirectional power conversion between the DC power source 2 and the motor generator 3.
  • the inverter 5 is configured with upper and lower arm circuits 10 for three phases.
  • the upper and lower arm circuits 10 are sometimes referred to as legs.
  • the upper and lower arm circuits 10 each have an upper arm 10H and a lower arm 10L.
  • the upper arm 10H and the lower arm 10L are connected in series between the P line 8 and the N line 9, with the upper arm 10H on the P line 8 side.
  • connection point between the upper arm 10H and the lower arm 10L i.e., the midpoint of the upper and lower arm circuits 10 is connected to the winding 3a of the corresponding phase in the motor generator 3 via an output line 11.
  • the U-phase upper and lower arm circuit 10U is connected to the U-phase winding 3a via an output line 11.
  • the V-phase upper and lower arm circuit 10V is connected to the V-phase winding 3a via an output line 11.
  • the W-phase upper and lower arm circuit 10W is connected to the W-phase winding 3a via an output line 11.
  • the upper and lower arm circuits 10 (10U, 10V, 10W) have a series circuit 12.
  • the upper and lower arm circuits 10 may have one or more series circuits 12.
  • the series circuits 12 are connected in parallel to each other to form one phase of the upper and lower arm circuit 10.
  • each of the upper and lower arm circuits 10 has one series circuit 12.
  • the series circuit 12 is configured by connecting the switching element on the upper arm 10H side and the switching element on the lower arm 10L side in series between the P line 8 and the N line 9.
  • the number of high-side switching elements and low-side switching elements constituting the series circuit 12 is not particularly limited. It may be one or more.
  • the series circuit 12 of this embodiment has two switching elements on the high-side and two switching elements on the low-side. The two switching elements on the high-side are connected in parallel, and the two switching elements on the low-side are connected in parallel to constitute one series circuit 12.
  • each of the six arms 10H, 10L of the three-phase upper and lower arm circuits 10 is composed of two switching elements connected in parallel to each other.
  • MOSFET is an abbreviation for Metal Oxide Semiconductor Field Effect Transistor.
  • the two high-side MOSFETs 13 connected in parallel are turned on and off at the same timing by a common gate drive signal (drive voltage).
  • the two low-side MOSFETs 13 connected in parallel are turned on and off at the same timing by a common gate drive signal (drive voltage).
  • Each MOSFET 13 is connected inversely parallel to a freewheeling diode 14 (hereinafter referred to as FWD 14).
  • FWD 14 may be a parasitic diode (body diode) or an external diode.
  • the drain of MOSFET 13 is connected to the P line 8.
  • the source of MOSFET 13 is connected to the N line 9.
  • the source of MOSFET 13 in the upper arm 10H and the drain of MOSFET 13 in the lower arm 10L are connected to each other.
  • the anode of FWD 14 is connected to the source of the corresponding MOSFET 13, and the cathode is connected to the drain.
  • the switching element is not limited to MOSFET 13.
  • an IGBT may be used.
  • IGBT is an abbreviation for Insulated Gate Bipolar Transistor.
  • FWD 14 is also connected in inverse parallel.
  • the drive circuit 7 drives the switching elements that make up a power conversion circuit such as the inverter 5.
  • the drive circuit 7 supplies a drive voltage to the gate of the corresponding MOSFET 13 based on a drive command from the control circuit. By applying a drive voltage, the drive circuit drives the corresponding MOSFET 13, i.e., turns it on and off.
  • the drive circuit is sometimes called a driver.
  • the power conversion device 4 may include a control circuit for the switching element.
  • the control circuit generates a drive command for operating the MOSFET 13 and outputs it to the drive circuit 7.
  • the control circuit generates the drive command based on, for example, a torque request input from a host ECU (not shown) and signals detected by various sensors.
  • ECU is an abbreviation for Electronic Control Unit.
  • the control circuit may be provided within the host ECU.
  • the various sensors include, for example, a current sensor, a rotation angle sensor, and a voltage sensor.
  • the power conversion device 4 may be equipped with at least one of the sensors.
  • the current sensor detects the phase current flowing through the winding 3a of each phase.
  • the rotation angle sensor detects the rotation angle of the rotor of the motor generator 3.
  • the voltage sensor detects the voltage across the smoothing capacitor 6.
  • the control circuit is configured to include, for example, a processor and a memory.
  • the control circuit outputs, for example, a PWM signal as a drive command.
  • PWM is an abbreviation for Pulse Width Modulation.
  • the power conversion device 4 may include a converter as a power conversion circuit.
  • the converter is a DC-DC conversion circuit that converts a DC voltage, for example, into a DC voltage of a different value.
  • the converter is provided between the DC power source 2 and the smoothing capacitor 6.
  • the converter is configured, for example, with a reactor and the above-mentioned upper and lower arm circuits 10. With this configuration, voltage can be increased and decreased.
  • the power conversion device 4 may include a filter capacitor that removes power supply noise from the DC power source 2.
  • the filter capacitor is provided between the DC power source 2 and the converter.
  • FIG. 2 is a plan view showing an example of the power conversion device 4 according to the present embodiment.
  • signal terminals and a circuit board are omitted in FIG. 2.
  • the white arrows in FIG. 2 indicate the direction of flow of the refrigerant.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3.
  • a part of the housing and the circuit board are omitted.
  • the solid arrows in FIG. 4 indicate the flow of the refrigerant.
  • FIG. 5 is a plan view showing a heat dissipation member.
  • the white arrows in FIG. 5 also indicate the direction of flow of the refrigerant.
  • the power conversion device 4 of this embodiment includes a semiconductor module 20, coolers 30 and 40, and connecting pipes 50 and 60.
  • the power conversion device 4 may also include a circuit board 70 as shown in FIG. 3.
  • the stacking direction of the semiconductor modules 20 and the coolers 30, 40 is referred to as the Z direction.
  • the direction perpendicular to the Z direction and in which the connecting pipes 50, 60 are arranged is referred to as the X direction.
  • the direction perpendicular to both the X direction and the Z direction is referred to as the Y direction.
  • the X direction, Y direction, and Z direction are in a mutually perpendicular positional relationship.
  • a planar shape refers to a shape viewed from the Z direction.
  • a planar view from the Z direction may simply be referred to as a planar view.
  • the position of the component closer to the cooler 30 in the Z direction may be referred to as the lower position, and the position of the component farther from the cooler 30 may be referred to as the upper position.
  • the semiconductor modules 20 constitute the upper and lower arm circuits 10 described above, i.e., the inverter 5 (power conversion circuit).
  • the power conversion device 4 of this embodiment includes three semiconductor modules 20.
  • One semiconductor module 20 provides one series circuit 12, i.e., one phase of upper and lower arm circuits 10.
  • the multiple semiconductor modules 20 include a semiconductor module 20U that provides the upper and lower arm circuits 10U, a semiconductor module 20V that provides the upper and lower arm circuits 10V, and a semiconductor module 20W that provides the upper and lower arm circuits 10W.
  • Each semiconductor module 20 includes a semiconductor element 21, a sealing body 22, a signal terminal 23, power supply terminals 24P and 24N, and an output terminal 25.
  • the semiconductor element 21 is formed by forming a switching element on a semiconductor substrate made of materials such as silicon (Si) or a wide band gap semiconductor with a wider band gap than silicon.
  • the switching element has a vertical structure so that the main current flows in the thickness direction of the semiconductor substrate.
  • Examples of wide band gap semiconductors include silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), and diamond.
  • the semiconductor element 21 is sometimes called a power element, a semiconductor chip, etc.
  • the semiconductor element 21 of this embodiment is formed by forming the above-mentioned n-channel MOSFET 13 and FWD 14 on a semiconductor substrate made of SiC.
  • the MOSFET 13 has a vertical structure so that the main current flows in the thickness direction of the semiconductor element 21 (semiconductor substrate).
  • the semiconductor element 21 has main electrodes (not shown) on both sides in the thickness direction of the semiconductor element 21.
  • main electrodes of the switching element it has a source electrode on the front side and a drain electrode on the back side.
  • the source electrode is formed on a part of the front side.
  • the drain electrode is formed on almost the entire back side.
  • the main current flows between the drain electrode and the source electrode.
  • the semiconductor element 21 has a pad (not shown) that is a signal electrode on the surface where the source electrode is formed.
  • the semiconductor element 21 is arranged so that its plate thickness direction is approximately parallel to the Z direction.
  • the semiconductor element 21 of this embodiment includes two semiconductor elements 21H that provide switching elements on the high side of the series circuit 12, and two semiconductor elements 21L that provide switching elements on the low side of the series circuit 12.
  • the semiconductor elements 21H and 21L are arranged side by side in the Y direction.
  • the two semiconductor elements 21H are arranged side by side in the X direction.
  • the two semiconductor elements 21L are arranged side by side in the X direction.
  • the four semiconductor elements 21 provide four switching elements for one series circuit 12.
  • the semiconductor module 20 includes semiconductor elements 21 corresponding to the number of switching elements that make up one series circuit 12. When the series circuit 12 includes two switching elements, the semiconductor module 20 includes one each of semiconductor elements 21H and 21L.
  • the encapsulant 22 encapsulates some of the other elements that make up the semiconductor module 20. The remaining parts of the other elements are exposed outside the encapsulant 22.
  • the encapsulant 22 is made of a material such as resin.
  • the encapsulant 22 is molded by a transfer molding method using a material such as epoxy resin.
  • the encapsulant 22 may also be formed using a gel, for example.
  • the sealing body 22 has, for example, a generally rectangular shape in plan view.
  • the sealing body 22 has, as surfaces forming its outer periphery, one surface 22a and a back surface 22b that is the surface opposite one surface 22a in the Z direction.
  • One surface 22a and the back surface 22b are, for example, flat surfaces.
  • the sealing body 22 also has side surfaces 22c, 22d, 22e, and 22f that connect one surface 22a and the back surface 22b.
  • Side surface 22c is the surface opposite side surface 22d in the Y direction.
  • Side surface 22e is the surface opposite side surface 22f in the X direction.
  • the signal terminal 23 is an external connection terminal electrically connected to a pad of the semiconductor element 21.
  • the signal terminal 23 protrudes to the outside from the sealing body 22.
  • the signal terminal 23 connected to the pad of the semiconductor element 21H protrudes from the side surface 22c of the sealing body 22.
  • the signal terminal 23 connected to the pad of the semiconductor element 21L protrudes from the side surface 22d of the sealing body 22.
  • the signal terminal 23 bends outside the sealing body 22 and extends in a direction away from the cooler 30, that is, upward.
  • the signal terminal 23 is roughly L-shaped.
  • the power supply terminals 24P, 24N and the output terminal 25 are external connection terminals electrically connected to the main electrodes of the semiconductor element 21. Such external connection terminals are sometimes called main terminals.
  • the power supply terminal 24P is electrically connected to the drain electrode of the semiconductor element 21H.
  • the power supply terminal 24N is electrically connected to the source electrode of the semiconductor element 21L.
  • the power supply terminal 24P is sometimes called a P terminal, a high potential power supply terminal, a positive terminal, etc.
  • the power supply terminal 24N is sometimes called an N terminal, a low potential power supply terminal, a negative terminal, etc.
  • the power supply terminals 24P, 24N are electrically connected to the smoothing capacitor 6.
  • the power supply terminals 24P, 24N protrude to the outside from the side surface 22c of the sealing body 22.
  • the protruding portions of the power supply terminals 24P, 24N are arranged side by side in the X direction.
  • the output terminal 25 is electrically connected to the connection point between the source electrode of the semiconductor element 21H and the drain electrode of the semiconductor element 21L, i.e., the connection point (midpoint) of the series circuit 12.
  • the output terminal 25 protrudes to the outside from the side surface 22d of the sealing body 22.
  • the output terminal 25 may be called an O terminal, an output terminal, an AC terminal, etc.
  • the output terminal 25 is connected to the corresponding winding 3a of the motor generator 3, for example, via a bus bar (not shown).
  • the external connection terminal does not protrude from the side surfaces 22e, 22f of the sealing body 22.
  • the semiconductor module 20 may include wiring members in addition to the elements described above.
  • the wiring members provide a wiring function that electrically connects the main electrodes and main terminals of the semiconductor element 21.
  • the wiring members provide a heat dissipation function that dissipates heat from the semiconductor element 21.
  • the wiring members are arranged, for example, to sandwich the semiconductor element 21 in the Z direction.
  • a substrate having metal bodies arranged on both sides of an insulating base material may be used, or a heat sink, which is a metal member, may be adopted.
  • the heat sink is provided, for example, as a part of the lead frame.
  • a part of the wiring members may be exposed from at least one of the first surface 22a and the back surface 22b of the sealing body 22. This can improve heat dissipation.
  • the semiconductor module 20 is placed on the base plate 331 so that the back surface 22b faces the base plate 331 of the heat dissipation member 33 described below. If necessary, an electrical insulating member such as a ceramic plate may be placed between the semiconductor module 20 and the base plate 331, or a thermally conductive member such as a TIM may be placed.
  • TIM is an abbreviation for Thermal Interface Material.
  • the three semiconductor modules 20 are lined up in the X direction. That is, the multiple semiconductor modules 20 are arranged side by side along the X direction.
  • the three semiconductor modules 20 are lined up, for example, in the order of semiconductor module 20U, semiconductor module 20V, and semiconductor module 20W.
  • the side faces of adjacent semiconductor modules 20 face each other with a predetermined distance between them. Specifically, side face 22f of semiconductor module 20U faces side face 22e of semiconductor module 20V, and side face 22f of semiconductor module 20V faces side face 22e of semiconductor module 20W.
  • the cooler 30 cools the semiconductor module 20 from the rear surface 22b side.
  • the cooler 30 is disposed below the semiconductor module 20.
  • the cooler 30 includes a case 31.
  • the case 31 defines a flow path 32 through which the coolant 80 flows.
  • the case 31 is formed using a metal material such as aluminum.
  • the case 31 is formed using a material with higher rigidity than the heat dissipation member 33 described below.
  • the case 31 in this embodiment is formed using ADC12, which is an AlSiCu alloy.
  • the flow paths 32 are arranged to overlap at least a portion of each of the semiconductor modules 20 in a planar view so as to effectively cool the semiconductor modules 20.
  • the flow paths 32 in this embodiment are arranged to enclose most of each of the semiconductor modules 20 in a planar view.
  • the flow paths 32 extend along the arrangement direction of the three semiconductor modules 20, that is, along the X direction.
  • the refrigerant 80 may be, for example, a refrigerant that changes phase, such as water or ammonia, or a refrigerant that does not change phase, such as an ethylene glycol-based refrigerant.
  • the case 31 has an opening 311 at a position overlapping the semiconductor module 20 in a plan view.
  • the opening 311 is provided in the wall that defines the flow path 32 and faces the semiconductor module 20.
  • the opening 311 penetrates the facing wall.
  • the opening 311 has, for example, a substantially rectangular shape in plan view with the X direction as its longitudinal direction.
  • a heat dissipation member 33 is arranged in the opening 311 of the case 31.
  • the base plate 331 is arranged so as to close the opening 311 of the case 31.
  • the base plate 331 has, for example, a generally rectangular shape in plan view with the longitudinal direction being the X direction.
  • the peripheral edge of the base plate 331 is liquid-tightly joined to the edge of the opening on the outer surface of the case 31 by friction stir welding or the like. This makes it possible to prevent the refrigerant 80 from leaking out of the flow path 32 through the opening 311.
  • the base plate 331 and the case 31 define the flow path 32.
  • the seal portion 34 which is the joint between the base plate 331 and the case 31, provides a liquid-tight seal.
  • the pin fins 332 are pin-shaped fins as shown in Figures 3, 4, and 5.
  • the pin fins 332 may be provided integrally with the base plate 331, or may be provided integrally by joining.
  • the pin fins 332 are disposed in the flow path 32 through the opening 311.
  • the pin fins 332 protrude from the base plate 331.
  • the multiple pin fins 332 extend in the Z direction from one surface of the base plate 331.
  • the pin fins 332 have a predetermined length in the Z direction.
  • the pin fins 332 have a substantially circular or elliptical shape in plan view.
  • the multiple pin fins 332 are provided at a predetermined pitch in the Y direction.
  • the multiple pin fins 332 are provided at a predetermined pitch in the X direction.
  • the case 31 of the cooler 30 may be provided as a stand-alone case 31, or may be provided as a part of a housing that houses other elements of the power conversion device 4.
  • the case 31 of this embodiment is provided as a part of the housing 35.
  • the case 31 is provided as a part of the bottom wall 351 of the housing 35.
  • the housing 35 has an opening to house other elements.
  • the housing 35 has a bottom wall 351 and a side wall 352 that is connected to the bottom wall 351 and defines a housing space together with the bottom wall 351.
  • the housing 35 of this embodiment is box-shaped with one side open.
  • the housing 35 is approximately rectangular in plan view in the Z direction.
  • the semiconductor module 20, the cooler 40, the circuit board 70, etc. are arranged in the housing space of the housing 35.
  • the housing 35 is fitted with an inlet pipe 36 for supplying refrigerant to the coolers 30, 40, and a discharge pipe 37 for discharging the refrigerant from the coolers 30, 40.
  • the inlet pipe 36 and the discharge pipe 37 are inserted through corresponding through holes (not shown) and are arranged inside and outside the housing 35.
  • the mounting positions of the inlet pipe 36 and the discharge pipe 37 are not particularly limited. They may be mounted on the bottom wall 351 or the side wall 352.
  • the inlet pipe 36 and the discharge pipe 37 may be mounted on a common surface or on different surfaces.
  • the inlet pipe 36 is mounted on one of the walls facing each other in the X direction
  • the discharge pipe 37 is mounted on the other wall.
  • the housing 35 including the case 31 may be made of a single member, or may be made of a combination of multiple members.
  • the bottom wall 351 of the housing 35 may be made of a combination of multiple members in one part, and a single member in the other part.
  • the power conversion device 4 may be provided with a cover (lid) (not shown) that closes the opening of the housing 35.
  • the cooler 40 cools the semiconductor module 20 from the one surface 22a side.
  • the cooler 40 is disposed above the semiconductor module 20.
  • the cooler 40 is disposed on the one surface 22a of the semiconductor module 20.
  • An electrical insulating member such as a ceramic plate may be disposed between the cooler 40 and the semiconductor module 20 as necessary, or a thermally conductive member such as a TIM may be disposed.
  • the cooler 40 cools the semiconductor module 20 from the opposite side to the cooler 30 in the Z direction.
  • the cooler 40 includes a case 41.
  • the case 41 defines a flow path 42 through which the refrigerant 80 flows.
  • the case 41 is formed using a metal material such as aluminum.
  • the cooler 40 is thinner than the cooler 30.
  • the cooler 40 is, for example, a tubular body with a flat shape overall.
  • the cooler 40 is configured to have a flow path inside by using, for example, a pair of plates (thin metal plates). At least one of the pair of plates is processed into a shape that expands in the Z direction by press processing. Thereafter, the outer peripheral edges of the pair of plates are fixed to each other by crimping or the like, and are joined to each other around the entire circumference by brazing or the like. This forms a flow path 42 through which the refrigerant 80 can flow between the pair of plates.
  • the flow paths 42 are arranged to overlap at least a portion of each of the semiconductor modules 20 in a planar view so as to effectively cool the semiconductor modules 20.
  • the flow paths 42 are arranged to overlap most of each of the semiconductor modules 20 in a planar view.
  • the flow paths 42 extend along the arrangement direction of the three semiconductor modules 20, that is, the X direction.
  • the flow paths 42 cross the three semiconductor modules 20 in the X direction.
  • the flow paths 42 are contained within the flow paths 32.
  • the extension length of the flow paths 42 is shorter than the extension length of the flow paths 32.
  • the cooler 40 may include fins.
  • the cooler 40 of this embodiment includes fins 43.
  • the fins 43 are arranged inside a case 41 made up of a pair of plates, i.e., in the flow path 42.
  • the fins 43 are arranged so as to overlap the semiconductor module 20 in a plan view.
  • the fins 43 are, for example, wave-shaped fins.
  • the fins 43 have a predetermined height in the Z direction.
  • the height of the fins 43 is less than the height (length) of the pin fins 332.
  • the multiple fins 43 are arranged at a predetermined pitch in the Y direction.
  • the cooler 40 is stacked on the cooler 30 via the semiconductor module 20.
  • the cooler 40 may be pressed in the Z direction from the side opposite the semiconductor module 20 by a pressure member (not shown).
  • the pressure maintains good thermal conduction between the cooler 40 and the semiconductor module 20, and between the semiconductor module 20 and the cooler 30.
  • the pressure member may include, for example, a pressure plate and an elastic member.
  • the elastic member is, for example, a material that generates pressure by elastic deformation such as rubber, or a metal spring.
  • the elastic member is disposed between the pressure plate and the cooler 40 in the Z direction.
  • the elastic member is elastically deformed by fixing the pressure plate to a predetermined position relative to the housing 35.
  • the cooler 40 and the semiconductor module 20 are pressed against the cooler 30 by the reaction force of the elastic deformation.
  • the connecting pipes 50 and 60 connect the cooler 30 and the cooler 40.
  • the connecting pipe 50 supplies the refrigerant 80 to the flow paths to which the inlet pipe 36 is not connected.
  • the connecting pipe 60 discharges the refrigerant 80 from the flow paths to which the outlet pipe 37 is not connected.
  • the connecting pipe 50 in this embodiment supplies a portion of the refrigerant 80 supplied to the cooler 30 through the inlet pipe 36 to the cooler 40.
  • the connecting pipe 60 discharges the refrigerant 80 that has flowed through the cooler 40 from the outlet pipe 37 via the cooler 30.
  • the connecting pipe 50 has a connecting flow passage 51 that communicates with the flow passages 32 and 42.
  • the connecting pipe 60 has a connecting flow passage 61 that communicates with the flow passages 32 and 42.
  • the connecting flow passages 51 and 61 extend in the Z direction. One end of each of the connecting flow passages 51 and 61 communicates with the flow passage 32, and the other end communicates with the flow passage 42.
  • the connecting pipe 50 is connected to the vicinity of one end of the cooler 40 in the X direction.
  • the connecting pipe 60 is connected to the vicinity of the other end of the cooler 40.
  • Reference numeral 52 in FIG. 4 denotes a seal portion around the connecting pipe 50 provided on the cooler 30.
  • Reference numeral 62 denotes a seal portion around the connecting pipe 60 provided on the cooler 30.
  • the seal portions 52 and 62 are provided by, for example, grommets.
  • the connecting pipe 50 is disposed between the connection position of the inlet pipe 36 and the cooler 30 and the heat dissipation member 33.
  • the connecting pipe 60 is disposed between the heat dissipation member 33 and the connection position of the outlet pipe 37 and the cooler 30.
  • a part of the refrigerant 80 supplied from the inlet pipe 36 flows through the flow path 32 and is discharged from the outlet pipe 37.
  • Another part of the refrigerant 80 is supplied to the flow path 42 through the flow path 32 and the connecting flow path 51 of the connecting pipe 50.
  • the refrigerant 80 that has flowed through the flow path 42 flows into the flow path 32 through the connecting flow path 61 of the connecting pipe 60 and is discharged from the outlet pipe 37.
  • the connecting pipes 50 and 60, together with the cooler 40, provide a bypass path for the refrigerant 80.
  • the flow rate of the refrigerant 80 flowing through the flow path 32 is greater than the flow rate of the refrigerant 80 flowing through the flow path 42.
  • the flow path 32 is a main flow path, and the flow path 42 is a sub-flow path branched off from the flow path 32.
  • the flow rate of the flow path 32 that passes through the branch point by the connecting pipe 50 is greater than the flow rate of the refrigerant 80 flowing through the flow path 42.
  • the cross-sectional area of the flow path 32 is greater than the cross-sectional area of the flow path 42.
  • the thickness (height) of the cooler 30 is greater than the thickness of the cooler 40.
  • the flow path 42 which is a sub-flow path, is branched off from the flow path 32, which is the main flow path, via the connecting flow paths 51 and 61.
  • the cross-sectional area of each of the connecting flow paths 51 and 61 is smaller than the cross-sectional area of the flow path 32.
  • the cross-sectional area of each flow path is the area of a cross section perpendicular to the extension direction of the flow path, that is, the flow direction of the refrigerant.
  • the water flow resistance of the connecting flow paths 51 and 61 is smaller than the water flow resistance of the flow path 42.
  • the circuit board 70 includes a wiring board in which wiring is arranged on an insulating base material such as resin, electronic components mounted on the wiring board, connectors, etc. The mounted electronic components and wiring form a circuit.
  • the drive circuit 7 described above is formed on the circuit board 70.
  • the circuit board 70 is arranged so as to overlap the semiconductor modules 20 when viewed in a plane in the Z direction.
  • the circuit board 70 is arranged above the three semiconductor modules 20.
  • the signal terminals 23 of the three semiconductor modules 20 are mounted on the circuit board 70.
  • the circuit board 70 in this embodiment is arranged inside the housing 35.
  • the circuit board 70 is located above the cooler 40.
  • the base plate 331 of the heat dissipation member 33 is disposed so as to close the opening 311 of the case 31.
  • the length L1 of the base plate 331 is shorter than the length L2 between the outer end of the connecting pipe 50 and the outer end of the connecting pipe 60.
  • the length L1 of the base plate 331 in this embodiment is shorter than the length between the centers of the connecting pipes 50, 60 (connecting flow paths 51, 61) in the X direction.
  • the length L1 of the base plate 331 is shorter than the length between the inner end of the connecting pipe 50 and the inner end of the connecting pipe 60.
  • the seal portion 34 between the base plate 331 and the case 31 is located inside the seal portions 52, 62 between the case 31 and the connecting pipes 50, 60.
  • FIG. 6 shows a reference example.
  • FIG. 6 corresponds to FIG. 4.
  • the suffix r is added to the reference symbols of the elements related to this embodiment.
  • the power converter 4r of the reference example also includes coolers 30r, 40r having a two-stage structure.
  • the case 31r defining the flow path 32r is open on the entire surface facing the semiconductor module 20r.
  • the base plate 331r is a cover that closes the opening of the case 31r. Therefore, in the X direction, which is the arrangement direction of the connecting pipes 50r, 60r, the length L1r of the base plate 331r is longer than the length L2r between the outer end of the connecting pipe 50r and the outer end of the connecting pipe 60r.
  • the other configurations of the power converter 4r are the same as those of the power converter 4 of this embodiment.
  • the base plate 331r is long, there is a risk that the base plate 331r will bend outward due to water pressure, that is, will deform into an outward convex shape. If the base plate 331r bends outward, the gap between the pin fins 332r and the case 31r will become larger, and the amount of refrigerant that passes through without hitting the pin fins 332r will increase, reducing the cooling performance (heat exchange performance) of the cooler 30r. If the base plate 331r deforms, the adhesion between the base plate 331r and the semiconductor module 20r will decrease, and the thermal resistance will increase. As a result, the heat dissipation performance will decrease according to the configuration of the reference example, and the structure in which the heat dissipation member 33r is added to the two-stage cooler 30r, 40r cannot be fully utilized.
  • the length L1 of the base plate 331 is shorter than the length L2 between the outer ends of the connecting pipes 50, 60.
  • the length of the base plate 331 constituting the heat dissipation member 33 is short, deformation of the base plate 331 due to water pressure, specifically outward bending, can be suppressed.
  • This prevents the gap between the pin fins 332 and the case 31 from expanding, and prevents an increase in the amount of refrigerant 80 that passes through without hitting the pin fins 332.
  • the adhesion between the base plate 331 and the semiconductor module 20 from decreasing, which prevents an increase in thermal resistance.
  • the power converter 4 of this embodiment can suppress the deterioration of heat dissipation. Therefore, the structure in which the heat dissipation member 33 is added to the two-stage coolers 30, 40 can be fully utilized. In other words, a power converter 4 with high heat dissipation properties can be provided.
  • the cooler 30 corresponds to the first cooler
  • the flow path 32 corresponds to the first flow path.
  • the cooler 40 corresponds to the second cooler, and the flow path 42 corresponds to the second flow path.
  • the connecting pipe 50 corresponds to the first connecting portion, and the connecting flow path 51 corresponds to the first connecting flow path.
  • the connecting pipe 60 corresponds to the second connecting portion, and the connecting flow path 61 corresponds to the second connecting flow path.
  • the base plate 331 (heat dissipation member 33) may be formed using the same material as the case 31, or may be formed using a material different from that of the case 31.
  • the base plate 331 in this embodiment is formed using a material different from that of the case 31.
  • the thermal conductivity of the base plate 331 is higher than that of the case 31, and the rigidity of the case 31 is higher than that of the base plate 331.
  • the length L1 of the base plate 331 is shorter than the length L2 between the outer ends of the connecting pipes 50 and 60, deformation of the base plate 331 due to water pressure can be suppressed even if the rigidity of the base plate 331 is low. Since deformation is suppressed and the thermal conductivity of the base plate 331 is high, heat dissipation can be further improved.
  • the arrangement order of the three semiconductor modules 20U, 20V, and 20W is not limited to the above example.
  • the semiconductor module 20U or the semiconductor module 20W may be disposed in the middle.
  • the inlet pipe 36 and the outlet pipe 37 are connected to the cooler 30, this is not limiting.
  • the inlet pipe 36 and the outlet pipe 37 may also be connected to the cooler 40.
  • a portion of the refrigerant 80 flows from the flow path 42 through the connecting pipe 50 to the flow path 32 of the cooler 30.
  • the refrigerant 80 that has flowed through the flow path 32 returns to the flow path 42 through the connecting pipe 60 and is discharged.
  • the cooler 40 may also include a base plate and pin fins.
  • the length of the base plate included in the cooler 40 may be shorter than the length L2 between the outer ends of the connecting pipes 50, 60.
  • the case 41 of the cooler 40 has an opening on the surface facing the semiconductor module 20, and the base plate is arranged to close this opening.
  • the cooler 40 corresponds to the first cooler, and the flow path 42 corresponds to the first flow path.
  • the cooler 30 corresponds to the second cooler, and the flow path 32 corresponds to the second flow path.
  • the length of the base plate constituting the heat dissipation member is shorter than the length between the outer ends of the connecting pipe.
  • the first flow path may include a flow straightening chamber.
  • FIG. 7 is a plan view showing the power conversion device 4 according to this embodiment.
  • FIG. 7 corresponds to FIG. 2.
  • signal terminals and circuit boards are also omitted in FIG. 7.
  • the white arrows in FIG. 7 indicate the direction of refrigerant flow.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7.
  • FIG. 8 corresponds to FIG. 4.
  • Part of the housing and the circuit board are also omitted in FIG. 7.
  • the solid arrows in FIG. 7 indicate the flow of refrigerant.
  • the cooler 30 of this embodiment has a wall portion 38.
  • the wall portion 38 protrudes from the inner wall of the case 31.
  • the wall portion 38 may be provided integrally with the case 31, or may be provided integrally by joining.
  • the wall portion 38 is provided between the connecting pipe 50 and the base plate 331 in the X direction.
  • the wall portion 38 locally narrows the flow path 32.
  • the wall portion 38 of this embodiment is connected to the bottom surface and both side surfaces in the Y direction of the inner wall of the case 31.
  • the wall portion 38 is not connected to the top surface of the inner wall of the case 31. Between the wall portion 38 and the top surface of the inner wall of the case 31, there is a gap through which the refrigerant 80 can flow.
  • the wall portion 38 divides the flow path 32 into two regions.
  • the flow path 32 has a heat exchange chamber 321 and a straightening chamber 322 as regions partitioned by the wall portion 38.
  • the heat exchange chamber 321 is a region downstream of the wall portion 38 in the longitudinal direction of the flow path 32, i.e., in the X direction.
  • the heat exchange chamber 321 is a region closer to the exhaust pipe 37 than the wall portion 38.
  • the pin fins 332 of the heat dissipation member 33 are arranged in the heat exchange chamber 321.
  • the straightening chamber 322 is a region upstream of the wall portion 38 in the X direction.
  • the straightening chamber 322 is a region closer to the inlet pipe 36 than the wall portion 38.
  • the length of the straightening chamber 322 is shorter than the length of the heat exchange chamber 321.
  • the straightening chamber 322 in this embodiment is smaller than the heat exchange chamber 321.
  • the volume of the straightening chamber 322 is smaller than the volume of the heat exchange chamber 321.
  • the straightening chamber 322 is a small room.
  • the connecting passage 51 of the connecting pipe 50 which provides a refrigerant inlet for the bypass path, is connected to the rectification chamber 322.
  • the connecting passage 61 of the connecting pipe 60 which provides a refrigerant outlet for the bypass path, is connected to the heat exchange chamber 321.
  • the heat exchange chamber 321 and the rectification chamber 322 are connected to each other through a gap above the wall portion 38.
  • the other configurations are the same as those described in the preceding embodiment.
  • the cooler 30 of the power conversion device 4 has a wall portion 38 protruding from the inner wall of the case 31.
  • This wall portion 38 divides the flow path 32 into a heat exchange chamber 321 in which pin fins 332 are arranged, and a rectification chamber 322.
  • the rectification chamber 322 is an area upstream of the wall portion 38, and is connected to the connecting flow path 51 of the connecting pipe 50.
  • the power conversion device 4 has the rectification chamber 322 as a front chamber of the heat exchange chamber 321 and the flow path 42.
  • the rectification chamber 322 can receive and rectify the pulsation caused by the water pump. This makes it possible to suppress variations in the cooling effect. In other words, it is possible to improve heat dissipation.
  • the cooler 30 corresponds to the first cooler, and the flow path 32 corresponds to the first flow path.
  • the cooler 40 corresponds to the second cooler, and the flow path 42 corresponds to the second flow path.
  • the connecting pipe 50 corresponds to the first connecting part, and the connecting flow path 51 corresponds to the first connecting flow path.
  • the connecting pipe 60 corresponds to the second connecting part, and the connecting flow path 61 corresponds to the second connecting flow path.
  • the surface to which the wall portion 38 is connected is not particularly limited.
  • the wall portion 38 may be connected only to the bottom surface, only to the side surface, only to the top surface, or both to the side surface and the top surface.
  • the cooler 30 may have a wall portion provided between the connecting pipe 60 and the base plate 331 in the X direction. This wall portion divides the heat exchange chamber 321 into an area where the pin fins 332 are arranged and an area where the connecting pipe 60 communicates.
  • a wall may be provided in the cooler 40 to divide the flow path 42 into a heat exchange chamber and a flow straightening chamber.
  • the cooler 40 corresponds to the first cooler
  • the flow path 42 corresponds to the first flow path.
  • the cooler 30 corresponds to the second cooler
  • the flow path 32 corresponds to the second flow path.
  • the disclosure in this specification and drawings, etc. is not limited to the exemplified embodiments.
  • the disclosure includes the exemplified embodiments and modifications by those skilled in the art based thereon.
  • the disclosure is not limited to the combination of parts and/or elements shown in the embodiments.
  • the disclosure can be implemented by various combinations.
  • the disclosure can have additional parts that can be added to the embodiments.
  • the disclosure includes the omission of parts and/or elements of the embodiments.
  • the disclosure includes the substitution or combination of parts and/or elements between one embodiment and another embodiment.
  • the disclosed technical scope is not limited to the description of the embodiments. Some disclosed technical scopes are indicated by the description of the claims, and should be interpreted as including all modifications within the meaning and scope equivalent to the description of the claims.
  • the vehicle drive system 1 is not limited to the configuration described above.
  • the present invention is not limited to this. Multiple motor generators may be provided.
  • the power conversion device 4 includes an inverter 5 as a power conversion circuit
  • the power conversion device 4 may be configured to include multiple inverters.
  • the power conversion device 4 may be configured to include at least one inverter and a converter.
  • the number of semiconductor modules 20 is not limited to the above example.
  • one semiconductor module 20 may provide six arms 10H, 10L.
  • One semiconductor module 20 may provide one arm, i.e., one upper arm 10H or one lower arm 10L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device (4) comprises: a semiconductor module (20) constituting an inverter (5); coolers (30, 40) for cooling the semiconductor module (20) from both surface sides; and connection pipes (50, 60) for connecting the coolers (30, 40). The cooler (30) defines a flow path (32) and has: a case (31) having an opening (311) at a portion overlapping with the semiconductor module (20); a base plate (331) disposed in the case (31) so as to cover the opening (311); and pin fins (332) extending from the base plate (331) into the flow path (32). In the arrangement direction of the connection pipes (50, 60), the length of the base plate (331) is shorter than the length between the outer ends of the connection pipes (50, 60).

Description

電力変換装置Power Conversion Equipment 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 この出願は、2023年3月30日に日本に出願された特許出願第2023-55860号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on patent application No. 2023-55860 filed in Japan on March 30, 2023, and the contents of the original application are incorporated by reference in their entirety.
 この明細書における開示は、電力変換装置に関する。 The disclosure in this specification relates to a power conversion device.
 特許文献1は、電力変換装置を開示している。先行技術文献の記載内容は、この明細書における技術的要素の説明として、参照により援用される。 Patent document 1 discloses a power conversion device. The contents of the prior art document are incorporated by reference as explanations of the technical elements in this specification.
中国特許出願公開第114068450号明細書Chinese Patent Publication No. 114068450
 特許文献1に開示の電力変換装置は、2段構造の冷却器を備えている。電力変換装置は、インバータを構成するチップの熱を両面側に放熱する構造を有している。冷却器のケースには、放熱用のフィンが設けられている。特許文献1の構成では、水圧によってケースが外側に撓む、つまり変形する虞がある。ケースが外側に撓むと、フィンとケースとの間の隙間が大きくなり、フィンに当たらずに素通りする冷媒が増えて放熱性が低下する。ケースが変形すると、ケースとチップとの密着性が低下し、熱抵抗が大きくなる。このように、特許文献1の構成では放熱性が低下する虞がある。上記した観点において、または言及されていない他の観点において、電力変換装置にはさらなる改良が求められている。 The power conversion device disclosed in Patent Document 1 is equipped with a two-stage cooler. The power conversion device has a structure that dissipates heat from the chips that make up the inverter to both sides. The cooler case is provided with fins for heat dissipation. In the configuration of Patent Document 1, there is a risk that the case will bend outward, i.e., deform, due to water pressure. If the case bends outward, the gap between the fins and the case will become larger, and more refrigerant will pass through without hitting the fins, reducing heat dissipation. If the case deforms, the adhesion between the case and the chips will decrease, and thermal resistance will increase. Thus, there is a risk that the configuration of Patent Document 1 will reduce heat dissipation. In the above-mentioned perspectives, or in other perspectives not mentioned, further improvements are required for power conversion devices.
 開示されるひとつの目的は、放熱性の低下を抑制できる電力変換装置を提供することにある。 One disclosed objective is to provide a power conversion device that can suppress a decrease in heat dissipation.
 ここに開示された電力変換装置は、
 電力変換回路を構成する半導体モジュールと、
 第1流路を有し、半導体モジュールを冷却する第1冷却器と、
 第2流路を有し、第1冷却器とは反対側から半導体モジュールを冷却する第2冷却器と、
 第1流路と第2流路とに連通する第1連結流路を有する第1連結部と、
 第1流路と第2流路とに連通する第2連結流路を有し、第1連結部とともに冷媒の一部の迂回経路を提供する第2連結部と、を備え、
 第1冷却器は、第1流路を規定し、半導体モジュールと重なる部分に開口を有するケースと、開口を蓋するようにケースに配置されたベースプレートと、ベースプレートから第1流路内に延びるピンフィンと、を有し、
 第1連結部と第2連結部との並び方向において、ベースプレートの長さが、第1連結部と第2連結部との外端間の長さよりも短い。
The power conversion device disclosed herein is
A semiconductor module that configures a power conversion circuit;
a first cooler having a first flow path and configured to cool the semiconductor module;
a second cooler having a second flow path and cooling the semiconductor module from an opposite side to the first cooler;
a first connecting portion having a first connecting flow path communicating with the first flow path and the second flow path;
a second connecting portion having a second connecting flow path communicating with the first flow path and the second flow path and providing a bypass path for a portion of the refrigerant together with the first connecting portion;
the first cooler includes a case that defines a first flow path and has an opening at a portion that overlaps with the semiconductor module, a base plate that is disposed on the case so as to cover the opening, and pin fins that extend from the base plate into the first flow path;
In the arrangement direction of the first connecting portion and the second connecting portion, the length of the base plate is shorter than the length between the outer ends of the first connecting portion and the second connecting portion.
 開示の電力変換装置によれば、ベースプレートの長さが、第1連結部と第2連結部との外端間の長さよりも短いため、水圧によるベースプレートの変形を抑制することができる。この結果、放熱性の低下を抑制できる電力変換装置を提供することができる。 In the disclosed power conversion device, the length of the base plate is shorter than the length between the outer ends of the first connecting part and the second connecting part, so deformation of the base plate due to water pressure can be suppressed. As a result, a power conversion device can be provided that can suppress a decrease in heat dissipation performance.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The various aspects disclosed in this specification employ different technical means to achieve their respective objectives. The reference characters in parentheses in the claims are illustrative of the corresponding relationships with the parts of the embodiments described below, and are not intended to limit the technical scope. The objectives, features, and advantages disclosed in this specification will become clearer with reference to the detailed description that follows and the attached drawings.
第1実施形態に係る電力変換装置の回路構成および駆動システムを示す図である。1 is a diagram showing a circuit configuration and a drive system of a power conversion device according to a first embodiment; 電力変換装置を示す平面図である。FIG. 2 is a plan view showing the power conversion device. 図2のIII-III線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 . 図2のIV-IV線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line IV-IV in FIG. 2 . 放熱部材を示す平面図である。FIG. 参考例を示す図である。FIG. 第2実施形態に係る電力変換装置を示す平面図である。FIG. 11 is a plan view showing a power conversion device according to a second embodiment. 図7のVIII-VIII線に沿う断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7 .
 以下、図面に基づいて複数の実施形態を説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。 Below, several embodiments will be described with reference to the drawings. Note that in each embodiment, corresponding components will be given the same reference numerals, and duplicated descriptions may be omitted. When only a portion of the configuration is described in each embodiment, the configuration of the other embodiment previously described may be applied to the other portions of the configuration. In addition to the combinations of configurations explicitly stated in the description of each embodiment, configurations of several embodiments may be partially combined together even if not explicitly stated, provided that there is no particular problem with the combination.
 本実施形態の電力変換装置は、たとえば、回転電機を駆動源とする移動体に適用される。移動体は、たとえば、電気自動車(BEV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの電動車両、ドローンや電動垂直離着陸機(eVTOL)などの電動飛行体、船舶、建設機械、農業機械である。以下では、車両に適用される例について説明する。 The power conversion device of this embodiment is applied, for example, to a moving body that uses a rotating electric machine as a drive source. Examples of moving bodies include electric vehicles such as battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs), electric flying objects such as drones and electric vertical take-off and landing aircraft (eVTOLs), ships, construction machinery, and agricultural machinery. Below, an example of application to a vehicle is described.
 (第1実施形態)
 まず、図1に基づき、車両の駆動システムの概略構成について説明する。
First Embodiment
First, a schematic configuration of a drive system of a vehicle will be described with reference to FIG.
 <車両の駆動システム>
 図1に示すように、車両の駆動システム1は、直流電源2と、モータジェネレータ3と、電力変換装置4を備えている。
<Vehicle drive system>
As shown in FIG. 1 , a vehicle drive system 1 includes a DC power supply 2 , a motor generator 3 , and a power conversion device 4 .
 直流電源2は、充放電可能な二次電池で構成された直流電圧源である。二次電池は、たとえばリチウムイオン電池、ニッケル水素電池、有機ラジカル電池などである。モータジェネレータ3は、三相交流方式の回転電機である。モータジェネレータ3は、車両の走行駆動源、つまり電動機として機能する。モータジェネレータ3は、回生時に発電機として機能する。電力変換装置4は、直流電源2とモータジェネレータ3との間で電力変換を行う。 The DC power source 2 is a DC voltage source composed of a chargeable and dischargeable secondary battery. The secondary battery is, for example, a lithium ion battery, a nickel-metal hydride battery, or an organic radical battery. The motor generator 3 is a three-phase AC rotating electric machine. The motor generator 3 functions as a drive source for the vehicle, that is, an electric motor. The motor generator 3 functions as a generator during regeneration. The power conversion device 4 converts power between the DC power source 2 and the motor generator 3.
 <電力変換装置の回路構成>
 図1は、電力変換装置4の回路構成を示している。電力変換装置4は、少なくとも電力変換回路を備えている。本実施形態の電力変換回路は、インバータ5である。電力変換装置4は、平滑コンデンサ6、駆動回路7などをさらに備えてもよい。
<Circuit configuration of power conversion device>
1 shows a circuit configuration of a power conversion device 4. The power conversion device 4 includes at least a power conversion circuit. The power conversion circuit in this embodiment is an inverter 5. The power conversion device 4 may further include a smoothing capacitor 6, a drive circuit 7, and the like.
 平滑コンデンサ6は、主として、直流電源2から供給される直流電圧を平滑化する。平滑コンデンサ6は、高電位側の電源ラインであるPライン8と低電位側の電源ラインであるNライン9とに接続されている。Pライン8は直流電源2の正極に接続され、Nライン9は直流電源2の負極に接続されている。平滑コンデンサ6の正極は、直流電源2とインバータ5との間において、Pライン8に接続されている。平滑コンデンサ6の負極は、直流電源2とインバータ5との間において、Nライン9に接続されている。平滑コンデンサ6は、直流電源2に並列に接続されている。 The smoothing capacitor 6 mainly smoothes the DC voltage supplied from the DC power supply 2. The smoothing capacitor 6 is connected to the P line 8, which is the high-potential power supply line, and the N line 9, which is the low-potential power supply line. The P line 8 is connected to the positive electrode of the DC power supply 2, and the N line 9 is connected to the negative electrode of the DC power supply 2. The positive electrode of the smoothing capacitor 6 is connected to the P line 8 between the DC power supply 2 and the inverter 5. The negative electrode of the smoothing capacitor 6 is connected to the N line 9 between the DC power supply 2 and the inverter 5. The smoothing capacitor 6 is connected in parallel to the DC power supply 2.
 インバータ5は、DC-AC変換回路である。インバータ5は、図示しない制御回路によるスイッチング制御にしたがって、直流電圧を三相交流電圧に変換し、モータジェネレータ3へ出力する。これにより、モータジェネレータ3は、所定のトルクを発生するように駆動する。インバータ5は、車両の回生制動時、車輪からの回転力を受けてモータジェネレータ3が発電した三相交流電圧を、制御回路によるスイッチング制御にしたがって直流電圧に変換し、Pライン8へ出力する。このように、インバータ5は、直流電源2とモータジェネレータ3との間で双方向の電力変換を行う。 The inverter 5 is a DC-AC conversion circuit. In accordance with switching control by a control circuit (not shown), the inverter 5 converts DC voltage into three-phase AC voltage and outputs it to the motor generator 3. This drives the motor generator 3 to generate a predetermined torque. During regenerative braking of the vehicle, the inverter 5 converts the three-phase AC voltage generated by the motor generator 3 in response to rotational force from the wheels into DC voltage in accordance with switching control by the control circuit and outputs it to the P line 8. In this way, the inverter 5 performs bidirectional power conversion between the DC power source 2 and the motor generator 3.
 インバータ5は、三相分の上下アーム回路10を備えて構成されている。上下アーム回路10は、レグと称されることがある。上下アーム回路10は、上アーム10Hと、下アーム10Lをそれぞれ有している。上アーム10Hおよび下アーム10Lは、上アーム10HをPライン8側として、Pライン8とNライン9との間で直列接続されている。 The inverter 5 is configured with upper and lower arm circuits 10 for three phases. The upper and lower arm circuits 10 are sometimes referred to as legs. The upper and lower arm circuits 10 each have an upper arm 10H and a lower arm 10L. The upper arm 10H and the lower arm 10L are connected in series between the P line 8 and the N line 9, with the upper arm 10H on the P line 8 side.
 上アーム10Hと下アーム10Lとの接続点、すなわち上下アーム回路10の中点は、出力ライン11を介して、モータジェネレータ3における対応する相の巻線3aに接続されている。上下アーム回路10のうち、U相の上下アーム回路10Uは、出力ライン11を介してU相の巻線3aに接続されている。V相の上下アーム回路10Vは、出力ライン11を介してV相の巻線3aに接続されている。W相の上下アーム回路10Wは、出力ライン11を介してW相の巻線3aに接続されている。 The connection point between the upper arm 10H and the lower arm 10L, i.e., the midpoint of the upper and lower arm circuits 10, is connected to the winding 3a of the corresponding phase in the motor generator 3 via an output line 11. Of the upper and lower arm circuits 10, the U-phase upper and lower arm circuit 10U is connected to the U-phase winding 3a via an output line 11. The V-phase upper and lower arm circuit 10V is connected to the V-phase winding 3a via an output line 11. The W-phase upper and lower arm circuit 10W is connected to the W-phase winding 3a via an output line 11.
 上下アーム回路10(10U,10V,10W)は、直列回路12を有している。上下アーム回路10が有する直列回路12は、ひとつでもよいし、複数でもよい。複数の場合、直列回路12が互いに並列接続されて、一相分の上下アーム回路10が構成される。本実施形態において、上下アーム回路10のそれぞれは、ひとつの直列回路12を有している。直列回路12は、上アーム10H側のスイッチング素子と下アーム10L側のスイッチング素子とを、Pライン8とNライン9との間で直列接続して構成されている。 The upper and lower arm circuits 10 (10U, 10V, 10W) have a series circuit 12. The upper and lower arm circuits 10 may have one or more series circuits 12. When there are multiple series circuits 12, the series circuits 12 are connected in parallel to each other to form one phase of the upper and lower arm circuit 10. In this embodiment, each of the upper and lower arm circuits 10 has one series circuit 12. The series circuit 12 is configured by connecting the switching element on the upper arm 10H side and the switching element on the lower arm 10L side in series between the P line 8 and the N line 9.
 直列回路12を構成するハイサイド側のスイッチング素子、ローサイド側のスイッチング素子それぞれの数は、特に限定されない。ひとつでもよいし、複数でもよい。本実施形態の直列回路12は、ハイサイド側に2つのスイッチング素子を有し、ローサイド側に2つのスイッチング素子を有している。ハイサイド側の2つのスイッチング素子が並列接続され、ローサイド側の2つのスイッチング素子が並列接続されて、ひとつの直列回路12を構成している。つまり、三相分の上下アーム回路10の6つのアーム10H,10Lのそれぞれが、互いに並列接続された2つのスイッチング素子により構成されている。 The number of high-side switching elements and low-side switching elements constituting the series circuit 12 is not particularly limited. It may be one or more. The series circuit 12 of this embodiment has two switching elements on the high-side and two switching elements on the low-side. The two switching elements on the high-side are connected in parallel, and the two switching elements on the low-side are connected in parallel to constitute one series circuit 12. In other words, each of the six arms 10H, 10L of the three-phase upper and lower arm circuits 10 is composed of two switching elements connected in parallel to each other.
 本実施形態では、各スイッチング素子として、nチャネル型のMOSFET13を採用している。MOSFETは、Metal Oxide Semiconductor Field Effect Transistorの略称である。並列接続されるハイサイド側の2つのMOSFET13は、共通のゲート駆動信号(駆動電圧)により、互いに同じタイミングでオン駆動、オフ駆動する。並列接続されるローサイド側の2つのMOSFET13は、共通のゲート駆動信号(駆動電圧)により、互いに同じタイミングでオン駆動、オフ駆動する。 In this embodiment, an n-channel MOSFET 13 is used as each switching element. MOSFET is an abbreviation for Metal Oxide Semiconductor Field Effect Transistor. The two high-side MOSFETs 13 connected in parallel are turned on and off at the same timing by a common gate drive signal (drive voltage). The two low-side MOSFETs 13 connected in parallel are turned on and off at the same timing by a common gate drive signal (drive voltage).
 MOSFET13のそれぞれには、還流用のダイオード14(以下、FWD14と示す)が逆並列に接続されている。MOSFET13の場合、FWD14は、寄生ダイオード(ボディダイオード)でもよいし、外付けのダイオードでもよい。上アーム10Hにおいて、MOSFET13のドレインが、Pライン8に接続されている。下アーム10Lにおいて、MOSFET13のソースが、Nライン9に接続されている。そして、上アーム10HにおけるMOSFET13のソースと、下アーム10LにおけるMOSFET13のドレインが相互に接続されている。FWD14のアノードは対応するMOSFET13のソースに接続され、カソードはドレインに接続されている。 Each MOSFET 13 is connected inversely parallel to a freewheeling diode 14 (hereinafter referred to as FWD 14). In the case of MOSFET 13, FWD 14 may be a parasitic diode (body diode) or an external diode. In the upper arm 10H, the drain of MOSFET 13 is connected to the P line 8. In the lower arm 10L, the source of MOSFET 13 is connected to the N line 9. The source of MOSFET 13 in the upper arm 10H and the drain of MOSFET 13 in the lower arm 10L are connected to each other. The anode of FWD 14 is connected to the source of the corresponding MOSFET 13, and the cathode is connected to the drain.
 なお、スイッチング素子は、MOSFET13に限定されない。たとえばIGBTを採用してもよい。IGBTは、Insulated Gate Bipolar Transistorの略称である。IGBTの場合にも、FWD14が逆並列に接続される。 The switching element is not limited to MOSFET 13. For example, an IGBT may be used. IGBT is an abbreviation for Insulated Gate Bipolar Transistor. In the case of an IGBT, FWD 14 is also connected in inverse parallel.
 駆動回路7は、インバータ5などの電力変換回路を構成するスイッチング素子を駆動する。駆動回路7は、制御回路の駆動指令に基づいて、対応するMOSFET13のゲートに駆動電圧を供給する。駆動回路は、駆動電圧の印加により、対応するMOSFET13を駆動、すなわちオン駆動、オフ駆動させる。駆動回路は、ドライバと称されることがある。 The drive circuit 7 drives the switching elements that make up a power conversion circuit such as the inverter 5. The drive circuit 7 supplies a drive voltage to the gate of the corresponding MOSFET 13 based on a drive command from the control circuit. By applying a drive voltage, the drive circuit drives the corresponding MOSFET 13, i.e., turns it on and off. The drive circuit is sometimes called a driver.
 電力変換装置4は、スイッチング素子の制御回路を備えてもよい。制御回路は、MOSFET13を動作させるための駆動指令を生成し、駆動回路7に出力する。制御回路は、たとえば図示しない上位ECUから入力されるトルク要求、各種センサにて検出された信号に基づいて、駆動指令を生成する。ECUは、Electronic Control Unitの略称である。制御回路は、上位ECU内に設けてもよい。 The power conversion device 4 may include a control circuit for the switching element. The control circuit generates a drive command for operating the MOSFET 13 and outputs it to the drive circuit 7. The control circuit generates the drive command based on, for example, a torque request input from a host ECU (not shown) and signals detected by various sensors. ECU is an abbreviation for Electronic Control Unit. The control circuit may be provided within the host ECU.
 各種センサとして、たとえば電流センサ、回転角センサ、電圧センサがある。電力変換装置4は、センサの少なくともひとつを備えてもよい。電流センサは、各相の巻線3aに流れる相電流を検出する。回転角センサは、モータジェネレータ3の回転子の回転角を検出する。電圧センサは、平滑コンデンサ6の両端電圧を検出する。制御回路は、たとえばプロセッサおよびメモリを備えて構成されている。制御回路は、駆動指令として、たとえばPWM信号を出力する。PWMは、Pulse Width Modulationの略称である。 The various sensors include, for example, a current sensor, a rotation angle sensor, and a voltage sensor. The power conversion device 4 may be equipped with at least one of the sensors. The current sensor detects the phase current flowing through the winding 3a of each phase. The rotation angle sensor detects the rotation angle of the rotor of the motor generator 3. The voltage sensor detects the voltage across the smoothing capacitor 6. The control circuit is configured to include, for example, a processor and a memory. The control circuit outputs, for example, a PWM signal as a drive command. PWM is an abbreviation for Pulse Width Modulation.
 電力変換装置4は、電力変換回路として、コンバータを備えてもよい。コンバータは、直流電圧をたとえば異なる値の直流電圧に変換するDC-DC変換回路である。コンバータは、直流電源2と平滑コンデンサ6との間に設けられる。コンバータは、たとえばリアクトルと、上記した上下アーム回路10を備えて構成される。この構成によれば、昇降圧が可能である。電力変換装置4は、直流電源2からの電源ノイズを除去するフィルタコンデンサを備えてもよい。フィルタコンデンサは、直流電源2とコンバータとの間に設けられる。 The power conversion device 4 may include a converter as a power conversion circuit. The converter is a DC-DC conversion circuit that converts a DC voltage, for example, into a DC voltage of a different value. The converter is provided between the DC power source 2 and the smoothing capacitor 6. The converter is configured, for example, with a reactor and the above-mentioned upper and lower arm circuits 10. With this configuration, voltage can be increased and decreased. The power conversion device 4 may include a filter capacitor that removes power supply noise from the DC power source 2. The filter capacitor is provided between the DC power source 2 and the converter.
 <電力変換装置の構造>
 図2は、本実施形態に係る電力変換装置4の一例を示す平面図である。図2では、便宜上、信号端子や回路基板を省略している。図2の白抜き矢印は、冷媒の流れる方向を示している。図3は、図2のIII-III線に沿う断面図である。図4は、図3のIV-IV線に沿う断面図である。図4では、筐体の一部、および、回路基板を省略している。図4では、図4の実線矢印は、冷媒の流れを示している。図5は、放熱部材を示す平面図である。図5の白抜き矢印も、冷媒の流れる方向を示している。
<Structure of power conversion device>
FIG. 2 is a plan view showing an example of the power conversion device 4 according to the present embodiment. For convenience, signal terminals and a circuit board are omitted in FIG. 2. The white arrows in FIG. 2 indicate the direction of flow of the refrigerant. FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. In FIG. 4, a part of the housing and the circuit board are omitted. In FIG. 4, the solid arrows in FIG. 4 indicate the flow of the refrigerant. FIG. 5 is a plan view showing a heat dissipation member. The white arrows in FIG. 5 also indicate the direction of flow of the refrigerant.
 本実施形態の電力変換装置4は、半導体モジュール20、冷却器30,40と、連結管50,60を備えている。電力変換装置4は、図3に示すように回路基板70を備えてもよい。 The power conversion device 4 of this embodiment includes a semiconductor module 20, coolers 30 and 40, and connecting pipes 50 and 60. The power conversion device 4 may also include a circuit board 70 as shown in FIG. 3.
 以下において、半導体モジュール20および冷却器30,40の積層方向をZ方向とする。Z方向に直交し、連結管50,60の並び方向をX方向とする。X方向およびZ方向の両方向に直交する方向をY方向とする。X方向、Y方向、およびZ方向は、互いに直交する位置関係にある。特に断りのない限り、平面形状とは、Z方向から平面視した形状を示す。Z方向からの平面視を、単に平面視と示すことがある。2つの部材の相対位置を説明する際に、Z方向において冷却器30に近い部材の位置を下方、冷却器30に対して遠い部材の位置を上方と示すことがある。まず、各要素の概略構成について説明する。 In the following, the stacking direction of the semiconductor modules 20 and the coolers 30, 40 is referred to as the Z direction. The direction perpendicular to the Z direction and in which the connecting pipes 50, 60 are arranged is referred to as the X direction. The direction perpendicular to both the X direction and the Z direction is referred to as the Y direction. The X direction, Y direction, and Z direction are in a mutually perpendicular positional relationship. Unless otherwise specified, a planar shape refers to a shape viewed from the Z direction. A planar view from the Z direction may simply be referred to as a planar view. When describing the relative positions of two components, the position of the component closer to the cooler 30 in the Z direction may be referred to as the lower position, and the position of the component farther from the cooler 30 may be referred to as the upper position. First, the general configuration of each element will be described.
 <半導体モジュール>
 半導体モジュール20は、上記した上下アーム回路10、つまりインバータ5(電力変換回路)を構成する。本実施形態の電力変換装置4は、3つの半導体モジュール20を備えている。ひとつの半導体モジュール20は、ひとつの直列回路12、つまり一相分の上下アーム回路10を提供する。複数の半導体モジュール20は、上下アーム回路10Uを提供する半導体モジュール20U、上下アーム回路10Vを提供する半導体モジュール20V、および上下アーム回路10Wを提供する半導体モジュール20Wを含む。
<Semiconductor module>
The semiconductor modules 20 constitute the upper and lower arm circuits 10 described above, i.e., the inverter 5 (power conversion circuit). The power conversion device 4 of this embodiment includes three semiconductor modules 20. One semiconductor module 20 provides one series circuit 12, i.e., one phase of upper and lower arm circuits 10. The multiple semiconductor modules 20 include a semiconductor module 20U that provides the upper and lower arm circuits 10U, a semiconductor module 20V that provides the upper and lower arm circuits 10V, and a semiconductor module 20W that provides the upper and lower arm circuits 10W.
 すべての半導体モジュール20は、互いに共通の構造を有している。各半導体モジュール20は、半導体素子21、封止体22、信号端子23、電源端子24P,24N、および出力端子25などを備えている。 All the semiconductor modules 20 have a common structure. Each semiconductor module 20 includes a semiconductor element 21, a sealing body 22, a signal terminal 23, power supply terminals 24P and 24N, and an output terminal 25.
 半導体素子21は、シリコン(Si)、シリコンよりもバンドギャップが広いワイドバンドギャップ半導体などを材料とする半導体基板に、スイッチング素子が形成されてなる。スイッチング素子は、半導体基板の板厚方向に主電流を流すように縦型構造をなしている。ワイドバンドギャップ半導体としては、たとえばシリコンカーバイド(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンドがある。半導体素子21は、パワー素子、半導体チップなどと称されることがある。 The semiconductor element 21 is formed by forming a switching element on a semiconductor substrate made of materials such as silicon (Si) or a wide band gap semiconductor with a wider band gap than silicon. The switching element has a vertical structure so that the main current flows in the thickness direction of the semiconductor substrate. Examples of wide band gap semiconductors include silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), and diamond. The semiconductor element 21 is sometimes called a power element, a semiconductor chip, etc.
 一例として本実施形態の半導体素子21は、SiCを材料とする半導体基板に、上記したnチャネル型のMOSFET13およびFWD14が形成されてなる。MOSFET13は、半導体素子21(半導体基板)の板厚方向に主電流が流れるように縦型構造をなしている。半導体素子21は、自身の板厚方向の両面に、図示しない主電極を有している。具体的には、スイッチング素子の主電極として、表面にソース電極を有し、裏面にドレイン電極を有している。ソース電極は、表面の一部分に形成されている。ドレイン電極は、裏面のほぼ全域に形成されている。 As an example, the semiconductor element 21 of this embodiment is formed by forming the above-mentioned n-channel MOSFET 13 and FWD 14 on a semiconductor substrate made of SiC. The MOSFET 13 has a vertical structure so that the main current flows in the thickness direction of the semiconductor element 21 (semiconductor substrate). The semiconductor element 21 has main electrodes (not shown) on both sides in the thickness direction of the semiconductor element 21. Specifically, as main electrodes of the switching element, it has a source electrode on the front side and a drain electrode on the back side. The source electrode is formed on a part of the front side. The drain electrode is formed on almost the entire back side.
 主電流は、ドレイン電極とソース電極との間に流れる。半導体素子21は、ソース電極の形成面に、信号用の電極である図示しないパッドを有している。半導体素子21は、その板厚方向がZ方向に略平行となるように配置されている。本実施形態の半導体素子21は、直列回路12のハイサイド側のスイッチング素子を提供する2つの半導体素子21Hと、直列回路12のローサイド側のスイッチング素子を提供する2つの半導体素子21Lを含んでいる。半導体素子21H,21Lは、Y方向に並んで配置されている。2つの半導体素子21Hは、X方向に並んで配置されている。同様に、2つの半導体素子21Lは、X方向に並んで配置されている。 The main current flows between the drain electrode and the source electrode. The semiconductor element 21 has a pad (not shown) that is a signal electrode on the surface where the source electrode is formed. The semiconductor element 21 is arranged so that its plate thickness direction is approximately parallel to the Z direction. The semiconductor element 21 of this embodiment includes two semiconductor elements 21H that provide switching elements on the high side of the series circuit 12, and two semiconductor elements 21L that provide switching elements on the low side of the series circuit 12. The semiconductor elements 21H and 21L are arranged side by side in the Y direction. The two semiconductor elements 21H are arranged side by side in the X direction. Similarly, the two semiconductor elements 21L are arranged side by side in the X direction.
 4つの半導体素子21は、ひとつの直列回路12の4つのスイッチング素子を提供する。半導体モジュール20は、ひとつの直列回路12を構成するスイッチング素子の数に応じた半導体素子21を備える。直列回路12を構成するスイッチング素子が2つの場合、半導体モジュール20は、半導体素子21H,21Lをそれぞれひとつ備える。 The four semiconductor elements 21 provide four switching elements for one series circuit 12. The semiconductor module 20 includes semiconductor elements 21 corresponding to the number of switching elements that make up one series circuit 12. When the series circuit 12 includes two switching elements, the semiconductor module 20 includes one each of semiconductor elements 21H and 21L.
 封止体22は、半導体モジュール20を構成する他の要素の一部を封止している。他の要素の残りの部分は、封止体22の外に露出している。封止体22は、たとえば樹脂を材料とする。封止体22は、たとえばエポキシ系樹脂を材料としてトランスファモールド法により成形されている。封止体22は、たとえばゲルを用いて形成されてもよい。 The encapsulant 22 encapsulates some of the other elements that make up the semiconductor module 20. The remaining parts of the other elements are exposed outside the encapsulant 22. The encapsulant 22 is made of a material such as resin. The encapsulant 22 is molded by a transfer molding method using a material such as epoxy resin. The encapsulant 22 may also be formed using a gel, for example.
 封止体22は、たとえば平面略矩形状をなしている。封止体22は、外郭をなす表面として、一面22aと、Z方向において一面22aとは反対の面である裏面22bを有している。一面22aおよび裏面22bは、たとえば平坦面である。また、一面22aと裏面22bとをつなぐ面である側面22c,22d,22e,22fを有している。側面22cは、Y方向において側面22dとは反対の面である。側面22eは、X方向において側面22fとは反対の面である。 The sealing body 22 has, for example, a generally rectangular shape in plan view. The sealing body 22 has, as surfaces forming its outer periphery, one surface 22a and a back surface 22b that is the surface opposite one surface 22a in the Z direction. One surface 22a and the back surface 22b are, for example, flat surfaces. The sealing body 22 also has side surfaces 22c, 22d, 22e, and 22f that connect one surface 22a and the back surface 22b. Side surface 22c is the surface opposite side surface 22d in the Y direction. Side surface 22e is the surface opposite side surface 22f in the X direction.
 信号端子23は、半導体素子21のパッドに電気的に接続された外部接続端子である。信号端子23は、封止体22から外部に突出している。たとえば半導体素子21Hのパッドに接続された信号端子23は、封止体22の側面22cから突出している。半導体素子21Lのパッドに接続された信号端子23は、封止体22の側面22dから突出している。信号端子23は、封止体22の外で屈曲し、冷却器30から離れる方向、つまり上方に延びている。信号端子23は、略L字状をなしている。 The signal terminal 23 is an external connection terminal electrically connected to a pad of the semiconductor element 21. The signal terminal 23 protrudes to the outside from the sealing body 22. For example, the signal terminal 23 connected to the pad of the semiconductor element 21H protrudes from the side surface 22c of the sealing body 22. The signal terminal 23 connected to the pad of the semiconductor element 21L protrudes from the side surface 22d of the sealing body 22. The signal terminal 23 bends outside the sealing body 22 and extends in a direction away from the cooler 30, that is, upward. The signal terminal 23 is roughly L-shaped.
 電源端子24P,24Nおよび出力端子25は、半導体素子21の主電極に電気的に接続された外部接続端子である。このような外部接続端子は、主端子と称されることがある。電源端子24Pは、半導体素子21Hのドレイン電極に電気的に接続されている。電源端子24Nは、半導体素子21Lのソース電極に電気的に接続されている。電源端子24Pは、P端子、高電位電源端子、正極端子などと称されることがある。電源端子24Nは、N端子、低電位電源端子、負極端子などと称されることがある。電源端子24P,24Nは、平滑コンデンサ6に電気的に接続される。電源端子24P,24Nは、封止体22の側面22cから外部に突出している。電源端子24P,24Nそれぞれの突出部分は、X方向に並んで配置されている。 The power supply terminals 24P, 24N and the output terminal 25 are external connection terminals electrically connected to the main electrodes of the semiconductor element 21. Such external connection terminals are sometimes called main terminals. The power supply terminal 24P is electrically connected to the drain electrode of the semiconductor element 21H. The power supply terminal 24N is electrically connected to the source electrode of the semiconductor element 21L. The power supply terminal 24P is sometimes called a P terminal, a high potential power supply terminal, a positive terminal, etc. The power supply terminal 24N is sometimes called an N terminal, a low potential power supply terminal, a negative terminal, etc. The power supply terminals 24P, 24N are electrically connected to the smoothing capacitor 6. The power supply terminals 24P, 24N protrude to the outside from the side surface 22c of the sealing body 22. The protruding portions of the power supply terminals 24P, 24N are arranged side by side in the X direction.
 出力端子25は、半導体素子21Hのソース電極と半導体素子21Lのドレイン電極との接続点、つまり直列回路12の接続点(中点)に電気的に接続されている。出力端子25は、封止体22の側面22dから外部に突出している。出力端子25は、O端子、出力端子、交流端子などと称されることがある。出力端子25は、たとえば図示しないバスバーを介して、モータジェネレータ3の対応する巻線3aに接続される。外部接続端子は、封止体22の側面22e,22fから突出していない。 The output terminal 25 is electrically connected to the connection point between the source electrode of the semiconductor element 21H and the drain electrode of the semiconductor element 21L, i.e., the connection point (midpoint) of the series circuit 12. The output terminal 25 protrudes to the outside from the side surface 22d of the sealing body 22. The output terminal 25 may be called an O terminal, an output terminal, an AC terminal, etc. The output terminal 25 is connected to the corresponding winding 3a of the motor generator 3, for example, via a bus bar (not shown). The external connection terminal does not protrude from the side surfaces 22e, 22f of the sealing body 22.
 半導体モジュール20は、上記した要素以外に、配線部材を備えてもよい。配線部材は、半導体素子21の主電極と主端子とを電気的に接続する配線機能を提供する。配線部材は、半導体素子21の熱を放熱する放熱機能を提供する。配線部材は、たとえばZ方向において半導体素子21を挟むように配置される。配線部材としては、絶縁基材の両面に金属体が配置された基板を用いてもよいし、金属部材であるヒートシンクを採用してもよい。ヒートシンクは、たとえばリードフレームの一部として提供される。配線部材の一部を封止体22の一面22aおよび裏面22bの少なくとも一方から露出させてもよい。これにより、放熱性を高めることができる。 The semiconductor module 20 may include wiring members in addition to the elements described above. The wiring members provide a wiring function that electrically connects the main electrodes and main terminals of the semiconductor element 21. The wiring members provide a heat dissipation function that dissipates heat from the semiconductor element 21. The wiring members are arranged, for example, to sandwich the semiconductor element 21 in the Z direction. As the wiring members, a substrate having metal bodies arranged on both sides of an insulating base material may be used, or a heat sink, which is a metal member, may be adopted. The heat sink is provided, for example, as a part of the lead frame. A part of the wiring members may be exposed from at least one of the first surface 22a and the back surface 22b of the sealing body 22. This can improve heat dissipation.
 半導体モジュール20は、裏面22bが後述する放熱部材33のベースプレート331と対向するように、ベースプレート331上に配置されている。半導体モジュール20とベースプレート331との間には、必要に応じてセラミック板などの電気絶縁部材が配置されてもよいし、TIMなどの熱伝導部材が配置されてもよい。TIMは、Thermal Interface Materialの略称である。 The semiconductor module 20 is placed on the base plate 331 so that the back surface 22b faces the base plate 331 of the heat dissipation member 33 described below. If necessary, an electrical insulating member such as a ceramic plate may be placed between the semiconductor module 20 and the base plate 331, or a thermally conductive member such as a TIM may be placed. TIM is an abbreviation for Thermal Interface Material.
 図2に示すように、3つの半導体モジュール20は、X方向に並んでいる。つまり、複数の半導体モジュール20は、X方向に沿って横並びで配置されている。3つの半導体モジュール20は、たとえば半導体モジュール20U、半導体モジュール20V、半導体モジュール20Wの順に並んでいる。X方向において、隣り合う半導体モジュール20の側面同士が、所定の間隔を有して対向している。具体的には、半導体モジュール20Uの側面22fと半導体モジュール20Vの側面22eとが対向し、半導体モジュール20Vの側面22fと半導体モジュール20Wの側面22eとが対向している。 As shown in FIG. 2, the three semiconductor modules 20 are lined up in the X direction. That is, the multiple semiconductor modules 20 are arranged side by side along the X direction. The three semiconductor modules 20 are lined up, for example, in the order of semiconductor module 20U, semiconductor module 20V, and semiconductor module 20W. In the X direction, the side faces of adjacent semiconductor modules 20 face each other with a predetermined distance between them. Specifically, side face 22f of semiconductor module 20U faces side face 22e of semiconductor module 20V, and side face 22f of semiconductor module 20V faces side face 22e of semiconductor module 20W.
 <下段冷却器>
 冷却器30は、半導体モジュール20を裏面22b側から冷却する。冷却器30は、半導体モジュール20に対して下方に配置されている。冷却器30は、ケース31を備えている。ケース31は、冷媒80が流れる流路32を規定している。ケース31は、アルミニウムなどの金属材料を用いて形成されている。ケース31は、後述の放熱部材33よりも高剛性の材料を用いて形成されている。一例として本実施形態のケース31は、AlSiCu合金であるADC12を用いて形成されている。
<Lower cooler>
The cooler 30 cools the semiconductor module 20 from the rear surface 22b side. The cooler 30 is disposed below the semiconductor module 20. The cooler 30 includes a case 31. The case 31 defines a flow path 32 through which the coolant 80 flows. The case 31 is formed using a metal material such as aluminum. The case 31 is formed using a material with higher rigidity than the heat dissipation member 33 described below. As an example, the case 31 in this embodiment is formed using ADC12, which is an AlSiCu alloy.
 流路32は、半導体モジュール20を効果的に冷却するように、平面視において半導体モジュール20それぞれの少なくとも一部と重なるように設けられている。一例として本実施形態の流路32は、平面視において半導体モジュール20それぞれの大部分を内包するように設けられている。流路32は、3つの半導体モジュール20の並び方向、つまりX方向に沿って延びている。なお、冷媒80としては、たとえば水やアンモニアなどの相変化する冷媒や、エチレングリコール系などの相変化しない冷媒を用いることができる。 The flow paths 32 are arranged to overlap at least a portion of each of the semiconductor modules 20 in a planar view so as to effectively cool the semiconductor modules 20. As an example, the flow paths 32 in this embodiment are arranged to enclose most of each of the semiconductor modules 20 in a planar view. The flow paths 32 extend along the arrangement direction of the three semiconductor modules 20, that is, along the X direction. Note that the refrigerant 80 may be, for example, a refrigerant that changes phase, such as water or ammonia, or a refrigerant that does not change phase, such as an ethylene glycol-based refrigerant.
 ケース31は、平面視において半導体モジュール20と重なる位置に、開口部311を有している。開口部311は、流路32を規定する壁部のうち、半導体モジュール20との対向壁に設けられている。開口部311は、対向壁を貫通している。開口部311は、たとえばX方向を長手方向とする平面略矩形状を有している。ケース31の開口部311には、放熱部材33が配置されている。 The case 31 has an opening 311 at a position overlapping the semiconductor module 20 in a plan view. The opening 311 is provided in the wall that defines the flow path 32 and faces the semiconductor module 20. The opening 311 penetrates the facing wall. The opening 311 has, for example, a substantially rectangular shape in plan view with the X direction as its longitudinal direction. A heat dissipation member 33 is arranged in the opening 311 of the case 31.
 放熱部材33は、ベースプレート331と、複数のピンフィン332を有している。放熱部材33は、ケース31よりも熱伝導率に優れる金属材料、たとえばアルミニウム合金の中でも熱伝導率に優れるものを用いて形成されている。一例として本実施形態の放熱部材33は、AlMgSi合金であるA6063を用いて形成されている。放熱部材33は、平面視において半導体モジュール20と重なるように配置されている。 The heat dissipation member 33 has a base plate 331 and a number of pin fins 332. The heat dissipation member 33 is formed using a metal material with better thermal conductivity than the case 31, for example an aluminum alloy with excellent thermal conductivity. As an example, the heat dissipation member 33 in this embodiment is formed using A6063, which is an AlMgSi alloy. The heat dissipation member 33 is arranged so as to overlap the semiconductor module 20 in a plan view.
 ベースプレート331は、ケース31の開口部311を閉塞するように配置されている。ベースプレート331は、たとえばX方向を長手方向とする平面略矩形状を有している。ベースプレート331の周縁部は、摩擦撹拌接合などにより、ケース31の外面の開口縁部に液密に接合されている。これにより、開口部311を通じて冷媒80が流路32の外に漏れるのを抑制することができる。ベースプレート331は、ケース31とともに流路32を規定している。ベースプレート331とケース31との接合部分であるシール部34は、液密にシールしている。 The base plate 331 is arranged so as to close the opening 311 of the case 31. The base plate 331 has, for example, a generally rectangular shape in plan view with the longitudinal direction being the X direction. The peripheral edge of the base plate 331 is liquid-tightly joined to the edge of the opening on the outer surface of the case 31 by friction stir welding or the like. This makes it possible to prevent the refrigerant 80 from leaking out of the flow path 32 through the opening 311. The base plate 331 and the case 31 define the flow path 32. The seal portion 34, which is the joint between the base plate 331 and the case 31, provides a liquid-tight seal.
 ピンフィン332は、図3、図4、および図5に示すようにピン型のフィンである。ピンフィン332は、ベースプレート331に対して、連続して一体的に設けられてもよいし、接合によって一体的に設けられてもよい。ピンフィン332は、開口部311を通じて、流路32に配置されている。ピンフィン332は、ベースプレート331から突出している。複数のピンフィン332は、ベースプレート331の一面からZ方向に延びている。ピンフィン332は、Z方向に所定の長さを有している。ピンフィン332は、平面略円形、略楕円形などを有している。複数のピンフィン332は、Y方向において所定のピッチを有して設けられている。複数のピンフィン332は、X方向において所定のピッチを有して設けられている。 The pin fins 332 are pin-shaped fins as shown in Figures 3, 4, and 5. The pin fins 332 may be provided integrally with the base plate 331, or may be provided integrally by joining. The pin fins 332 are disposed in the flow path 32 through the opening 311. The pin fins 332 protrude from the base plate 331. The multiple pin fins 332 extend in the Z direction from one surface of the base plate 331. The pin fins 332 have a predetermined length in the Z direction. The pin fins 332 have a substantially circular or elliptical shape in plan view. The multiple pin fins 332 are provided at a predetermined pitch in the Y direction. The multiple pin fins 332 are provided at a predetermined pitch in the X direction.
 冷却器30のケース31は、ケース31単体で提供されてもよいし、電力変換装置4の他の要素を収容する筐体の一部分として提供されてもよい。一例として本実施形態のケース31は、筐体35の一部分として提供される。ケース31は、筐体35の底壁351の一部分として提供される。筐体35は、他の要素を収容すべく開口を有している。筐体35は、底壁351と、底壁351に連なり、底壁351とともに収容空間を規定する側壁352を有している。一例として本実施形態の筐体35は、一面が開口する箱状をなしている。筐体35は、Z方向の平面視において略矩形状をなしている。筐体35の収容空間には、半導体モジュール20、冷却器40、回路基板70などが配置されている。 The case 31 of the cooler 30 may be provided as a stand-alone case 31, or may be provided as a part of a housing that houses other elements of the power conversion device 4. As an example, the case 31 of this embodiment is provided as a part of the housing 35. The case 31 is provided as a part of the bottom wall 351 of the housing 35. The housing 35 has an opening to house other elements. The housing 35 has a bottom wall 351 and a side wall 352 that is connected to the bottom wall 351 and defines a housing space together with the bottom wall 351. As an example, the housing 35 of this embodiment is box-shaped with one side open. The housing 35 is approximately rectangular in plan view in the Z direction. The semiconductor module 20, the cooler 40, the circuit board 70, etc. are arranged in the housing space of the housing 35.
 筐体35には、冷却器30,40に冷媒を供給するための導入管36と、冷却器30,40から冷媒を排出するための排出管37が取り付けられている。導入管36および排出管37は、対応する貫通孔(図示略)を挿通し、筐体35の内外にわたって配置されている。導入管36および排出管37それぞれの取り付け位置は、特に限定されない。底壁351に取り付けてもよいし、側壁352に取り付けてもよい。導入管36および排出管37を、互いに共通の面に取り付けてもよいし、異なる面に取り付けてもよい。一例として本実施形態では、X方向において互いに対向する壁部のひとつに導入管36が取り付けられ、壁部の他のひとつに排出管37が取り付けられている。 The housing 35 is fitted with an inlet pipe 36 for supplying refrigerant to the coolers 30, 40, and a discharge pipe 37 for discharging the refrigerant from the coolers 30, 40. The inlet pipe 36 and the discharge pipe 37 are inserted through corresponding through holes (not shown) and are arranged inside and outside the housing 35. The mounting positions of the inlet pipe 36 and the discharge pipe 37 are not particularly limited. They may be mounted on the bottom wall 351 or the side wall 352. The inlet pipe 36 and the discharge pipe 37 may be mounted on a common surface or on different surfaces. As an example, in this embodiment, the inlet pipe 36 is mounted on one of the walls facing each other in the X direction, and the discharge pipe 37 is mounted on the other wall.
 ケース31を含む筐体35は、単一の部材により構成されてもよいし、複数の部材を組み合わせて構成されてもよい。筐体35の底壁351は、その一部分において複数の部材を組み合わせ、他の部分において単一の部材により構成されてもよい。電力変換装置4は、筐体35の開口を閉塞する図示しないカバー(蓋)を備えてもよい。 The housing 35 including the case 31 may be made of a single member, or may be made of a combination of multiple members. The bottom wall 351 of the housing 35 may be made of a combination of multiple members in one part, and a single member in the other part. The power conversion device 4 may be provided with a cover (lid) (not shown) that closes the opening of the housing 35.
 <上段冷却器>
 冷却器40は、半導体モジュール20を一面22a側から冷却する。冷却器40は、半導体モジュール20に対して上方に配置されている。冷却器40は、半導体モジュール20の一面22a上に配置されている。冷却器40と半導体モジュール20との間には、必要に応じてセラミック板などの電気絶縁部材が配置されてもよいし、TIMなどの熱伝導部材が配置されてもよい。冷却器40は、Z方向において冷却器30とは反対側から半導体モジュール20を冷却する。
<Upper stage cooler>
The cooler 40 cools the semiconductor module 20 from the one surface 22a side. The cooler 40 is disposed above the semiconductor module 20. The cooler 40 is disposed on the one surface 22a of the semiconductor module 20. An electrical insulating member such as a ceramic plate may be disposed between the cooler 40 and the semiconductor module 20 as necessary, or a thermally conductive member such as a TIM may be disposed. The cooler 40 cools the semiconductor module 20 from the opposite side to the cooler 30 in the Z direction.
 冷却器40は、ケース41を備えている。ケース41は、冷媒80が流れる流路42を規定している。ケース41は、アルミニウムなどの金属材料を用いて形成されている。Z方向において、冷却器40は、冷却器30よりも薄い。冷却器40は、たとえば全体として扁平形状の管状体となっている。冷却器40は、たとえば一対のプレート(金属製薄板)を用いて内部に流路を有するように構成されている。一対のプレートの少なくとも一方を、プレス加工によってZ方向に膨らんだ形状に加工する。その後、一対のプレートの外周縁部同士を、かしめなどによって固定するとともに、ろう付けなどによって全周で互いに接合する。これにより、一対のプレート間に冷媒80が流通可能な流路42が形成される。 The cooler 40 includes a case 41. The case 41 defines a flow path 42 through which the refrigerant 80 flows. The case 41 is formed using a metal material such as aluminum. In the Z direction, the cooler 40 is thinner than the cooler 30. The cooler 40 is, for example, a tubular body with a flat shape overall. The cooler 40 is configured to have a flow path inside by using, for example, a pair of plates (thin metal plates). At least one of the pair of plates is processed into a shape that expands in the Z direction by press processing. Thereafter, the outer peripheral edges of the pair of plates are fixed to each other by crimping or the like, and are joined to each other around the entire circumference by brazing or the like. This forms a flow path 42 through which the refrigerant 80 can flow between the pair of plates.
 流路42は、半導体モジュール20を効果的に冷却するように、平面視において半導体モジュール20それぞれの少なくとも一部と重なるように設けられている。本実施形態の流路42は、平面視において半導体モジュール20それぞれの大部分と重なるように設けられている。流路42は、3つの半導体モジュール20の並び方向、つまりX方向に沿って延びている。流路42は、3つの半導体モジュール20をX方向に横切っている。平面視において、流路42は、流路32に内包されている。流路42の延設長さは、流路32の延設長さよりも短い。 The flow paths 42 are arranged to overlap at least a portion of each of the semiconductor modules 20 in a planar view so as to effectively cool the semiconductor modules 20. In this embodiment, the flow paths 42 are arranged to overlap most of each of the semiconductor modules 20 in a planar view. The flow paths 42 extend along the arrangement direction of the three semiconductor modules 20, that is, the X direction. The flow paths 42 cross the three semiconductor modules 20 in the X direction. In a planar view, the flow paths 42 are contained within the flow paths 32. The extension length of the flow paths 42 is shorter than the extension length of the flow paths 32.
 冷却器40は、フィンを備えてもよい。一例として本実施形態の冷却器40は、フィン43を備えている。フィン43は、一対のプレートによるケース41内、つまり流路42に配置されている。フィン43は、平面視において半導体モジュール20と重なるように配置されている。フィン43は、たとえばウェーブ型(波型)のフィンである。フィン43は、Z方向において所定の高さを有している。フィン43の高さは、ピンフィン332の高さ(長さ)よりも低い。図示を省略するが、複数のフィン43は、Y方向において所定のピッチを有して設けられている。 The cooler 40 may include fins. As an example, the cooler 40 of this embodiment includes fins 43. The fins 43 are arranged inside a case 41 made up of a pair of plates, i.e., in the flow path 42. The fins 43 are arranged so as to overlap the semiconductor module 20 in a plan view. The fins 43 are, for example, wave-shaped fins. The fins 43 have a predetermined height in the Z direction. The height of the fins 43 is less than the height (length) of the pin fins 332. Although not shown in the figure, the multiple fins 43 are arranged at a predetermined pitch in the Y direction.
 冷却器40は、半導体モジュール20を介して冷却器30に積層配置されている。冷却器40は、図示しない加圧部材によって、半導体モジュール20とは反対側の面からZ方向に押圧されてもよい。押圧により、冷却器40と半導体モジュール20、および、半導体モジュール20と冷却器30のそれぞれが、熱伝導良好に保持される。加圧部材は、たとえば加圧プレートと、弾性部材を含んでもよい。弾性部材は、たとえばゴムなどの弾性変形により加圧力を発生するものや金属製のばねである。弾性部材は、Z方向において加圧プレートと冷却器40との間に配置される。加圧プレートを筐体35に対して所定位置に固定することにより弾性部材が弾性変形する。弾性変形の反力により冷却器40および半導体モジュール20は、冷却器30に押し付けられる。 The cooler 40 is stacked on the cooler 30 via the semiconductor module 20. The cooler 40 may be pressed in the Z direction from the side opposite the semiconductor module 20 by a pressure member (not shown). The pressure maintains good thermal conduction between the cooler 40 and the semiconductor module 20, and between the semiconductor module 20 and the cooler 30. The pressure member may include, for example, a pressure plate and an elastic member. The elastic member is, for example, a material that generates pressure by elastic deformation such as rubber, or a metal spring. The elastic member is disposed between the pressure plate and the cooler 40 in the Z direction. The elastic member is elastically deformed by fixing the pressure plate to a predetermined position relative to the housing 35. The cooler 40 and the semiconductor module 20 are pressed against the cooler 30 by the reaction force of the elastic deformation.
 <連結管>
 連結管50,60は、冷却器30と冷却器40を連結する。連結管50は、導入管36が連結されていない流路に冷媒80を供給する。連結管60は、排出管37が連結されていない流路から冷媒80を排出する。一例として本実施形態の連結管50は、導入管36を通じて冷却器30に供給された冷媒80の一部を、冷却器40に供給する。連結管60は、冷却器40を流れた冷媒80を、冷却器30を介して排出管37から排出する。
<Connecting pipe>
The connecting pipes 50 and 60 connect the cooler 30 and the cooler 40. The connecting pipe 50 supplies the refrigerant 80 to the flow paths to which the inlet pipe 36 is not connected. The connecting pipe 60 discharges the refrigerant 80 from the flow paths to which the outlet pipe 37 is not connected. As an example, the connecting pipe 50 in this embodiment supplies a portion of the refrigerant 80 supplied to the cooler 30 through the inlet pipe 36 to the cooler 40. The connecting pipe 60 discharges the refrigerant 80 that has flowed through the cooler 40 from the outlet pipe 37 via the cooler 30.
 連結管50は、流路32,42に連通する連結流路51を有している。連結管60は、流路32,42に連通する連結流路61を有している。連結流路51,61は、Z方向に延びている。連結流路51,61それぞれの一端は流路32に連通し、他端は流路42に連通している。連結管50は、冷却器40におけるX方向一端付近に連結されている。連結管60は、冷却器40における他端付近に連結されている。図4に示す符号52は、冷却器30に設けられた連結管50周りのシール部である。符号62は、冷却器30に設けられた連結管60周りのシール部である。シール部52,62は、たとえばグロメットなどにより提供される。 The connecting pipe 50 has a connecting flow passage 51 that communicates with the flow passages 32 and 42. The connecting pipe 60 has a connecting flow passage 61 that communicates with the flow passages 32 and 42. The connecting flow passages 51 and 61 extend in the Z direction. One end of each of the connecting flow passages 51 and 61 communicates with the flow passage 32, and the other end communicates with the flow passage 42. The connecting pipe 50 is connected to the vicinity of one end of the cooler 40 in the X direction. The connecting pipe 60 is connected to the vicinity of the other end of the cooler 40. Reference numeral 52 in FIG. 4 denotes a seal portion around the connecting pipe 50 provided on the cooler 30. Reference numeral 62 denotes a seal portion around the connecting pipe 60 provided on the cooler 30. The seal portions 52 and 62 are provided by, for example, grommets.
 連結管50は、導入管36と冷却器30との連結位置と、放熱部材33との間に配置されている。連結管60は、放熱部材33と、排出管37と冷却器30との連結位置との間に配置されている。導入管36から供給される冷媒80の一部は、流路32を流れて排出管37から排出される。冷媒80の他の一部は、流路32および連結管50の連結流路51を通じて、流路42に供給される。流路42を流れた冷媒80は、連結管60の連結流路61を通じて流路32に流れ込み、排出管37から排出される。連結管50,60は、冷却器40とともに、冷媒80の迂回経路を提供する。 The connecting pipe 50 is disposed between the connection position of the inlet pipe 36 and the cooler 30 and the heat dissipation member 33. The connecting pipe 60 is disposed between the heat dissipation member 33 and the connection position of the outlet pipe 37 and the cooler 30. A part of the refrigerant 80 supplied from the inlet pipe 36 flows through the flow path 32 and is discharged from the outlet pipe 37. Another part of the refrigerant 80 is supplied to the flow path 42 through the flow path 32 and the connecting flow path 51 of the connecting pipe 50. The refrigerant 80 that has flowed through the flow path 42 flows into the flow path 32 through the connecting flow path 61 of the connecting pipe 60 and is discharged from the outlet pipe 37. The connecting pipes 50 and 60, together with the cooler 40, provide a bypass path for the refrigerant 80.
 一例として本実施形態の2段構造の冷却器において、流路32を流れる冷媒80の流量は、流路42を流れる冷媒80の流量よりも大きい。流路32は主流路であり、流路42は流路32から分岐された副流路である。連結管50による分岐箇所を通過した流路32の流量は、流路42を流れる冷媒80の流量よりも大きい。流路32の断面積は、流路42の断面積よりも大きい。Z方向において、冷却器30の厚み(高さ)は、冷却器40の厚みよりも厚い。副流路である流路42は、連結流路51,61を介して主流路である流路32から分岐されている。連結流路51,61それぞれの断面積は、流路32の断面積よりも小さい。なお、各流路の断面積は、流路の延設方向、つまり冷媒の流れ方向に直交する断面の面積である。また、連結流路51,61の通水抵抗は、流路42の通水抵抗よりも小さい。 As an example, in the two-stage cooler of this embodiment, the flow rate of the refrigerant 80 flowing through the flow path 32 is greater than the flow rate of the refrigerant 80 flowing through the flow path 42. The flow path 32 is a main flow path, and the flow path 42 is a sub-flow path branched off from the flow path 32. The flow rate of the flow path 32 that passes through the branch point by the connecting pipe 50 is greater than the flow rate of the refrigerant 80 flowing through the flow path 42. The cross-sectional area of the flow path 32 is greater than the cross-sectional area of the flow path 42. In the Z direction, the thickness (height) of the cooler 30 is greater than the thickness of the cooler 40. The flow path 42, which is a sub-flow path, is branched off from the flow path 32, which is the main flow path, via the connecting flow paths 51 and 61. The cross-sectional area of each of the connecting flow paths 51 and 61 is smaller than the cross-sectional area of the flow path 32. The cross-sectional area of each flow path is the area of a cross section perpendicular to the extension direction of the flow path, that is, the flow direction of the refrigerant. In addition, the water flow resistance of the connecting flow paths 51 and 61 is smaller than the water flow resistance of the flow path 42.
 <回路基板>
 回路基板70は、図示を省略するが、樹脂などの絶縁基材に配線が配置された配線基板、配線基板に実装された電子部品、コネクタなどを備えている。実装された電子部品と配線により回路が構成されている。回路基板70には、上記した駆動回路7が構成されている。
<Circuit board>
Although not shown, the circuit board 70 includes a wiring board in which wiring is arranged on an insulating base material such as resin, electronic components mounted on the wiring board, connectors, etc. The mounted electronic components and wiring form a circuit. The drive circuit 7 described above is formed on the circuit board 70.
 回路基板70は、Z方向の平面視において、半導体モジュール20と重なるように配置されている。回路基板70は、3つの半導体モジュール20の上方に配置されている。回路基板70には、3つの半導体モジュール20の信号端子23が実装されている。一例として本実施形態の回路基板70は、筐体35内に配置されている。回路基板70は、冷却器40の上方に位置している。 The circuit board 70 is arranged so as to overlap the semiconductor modules 20 when viewed in a plane in the Z direction. The circuit board 70 is arranged above the three semiconductor modules 20. The signal terminals 23 of the three semiconductor modules 20 are mounted on the circuit board 70. As an example, the circuit board 70 in this embodiment is arranged inside the housing 35. The circuit board 70 is located above the cooler 40.
 <ベースプレートの配置>
 上記したように、放熱部材33のベースプレート331は、ケース31の開口部311を閉塞するように配置されている。X方向において、ベースプレート331の長さL1は、連結管50の外端と連結管60の外端との間の長さL2よりも短い。一例として本実施形態のベースプレート331の長さL1は、X方向における連結管50,60(連結流路51,61)の中心間の長さよりも短い。ベースプレート331の長さL1は、連結管50の内端と連結管60の内端との間の長さよりも短い。図4に示すように、ベースプレート331とケース31とのシール部34は、ケース31と連結管50,60とのシール部52,62よりも内側に位置している。
<Base plate placement>
As described above, the base plate 331 of the heat dissipation member 33 is disposed so as to close the opening 311 of the case 31. In the X direction, the length L1 of the base plate 331 is shorter than the length L2 between the outer end of the connecting pipe 50 and the outer end of the connecting pipe 60. As an example, the length L1 of the base plate 331 in this embodiment is shorter than the length between the centers of the connecting pipes 50, 60 (connecting flow paths 51, 61) in the X direction. The length L1 of the base plate 331 is shorter than the length between the inner end of the connecting pipe 50 and the inner end of the connecting pipe 60. As shown in FIG. 4, the seal portion 34 between the base plate 331 and the case 31 is located inside the seal portions 52, 62 between the case 31 and the connecting pipes 50, 60.
 <第1実施形態のまとめ>
 図6は、参考例を示している。図6は、図4に対応している。参考例では、本実施形態の関連する要素の符号に対して末尾にrを付与している。参考例の電力変換装置4rも、2段構造の冷却器30r,40rを備えている。流路32rを規定するケース31rは、半導体モジュール20rとの対向面の全面において開口している。ベースプレート331rは、ケース31rの開口を閉塞するカバーである。このため、連結管50r,60rの並び方向であるX方向において、ベースプレート331rの長さL1rは、連結管50rの外端と連結管60rの外端との間の長さL2rよりも長い。電力変換装置4rのその他の構成は、本実施形態の電力変換装置4と同様である。
Summary of the First Embodiment
FIG. 6 shows a reference example. FIG. 6 corresponds to FIG. 4. In the reference example, the suffix r is added to the reference symbols of the elements related to this embodiment. The power converter 4r of the reference example also includes coolers 30r, 40r having a two-stage structure. The case 31r defining the flow path 32r is open on the entire surface facing the semiconductor module 20r. The base plate 331r is a cover that closes the opening of the case 31r. Therefore, in the X direction, which is the arrangement direction of the connecting pipes 50r, 60r, the length L1r of the base plate 331r is longer than the length L2r between the outer end of the connecting pipe 50r and the outer end of the connecting pipe 60r. The other configurations of the power converter 4r are the same as those of the power converter 4 of this embodiment.
 上記したようにベースプレート331rが長いため、水圧によってベースプレート331rが外側に撓む、つまり外側に凸の変形をする虞がある。ベースプレート331rが外側に撓むと、ピンフィン332rとケース31rとの間の隙間が大きくなり、ピンフィン332rに当たらずに素通りする冷媒が増えて冷却器30rの冷却性能(熱交換の性能)が低下する。ベースプレート331rが変形すると、ベースプレート331rと半導体モジュール20rとの密着性が低下し、熱抵抗が大きくなる。以上より、参考例の構成によれば放熱性が低下するため、2段構造の冷却器30r,40rに放熱部材33rを付加した構造を十分に活かすことができない。 As described above, because the base plate 331r is long, there is a risk that the base plate 331r will bend outward due to water pressure, that is, will deform into an outward convex shape. If the base plate 331r bends outward, the gap between the pin fins 332r and the case 31r will become larger, and the amount of refrigerant that passes through without hitting the pin fins 332r will increase, reducing the cooling performance (heat exchange performance) of the cooler 30r. If the base plate 331r deforms, the adhesion between the base plate 331r and the semiconductor module 20r will decrease, and the thermal resistance will increase. As a result, the heat dissipation performance will decrease according to the configuration of the reference example, and the structure in which the heat dissipation member 33r is added to the two- stage cooler 30r, 40r cannot be fully utilized.
 本実施形態の電力変換装置4によれば、連結管50,60の並び方向であるX方向において、ベースプレート331の長さL1が、連結管50,60の外端間の長さL2よりも短い。このように、放熱部材33を構成するベースプレート331の長さが短いため、水圧によるベースプレート331の変形、具体的には外側への撓みを抑制することができる。よって、ピンフィン332とケース31との隙間が拡大し、ピンフィン332に当たらずに素通りする冷媒80が増えるのを抑制することができる。また、ベースプレート331と半導体モジュール20との密着性が低下し、これにより熱抵抗が増大するのを抑制することができる。 According to the power conversion device 4 of this embodiment, in the X direction in which the connecting pipes 50, 60 are arranged, the length L1 of the base plate 331 is shorter than the length L2 between the outer ends of the connecting pipes 50, 60. In this way, since the length of the base plate 331 constituting the heat dissipation member 33 is short, deformation of the base plate 331 due to water pressure, specifically outward bending, can be suppressed. This prevents the gap between the pin fins 332 and the case 31 from expanding, and prevents an increase in the amount of refrigerant 80 that passes through without hitting the pin fins 332. In addition, the adhesion between the base plate 331 and the semiconductor module 20 from decreasing, which prevents an increase in thermal resistance.
 以上より、本実施形態の電力変換装置4によれば、放熱性の低下を抑制することができる。よって、2段構造の冷却器30,40に放熱部材33を付加した構造を十分に活かすことができる。つまり放熱性の高い電力変換装置4を提供することができる。なお、本実施形態では、冷却器30が第1冷却器に相当し、流路32が第1流路に相当する。冷却器40が第2冷却器に相当し、流路42が第2流路に相当する。連結管50が第1連結部に相当し、連結流路51が第1連結流路に相当する。連結管60が第2連結部に相当し、連結流路61が第2連結流路に相当する。 As described above, the power converter 4 of this embodiment can suppress the deterioration of heat dissipation. Therefore, the structure in which the heat dissipation member 33 is added to the two- stage coolers 30, 40 can be fully utilized. In other words, a power converter 4 with high heat dissipation properties can be provided. In this embodiment, the cooler 30 corresponds to the first cooler, and the flow path 32 corresponds to the first flow path. The cooler 40 corresponds to the second cooler, and the flow path 42 corresponds to the second flow path. The connecting pipe 50 corresponds to the first connecting portion, and the connecting flow path 51 corresponds to the first connecting flow path. The connecting pipe 60 corresponds to the second connecting portion, and the connecting flow path 61 corresponds to the second connecting flow path.
 ベースプレート331(放熱部材33)は、ケース31と同じ材料を用いて形成されてもよいし、ケース31とは異なる材料を用いて形成されてもよい。一例として本実施形態のベースプレート331は、ケース31とは異なる材料を用いて形成されている。ベースプレート331の熱伝導率はケース31の熱伝導率よりも高く、ケース31の剛性はベースプレート331の剛性よりも高い。 The base plate 331 (heat dissipation member 33) may be formed using the same material as the case 31, or may be formed using a material different from that of the case 31. As an example, the base plate 331 in this embodiment is formed using a material different from that of the case 31. The thermal conductivity of the base plate 331 is higher than that of the case 31, and the rigidity of the case 31 is higher than that of the base plate 331.
 上記したように、ベースプレート331の長さL1が連結管50,60の外端間の長さL2よりも短いため、ベースプレート331の剛性が低くても、水圧によるベースプレート331の変形を抑制することができる。変形を抑制し、且つ、ベースプレート331の熱伝導率が高いため、放熱性をさらに高めることができる。 As described above, since the length L1 of the base plate 331 is shorter than the length L2 between the outer ends of the connecting pipes 50 and 60, deformation of the base plate 331 due to water pressure can be suppressed even if the rigidity of the base plate 331 is low. Since deformation is suppressed and the thermal conductivity of the base plate 331 is high, heat dissipation can be further improved.
 <変形例>
 3つの半導体モジュール20U,20V,20Wの並び順は、上記した例に限定されない。半導体モジュール20Uまたは半導体モジュール20Wを、真ん中に配置してもよい。
<Modification>
The arrangement order of the three semiconductor modules 20U, 20V, and 20W is not limited to the above example. The semiconductor module 20U or the semiconductor module 20W may be disposed in the middle.
 導入管36および排出管37が冷却器30に接続される例を示したが、これに限定されない。導入管36および排出管37が冷却器40に接続されてもよい。この場合、冷媒80の一部は、流路42から連結管50を介して冷却器30の流路32に流れる。流路32を流れた冷媒80は、連結管60を介して流路42に戻り、排出される。 Although an example has been shown in which the inlet pipe 36 and the outlet pipe 37 are connected to the cooler 30, this is not limiting. The inlet pipe 36 and the outlet pipe 37 may also be connected to the cooler 40. In this case, a portion of the refrigerant 80 flows from the flow path 42 through the connecting pipe 50 to the flow path 32 of the cooler 30. The refrigerant 80 that has flowed through the flow path 32 returns to the flow path 42 through the connecting pipe 60 and is discharged.
 冷却器30がベースプレート331およびピンフィン332を備える例を示したが、冷却器40がベースプレートおよびピンフィンを備えてもよい。そして、冷却器40が備えるベースプレートの長さが、連結管50,60の外端間の長さL2より短い構成としてもよい。冷却器40のケース41が半導体モジュール20との対向面に開口部を有し、この開口部を閉塞するようにベースプレートが配置される。この場合、冷却器40が第1冷却器に相当し、流路42が第1流路に相当する。また、冷却器30が第2冷却器に相当し、流路32が第2流路に相当する。 Although an example has been shown in which the cooler 30 includes the base plate 331 and the pin fins 332, the cooler 40 may also include a base plate and pin fins. The length of the base plate included in the cooler 40 may be shorter than the length L2 between the outer ends of the connecting pipes 50, 60. The case 41 of the cooler 40 has an opening on the surface facing the semiconductor module 20, and the base plate is arranged to close this opening. In this case, the cooler 40 corresponds to the first cooler, and the flow path 42 corresponds to the first flow path. Also, the cooler 30 corresponds to the second cooler, and the flow path 32 corresponds to the second flow path.
 (第2実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。先行実施形態では、放熱部材を構成するベースプレートの長さを連結管の外端間の長さよりも短くした。これに付加して、第1流路が整流室を備えてもよい。
Second Embodiment
This embodiment is a modification based on the preceding embodiment, and the description of the preceding embodiment can be used. In the preceding embodiment, the length of the base plate constituting the heat dissipation member is shorter than the length between the outer ends of the connecting pipe. In addition, the first flow path may include a flow straightening chamber.
 図7は、本実施形態に係る電力変換装置4を示す平面図である。図7は、図2に対応している。図7でも、便宜上、信号端子や回路基板を省略している。図7の白抜き矢印は、冷媒の流れる方向を示している。図8は、図7のVIII-VIII線に沿う断面図である。図8は、図4に対応している。図7でも、筐体の一部、および、回路基板を省略している。図7の実線矢印は、冷媒の流れを示している。 FIG. 7 is a plan view showing the power conversion device 4 according to this embodiment. FIG. 7 corresponds to FIG. 2. For convenience, signal terminals and circuit boards are also omitted in FIG. 7. The white arrows in FIG. 7 indicate the direction of refrigerant flow. FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7. FIG. 8 corresponds to FIG. 4. Part of the housing and the circuit board are also omitted in FIG. 7. The solid arrows in FIG. 7 indicate the flow of refrigerant.
 本実施形態の冷却器30は、壁部38を有している。壁部38は、ケース31の内壁から突出している。壁部38は、ケース31に対して連続して一体的に設けられてもよいし、接合により一体的に設けられてもよい。壁部38は、X方向において連結管50とベースプレート331との間に設けられている。壁部38は、流路32を局所的に狭めている。一例として本実施形態の壁部38は、ケース31の内壁のうち、底面とY方向の両側面に連なっている。壁部38は、ケース31の内壁のうち、上面には連なっていない。壁部38とケース31の内壁の上面との間には、冷媒80が流通可能な隙間が存在する。壁部38は、流路32を2つの領域に区画している。 The cooler 30 of this embodiment has a wall portion 38. The wall portion 38 protrudes from the inner wall of the case 31. The wall portion 38 may be provided integrally with the case 31, or may be provided integrally by joining. The wall portion 38 is provided between the connecting pipe 50 and the base plate 331 in the X direction. The wall portion 38 locally narrows the flow path 32. As an example, the wall portion 38 of this embodiment is connected to the bottom surface and both side surfaces in the Y direction of the inner wall of the case 31. The wall portion 38 is not connected to the top surface of the inner wall of the case 31. Between the wall portion 38 and the top surface of the inner wall of the case 31, there is a gap through which the refrigerant 80 can flow. The wall portion 38 divides the flow path 32 into two regions.
 流路32は、壁部38により区画された領域として、熱交換室321と、整流室322を有している。熱交換室321は、流路32の長手方向、つまりX方向において、壁部38よりも下流側の領域である。熱交換室321は、壁部38よりも排出管37側の領域である。熱交換室321には、放熱部材33のピンフィン332が配置されている。整流室322は、X方向において、壁部38よりも上流側の領域である。整流室322は、壁部38よりも導入管36側の領域である。X方向において、整流室322の長さは、熱交換室321の長さよりも短い。一例として本実施形態の整流室322は、熱交換室321よりも小さい。整流室322の容積は、熱交換室321の容積よりも小さい。整流室322は、小部屋である。 The flow path 32 has a heat exchange chamber 321 and a straightening chamber 322 as regions partitioned by the wall portion 38. The heat exchange chamber 321 is a region downstream of the wall portion 38 in the longitudinal direction of the flow path 32, i.e., in the X direction. The heat exchange chamber 321 is a region closer to the exhaust pipe 37 than the wall portion 38. The pin fins 332 of the heat dissipation member 33 are arranged in the heat exchange chamber 321. The straightening chamber 322 is a region upstream of the wall portion 38 in the X direction. The straightening chamber 322 is a region closer to the inlet pipe 36 than the wall portion 38. In the X direction, the length of the straightening chamber 322 is shorter than the length of the heat exchange chamber 321. As an example, the straightening chamber 322 in this embodiment is smaller than the heat exchange chamber 321. The volume of the straightening chamber 322 is smaller than the volume of the heat exchange chamber 321. The straightening chamber 322 is a small room.
 迂回経路の冷媒導入口を提供する連結管50の連結流路51は、整流室322に連通している。迂回経路の冷媒排出口を提供する連結管60の連結流路61は、熱交換室321に連通している。熱交換室321と整流室322は、壁部38の上方の隙間を通じて互いに連通している。その他の構成は、先行実施形態に記載の構成と同様である。 The connecting passage 51 of the connecting pipe 50, which provides a refrigerant inlet for the bypass path, is connected to the rectification chamber 322. The connecting passage 61 of the connecting pipe 60, which provides a refrigerant outlet for the bypass path, is connected to the heat exchange chamber 321. The heat exchange chamber 321 and the rectification chamber 322 are connected to each other through a gap above the wall portion 38. The other configurations are the same as those described in the preceding embodiment.
 <第2実施形態のまとめ>
 本実施形態の電力変換装置4によれば、先行実施形態と同等の効果を奏することができる。さらに電力変換装置4の冷却器30が、ケース31の内壁から突出する壁部38を有している。この壁部38により、流路32が、ピンフィン332が配置された熱交換室321と、整流室322に区画されている。整流室322は、壁部38よりも上流側の領域であり、連結管50の連結流路51が連通している。
<Summary of the Second Embodiment>
According to the power conversion device 4 of the present embodiment, it is possible to achieve the same effects as those of the preceding embodiment. Furthermore, the cooler 30 of the power conversion device 4 has a wall portion 38 protruding from the inner wall of the case 31. This wall portion 38 divides the flow path 32 into a heat exchange chamber 321 in which pin fins 332 are arranged, and a rectification chamber 322. The rectification chamber 322 is an area upstream of the wall portion 38, and is connected to the connecting flow path 51 of the connecting pipe 50.
 このように電力変換装置4は、熱交換室321や流路42の前室として整流室322を有する。整流室322により、ウォータポンプによる脈動を受け止め、整流することができる。よって、冷却効果のばらつきを抑制することができる。つまり、放熱性を高めることができる。なお、冷却器30が第1冷却器に相当し、流路32が第1流路に相当する。冷却器40が第2冷却器に相当し、流路42が第2流路に相当する。連結管50が第1連結部に相当し、連結流路51が第1連結流路に相当する。連結管60が第2連結部に相当し、連結流路61が第2連結流路に相当する。 In this way, the power conversion device 4 has the rectification chamber 322 as a front chamber of the heat exchange chamber 321 and the flow path 42. The rectification chamber 322 can receive and rectify the pulsation caused by the water pump. This makes it possible to suppress variations in the cooling effect. In other words, it is possible to improve heat dissipation. The cooler 30 corresponds to the first cooler, and the flow path 32 corresponds to the first flow path. The cooler 40 corresponds to the second cooler, and the flow path 42 corresponds to the second flow path. The connecting pipe 50 corresponds to the first connecting part, and the connecting flow path 51 corresponds to the first connecting flow path. The connecting pipe 60 corresponds to the second connecting part, and the connecting flow path 61 corresponds to the second connecting flow path.
 <変形例>
 ケース31の内壁において、壁部38の連なる面は特に限定されない。底面のみに連なってもよいし、側面のみに連ねってもよい。上面のみに連なってもよい。側面および上面に連なってもよい。
<Modification>
In the inner wall of the case 31, the surface to which the wall portion 38 is connected is not particularly limited. The wall portion 38 may be connected only to the bottom surface, only to the side surface, only to the top surface, or both to the side surface and the top surface.
 冷却器30は、X方向において連結管60とベースプレート331との間に設けられた壁部を備えてもよい。この壁部は、上記した熱交換室321を、ピンフィン332が配置された領域と、連結管60が連通する領域とに区画する。 The cooler 30 may have a wall portion provided between the connecting pipe 60 and the base plate 331 in the X direction. This wall portion divides the heat exchange chamber 321 into an area where the pin fins 332 are arranged and an area where the connecting pipe 60 communicates.
 導入管36および排出管37が冷却器40に接続される構成において、冷却器40に壁部を設け、流路42を熱交換室と整流室とに区画してもよい。この場合、冷却器40が第1冷却器に相当し、流路42が第1流路に相当する。また、冷却器30が第2冷却器に相当し、流路32が第2流路に相当する。 In a configuration in which the inlet pipe 36 and the outlet pipe 37 are connected to the cooler 40, a wall may be provided in the cooler 40 to divide the flow path 42 into a heat exchange chamber and a flow straightening chamber. In this case, the cooler 40 corresponds to the first cooler, and the flow path 42 corresponds to the first flow path. The cooler 30 corresponds to the second cooler, and the flow path 32 corresponds to the second flow path.
 (他の実施形態)
 この明細書および図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。たとえば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものと解されるべきである。
Other Embodiments
The disclosure in this specification and drawings, etc. is not limited to the exemplified embodiments. The disclosure includes the exemplified embodiments and modifications by those skilled in the art based thereon. For example, the disclosure is not limited to the combination of parts and/or elements shown in the embodiments. The disclosure can be implemented by various combinations. The disclosure can have additional parts that can be added to the embodiments. The disclosure includes the omission of parts and/or elements of the embodiments. The disclosure includes the substitution or combination of parts and/or elements between one embodiment and another embodiment. The disclosed technical scope is not limited to the description of the embodiments. Some disclosed technical scopes are indicated by the description of the claims, and should be interpreted as including all modifications within the meaning and scope equivalent to the description of the claims.
 明細書および図面等における開示は、請求の範囲の記載によって限定されない。明細書および図面等における開示は、請求の範囲に記載された技術的思想を包含し、さらに請求の範囲に記載された技術的思想より多様で広範な技術的思想に及んでいる。よって、請求の範囲の記載に拘束されることなく、明細書および図面等の開示から、多様な技術的思想を抽出することができる。 The disclosure in the specification and drawings, etc. is not limited by the claims. The disclosure in the specification and drawings, etc. encompasses the technical ideas described in the claims, and extends to more diverse and extensive technical ideas than the technical ideas described in the claims. Therefore, a variety of technical ideas can be extracted from the disclosure in the specification and drawings, etc., without being bound by the claims.
 ある要素または相が「上にある」、「連結されている」、「接続されている」または「結合されている」と言及されている場合、それは、他の要素、または他の相に対して、直接的に上に、連結され、接続され、または結合されていることがあり、さらに、介在要素または介在相が存在していることがある。対照的に、ある要素が別の要素または相に「直接的に上に」、「直接的に連結されている」、「直接的に接続されている」または「直接的に結合されている」と言及されている場合、介在要素または介在相は存在しない。要素間の関係を説明するために使用される他の言葉は、同様のやり方で(例えば、「間に」対「直接的に間に」、「隣接する」対「直接的に隣接する」など)解釈されるべきである。この明細書で使用される場合、用語「および/または」は、関連する列挙されたひとつまたは複数の項目に関する任意の組み合わせ、およびすべての組み合わせを含む。 When an element or phase is referred to as being "on," "coupled," "connected," or "coupled," it may be directly on, coupled, connected, or coupled to another element or phase, and there may be intervening elements or phases present. In contrast, when an element is referred to as being "directly on," "directly coupled," "directly connected," or "directly coupled" to another element or phase, there are no intervening elements or phases present. Other words used to describe relationships between elements should be construed in a similar manner (e.g., "between" vs. "directly between," "adjacent" vs. "directly adjacent," etc.). As used in this specification, the term "and/or" includes any and all combinations of one or more of the associated listed items.
 空間的に相対的な用語「内」、「外」、「裏」、「下」、「低」、「上」、「高」などは、図示されているような、ひとつの要素または特徴の他の要素または特徴に対する関係を説明する記載を容易にするためにここでは利用されている。空間的に相対的な用語は、図面に描かれている向きに加えて、使用または操作中の装置の異なる向きを包含することを意図することができる。例えば、図中の装置をひっくり返すと、他の要素または特徴の「下」または「真下」として説明されている要素は、他の要素または特徴の「上」に向けられる。したがって、用語「下」は、上と下の両方の向きを包含することができる。この装置は、他の方向に向いていてもよく(90度または他の向きに回転されてもよい)、この明細書で使用される空間的に相対的な記述子はそれに応じて解釈される。 Spatially relative terms such as "inside," "outside," "back," "bottom," "low," "top," "top," and the like are utilized herein for ease of description to describe the relationship of one element or feature to other elements or features as depicted in the figures. Spatially relative terms may be intended to encompass different orientations of the device during use or operation in addition to the orientation depicted in the drawings. For example, if the device in the figures is turned over, elements described as "below" or "directly below" other elements or features would be oriented "above" the other elements or features. Thus, the term "bottom" can encompass both an orientation of top and bottom. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used in this specification would be interpreted accordingly.
 車両の駆動システム1は、上記した構成に限定されない。たとえば、モータジェネレータ3をひとつ備える例を示したが、これに限定されない。複数のモータジェネレータを備えてもよい。 The vehicle drive system 1 is not limited to the configuration described above. For example, although an example with one motor generator 3 has been shown, the present invention is not limited to this. Multiple motor generators may be provided.
 電力変換装置4が、電力変換回路としてインバータ5を備える例を示したが、これに限定されない。たとえば、複数のインバータを備える構成としてもよい。少なくともひとつのインバータと、コンバータを備える構成としてもよい。 Although an example has been shown in which the power conversion device 4 includes an inverter 5 as a power conversion circuit, this is not limiting. For example, the power conversion device 4 may be configured to include multiple inverters. The power conversion device 4 may be configured to include at least one inverter and a converter.
 半導体モジュール20の数は、上記した例に限定されない。たとえば、ひとつの半導体モジュール20が6つのアーム10H,10Lを提供してもよい。ひとつの半導体モジュール20がひとつのアーム、つまりひとつの上アーム10Hまたはひとつの下アーム10Lを提供してもよい。 The number of semiconductor modules 20 is not limited to the above example. For example, one semiconductor module 20 may provide six arms 10H, 10L. One semiconductor module 20 may provide one arm, i.e., one upper arm 10H or one lower arm 10L.

Claims (3)

  1.  電力変換回路(5)を構成する半導体モジュール(20)と、
     第1流路(32)を有し、前記半導体モジュールを冷却する第1冷却器(30)と、
     第2流路(42)を有し、前記第1冷却器とは反対側から前記半導体モジュールを冷却する第2冷却器(40)と、
     前記第1流路と前記第2流路とに連通する第1連結流路(51)を有する第1連結部(50)と、
     前記第1流路と前記第2流路とに連通する第2連結流路(61)を有し、前記第1連結部とともに冷媒の一部の迂回経路を提供する第2連結部(60)と、を備え、
     前記第1冷却器は、前記第1流路を規定し、前記半導体モジュールと重なる部分に開口を有するケース(31)と、前記開口を蓋するように前記ケースに配置されたベースプレート(331)と、前記ベースプレートから前記第1流路内に延びるピンフィン(332)と、を有し、
     前記第1連結部と前記第2連結部との並び方向において、前記ベースプレートの長さが、前記第1連結部と前記第2連結部との外端間の長さよりも短い、電力変換装置。
    A semiconductor module (20) constituting a power conversion circuit (5);
    a first cooler (30) having a first flow path (32) and cooling the semiconductor module;
    a second cooler (40) having a second flow path (42) and cooling the semiconductor module from the opposite side to the first cooler;
    a first connecting portion (50) having a first connecting flow path (51) communicating with the first flow path and the second flow path;
    a second connecting portion (60) having a second connecting flow path (61) communicating with the first flow path and the second flow path and providing a bypass path for a part of the refrigerant together with the first connecting portion,
    The first cooler includes a case (31) that defines the first flow path and has an opening at a portion that overlaps with the semiconductor module, a base plate (331) that is disposed on the case so as to cover the opening, and pin fins (332) that extend from the base plate into the first flow path,
    A power conversion device, wherein a length of the base plate in an arrangement direction of the first connecting portion and the second connecting portion is shorter than a length between outer ends of the first connecting portion and the second connecting portion.
  2.  前記ベースプレートの熱伝導率は、前記ケースの熱伝導率よりも高く、
     前記ケースの剛性は、前記ベースプレートの剛性よりも高い、請求項1に記載の電力変換装置。
    the thermal conductivity of the base plate is higher than the thermal conductivity of the case;
    The power conversion device according to claim 1 , wherein the rigidity of the case is higher than the rigidity of the base plate.
  3.  前記第1連結部は、前記迂回経路の冷媒導入口を提供し、
     前記第2連結部は、前記迂回経路の冷媒排出口を提供し、
     前記第1冷却器は、前記並び方向において前記第1連結部と前記ベースプレートとの間に設けられ、前記ケースの内壁から突出する壁部(38)と、前記第1流路のうち、前記壁部よりも下流側の領域であり、前記ピンフィンが配置された熱交換室(321)と、前記壁部よりも上流側の領域であり、前記第1連結部の前記第1流路が連通する整流室(322)と、を有する、請求項1または請求項2に記載の電力変換装置。
    The first connection portion provides a refrigerant inlet for the bypass path,
    The second connection portion provides a refrigerant outlet for the bypass path,
    3. The power conversion device according to claim 1 or claim 2, wherein the first cooler is provided between the first connecting portion and the base plate in the arrangement direction, and has a wall portion (38) protruding from an inner wall of the case, a heat exchange chamber (321) which is a region of the first flow path downstream of the wall portion and in which the pin fins are arranged, and a straightening chamber (322) which is a region upstream of the wall portion and to which the first flow path of the first connecting portion is connected.
PCT/JP2024/007797 2023-03-30 2024-03-01 Power conversion device WO2024202932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-055860 2023-03-30
JP2023055860A JP2024143276A (en) 2023-03-30 2023-03-30 Power Conversion Equipment

Publications (1)

Publication Number Publication Date
WO2024202932A1 true WO2024202932A1 (en) 2024-10-03

Family

ID=92905603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/007797 WO2024202932A1 (en) 2023-03-30 2024-03-01 Power conversion device

Country Status (2)

Country Link
JP (1) JP2024143276A (en)
WO (1) WO2024202932A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009567A (en) * 2010-06-23 2012-01-12 Denso Corp Semiconductor module and manufacturing method of the same
JP2012257369A (en) * 2011-06-08 2012-12-27 Hitachi Automotive Systems Ltd Power module and electric power conversion apparatus using the same
JP2018063999A (en) * 2016-10-11 2018-04-19 トヨタ自動車株式会社 Semiconductor device
WO2022270013A1 (en) * 2021-06-25 2022-12-29 日立Astemo株式会社 Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009567A (en) * 2010-06-23 2012-01-12 Denso Corp Semiconductor module and manufacturing method of the same
JP2012257369A (en) * 2011-06-08 2012-12-27 Hitachi Automotive Systems Ltd Power module and electric power conversion apparatus using the same
JP2018063999A (en) * 2016-10-11 2018-04-19 トヨタ自動車株式会社 Semiconductor device
WO2022270013A1 (en) * 2021-06-25 2022-12-29 日立Astemo株式会社 Power conversion device

Also Published As

Publication number Publication date
JP2024143276A (en) 2024-10-11

Similar Documents

Publication Publication Date Title
JP5557441B2 (en) Power converter and electric vehicle
JP5481148B2 (en) Semiconductor device, power semiconductor module, and power conversion device including power semiconductor module
JP5521091B2 (en) Power converter
JP5581131B2 (en) Power module and power conversion device using the same
JP5314933B2 (en) Power converter
WO2014132739A1 (en) Power conversion apparatus
JP2020025430A (en) Electric power conversion system
JP6147893B2 (en) Power converter
WO2020021865A1 (en) Dynamo-electric machine unit
US20240215211A1 (en) Power conversion device
WO2020021881A1 (en) Power module and power conversion device
US12089380B2 (en) Power conversion device
US20230328938A1 (en) Power module
JP6782748B2 (en) Power module and power converter
WO2024202932A1 (en) Power conversion device
JP7544106B2 (en) Power Conversion Equipment
WO2024171691A1 (en) Power conversion device
JP7544288B2 (en) Power Conversion Equipment
JP7563359B2 (en) Power Conversion Equipment
WO2024142671A1 (en) Power conversion device
JP5941944B2 (en) Method for manufacturing power conversion device
JP7392557B2 (en) semiconductor equipment
JP6430584B2 (en) Power converter
CN118120140A (en) Power conversion device
WO2020021880A1 (en) Power conversion device