WO2024241580A1 - Section-of-interest selection device and section-of-interest selection method for change in industrial machine - Google Patents
Section-of-interest selection device and section-of-interest selection method for change in industrial machine Download PDFInfo
- Publication number
- WO2024241580A1 WO2024241580A1 PCT/JP2023/019535 JP2023019535W WO2024241580A1 WO 2024241580 A1 WO2024241580 A1 WO 2024241580A1 JP 2023019535 W JP2023019535 W JP 2023019535W WO 2024241580 A1 WO2024241580 A1 WO 2024241580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- section
- wear
- tool
- feature amount
- Prior art date
Links
- 230000008859 change Effects 0.000 title claims abstract description 80
- 238000010187 selection method Methods 0.000 title description 4
- 238000004364 calculation method Methods 0.000 claims abstract description 98
- 238000005520 cutting process Methods 0.000 claims description 150
- 238000000034 method Methods 0.000 claims description 35
- 238000003860 storage Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 17
- 238000005457 optimization Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 62
- 238000003754 machining Methods 0.000 description 22
- 238000004088 simulation Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4062—Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4063—Monitoring general control system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4065—Monitoring tool breakage, life or condition
Definitions
- This disclosure relates to a target section selection device and a target section selection method for changes in industrial machinery, and in particular to a target section selection device and a target section selection method for selecting a certain section from a plurality of fixed sections into which actual servo waveform data (time series data) in industrial machinery is divided, based on the tendency of fluctuations in feature quantities.
- Servo waveform data is the source data that can be used to infer the state of motors, machines, and processing. It can also be used to detect and predict failures and wear, so it is used in many places. Apparatuses for predicting tool wear and detecting tool deterioration conditions using servo waveform data are described in, for example, Japanese Patent Application Laid-Open No. 2003-233993 and Japanese Patent Application Laid-Open No. 2003-233994.
- Patent Document 1 describes a tool wear prediction device that can easily and accurately estimate the amount of tool wear. Specifically, Patent Document 1 describes a tool wear prediction device that predicts the amount of wear of a tool installed in a machine tool, and includes a tool wear prediction unit that calculates a predicted tool wear amount of the tool based on input machining data, and a tool wear correction processing unit that compares a value based on the machining data with a value based on data obtained from the machine tool and corrects the predicted tool wear amount based on the result of the comparison.
- Patent Document 2 describes a tool change timing management system including a data acquisition unit that acquires time series data indicating a machining state from a machine, a data extraction unit that extracts sample data from the time series data based on at least one condition or combination of conditions of machining, tool, workpiece, and tool speed, a machining state quantity calculation unit that calculates a machining state quantity which is a statistical index from the sample data, a tool deterioration status generation unit that generates tool deterioration status data in which the machining state quantities are arranged in time series, and a tool change timing calculation unit that calculates the tool change time based on the tool deterioration status data.
- FEM finite element method
- systems that estimate tool wear can estimate changes in wear based on actual cutting force data.
- systems that estimate tool wear due to the effects of noise and other factors, only a portion of the total machining can show tool wear, making it difficult to identify which points to extract and observe for fixed-point calculations.
- systems that estimate tool wear must exclude thin tools that are easily lost in noise, limiting the tools they can target.
- FEM finite element method
- a first representative aspect of the present disclosure includes a waveform division unit that divides servo waveform data into certain intervals; an NC program division unit that divides an NC program that drives an industrial machine into a certain number of blocks; a matching unit that performs matching between the servo waveform data for each fixed section divided by the waveform dividing unit and the NC program for each fixed block divided by the NC program dividing unit; a feature amount calculation unit that calculates a feature amount for each of the fixed intervals by using servo waveform data of the fixed interval; a target interval selection unit that selects a certain interval that can express the tendency of fluctuation in the feature amount from the plurality of divided certain intervals based on the tendency of fluctuation in the feature amount calculated by the feature amount calculation unit for each certain interval;
- the present invention relates to a device for selecting a target section of an industrial machine.
- a second representative aspect of the present disclosure is a method for implementing a method for implementing a computer-based method comprising: A process of dividing the servo waveform data into certain intervals; A process of dividing an NC program that drives an industrial machine into a certain number of blocks; A process of matching the servo waveform data for each of the divided fixed sections with an NC program for each of the divided fixed blocks; A process of calculating a feature amount for each of the fixed sections by using servo waveform data of the fixed section; selecting a certain section that can express the tendency of fluctuation in the feature amount from the plurality of divided certain sections based on the tendency of fluctuation in the feature amount calculated for each certain section; This is a method for selecting a target section for changes in industrial machinery.
- FIG. 1 is a block diagram showing an overall configuration of a target section selection device that selects a section in which changes in an industrial machine are observed according to an embodiment of the present disclosure.
- 2 is a block diagram showing a target section selection configuration unit in the target section selection device of the present embodiment.
- FIG. FIG. 13 is a waveform diagram showing a certain section divided based on a change in the amount of movement of an X-axis position command.
- FIG. 11 is a diagram of an NC program showing certain blocks divided based on a change in the amount of movement of an X-axis position command.
- FIG. 13 is a diagram showing how matching is performed in the order of the same tool section, the same speed section and cutting feed signal section, and the section of change in the movement amount of the position command.
- FIG. 5A and 5B are diagrams showing an NC program, a waveform indicating the movement amount of an X-axis position command, and the slope of the waveform.
- FIG. 2 is a diagram showing a line of an NC program indicating a canned cycle and an NC program reproducing control without using the canned cycle.
- FIG. 13 is a diagram showing a process of calculating an average value of torque data in a certain section as a feature amount and calculating a transition graph of the feature amount.
- FIG. 11 is a diagram showing a method for selecting a selection target section candidate from a certain section.
- 11A and 11B are characteristic diagrams showing the variation in a feature amount and the variation in a slope, respectively, showing the tool replacement time.
- FIG. 13 is a diagram showing an example of a reference trend and a reference trend range.
- 2 is a block diagram showing a determination unit and a peripheral portion of the determination unit;
- FIG. 13 is a diagram showing a case where a feature amount is within a reference trend and a case where the feature amount is outside the reference trend.
- 13A and 13B are diagrams illustrating a case where a feature amount is within the reference trend and a case where the feature amount is outside the reference trend and close to an initial value of the reference trend.
- 2 is a block diagram showing a waveform generating unit and a peripheral unit of the waveform generating unit;
- FIG. 2 is a block diagram showing the configuration of a model representing a controller.
- FIG. 2 is a block diagram showing the configuration of a model of a spindle.
- FIG. 11 is a characteristic diagram showing changes over time in an actually measured torque value and an estimated torque value obtained by simulation using a cutting coefficient.
- FIG. 13 is a characteristic diagram showing the relationship between the average value of the estimated torque value and the cutting coefficient Ktc.
- FIG. 13 is a characteristic diagram showing the relationship between an average value of estimated torque values and a cutting coefficient Kte.
- FIG. 1 is a diagram showing the relationship between a characteristic diagram of cutting distance and friction amount, a characteristic diagram of wear amount and temperature, a characteristic diagram of temperature and friction speed, and a characteristic diagram of cutting distance and cutting resistance.
- FIG. 2 is an explanatory diagram showing a limit wear amount and a time when the limit wear amount is reached.
- FIG. 13 is a diagram showing how the reference tendency is changed when the fluctuation in the feature amount due to tool replacement changes;
- FIG. 13 is a diagram showing how the fluctuation in the amount of wear is changed and the reference tendency is changed when the limit amount of wear and the time when the limit amount of wear is reached are determined.
- FIG. 13 is an explanatory diagram showing an example in which the F value of an NC program is changed.
- 10 is a flowchart showing the operation of a target section selection configuration unit of the target section selection device.
- FIG. 1 is a block diagram showing the overall configuration of a target section selection device for selecting a section in which changes in an industrial machine are observed, according to an embodiment of the present disclosure.
- the target section selection device 10 includes a waveform division unit 101, an NC (Numerical Control) program division unit 102, a matching unit 103, a feature calculation unit 104, a target section selection unit 105, a judgment unit 106, a memory unit 107, a waveform generation unit 108, a parameter optimization unit 109, a wear estimation unit 110 and a display unit 111.
- the industrial machines for which the target section selection device 10 selects a section in which changes are to be observed are, for example, machine tools and cutting robots.
- the waveform division unit 101, the NC program division unit 102, the matching unit 103, the feature calculation unit 104, and the target section selection unit 105 are components (hereinafter, these components are referred to as "target section selection component") for realizing a function of selecting a certain section from a plurality of fixed sections into which the measured servo waveform data is divided, based on a tendency of fluctuation of a feature such as an average value of torque data.
- the memory unit 107 stores the measured servo waveform data used by the waveform division unit 101, and the NC program used by the NC program division unit 102 for controlling the machining operation of the industrial machine. The memory unit 107 will be described later.
- the memory unit 107 may be included in the target section selection component, but in the following description, the memory unit 107 is described as not being included in the target section selection component.
- the waveform generator 108 may utilize one or more external tools, and may be replaceable in the future if the waveforms generated are suitable and the time cost of generation is sufficiently fast.
- FIG. 2 is a block diagram showing a target section selection configuration unit in the target section selection device 10. As shown in FIG.
- the waveform division unit 101 reads out the measured servo waveform data acquired from the industrial machine from the storage unit 107, divides the measured servo waveform data into fixed intervals, outputs the divided servo waveform data to the feature calculation unit 104 or the matching unit 103, and stores it in the storage unit 107.
- the waveform division unit 101 also stores the divided fixed intervals as target intervals in the storage unit 107.
- the fixed intervals are intervals divided into units in which the X-axis, Y-axis, and Z-axis each perform one operation.
- the measured servo waveform data is, for example, a spindle speed, a spindle torque command, an X-axis position command, a Y-axis position command, a Z-axis position command, and a cutting feed signal.
- the fixed intervals for division are determined based on, for example, a change in the movement amount of the X-axis position command.
- the waveform division unit 101 may acquire the measured servo waveform data directly from the industrial machine without going through the storage unit 107, or may acquire the measured servo waveform data output from the industrial machine via a CNC (Computerized Numerical Control) or a PLC (Programmable Logic Controller).
- the measured servo waveform data stored in the storage unit 107 may also be data acquired directly from the industrial machine, or the measured servo waveform data output from the industrial machine may be data acquired via a CNC (Computerized Numerical Control) or a PLC (Programmable Logic Controller).
- Fig. 3 is a waveform diagram showing fixed sections divided based on the change in the movement amount of the X-axis position command.
- the same tool use section from one tool change operation to the next tool change operation the section with a constant cutting feed signal, and the section with a constant speed are also shown, but these sections are used for the matching operation in the matching unit 103 described later.
- the spindle speed, spindle torque command, Y-axis position command, Z-axis position command, and cutting feed signal are also shown.
- the vertical axis scales a1 to a9 are -20000, -15000, -10000, -5000, 0, 5000, 10000, 15000, and 20000 (1/mm).
- the vertical axis scales a1 to a9 are -200, -150, -100, -50, 0, 50, 0, 100, 150, and 200 (%).
- the vertical axis scales a1 to a9 are -300, -200, -100, 0, 100, 200, 300, 400, and 500 (mm).
- the vertical axis scales a1 to a9 are -200, -100, 0, 100, 200, 300, 400, 500, and 600 (mm).
- the vertical axis scales a1 to a9 are -300, -200, -100, 0, 100, 200, 300, 400, and 500 (mm).
- the vertical axis scales a1 to a9 are -200, 0, 200, 400, 600, 800, 1000, 1200, and 1400.
- NC program dividing unit 102 The NC program dividing unit 102 reads out an NC program for controlling the machining operation of the industrial machine from the storage unit 107, divides the NC program into fixed blocks, outputs the divided NC program to the matching unit 103, and stores it in the storage unit 107.
- the fixed blocks are determined based on a change in the amount of movement of the X-axis position command.
- FIG. 4 is a diagram of an NC program showing fixed blocks divided based on changes in the amount of movement of the X-axis position command.
- FIG. 4 also shows fixed blocks corresponding to the same tool use section from one tool change operation to the next tool change operation, fixed blocks corresponding to a section where the cutting feed signal is constant, and fixed blocks corresponding to a section where the speed is constant, and these fixed blocks are used for the matching operation in matching unit 103, which will be described later.
- the matching unit 103 matches (associates) the servo waveform data for each fixed section divided by the waveform dividing unit 101 with the NC program for each fixed block divided by the NC program dividing unit 102, outputs the servo waveform data for each fixed section to the matching unit 103, and stores the correspondence in the storage unit 107.
- the reason for associating the behavior of the actual machine with the NC program is to confirm which part of the NC program has behavior that should be noted when analyzing the actual machine.
- the matching unit 103 performs matching in multiple stages between the fixed section set in the waveform division unit 101 and the fixed block set in the NC program division unit 102 for the change in the amount of movement of the position command, since it is difficult to perform matching immediately. Specifically, the matching unit 103 performs matching between the fixed section and the fixed block in the following order: matching of the same tool section, matching of at least one section of the same speed section and the cutting feed signal section, and matching of the section of the change in the amount of movement of the position command.
- Figure 5 shows how matching is performed in the order of the same tool section, the same speed section and the cutting feed signal section, and the section of the change in the amount of movement of the position command.
- FIG. 6 is a diagram showing an NC program, a waveform indicating the amount of movement of the position command on the X-axis, and the slope of the waveform.
- the NC program indicated by G01 X20.0 and G01 X10.0 can be decomposed into two parts, G01 X20.0 and G01 X10.0, but the waveforms indicating the movement amount of the X-axis position command corresponding to this NC program have the same slope, making it difficult to separate them.
- the NC program and waveform data indicated by G01 X20.0 and G01 X10.0 are not separated, but are treated as an NC program and waveform data indicating a single movement amount.
- Fig. 7 is a diagram showing one line of an NC program indicating a canned cycle and an NC program that reproduces control without using a canned cycle.
- the feature amount calculation unit 104 calculates the feature amount for a certain interval by using the servo waveform data for each certain interval that is output from the waveform division unit 101 or that is found to match with the NC program by the matching unit 103.
- the feature amount for a certain interval is, for example, at least one of statistics of torque data such as the mean, variance, skewness, kurtosis, and RMS (root mean square) of the torque data (for example, spindle torque command) for the certain interval.
- the feature amount calculation unit 104 calculates, as a feature amount, an average value of torque data in a fixed interval R1 (shown as "interval R1" in Fig.
- Fig. 8 is a diagram showing the process of calculating the average value of torque data in the fixed intervals as a feature amount and calculating the transition graph of the feature amount.
- the target interval selection unit 105 selects a certain interval that can express the tendency of the fluctuation of the feature amount from the divided plurality of certain intervals based on the tendency of the fluctuation of the feature amount calculated by the feature amount calculation unit 104 for each certain interval.
- the method of selecting a fixed section is, for example, as shown in Fig. 9, to calculate the slope of a curve showing the variation in the feature quantity as the tendency of variation in the feature quantity of fixed sections R1 and R2, and if a continuous upward trend in the slope is recognized as in fixed section R2, the fixed section is selected as a candidate section to be selected. As shown in Fig.
- the trend calculation unit 1051 calculates the change in slope based on the change in the feature amount. Specifically, the trend calculation unit 1051 smoothes the feature amount using a moving average or the like, and calculates the difference between a value at a given time and the previous value as the slope (trend) of the change in the feature amount.
- the section selection unit 1052 calculates the slope of the curve showing the variation of the feature quantity as the calculated variation trend, and if a continuous upward trend in the slope is observed, selects it as a candidate section to be selected, and if a continuous upward trend in the slope is not observed, excludes it from the candidates to be selected.
- a continuous upward trend in the slope may represent tool wear, for example.
- the replacement calculation unit 1053 determines the time when the feature value drops sharply and the slope becomes negative in the section selected as the candidate section to be selected as the time to replace the tool, and stores this in the storage unit 107. For example, as shown in FIG. 10, the time when a sharp drop is observed in the characteristic diagram showing the variation in the feature value of a certain section R2 and/or the characteristic diagram showing the variation in the slope is determined as the time to replace the tool.
- the reference trend calculation unit 1054 creates a reference trend by superimposing and averaging one or more fluctuations in the feature values between tool changes, as shown in FIG. 10, for example, and stores the reference trend in the storage unit 107.
- the reference trend range uses the maximum value (MAX), minimum value (MIN), or standard deviation of the multiple reference trends.
- FIG. 11 is a diagram showing an example of a reference trend and a reference trend range.
- the target section selection device 10 includes a determination unit 106, a memory unit 107, a waveform generation unit 108, a parameter optimization unit 109, a wear estimation unit 110, and a display unit 111.
- the determination unit 106, the memory unit 107, the waveform generation unit 108, the parameter optimization unit 109, the wear estimation unit 110, and the display unit 111 will be described below.
- Some or all of the determination unit 106, the memory unit 107, the waveform generation unit 108, the parameter optimization unit 109, the wear estimation unit 110, and the display unit 111 may be provided outside the target section selection device 10.
- FIG. 12 is a block diagram showing the determination unit 106 and the surrounding area of the determination unit 106.
- the determination unit 106 determines the degree of deviation from the reference and determines whether or not to replace a tool, based on the feature amount for a certain interval output from the feature amount calculation unit 104.
- the feature amount for a certain interval is, for example, at least one of statistics of the torque data, such as the mean, variance, skewness, kurtosis, and RMS (root mean square) of the torque data for the certain interval.
- the judgment unit 106 includes a reference judgment unit 1061 and a replacement judgment unit 1062 .
- the reference determination unit 1061 determines how far the feature calculated by the feature calculation unit 104 for actual servo waveform data newly acquired from an industrial machine is from the reference trend calculated by the reference tendency calculation unit 1054 and read out from the storage unit 107.
- Fig. 13 is a diagram showing a case where the feature is within the reference tendency and a case where it is outside the reference tendency.
- the reference judgment unit 1061 judges that the tool is broken when the features calculated by the feature calculation unit 104 for the actual servo waveform data newly acquired from the industrial machine match with the features calculated by the feature calculation unit for the estimated servo waveform data generated by the waveform generation unit 108 in a no-load state (a state in which no workpiece is present).
- the replacement determination unit 1062 determines whether the feature amount calculated by the feature amount calculation unit 104 is data before or after the tool replacement time calculated by the replacement calculation unit 1053.
- the replacement determination unit 1062 determines that the tool is before replacement if the feature amount is within the reference trend, and determines that the tool is after replacement if a sudden change has occurred and the feature amount is outside the reference trend and close to the initial value of the reference trend, as shown in Fig. 14.
- Fig. 14 is a diagram showing a case where the feature amount is within the reference trend and a case where the feature amount is outside the reference trend and close to the initial value of the reference trend.
- the memory unit 107 stores measured servo waveform data obtained from the industrial machine and used by the NC program division unit 102, and an NC program that controls the machining operation of the industrial machine and is used by the matching unit 103.
- the memory unit 107 also inputs and stores machine data, CNC (Computerized Numerical Control) parameters, macro variables, workpiece origin offset, tool offset values, etc.
- the memory unit 107 also inputs and stores servo waveform data such as cutting distance, cutting coefficient, estimated cutting force, estimated wear amount, cutting tool temperature, torque command, etc., as well as digitized shape and contact length of the workpiece (work), and tool information.
- the shape and contact length of the workpiece (work), and tool information are characteristic values indicating at least one characteristic of the workpiece and the tool.
- the storage unit 107 also stores servo waveform data of the estimated cutting force and servo waveform data of the estimated wear amount.
- the memory unit 107 also stores the correspondence between the behavior of the actual machine and the NC program, the degree of tendency, the target section, the reference tendency, the tool change date and time, and the machining time (cycle time).
- the waveform generating unit 108 generates servo waveform data from the NC program divided by the NC program dividing unit 102 . Furthermore, the waveform generating unit 108 sets execution parameters and executes a simulation to generate waveform data (estimated cutting force, estimated torque, etc.).
- the simulation execution parameters are motor characteristics, tool information, workpiece (material) information, cutting coefficients, etc. Most of the parameters are determined once the motor, tool, material, etc. are determined. However, the parameters used to estimate the cutting force are The cutting coefficients (Kte, Ktc) which are the execution parameters are obtained so as to match the actually measured torque by performing a simulation multiple times in a parameter optimization unit 109 described later.
- the torque command (TCMD) is calculated from the cutting coefficients as follows: However, since the cutting coefficients cannot be obtained directly from the torque command, the cutting coefficients (Kte, Ktc) are obtained by executing a simulation in the parameter optimization unit 109.
- FIG. 15 is a block diagram showing the waveform generating section 108 and the peripheral parts of the waveform generating section 108.
- the waveform generating unit 108 includes an NC program interpreting unit 1081 , a command generating unit 1082 , a feedback control unit 1083 , and a cutting force estimating unit 1084 .
- NC program interpretation unit 1081 determines the travel distance, travel path, and command speed based on input information such as divided NC (Numerical Control) programs (which become machining programs) output from the storage unit 107, CNC (Computerized Numerical Control) parameters, macro variables, workpiece origin offsets, tool offset values, etc.
- NC program interpretation unit 1081 interprets the NC program that specifies the operation of positioning the feed axis and speed control of the spindle, breaks down the NC program into each code and value, and determines the travel distance, travel path, and command speed.
- the NC program interpretation unit 1081 performs, for example, the following interpretations (A), (B), (C), and (D).
- (A) Codes M03, M04, and M05 are converted to clockwise rotation of the spindle, counterclockwise rotation of the spindle, and stop of spindle rotation.
- the command generating unit 1082 generates interpolation data by performing an interpolation calculation of points on the movement path at an interpolation period based on the movement distance, the movement path such as a straight line or a circular arc, and the command speed obtained by the NC program interpreting unit 1081. Based on the interpolated data, an acceleration/deceleration profile is generated, and then distributed to each control axis, so that a position command value or Give a speed command value.
- the command generating unit 1082 performs the following operations (E), (F), (G), (H), and (I).
- E Calculate the distance traveled.
- F Create a speed and position profile at the tool tip to satisfy the travel distance, command speed, and acceleration/deceleration parameters set by the machine. At this time, it is possible to consider the travel path and add a constraint such as keeping the acceleration in the centripetal direction of the arc below a certain level.
- G The profile is discretized for each control period. In the previous stage, the speed and position profiles are generated as a function of continuous time, and by sampling from them, the processing of fractions less than the control period can be omitted.
- acceleration/deceleration and filtering described above are the same ideas for command generation as in actual numerical control devices.
- CAM software did not handle acceleration/deceleration or filtering, and instead simulated movement at the command speed.
- cutting simulations have never taken into account feed including acceleration/deceleration, but by simulating elements such as acceleration/deceleration and filtering, it is possible to calculate required time and cycle time that are close to the actual time, which is useful when comparing with data from the actual machine.
- the feedback control unit 1083 simulates feedback control for making the drive of the motors that drive the feed axis and the main axis follow the position command value or speed command value generated by the command generation unit 1082, and generates and outputs servo waveform data.
- a feed axis is a mechanism that controls the relative positional relationship between a workpiece and a tool in industrial machinery.
- feed axes There are two types of feed axes: linear axes that perform linear translational motion, and rotary axes that perform rotary motion.
- linear axes that perform linear translational motion
- rotary axes that perform rotary motion.
- two models are required: a model representing the feed axis and a model of the controller that controls it.
- the feed axis converts the rotational motion of the motor into translational motion through a conversion mechanism such as a ball screw.
- the rotation angle of the motor is represented as ⁇
- the displacement in the translational motion after passing through the conversion mechanism is represented as X.
- the torque applied to the motor is represented as T.
- the feed axis is considered to be a rigid body, and its motion is represented by Equation 1 (Equation 1 below).
- Equation 1 J represents the moment of inertia of the drive mechanism, and D represents the viscous friction coefficient.
- Equation 1 When the rotation angle ⁇ in Equation 1 is replaced with the rotation speed ⁇ , Equation 1 can be expressed as Equation 2 (hereinafter, Equation 2).
- Equation 3 Equation 3 below
- Equation 3 corresponds to a first-order lag low-pass filter.
- FIG. 16 is a block diagram showing the configuration of a model representing a controller.
- the controller shown in FIG. 16 converts a position command XC in the X-axis direction into a rotation angle to obtain a position command ⁇ cmd , calculates the difference with the position feedback ⁇ fd to generate a speed command ⁇ cmd , calculates the difference with the speed feedback ⁇ fd , and performs PI processing.
- the controller integrates the signal after the PI processing to generate a torque command T cmd , and sets the detected angular velocity output from the feed axis model as the speed feedback ⁇ fd .
- the detected angular velocity is integrated to obtain a detected angle to be used as position feedback.
- the transfer function representation of the configuration shown in FIG. 16 is in the continuous time domain.
- a numerical simulation on a computer is performed in the discrete time domain, it is necessary to convert the transfer function shown in the continuous time domain into the discrete domain. This will be done according to the following rules.
- ⁇ Blocks involving simple addition or constant multiplication are calculated by simply adding variables and multiplying them by constants.
- the integral term 1/s is calculated by numerical integration, that is, for the time span t of the discrete simulation and the time series x of the input, the output is calculated using Equation 4 (Equation 4 below).
- the first-order term 1/(1+s) corresponds to a low-pass filter. This is calculated by forward difference.
- Equation 5 the conversion equation shown in Equation 5 (hereinafter Equation 5) is used.
- the spindle is the motor shaft for rotating the tool. It is the same as the feed axis in that it drives the motor and controls the machine end, but unlike the feed axis, it transmits rotational motion directly at the machine end instead of translational motion. Therefore, the spindle does not have a conversion mechanism using a ball screw. Also, unlike the feed axis, the input to the spindle is a speed command, and the internal control only has a speed control loop. Here, IP control is used.
- FIG. 17 is a block diagram showing the configuration of a model of a spindle.
- the feedback control unit 1083 outputs a torque command, which becomes servo data created within the feedback control unit 1083, to the cutting force estimation unit 1084.
- the cutting force estimation unit 1084 estimates the cutting force of the cutting tool based on the torque command output from the feedback control unit 1083 and the characteristic value stored in the storage unit 107.
- the value is a quantified workpiece shape or contact length.
- the cutting force is the resistance of the material to the penetration of the cutting tool, and means the force required to continue cutting.
- Torque [N.m] is calculated by multiplying the cutting force by the (principal force [N]) x (radius [ m]), so cutting force can be used almost synonymously with torque.
- the estimated cutting force can be calculated using the instantaneous cutting force model described below.
- the cutting edge of the cutting tool is cut into minute pieces in the vertical direction.
- the vertical size of the microblade is dz.
- the cutting forces acting on the microblade when the cutting tool cuts the workpiece are defined as dFt for the force in the tangential direction of the tool, dFr for the force in the radial direction, and dFa for the force in the axial direction.
- h is defined as the length of the workpiece cut by the microblade in one rotation (called the cutting thickness). The cutting thickness h depends on the position z and the rotation angle ⁇ of the microblade.
- the instantaneous cutting model is one in which the relationship of Equation 7 (hereinafter Equation 7) is established.
- the cutting coefficients Kte, Ktc, Kre, Krc, Kae, and Kac are coefficients determined by the physical relationship between the tool and the workpiece.
- the cutting coefficients Ktc, Krc, and Kac are coefficients equivalent to the specific cutting resistance.
- the cutting force can be calculated by somehow numerically representing the shape of the workpiece on a computer and simulating the cutting process at discrete times.
- a grid space divided in the X and Y directions is considered, and the workpiece shape is numerically expressed by recording the height of the workpiece in each cell.
- the cutting tool is expressed as a small plate divided in the height direction. The positions of the cutting tool and workpiece are updated every small time, the height of the workpiece cell that the tool comes into contact with is reduced, and a cutting force is generated according to the cutting thickness that occurs in that part, to perform the simulation.
- Equation 8 the cutting torque dT applied to the microplate of the cutting tool is given by the following Equation 8 (Equation 8 below).
- the cutting torque dT depends on the position z and the rotation angle ⁇ of the tool microplate.
- the average value h′ of the cutting thickness h is set as shown in the following formula 9 (the following formula 9).
- Equation 10 the sum of the tool height in contact with the workpiece is set as Cz.
- Cz will be called the contact length.
- the average cutting thickness h' is found from the machining conditions of feed rate and rotation speed. If the specific cutting resistance has been determined, the cutting torque can be simulated by finding the contact length Cz at each position. In reality, if measurement data is available, the contact length at each position (which serves as basic cutting data) can be found from Equation 10. The same applies to cutting forces in directions other than the tangential direction.
- the parameter optimization unit 109 optimizes the execution parameters so that the fluctuation of the feature amount in the fixed section selected by the target section selection unit 105 coincides with the fluctuation of the feature amount determined from the cutting force estimated from the servo waveform data generated by the waveform generation unit 108.
- the cutting coefficients (Kte, Ktc) serving as execution parameters used in the cutting force estimation unit 1084 are determined by executing a simulation in the parameter optimization unit 109.
- the parameter optimization unit 109 optimizes the cutting coefficients (Kte, Ktc), which are execution parameters, so that the average value of the measured torque, which is a characteristic quantity, in a certain section, coincides with the average value of the estimated torque, which is a characteristic quantity obtained from the cutting force.
- the first method is to optimize the cutting coefficients (Kte, Ktc) that match the actual measured torque at a certain point in time by determining the cutting coefficients Ktc and Kte so that the estimated torque average generated by changing the cutting coefficients Ktc and Kte is approximately the same as the characteristic value (average) of the actual measured torque.
- the characteristics of the measured torque value and the estimated torque value obtained by simulation using the cutting coefficients are shown in Fig. 18.
- the vertical axis represents the torque value and the horizontal axis represents the time.
- the point where Ktc and Kte are adjusted in the torque is fixed.
- the average value of the estimated torque values and the cutting coefficient Ktc are proportional to each other as shown in the characteristic diagram of Fig. 19, and the cutting coefficient Ktc is calculated so that the average value of the estimated torque values coincides with the average value of the actually measured torque values.
- the average value of the estimated torque values and the cutting coefficient Kte are proportional to each other as shown in the characteristic diagram of Fig. 20, and the cutting coefficient Kte is calculated so that the average value of the estimated torque values coincides with the average value of the actually measured torque values.
- the cutting coefficient is calculated from the change in the actually measured torque, and the formula for the change in the cutting coefficient is optimized.
- the average measured torque (cutting force) changes due to wear, etc. It is possible to obtain the execution parameter (cutting coefficient) to generate an estimated waveform that matches the change.
- the equation for the change in the cutting coefficient is fitted to a certain equation, as the torque changes in accordance with wear, and the cutting coefficient also changes. To find this equation, the initial cutting coefficient value and the coefficient of change are required, and the initial cutting coefficient value is calculated using the measured torque value immediately after the tool is replaced, resulting in the cutting coefficient value Ktc.
- the equation for the change is calculated by using the equations of multiple actual measurements to find the cutting coefficient value Ktc at each point.
- the changes in these cutting coefficient values are calculated using an approximation equation. This is the equation for the change in the cutting coefficient.
- the tool is replaced several times, and the changes in the cutting coefficient for the multiple times are added together to obtain an equation for the change in the standardized cutting coefficient (average, etc., is also acceptable).
- the wear estimation unit 110 estimates the amount of wear of a tool based on the cutting distance and wear rate of the tool.
- the wear estimation unit 110 estimates the wear of the cutting tool based on the fluctuation of the characteristic values stored in the memory unit 107 .
- the wear of cutting tools occurs on the cutting edge due to friction with the workpiece and chips.
- the wear of a cutting tool can be divided into wear on the rake face and wear on the flank face. Unless the cutting speed is high, wear on the flank face is predominant.
- the wear rate of flank wear dW/dL can be calculated by the following formula 11 (Equation 11 below).
- W is the wear rate of flank wear
- L is the cutting distance.
- K is a coefficient determined by the shape of the agglomerated particles
- H is the hardness of the cutting tool side
- ⁇ t is the normal stress on the wear surface.
- the normal stress on the wear surface ⁇ t is calculated by substituting the cutting speed and the tool clearance angle.
- the wear rate of the rake wear can be calculated by the following formula 12 (Equation 12 below): where W is the amount of flank wear, L is the cutting distance, C and ⁇ are characteristic constants determined by the combination of the cutting tool and the workpiece, and T is the temperature of the cutting tool.
- the cutting distance L and the temperature T of the cutting tool in the above formulas 11 and 12 are characteristic values stored in the storage unit 107.
- the cutting temperature can be estimated from the cutting speed.
- the estimated wear amount per machining is calculated from the wear rate and the cutting distance, which is the distance cut when the tool is used.
- the estimated wear amount of the tool can be calculated by executing one machining operation, not directly from the torque value (variation of the feature value).
- the variation of the estimated wear amount since the tool change is the sum of the wear amounts since the tool change.
- characteristic diagram A shows the relationship between cutting distance (unit: m) and friction amount (unit: ⁇ m)
- characteristic diagram B a characteristic diagram showing the relationship between wear amount (unit: ⁇ m) and temperature (unit: K)
- characteristic diagram C a characteristic diagram showing the relationship between temperature (unit: K) and friction speed (unit: ⁇ m/m)
- characteristic diagram D a characteristic diagram showing the relationship between cutting distance (unit: m) and cutting resistance (unit: Nm/m)
- the wear estimation unit 110 estimates the limit wear amount of the cutting tool and the time when the limit wear amount will be reached.
- the limit wear amount W lim can be calculated using Formula 11 or Formula 12 by setting the limit cutting distance L lim .
- the limit cutting distance Lmin is not a set life but a cutting distance that can be used up to the limit, and since it changes depending on the required machining accuracy, an appropriate value is entered.
- the time when the limit wear amount is reached is the same as the time when the limit cutting distance L lim is reached.
- the time t lim when the limit cutting distance L lim is reached can be estimated by the following formula 13 (the following formula 13) if the cycle time t ct required for one NC program execution is known and the cutting distance L 1 per cycle time is known.
- Fig. 22 is an explanatory diagram showing the limit wear amount and the time when the limit wear amount is reached.
- Fig. 22 shows the transition of the estimated wear amount and the transition of the wear amount at the actual cutting force, and also shows the limit wear amount and the time when the limit wear amount is reached.
- the target section selection unit 105 recalculates and updates the reference trend
- the parameter optimization unit 109 recalculates and updates execution parameters such as the cutting coefficient
- the wear estimation unit 110 recalculates and updates the fluctuation in the wear amount and the limit wear amount.
- the display unit 111 displays the variation in the feature amount for each fixed interval and the variation in the amount of wear of the tool corresponding to the interval. In addition, the display unit 111 displays on the display screen the fluctuation in the amount of wear of the tool corresponding to a certain section calculated by the wear estimation unit 110, the limit wear amount of the tool, and the time when the limit wear amount will be reached.
- the variation in the amount of wear of the tool, the limit wear amount of the cutting tool, and the time when the limit wear amount is reached may be shown numerically or may be graphed as shown in FIG.
- the display unit 111 displays on the display screen the cycle time of the NC program estimated based on the number of calculations required by the command generating unit 1082 for the interpolation calculation of the NC program,
- the NC program stored in the storage unit 107 is edited so as to satisfy the target cycle time. If we have a time series of cutting force, we can determine the cycle time of the target time series.
- the cycle time can be calculated by counting the time of the servo data. In the case of actual measurement, the cycle time for the NC program of the actual machine is known, and in the case of estimation, the cycle time for the NC program executed on this device is known. If you change part of the NC program (for example, F value, tool path change, etc.), the cycle time will change.
- Fig. 25 is an explanatory diagram showing an example in which the F-value of an NC program is changed.
- the F-value in the NC program before editing is shown as F800, but in the NC program after editing, the F-value is shown as F1000.
- FIG. 26 is a flowchart showing the operation of the target section selection configuration unit of the target section selection device.
- the waveform dividing section 101 reads out the actually measured servo waveform data from the storage section 107, divides the actually measured servo waveform data into certain intervals, and outputs the divided servo waveform data.
- step S12 the NC program division unit 102 reads out from the memory unit 107 an NC program that controls the machining operation of the industrial machine, divides the NC program into a certain number of blocks, and outputs the divided NC program.
- Step S12 may be executed before step S11, or may be executed in parallel with step S11.
- step S13 the matching unit 103 matches the servo waveform data for each fixed section divided by the waveform division unit 101 with the NC program for each fixed block divided by the NC program division unit 102.
- step S14 the feature calculation unit 104 calculates the feature for a certain section using the servo waveform data for each certain section that has been found to match the NC program by the matching unit 103.
- step S15 the target interval selection unit 105 calculates the trend of the variation of the feature calculated by the feature calculation unit 104, and selects a fixed interval that can express the trend of the variation of the feature from among the multiple fixed intervals based on the calculated trend.
- the target section selection device can be realized by hardware, software, or a combination of these.
- being realized by software means being realized by a computer reading and executing a program.
- each target section selection device is equipped with a calculation processing device such as a CPU (Central Processing Unit).
- the target section selection device also has a secondary storage device such as an HDD (Hard Disk Drive) that stores various control programs such as application software or an OS (Operating System), and a main storage device such as a RAM (Random Access Memory) for storing data temporarily required for the calculation processing device to execute a program.
- a calculation processing device such as a CPU (Central Processing Unit).
- the target section selection device also has a secondary storage device such as an HDD (Hard Disk Drive) that stores various control programs such as application software or an OS (Operating System), and a main storage device such as a RAM (Random Access Memory) for storing data temporarily required for the calculation processing device to execute a program.
- HDD Hard Disk Drive
- OS Operating System
- main storage device such as a RAM (Random Access Memory) for storing data temporarily required for the calculation processing device to execute a program.
- the arithmetic processing unit reads the application software or OS from the auxiliary storage device, and while expanding the loaded application software or OS into the main storage device, performs arithmetic processing based on the application software or OS. Also, based on the results of this calculation, various pieces of hardware equipped in each device are controlled. In this way, the functional blocks of this embodiment are realized.
- Each component included in the target section selection device can be realized by hardware including electronic circuits, etc.
- some or all of the functions of each component included in the target section selection device can be configured from integrated circuits (ICs), such as ASICs (Application Specific Integrated Circuits), gate arrays, FPGAs (Field Programmable Gate Arrays), and CPLDs (Complex Programmable Logic Devices).
- ICs integrated circuits
- ASICs Application Specific Integrated Circuits
- FPGAs Field Programmable Gate Arrays
- CPLDs Complex Programmable Logic Devices
- Non-transitory computer readable media include various types of tangible storage media.
- Examples of non-transitory computer readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROM (Read Only Memory), CD-R, CD-R/W, and semiconductor memory (e.g., mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, and RAM (random access memory)).
- the program may also be provided to the computer by various types of transitory computer readable media.
- the following effects can be obtained.
- Matching enables you to determine which parts of a program are likely to have errors.
- sensors are not required and retrofitting is easy.
- the correlation between the waveform data and the amount of wear is simulated. Since it is only necessary to reproduce the waveform data, there is no need to obtain highly accurate physical quantities, making prior experiments unnecessary.
- Abnormalities (wear) can be reproduced.
- the range for calculating the amount of wear can be narrowed down based on actual data.
- the interval to be simulated can be minimized.
- a certain section can be selected from a number of fixed sections into which the actually measured servo waveform data of the industrial machinery is divided, based on the tendency of fluctuations in the feature quantity.
- a feature amount calculation unit (104) that calculates a feature amount for each of the fixed intervals by using servo waveform data for the fixed intervals;
- the device for selecting a target section of an industrial machine change is provided.
- Appendix 2 The device for selecting a target section for changes in an industrial machine as described in Appendix 1, wherein the feature amount is a statistical amount of torque data within the certain section.
- the target section selection unit (105) a tendency calculation unit (1051) that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit; a section selection unit (1052) that selects a certain section representing wear from the change in the slope calculated by the tendency calculation unit; a tool replacement calculation unit (1053) that calculates a tool replacement time from at least one of a feature amount variation and a slope variation in the fixed section selected by the section selection unit; a reference trend calculation unit (1054) that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit; 2.
- a device for selecting a target section of a change in an industrial machine comprising:
- (Appendix 4) a waveform generating unit (108) that generates servo waveform data from the NC program divided by the NC program dividing unit; a parameter optimization unit (109) that optimizes execution parameters so that a variation in a feature value in the fixed section selected by the target section selection unit coincides with a variation in a feature value determined from a cutting force estimated from the servo waveform data generated by the waveform generation unit; a determination unit (106) for determining whether a tool has been replaced and for determining a deviation of the feature from a reference; a wear estimation unit (110) that estimates a wear amount of the tool based on a cutting distance and a wear rate of the tool; A display unit (111) that displays the variation in the feature amount for each fixed section and the variation in the wear amount of the tool corresponding to the fixed section;
- the target section selection unit (105) a tendency calculation unit (1051) that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit; a section selection unit (1052) that selects a certain section representing wear from the change in the slope calculated by the tendency calculation unit; a tool replacement calculation unit (1053) that calculates a tool replacement time based on a feature amount variation and a slope variation in the fixed section selected by the section selection unit; a reference trend calculation unit (1054) that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit,
- the determination unit (106) a reference determination unit (1061) that determines whether a feature calculated by the feature calculation unit for actual servo waveform data newly acquired from the industrial machine is different from the reference tendency calculated by the reference tendency calculation unit; a replacement determination unit (1062) that determines whether the feature amount calculated by the replacement calculation unit is data before or after the calculated tool replacement time;
- a memory unit (107) is provided for storing a characteristic value indicating at least one characteristic of a workpiece and a tool;
- the waveform generating unit (108) An NC program interpretation unit (1081) that interprets an NC program that specifies the positioning of a feed axis and the speed control of a spindle; a command generating unit (1082) that performs interpolation of a command point from the NC program interpreted by the NC program interpretation unit and generates a position command value or a speed command value; a feedback control unit (1083) that performs feedback control to make the rotation of a motor that drives the feed shaft or the main shaft follow the position command value or the speed command value generated by the command generation unit; a cutting force estimating unit (1084) that estimates a cutting force based on a torque command calculated by the feedback control unit as a result of the feedback control and the characteristic value stored in the memory unit;
- the device for selecting a target section of a change in an industrial machine comprising:
- Appendix 7 The device for selecting a target section for changes in industrial machinery as described in Appendix 4, wherein the wear estimation unit (110) estimates a limit wear amount of the tool and a time when the limit wear amount will be reached.
- the display unit (111) displays the fluctuation in the amount of wear of the tool corresponding to the certain section calculated by the wear estimation unit, the limit wear amount of the tool, and the time when the limit wear amount will be reached.
- the target section selection unit (105) a tendency calculation unit (1051) that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit; a section selection unit (1052) that selects a certain section representing wear from the change in the slope calculated by the tendency calculation unit; a tool replacement calculation unit (1053) that calculates a tool replacement time based on a feature amount variation and a slope variation in the fixed section selected by the section selection unit; a reference trend calculation unit (1054) that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit,
- the display unit (111) displays the cycle time of the NC program estimated based on the number of calculations required by the command generation unit (1082) for the interpolation calculation of the NC program, and edits the NC program so as to satisfy a target cycle time.
- the computer A process of dividing the servo waveform data into certain intervals; A process of dividing an NC program that drives an industrial machine into a certain number of blocks; A process of matching the servo waveform data for each of the divided fixed sections with an NC program for each of the divided fixed blocks; A process of calculating a feature amount for each of the fixed sections by using servo waveform data of the fixed section; selecting a certain section that can express the tendency of fluctuation in the feature amount from the plurality of divided certain sections based on the tendency of fluctuation in the feature amount calculated for each certain section; A method for selecting a target section for changes in industrial machinery.
- Target section selection device 101 Waveform division unit 102 NC program division unit 103 Matching unit 104 Feature amount calculation unit 105 Target section selection unit 106 Judgment unit 107 Memory unit 108 Waveform generation unit 109 Parameter optimization unit 110 Wear estimation unit 111 Display unit 1061 Criterion judgment unit 1062 Replacement judgment unit 1081 NC program interpretation unit 1082 Command generation unit 1083 Feedback control unit 1084 Cutting force estimation unit
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
Abstract
Description
本開示は、産業機械の変化の対象区間選択装置及び対象区間選択方法に関し、特に、産業機械における、実測のサーボ波形データ(時系列データ)を分割した複数の一定区間から、特徴量の変動の傾向に基づき、一定区間を選択する対象区間選択装置及び対象区間選択方法に関する。 This disclosure relates to a target section selection device and a target section selection method for changes in industrial machinery, and in particular to a target section selection device and a target section selection method for selecting a certain section from a plurality of fixed sections into which actual servo waveform data (time series data) in industrial machinery is divided, based on the tendency of fluctuations in feature quantities.
サーボ波形データは、モータ、機械、加工の状態を推測できる元データになる。故障や摩耗の検知・予知にも使用できるので、各所で利用されている。
サーボ波形データを用いて工具摩耗の予測及び工具劣化状況を検出する装置が、例えば、特許文献1及び特許文献2に記載されている。
Servo waveform data is the source data that can be used to infer the state of motors, machines, and processing. It can also be used to detect and predict failures and wear, so it is used in many places.
Apparatuses for predicting tool wear and detecting tool deterioration conditions using servo waveform data are described in, for example, Japanese Patent Application Laid-Open No. 2003-233993 and Japanese Patent Application Laid-Open No. 2003-233994.
特許文献1には、簡易に精度良く工具の摩耗量を推定することができる工具摩耗予測装置が記載されている。
具体的には、特許文献1には、工作機械に設置した工具の摩耗量を予測する工具摩耗予測装置であって、入力された加工データに基づいて工具の予測工具摩耗量を算出する工具摩耗量予測部と、加工データに基づいた値と工作機械から取得したデータに基づいた値とを比較し、当該比較した結果に基づいて予測工具摩耗量を修正する工具摩耗量修正処理部と、を備えた工具摩耗予測装置が記載されている。
Specifically,
特許文献2には、工具劣化状況データに基づいて工具交換時期を算出する工具交換時期管理システムが記載されている。
具体的には、特許文献2には、加工状態を示す時系列データを機械から取得するデータ取得部と、時系列データから加工、工具、ワーク、及び工具速度のうちの少なくとも1つの条件又は条件の組合せによって標本データを切出すデータ切出し部と、標本データから統計学的指標である加工状態量を算出する加工状態量算出部と、加工状態量を時系列に並べた工具劣化状況データを生成する工具劣化状況生成部と、工具劣化状況データに基づいて工具交換時期を算出する工具交換時期算出部と、を備えた工具交換時期管理システムが記載されている。
Japanese Patent Application Laid-Open No. 2003-233693 describes a tool replacement timing management system that calculates a tool replacement timing based on tool deterioration status data.
Specifically,
切削力又は工具摩耗を推定するシステムが存在する。切削力を推定する有限要素法(FEM)などのシステムでは、理想的な切削力が推定でき、それに伴い、理想的な工具の摩耗状態、又は、摩耗量が推定できるので、理想的な加工可能回数が推定できる。
しかし、推定された切削力は実データを反映したものではない。FEMは、設計時に使用するため、実データとの突合せを考えていない。
そもそも、FEMは、計算に必要な各定数を求めるために、事前の実験が必要となる。また、計算時間がかかりすぎるため、十分にも短い時間内で計算を終えることは難しい。
そのため、実加工中のデータを使用して、切削力、並びに、摩耗量を推定するような有限要素法(FEM)を組み合わせたシステムは、商用製品では見られない。
There are systems for estimating cutting force or tool wear. Systems such as the finite element method (FEM) for estimating cutting force can estimate the ideal cutting force, and therefore the ideal wear state or amount of wear of the tool, and therefore the ideal number of possible machining operations can be estimated.
However, the estimated cutting force does not reflect the actual data. Since FEM is used at the design stage, it is not considered to be compared with the actual data.
First of all, FEM requires prior experiments to determine the constants required for calculation. Also, since the calculation takes too much time, it is difficult to complete the calculation within a sufficiently short time.
Therefore, no commercial products have been found that combine a finite element method (FEM) to estimate cutting force and wear volume using data from actual machining.
また、工具摩耗を推定するシステムでは、実際の切削力データを元に摩耗の変化が推定できる。ただし、工具摩耗を推定するシステムでは、ノイズなどの影響で工具の摩耗を表せる箇所が全加工に対して一部であるため、どこを定点観測して計算するのか、抜き出し箇所を特定するのが難しい。さらに、工具摩耗を推定するシステムでは、ノイズに埋もれやすい細い工具などを対象外にする必要があり、対象工具も限定される。
より実用的な工具の摩耗を推定するシステムを考えるとき、どこを定点観測するか自動で指定する機能があれば、切削力、並びに、摩耗の推定をする箇所を限定してシミュレーションを実施できるので、計算時間が削減できる。
有限要素法(FEM)に対しても、有用であり、工具摩耗を推定するシステムに対しても、関係ない区間を除外して、摩耗の推定ができるようになる。
In addition, systems that estimate tool wear can estimate changes in wear based on actual cutting force data. However, in systems that estimate tool wear, due to the effects of noise and other factors, only a portion of the total machining can show tool wear, making it difficult to identify which points to extract and observe for fixed-point calculations. Furthermore, systems that estimate tool wear must exclude thin tools that are easily lost in noise, limiting the tools they can target.
When considering a more practical system for estimating tool wear, if there was a function to automatically specify where to perform fixed-point observations, it would be possible to perform a simulation by limiting the locations where cutting force and wear are estimated, thereby reducing calculation time.
It is also useful for the finite element method (FEM), and for systems that estimate tool wear, it enables wear estimation by excluding irrelevant sections.
よって、定点観測等のために、産業機械における、実測のサーボ波形データを分割した複数の一定区間から、必要とされる一定区間を選択する対象区間選択装置及び対象区間選択方法が望まれる。 Therefore, there is a need for a target section selection device and a target section selection method that selects a required fixed section from multiple fixed sections into which the measured servo waveform data of an industrial machine is divided for fixed point observation, etc.
本開示の代表的な第1の態様は、サーボ波形データを、一定区間ごとに分割する波形分割部と、
産業機械を駆動するNCプログラムを、一定ブロックごとに分割するNCプログラム分割部と、
前記波形分割部で分割された前記一定区間ごとのサーボ波形データと、前記NCプログラム分割部で分割された前記一定ブロックごとのNCプログラムとのマッチングを行うマッチング部と、
前記一定区間ごとに、前記一定区間のサーボ波形データを用いて、特徴量を計算する特徴量算出部と、
前記一定区間ごとに前記特徴量算出部で算出した前記特徴量の変動の傾向に基づき、分割した複数の一定区間から、前記特徴量の変動の傾向を表現できる一定区間を選択する対象区間選択部と、
を備える、産業機械の変化の対象区間選択装置である。
A first representative aspect of the present disclosure includes a waveform division unit that divides servo waveform data into certain intervals;
an NC program division unit that divides an NC program that drives an industrial machine into a certain number of blocks;
a matching unit that performs matching between the servo waveform data for each fixed section divided by the waveform dividing unit and the NC program for each fixed block divided by the NC program dividing unit;
a feature amount calculation unit that calculates a feature amount for each of the fixed intervals by using servo waveform data of the fixed interval;
a target interval selection unit that selects a certain interval that can express the tendency of fluctuation in the feature amount from the plurality of divided certain intervals based on the tendency of fluctuation in the feature amount calculated by the feature amount calculation unit for each certain interval;
The present invention relates to a device for selecting a target section of an industrial machine.
本開示の代表的な第2の態様は、コンピュータが、
サーボ波形データを、一定区間ごとに分割する処理と、
産業機械を駆動するNCプログラムを、一定ブロックごとに分割する処理と、
分割された前記一定区間ごとのサーボ波形データと、分割された前記一定ブロックごとのNCプログラムとのマッチングを行う処理と、
前記一定区間ごとに、前記一定区間のサーボ波形データを用いて、特徴量を計算する処理と、
前記一定区間ごとに算出された前記特徴量の変動の傾向に基づき、分割した複数の一定区間から、前記特徴量の変動の傾向を表現できる一定区間を選択する処理と、
を実行する、産業機械の変化の対象区間選択方法である。
A second representative aspect of the present disclosure is a method for implementing a method for implementing a computer-based method comprising:
A process of dividing the servo waveform data into certain intervals;
A process of dividing an NC program that drives an industrial machine into a certain number of blocks;
A process of matching the servo waveform data for each of the divided fixed sections with an NC program for each of the divided fixed blocks;
A process of calculating a feature amount for each of the fixed sections by using servo waveform data of the fixed section;
selecting a certain section that can express the tendency of fluctuation in the feature amount from the plurality of divided certain sections based on the tendency of fluctuation in the feature amount calculated for each certain section;
This is a method for selecting a target section for changes in industrial machinery.
以下、本開示の実施形態について図面を用いて詳細に説明する。 The following describes in detail the embodiments of the present disclosure with reference to the drawings.
図1は本開示の一実施形態の、産業機械の変化を観測する区間を選択する対象区間選択装置の全体構成を示すブロック図である。
対象区間選択装置10は、波形分割部101、NC(Numerical Control)プログラム分割部102、マッチング部103、特徴量算出部104、対象区間選択部105、判定部106、記憶部107、波形生成部108、パラメータ最適化部109、摩耗推定部110及び表示部111を備えている。
対象区間選択装置10が変化を観測する区間を選択する産業機械は、例えば、工作機械及び切削加工ロボットである。
FIG. 1 is a block diagram showing the overall configuration of a target section selection device for selecting a section in which changes in an industrial machine are observed, according to an embodiment of the present disclosure.
The target
The industrial machines for which the target
波形分割部101、NCプログラム分割部102、マッチング部103、特徴量算出部104及び対象区間選択部105は、実測のサーボ波形データを分割した複数の一定区間から、トルクデータの平均値等の特徴量の変動の傾向に基づき、一定区間を選択する機能を実現するための構成部(以下、この構成部を「対象区間選択構成部」という)となる。記憶部107は、波形分割部101で用いる、実測のサーボ波形データ、及びNCプログラム分割部102で用いる、産業機械の加工動作を制御するNCプログラムを記憶している。記憶部107については後述する。記憶部107は、対象区間選択構成部に含まれてもよいが、以下の説明では、記憶部107は、対象区間選択構成部に含まれないものとして説明する。
波形生成部108は、1つ以上の外部ツールを利用することも考えられ、生成される波形が適当であり、且つ、生成するための時間コストが十分に高速であれば、将来、置き換えることも可能になる。
The
The
まず、対象区間選択装置10における、対象区間選択構成部について説明し、その後、対象区間選択構成部以外の各部について説明する。
図2は、対象区間選択装置10における対象区間選択構成部を示すブロック図である。
First, the target section selection configuration unit in the target
FIG. 2 is a block diagram showing a target section selection configuration unit in the target
以下、対象区間選択構成部に含まれる各部について説明する。
(波形分割部101)
波形分割部101は、記憶部107から、産業機械から取得した実測のサーボ波形データを読み出して、実測のサーボ波形データを一定区間ごとに分割し、分割したサーボ波形データを特徴量算出部104又はマッチング部103に出力し、記憶部107に記憶する。波形分割部101は、分割した一定区間も対象区間として記憶部107に記憶する。一定区間は、産業機械の駆動部がX軸,Y軸,及びZ軸方向に駆動する場合、X軸,Y軸,及びZ軸それぞれが1つの動作をする単位まで分割した区間である。実測のサーボ波形データは、例えば、主軸速度、主軸トルク指令、X軸位置指令、Y軸位置指令、Z軸位置指令及び切削送り信号である。分割を行う一定区間は、例えばX軸位置指令の移動量変化に基づいて決定する。
波形分割部101は、実測のサーボ波形データを、記憶部107を介さず直接産業機械から取得してもよいし、産業機械から出力される実測のサーボ波形データをCNC(Computerized Numerical Control)又はPLC(Programmable Logic Controller)を介して取得してもよい。記憶部107に記憶される実測のサーボ波形データも、直接産業機械から取得されたデータであってもよいし、産業機械から出力される実測のサーボ波形データをCNC(Computerized Numerical Control)又はPLC(Programmable Logic Controller)を介して取得されたデータであってもよい。
Each unit included in the target section selection component will be described below.
(Waveform division section 101)
The
The
図3はX軸位置指令の移動量変化に基づき、分割する一定区間を示す波形図である。図3では、X軸位置指令の移動量変化に基づき、分割する一定区間の他に、ある工具交換動作から次の工具交換動作までの同一工具使用区間、切削送り信号が一定の区間、及び速度が一定の区間も示しているが、これらの区間は後述するマッチング部103でのマッチング動作のために用いる。図3では、X軸位置指令の他に、主軸速度、主軸トルク指令、Y軸位置指令、Z軸位置指令及び切削送り信号が示されている。
図3に示す波形図において、主軸速度の場合、縦軸の目盛りa1~a9は、-20000、-15000、-10000、-5000、0、5000、10000、15000、20000(1/mm)である。主軸トルク指令の場合、縦軸の目盛りa1~a9は、-200、-150、-100、-50、0、50、0、100、150、200(%)である。X軸位置指令の場合、縦軸の目盛りa1~a9は、-300、-200、-100、0、100、200、300、400、500(mm)である。Y軸位置指令の場合、縦軸の目盛りa1~a9は、-200、-100、0、100、200、300、400、500、600(mm)である。Z軸位置指令の場合、縦軸の目盛りa1~a9は、-300、-200、-100、0、100、200、300、400、500(mm)である。切削送り信号の場合、縦軸の目盛りa1~a9は、-200、0、200、400、600、800、1000、1200、1400である。
Fig. 3 is a waveform diagram showing fixed sections divided based on the change in the movement amount of the X-axis position command. In Fig. 3, in addition to the fixed sections divided based on the change in the movement amount of the X-axis position command, the same tool use section from one tool change operation to the next tool change operation, the section with a constant cutting feed signal, and the section with a constant speed are also shown, but these sections are used for the matching operation in the
3, in the case of the spindle speed, the vertical axis scales a1 to a9 are -20000, -15000, -10000, -5000, 0, 5000, 10000, 15000, and 20000 (1/mm). In the case of the spindle torque command, the vertical axis scales a1 to a9 are -200, -150, -100, -50, 0, 50, 0, 100, 150, and 200 (%). In the case of the X-axis position command, the vertical axis scales a1 to a9 are -300, -200, -100, 0, 100, 200, 300, 400, and 500 (mm). In the case of a Y-axis position command, the vertical axis scales a1 to a9 are -200, -100, 0, 100, 200, 300, 400, 500, and 600 (mm). In the case of a Z-axis position command, the vertical axis scales a1 to a9 are -300, -200, -100, 0, 100, 200, 300, 400, and 500 (mm). In the case of a cutting feed signal, the vertical axis scales a1 to a9 are -200, 0, 200, 400, 600, 800, 1000, 1200, and 1400.
(NCプログラム分割部102)
NCプログラム分割部102は、記憶部107から、産業機械の加工動作を制御するNCプログラムを読み出して、NCプログラムを一定ブロックごとに分割して、分割したNCプログラムをマッチング部103に出力し、記憶部107に記憶する。一定ブロックは、X軸位置指令の移動量変化に基づいて決定する。
(NC program dividing unit 102)
The NC
図4は、X軸位置指令の移動量変化に基づき分割する一定ブロックを示すNCプログラムの図である。図4では、X軸位置指令の移動量変化に基づき分割する一定ブロックの他に、ある工具交換動作から次の工具交換動作までの同一工具使用区間に対応する一定ブロック、切削送り信号が一定の区間に対応する一定ブロック、及び速度が一定の区間に対応する一定ブロックも示しているが、これらの一定ブロックは後述するマッチング部103でのマッチング動作のために用いる。
FIG. 4 is a diagram of an NC program showing fixed blocks divided based on changes in the amount of movement of the X-axis position command. In addition to the fixed blocks divided based on changes in the amount of movement of the X-axis position command, FIG. 4 also shows fixed blocks corresponding to the same tool use section from one tool change operation to the next tool change operation, fixed blocks corresponding to a section where the cutting feed signal is constant, and fixed blocks corresponding to a section where the speed is constant, and these fixed blocks are used for the matching operation in matching
(マッチング部103)
マッチング部103は、波形分割部101で分割した一定区間ごとのサーボ波形データと、NCプログラム分割部102で分割した一定ブロックごとのNCプログラムとのマッチング(対応付け)を行い、一定区間ごとのサーボ波形データをマッチング部103に出力し、記憶部107に対応関係を記憶する。実機での挙動とNCプログラムとの対応付けを行うのは、実機の解析を行う際に注目するべき挙動がNCプログラムのどのような箇所であるかを確認するためである。
(Matching unit 103)
The
マッチング部103は、位置指令の移動量変化について、波形分割部101において設定された一定区間と、NCプログラム分割部102において設定された一定ブロックとのマッチングを、いきなり行うのは難しいため、複数段階を経てマッチングを行う。具体的には、マッチング部103は、一定区間と一定ブロックとのマッチングを、同一工具区間のマッチング、同一速度区間と切削送り信号区間との少なくとも一方の区間のマッチング、位置指令の移動量変化の区間のマッチングの順で行う。図5は、同一工具区間、同一速度区間と切削送り信号区間、位置指令の移動量変化の区間の順でマッチングを行う様子を示す図である。
The
位置指令の移動量変化について、一定区間と、一定ブロックとのマッチングを行う場合、以下の点の考慮が必要な場合がある。
(1)NCプログラムでは分割できるが、実測のサーボ波形データでは位置指令の移動量の時間変化が同じ傾きを有し分割が難しい場合
図6は、NCプログラムと、X軸の位置指令の移動量を示す波形及び波形の傾きとを示す図である。
図6に示すように、G01 X20.0、G01 X10.0で示されるNCプログラムは、G01 X20.0と、G01 X10.0との2つに分解できるが、このNCプログラムに対応する、X軸の位置指令の移動量を示す波形は、同じ傾きとなるので分割が難しい。この場合は、G01 X20.0、G01 X10.0で示されるNCプログラムと波形データとを分割せず、1つの移動量を示すNCプログラム及び波形データとして扱う。
(2)NCプログラムの一行に対して、複数動作が組み合わさっている場合
NCプログラムの一行が複数の動作が組み合わさった固定サイクルとなっている場合、例えば、NCプログラムの一行がG84 Z-1.0 R3.0 K0 F100で示される場合、図7に示すように、固定サイクルを再現した、固定サイクルを使わないNCプログラムを作成し、波形分割部101において設定された一定区間とマッチングさせる。図7は、固定サイクルを示すNCプログラムの一行と、固定サイクルを使わずに制御を再現したNCプログラムとを示す図である。
Regarding the change in the movement amount of the position command, when matching a certain section with a certain block, the following points may need to be taken into consideration.
(1) A case where division is possible in the NC program, but division is difficult in the actually measured servo waveform data because the change in the amount of movement of the position command over time has the same slope. FIG. 6 is a diagram showing an NC program, a waveform indicating the amount of movement of the position command on the X-axis, and the slope of the waveform.
As shown in Figure 6, the NC program indicated by G01 X20.0 and G01 X10.0 can be decomposed into two parts, G01 X20.0 and G01 X10.0, but the waveforms indicating the movement amount of the X-axis position command corresponding to this NC program have the same slope, making it difficult to separate them. In this case, the NC program and waveform data indicated by G01 X20.0 and G01 X10.0 are not separated, but are treated as an NC program and waveform data indicating a single movement amount.
(2) When multiple operations are combined for one line of an NC program When one line of an NC program is a canned cycle consisting of multiple operations combined, for example, when one line of an NC program is represented by G84 Z-1.0 R3.0 K0 F100, an NC program that reproduces the canned cycle but does not use the canned cycle is created and matched with the fixed section set in the
(特徴量算出部104)
特徴量算出部104は、波形分割部101から出力された、又はマッチング部103でNCプログラムとのマッチングが認められた、一定区間ごとのサーボ波形データを用いて、一定区間での特徴量を計算する。一定区間での特徴量は、例えば、一定区間でのトルクデータ(例えば、主軸トルク指令)の平均、分散、歪度、尖度、及びRMS(二乗平均平方根)等のトルクデータの統計量の少なくとも1つである。
例えば、特徴量算出部104は、図8に示すように、X軸位置指令の移動量変化をもとに分割した一定区間R1(図8では「区間R1」と示す)、一定区間R2(図8では「区間R2」と示す)でのトルクデータの平均値を特徴量として求める。そして、NCプログラムの実行回数ごとに一定区間R1、一定区間R2での特徴量を集めて、一定区間R1、一定区間R2での特徴量の遷移グラフを求める。図8は、一定区間でのトルクデータの平均値を特徴量として求め、特徴量の遷移グラフを求める過程を示す図である。
(Feature Quantity Calculation Unit 104)
The feature
For example, as shown in Fig. 8, the feature
(対象区間選択部105)
対象区間選択部105は、一定区間ごとに前記特徴量算出部104で算出した特徴量の変動の傾向に基づき、分割した複数の一定区間から、特徴量の変動の傾向を表現できる一定区間を選択する。
一定区間の選択方法は、例えば、図9に示すように、一定区間R1、R2の特徴量の変動の傾向として、特徴量の変動を示す曲線の傾きを算出し、一定区間R2のように、傾きの継続的な上昇傾向が認められる場合は、一定区間を選択対象区間候補として選択する。図9に示すように、傾きが正であれば上昇なので、ほとんどの傾きが正であれば、継続して上昇していることになり、選択対象区間候補として選択する。1つの工具の中で一定区間が複数あり、選択対象区間候補が複数あった場合は、複数の一定区間を選択対象区間候補として残す。
(Target Section Selection Unit 105)
The target
The method of selecting a fixed section is, for example, as shown in Fig. 9, to calculate the slope of a curve showing the variation in the feature quantity as the tendency of variation in the feature quantity of fixed sections R1 and R2, and if a continuous upward trend in the slope is recognized as in fixed section R2, the fixed section is selected as a candidate section to be selected. As shown in Fig. 9, if the slope is positive, it is an upward trend, so if most of the slopes are positive, it means that there is a continuous increase, and the fixed section is selected as a candidate section to be selected. If there are multiple fixed sections in one tool and multiple candidates for the selection section, multiple fixed sections are left as candidates for the selection section.
一方、図9に示す一定区間R1のように、傾きの継続的な上昇、下降の傾向が認められない場合(傾きの継続的な上昇傾向が認められない場合)は、選択対象区間候補から除外する。 On the other hand, if there is no continuous upward or downward trend in the slope, such as in the case of the fixed section R1 shown in Figure 9 (if there is no continuous upward trend in the slope), then this section is excluded from the candidates for selection.
対象区間選択部105は、例えば、図2に示すように、傾向算出部1051、区間選択部1052、交換算出部1053及び基準傾向算出部1054で構成される。
傾向算出部1051及び区間選択部1052は、対象区間選択部105における、上述した対象区間選択動作を行う。
The target
The
傾向算出部1051は、特徴量の変動に基づき、傾きの変動を計算する。具体的には、傾向算出部1051は、特徴量を移動平均等で平滑化し、あるとき時の値と前の値との差分を特徴量の変動の傾き(傾向)として算出する。
The
区間選択部1052は、算出した変動の傾向として、特徴量の変動を示す曲線の傾きを算出し、傾きの継続的な上昇傾向が認められる場合は、選択対象区間候補として選択し、傾きの継続的な上昇傾向が認められない場合は、選択対象区間候補から除外する。傾きの継続的な上昇傾向は、例えば工具の摩耗を表す。
The
交換算出部1053は、選択対象区間候補として選択した区間において、特徴量が急激に下降して傾きが負になる時期を工具交換時期として求め、記憶部107に記憶する。例えば、図10に示すように、一定区間R2の特徴量の変動を示す特性図及び/又は傾きの変動を示す特性図において、急激な下降が認められる時期を工具交換時期とする。
The
基準傾向算出部1054は、例えば図10に示した、工具交換間の特徴量の変動を1つ又は、複数回分、重ね合わせて、平均化などして、基準傾向を作成して、記憶部107に記憶する。基準傾向範囲は、複数の基準傾向の最大値(MAX)、最小値(MIN)、又は標準偏差を用いる。図11は基準傾向と基準傾向範囲の一例を示す図である。
The reference
以上、対象区間選択構成部の各部について説明した。次に、対象区間選択構成部以外の各部について説明する。
対象区間選択装置10は、対象区間選択構成部以外に、判定部106、記憶部107、波形生成部108、パラメータ最適化部109、摩耗推定部110、及び表示部111を備えている。以下、判定部106、記憶部107、波形生成部108、パラメータ最適化部109、摩耗推定部110、及び表示部111の各部について説明する。判定部106、記憶部107、波形生成部108、パラメータ最適化部109、摩耗推定部110、及び表示部111の一部又は全部は、対象区間選択装置10外に設けてもよい。
The above describes each component of the target section selection configuration unit. Next, each component other than the target section selection configuration unit will be described.
In addition to the target section selection configuration unit, the target
(判定部106)
図12は、判定部106と、判定部106の周辺部を示すブロック図である。
判定部106は、特徴量算出部104から出力される、一定区間での特徴量に基づいて、基準からの離れ具合の判定と、工具交換の判定とを行う。一定区間での特徴量は、例えば、一定区間でのトルクデータの平均、分散、歪度、尖度、及びRMS(二乗平均平方根)等のトルクデータの統計量の少なくとも1つである。
(Determination unit 106)
FIG. 12 is a block diagram showing the
The
判定部106は、基準判定部1061及び交換判定部1062を備えている。
基準判定部1061は、新たに産業機械から取得した実測のサーボ波形データについて、特徴量算出部104で算出した特徴量が、基準傾向算出部1054で算出され、記憶部107から読みだした基準傾向からどの程度離れているかを判定する。図13は、特徴量が基準傾向内にある場合と、基準傾向外にある場合を示す図である。
また、基準判定部1061は、新たに産業機械から取得した実測のサーボ波形データについて、特徴量算出部104で算出した特徴量と、負荷のない状態(ワークが存在しない状態)で、波形生成部108により生成された推定サーボ波形データについて、特徴量算出部で算出した特徴量とが、一致した場合に、工具の折損と判定する。
The
The
In addition, the
交換判定部1062は、特徴量算出部104で算出した特徴量が、交換算出部1053で算出した工具交換時期の前か後かのデータかを判定する。
交換判定部1062は、図14に示すように、特徴量が基準傾向内なら工具交換前と判定し、急激な変化が発生しており、特徴量が基準傾向外にあって、基準傾向の初期値に近ければ、交換後と判定する。図14は、特徴量が基準傾向内にある場合と、基準傾向外にあって、基準傾向の初期値に近い場合を示す図である。
The
The
(記憶部107)
記憶部107は、既に説明したように、NCプログラム分割部102で用いる、産業機械から取得した実測のサーボ波形データ、及びマッチング部103で用いる、産業機械の加工動作を制御するNCプログラムを記憶している。
また、記憶部107は、実測のサーボ波形データとNCプログラムの他に、機械データ、CNC(Computerized Numerical Control)パラメータ、マクロ変数、ワーク原点オフセット、工具オフセット値等が入力されて記憶される。また、記憶部107には、例えば、切削距離、切削係数、推定切削力、推定摩耗量、切削工具の温度、トルク指令等のサーボ波形データ、数値化した被削材(ワーク)の形状及び接触長、工具の情報が入力されて記憶される。被削材(ワーク)の形状及び接触長、工具の情報は、ワーク及び工具の少なくとも1つの特性を示す特性値となる。
記憶部107は、推定切削力のサーボ波形データ、推定摩耗量のサーボ波形データも保存する。
また、記憶部107は、実機での挙動とNCプログラムとの対応関係、傾向度合い、対象区間、基準傾向、工具交換日時、加工時間(サイクルタイム)を記憶する。
(Memory unit 107)
As already explained, the
In addition to the actually measured servo waveform data and the NC program, the
The
The
(波形生成部108)
波形生成部108は、NCプログラム分割部102で分割したNCプログラムからサーボ波形データを生成する。
また、波形生成部108は、実行パラメータを設定し、シミュレーションを実行することで、波形データ(推定切削力、推定トルク等)を生成する。
シミュレーションの実行パラメータは、モータ特性、工具情報、ワーク(材料)情報、切削係数等である。モータ、工具、材料などが決まってくれば、ほとんどのパラメータは決まる。しかし、切削力の推定に用いる実行パラメータとなる、切削係数(Kte、Ktc)は、後述するパラメータ最適化部109で、複数回シミュレーションを実行することで、実測トルクに合うように求められる。切削係数からトルク指令(TCMD)は求められるが、直接トルク指令から切削係数を求めることができないので、切削係数(Kte、Ktc)は、パラメータ最適化部109でシミュレーションを実行することで求められる。
(Waveform generation unit 108)
The
Furthermore, the
The simulation execution parameters are motor characteristics, tool information, workpiece (material) information, cutting coefficients, etc. Most of the parameters are determined once the motor, tool, material, etc. are determined. However, the parameters used to estimate the cutting force are The cutting coefficients (Kte, Ktc) which are the execution parameters are obtained so as to match the actually measured torque by performing a simulation multiple times in a
以下、波形生成部の各部について更に説明する。
図15は、波形生成部108と、波形生成部108の周辺部を示すブロック図である。
図15に示すように、波形生成部108は、NCプログラム解釈部1081、指令生成部1082、フィードバック制御部1083及び切削力推定部1084を備えている。
Each part of the waveform generating unit will be further explained below.
FIG. 15 is a block diagram showing the
As shown in FIG. 15, the
<NCプログラム解釈部1081>
NCプログラム解釈部1081は、記憶部107から出力される、分割されたNC(Numerical Control)プログラム(加工プログラムとなる)、CNC(Computerized Numerical Control)パラメータ、マクロ変数、ワーク原点オフセット、工具オフセット値等の入力情報をもとに、移動距離、移動経路及び指令速度を求める。NCプログラム解釈部1081は、送り軸の位置決め及び主軸の速度制御の動作を規定するNCプログラムを解釈し、NCプログラムを各コードと値に分解し、移動距離、移動経路及び指令速度を求める。
<NC
The NC
NCプログラム解釈部1081は、例えば、以下の解釈(A)、(B)、(C)、(D)を行う。
(A)コードM03、M04、M05によって、主軸の時計方向回転、主軸の反時計方向回転、主軸の回転停止に変換する。
(B)G00、G01、G02、G03によって、主軸を指定した座標へ早送りで移動、主軸を指定した座標に切削送りで移動、時計回りの円弧補間、反時計回りの円弧補間に場合分けし、各サーボ軸の経路と移動距離に変換する。
(C)固定サイクル、工具交換の動作について、Gコード、Mコードに等価な変換をする。
(D)工具オフセット値を移動距離に加算する。
The NC
(A) Codes M03, M04, and M05 are converted to clockwise rotation of the spindle, counterclockwise rotation of the spindle, and stop of spindle rotation.
(B) Using G00, G01, G02, and G03, the spindle is moved to the specified coordinates at rapid feed, the spindle is moved to the specified coordinates at cutting feed, clockwise circular interpolation, and counterclockwise circular interpolation are classified, and converted into the path and movement distance of each servo axis.
(C) For canned cycles and tool change operations, perform equivalent conversion to G code and M code.
(D) Add the tool offset value to the travel distance.
<指令生成部1082>
指令生成部1082は、NCプログラム解釈部1081により得られた移動距離、直線又は円弧などの移動経路、指令速度をもとに、移動経路上の点を補間周期で補間計算した補間データを生成し、補間データに基づいて加減速プロファイルを生成し、さらに各制御軸への分配を行うことで、送り軸の電動機となるサーボモータ及び主軸の電動機となる主軸モータの制御周期ごとの位置指令値又は速度指令値を与える。
<
The
指令生成部1082は、以下の動作(E)、(F)、(G)、(H)、(I)を行う。
(E)移動距離を算出する。
(F)移動距離と指令速度,そして機械設定による加減速パラメータを満たすようにツール先端での速度・位置のプロファイルを作成する。この際に移動経路を考慮し、例えば円弧の向心方向の加速度を一定以下とするような制約を加えることが可能である。
(G)制御周期毎でプロファイルを離散化する。前段階で連続時間の関数として速度・位置のプロファイルを生成しており、そこからサンプリングすることで制御周期未満の端数の処理を省略することができる。また、開始・終了に関しては制御周期以下の端数を取り扱うことで、前後の指令ブロックとの接続が不連続とならないように処理を行う。
(H)離散化したプロファイルを各軸での指令へと分配する。直線では各送り軸への移動距離や速度の分配比率は一定であるが、曲線では位置によって各軸への分配比率が異なるため、経路上の位置に応じて分配を計算する必要がある。制御周期毎の位置と移動経路に応じて各送り軸に位置と速度を分配することで、制御周期毎の各軸への指令値を得ることができる。
(I)分配後の各軸指令値に対してフィルタを行う。元の指令経路からはずれるものの、急激な指令値の変化を抑えることができ、機械的な振動・ショックを低減することができる。
The
(E) Calculate the distance traveled.
(F) Create a speed and position profile at the tool tip to satisfy the travel distance, command speed, and acceleration/deceleration parameters set by the machine. At this time, it is possible to consider the travel path and add a constraint such as keeping the acceleration in the centripetal direction of the arc below a certain level.
(G) The profile is discretized for each control period. In the previous stage, the speed and position profiles are generated as a function of continuous time, and by sampling from them, the processing of fractions less than the control period can be omitted. In addition, by handling fractions less than the control period for the start and end, processing is performed so that the connection with the previous and next command blocks is not discontinuous.
(H) The discretized profile is distributed to commands for each axis. For straight lines, the distribution ratio of the movement distance and speed to each feed axis is constant, but for curved lines, the distribution ratio to each axis varies depending on the position, so the distribution must be calculated according to the position on the path. By distributing the position and speed to each feed axis according to the position and movement path for each control cycle, it is possible to obtain command values for each axis for each control cycle.
(I) Filtering is performed on the distributed command values for each axis. Although this deviates from the original command path, it is possible to suppress sudden changes in the command values and reduce mechanical vibrations and shocks.
以上説明した、加減速及びフィルタ処理は、実際に使われる数値制御装置と同様の指令生成に関する考え方である。従来、CAMソフトではこういった加減速及びフィルタ処理などを扱わず、指令速度により移動するものとシミュレーションしていた。また、切削シミュレーションでも、こういった加減速まで含めた送りが考慮されていることはなかったが、加減速及びフィルタ処理等の要素をシミュレーションすることにより実際に近い所要時間・サイクルタイムを算出することができ、実機のデータとの比較をする際に実用的となる。 The acceleration/deceleration and filtering described above are the same ideas for command generation as in actual numerical control devices. Previously, CAM software did not handle acceleration/deceleration or filtering, and instead simulated movement at the command speed. Furthermore, cutting simulations have never taken into account feed including acceleration/deceleration, but by simulating elements such as acceleration/deceleration and filtering, it is possible to calculate required time and cycle time that are close to the actual time, which is useful when comparing with data from the actual machine.
<フィードバック制御部1083>
フィードバック制御部1083は、指令生成部1082が生成する位置指令値又は速度指令値に、送り軸及び主軸を駆動する電動機の駆動を追従させるフィードバック制御をシミュレーションし、サーボ波形データを生成して出力する。
<
The
送り軸は、産業機械においてワークと工具の相対的な位置関係を制御する機構である。送り軸には直線的な並進運動を行う直進軸と、回転運動を行う回転軸との2種類がある。ここでは、主に直進軸の機構を計算機上で数値シミュレーションする際のモデルを述べる。
送り軸のシミュレーションにあたっては、送り軸を表すモデルと、それを制御するコントローラとのモデルの2つが必要になる。
A feed axis is a mechanism that controls the relative positional relationship between a workpiece and a tool in industrial machinery. There are two types of feed axes: linear axes that perform linear translational motion, and rotary axes that perform rotary motion. Here, we will mainly describe a model for numerically simulating the mechanism of a linear axis on a computer.
To simulate the feed axis, two models are required: a model representing the feed axis and a model of the controller that controls it.
まず、送り軸を表すモデルについて説明する。
送り軸は、モータの回転運動をボールねじなどの変換機構を通して並進運動に変換する。モータの回転角をθで表し、変換機構を通したあとの並進運動での変位をXと表す。また、モータにかかるトルクをTとする。1慣性系モデルでは送り軸を剛体と見なし、その運動を数式1(以下の数1)で表す。数式1において、Jは駆動機構の慣性モーメント、Dは粘性摩擦係数を表す。
The feed axis converts the rotational motion of the motor into translational motion through a conversion mechanism such as a ball screw. The rotation angle of the motor is represented as θ, and the displacement in the translational motion after passing through the conversion mechanism is represented as X. Furthermore, the torque applied to the motor is represented as T. In the one-inertia system model, the feed axis is considered to be a rigid body, and its motion is represented by Equation 1 (
次に、コントローラを表すモデルについて説明する。
送り軸の制御は、速度制御をマイナーループとする位置制御で行われる。
速度制御内ではPI制御が用いられる。これをブロック図で表現したものを図16に示す。図16はコントローラを表すモデルの構成を示すブロック図である。図16に示すコントローラは、X軸方向の位置指令XCを回転角に変換して位置指令θcmdとして、位置フィードバックθfdとの差を求めて、速度指令ωcmdを生成し、速度フィードバックωfdとの差を求めて、PI処理を行う。さらに、コントローラは、PI処理後の信号を積分してトルク指令Tcmdを生成し、送り軸のモデルから出力される検出角速度を速度フィードバックωfdとする。検出角速度を積分して検出角を求めて位置フィードバックとする。
Next, a model representing the controller will be described.
The feed axis is controlled by position control with speed control as a minor loop.
In the speed control, PI control is used. This is shown in a block diagram in FIG. 16. FIG. 16 is a block diagram showing the configuration of a model representing a controller. The controller shown in FIG. 16 converts a position command XC in the X-axis direction into a rotation angle to obtain a position command θ cmd , calculates the difference with the position feedback θ fd to generate a speed command ω cmd , calculates the difference with the speed feedback ω fd , and performs PI processing. Furthermore, the controller integrates the signal after the PI processing to generate a torque command T cmd , and sets the detected angular velocity output from the feed axis model as the speed feedback ω fd . The detected angular velocity is integrated to obtain a detected angle to be used as position feedback.
図16で示す構成の伝達関数表現は連続時間領域のものである。
一方、計算機上で数値シミュレーションする際には離散時間領域で扱うため、連続時間領域で示される伝達関数を離散領域に変換する必要がある。
これについては以下の規則で行うことにする。
・単なる加算や定数倍に関するブロックはそのまま変数の加算と定数倍によって計算する。
・積分項1/sは、数値積分によって計算する。すなわち、離散シミュレーションの時間幅tと入力の時系列xiに対して、出力を、数式4(以下の数4)を用いて計算する。
離散シミュレーションのためには、s領域の式をz領域の式に変換できればよく、このために、数式5(以下の数5)で示す変換式を用いる。
On the other hand, since a numerical simulation on a computer is performed in the discrete time domain, it is necessary to convert the transfer function shown in the continuous time domain into the discrete domain.
This will be done according to the following rules.
・Blocks involving simple addition or constant multiplication are calculated by simply adding variables and multiplying them by constants.
The
For the discrete simulation, it is necessary to convert the equation in the s domain into an equation in the z domain, and for this purpose, the conversion equation shown in Equation 5 (hereinafter Equation 5) is used.
最後に、主軸を表すモデルについて説明する。
主軸は工具を回転させるためのモータ軸である。モータを駆動して機械端を制御するところは送り軸と共通であるが、送り軸と違って機械端では並進ではなく回転運動をそのまま伝達させることになる。したがって、ボールねじによる変換機構が主軸では存在しない。
また、送り軸と違って主軸においての入力は速度指令であり、内部の制御についても速度制御ループがあるのみである。ここではI-P制御が用いられる。
図17は、主軸のモデルの構成を示すブロック図である。
Finally, a model representing the principal axis will be described.
The spindle is the motor shaft for rotating the tool. It is the same as the feed axis in that it drives the motor and controls the machine end, but unlike the feed axis, it transmits rotational motion directly at the machine end instead of translational motion. Therefore, the spindle does not have a conversion mechanism using a ball screw.
Also, unlike the feed axis, the input to the spindle is a speed command, and the internal control only has a speed control loop. Here, IP control is used.
FIG. 17 is a block diagram showing the configuration of a model of a spindle.
フィードバック制御部1083は、フィードバック制御部1083内で作成されるサーボデータとなるトルク指令を切削力推定部1084に出力する。
The
<切削力推定部1084>
切削力推定部1084は、フィードバック制御部1083から出力されるトルク指令と、記憶部107が保存する特性値とに基づき、切削工具における切削力を推定する。ここで、記憶部107が保存する特性値は、数値化したワークの形状又は接触長である。
なお、切削力は、切削工具の侵入に対する素材の抵抗であり、切削の継続に必要な力を意味する。トルク[N.m]は切削力の(主分力[N])×(半径[m])から求まるので、切削力をほぼトルクと同じ意味として使うことができる。
<Cutting
The cutting
The cutting force is the resistance of the material to the penetration of the cutting tool, and means the force required to continue cutting. Torque [N.m] is calculated by multiplying the cutting force by the (principal force [N]) x (radius [ m]), so cutting force can be used almost synonymously with torque.
推定切削力は、以下に説明する瞬間切削力モデルを用いて計算することができる。
切削工具の刃先を垂直方向について微小な部分に切り分ける。微小刃の垂直方向の大きさをdzとする。ここで、切削工具がワークを切削する際にこの微小刃に掛かる切削力について、工具接線方向の力をdFt、半径方向の力をdFr、軸方向の力をdFaとおく。また、hを微小刃が1回転でワークを削る長さ(切り取り厚さと呼ばれる)とする。なお、切り取り厚さhは、微小刃の位置zと回転角θに依存する。
このとき、数式7(以下の数7)の関係が成り立つとするのが瞬間切削モデルである。ここで、切削係数Kte、Ktc、Kre、Krc、Kae、Kacは工具とワークの物質的な関係で決まる係数である。特に、切削係数Ktc、Krc、Kacは比切削抵抗に相当する係数である。
The cutting edge of the cutting tool is cut into minute pieces in the vertical direction. The vertical size of the microblade is dz. Here, the cutting forces acting on the microblade when the cutting tool cuts the workpiece are defined as dFt for the force in the tangential direction of the tool, dFr for the force in the radial direction, and dFa for the force in the axial direction. Also, h is defined as the length of the workpiece cut by the microblade in one rotation (called the cutting thickness). The cutting thickness h depends on the position z and the rotation angle θ of the microblade.
At this time, the instantaneous cutting model is one in which the relationship of Equation 7 (hereinafter Equation 7) is established. Here, the cutting coefficients Kte, Ktc, Kre, Krc, Kae, and Kac are coefficients determined by the physical relationship between the tool and the workpiece. In particular, the cutting coefficients Ktc, Krc, and Kac are coefficients equivalent to the specific cutting resistance.
ワークの形状が事前にわかっている場合には、ワークの形状を計算機上に何らかの形で数値的に表し、切削過程を離散時間ごとにシミュレーションすることで切削力を計算することができる。
例えば、Z-Mapと呼ばれる方式では、X、Y方向に分割したグリッド空間を考え、それぞれのセルにおけるワークの高さを記録することでワーク形状を数値的に表現する。切削工具は高さ方向に区切られた微小板で表現する。微小時間ごとに切削工具とワークの位置を更新し、工具が接触したワークのセルについて高さを減少させ、またその部分に生じる切り取り厚さに応じて切削力を発生させることでシミュレーションを行う。
If the shape of the workpiece is known in advance, the cutting force can be calculated by somehow numerically representing the shape of the workpiece on a computer and simulating the cutting process at discrete times.
For example, in a method called Z-Map, a grid space divided in the X and Y directions is considered, and the workpiece shape is numerically expressed by recording the height of the workpiece in each cell. The cutting tool is expressed as a small plate divided in the height direction. The positions of the cutting tool and workpiece are updated every small time, the height of the workpiece cell that the tool comes into contact with is reduced, and a cutting force is generated according to the cutting thickness that occurs in that part, to perform the simulation.
ワークの形状は事前には分かっていない場合には、Z-Mapによるシミュレーションは使えない。
しかし、加工時に測定されるトルクのデータを用いれば、工具がどの位置にいるときにトルクが発生するのかを見ることができる。すなわち測定データを用いれば、どの位置にワークが存在するか見積もることができる。さらに、ワークの比切削抵抗値についても見積もることができる。
If the shape of the workpiece is not known in advance, simulation using Z-Map cannot be used.
However, by using torque data measured during machining, it is possible to see where torque occurs when the tool is in that position. In other words, by using the measurement data, it is possible to estimate where the workpiece is located. Furthermore, it is possible to estimate the specific cutting resistance of the workpiece.
ここでは比切削抵抗が分かっているとした上で、ワーク形状が分かっていない場合に切削シミュレーションする方法(接触長によるシミュレーション)を述べる。
トルクは接線方向に掛かる力に工具半径を掛けたものであるとみなせるので、切削工具の微小板にかかる切削トルクdTは以下の数式8(以下の数8)で示される。
Since the torque can be considered as the tangential force multiplied by the tool radius, the cutting torque dT applied to the microplate of the cutting tool is given by the following Equation 8 (
接触長Czによるシミュレーションでは、平均的切り取り厚さh’は加工条件である送り速度と回転数から求める。比切削抵抗が求まっているとすれば、各位置での接触長Czを求めることで切削トルクをシミュレーションすることができる。実際には、測定データがあれば各位置での接触長(切削基礎データとなる)を数式10から求めることができる。接線方向以外の切削力についても同様である。
In a simulation using contact length Cz, the average cutting thickness h' is found from the machining conditions of feed rate and rotation speed. If the specific cutting resistance has been determined, the cutting torque can be simulated by finding the contact length Cz at each position. In reality, if measurement data is available, the contact length at each position (which serves as basic cutting data) can be found from
(パラメータ最適化部109)
パラメータ最適化部109は、対象区間選択部105が選択した一定区間の、特徴量の変動と、波形生成部108が生成したサーボ波形データから推定した切削力から求める特徴量の変動と、が一致するように実行パラメータを最適化する。切削力推定部1084で用いる、実行パラメータとなる切削係数(Kte、Ktc)は、パラメータ最適化部109でシミュレーションを実行することで求める。
例えば、パラメータ最適化部109は、一定区間の、特徴量となる実測のトルクの平均値と、切削力から求める特徴量となる推定したトルクの平均値とが一致するように、実行パラメータとなる切削係数(Kte、Ktc)を最適化する。
(Parameter optimization unit 109)
The
For example, the
パラメータを最適化する第1の方法を以下に説明する。
第1の方法は、ある時点の実測トルクに合う切削係数(Kte、Ktc)を、切削係数のKtc、Kteをそれぞれ変化させて生成した推定トルク平均と、実測トルクの特徴量(平均)がほぼ同じ値となるように、切削係数Ktc、Kteを求めることで最適化する方法である。
A first method for optimizing the parameters is described below.
The first method is to optimize the cutting coefficients (Kte, Ktc) that match the actual measured torque at a certain point in time by determining the cutting coefficients Ktc and Kte so that the estimated torque average generated by changing the cutting coefficients Ktc and Kte is approximately the same as the characteristic value (average) of the actual measured torque.
例えば、実測トルク値と、切削係数(Kte、Ktc)を用いてシミュレーションで求めた推定トルク値との特性を図18に示す。図18において、縦軸はトルク値、横軸は時間である。図18に示すように、トルクにおいて、Ktc、Kteで合わせる箇所は決まっている。
推定トルク値の平均値と切削係数Ktcとは、図19の特性図に示すように、比例関係があり、推定トルク値の平均値が実測のトルク値の平均値と一致するように切削係数Ktcを求める。推定トルク値の平均値と切削係数Kteとは、図20の特性図に示すように、比例関係があり、推定トルク値の平均値が実測のトルク値の平均値と一致するように切削係数Kteを求める。
For example, the characteristics of the measured torque value and the estimated torque value obtained by simulation using the cutting coefficients (Kte, Ktc) are shown in Fig. 18. In Fig. 18, the vertical axis represents the torque value and the horizontal axis represents the time. As shown in Fig. 18, the point where Ktc and Kte are adjusted in the torque is fixed.
The average value of the estimated torque values and the cutting coefficient Ktc are proportional to each other as shown in the characteristic diagram of Fig. 19, and the cutting coefficient Ktc is calculated so that the average value of the estimated torque values coincides with the average value of the actually measured torque values. The average value of the estimated torque values and the cutting coefficient Kte are proportional to each other as shown in the characteristic diagram of Fig. 20, and the cutting coefficient Kte is calculated so that the average value of the estimated torque values coincides with the average value of the actually measured torque values.
次にパラメータを最適化する第2の方法を以下に説明する。
実測のトルクの変化具合から、切削係数を求めつつ、切削係数の変化具合の式を最適化する。
摩耗などにより、実測トルク(切削力)の平均が変化していく。その変化に合わせた、推定波形を生成するための実行パラメータ(切削係数)を求めることができる。
切削係数の変化具合の式は、摩耗に合わせてトルクが変化するとともに、切削係数も変化しており、ある式にフィッティングしていく。この式を求めるために、初期切削係数の値と変化の係数が必要になるが、初期切削係数の値は、工具交換直後の実測トルクの値を利用して、切削係数値Ktcが求まる。変化の式は、複数の実測の式から、その各地点の切削係数値Ktcが求まる。それらの切削係数値の変化を近似式で求める。これが、切削係数の変化具合の式となる。
工具交換が何度か行われて、複数回分の切削係数の変化を合わせて、標準化した切削係数の変化具合の式を求める(平均などでも良い)。
Next, a second method for optimizing the parameters will be described below.
The cutting coefficient is calculated from the change in the actually measured torque, and the formula for the change in the cutting coefficient is optimized.
The average measured torque (cutting force) changes due to wear, etc. It is possible to obtain the execution parameter (cutting coefficient) to generate an estimated waveform that matches the change.
The equation for the change in the cutting coefficient is fitted to a certain equation, as the torque changes in accordance with wear, and the cutting coefficient also changes. To find this equation, the initial cutting coefficient value and the coefficient of change are required, and the initial cutting coefficient value is calculated using the measured torque value immediately after the tool is replaced, resulting in the cutting coefficient value Ktc. The equation for the change is calculated by using the equations of multiple actual measurements to find the cutting coefficient value Ktc at each point. The changes in these cutting coefficient values are calculated using an approximation equation. This is the equation for the change in the cutting coefficient.
The tool is replaced several times, and the changes in the cutting coefficient for the multiple times are added together to obtain an equation for the change in the standardized cutting coefficient (average, etc., is also acceptable).
(摩耗推定部110)
摩耗推定部110は、工具の切削距離、摩耗速度に基づき、当該工具の摩耗量を推定する。
摩耗推定部110は、記憶部107がもつ特性値の変動に基づき切削工具の摩耗を推定する。
切削工具の摩耗は、刃先の摩耗であり、被削物及び切屑との摩擦で摩耗する。
(Wear Estimation Unit 110)
The
The
The wear of cutting tools occurs on the cutting edge due to friction with the workpiece and chips.
切削工具の摩耗は、すくい面の摩耗と逃げ面の摩耗とに分けることができるが、切削速度が高速にならない限り、逃げ面が支配的となる。
逃げ面摩耗の摩耗量速度dW/dLは、以下の数式11(以下の数11)で計算することができる。ここで、Wは逃げ面摩耗の摩耗量、Lは切削距離を示す。Kは凝集粒子の形状で決まる係数、Hは切削工具側硬度、σtは摩耗面の垂直応力である。摩耗面の垂直応力 σt は、切削速度や工具逃げ角で代用計算する。
The wear rate of flank wear dW/dL can be calculated by the following formula 11 (Equation 11 below). Here, W is the wear rate of flank wear, and L is the cutting distance. K is a coefficient determined by the shape of the agglomerated particles, H is the hardness of the cutting tool side, and σt is the normal stress on the wear surface. The normal stress on the wear surface σt is calculated by substituting the cutting speed and the tool clearance angle.
一方、切削速度が高速の場合は、すくい面摩耗が支配的となり、すくい面摩耗の摩耗量速度dW/dLは、以下の数式12(以下の数12)で計算することができる。ここで、Wは逃げ面摩耗の摩耗量、Lは切削距離を示す。C、λは切削工具と被削材との組み合わせで決まる特性定数、Tは切削工具の温度である。
1加工あたりの推定摩耗量は、摩耗速度と切削距離から求まる。切削距離は、当該工具を使った時の切削の距離である。
工具の推定摩耗量は、直接トルク値(特徴量の変動)から求まるのではなく、1加工を実行することで、求めることができる。工具交換時からの推定摩耗量の変動は、工具交換時からの摩耗量の和となる。
図21は、4つの特性図の関連を示しており、上から順に、切削距離(単位:m)と摩擦量(単位:μm)との関係を示す特性図(以下、「特性図A」という)、摩耗量(単位:μm)と温度(単位:K)との関係を示す特性図(以下、「特性図B」という)、温度(単位:K)と摩擦速度(単位:μm/m)との関係を示す特性図(以下、「特性図C」という)、切削距離(単位:m)と切削抵抗(単位:Nm/m)との関係を示す特性図(以下、「特性図D」という)を示している。
1加工あたりの推定摩耗量を求めるには、特性図Cの摩耗速度を求めることが必要で、工具ごとの標準的な摩耗速度グラフが存在し、例えば、工具メーカのカタログ値として記載されている。カタログ値がない場合は、特性図Bに示すように、温度の遷移から摩耗速度を求めることができる。
摩耗速度は段階があり、初期時と、かなり使用した時に摩耗速度が上がっていく。ほとんどは、摩耗速度があまり上がらず、最近の工具はほぼ一定、古い工具は継続的な上昇を示す。
摩耗速度と1加工の切削距離を掛けたものが、1加工あたりの摩耗量となり、切削距離に応じて(≒加工回数)、摩耗量を積算したものが、特性図Aのグラフになると想定される。
The estimated wear amount per machining is calculated from the wear rate and the cutting distance, which is the distance cut when the tool is used.
The estimated wear amount of the tool can be calculated by executing one machining operation, not directly from the torque value (variation of the feature value). The variation of the estimated wear amount since the tool change is the sum of the wear amounts since the tool change.
FIG. 21 shows the relationship between four characteristic diagrams, and from top to bottom, shows a characteristic diagram showing the relationship between cutting distance (unit: m) and friction amount (unit: μm) (hereinafter referred to as "characteristic diagram A"), a characteristic diagram showing the relationship between wear amount (unit: μm) and temperature (unit: K) (hereinafter referred to as "characteristic diagram B"), a characteristic diagram showing the relationship between temperature (unit: K) and friction speed (unit: μm/m) (hereinafter referred to as "characteristic diagram C"), and a characteristic diagram showing the relationship between cutting distance (unit: m) and cutting resistance (unit: Nm/m) (hereinafter referred to as "characteristic diagram D").
To obtain the estimated wear amount per machining, it is necessary to obtain the wear rate in characteristic diagram C. Standard wear rate graphs exist for each tool, and are listed as catalog values of tool manufacturers, for example. If no catalog values are available, the wear rate can be obtained from the temperature transition as shown in characteristic diagram B.
The wear rate has stages, and increases from the initial use to the subsequent use. For most tools, the wear rate does not increase much, with modern tools remaining almost constant and older tools showing a continuous increase.
The wear rate multiplied by the cutting distance for one process is the amount of wear per process, and it is assumed that the amount of wear accumulated according to the cutting distance (≒ number of processes) will result in the graph in characteristic diagram A.
摩耗推定部110は、切削工具の限界摩耗量と限界摩耗量に到達する時期を推定する。
限界摩耗量Wlimは、限界切削距離Llimを設定することで、数式11又は数式12を用いて計算できる。
限界切削距離Lminは、設定寿命ではなく、限界まで使用可能な切削距離で、求める加工精度に変わってくるので、適宜適当な値を入れる。
限界摩耗量に到達する時期は、限界切削距離Llimになるまでの時期と同じである。限界切削距離Llimになるまでの時期tlimは、1回のNCプログラム実行にかかるサイクルタイムtctとし、1回のサイクルタイム当たりの切削距離L1がわかっていれば、以下の数式13(以下の数13)で推定できる。
図22は、限界摩耗量と、限界摩耗量の到達時期を示す説明図である。図22では、推定摩耗量の推移と、実際の切削力における摩耗量の推移を示すとともに、限界摩耗量と、限界摩耗量の到達時期を示している。
The
The limit wear amount W lim can be calculated using Formula 11 or
The limit cutting distance Lmin is not a set life but a cutting distance that can be used up to the limit, and since it changes depending on the required machining accuracy, an appropriate value is entered.
The time when the limit wear amount is reached is the same as the time when the limit cutting distance L lim is reached. The time t lim when the limit cutting distance L lim is reached can be estimated by the following formula 13 (the following formula 13) if the cycle time t ct required for one NC program execution is known and the cutting distance L 1 per cycle time is known.
Fig. 22 is an explanatory diagram showing the limit wear amount and the time when the limit wear amount is reached. Fig. 22 shows the transition of the estimated wear amount and the transition of the wear amount at the actual cutting force, and also shows the limit wear amount and the time when the limit wear amount is reached.
工具交換又は実摩耗量の測定がされると、基準傾向、実行パラメータ、摩耗量の変動と限界摩耗量を変えることが望ましい。
ユーザによって、工具交換がされると、1回分の工具交換から工具交換までの、特徴量の変動が確定し、基準傾向が変わる可能性があり、摩耗量の変動、限界摩耗量が変わる可能性があり、実行パラメータを変える必要が生ずる場合があるからである。
例えば、図23に示すように、工具交換により、特徴量の変動が破線のようになると、基準傾向が実線のように変わる必要がある。それに変動して、摩耗量も変える必要あり、実行パラメータも変わる。
ユーザによって、実摩耗量の測定がされると、図24に示すように、限界摩耗量と限界摩耗量への到達時期が確定し、摩耗量の変動が変わり、基準傾向も変える必要があり、実行パラメータを変える必要があるからである。
そこで、ユーザが、交換した工具の情報及び実摩耗量の測定値を記憶部107に記憶した場合、対象区間選択部105は基準傾向を再度算出して更新し、パラメータ最適化部109は切削係数等の実行パラメータを再度算出して更新し、摩耗推定部110は、摩耗量の変動及び限界摩耗量を再度算出し、更新する。
When a tool is changed or actual wear measurements are made, it may be desirable to change the baseline trends, run parameters, wear variance and wear limit.
When a user changes a tool, the fluctuations in the features from one tool change to the next are determined, and the reference trend may change, and the fluctuations in the amount of wear and the limit amount of wear may change, which may result in the need to change the execution parameters.
For example, as shown in Fig. 23, when the feature amount changes as shown by the dashed line due to tool replacement, the reference tendency needs to change as shown by the solid line. Due to this change, the wear amount needs to be changed, and the execution parameters also change.
When the actual wear amount is measured by the user, the limit wear amount and the time when the limit wear amount is reached are determined, as shown in Figure 24, and the fluctuation in the wear amount changes, making it necessary to change the reference trend and change the execution parameters.
Therefore, when the user stores information about the replaced tool and the measured value of the actual wear amount in the
(表示部111)
表示部111は、一定区間ごとの特徴量の変動と、区間に対応する当該工具の摩耗量の変動を表示する。
また、表示部111は、表示画面に、摩耗推定部110により算出された、一定区間に対応する工具の摩耗量の変動と、工具の限界摩耗量と、限界摩耗量に到達する時期と、を表示する。
工具の摩耗量の変動、切削工具の限界摩耗量及び限界摩耗量に到達する時期は、数値で示してもよく、図22に示すようにグラフ化してもよい。
表示部111は、表示画面に、指令生成部1082がNCプログラムの補間計算に要した計算回数に基づいて推定されるNCプログラムのサイクルタイムを表示し、
目標サイクルタイムを満足するように、記憶部107に記憶されたNCプログラムを編集する。
切削力の時系列があれば、対象の時系列のサイクルタイムがわかる。サイクルタイムは、サーボデータの時刻をカウントすることで求めることができる。
実測の場合は、実機のNCプログラムに対するサイクルタイム、推定の場合は、本装置上で実行したNCプログラムに対するサイクルタイムが分かる。NCプログラムの一部(例えばF値、工具経路変更など)を変更すると、サイクルタイムが変わってくる。
逆に、目標のサイクルタイムに合わせるように、F値を変更したり、工具経路を変更するなどして、一部NCプログラムのGコードを変更する。
図25はNCプログラムのF値を変更した例を示す説明図である。図25において、編集前のNCプログラムでは、F値がF800として示されているが、編集後のNCプログラムではF値がF1000として示されている。
(Display unit 111)
The
In addition, the
The variation in the amount of wear of the tool, the limit wear amount of the cutting tool, and the time when the limit wear amount is reached may be shown numerically or may be graphed as shown in FIG.
The
The NC program stored in the
If we have a time series of cutting force, we can determine the cycle time of the target time series. The cycle time can be calculated by counting the time of the servo data.
In the case of actual measurement, the cycle time for the NC program of the actual machine is known, and in the case of estimation, the cycle time for the NC program executed on this device is known. If you change part of the NC program (for example, F value, tool path change, etc.), the cycle time will change.
Conversely, to match the target cycle time, the F value or the tool path is changed, and the G code of a part of the NC program is modified.
Fig. 25 is an explanatory diagram showing an example in which the F-value of an NC program is changed. In Fig. 25, the F-value in the NC program before editing is shown as F800, but in the NC program after editing, the F-value is shown as F1000.
以上、対象区間選択装置10の構成について説明した。次に対象区間選択装置10の対象区間選択構成部の動作についてフローチャートを用いて説明する。
図26は対象区間選択装置の対象区間選択構成部の動作を示すフローチャートである。
ステップS11において、波形分割部101は、記憶部107から、実測のサーボ波形データを読み出して、実測のサーボ波形データを一定区間ごとに分割し、分割したサーボ波形データを出力する。
The above describes the configuration of the target
FIG. 26 is a flowchart showing the operation of the target section selection configuration unit of the target section selection device.
In step S11, the
ステップS12において、NCプログラム分割部102は、記憶部107から、産業機械の加工動作を制御するNCプログラムを読み出して、NCプログラムを一定ブロックごとに分割して、分割したNCプログラムを出力する。ステップS12は、ステップS11より前に実行されてもよく、ステップS11と並行に実行されてもよい。
In step S12, the NC
ステップS13において、マッチング部103は、波形分割部101で分割した一定区間ごとのサーボ波形データと、NCプログラム分割部102で分割した一定ブロックごとのNCプログラムとのマッチングを行う。
In step S13, the
ステップS14において、特徴量算出部104は、マッチング部103でNCプログラムとのマッチングが認められた一定区間ごとのサーボ波形データを用いて、一定区間での特徴量を計算する。
In step S14, the
ステップS15において、対象区間選択部105は、特徴量算出部104で算出した特徴量の変動の傾向を算出し、算出した傾向に基づき、複数の一定区間から、特徴量の変動の傾向を表現できる一定区間を選択する。
In step S15, the target
以上、本実施形態における、対象区間選択装置に含まれる機能ブロックを実現するために、対象区間選択装置は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。 In order to realize the functional blocks included in the target section selection device in this embodiment, the target section selection device can be realized by hardware, software, or a combination of these. Here, being realized by software means being realized by a computer reading and executing a program.
本実施形態における、対象区間選択装置に含まれる機能ブロックをソフトウェア又はこれらの組み合わせにより実現する実現するために、具体的には、対象区間選択装置はそれぞれ、CPU(Central Processing Unit)等の演算処理装置を備える。また、対象区間選択装置は、アプリケーションソフトウェア又はOS(Operating System)等の各種の制御用プログラムを格納したHDD(Hard Disk Drive)等の補助記憶装置、及び演算処理装置がプログラムを実行する上で一時的に必要とされるデータを格納するためのRAM(Random Access Memory)といった主記憶装置も備える。 In this embodiment, in order to realize the functional blocks included in the target section selection device by software or a combination of these, specifically, each target section selection device is equipped with a calculation processing device such as a CPU (Central Processing Unit). In addition, the target section selection device also has a secondary storage device such as an HDD (Hard Disk Drive) that stores various control programs such as application software or an OS (Operating System), and a main storage device such as a RAM (Random Access Memory) for storing data temporarily required for the calculation processing device to execute a program.
そして、対象区間選択装置において、演算処理装置が補助記憶装置からアプリケーションソフトウェア又はOSを読み込み、読み込んだアプリケーションソフトウェア又はOSを主記憶装置に展開させながら、これらのアプリケーションソフトウェア又はOSに基づいた演算処理を行なう。また、この演算結果に基づいて、各装置が備える各種のハードウェアを制御する。これにより、本実施形態の機能ブロックは実現される。 Then, in the target section selection device, the arithmetic processing unit reads the application software or OS from the auxiliary storage device, and while expanding the loaded application software or OS into the main storage device, performs arithmetic processing based on the application software or OS. Also, based on the results of this calculation, various pieces of hardware equipped in each device are controlled. In this way, the functional blocks of this embodiment are realized.
対象区間選択装置に含まれる各構成部は、電子回路等を含むハードウェアにより実現することができる。対象区間選択装置をハードウェアで構成する場合、対象区間選択装置に含まれる各構成部の機能の一部又は全部を、例えば、ASIC(Application Specific Integrated Circuit)、ゲートアレイ、FPGA(Field Programmable Gate Array)、CPLD(Complex Programmable Logic Device)等の集積回路(IC)で構成することができる。 Each component included in the target section selection device can be realized by hardware including electronic circuits, etc. When the target section selection device is configured from hardware, some or all of the functions of each component included in the target section selection device can be configured from integrated circuits (ICs), such as ASICs (Application Specific Integrated Circuits), gate arrays, FPGAs (Field Programmable Gate Arrays), and CPLDs (Complex Programmable Logic Devices).
プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。 The program can be stored and provided to the computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROM (Read Only Memory), CD-R, CD-R/W, and semiconductor memory (e.g., mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, and RAM (random access memory)). The program may also be provided to the computer by various types of transitory computer readable media.
以上説明した本実施形態の産業機械の変化の対象区間選択装置及び対象区間選択方法によれば、次の効果を得ることができる。
(1)マッチングにより、プログラムのどの箇所に異常が出やすいかわかる。
(2)産業機械のサーボデータを利用しているので、センサが不要で、後付けも容易となる。
(3)波形データと摩耗量の相関をシミュレートしており、波形データの再現をすれば良いため、高精度な物理量を求める必要がないので、事前実験が不要となる。
(4)異常(摩耗)が再現できる。
(5)実データから、摩耗量の計算する区間を絞ることができる。
(6)シミュレートする区間を最小限にすることができる。
According to the device and method for selecting a target section for changes in industrial machinery of the present embodiment described above, the following effects can be obtained.
(1) Matching enables you to determine which parts of a program are likely to have errors.
(2) Since it uses servo data from industrial machinery, sensors are not required and retrofitting is easy.
(3) The correlation between the waveform data and the amount of wear is simulated. Since it is only necessary to reproduce the waveform data, there is no need to obtain highly accurate physical quantities, making prior experiments unnecessary.
(4) Abnormalities (wear) can be reproduced.
(5) The range for calculating the amount of wear can be narrowed down based on actual data.
(6) The interval to be simulated can be minimized.
そして、本実施形態を含む本開示の産業機械の変化の対象区間選択装置及び対象区間選択方法によれば、産業機械における、実測のサーボ波形データを分割した複数の一定区間から、特徴量の変動の傾向に基づき一定区間を選択することができる。 Then, according to the target section selection device and method for selecting a target section for changes in industrial machinery disclosed herein, including this embodiment, a certain section can be selected from a number of fixed sections into which the actually measured servo waveform data of the industrial machinery is divided, based on the tendency of fluctuations in the feature quantity.
上述した実施形態は、本発明の好適な実施形態ではあるが、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。 The above-described embodiment is a preferred embodiment of the present invention, but the scope of the present invention is not limited to the above-described embodiment, and the present invention can be implemented in various modified forms without departing from the gist of the present invention.
上記実施形態に関し、さらに以下の付記を開示する。
(付記1)
サーボ波形データを、一定区間ごとに分割する波形分割部(101)と、
産業機械を駆動するNCプログラムを、一定ブロックごとに分割するNCプログラム分割部(102)と、
前記波形分割部で分割された前記一定区間ごとのサーボ波形データと、前記NCプログラム分割部で分割された前記一定ブロックごとのNCプログラムとのマッチングを行うマッチング部(103)と、
前記一定区間ごとに、前記一定区間のサーボ波形データを用いて、特徴量を計算する特徴量算出部(104)と、
前記一定区間ごとに前記特徴量算出部で算出した前記特徴量の変動の傾向に基づき、分割した複数の一定区間から、前記特徴量の変動の傾向を表現できる一定区間を選択する対象区間選択部(105)と、
を備える、産業機械の変化の対象区間選択装置。
Regarding the above embodiment, the following supplementary notes are further disclosed.
(Appendix 1)
A waveform division unit (101) that divides servo waveform data into fixed intervals;
An NC program division unit (102) that divides an NC program that drives an industrial machine into a certain number of blocks;
a matching unit (103) that performs matching between the servo waveform data for each fixed section divided by the waveform dividing unit and the NC program for each fixed block divided by the NC program dividing unit;
a feature amount calculation unit (104) that calculates a feature amount for each of the fixed intervals by using servo waveform data for the fixed intervals;
a target interval selection unit (105) that selects a certain interval that can express the tendency of fluctuation in the feature amount from the plurality of divided certain intervals based on the tendency of fluctuation in the feature amount calculated by the feature amount calculation unit for each certain interval;
The device for selecting a target section of an industrial machine change is provided.
(付記2)
前記特徴量は、前記一定区間内のトルクデータの統計量である、付記1に記載の産業機械の変化の対象区間選択装置。
(Appendix 2)
The device for selecting a target section for changes in an industrial machine as described in
(付記3)
前記対象区間選択部(105)は、
前記特徴量算出部で計算した前記特徴量の変動に基づき、傾きの変動を計算する傾向算出部(1051)と、
前記傾向算出部で算出した前記傾きの変動から、摩耗を表している一定区間を選択する区間選択部(1052)と、
前記区間選択部で選択した前記一定区間の、特徴量の変動と傾きの変動の少なくとも一つから、工具交換時期を算出する交換算出部(1053)と、
前記交換算出部で算出した工具交換時期間の、1つ以上の特徴量の変動から基準傾向を算出する基準傾向算出部(1054)と、
を備える、付記1に記載の産業機械の変化の対象区間選択装置。
(Appendix 3)
The target section selection unit (105)
a tendency calculation unit (1051) that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit;
a section selection unit (1052) that selects a certain section representing wear from the change in the slope calculated by the tendency calculation unit;
a tool replacement calculation unit (1053) that calculates a tool replacement time from at least one of a feature amount variation and a slope variation in the fixed section selected by the section selection unit;
a reference trend calculation unit (1054) that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit;
2. A device for selecting a target section of a change in an industrial machine, comprising:
(付記4)
前記NCプログラム分割部で分割した前記NCプログラムからサーボ波形データを生成する波形生成部(108)と、
前記対象区間選択部が選択した前記一定区間の、特徴量の変動と、前記波形生成部が生成した前記サーボ波形データから推定した切削力から求める特徴量の変動と、が一致するように実行パラメータを最適化するパラメータ最適化部(109)と、
工具の交換の判定と、基準からの前記特徴量の離れ具合の判定をする判定部(106)と、
前記工具の切削距離及び摩耗速度に基づき、前記工具の摩耗量を推定する摩耗推定部(110)と、
前記一定区間ごとの特徴量の変動と、前記一定区間に対応する前記工具の摩耗量の変動を表示する表示部(111)と、
をさらに具備する、付記1に記載の産業機械の変化の対象区間選択装置。
(Appendix 4)
a waveform generating unit (108) that generates servo waveform data from the NC program divided by the NC program dividing unit;
a parameter optimization unit (109) that optimizes execution parameters so that a variation in a feature value in the fixed section selected by the target section selection unit coincides with a variation in a feature value determined from a cutting force estimated from the servo waveform data generated by the waveform generation unit;
a determination unit (106) for determining whether a tool has been replaced and for determining a deviation of the feature from a reference;
a wear estimation unit (110) that estimates a wear amount of the tool based on a cutting distance and a wear rate of the tool;
A display unit (111) that displays the variation in the feature amount for each fixed section and the variation in the wear amount of the tool corresponding to the fixed section;
The device for selecting a target section of a change in an industrial machine as described in
(付記5)
前記対象区間選択部(105)は、
前記特徴量算出部で計算した前記特徴量の変動に基づき、傾きの変動を計算する傾向算出部(1051)と、
前記傾向算出部で算出した前記傾きの変動から、摩耗を表している一定区間を選択する区間選択部(1052)と、
前記区間選択部で選択した前記一定区間の、特徴量の変動と傾きの変動から、工具交換時期を算出する交換算出部(1053)と、
前記交換算出部で算出した工具交換時期間の、1つ以上の特徴量の変動から基準傾向を算出する基準傾向算出部(1054)と、を備え、
前記判定部(106)は、
新たに前記産業機械から取得した実測のサーボ波形データについて、前記特徴量算出部で算出した特徴量が、前記基準傾向算出部で算出した基準傾向から離れているかを判定する基準判定部(1061)と、
前記交換算出部で算出した特徴量が、算出した工具交換時期の前か後かのデータかを判定する交換判定部(1062)と、
を備える、付記4に記載の産業機械の変化の対象区間選択装置。
(Appendix 5)
The target section selection unit (105)
a tendency calculation unit (1051) that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit;
a section selection unit (1052) that selects a certain section representing wear from the change in the slope calculated by the tendency calculation unit;
a tool replacement calculation unit (1053) that calculates a tool replacement time based on a feature amount variation and a slope variation in the fixed section selected by the section selection unit;
a reference trend calculation unit (1054) that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit,
The determination unit (106)
a reference determination unit (1061) that determines whether a feature calculated by the feature calculation unit for actual servo waveform data newly acquired from the industrial machine is different from the reference tendency calculated by the reference tendency calculation unit;
a replacement determination unit (1062) that determines whether the feature amount calculated by the replacement calculation unit is data before or after the calculated tool replacement time;
The device for selecting a target section of a change in an industrial machine according to
(付記6)
ワーク及び工具の少なくとも1つの特性を示す特性値を記憶する記憶部(107)を備え、
前記波形生成部(108)は、
送り軸の位置決め及び主軸の速度制御の動作を規定するNCプログラムを解釈するNCプログラム解釈部(1081)と、
前記NCプログラム解釈部が解釈した前記NCプログラムから指令点の補間を行い、位置指令値又は速度指令値を生成する指令生成部(1082)と、
前記指令生成部が生成する前記位置指令値又は前記速度指令値に前記送り軸又は前記主軸を駆動する電動機の回転を追従させるフィードバック制御を行うフィードバック制御部(1083)と、
前記フィードバック制御部がフィードバック制御の結果として算出するトルク指令と、前記記憶部が記憶する前記特性値に基づき、切削力を推定する切削力推定部(1084)と、
を備える、付記4に記載の産業機械の変化の対象区間選択装置。
(Appendix 6)
A memory unit (107) is provided for storing a characteristic value indicating at least one characteristic of a workpiece and a tool;
The waveform generating unit (108)
An NC program interpretation unit (1081) that interprets an NC program that specifies the positioning of a feed axis and the speed control of a spindle;
a command generating unit (1082) that performs interpolation of a command point from the NC program interpreted by the NC program interpretation unit and generates a position command value or a speed command value;
a feedback control unit (1083) that performs feedback control to make the rotation of a motor that drives the feed shaft or the main shaft follow the position command value or the speed command value generated by the command generation unit;
a cutting force estimating unit (1084) that estimates a cutting force based on a torque command calculated by the feedback control unit as a result of the feedback control and the characteristic value stored in the memory unit;
The device for selecting a target section of a change in an industrial machine according to
(付記7)
前記摩耗推定部(110)は、前記工具の限界摩耗量と、該限界摩耗量に到達する時期と、を推定する、付記4に記載の産業機械の変化の対象区間選択装置。
(Appendix 7)
The device for selecting a target section for changes in industrial machinery as described in
(付記8)
前記表示部(111)は、前記摩耗推定部により算出された、前記一定区間に対応する前記工具の摩耗量の変動と、前記工具の限界摩耗量と、前記限界摩耗量に到達する時期と、を表示する、付記7に記載の産業機械の変化の対象区間選択装置。
(Appendix 8)
The display unit (111) displays the fluctuation in the amount of wear of the tool corresponding to the certain section calculated by the wear estimation unit, the limit wear amount of the tool, and the time when the limit wear amount will be reached.
(付記9)
前記基準判定部(1061)は、新たに前記産業機械から取得した実測のサーボ波形データについて、前記特徴量算出部で算出した特徴量と、ワークが存在しない場合に、前記波形生成部により生成された推定サーボ波形データについて、前記特徴量算出部で算出した特徴量とが、一致した場合に、折損と判定する、付記5に記載の産業機械の変化の対象区間選択装置。
(Appendix 9)
The target section selection device for changes in industrial machinery described in
(付記10)
前記対象区間選択部(105)は、
前記特徴量算出部で計算した前記特徴量の変動に基づき、傾きの変動を計算する傾向算出部(1051)と、
前記傾向算出部で算出した前記傾きの変動から、摩耗を表している一定区間を選択する区間選択部(1052)と、
前記区間選択部で選択した前記一定区間の、特徴量の変動と傾きの変動から、工具交換時期を算出する交換算出部(1053)と、
前記交換算出部で算出した工具交換時期間の、1つ以上の特徴量の変動から基準傾向を算出する基準傾向算出部(1054)と、を備え、
工具交換又は実摩耗量の測定が実施された場合に、前記基準傾向算出部(1054)が、前記基準傾向を再度計算して更新し、前記パラメータ最適化部(109)が、実行パラメータを再度計算して更新し、前記摩耗推定部(110)が、摩耗量の変動と、限界摩耗量とを再度計算して更新する、付記4に記載の産業機械の変化の対象区間選択装置。
(Appendix 10)
The target section selection unit (105)
a tendency calculation unit (1051) that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit;
a section selection unit (1052) that selects a certain section representing wear from the change in the slope calculated by the tendency calculation unit;
a tool replacement calculation unit (1053) that calculates a tool replacement time based on a feature amount variation and a slope variation in the fixed section selected by the section selection unit;
a reference trend calculation unit (1054) that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit,
The target section selection device for changes in industrial machinery described in
(付記11)
前記表示部(111)は、前記指令生成部(1082)が前記NCプログラムの補間計算に要した計算回数に基づいて推定される前記NCプログラムのサイクルタイムを表示し、目標サイクルタイムを満足するように前記NCプログラムを編集する、付記6に記載の産業機械の変化の対象区間選択装置。
(Appendix 11)
The display unit (111) displays the cycle time of the NC program estimated based on the number of calculations required by the command generation unit (1082) for the interpolation calculation of the NC program, and edits the NC program so as to satisfy a target cycle time.
(付記12)
コンピュータが、
サーボ波形データを、一定区間ごとに分割する処理と、
産業機械を駆動するNCプログラムを、一定ブロックごとに分割する処理と、
分割された前記一定区間ごとのサーボ波形データと、分割された前記一定ブロックごとのNCプログラムとのマッチングを行う処理と、
前記一定区間ごとに、前記一定区間のサーボ波形データを用いて、特徴量を計算する処理と、
前記一定区間ごとに算出された前記特徴量の変動の傾向に基づき、分割した複数の一定区間から、前記特徴量の変動の傾向を表現できる一定区間を選択する処理と、
を実行する、産業機械の変化の対象区間選択方法。
(Appendix 12)
The computer
A process of dividing the servo waveform data into certain intervals;
A process of dividing an NC program that drives an industrial machine into a certain number of blocks;
A process of matching the servo waveform data for each of the divided fixed sections with an NC program for each of the divided fixed blocks;
A process of calculating a feature amount for each of the fixed sections by using servo waveform data of the fixed section;
selecting a certain section that can express the tendency of fluctuation in the feature amount from the plurality of divided certain sections based on the tendency of fluctuation in the feature amount calculated for each certain section;
A method for selecting a target section for changes in industrial machinery.
10 対象区間選択装置
101 波形分割部
102 NCプログラム分割部
103 マッチング部
104 特徴量算出部
105 対象区間選択部
106 判定部
107 記憶部
108 波形生成部
109 パラメータ最適化部
110 摩耗推定部
111 表示部
1061 基準判定部
1062 交換判定部
1081 NCプログラム解釈部
1082 指令生成部
1083 フィードバック制御部
1084 切削力推定部
REFERENCE SIGNS
Claims (12)
産業機械を駆動するNCプログラムを、一定ブロックごとに分割するNCプログラム分割部と、
前記波形分割部で分割された前記一定区間ごとのサーボ波形データと、前記NCプログラム分割部で分割された前記一定ブロックごとのNCプログラムとのマッチングを行うマッチング部と、
前記一定区間ごとに、前記一定区間のサーボ波形データを用いて、特徴量を計算する特徴量算出部と、
前記一定区間ごとに前記特徴量算出部で算出した前記特徴量の変動の傾向に基づき、分割した複数の一定区間から、前記特徴量の変動の傾向を表現できる一定区間を選択する対象区間選択部と、
を備える、産業機械の変化の対象区間選択装置。 a waveform division unit that divides the servo waveform data into certain intervals;
an NC program division unit that divides an NC program that drives an industrial machine into a certain number of blocks;
a matching unit that performs matching between the servo waveform data for each fixed section divided by the waveform dividing unit and the NC program for each fixed block divided by the NC program dividing unit;
a feature amount calculation unit that calculates a feature amount for each of the fixed intervals by using servo waveform data of the fixed interval;
a target interval selection unit that selects a certain interval that can express the tendency of fluctuation in the feature amount from among the plurality of divided certain intervals based on the tendency of fluctuation in the feature amount calculated by the feature amount calculation unit for each certain interval;
The device for selecting a target section of an industrial machine change is provided.
前記特徴量算出部で計算した前記特徴量の変動に基づき、傾きの変動を計算する傾向算出部と、
前記傾向算出部で算出した前記傾きの変動から、摩耗を表している一定区間を選択する区間選択部と、
前記区間選択部で選択した前記一定区間の、特徴量の変動と傾きの変動の少なくとも一つから、工具交換時期を算出する交換算出部と、
前記交換算出部で算出した工具交換時期間の、1つ以上の特徴量の変動から基準傾向を算出する基準傾向算出部と、
を備える、請求項1に記載の産業機械の変化の対象区間選択装置。 The target section selection unit
a tendency calculation unit that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit;
a section selection unit that selects a certain section that represents wear from the change in the slope calculated by the tendency calculation unit;
a tool replacement calculation unit that calculates a tool replacement time from at least one of a feature amount variation and a slope variation in the fixed section selected by the section selection unit;
a reference trend calculation unit that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit;
The apparatus for selecting a target section of a change in an industrial machine according to claim 1 .
前記対象区間選択部が選択した前記一定区間の、特徴量の変動と、前記波形生成部が生成した前記サーボ波形データから推定した切削力から求める特徴量の変動と、が一致するように実行パラメータを最適化するパラメータ最適化部と、
工具の交換の判定と、基準からの前記特徴量の離れ具合の判定をする判定部と、
前記工具の切削距離及び摩耗速度に基づき、前記工具の摩耗量を推定する摩耗推定部と、
前記一定区間ごとの特徴量の変動と、前記一定区間に対応する前記工具の摩耗量の変動を表示する表示部と、
をさらに具備する、請求項1に記載の産業機械の変化の対象区間選択装置。 a waveform generating unit that generates servo waveform data from the NC program divided by the NC program dividing unit;
a parameter optimization unit that optimizes execution parameters so that a variation in a feature value in the fixed section selected by the target section selection unit coincides with a variation in a feature value determined from a cutting force estimated from the servo waveform data generated by the waveform generation unit;
a determination unit that determines whether a tool has been replaced and determines how the feature amount deviates from a reference;
a wear estimation unit that estimates a wear amount of the tool based on a cutting distance and a wear rate of the tool;
a display unit that displays a variation in the feature amount for each fixed section and a variation in the amount of wear of the tool corresponding to the fixed section;
The apparatus for selecting a target section of a change in an industrial machine according to claim 1 , further comprising:
前記特徴量算出部で計算した前記特徴量の変動に基づき、傾きの変動を計算する傾向算出部と、
前記傾向算出部で算出した前記傾きの変動から、摩耗を表している一定区間を選択する区間選択部と、
前記区間選択部で選択した前記一定区間の、特徴量の変動と傾きの変動から、工具交換時期を算出する交換算出部と、
前記交換算出部で算出した工具交換時期間の、1つ以上の特徴量の変動から基準傾向を算出する基準傾向算出部と、を備え、
前記判定部は、
新たに前記産業機械から取得した実測のサーボ波形データについて、前記特徴量算出部で算出した特徴量が、前記基準傾向算出部で算出した基準傾向から離れているかを判定する基準判定部と、
前記交換算出部で算出した特徴量が、算出した工具交換時期の前か後かのデータかを判定する交換判定部と、
を備える、請求項4に記載の産業機械の変化の対象区間選択装置。 The target section selection unit
a tendency calculation unit that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit;
a section selection unit that selects a certain section that represents wear from the change in the slope calculated by the tendency calculation unit;
a tool replacement calculation unit that calculates a tool replacement time based on a feature amount variation and a slope variation in the fixed section selected by the section selection unit;
a reference trend calculation unit that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit,
The determination unit is
a reference determination unit that determines whether or not a feature calculated by the feature calculation unit for actual servo waveform data newly acquired from the industrial machine is different from the reference tendency calculated by the reference tendency calculation unit;
a replacement determination unit that determines whether the feature amount calculated by the replacement calculation unit is data before or after the calculated tool replacement time;
The device for selecting a target section of a change in an industrial machine according to claim 4 .
前記波形生成部は、
送り軸の位置決め及び主軸の速度制御の動作を規定するNCプログラムを解釈するNCプログラム解釈部と、
前記NCプログラム解釈部が解釈した前記NCプログラムから指令点の補間を行い、位置指令値又は速度指令値を生成する指令生成部と、
前記指令生成部が生成する前記位置指令値又は前記速度指令値に前記送り軸又は前記主軸を駆動する電動機の回転を追従させるフィードバック制御を行うフィードバック制御部と、
前記フィードバック制御部がフィードバック制御の結果として算出するトルク指令と、前記記憶部が記憶する前記特性値に基づき、切削力を推定する切削力推定部と、
を備える、請求項4に記載の産業機械の変化の対象区間選択装置。 A storage unit is provided for storing a characteristic value indicating at least one characteristic of a workpiece and a tool,
The waveform generating unit is
an NC program interpretation unit that interprets an NC program that defines the operation of positioning the feed axis and speed control of the spindle;
a command generating unit that performs interpolation of a command point from the NC program interpreted by the NC program interpretation unit to generate a position command value or a speed command value;
a feedback control unit that performs feedback control to make the rotation of a motor that drives the feed shaft or the main shaft follow the position command value or the speed command value generated by the command generation unit;
a cutting force estimating unit that estimates a cutting force based on a torque command calculated by the feedback control unit as a result of the feedback control and the characteristic value stored in the storage unit;
The device for selecting a target section of a change in an industrial machine according to claim 4 .
前記特徴量算出部で計算した前記特徴量の変動に基づき、傾きの変動を計算する傾向算出部と、
前記傾向算出部で算出した前記傾きの変動から、摩耗を表している一定区間を選択する区間選択部と、
前記区間選択部で選択した前記一定区間の、特徴量の変動と傾きの変動から、工具交換時期を算出する交換算出部と、
前記交換算出部で算出した工具交換時期間の、1つ以上の特徴量の変動から基準傾向を算出する基準傾向算出部と、を備え、
工具交換又は実摩耗量の測定が実施された場合に、前記基準傾向算出部が、前記基準傾向を再度計算して更新し、前記パラメータ最適化部が、実行パラメータを再度計算して更新し、前記摩耗推定部が、摩耗量の変動と、限界摩耗量とを再度計算して更新する、請求項4に記載の産業機械の変化の対象区間選択装置。 The target section selection unit
a tendency calculation unit that calculates a change in slope based on the change in the feature amount calculated by the feature amount calculation unit;
a section selection unit that selects a certain section that represents wear from the change in the slope calculated by the tendency calculation unit;
a tool replacement calculation unit that calculates a tool replacement time based on a feature amount variation and a slope variation in the fixed section selected by the section selection unit;
a reference trend calculation unit that calculates a reference trend from a variation in one or more feature values between tool replacement times calculated by the replacement calculation unit,
5. The device for selecting a target section for changes in industrial machinery as described in claim 4, wherein, when a tool change or measurement of actual wear amount is performed, the reference trend calculation unit recalculates and updates the reference trend, the parameter optimization unit recalculates and updates execution parameters, and the wear estimation unit recalculates and updates a fluctuation in wear amount and a limit wear amount.
サーボ波形データを、一定区間ごとに分割する処理と、
産業機械を駆動するNCプログラムを、一定ブロックごとに分割する処理と、
分割された前記一定区間ごとのサーボ波形データと、分割された前記一定ブロックごとのNCプログラムとのマッチングを行う処理と、
前記一定区間ごとに、前記一定区間のサーボ波形データを用いて、特徴量を計算する処理と、
前記一定区間ごとに算出された前記特徴量の変動の傾向に基づき、分割した複数の一定区間から、前記特徴量の変動の傾向を表現できる一定区間を選択する処理と、
を実行する、産業機械の変化の対象区間選択方法。 The computer
A process of dividing the servo waveform data into certain intervals;
A process of dividing an NC program that drives an industrial machine into a certain number of blocks;
A process of matching the servo waveform data for each of the divided fixed sections with an NC program for each of the divided fixed blocks;
A process of calculating a feature amount for each of the fixed sections by using servo waveform data of the fixed section;
selecting a certain section that can express the tendency of the fluctuation of the feature amount from the plurality of divided certain sections based on the tendency of the fluctuation of the feature amount calculated for each certain section;
A method for selecting a target section for changes in industrial machinery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/019535 WO2024241580A1 (en) | 2023-05-25 | 2023-05-25 | Section-of-interest selection device and section-of-interest selection method for change in industrial machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/019535 WO2024241580A1 (en) | 2023-05-25 | 2023-05-25 | Section-of-interest selection device and section-of-interest selection method for change in industrial machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024241580A1 true WO2024241580A1 (en) | 2024-11-28 |
Family
ID=93589235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/019535 WO2024241580A1 (en) | 2023-05-25 | 2023-05-25 | Section-of-interest selection device and section-of-interest selection method for change in industrial machine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024241580A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020166543A (en) * | 2019-03-29 | 2020-10-08 | 株式会社リコー | Diagnostic device, diagnostic system and program |
JP6949275B1 (en) * | 2020-11-12 | 2021-10-13 | 三菱電機株式会社 | Machining diagnosis device, learning device, inference device, machining diagnosis method and program |
JP7051030B1 (en) * | 2021-08-30 | 2022-04-08 | 三菱電機株式会社 | Machining Dimension Predictor, Machining Dimension Prediction System, Machining Dimension Prediction Method and Program |
JP7243945B1 (en) * | 2022-09-06 | 2023-03-22 | 住友電気工業株式会社 | Condition detection system, method and program |
-
2023
- 2023-05-25 WO PCT/JP2023/019535 patent/WO2024241580A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020166543A (en) * | 2019-03-29 | 2020-10-08 | 株式会社リコー | Diagnostic device, diagnostic system and program |
JP6949275B1 (en) * | 2020-11-12 | 2021-10-13 | 三菱電機株式会社 | Machining diagnosis device, learning device, inference device, machining diagnosis method and program |
JP7051030B1 (en) * | 2021-08-30 | 2022-04-08 | 三菱電機株式会社 | Machining Dimension Predictor, Machining Dimension Prediction System, Machining Dimension Prediction Method and Program |
JP7243945B1 (en) * | 2022-09-06 | 2023-03-22 | 住友電気工業株式会社 | Condition detection system, method and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ratchev et al. | An advanced FEA based force induced error compensation strategy in milling | |
JP7383982B2 (en) | Tool life prediction system | |
US20080306620A1 (en) | Method for Machining a Workpiece | |
JP2019139755A (en) | Polishing tool wear loss prediction device, machine learning device and system | |
JP6717795B2 (en) | Integrated processing system, integrated processing method and program | |
EP4172702A1 (en) | System and method for instantaneous performance management of a machine tool | |
JP6833090B2 (en) | Machine tool machining dimension prediction device, machine tool machining dimension prediction system, machine tool equipment abnormality determination device, machine tool machining dimension prediction method and program | |
Brecher et al. | Use of NC kernel data for surface roughness monitoring in milling operations | |
WO2019043852A1 (en) | Numerical control system and motor controller | |
JP7292202B2 (en) | Methods for Estimating Error Propagation | |
JP6856162B2 (en) | Control system | |
JP2019506657A (en) | Method and controller for monitoring machine tools | |
CN107966956B (en) | Numerical control device | |
US6556879B1 (en) | Numerical controlling unit using machining information | |
WO2024241580A1 (en) | Section-of-interest selection device and section-of-interest selection method for change in industrial machine | |
JP6378249B2 (en) | Numerical control device with machining time prediction function considering servo control and machine motion delay | |
Zhuang et al. | An analytical cutting force model for plunge milling of Ti6Al4V considering cutter runout | |
WO2024247254A1 (en) | Nc program estimation device and nc program estimation method for industrial machines | |
WO2024247258A1 (en) | Device and method for compensating data loss in industrial machine | |
WO2023031984A1 (en) | Machining dimension estimating apparatus, machining dimension estimating system, machining dimension estimating method, and program | |
Henderson | Updated force model for milling nickel-based superalloys | |
WO2024023943A1 (en) | Waveform display device and waveform display method | |
CN112987649A (en) | Immediate display method and immediate display system for machining information of machine tool | |
JP5019544B2 (en) | Displacement correction formula generating apparatus in machine tool and displacement correction formula generating method in machine tool | |
CN118511135A (en) | Device for estimating change of industrial machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23938542 Country of ref document: EP Kind code of ref document: A1 |