Nothing Special   »   [go: up one dir, main page]

WO2024127733A1 - Curable composition, polarizing film, optical film, and image display device - Google Patents

Curable composition, polarizing film, optical film, and image display device Download PDF

Info

Publication number
WO2024127733A1
WO2024127733A1 PCT/JP2023/031397 JP2023031397W WO2024127733A1 WO 2024127733 A1 WO2024127733 A1 WO 2024127733A1 JP 2023031397 W JP2023031397 W JP 2023031397W WO 2024127733 A1 WO2024127733 A1 WO 2024127733A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
curable composition
film
group
Prior art date
Application number
PCT/JP2023/031397
Other languages
French (fr)
Japanese (ja)
Inventor
慎太朗 三木
亮 菅野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024127733A1 publication Critical patent/WO2024127733A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a curable composition that is a raw material for the adhesive layer of a polarizing film in which an optical film is laminated via an adhesive layer on at least one surface of a polarizer, and to the polarizing film.
  • the polarizing film can be used alone or as a laminated optical film to form image displays such as liquid crystal displays (LCDs), organic electroluminescence displays, CRTs, and PDPs.
  • Patent Document 1 describes a photocurable adhesive for polarizing plates that contains a polythiol compound having two or more thiol groups in one molecule, a polyene compound having two or more carbon-carbon double bonds in one molecule, and a photopolymerization initiator.
  • Patent Document 2 describes a photocurable adhesive composition for bonding a polyvinyl alcohol-based polarizing film and a protective film, the photocurable adhesive composition containing at least (a) 50 to 99% by weight of a hydroxyl group-containing alkyl (meth)acrylate, (b) 0.5 to 10% by weight of a photopolymerization initiator, and (c) 0.2 to 5% by weight of one selected from acryloxy group- or methacryloxy group-containing silane coupling agents.
  • Patent Document 1 aims to provide a photocurable adhesive for polarizing plates that has excellent adhesion between the polarizing plate and a light-transmitting member such as a liquid crystal display cell, and also has excellent transparency.
  • Patent Document 2 aims to improve productivity, reduce equipment costs, reduce material costs, improve adhesion, and increase the freedom of combination configurations of protective films, etc., when manufacturing polarizing plates. In other words, neither document describes or suggests the humidification reliability of the polarization properties of polarizing films.
  • the present invention was developed in consideration of the above situation, and aims to provide a curable composition that is a raw material for a polarizing film with excellent humidification reliability of its polarization properties, and a polarizing film with excellent humidification reliability of its polarization properties.
  • the object is to provide an optical film using the polarizing film, and to provide an image display device using the polarizing film or optical film.
  • the present invention relates to a curable composition (1) that contains a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator.
  • curable composition (2) in which the radical generator is a photopolymerization initiator is preferred.
  • curable composition (3) when the total amount of the composition is taken as 100 mass%, a curable composition (3) is preferred in which the content of the polythiol compound is 0.5 to 10 mass%.
  • the content of the radical generator is preferably 0.5 to 5 mass% (curable composition (4)).
  • a/b is preferably 0.5 to 10 in the curable composition (5).
  • the curable composition is preferably a curable composition (6) that is an active energy ray-curable composition.
  • the present invention also relates to a polarizing film (7) in which an optical film is laminated to at least one surface of a polarizer via an adhesive layer, the adhesive layer being a cured product layer of any one of the curable compositions (1) to (6).
  • a polarizing film (8) in which the thickness of the polarizer is 7 ⁇ m or less is preferred.
  • polarizing film (9) is preferred in which the optical film is a transparent protective film.
  • polarizing film (10) is preferred in which the optical film is a triacetyl cellulose-based resin film.
  • polarizing film (11) is preferred in which the polarizer is a polyvinyl alcohol-based film in which a dichroic dye is adsorbed and oriented.
  • polarizing film (12) is preferred in which the polarizer is a polyvinyl alcohol-based film in which iodine is adsorbed and oriented.
  • the present invention also relates to an optical film (13) that is characterized by having at least one layer of any of the above polarizing films (7) to (12) laminated thereon, and further relates to an image display device (14) that is characterized by using any of the above polarizing films (7) to (12) or the above optical film (13).
  • the curable composition of the present invention contains a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator.
  • a curable composition is used as a raw material for an adhesive layer for laminating a polarizer and an optical film, the humidification reliability of the polarization properties of the polarizing film is improved. The reason for this effect is unclear, but can be assumed as follows.
  • iodine escaping In order to achieve both excellent polarization properties and thinness, it is necessary to suppress the phenomenon of iodine escaping from within the polarizer under high temperature and high humidity conditions (hereinafter also referred to as "iodine escaping").
  • iodine escaping As a result of intensive research by the present inventors, it was found that when such a curable composition is used as a raw material for an adhesive layer for laminating a polarizer and an optical film, the conversion rate (reaction rate) of the double bonds in the curable component increases, improving the curability and promoting the high molecular weight of the polymer constituting the adhesive layer, thereby suppressing iodine escaping from within the polarizer.
  • the curable composition according to the present invention contains a polythiol compound having two or more secondary thiol groups in addition to the curable component and the radical generator, thereby significantly improving the humidification reliability of the polarization properties of the polarizing film.
  • the secondary thiol group in the polythiol compound has a good balance of moderate steric hindrance and acidity, and does not impair the polarization properties of the polarizer. If it were a primary thiol group, it would have little steric hindrance and high acidity, and would therefore impair the polarization properties of the polarizer under high temperature and humidity conditions.
  • the polarizing film according to the present invention is a polarizing film in which an optical film is laminated on at least one surface of a polarizer via an adhesive layer, and the adhesive layer is a cured layer of the curable composition
  • the humidification reliability of the polarization properties of the polarizing film is improved.
  • the thickness of the polarizer is 7 ⁇ m or less
  • the humidification reliability of the polarization properties of the polarizing film is particularly improved. The reason for this effect is not clear, but can be assumed as follows.
  • Polarizers with a thickness of 7 ⁇ m or less (hereinafter also referred to as "thin polarizers") inevitably have a high iodine concentration in order to maintain their polarization properties, so iodine loss tends to occur easily under high temperature and high humidity conditions due to the influence of moisture that penetrates into the polarizer.
  • the curable composition that is the raw material for the adhesive layer contains a polythiol compound having two or more secondary thiol groups in addition to the curable component and radical generator, it is possible to suppress iodine loss from the polarizer and maintain a high iodine concentration in the thin polarizer. This particularly improves the humidification reliability of the polarization properties of the polarizing film.
  • the curable composition of the present invention contains a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator.
  • the polythiol compound may be any compound having two or more secondary thiol groups.
  • Examples of compounds having two secondary thiol groups include 1,4-bis(3-mercaptobutyryloxy)butane, 2,3-butanedithiol, and meso-2,3-dimercaptosuccinic acid.
  • Examples of compounds having three secondary thiol groups include trimethylolpropane tris(3-mercaptobutyrate) and 1,3,5-tris(2-(3-sulfanylbutanoyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione.
  • Examples of compounds having four secondary thiol groups include pentaerythritol tetrakis(3-mercaptobutyrate).
  • the content of the polythiol compound is preferably 0.1 to 20 mass%, and more preferably 0.5 to 10 mass%.
  • a polythiol compound having two or more secondary thiol groups is used in combination with a radical generator, particularly a photopolymerization initiator, it is possible to increase the molecular weight of the polymer constituting the adhesive layer while improving the curability of the curable component without impairing the polarization properties of the polarizer.
  • a/b is 0.5 to 10 because the above-mentioned effect is particularly excellent.
  • the curable composition according to the present invention contains a radical generator.
  • the curable composition according to the present invention is preferably an active energy ray curable composition that is cured by irradiation with active energy rays, and the active energy ray curable composition preferably contains a photopolymerization initiator as a radical generator.
  • the amount of the radical generator, particularly the photopolymerization initiator is preferably 0.1 to 10 mass %, and more preferably 0.5 to 5 mass %, when the total amount of the active energy ray curable composition is taken as 100 parts by mass.
  • the photopolymerization initiator is appropriately selected depending on the active energy ray.
  • a photopolymerization initiator that is cleaved by ultraviolet or visible light is used.
  • the photopolymerization initiator include benzophenone-based compounds such as benzil, benzophenone, benzoylbenzoic acid, and 3,3'-dimethyl-4-methoxybenzophenone; aromatic ketone compounds such as 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, and ⁇ -hydroxycyclohexylphenylketone; acetophenone-based compounds such as methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, and 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholinopropane
  • benzoin ether compounds such as benzoin butyl ether and anisoin methyl ether
  • aromatic ketal compounds such as benzyl dimethyl ketal
  • aromatic sulfonyl chloride compounds such as 2-naphthalenesulfonyl chloride
  • photoactive oxime compounds such as 1-phenone-1,1-propanedione-2-(o-ethoxycarbonyl)oxime
  • thioxanthone compounds such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone
  • camphorquinone such as benzoin butyl ether and anisoin
  • an active energy ray-curable composition As a visible light-curable type, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more. Photopolymerization initiators that are highly sensitive to light of 380 nm or more will be described later.
  • the photopolymerization initiator may be a compound represented by the following general formula (3): (wherein R 7 and R 8 are -H, -CH 2 CH 3 , -iPr or Cl, and R 7 and R 8 may be the same or different) is used alone, or it is preferable to use a compound represented by general formula (3) in combination with a photopolymerization initiator highly sensitive to light of 380 nm or more, which will be described later. When a compound represented by general formula (3) is used, the adhesiveness is superior to that when a photopolymerization initiator highly sensitive to light of 380 nm or more is used alone.
  • diethylthioxanthone in which R 7 and R 8 are -CH 2 CH 3 , is particularly preferable.
  • the amount of the compound represented by general formula (3) in the active energy ray curable composition is preferably 0.1 to 4 mass%, and more preferably 0.5 to 3 mass%, when the total amount of the curable composition is taken as 100 mass%.
  • polymerization initiator aid examples include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, and isoamyl 4-dimethylaminobenzoate, with ethyl 4-dimethylaminobenzoate being particularly preferable.
  • the amount added is preferably 0.1 to 3 parts by mass, and more preferably 0.3 to 1 part by mass, when the total amount of the active energy ray-curable composition is taken as 100 parts by mass.
  • a known photopolymerization initiator can be used in combination. Since the optical functional layer and the base film having UV absorbing ability do not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more.
  • Specific examples include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis( ⁇ 5-2,4-cyclopentadiene-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, and the like.
  • the curable composition according to the present invention contains a curable component.
  • the curable composition according to the present invention is preferably an active energy ray curable composition.
  • Active energy ray curable compositions can be divided into radical polymerization curable compositions and cationic polymerization curable compositions.
  • active energy rays with a wavelength range of 10 nm to less than 380 nm are referred to as ultraviolet rays
  • active energy rays with a wavelength range of 380 nm to 800 nm are referred to as visible light.
  • the curable component constituting the radical polymerization curable composition may be, for example, a compound represented by the following general formula (2): (wherein R4 is a hydrogen atom or a methyl group, R5 and R6 are each independently a hydrogen atom, an alkyl group, a hydroxyalkyl group, an alkoxyalkyl group, or a cyclic ether group, and R5 and R6 may form a cyclic heterocycle).
  • the number of carbon atoms in the alkyl moiety of the alkyl group, hydroxyalkyl group, and/or alkoxyalkyl group is not particularly limited, and examples thereof include those having 1 to 4 carbon atoms.
  • an example of the cyclic heterocycle which may be formed by R5 and R6 is N-acryloylmorpholine.
  • compounds represented by general formula (2) include N-alkyl group-containing (meth)acrylamide derivatives such as N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-butyl(meth)acrylamide, and N-hexyl(meth)acrylamide; N-hydroxyalkyl group-containing (meth)acrylamide derivatives such as N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, and N-methylol-N-propane(meth)acrylamide; and N-alkoxy group-containing (meth)acrylamide derivatives such as N-methoxymethylacrylamide and N-ethoxymethylacrylamide.
  • N-alkyl group-containing (meth)acrylamide derivatives such as N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-die
  • Examples of (meth)acrylamide derivatives containing a cyclic ether group include heterocyclic (meth)acrylamide derivatives in which the nitrogen atom of the (meth)acrylamide group forms a heterocyclic ring, such as N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, and N-acryloylpyrrolidine.
  • N-hydroxyethylacrylamide and N-acryloylmorpholine are preferred because of their excellent reactivity, ability to produce a cured product with a high modulus of elasticity, and excellent adhesion to polarizers.
  • the content of the compound represented by general formula (2) in the curable composition is preferably 10 to 80 mass %, and more preferably 20 to 60 mass %.
  • the curable composition used in the present invention may contain, in addition to the compound represented by formula (2), other monofunctional radical polymerizable compounds as curable components.
  • monofunctional radical polymerizable compounds include various (meth)acrylic acid derivatives having a (meth)acryloyloxy group.
  • (meth)acrylic acid (C1-20) alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl-2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth)acrylate, 3-pentyl (meth)acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 4-methyl-2-propylpentyl
  • the (meth)acrylic acid derivatives include, for example, cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate; aralkyl (meth)acrylates such as benzyl (meth)acrylate; 2-isobornyl (meth)acrylate, 2-norbornylmethyl (meth)acrylate, 5-norbornen-2-yl-methyl (meth)acrylate, 3-methyl-2-norbornylmethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, and the like.
  • cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate
  • aralkyl (meth)acrylates such as benzyl (meth)acrylate
  • suitable methacrylates include polycyclic (meth)acrylates such as diethyl (meth)acrylate and dicyclopentanyl (meth)acrylate; alkoxy or phenoxy group-containing (meth)acrylates such as 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-methoxymethoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phenoxyethyl (meth)acrylate, and alkylphenoxy polyethylene glycol (meth)acrylate; and the like.
  • dicyclopentenyloxyethyl acrylate and phenoxyethyl acrylate are preferred because of their excellent adhesion to various protective films.
  • the (meth)acrylic acid derivatives include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, and 12-hydroxylauryl (meth)acrylate.
  • hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acryl
  • (meth)acrylate hydroxyl group-containing (meth)acrylates such as [4-(hydroxymethyl)cyclohexyl]methyl acrylate, cyclohexanedimethanol mono(meth)acrylate, and 2-hydroxy-3-phenoxypropyl (meth)acrylate; epoxy group-containing (meth)acrylates such as glycidyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate glycidyl ether; 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2-trifluoroethylethyl (meth)acrylate, and 2,2,2-trifluoroethylethyl (meth)acrylate; Halogen-containing (meth)acrylates such as acrylates, tetrafluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, heptadeca
  • examples of monofunctional radically polymerizable compounds include carboxyl group-containing monomers such as (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • Examples of monofunctional radically polymerizable compounds include lactam-based vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone; and vinyl monomers having nitrogen-containing heterocycles such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine.
  • lactam-based vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone
  • vinyl monomers having nitrogen-containing heterocycles such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine.
  • a radical polymerizable compound having an active methylene group can be used as the monofunctional radical polymerizable compound.
  • the radical polymerizable compound having an active methylene group is a compound having an active double bond group such as a (meth)acrylic group at the end or in the molecule, and also having an active methylene group.
  • the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group. It is preferable that the active methylene group is an acetoacetyl group.
  • radical polymerizable compounds having an active methylene group include acetoacetoxyalkyl (meth)acrylates such as 2-acetoacetoxyethyl (meth)acrylate, 2-acetoacetoxypropyl (meth)acrylate, and 2-acetoacetoxy-1-methylethyl (meth)acrylate; 2-ethoxymalonyloxyethyl (meth)acrylate, 2-cyanoacetoxyethyl (meth)acrylate, N-(2-cyanoacetoxyethyl)acrylamide, N-(2-propionylacetoxybutyl)acrylamide, N-(4-acetoacetoxymethylbenzyl)acrylamide, and N-(2-acetoacetylaminoethyl)acrylamide.
  • the radical polymerizable compound having an active methylene group is preferably an acetoacetoxyalkyl (meth)acrylate.
  • a bifunctional or higher polyfunctional radically polymerizable compound can be blended as a curable component constituting the radically polymerizable composition.
  • polyfunctional radically polymerizable compounds include polyfunctional (meth)acrylamide derivatives such as N,N'-methylenebis(meth)acrylamide, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di(meth)acrylate, bisphenol A di(meth)acrylate, bisphenol A ethylene oxide adduct di(meth)acrylate, bisphenol A propylene oxide adduct di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, and bisphenol A diglycidyl
  • esters of (meth)acrylic acid and polyhydric alcohols such as ethyl acrylate, neopentyl glycol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, dioxane glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and EO-modified diglycerin tetra(meth)acrylate; and 9,9-bis[4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene.
  • Specific examples include Aronix M-220 (manufactured by Toagosei Co., Ltd.), Light Acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd.), Light Acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), Light Acrylate DCP-A (manufactured by Kyoeisha Chemical Co., Ltd.), SR-531 (manufactured by Sartomer Co., Ltd.), and CD-536 (manufactured by Sartomer Co., Ltd.).
  • epoxy (meth)acrylates urethane (meth)acrylates, polyester (meth)acrylates, and various (meth)acrylate monomers may be used.
  • polyfunctional (meth)acrylamide derivatives have a high polymerization rate and excellent productivity, and also have excellent crosslinking properties when the resin composition is cured, so they are preferably contained in the curable composition.
  • the amount of the monofunctional radically polymerizable compound in the curable composition is preferably 20 to 90 mass%, and more preferably 30 to 60 mass%.
  • the amount of the polyfunctional radically polymerizable compound in the curable composition is preferably 10 to 80 mass%, and more preferably 40 to 70 mass%.
  • the curable composition according to the present invention has the following general formula (1): (wherein X is a reactive group, Y is an alkylene group having 1 to 12 carbon atoms which may have a branched chain, or a phenylene group which may have a substituent, and R 1 and R 2 each independently represent a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, an aryl group, or a heterocyclic group).
  • Examples of the aliphatic hydrocarbon group include a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent, a cyclic alkyl group having 3 to 20 carbon atoms which may have a substituent, and an alkenyl group having 2 to 20 carbon atoms.
  • Examples of the aryl group include a phenyl group having 6 to 20 carbon atoms which may have a substituent, and a naphthyl group having 10 to 20 carbon atoms which may have a substituent
  • examples of the heterocyclic group include a 5- or 6-membered ring group which contains at least one hetero atom and may have a substituent. These may be linked together to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, and most preferably a hydrogen atom.
  • X in the compound represented by general formula (1) is a reactive group, which is a functional group that can react with the curable component that constitutes the cured material layer, particularly the adhesive layer, and examples of such groups include a hydroxyl group, an amino group, an aldehyde group, a carboxyl group, a vinyl group, a (meth)acrylic group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group, an ⁇ , ⁇ -unsaturated carbonyl group, a mercapto group, and a halogen group.
  • the reactive group X is preferably at least one reactive group selected from the group consisting of vinyl group, (meth)acrylic group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group and mercapto group, and when the cured product layer, particularly the adhesive layer, is radically polymerizable, the reactive group X is preferably at least one reactive group selected from the group consisting of (meth)acrylic group, styryl group and (meth)acrylamide group, and when the compound represented by general formula (1) has a (meth)acrylamide group, it is more preferable because it has high reactivity and increases the copolymerization rate with the curable component in the cured product layer, particularly the adhesive layer.
  • the reactive group X preferably has at least one functional group selected from a hydroxyl group, an amino group, an aldehyde, a carboxyl group, a vinyl ether group, an epoxy group, an oxetane group, and a mercapto group.
  • the reactive group X has an epoxy group
  • the reactive group X has a vinyl ether group
  • Preferred specific examples of the compound represented by formula (1) include the following compounds (1a) to (1d), in which R3 in formulas (1a) and (1b) is a hydrogen atom or a methyl group.
  • esters of (meth)acrylates and boric acid such as esters of hydroxyethylacrylamide and boric acid, esters of methylol acrylamide and boric acid, esters of hydroxyethyl acrylate and boric acid, and esters of hydroxybutyl acrylate and boric acid.
  • the curable composition may contain an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer.
  • an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer.
  • the active energy ray curable composition has a low viscosity, and therefore it is preferable that the acrylic oligomer obtained by polymerizing a (meth)acrylic monomer also has a low viscosity.
  • the acrylic oligomer that has a low viscosity and can prevent the curing shrinkage of the adhesive layer one having a weight average molecular weight (Mw) of preferably 15,000 or less, more preferably 10,000 or less, and particularly preferably 5,000 or less is preferred.
  • the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1,000 or more, and particularly preferably 1,500 or more.
  • (meth)acrylic monomers constituting acrylic oligomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl-2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth)acrylate, 3-pentyl (meth)acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, (meth)acrylic acid (C1-20) alkyl esters such as (meth)acrylic acid (C1-20) alkyl esters, such as n-octyl (
  • acrylic oligomer (E) examples include “ARUFON” manufactured by Toagosei Co., Ltd., “Actflow” manufactured by Soken Chemical & Engineering Co., Ltd., and "JONCRYL” manufactured by BASF Japan Ltd.
  • the curable composition used in the present invention may contain a silane coupling agent.
  • silane coupling agents include active energy ray curable compounds such as vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxypropyltrimethoxysilane.
  • silane coupling agents other than those mentioned above that are not curable by active energy rays include 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane, and imidazole silane.
  • the curable composition used in the present invention may be a cationic polymerization curable composition.
  • the cationic polymerizable compound used in the cationic polymerization curable composition is classified into a monofunctional cationic polymerizable compound having one cationic polymerizable functional group in the molecule and a polyfunctional cationic polymerizable compound having two or more cationic polymerizable functional groups in the molecule. Since the liquid viscosity of the monofunctional cationic polymerizable compound is relatively low, the liquid viscosity can be reduced by including it in the cationic polymerization curable composition.
  • the monofunctional cationic polymerizable compound often has a functional group that exhibits various functions, and by including it in the cationic polymerization curable composition, various functions can be exhibited in the cationic polymerization curable composition and/or the cured product of the cationic polymerization curable composition. Since the polyfunctional cationic polymerizable compound can three-dimensionally crosslink the cured product of the cationic polymerization curable composition, it is preferable to include it in the cationic polymerization curable composition.
  • the ratio of the monofunctional cationic polymerizable compound to the polyfunctional cationic polymerizable compound is preferably in the range of 10 to 1000 parts by mass of the polyfunctional cationic polymerizable compound to 100 parts by mass of the monofunctional cationic polymerizable compound.
  • the cationic polymerizable functional group include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • the compound having an epoxy group include an aliphatic epoxy compound, an alicyclic epoxy compound, and an aromatic epoxy compound. Since the cationic polymerizable resin composition of the present invention has excellent curability and adhesiveness, it is particularly preferable that the composition contains an alicyclic epoxy compound.
  • Examples of the alicyclic epoxy compound include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, caprolactone-modified products, trimethylcaprolactone-modified products, and valerolactone-modified products of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and specifically, CELLOXIDE 2021, CELLOXIDE 2021A, CELLOXIDE 2021P, CELLOXIDE 2081, CELLOXIDE 2083, CELLOXIDE 2085 (all manufactured by Daicel Chemical Industries, Ltd.), Cyracure UVR-61 No.
  • a compound having an oxetanyl group is preferably contained since it has the effect of improving the curability of the cationic polymerizable resin composition and reducing the liquid viscosity of the composition.
  • Examples of compounds having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl)oxetane, di[(3-ethyl-3-ox Examples of such a compound include 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, phenol novolak oxetane, and the like.
  • ARON OXETANE OXT-101, ARON OXETANE OXT-121, ARON OXETANE OXT-211, ARON OXETANE OXT-221, ARON OXETANE OXT-212 (all manufactured by Toagosei Co., Ltd.) and the like are commercially available.
  • Compounds having a vinyl ether group are preferably contained since they have the effect of improving the curability of the cationically polymerizable resin composition and reducing the liquid viscosity of the composition.
  • Examples of compounds having a tere group include 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, triethylene glycol divinyl ether, cyclohexane dimethanol divinyl ether, cyclohexane dimethanol monovinyl ether, tricyclodecane vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, and pentaerythritol tetravinyl ether.
  • the cationic polymerization curable composition contains at least one compound selected from the compounds having an epoxy group, the compounds having an oxetanyl group, and the compounds having a vinyl ether group described above as a curable component, and since all of these are cured by cationic polymerization, a photocationic polymerization initiator is blended.
  • This photocationic polymerization initiator generates cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet light, X-rays, and electron beams, and initiates the polymerization reaction of the epoxy group or the oxetanyl group.
  • a photoacid generator described below is preferably used as the photocationic polymerization initiator.
  • a photocationic polymerization initiator that is highly sensitive to light of 380 nm or more, but since photocationic polymerization initiators are generally compounds that show maximum absorption in the vicinity of 300 nm or shorter wavelengths, by blending a photosensitizer that shows maximum absorption in the longer wavelength region, specifically, light of wavelengths longer than 380 nm, it is possible to promote the generation of cationic species or acid from the photocationic polymerization initiator by responding to light of wavelengths in this vicinity.
  • photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, photoreducible dyes, etc., and these may be used in combination of two or more types.
  • Anthracene compounds are particularly preferred because of their excellent photosensitizing effect, and specific examples include Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Chemical Industries, Ltd.).
  • the content of the photosensitizer is preferably 0.1% to 5% by mass, and more preferably 0.5% to 3% by mass.
  • the active energy ray curable composition may contain a photoacid generator.
  • the active energy ray curable composition contains a photoacid generator, the water resistance and durability of the adhesive layer can be dramatically improved compared to when the composition does not contain a photoacid generator.
  • the photoacid generator can be represented by the following general formula (4).
  • the counter anion X ⁇ in the general formula (4) is not particularly limited in principle, but is preferably a non-nucleophilic anion.
  • the counter anion X ⁇ is a non-nucleophilic anion, nucleophilic reactions are unlikely to occur in the cations coexisting in the molecule or in various materials used in combination, and as a result, it is possible to improve the stability over time of the photoacid generator represented by the general formula (4) itself and the composition using it.
  • the non-nucleophilic anion here refers to an anion that has a low ability to cause a nucleophilic reaction.
  • Examples of such anions include PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SbCl 6 ⁇ , BiCl 5 ⁇ , SnCl 6 ⁇ , ClO 4 ⁇ , B(C 6 H 5 ) 4 ⁇ , dithiocarbamate anion, SCN ⁇ and the like.
  • the polarizing film according to the present invention is a polarizing film in which an optical film is laminated to at least one surface of a polarizer via an adhesive layer, and the adhesive layer is a cured layer of the curable composition.
  • the thickness of the cured layer is preferably 0.5 ⁇ m or more and 5.0 ⁇ m or less from the viewpoint of improving the humidification reliability of the polarization properties of the polarizing film.
  • the polarizer is not particularly limited, and various polarizers can be used.
  • polarizers include those in which a dichroic dye, especially iodine, is adsorbed and oriented on a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene-vinyl acetate copolymer partially saponified film.
  • a polyvinyl alcohol film in which a dichroic dye is adsorbed and oriented is preferred as a polarizer
  • a polyvinyl alcohol film in which iodine is adsorbed and oriented is more preferred.
  • the thickness of the polarizer can be, for example, 3 to 20 ⁇ m.
  • a thin polarizer having a thickness of 3 ⁇ m or more and 15 ⁇ m or less as the polarizer.
  • the thickness is 12 ⁇ m or less, and even more preferable that the thickness is 10 ⁇ m or less, and especially preferable that the thickness is 7 ⁇ m or less.
  • Such a thin polarizer has little thickness unevenness, excellent visibility, and also has excellent durability against thermal shock due to little dimensional change.
  • the adhesive layer that comes into contact with a thin polarizer which is particularly thicker than 7 ⁇ m, has a high iodine density, and is prone to iodine loss, is formed from a cured layer of a curable composition that contains a polythiol compound having two or more secondary thiol groups in addition to a curable component and a photopolymerization initiator.
  • a curable composition that contains a polythiol compound having two or more secondary thiol groups in addition to a curable component and a photopolymerization initiator.
  • a polarizer obtained by dyeing a polyvinyl alcohol film with iodine and stretching it uniaxially can be produced, for example, by immersing the polyvinyl alcohol in an aqueous solution of iodine to dye it and stretching it to 3 to 7 times its original length.
  • the solution may contain boric acid, zinc sulfate, zinc chloride, etc., or it may be immersed in an aqueous solution of potassium iodide, etc.
  • the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • the polarizer preferably contains boric acid from the viewpoints of stretching stability and humidification reliability. Furthermore, the boric acid content in the polarizer is preferably 22% by mass or less, and more preferably 20% by mass or less, based on the total amount of the polarizer, from the viewpoints of suppressing the occurrence of through cracks. From the viewpoints of stretching stability and humidification reliability, the boric acid content in the polarizer is preferably 10% by mass or more, and more preferably 12% by mass or more, based on the total amount of the polarizer.
  • thin polarizers include: Patent No. 4751486, Patent No. 4751481, Patent No. 4815544, Patent No. 5048120, International Publication No. 2014/077599, International Publication No. 2014/077636, or a thin polarizer obtained by the manufacturing method described therein.
  • the thin polarizer is preferably obtained by a manufacturing method including a step of stretching in a boric acid aqueous solution as described in Patent Nos. 4751486, 4751481, and 4815544, among which a step of stretching in a laminate and a step of dyeing, because it can be stretched at a high ratio and the polarization performance can be improved.
  • a manufacturing method including a step of supplementary air stretching before stretching in a boric acid aqueous solution as described in Patent Nos. 4751481 and 4815544.
  • These thin polarizers can be obtained by a manufacturing method including a step of stretching a polyvinyl alcohol resin (hereinafter also referred to as PVA-based resin) layer and a resin substrate for stretching in a laminate and a step of dyeing.
  • PVA-based resin polyvinyl alcohol resin
  • a triacetyl cellulose-based resin film for the polarizing film according to the present invention.
  • the triacetyl cellulose-based resin film has high moisture permeability and poor wet heat durability, so that the humidification reliability of the polarization properties of the polarizing film tends to deteriorate.
  • the adhesive layer is formed by a cured layer of a curable composition containing a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator, even if the polarizing film has a triacetyl cellulose-based resin film, the humidification reliability of the polarization properties of the polarizing film is improved, which is preferable.
  • the transparent protective film may contain one or more suitable additives. Examples of additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, release agents, coloring inhibitors, flame retardants, nucleating agents, antistatic agents, pigments, and colorants.
  • the content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, even more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. If the content of the thermoplastic resin in the transparent protective film is 50% by weight or less, the inherent high transparency of the thermoplastic resin may not be fully expressed.
  • the transparent protective film one having excellent transparency, mechanical strength, thermal stability, moisture blocking properties, isotropy, etc. is preferred, and one having a moisture permeability of 150 g/ m2 /24 h or less is more preferred, one having a moisture permeability of 140 g/ m2 /24 h or less is particularly preferred, and one having a moisture permeability of 120 g/ m2 /24 h or less is even more preferred.
  • Functional layers such as a hard coat layer, an anti-reflection layer, an anti-sticking layer, a diffusion layer, or an anti-glare layer can be provided on the surface of the transparent protective film to which the polarizer is not attached.
  • the above-mentioned functional layers such as the hard coat layer, the anti-reflection layer, the anti-sticking layer, the diffusion layer, and the anti-glare layer can be provided on the transparent protective film itself, or can be provided separately from the transparent protective film.
  • the thickness of the transparent protective film can be determined as appropriate, but is generally about 1 to 500 ⁇ m in terms of strength, ease of handling, thinness, etc., with 1 to 300 ⁇ m being preferred, and 5 to 200 ⁇ m being more preferred. Furthermore, 10 to 200 ⁇ m is more preferred, and 20 to 80 ⁇ m is more preferred.
  • retardation films examples include birefringent films made by uniaxially or biaxially stretching polymer materials, oriented films of liquid crystal polymers, and films in which an oriented layer of liquid crystal polymer is supported by a film. There are no particular restrictions on the thickness of the retardation film, but it is generally around 20 to 150 ⁇ m.
  • the retardation film may be any of the following formulas (1) to (3): 0.70 ⁇ Re[450]/Re[550] ⁇ 0.97... (1) 1.5 ⁇ 10 ⁇ 3 ⁇ ⁇ n ⁇ 6 ⁇ 10 ⁇ 3 ... (2) 1.13 ⁇ NZ ⁇ 1.50...(3) (wherein Re[450] and Re[550] are in-plane retardation values of the retardation film measured with light having wavelengths of 450 nm and 550 nm at 23° C., respectively; ⁇ n is in-plane birefringence, which is nx-ny, where nx and ny are the refractive indices in the slow axis direction and fast axis direction of the retardation film, respectively; and NZ is the ratio of nx-nz, which is the thickness direction birefringence, to nx-ny, which is the in-plane birefringence, where nz is the refractive index in the thickness direction of the retardation film.)
  • the polarizing film according to the present invention may be provided with a retardation layer.
  • the retardation layer may be a single layer or multiple layers, and the retardation layer may also serve as a protective layer for the polarizer.
  • a liquid crystal compound is preferably used to form the retardation layer, and a solvent containing the liquid crystal compound can be applied using, for example, a wire bar, a gap coater, a comma coater, a gravure coater, a slot die, or the like.
  • the applied liquid crystal solution may be dried naturally or by heating. It is preferable that the liquid crystal solution is applied at a concentration lower than the isotropic phase-liquid crystal phase transition concentration, i.e., in an isotropic phase state. In this case, stable alignment can be achieved by a method such as rubbing treatment or photoalignment.
  • the polarizing film according to the present invention can be manufactured, for example, by the following manufacturing method.
  • the adhesive layer being a cured layer of a curable composition
  • the curable composition being a curable composition containing a polythiol compound having two or more secondary thiol groups,
  • the method for applying the curable composition is appropriately selected depending on the viscosity of the composition and the desired thickness, and examples include a reverse coater, gravure coater (direct, reverse or offset), bar reverse coater, roll coater, die coater, bar coater, and rod coater.
  • the viscosity of the curable composition is preferably 3 to 100 mPa ⁇ s, more preferably 5 to 50 mPa ⁇ s, and most preferably 10 to 30 mPa ⁇ s. If the viscosity of the composition is high, it is not preferable because the surface smoothness after application is poor and a poor appearance occurs. For this reason, each composition can be heated or cooled to adjust the viscosity to a preferred range before application.
  • the polarizer and/or optical film may be subjected to a surface modification treatment before the coating process.
  • a surface modification treatment on the polarizer.
  • Examples of surface modification treatments include corona treatment, plasma treatment, and itro treatment, with corona treatment being particularly preferable.
  • Corona treatment generates reactive functional groups such as carbonyl groups and amino groups on the polarizer surface, improving adhesion to the adhesive layer.
  • the ashing effect removes foreign matter from the surface and reduces surface irregularities, making it possible to create a polarizing film with excellent appearance characteristics.
  • the polarizer and the optical film are bonded together using a roll laminator or the like via the curable composition applied as described above (bonding process).
  • the polarizer and the optical film are bonded together, they are irradiated with active energy rays (electron beams, ultraviolet rays, visible light, etc.) to cure the curable composition and form an adhesive layer.
  • active energy rays electron beams, ultraviolet rays, visible light, etc.
  • the irradiation direction of the active energy rays can be any appropriate direction.
  • the adhesive may not be cured sufficiently, and if it exceeds 100 kGy, the optical functional layer and the base film may be damaged, resulting in a decrease in mechanical strength and yellowing, and the desired optical characteristics may not be obtained.
  • Electron beam irradiation is usually performed in an inert gas, but if necessary it can be performed in air or with a small amount of oxygen introduced.
  • oxygen inhibition can be intentionally created on the optical functional layer and base film surface that are first hit by the electron beam, preventing damage to the polarizer and transparent protective film and allowing the electron beam to be efficiently irradiated only on the adhesive.
  • the active energy rays those containing visible light in the wavelength range of 380 nm to 450 nm, and in particular those with the greatest exposure to visible light in the wavelength range of 380 nm to 450 nm.
  • a transparent protective film with ultraviolet absorption ability ultraviolet transparent protective film
  • light with wavelengths shorter than approximately 380 nm is absorbed, so that light with wavelengths shorter than 380 nm does not reach the curable composition and does not contribute to the polymerization reaction.
  • the ratio of the integrated illuminance in the wavelength range of 380 to 440 nm to the integrated illuminance in the wavelength range of 250 to 370 nm is preferably 100:0 to 100:50, more preferably 100:0 to 100:40.
  • the active energy ray is preferably a gallium-encapsulated metal halide lamp or an LED light source that emits light in the wavelength range of 380 to 440 nm.
  • a light source containing ultraviolet rays and visible light such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultra-high pressure mercury lamp, an incandescent lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a metal halide lamp, a fluorescent lamp, a tungsten lamp, a gallium lamp, an excimer laser, or sunlight can be used, and a bandpass filter can be used to block ultraviolet rays with a wavelength shorter than 380 nm.
  • a gallium-filled metal halide lamp and active energy rays obtained through a bandpass filter capable of blocking light with wavelengths shorter than 380 nm, or active energy rays with a wavelength of 405 nm obtained using an LED light source In order to prevent curling of the polarizing film while improving the adhesive performance of the adhesive layer between the polarizer and the transparent protective film, it is preferable to use a gallium-filled metal halide lamp and active energy rays obtained through a bandpass filter capable of blocking light with wavelengths shorter than 380 nm, or active energy rays with a wavelength of 405 nm obtained using an LED light source.
  • the above-mentioned polarizing film and the laminated optical film having at least one layer of polarizing film can also be provided with an adhesive layer for bonding to other components such as liquid crystal cells.
  • an adhesive that forms the adhesive layer, but it is possible to appropriately select and use an adhesive whose base polymer is, for example, an acrylic polymer, a silicone polymer, polyester, polyurethane, polyamide, polyether, a fluorine-based polymer, or a rubber-based polymer.
  • an adhesive that has excellent optical transparency, such as an acrylic adhesive, and adhesive properties such as moderate wettability, cohesion, and adhesion, and has excellent weather resistance and heat resistance.
  • the adhesive layer can be provided on one or both sides of the polarizing film or optical film as a superimposed layer of different compositions or types. When provided on both sides, the adhesive layers on the front and back of the polarizing film or optical film can be of different compositions, types, thicknesses, etc.
  • the thickness of the adhesive layer can be determined appropriately depending on the intended use, adhesive strength, etc., and is generally 1 to 500 ⁇ m, preferably 1 to 200 ⁇ m, and particularly preferably 1 to 100 ⁇ m.
  • a separator is temporarily attached to cover the exposed surface of the adhesive layer to prevent contamination until it is put into practical use. This prevents contact with the adhesive layer during normal handling.
  • any suitable thin material such as plastic film, rubber sheet, paper, cloth, nonwoven fabric, net, foam sheet, metal foil, or laminates thereof, coated as necessary with a suitable release agent such as silicone, long-chain alkyl, fluorine, or molybdenum sulfide, may be used in accordance with conventional methods.
  • the polarizing film or optical film of the present invention can be preferably used in the formation of various devices such as liquid crystal display devices.
  • the formation of liquid crystal display devices can be carried out in a conventional manner. That is, liquid crystal display devices are generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or optical film, and, if necessary, a lighting system, and incorporating a driving circuit, but in the present invention, there are no particular limitations other than the use of the polarizing film or optical film of the present invention, and the method can be carried out in a conventional manner.
  • the liquid crystal cell any type can be used, such as TN type, STN type, or ⁇ type.
  • suitable liquid crystal display devices such as those in which an optical laminate is disposed on one or both sides of a liquid crystal cell, or those in which a backlight or reflector is used in the lighting system.
  • the optical laminate according to the present invention can be disposed on one or both sides of a liquid crystal cell.
  • optical laminates When optical laminates are disposed on both sides, they may be the same or different.
  • suitable components such as a diffuser plate, anti-glare layer, anti-reflection film, protective plate, prism array, lens array sheet, light diffuser plate, backlight, etc. can be disposed in one or more layers in suitable positions.
  • ⁇ Polarizer> A laminate having a 9 ⁇ m-thick PVA layer formed on an amorphous PET substrate was subjected to auxiliary air stretching at a stretching temperature of 130° C. to produce a stretched laminate, the stretched laminate was then dyed to produce a colored laminate, and the colored laminate was further stretched in boric acid water at a stretching temperature of 65° C.
  • an optical film laminate including a 5 ⁇ m-thick PVA layer in which the PVA molecules of the PVA layer formed on the amorphous PET substrate were highly oriented by such two-stage stretching, and an optical film laminate including a 5.5 ⁇ m-thick PVA layer was obtained, which constitutes a thin polarizer in which iodine adsorbed by dyeing was highly oriented in one direction as a polyiodine ion complex.
  • Optical film 1 Triacetyl cellulose-based resin film (product name "KC2UA", manufactured by Konica Minolta)
  • Visible light (gallium-filled metal halide lamp) was used as the active energy ray.
  • Irradiation device Light HAMMER10 manufactured by Fusion UV Systems, Inc.
  • Bulb V bulb Peak illuminance: 1600 mW/cm 2 , cumulative irradiation amount 1000/mJ/cm 2 (wavelength 380 to 440 nm) was used.
  • the illuminance of visible light was measured using a Sola-Check system manufactured by Solatell.
  • Curable compositions of Examples 1 to 7 and Comparative Examples 1 and 2 were prepared according to the formulations in Table 1. The values in the table indicate the weight percentages when the total amount of each composition is taken as 100 mass %.
  • the above-mentioned visible light was irradiated from the bonded transparent protective film side by an active energy ray irradiation device to cure the curable composition, thereby bonding the thin polarizer and the transparent protective film together via an adhesive layer obtained.
  • the amorphous PET substrate of the optical film laminate was peeled off.
  • a double-sided tape (No. 500, manufactured by Nitto Denko Corporation) was attached to the PVA surface of the polarizing film obtained by the above manufacturing method.
  • the polarizing film was then cut into a size of 200 mm parallel to the stretching direction and 15 mm perpendicular to the stretching direction, and a cut was made between the polarizing film and the transparent protective film with a cutter knife.
  • the release film of the double-sided tape was then peeled off, and the adhesive surface was attached to a glass plate.
  • the polarizing film and the transparent protective film were peeled off, and the transparent protective film side after peeling was measured by FT-IR (ATR method). When only the peak of the TAC film was detected, it was marked as ⁇ , and when the peak of the adhesive component was detected, it was marked as ⁇ , indicating that the adhesive had cohesive failure.
  • Table 1 show that the polarizing films of Examples 1 to 7 have excellent humidification reliability of polarization properties.
  • the adhesive layer also has excellent curing properties, which indicates that the polarizing films have excellent durability and reliability.
  • the polarizing film of Comparative Example 1 cannot suppress iodine loss under high temperature and humidity conditions, which indicates that the humidification reliability is deteriorated.
  • the polarizing film of Comparative Example 2 has insufficient curing properties, which indicates that the peel strength of the adhesive layer is deteriorated, which indicates that the polarizing film has poor durability and reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

This curable composition contains: a polythiol compound having two or more secondary thiol groups; a curable component; and a radical generator. This polarizing film is obtained by layering an optical film on at least one surface of a polarizer via an adhesive layer. The adhesive layer is a layer of a cured product of the curable composition. If the total amount of the composition is taken to be 100 mass%, the content of the polythiol compound is preferably 0.5-10 mass%. If the total amount of the composition is taken to be 100 mass%, the content of the radical generator is preferably 0.5-5 mass%. If the content of the polythiol compound is taken to be a mass% and the content of the radical generator is taken to be b mass%, the value of a/b is preferably 0.5-10.

Description

硬化性組成物、偏光フィルム、光学フィルムおよび画像表示装置CURABLE COMPOSITION, POLARIZING FILM, OPTICAL FILM AND IMAGE DISPLAY DEVICE
 本発明は、偏光子の少なくとも一方の面に接着剤層を介して光学フィルムが積層された偏光フィルムの接着剤層の原料となる硬化性組成物および偏光フィルムに関する。当該偏光フィルムはこれ単独で、またはこれを積層した積層光学フィルムとして液晶表示装置(LCD)、有機EL表示装置、CRT、PDPなどの画像表示装置を形成し得る。 The present invention relates to a curable composition that is a raw material for the adhesive layer of a polarizing film in which an optical film is laminated via an adhesive layer on at least one surface of a polarizer, and to the polarizing film. The polarizing film can be used alone or as a laminated optical film to form image displays such as liquid crystal displays (LCDs), organic electroluminescence displays, CRTs, and PDPs.
 近年、画像表示装置の薄型化およびフレキシブル化が進んでおり、これに伴いその部材である偏光フィルムの薄型化も進んでいる。しかしながら、偏光フィルムが薄くなればなるほど、高温高湿環境下において偏光度の低下が発生し、光学特性が悪化する傾向があった。 In recent years, image display devices have become thinner and more flexible, and as a result, the polarizing films that are a component of these devices have also become thinner. However, the thinner the polarizing film, the more likely it is that the degree of polarization will decrease in high-temperature, high-humidity environments, and the optical properties will deteriorate.
 下記特許文献1では、1分子中に2個以上のチオール基を有するポリチオール化合物、1分子中に2個以上の炭素-炭素二重結合を有するポリエン化合物および光重合開始剤が含有されてなる偏光板用光硬化型接着剤が記載されている。 The following Patent Document 1 describes a photocurable adhesive for polarizing plates that contains a polythiol compound having two or more thiol groups in one molecule, a polyene compound having two or more carbon-carbon double bonds in one molecule, and a photopolymerization initiator.
 下記特許文献2では、ポリビニルアルコール系偏光フィルムと保護フィルムとを接着するための光硬化型接着剤組成物であって、該光硬化型接着剤組成物が(a)ヒドロキシ基含有アルキル(メタ)アクリレート50~99重量%(b)光重合開始剤0.5~10重量%(c)アクリロキシ基又はメタクリロキシ基含有シランカップリング剤から選ばれた一種0.2~5重量%を少なくとも有している光硬化性接着剤組成物が記載されている。 The following Patent Document 2 describes a photocurable adhesive composition for bonding a polyvinyl alcohol-based polarizing film and a protective film, the photocurable adhesive composition containing at least (a) 50 to 99% by weight of a hydroxyl group-containing alkyl (meth)acrylate, (b) 0.5 to 10% by weight of a photopolymerization initiator, and (c) 0.2 to 5% by weight of one selected from acryloxy group- or methacryloxy group-containing silane coupling agents.
特開2005-139401号公報JP 2005-139401 A 特開2010-18721号公報JP 2010-18721 A
 特許文献1に記載の技術では、偏光板と液晶表示セルなどの透光部材との接着力に優れ、かつ、透明性にも優れる偏光板用光硬化型接着剤の提供を課題としている。また、特許文献2に記載の技術でも、偏光板製造に際しての、生産性の向上、設備コストの低減、材料コストの低減、接着性の向上、及び保護フィルム等の組合せ構成の自由度向上を課題としている。つまり、両文献とも偏光フィルムの偏光特性の加湿信頼性に関しては記載も示唆もしていない。 The technology described in Patent Document 1 aims to provide a photocurable adhesive for polarizing plates that has excellent adhesion between the polarizing plate and a light-transmitting member such as a liquid crystal display cell, and also has excellent transparency. Similarly, the technology described in Patent Document 2 aims to improve productivity, reduce equipment costs, reduce material costs, improve adhesion, and increase the freedom of combination configurations of protective films, etc., when manufacturing polarizing plates. In other words, neither document describes or suggests the humidification reliability of the polarization properties of polarizing films.
 本発明は上記実情に鑑みて開発されたものであり、偏光特性の加湿信頼性に優れた偏光フィルムの原料となる硬化性組成物、および偏光特性の加湿信頼性に優れた偏光フィルムを提供することを目的とする。 The present invention was developed in consideration of the above situation, and aims to provide a curable composition that is a raw material for a polarizing film with excellent humidification reliability of its polarization properties, and a polarizing film with excellent humidification reliability of its polarization properties.
さらには、前記偏光フィルムを用いた光学フィルムを提供すること、前記偏光フィルムまたは光学フィルムを用いた画像表示装置を提供することを目的とする。 Furthermore, the object is to provide an optical film using the polarizing film, and to provide an image display device using the polarizing film or optical film.
 上記課題は下記構成により解決し得る。即ち、本発明は、2以上の2級チオール基を有するポリチオール化合物と、硬化性成分と、ラジカル発生剤とを含有することを特徴とする硬化性組成物(1)に関する。 The above problem can be solved by the following configuration. That is, the present invention relates to a curable composition (1) that contains a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator.
 上記硬化性組成物(1)において、前記ラジカル発生剤が光重合開始剤である硬化性組成物(2)が好ましい。 In the above curable composition (1), a curable composition (2) in which the radical generator is a photopolymerization initiator is preferred.
 上記硬化性組成物(1)または(2)において、組成物中の全量を100質量%としたとき、前記ポリチオール化合物の含有量が0.5~10質量%である硬化性組成物(3)が好ましい。 In the above curable composition (1) or (2), when the total amount of the composition is taken as 100 mass%, a curable composition (3) is preferred in which the content of the polythiol compound is 0.5 to 10 mass%.
 上記硬化性組成物(1)~(3)のいずれかにおいて、組成物中の全量を100質量%としたとき、前記ラジカル発生剤の含有量が0.5~5質量%である硬化性組成物(4)が好ましい。 In any of the above curable compositions (1) to (3), when the total amount of the composition is taken as 100 mass%, the content of the radical generator is preferably 0.5 to 5 mass% (curable composition (4)).
 上記硬化性組成物(4)において、前記ポリチオール化合物の含有量をa質量%、前記ラジカル発生剤の含有量をb質量%としたとき、a/bが0.5~10である硬化性組成物(5)が好ましい。 In the above curable composition (4), when the content of the polythiol compound is a mass % and the content of the radical generator is b mass %, a/b is preferably 0.5 to 10 in the curable composition (5).
 上記硬化性組成物(1)~(5)いずれかにおいて、硬化性組成物が、活性エネルギー線硬化性組成物である硬化性組成物(6)が好ましい。 Among the above curable compositions (1) to (5), the curable composition is preferably a curable composition (6) that is an active energy ray-curable composition.
 また本発明は、偏光子の少なくとも一方の面に接着剤層を介して光学フィルムが積層された偏光フィルムであって、前記接着剤層が硬化性組成物(1)~(6)のいずれかの硬化物層であることを特徴とする偏光フィルム(7)に関する。 The present invention also relates to a polarizing film (7) in which an optical film is laminated to at least one surface of a polarizer via an adhesive layer, the adhesive layer being a cured product layer of any one of the curable compositions (1) to (6).
 上記偏光フィルム(7)において、前記偏光子の厚みが7μm以下である偏光フィルム(8)が好ましい。 In the above polarizing film (7), a polarizing film (8) in which the thickness of the polarizer is 7 μm or less is preferred.
 上記偏光フィルム(7)または(8)において、前記光学フィルムが透明保護フィルムである偏光フィルム(9)が好ましい。 In the above polarizing film (7) or (8), polarizing film (9) is preferred in which the optical film is a transparent protective film.
 上記偏光フィルム(7)~(9)のいずれかにおいて、前記光学フィルムがトリアセチルセルロース系樹脂フィルムである偏光フィルム(10)が好ましい。 Among the above polarizing films (7) to (9), polarizing film (10) is preferred in which the optical film is a triacetyl cellulose-based resin film.
 上記偏光フィルム(7)~(10)のいずれかにおいて、前記偏光子が二色性色素を吸着配向させたポリビニルアルコール系フィルムである偏光フィルム(11)が好ましい。 Among the above polarizing films (7) to (10), polarizing film (11) is preferred in which the polarizer is a polyvinyl alcohol-based film in which a dichroic dye is adsorbed and oriented.
 上記偏光フィルム(7)~(11)のいずれかにおいて、前記偏光子がヨウ素を吸着配向させたポリビニルアルコール系フィルムである偏光フィルム(12)が好ましい。 In any of the above polarizing films (7) to (11), polarizing film (12) is preferred in which the polarizer is a polyvinyl alcohol-based film in which iodine is adsorbed and oriented.
 また本発明は、上記偏光フィルム(7)~(12)のいずれかが少なくとも1枚積層されていることを特徴とする光学フィルム(13)に関する、さらに本発明は、上記偏光フィルム(7)~(12)のいずれか、あるいは上記光学フィルム(13)が用いられていることを特徴とする画像表示装置(14)に関する。 The present invention also relates to an optical film (13) that is characterized by having at least one layer of any of the above polarizing films (7) to (12) laminated thereon, and further relates to an image display device (14) that is characterized by using any of the above polarizing films (7) to (12) or the above optical film (13).
 偏光フィルムの薄型化に伴い、高温高湿環境下において偏光度が低下することで、光学特性の悪化が問題となっていたことは前記のとおりである。本発明に係る硬化性組成物は、2以上の2級チオール基を有するポリチオール化合物と、硬化性成分と、ラジカル発生剤とを含有する。かかる硬化性組成物を、偏光子と光学フィルムとを積層するための接着剤層の原料として使用した場合、偏光フィルムの偏光特性の加湿信頼性が向上する。かかる効果を奏する理由は明らかではないが、以下のように推定可能である。 As described above, as polarizing films become thinner, the degree of polarization decreases in high-temperature, high-humidity environments, causing problems with deterioration of optical properties. The curable composition of the present invention contains a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator. When such a curable composition is used as a raw material for an adhesive layer for laminating a polarizer and an optical film, the humidification reliability of the polarization properties of the polarizing film is improved. The reason for this effect is unclear, but can be assumed as follows.
 優れた偏光特性と薄型化とを両立するためには、高温高湿下において、偏光子内からヨウ素が抜ける現象(以下、「ヨウ素抜け」ともいう)を抑制する必要がある。本発明者らが鋭意検討した結果、かかる硬化性組成物を、偏光子と光学フィルムとを積層するための接着剤層の原料として使用した場合、硬化性成分が有する二重結合の転化率(反応率)が上昇することで、硬化性が向上し、かつ接着剤層を構成するポリマーの高分子量化が進むことから、偏光子内からのヨウ素抜けが抑制できることが判明した。ここで、本発明に係る硬化性組成物は、硬化性成分およびラジカル発生剤に加え、2以上の2級チオール基を有するポリチオール化合物を含有することにより、偏光フィルムの偏光特性の加湿信頼性が著しく向上する。これは、ポリチオール化合物が有する2級チオール基が適度な立体障害と酸性度とをバランスよく備えることにより、偏光子の偏光特性を損なわないからであり、仮に1級チオール基であると、立体障害も小さく、酸性度も高いため、高温高湿下において、偏光子の偏光特性を損なうこととなる。 In order to achieve both excellent polarization properties and thinness, it is necessary to suppress the phenomenon of iodine escaping from within the polarizer under high temperature and high humidity conditions (hereinafter also referred to as "iodine escaping"). As a result of intensive research by the present inventors, it was found that when such a curable composition is used as a raw material for an adhesive layer for laminating a polarizer and an optical film, the conversion rate (reaction rate) of the double bonds in the curable component increases, improving the curability and promoting the high molecular weight of the polymer constituting the adhesive layer, thereby suppressing iodine escaping from within the polarizer. Here, the curable composition according to the present invention contains a polythiol compound having two or more secondary thiol groups in addition to the curable component and the radical generator, thereby significantly improving the humidification reliability of the polarization properties of the polarizing film. This is because the secondary thiol group in the polythiol compound has a good balance of moderate steric hindrance and acidity, and does not impair the polarization properties of the polarizer. If it were a primary thiol group, it would have little steric hindrance and high acidity, and would therefore impair the polarization properties of the polarizer under high temperature and humidity conditions.
 上記のとおり、本発明に係る偏光フィルムが、偏光子の少なくとも一方の面に接着剤層を介して光学フィルムが積層された偏光フィルムであって、接着剤層が上記硬化性組成物の硬化物層である場合、偏光フィルムの偏光特性の加湿信頼性が向上する。ただし、本発明においては、偏光子の厚みが7μm以下である場合、偏光フィルムの偏光特性の加湿信頼性が特に向上する。かかる効果を奏する理由は明らかではないが、以下のように推定可能である。 As described above, when the polarizing film according to the present invention is a polarizing film in which an optical film is laminated on at least one surface of a polarizer via an adhesive layer, and the adhesive layer is a cured layer of the curable composition, the humidification reliability of the polarization properties of the polarizing film is improved. However, in the present invention, when the thickness of the polarizer is 7 μm or less, the humidification reliability of the polarization properties of the polarizing film is particularly improved. The reason for this effect is not clear, but can be assumed as follows.
 厚みが7μm以下である偏光子(以下、「薄型偏光子」ともいう)は、偏光特性を維持するために必然的にヨウ素濃度が高くなるため、高温高湿下では偏光子内に侵入する水分の影響で、容易にヨウ素抜けが発生する傾向がある。しかしながら、接着剤層の原料となる硬化性組成物が硬化性成分およびラジカル発生剤に加え、2以上の2級チオール基を有するポリチオール化合物を含有する場合、偏光子内からのヨウ素抜けを抑制し、薄型偏光子内の高いヨウ素濃度を維持することができる。このため、偏光フィルムの偏光特性の加湿信頼性が特に向上する。 Polarizers with a thickness of 7 μm or less (hereinafter also referred to as "thin polarizers") inevitably have a high iodine concentration in order to maintain their polarization properties, so iodine loss tends to occur easily under high temperature and high humidity conditions due to the influence of moisture that penetrates into the polarizer. However, if the curable composition that is the raw material for the adhesive layer contains a polythiol compound having two or more secondary thiol groups in addition to the curable component and radical generator, it is possible to suppress iodine loss from the polarizer and maintain a high iodine concentration in the thin polarizer. This particularly improves the humidification reliability of the polarization properties of the polarizing film.
 本発明に係る硬化性組成物は、2以上の2級チオール基を有するポリチオール化合物と、硬化性成分と、ラジカル発生剤とを含有する。 The curable composition of the present invention contains a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator.
 ポリチオール化合物は2以上の2級チオール基を有するものであればよい。2つの2級チオール基を有する化合物としては、例えば1,4-ビス(3-メルカプトブチリルオキシ)ブタン、2,3-ブタンジチオール、およびメソ-2,3-ジメルカプトコハク酸が挙げられ、3つの2級チオール基を有する化合物としては、例えばトリメチロールプロパントリス(3-メルカプトブチレート)および1,3,5-トリス(2-(3-スルファニルブタノイルオキシ)エチル)-1,3,5-トリアジナン-2,4,6-トリオンが挙げられ、4つの2級チオール基を有する化合物としては、例えばペンタエリスリトール テトラキス(3-メルカプトブチレート)が挙げられる。 The polythiol compound may be any compound having two or more secondary thiol groups. Examples of compounds having two secondary thiol groups include 1,4-bis(3-mercaptobutyryloxy)butane, 2,3-butanedithiol, and meso-2,3-dimercaptosuccinic acid. Examples of compounds having three secondary thiol groups include trimethylolpropane tris(3-mercaptobutyrate) and 1,3,5-tris(2-(3-sulfanylbutanoyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione. Examples of compounds having four secondary thiol groups include pentaerythritol tetrakis(3-mercaptobutyrate).
 偏光フィルムの偏光特性の加湿信頼性向上の観点から、組成物中の全量を100質量%としたとき、ポリチオール化合物の含有量が0.1~20質量%であることが好ましく、0.5~10質量%であることがより好ましい。 From the viewpoint of improving the humidification reliability of the polarization properties of the polarizing film, when the total amount in the composition is taken as 100 mass%, the content of the polythiol compound is preferably 0.1 to 20 mass%, and more preferably 0.5 to 10 mass%.
 なお、2以上の2級チオール基を有するポリチオール化合物は、ラジカル発生剤、特には光重合開始剤と併用することにより、偏光子の偏光特性を損なわずに、硬化性成分の硬化性を向上しつつ、接着剤層を構成するポリマーの高分子量化が可能となる。本発明に係る硬化性組成物、特には活性エネルギー線硬化性組成物において、ポリチオール化合物の含有量をa質量%、ラジカル発生剤、特には光重合開始剤の含有量をb質量%としたとき、a/bが0.5~10であると、前記効果が特に優れたものとなるため好ましい。 In addition, when a polythiol compound having two or more secondary thiol groups is used in combination with a radical generator, particularly a photopolymerization initiator, it is possible to increase the molecular weight of the polymer constituting the adhesive layer while improving the curability of the curable component without impairing the polarization properties of the polarizer. In the curable composition, particularly the active energy ray curable composition, where the content of the polythiol compound is a mass % and the content of the radical generator, particularly the photopolymerization initiator, is b mass %, it is preferable that a/b is 0.5 to 10 because the above-mentioned effect is particularly excellent.
 本発明に係る硬化性組成物はラジカル発生剤を含有する。本発明に係る硬化性組成物は、活性エネルギー線を照射することにより硬化する活性エネルギー線硬化性組成物であることが好ましく、活性エネルギー線硬化性組成物は、ラジカル発生剤として光重合開始剤を含有することが好ましい。前記ラジカル発生剤、特には光重合開始剤の配合量は、活性エネルギー線硬化性組成物の全量を100質量部としたとき、0.1~10質量%含有するものであることが好ましく、0.5~5質量%含有するものであることがより好ましい。 The curable composition according to the present invention contains a radical generator. The curable composition according to the present invention is preferably an active energy ray curable composition that is cured by irradiation with active energy rays, and the active energy ray curable composition preferably contains a photopolymerization initiator as a radical generator. The amount of the radical generator, particularly the photopolymerization initiator, is preferably 0.1 to 10 mass %, and more preferably 0.5 to 5 mass %, when the total amount of the active energy ray curable composition is taken as 100 parts by mass.
 光重合開始剤は、活性エネルギー線によって適宜に選択される。紫外線または可視光線により硬化させる場合には紫外線または可視光線開裂の光重合開始剤が用いられる。前記光重合開始剤としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンゾインブチルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどの芳香族ケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1-プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、ドデシルチオキサントンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。 The photopolymerization initiator is appropriately selected depending on the active energy ray. When curing is performed with ultraviolet or visible light, a photopolymerization initiator that is cleaved by ultraviolet or visible light is used. Examples of the photopolymerization initiator include benzophenone-based compounds such as benzil, benzophenone, benzoylbenzoic acid, and 3,3'-dimethyl-4-methoxybenzophenone; aromatic ketone compounds such as 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, α-hydroxy-α,α'-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, and α-hydroxycyclohexylphenylketone; acetophenone-based compounds such as methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, and 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholinopropane-1; benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin methyl ether. These include benzoin ether compounds such as benzoin butyl ether and anisoin methyl ether; aromatic ketal compounds such as benzyl dimethyl ketal; aromatic sulfonyl chloride compounds such as 2-naphthalenesulfonyl chloride; photoactive oxime compounds such as 1-phenone-1,1-propanedione-2-(o-ethoxycarbonyl)oxime; thioxanthone compounds such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone; camphorquinone; halogenated ketones; acylphosphinoxides; and acylphosphonates.
 また、活性エネルギー線硬化性組成物を可視光線硬化型で用いる場合には、特に380nm以上の光に対して高感度な光重合開始剤を用いることが好ましい。380nm以上の光に対して高感度な光重合開始剤については後述する。 When using an active energy ray-curable composition as a visible light-curable type, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more. Photopolymerization initiators that are highly sensitive to light of 380 nm or more will be described later.
 前記光重合開始剤としては、下記一般式(3)で表される化合物;
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは-H、-CHCH、-iPrまたはClを示し、RおよびRは同一または異なっても良い)を単独で使用するか、あるいは一般式(3)で表される化合物と後述する380nm以上の光に対して高感度な光重合開始剤とを併用することが好ましい。一般式(3)で表される化合物を使用した場合、380nm以上の光に対して高感度な光重合開始剤を単独で使用した場合に比べて接着性に優れる。一般式(3)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。活性エネルギー線硬化性組成物中の一般式(3)で表される化合物の配合量は、硬化性組成物の全量を100質量%としたとき、0.1~4質量%含有するものであることが好ましく、0.5~3質量%含有するものであることがより好ましい。
The photopolymerization initiator may be a compound represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000001
(wherein R 7 and R 8 are -H, -CH 2 CH 3 , -iPr or Cl, and R 7 and R 8 may be the same or different) is used alone, or it is preferable to use a compound represented by general formula (3) in combination with a photopolymerization initiator highly sensitive to light of 380 nm or more, which will be described later. When a compound represented by general formula (3) is used, the adhesiveness is superior to that when a photopolymerization initiator highly sensitive to light of 380 nm or more is used alone. Among the compounds represented by general formula (3), diethylthioxanthone, in which R 7 and R 8 are -CH 2 CH 3 , is particularly preferable. The amount of the compound represented by general formula (3) in the active energy ray curable composition is preferably 0.1 to 4 mass%, and more preferably 0.5 to 3 mass%, when the total amount of the curable composition is taken as 100 mass%.
 また、必要に応じて重合開始助剤を添加することが好ましい。重合開始助剤としては、トリエチルアミン、ジエチルアミン、N-メチルジエタノールアミン、エタノールアミン、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどが挙げられ、4-ジメチルアミノ安息香酸エチルが特に好ましい。重合開始助剤を使用する場合、その添加量は、活性エネルギー線硬化性組成物の全量を100質量部としたとき、0.1~3質量部含有するものであることが好ましく、0.3~1質量部含有するものであることがより好ましい。 It is also preferable to add a polymerization initiator aid as necessary. Examples of polymerization initiator aids include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, and isoamyl 4-dimethylaminobenzoate, with ethyl 4-dimethylaminobenzoate being particularly preferable. When a polymerization initiator aid is used, the amount added is preferably 0.1 to 3 parts by mass, and more preferably 0.3 to 1 part by mass, when the total amount of the active energy ray-curable composition is taken as 100 parts by mass.
 また、必要に応じて公知の光重合開始剤を併用することができる。UV吸収能を有する光学機能層および基材フィルムは、380nm以下の光を透過しないため、光重合開始剤としては、380nm以上の光に対して高感度な光重合開始剤を使用することが好ましい。具体的には、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。  If necessary, a known photopolymerization initiator can be used in combination. Since the optical functional layer and the base film having UV absorbing ability do not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more. Specific examples include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(η5-2,4-cyclopentadiene-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, and the like.
 本発明に係る硬化性組成物は硬化性成分を含有する。本発明に係る硬化性組成物は活性エネルギー線硬化性組成物であることが好ましい。活性エネルギー線硬化性組成物は、ラジカル重合硬化性組成物とカチオン重合硬化性組成物に区分出来る。本発明において、波長範囲10nm~380nm未満の活性エネルギー線を紫外線、波長範囲380nm~800nmの活性エネルギー線を可視光線として表記する。 The curable composition according to the present invention contains a curable component. The curable composition according to the present invention is preferably an active energy ray curable composition. Active energy ray curable compositions can be divided into radical polymerization curable compositions and cationic polymerization curable compositions. In the present invention, active energy rays with a wavelength range of 10 nm to less than 380 nm are referred to as ultraviolet rays, and active energy rays with a wavelength range of 380 nm to 800 nm are referred to as visible light.
 ラジカル重合硬化性組成物を構成する硬化性成分としては、例えば、下記一般式(2):
Figure JPOXMLDOC01-appb-C000002
で表される化合物(ただし、Rは水素原子またはメチル基であり、RおよびRはそれぞれ独立に、水素原子、アルキル基、ヒドロキシアルキル基、アルコキシアルキル基または環状エーテル基であって、RおよびRは環状複素環を形成してもよい)が挙げられる。アルキル基、ヒドロキシアルキル基、および/またはアルコキシアルキル基のアルキル部分の炭素数は特に限定されないが、例えば1~4個のものが例示される。また、RおよびRが形成してもよい環状複素環は、例えばN-アクリロイルモルホリンなどが挙げられる。
The curable component constituting the radical polymerization curable composition may be, for example, a compound represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000002
(wherein R4 is a hydrogen atom or a methyl group, R5 and R6 are each independently a hydrogen atom, an alkyl group, a hydroxyalkyl group, an alkoxyalkyl group, or a cyclic ether group, and R5 and R6 may form a cyclic heterocycle). The number of carbon atoms in the alkyl moiety of the alkyl group, hydroxyalkyl group, and/or alkoxyalkyl group is not particularly limited, and examples thereof include those having 1 to 4 carbon atoms. In addition, an example of the cyclic heterocycle which may be formed by R5 and R6 is N-acryloylmorpholine.
 一般式(2)で表される化合物の具体例としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド等のN-アルキル基含有(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミド等のN-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド等のN-アルコキシ基含有(メタ)アクリルアミド誘導体などが挙げられる。また、環状エーテル基含有(メタ)アクリルアミド誘導体としては、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体が挙げられ、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン等があげられる。これらのなかでも、反応性に優れる点、高弾性率の硬化物を得られる点、偏光子への接着性に優れる点から、N-ヒドロキシエチルアクリルアミド、N-アクリロイルモルホリンを好適に使用することができる。 Specific examples of compounds represented by general formula (2) include N-alkyl group-containing (meth)acrylamide derivatives such as N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-butyl(meth)acrylamide, and N-hexyl(meth)acrylamide; N-hydroxyalkyl group-containing (meth)acrylamide derivatives such as N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, and N-methylol-N-propane(meth)acrylamide; and N-alkoxy group-containing (meth)acrylamide derivatives such as N-methoxymethylacrylamide and N-ethoxymethylacrylamide. Examples of (meth)acrylamide derivatives containing a cyclic ether group include heterocyclic (meth)acrylamide derivatives in which the nitrogen atom of the (meth)acrylamide group forms a heterocyclic ring, such as N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, and N-acryloylpyrrolidine. Among these, N-hydroxyethylacrylamide and N-acryloylmorpholine are preferred because of their excellent reactivity, ability to produce a cured product with a high modulus of elasticity, and excellent adhesion to polarizers.
 偏光子と接着剤層との接着性および耐水性向上、特には偏光子と透明保護フィルムとを接着剤層を介して接着させる場合の接着性および耐水性向上の見地から、硬化性組成物中、一般式(2)に記載の化合物の含有量は、10~80質量%であることが好ましく、20~60質量%であることがより好ましい。 From the standpoint of improving the adhesion and water resistance between the polarizer and the adhesive layer, particularly when the polarizer and the transparent protective film are bonded via an adhesive layer, the content of the compound represented by general formula (2) in the curable composition is preferably 10 to 80 mass %, and more preferably 20 to 60 mass %.
 また、本発明において使用する硬化性組成物は、一般式(2)で表される化合物以外に、硬化性成分として、他の単官能ラジカル重合性化合物を含有してもよい。単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する各種の(メタ)アクリル酸誘導体が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類が挙げられる。 In addition, the curable composition used in the present invention may contain, in addition to the compound represented by formula (2), other monofunctional radical polymerizable compounds as curable components. Examples of monofunctional radical polymerizable compounds include various (meth)acrylic acid derivatives having a (meth)acryloyloxy group. Specific examples include (meth)acrylic acid (C1-20) alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl-2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth)acrylate, 3-pentyl (meth)acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 4-methyl-2-propylpentyl (meth)acrylate, and n-octadecyl (meth)acrylate.
 また、前記(メタ)アクリル酸誘導体としては、例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート;ベンジル(メタ)アクリレートなどのアラルキル(メタ)アクリレート;2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニル(メタ)アクリレ-ト、などの多環式(メタ)アクリレート;2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレートなどのアルコキシ基またはフェノキシ基含有(メタ)アクリレート;などが挙げられる。これらのなかでも各種保護フィルムとの接着性に優れることから、ジシクロペンテニルオキシエチルアクリレ-ト、フェノキシエチルアクリレートが好ましい。 The (meth)acrylic acid derivatives include, for example, cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate; aralkyl (meth)acrylates such as benzyl (meth)acrylate; 2-isobornyl (meth)acrylate, 2-norbornylmethyl (meth)acrylate, 5-norbornen-2-yl-methyl (meth)acrylate, 3-methyl-2-norbornylmethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, and the like. Examples of suitable methacrylates include polycyclic (meth)acrylates such as diethyl (meth)acrylate and dicyclopentanyl (meth)acrylate; alkoxy or phenoxy group-containing (meth)acrylates such as 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-methoxymethoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phenoxyethyl (meth)acrylate, and alkylphenoxy polyethylene glycol (meth)acrylate; and the like. Among these, dicyclopentenyloxyethyl acrylate and phenoxyethyl acrylate are preferred because of their excellent adhesion to various protective films.
 また、前記(メタ)アクリル酸誘導体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートや、[4-(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルなどのエポキシ基含有(メタ)アクリレート;2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレートなどのハロゲン含有(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレートなどのアルキルアミノアルキル(メタ)アクリレート;3-オキセタニルメチル(メタ)アクリレート、3-メチルーオキセタニルメチル(メタ)アクリレート、3-エチルーオキセタニルメチル(メタ)アクリレート、3-ブチルーオキセタニルメチル(メタ)アクリレート、3-ヘキシルーオキセタニルメチル(メタ)アクリレートなどのオキセタン基含有(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート、ブチロラクトン(メタ)アクリレート、などの複素環を有する(メタ)アクリレートや、ヒドロキシピバリン酸ネオペンチルグリコール(メタ)アクリル酸付加物、p-フェニルフェノール(メタ)アクリレートなどが挙げられる。これらのなかでも、2-ヒドロキシ-3-フェノキシプロピルアクリレートは各種保護フィルムとの接着性に優れるため好ましい。 Furthermore, the (meth)acrylic acid derivatives include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, and 12-hydroxylauryl (meth)acrylate. (meth)acrylate, hydroxyl group-containing (meth)acrylates such as [4-(hydroxymethyl)cyclohexyl]methyl acrylate, cyclohexanedimethanol mono(meth)acrylate, and 2-hydroxy-3-phenoxypropyl (meth)acrylate; epoxy group-containing (meth)acrylates such as glycidyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate glycidyl ether; 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2-trifluoroethylethyl (meth)acrylate, and 2,2,2-trifluoroethylethyl (meth)acrylate; Halogen-containing (meth)acrylates such as acrylates, tetrafluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, heptadecafluorodecyl (meth)acrylate, and 3-chloro-2-hydroxypropyl (meth)acrylate; alkylaminoalkyl (meth)acrylates such as dimethylaminoethyl (meth)acrylate; 3-oxetanylmethyl (meth)acrylate, 3-methyl-oxetanylmethyl (meth)acrylate; Examples of suitable (meth)acrylates include oxetane group-containing (meth)acrylates such as 3-ethyl-oxetanylmethyl (meth)acrylate, 3-butyl-oxetanylmethyl (meth)acrylate, and 3-hexyl-oxetanylmethyl (meth)acrylate; (meth)acrylates having a heterocycle such as tetrahydrofurfuryl (meth)acrylate and butyrolactone (meth)acrylate; hydroxypivalic acid neopentyl glycol (meth)acrylic acid adduct; and p-phenylphenol (meth)acrylate. Among these, 2-hydroxy-3-phenoxypropyl acrylate is preferred due to its excellent adhesion to various protective films.
 また、単官能ラジカル重合性化合物としては、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などのカルボキシル基含有モノマーが挙げられる。 In addition, examples of monofunctional radically polymerizable compounds include carboxyl group-containing monomers such as (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
 また、単官能ラジカル重合性化合物としては、例えば、N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドンなどのラクタム系ビニルモノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリンなどの窒素含有複素環を有するビニル系モノマーなどが挙げられる。 Examples of monofunctional radically polymerizable compounds include lactam-based vinyl monomers such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam, and methylvinylpyrrolidone; and vinyl monomers having nitrogen-containing heterocycles such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine.
 また、単官能ラジカル重合性化合物としては、活性メチレン基を有するラジカル重合性化合物を用いることができる。活性メチレン基を有するラジカル重合性化合物は、末端または分子中に(メタ)アクリル基などの活性二重結合基を有し、かつ活性メチレン基を有する化合物である。活性メチレン基としては、例えばアセトアセチル基、アルコキシマロニル基、またはシアノアセチル基などが挙げられる。前記活性メチレン基がアセトアセチル基であることが好ましい。活性メチレン基を有するラジカル重合性化合物の具体例としては、例えば2-アセトアセトキシエチル(メタ)アクリレート、2-アセトアセトキシプロピル(メタ)アクリレート、2-アセトアセトキシ-1-メチルエチル(メタ)アクリレートなどのアセトアセトキシアルキル(メタ)アクリレート;2-エトキシマロニルオキシエチル(メタ)アクリレート、2-シアノアセトキシエチル(メタ)アクリレート、N-(2-シアノアセトキシエチル)アクリルアミド、N-(2-プロピオニルアセトキシブチル)アクリルアミド、N-(4-アセトアセトキシメチルベンジル)アクリルアミド、N-(2-アセトアセチルアミノエチル)アクリルアミドなどが挙げられる。活性メチレン基を有するラジカル重合性化合物は、アセトアセトキシアルキル(メタ)アクリレートであることが好ましい。 Furthermore, as the monofunctional radical polymerizable compound, a radical polymerizable compound having an active methylene group can be used. The radical polymerizable compound having an active methylene group is a compound having an active double bond group such as a (meth)acrylic group at the end or in the molecule, and also having an active methylene group. Examples of the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group. It is preferable that the active methylene group is an acetoacetyl group. Specific examples of radical polymerizable compounds having an active methylene group include acetoacetoxyalkyl (meth)acrylates such as 2-acetoacetoxyethyl (meth)acrylate, 2-acetoacetoxypropyl (meth)acrylate, and 2-acetoacetoxy-1-methylethyl (meth)acrylate; 2-ethoxymalonyloxyethyl (meth)acrylate, 2-cyanoacetoxyethyl (meth)acrylate, N-(2-cyanoacetoxyethyl)acrylamide, N-(2-propionylacetoxybutyl)acrylamide, N-(4-acetoacetoxymethylbenzyl)acrylamide, and N-(2-acetoacetylaminoethyl)acrylamide. The radical polymerizable compound having an active methylene group is preferably an acetoacetoxyalkyl (meth)acrylate.
 ラジカル重合硬化性組成物を構成する硬化性成分として二官能以上の多官能ラジカル重合性化合物を配合することができる。多官能ラジカル重合性化合物としては、例えば、多官能(メタ)アクリルアミド誘導体であるN,N‘-メチレンビス(メタ)アクリルアミド、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオぺンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性ジグリセリンテトラ(メタ)アクリレートなどの(メタ)アクリル酸と多価アルコールとのエステル化物、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンがあげられる。具体例としては、アロニックスM-220(東亞合成社製)、ライトアクリレート1,9ND-A(共栄社化学社製)、ライトアクリレートDGE-4A(共栄社化学社製)、ライトアクリレートDCP-A(共栄社化学社製)、SR-531(Sartomer社製)、CD-536(Sartomer社製)などが好ましい。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマーなどが挙げられる。なお、多官能(メタ)アクリルアミド誘導体は、重合速度が速く生産性に優れる上、樹脂組成物を硬化物とした場合の架橋性に優れるため、硬化性組成物に含有させることが好ましい。 A bifunctional or higher polyfunctional radically polymerizable compound can be blended as a curable component constituting the radically polymerizable composition. Examples of polyfunctional radically polymerizable compounds include polyfunctional (meth)acrylamide derivatives such as N,N'-methylenebis(meth)acrylamide, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di(meth)acrylate, bisphenol A di(meth)acrylate, bisphenol A ethylene oxide adduct di(meth)acrylate, bisphenol A propylene oxide adduct di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, and bisphenol A diglycidyl ether di(meth)acrylate. esters of (meth)acrylic acid and polyhydric alcohols such as ethyl acrylate, neopentyl glycol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, dioxane glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and EO-modified diglycerin tetra(meth)acrylate; and 9,9-bis[4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene. Specific examples include Aronix M-220 (manufactured by Toagosei Co., Ltd.), Light Acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd.), Light Acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), Light Acrylate DCP-A (manufactured by Kyoeisha Chemical Co., Ltd.), SR-531 (manufactured by Sartomer Co., Ltd.), and CD-536 (manufactured by Sartomer Co., Ltd.). If necessary, various epoxy (meth)acrylates, urethane (meth)acrylates, polyester (meth)acrylates, and various (meth)acrylate monomers may be used. In addition, polyfunctional (meth)acrylamide derivatives have a high polymerization rate and excellent productivity, and also have excellent crosslinking properties when the resin composition is cured, so they are preferably contained in the curable composition.
 ラジカル重合性化合物は、偏光子や各種透明保護フィルムとの接着性と、過酷な環境下における光学耐久性を両立させる観点から、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物を併用することが好ましい。硬化性組成物中の単官能ラジカル重合性化合物の配合量は、20~90質量%であることが好ましく、30~60質量%であることがより好ましい。硬化性組成物中の多官能ラジカル重合性化合物の配合量は、10~80質量%であることが好ましく、40~70質量%であることがより好ましい。 From the viewpoint of achieving both adhesion to polarizers and various transparent protective films and optical durability in harsh environments, it is preferable to use a combination of a monofunctional radically polymerizable compound and a polyfunctional radically polymerizable compound. The amount of the monofunctional radically polymerizable compound in the curable composition is preferably 20 to 90 mass%, and more preferably 30 to 60 mass%. The amount of the polyfunctional radically polymerizable compound in the curable composition is preferably 10 to 80 mass%, and more preferably 40 to 70 mass%.
 本発明に係る硬化性組成物は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
で表される化合物(ただし、Xは反応性基であり、Yは分岐鎖を有してもよい炭素数1~12のアルキレン基、または置換基を有してもよいフェニレン基であり、RおよびRはそれぞれ独立に、水素原子、置換基を有してもよい、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す)を含有してもよい。前記脂肪族炭化水素基としては、炭素数1~20の置換基を有してもよい直鎖または分岐のアルキル基、炭素数3~20の置換基を有してもよい環状アルキル基、炭素数2~20のアルケニル基が挙げられ、アリール基としては、炭素数6~20の置換基を有してもよいフェニル基、炭素数10~20の置換基を有してもよいナフチル基等が挙げられ、ヘテロ環基としては例えば、少なくとも一つのヘテロ原子を含む、置換基を有してもよい5員環または6員環の基が挙げられる。これらは互いに連結して環を形成してもよい。一般式(1)中、RおよびRとして好ましくは、水素原子、炭素数1~3の直鎖または分岐のアルキル基であり、最も好ましくは、水素原子である。
The curable composition according to the present invention has the following general formula (1):
Figure JPOXMLDOC01-appb-C000003
(wherein X is a reactive group, Y is an alkylene group having 1 to 12 carbon atoms which may have a branched chain, or a phenylene group which may have a substituent, and R 1 and R 2 each independently represent a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, an aryl group, or a heterocyclic group). Examples of the aliphatic hydrocarbon group include a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent, a cyclic alkyl group having 3 to 20 carbon atoms which may have a substituent, and an alkenyl group having 2 to 20 carbon atoms. Examples of the aryl group include a phenyl group having 6 to 20 carbon atoms which may have a substituent, and a naphthyl group having 10 to 20 carbon atoms which may have a substituent, and examples of the heterocyclic group include a 5- or 6-membered ring group which contains at least one hetero atom and may have a substituent. These may be linked together to form a ring. In the general formula (1), R 1 and R 2 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, and most preferably a hydrogen atom.
 一般式(1)で表される化合物が有するXは反応性基であって、硬化物層、特には接着剤層を構成する硬化性成分と反応し得る官能基であり、例えば、ヒドロキシル基、アミノ基、アルデヒド基、カルボキシル基、ビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基、α,β-不飽和カルボニル基、メルカプト基、ハロゲン基などが挙げられる。硬化物層、特には接着剤層を構成する硬化性組成物が活性エネルギー線硬化性である場合、反応性基Xは、ビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基およびメルカプト基からなる群より選択される少なくとも1種の反応性基であることが好ましく、硬化物層、特には接着剤層を構成する硬化性組成物がラジカル重合性である場合、反応性基Xは、(メタ)アクリル基、スチリル基および(メタ)アクリルアミド基からなる群より選択される少なくとも1種の反応性基であることが好ましく、一般式(1)で表される化合物が(メタ)アクリルアミド基を有する場合、反応性が高く、硬化物層、特には接着剤層中の硬化性成分との共重合率が高まるためより好ましい。また、(メタ)アクリルアミド基の極性が高く、接着性に優れるため本発明の効果を効率的に得られるという点からも好ましい。硬化物層、特には接着剤層を構成する硬化性組成物がカチオン重合性である場合、反応性基Xは、ヒドロキシル基、アミノ基、アルデヒド、カルボキシル基、ビニルエーテル基、エポキシ基、オキセタン基、メルカプト基から選ばれる少なくとも1つの官能基を有することが好ましく、特にエポキシ基を有する場合、得られる硬化物層、特には接着剤層と被着体との密着性に優れるため好ましく、ビニルエーテル基を有する場合、硬化性組成物の硬化性が優れるため好ましい。 X in the compound represented by general formula (1) is a reactive group, which is a functional group that can react with the curable component that constitutes the cured material layer, particularly the adhesive layer, and examples of such groups include a hydroxyl group, an amino group, an aldehyde group, a carboxyl group, a vinyl group, a (meth)acrylic group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group, an α,β-unsaturated carbonyl group, a mercapto group, and a halogen group. When the curable composition constituting the cured product layer, particularly the adhesive layer, is active energy ray curable, the reactive group X is preferably at least one reactive group selected from the group consisting of vinyl group, (meth)acrylic group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group and mercapto group, and when the cured product layer, particularly the adhesive layer, is radically polymerizable, the reactive group X is preferably at least one reactive group selected from the group consisting of (meth)acrylic group, styryl group and (meth)acrylamide group, and when the compound represented by general formula (1) has a (meth)acrylamide group, it is more preferable because it has high reactivity and increases the copolymerization rate with the curable component in the cured product layer, particularly the adhesive layer. In addition, it is also preferable from the viewpoint that the polarity of the (meth)acrylamide group is high and the adhesiveness is excellent, so that the effect of the present invention can be efficiently obtained. When the curable composition constituting the cured product layer, particularly the adhesive layer, is cationic polymerizable, the reactive group X preferably has at least one functional group selected from a hydroxyl group, an amino group, an aldehyde, a carboxyl group, a vinyl ether group, an epoxy group, an oxetane group, and a mercapto group. In particular, when the reactive group X has an epoxy group, this is preferred because the resulting cured product layer, particularly the adhesive layer, has excellent adhesion to the adherend, and when the reactive group X has a vinyl ether group, this is preferred because the curability of the curable composition is excellent.
 一般式(1)で表される化合物の好ましい具体例としては、以下の化合物(1a)~(1d)が挙げられる。なお、一般式(1a)および(1b)中のRは水素原子またはメチル基である。
Figure JPOXMLDOC01-appb-C000004
Preferred specific examples of the compound represented by formula (1) include the following compounds (1a) to (1d), in which R3 in formulas (1a) and (1b) is a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000004
 一般式(1)で表される化合物としては、前記例示した化合物以外にも、ヒドロキシエチルアクリルアミドとホウ酸のエステル、メチロールアクリルアミドとホウ酸のエステル、ヒドロキシエチルアクリレートとホウ酸のエステル、およびヒドロキシブチルアクリレートとホウ酸のエステルなど、(メタ)アクリレートとホウ酸とのエステルを例示可能である。 Other examples of compounds represented by general formula (1) include esters of (meth)acrylates and boric acid, such as esters of hydroxyethylacrylamide and boric acid, esters of methylol acrylamide and boric acid, esters of hydroxyethyl acrylate and boric acid, and esters of hydroxybutyl acrylate and boric acid.
 本発明においては、硬化性組成物が(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーを含有してもよい。硬化性組成物中にアクリル系オリゴマーを含有することで、該組成物に活性エネルギー線を照射・硬化させる際の硬化収縮を低減し、接着剤層と、光学機能層および基材フィルムなどの被着体との界面応力を低減することができる。その結果、接着剤層と被着体との密着性の低下を抑制することができる。 In the present invention, the curable composition may contain an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer. By containing an acrylic oligomer in the curable composition, it is possible to reduce the cure shrinkage when the composition is irradiated with active energy rays and cured, and to reduce the interfacial stress between the adhesive layer and the adherend, such as the optical functional layer and the base film. As a result, it is possible to suppress a decrease in adhesion between the adhesive layer and the adherend.
 活性エネルギー線硬化性組成物は、塗工時の作業性や均一性を考慮した場合、低粘度であることが好ましいため、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーも低粘度であることが好ましい。低粘度であって、かつ接着剤層の硬化収縮を防止できるアクリル系オリゴマーとしては、重量平均分子量(Mw)が15000以下のものが好ましく、10000以下のものがより好ましく、5000以下のものが特に好ましい。一方、硬化物層(接着剤層)の硬化収縮を十分に抑制するためには、アクリル系オリゴマーの重量平均分子量(Mw)が500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが特に好ましい。アクリル系オリゴマーを構成する(メタ)アクリルモノマーとしては、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、S-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、N-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類、さらに、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)などが挙げられる。これら(メタ)アクリレートは、単独使用または2種類以上併用することができる。アクリル系オリゴマー(E)の具体例としては、東亞合成社製「ARUFON」、綜研化学社製「アクトフロー」、BASFジャパン社製「JONCRYL」などが挙げられる。 In consideration of workability and uniformity during application, it is preferable that the active energy ray curable composition has a low viscosity, and therefore it is preferable that the acrylic oligomer obtained by polymerizing a (meth)acrylic monomer also has a low viscosity. As an acrylic oligomer that has a low viscosity and can prevent the curing shrinkage of the adhesive layer, one having a weight average molecular weight (Mw) of preferably 15,000 or less, more preferably 10,000 or less, and particularly preferably 5,000 or less is preferred. On the other hand, in order to sufficiently suppress the curing shrinkage of the cured layer (adhesive layer), the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1,000 or more, and particularly preferably 1,500 or more. Specific examples of (meth)acrylic monomers constituting acrylic oligomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl-2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth)acrylate, 3-pentyl (meth)acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, (meth)acrylic acid (C1-20) alkyl esters such as (meth)acrylic acid (C1-20) alkyl esters, such as n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 4-methyl-2-propylpentyl (meth)acrylate, and N-octadecyl (meth)acrylate; further, for example, cycloalkyl (meth)acrylates (for example, cyclohexyl (meth)acrylate, cyclopentyl (meth)acrylate, etc.), aralkyl (meth)acrylates (for example, benzyl (meth)acrylate, etc.), polycyclic (meth)acrylates (for example, 2-isobornyl (meth)acrylate, 2-norbornylmethyl (meth)acrylate, 5-norbornene-2-methyl-3-phenylenediamine (meth)acrylate, etc.), -yl-methyl (meth)acrylate, 3-methyl-2-norbornylmethyl (meth)acrylate, etc.), hydroxyl group-containing (meth)acrylic acid esters (for example, hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,3-dihydroxypropylmethyl-butyl (meth)methacrylate, etc.), alkoxy group or phenoxy group-containing (meth)acrylic acid esters (2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-methoxymethoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phenoxy group oxyethyl (meth)acrylate, etc.), epoxy group-containing (meth)acrylic acid esters (e.g., glycidyl (meth)acrylate, etc.), halogen-containing (meth)acrylic acid esters (e.g., 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2-trifluoroethylethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, heptadecafluorodecyl (meth)acrylate, etc.), alkylaminoalkyl (meth)acrylates (e.g., dimethylaminoethyl (meth)acrylate, etc.). These (meth)acrylates can be used alone or in combination of two or more kinds. Specific examples of the acrylic oligomer (E) include "ARUFON" manufactured by Toagosei Co., Ltd., "Actflow" manufactured by Soken Chemical & Engineering Co., Ltd., and "JONCRYL" manufactured by BASF Japan Ltd.
 本発明で使用する硬化性組成物は、シランカップリング剤を含有してもよい。シランカップリング剤の具体例としては、活性エネルギー線硬化性の化合物としてビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどが挙げられる。 The curable composition used in the present invention may contain a silane coupling agent. Specific examples of silane coupling agents include active energy ray curable compounds such as vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxypropyltrimethoxysilane.
 好ましくは、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランである。 Preferred are 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
 上記以外の活性エネルギー線硬化性ではないシランカップリング剤の具体例としては、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、イミダゾールシランなどが挙げられる。 Specific examples of silane coupling agents other than those mentioned above that are not curable by active energy rays include 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane, and imidazole silane.
 本発明で使用する硬化性組成物は、カチオン重合硬化性組成物であってもよい。カチオン重合硬化性組成物に使用されるカチオン重合性化合物としては、分子内にカチオン重合性官能基を1つ有する単官能カチオン重合性化合物と、分子内にカチオン重合性官能基を2つ以上有する多官能カチオン重合性化合物とに分類される。単官能カチオン重合性化合物は比較的液粘度が低いため、カチオン重合硬化性組成物に含有させることで液粘度を低下させることができる。また、単官能カチオン重合性化合物は各種機能を発現させる官能基を有している場合が多く、カチオン重合硬化性組成物に含有させることで、カチオン重合硬化性組成物及び/又はカチオン重合硬化性組成物の硬化物に各種機能を発現させることができる。多官能カチオン重合性化合物は、カチオン重合硬化性組成物の硬化物を3次元架橋させることができるため、カチオン重合硬化性組成物に含有させることが好ましい。単官能カチオン重合性化合物と多官能カチオン重合性化合物の比は、単官能カチオン重合性化合物100質量部に対して、多官能カチオン重合性化合物を10質量部から1000質量部の範囲で混合することが好ましい。カチオン重合性官能基としては、エポキシ基やオキセタニル基、ビニルエーテル基が挙げられる。エポキシ基を有する化合物としては、脂肪族エポキシ化合物、脂環式エポキシ化合物、芳香族エポキシ化合物が挙げられ、本発明のカチオン重合性樹脂組成物としては、硬化性や接着性に優れることから、脂環式エポキシ化合物を含有することが特に好ましい。脂環式エポキシ化合物としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートのカプロラクトン変性物やトリメチルカプロラクトン変性物やバレロラクトン変性物等が挙げられ、具体的には、セロキサイド2021、セロキサイド2021A、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085(以上、ダイセル化学工業(株製)、サイラキュアUVR-6105、サイラキュアUVR-6107、サイラキュア30、R-6110(以上、ダウ・ケミカル日本(株)製)等が挙げられる。オキセタニル基を有する化合物は、カチオン重合性樹脂組成物の硬化性を改善したり、該組成物の液粘度を低下させる効果があるため、含有させることが好ましい。オキセタニル基を有する化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ[(3-エチル-3-オキセタニル)メチル]エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタンなどが挙げられ、アロンオキセタンOXT-101、アロンオキセタンOXT-121、アロンオキセタンOXT-211、アロンオキセタンOXT-221、アロンオキセタンOXT-212(以上、東亞合成社製)等が市販されている。ビニルエーテル基を有する化合物は、カチオン重合性樹脂組成物の硬化性を改善したり、該組成物の液粘度を低下させる効果があるため、含有させることが好ましい。ビニルエーテル基を有する化合物としては、2-ヒドロキシエチルビニルエーテル、ジエチレングリコールモノビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールものビニルエーテル、トリエチレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、トリシクロデカンビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、ペンタエリスリトール型テトラビニルエーテル等が挙げられる。 The curable composition used in the present invention may be a cationic polymerization curable composition. The cationic polymerizable compound used in the cationic polymerization curable composition is classified into a monofunctional cationic polymerizable compound having one cationic polymerizable functional group in the molecule and a polyfunctional cationic polymerizable compound having two or more cationic polymerizable functional groups in the molecule. Since the liquid viscosity of the monofunctional cationic polymerizable compound is relatively low, the liquid viscosity can be reduced by including it in the cationic polymerization curable composition. In addition, the monofunctional cationic polymerizable compound often has a functional group that exhibits various functions, and by including it in the cationic polymerization curable composition, various functions can be exhibited in the cationic polymerization curable composition and/or the cured product of the cationic polymerization curable composition. Since the polyfunctional cationic polymerizable compound can three-dimensionally crosslink the cured product of the cationic polymerization curable composition, it is preferable to include it in the cationic polymerization curable composition. The ratio of the monofunctional cationic polymerizable compound to the polyfunctional cationic polymerizable compound is preferably in the range of 10 to 1000 parts by mass of the polyfunctional cationic polymerizable compound to 100 parts by mass of the monofunctional cationic polymerizable compound. Examples of the cationic polymerizable functional group include an epoxy group, an oxetanyl group, and a vinyl ether group. Examples of the compound having an epoxy group include an aliphatic epoxy compound, an alicyclic epoxy compound, and an aromatic epoxy compound. Since the cationic polymerizable resin composition of the present invention has excellent curability and adhesiveness, it is particularly preferable that the composition contains an alicyclic epoxy compound. Examples of the alicyclic epoxy compound include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, caprolactone-modified products, trimethylcaprolactone-modified products, and valerolactone-modified products of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and specifically, CELLOXIDE 2021, CELLOXIDE 2021A, CELLOXIDE 2021P, CELLOXIDE 2081, CELLOXIDE 2083, CELLOXIDE 2085 (all manufactured by Daicel Chemical Industries, Ltd.), Cyracure UVR-61 No. 05, Cyracure UVR-6107, Cyracure 30, R-6110 (all manufactured by Dow Chemical Japan, Ltd.). A compound having an oxetanyl group is preferably contained since it has the effect of improving the curability of the cationic polymerizable resin composition and reducing the liquid viscosity of the composition. Examples of compounds having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl)oxetane, di[(3-ethyl-3-ox Examples of such a compound include 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, phenol novolak oxetane, and the like. ARON OXETANE OXT-101, ARON OXETANE OXT-121, ARON OXETANE OXT-211, ARON OXETANE OXT-221, ARON OXETANE OXT-212 (all manufactured by Toagosei Co., Ltd.) and the like are commercially available. Compounds having a vinyl ether group are preferably contained since they have the effect of improving the curability of the cationically polymerizable resin composition and reducing the liquid viscosity of the composition. Examples of compounds having a tere group include 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, triethylene glycol divinyl ether, cyclohexane dimethanol divinyl ether, cyclohexane dimethanol monovinyl ether, tricyclodecane vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, and pentaerythritol tetravinyl ether.
 カチオン重合硬化性組成物は、硬化性成分として以上説明したエポキシ基を有する化合物、オキセタニル基を有する化合物、ビニルエーテル基を有する化合物から選ばれる少なくとも1つの化合物を含有し、これらはいずれもカチオン重合により硬化するものであることから、光カチオン重合開始剤が配合される。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線などの活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。光カチオン重合開始剤としては、後述の光酸発生剤が好適に使用される。またカチオン重合性樹脂組成物を可視光線硬化性で用いる場合には、特に380nm以上の光に対して高感度な光カチオン重合開始剤を用いることが好ましいが、光カチオン重合開始剤は一般に、300nm付近またはそれより短い波長域に極大吸収を示す化合物であるため、それより長い波長域、具体的には380nmより長い波長の光に極大吸収を示す光増感剤を配合することで、この付近の波長の光に感応し、光カチオン重合開始剤からのカチオン種または酸の発生を促進させることができる。光増感剤としては、例えば、アントラセン化合物、ピレン化合物、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾおよびジアゾ化合物、ハロゲン化合物、光還元性色素等が挙げられ、これらは、2種類以上を混合して使用してもよい。特にアントラセン化合物は、光増感効果に優れるため好ましく、具体的にはアントラキュアUVS-1331、アントラキュアUVS-1221(川崎化成社製)が挙げられる。光増感剤の含有量は、0.1質量%~5質量%であることが好ましく、0.5質量%~3質量%であることがより好ましい。 The cationic polymerization curable composition contains at least one compound selected from the compounds having an epoxy group, the compounds having an oxetanyl group, and the compounds having a vinyl ether group described above as a curable component, and since all of these are cured by cationic polymerization, a photocationic polymerization initiator is blended. This photocationic polymerization initiator generates cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet light, X-rays, and electron beams, and initiates the polymerization reaction of the epoxy group or the oxetanyl group. As the photocationic polymerization initiator, a photoacid generator described below is preferably used. In addition, when using a cationic polymerizable resin composition as a visible light curable composition, it is preferable to use a photocationic polymerization initiator that is highly sensitive to light of 380 nm or more, but since photocationic polymerization initiators are generally compounds that show maximum absorption in the vicinity of 300 nm or shorter wavelengths, by blending a photosensitizer that shows maximum absorption in the longer wavelength region, specifically, light of wavelengths longer than 380 nm, it is possible to promote the generation of cationic species or acid from the photocationic polymerization initiator by responding to light of wavelengths in this vicinity. Examples of photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, photoreducible dyes, etc., and these may be used in combination of two or more types. Anthracene compounds are particularly preferred because of their excellent photosensitizing effect, and specific examples include Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Chemical Industries, Ltd.). The content of the photosensitizer is preferably 0.1% to 5% by mass, and more preferably 0.5% to 3% by mass.
 本発明においては、活性エネルギー線硬化性組成物が、光酸発生剤を含有してもよい。活性エネルギー線硬化性組成物が光酸発生剤を含有する場合、光酸発生剤を含有しない場合に比べて、接着剤層の耐水性および耐久性を飛躍的に向上することができる。光酸発生剤は、下記一般式(4)で表すことができる。 In the present invention, the active energy ray curable composition may contain a photoacid generator. When the active energy ray curable composition contains a photoacid generator, the water resistance and durability of the adhesive layer can be dramatically improved compared to when the composition does not contain a photoacid generator. The photoacid generator can be represented by the following general formula (4).
 一般式(4)
Figure JPOXMLDOC01-appb-C000005
 (ただし、Lは、任意のオニウムカチオンを表す。また、Xは、PF6 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCN-よりからなる群より選択されるカウンターアニオンを表す。)
General formula (4)
Figure JPOXMLDOC01-appb-C000005
(wherein L + represents any onium cation, and X represents a counter anion selected from the group consisting of PF6 6 , SbF 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , a dithiocarbamate anion, and SCN−.)
 次に、一般式(4)中のカウンターアニオンXについて説明する。 Next, the counter anion X in the general formula (4) will be described.
 一般式(4)中のカウンターアニオンXは原理的に特に限定されるものではないが、非求核性アニオンが好ましい。カウンターアニオンXが非求核性アニオンの場合、分子内に共存するカチオンや併用される各種材料における求核反応が起こりにくいため、結果として一般式(4)で表記される光酸発生剤自身やそれを用いた組成物の経時安定性を向上させることが可能である。ここでいう非求核性アニオンとは、求核反応を起こす能力が低いアニオンを指す。このようなアニオンとしては、PF 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、B(C 、ジチオカルバメートアニオン、SCNなどが挙げられる。 The counter anion X in the general formula (4) is not particularly limited in principle, but is preferably a non-nucleophilic anion. When the counter anion X is a non-nucleophilic anion, nucleophilic reactions are unlikely to occur in the cations coexisting in the molecule or in various materials used in combination, and as a result, it is possible to improve the stability over time of the photoacid generator represented by the general formula (4) itself and the composition using it. The non-nucleophilic anion here refers to an anion that has a low ability to cause a nucleophilic reaction. Examples of such anions include PF 6 , SbF 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , B(C 6 H 5 ) 4 , dithiocarbamate anion, SCN and the like.
 具体的には、「サイラキュアーUVI-6992」、「サイラキュアーUVI-6974」(以上、ダウ・ケミカル日本株式会社製)、「アデカオプトマーSP150」、「アデカオプトマーSP152」、「アデカオプトマーSP170」、「アデカオプトマーSP172」(以上、株式会社ADEKA製)、「Omnicat250」(IGM Resins B.V.社製)、「CI-5102」、「CI-2855」(以上、日本曹達社製)、「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-110L」、「サンエイドSI-180L」(以上、三新化学社製)、「IK-1」、「CPI-100P」、「CPI-101A」、「CPI-110P」、「CPI-200K」、「CPI-210S」、「CPI-310B」、「CPI-410B」、「CPI-410S」(以上、サンアプロ株式会社製)、「WPI-069」、「WPI-113」、「WPI-116」、「WPI-041」、「WPI-044」、「WPI-054」、「WPI-055」、「WPAG-281」、「WPAG-567」、「WPAG-596」(以上、富士フイルム和光純薬社製)が本発明の光酸発生剤の好ましい具体例として挙げられる。 Specific examples include "Cyracure UVI-6992", "Cyracure UVI-6974" (all manufactured by Dow Chemical Japan Co., Ltd.), "ADEKA OPTOMER SP150", "ADEKA OPTOMER SP152", "ADEKA OPTOMER SP170", "ADEKA OPTOMER SP172" (all manufactured by ADEKA Corporation), "Omnicat250" (manufactured by IGM Resins B.V.), "CI-5102", "CI-2855" (all manufactured by Nippon Soda Co., Ltd.), "SAN-AID SI-60L", "SAN-AID SI-80L", "SAN-AID SI-100L", "SAN-AID SI-110L", "SAN-AID SI-1 80L (all manufactured by Sanshin Chemical Industry Co., Ltd.), "IK-1", "CPI-100P", "CPI-101A", "CPI-110P", "CPI-200K", "CPI-210S", "CPI-310B", "CPI-410B", "CPI-410S" (all manufactured by San-Apro Co., Ltd.), "WPI-069", "WPI-113", "WPI-116", "WPI-041", "WPI-044", "WPI-054", "WPI-055", "WPAG-281", "WPAG-567", and "WPAG-596" (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) are preferred specific examples of the photoacid generator of the present invention.
 本発明に係る偏光フィルムは、偏光子の少なくとも一方の面に接着剤層を介して光学フィルムが積層された偏光フィルムであって、該接着剤層が前記硬化性組成物の硬化物層である。 The polarizing film according to the present invention is a polarizing film in which an optical film is laminated to at least one surface of a polarizer via an adhesive layer, and the adhesive layer is a cured layer of the curable composition.
 硬化物層(接着剤層)の厚みは、偏光フィルムの偏光特性の加湿信頼性向上の観点から、0.5μm以上、5.0μm以下であることが好ましい。 The thickness of the cured layer (adhesive layer) is preferably 0.5 μm or more and 5.0 μm or less from the viewpoint of improving the humidification reliability of the polarization properties of the polarizing film.
 本発明において、偏光子は特に制限されず、各種のものを使用できる。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムなどの親水性高分子フィルムに、二色性色素、特にはヨウ素を吸着配向させたものなどが挙げられる。これらの中でも、偏光子として二色性色素を吸着配向させたポリビニルアルコール系フィルムが好ましく、ヨウ素を吸着配向させたポリビニルアルコール系フィルムがより好ましい。偏光子の厚みとしては例えば3~20μmが挙げられる。 In the present invention, the polarizer is not particularly limited, and various polarizers can be used. Examples of polarizers include those in which a dichroic dye, especially iodine, is adsorbed and oriented on a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene-vinyl acetate copolymer partially saponified film. Among these, a polyvinyl alcohol film in which a dichroic dye is adsorbed and oriented is preferred as a polarizer, and a polyvinyl alcohol film in which iodine is adsorbed and oriented is more preferred. The thickness of the polarizer can be, for example, 3 to 20 μm.
 ただし、本発明においては高温高湿下の過酷な環境における加湿信頼性向上の観点から、偏光子として厚みが3μm以上、15μm以下の薄型偏光子を用いることが好ましい。特に12μm以下であるのが好ましく、さらには10μm以下、特には7μm以下であるのが好ましい。このような薄型偏光子は、厚みムラが少なく、視認性が優れており、また寸法変化が少ないため熱衝撃に対する耐久性に優れる。 However, in the present invention, from the viewpoint of improving humidification reliability in harsh environments such as high temperature and high humidity, it is preferable to use a thin polarizer having a thickness of 3 μm or more and 15 μm or less as the polarizer. In particular, it is preferable that the thickness is 12 μm or less, and even more preferable that the thickness is 10 μm or less, and especially preferable that the thickness is 7 μm or less. Such a thin polarizer has little thickness unevenness, excellent visibility, and also has excellent durability against thermal shock due to little dimensional change.
 本発明においては、特に厚みが7μm以下であって、ヨウ素密度が高く、ヨウ素抜けが発生し易い薄型偏光子と接する接着剤層を、硬化性成分および光重合開始剤に加え、2以上の2級チオール基を有するポリチオール化合物を含有する硬化性組成物の硬化物層により形成する。これにより、偏光子内からのヨウ素抜けを抑制し、薄型偏光子内の高いヨウ素濃度を維持することができる。このため、偏光フィルムの偏光特性の加湿信頼性が特に向上する。 In the present invention, the adhesive layer that comes into contact with a thin polarizer, which is particularly thicker than 7 μm, has a high iodine density, and is prone to iodine loss, is formed from a cured layer of a curable composition that contains a polythiol compound having two or more secondary thiol groups in addition to a curable component and a photopolymerization initiator. This makes it possible to suppress iodine loss from within the polarizer and maintain a high iodine concentration within the thin polarizer. This particularly improves the humidification reliability of the polarization properties of the polarizing film.
 ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛などを含んでいても良いし、ヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液や水浴中でも延伸することができる。 A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and stretching it uniaxially can be produced, for example, by immersing the polyvinyl alcohol in an aqueous solution of iodine to dye it and stretching it to 3 to 7 times its original length. If necessary, the solution may contain boric acid, zinc sulfate, zinc chloride, etc., or it may be immersed in an aqueous solution of potassium iodide, etc. Furthermore, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. Washing the polyvinyl alcohol film with water not only washes away dirt and blocking inhibitors on the surface of the polyvinyl alcohol film, but also swells the polyvinyl alcohol film to prevent unevenness such as uneven dyeing. Stretching may be performed after dyeing with iodine, or the film may be stretched while being dyed, or it may be dyed with iodine after stretching. Stretching may be performed in an aqueous solution of boric acid, potassium iodide, etc., or in a water bath.
 偏光子はホウ酸を含有していることが延伸安定性や加湿信頼性の点から好ましい。また、偏光子に含まれるホウ酸含有量は、貫通クラックの発生抑制の観点から、偏光子全量に対して22質量%以下であるのが好ましく、20質量%以下であるのがさらに好ましい。延伸安定性や加湿信頼性の観点から、偏光子全量に対するホウ酸含有量は10質量%以上であることが好ましく、さらには12質量%以上であることが好ましい。 The polarizer preferably contains boric acid from the viewpoints of stretching stability and humidification reliability. Furthermore, the boric acid content in the polarizer is preferably 22% by mass or less, and more preferably 20% by mass or less, based on the total amount of the polarizer, from the viewpoints of suppressing the occurrence of through cracks. From the viewpoints of stretching stability and humidification reliability, the boric acid content in the polarizer is preferably 10% by mass or more, and more preferably 12% by mass or more, based on the total amount of the polarizer.
 薄型の偏光子としては、代表的には、
特許第4751486号明細書、
特許第4751481号明細書、
特許第4815544号明細書、
特許第5048120号明細書、
国際公開第2014/077599号パンフレット、
国際公開第2014/077636号パンフレット、
などに記載されている薄型偏光子またはこれらに記載の製造方法から得られる薄型偏光子を挙げることができる。
Representative examples of thin polarizers include:
Patent No. 4751486,
Patent No. 4751481,
Patent No. 4815544,
Patent No. 5048120,
International Publication No. 2014/077599,
International Publication No. 2014/077636,
or a thin polarizer obtained by the manufacturing method described therein.
 前記薄型偏光子としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、特許第4751486号明細書、特許第4751481号明細書、特許4815544号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特許第4751481号明細書、特許4815544号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。これら薄型偏光子は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法による得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断などの不具合なく延伸することが可能となる。 The thin polarizer is preferably obtained by a manufacturing method including a step of stretching in a boric acid aqueous solution as described in Patent Nos. 4751486, 4751481, and 4815544, among which a step of stretching in a laminate and a step of dyeing, because it can be stretched at a high ratio and the polarization performance can be improved. In particular, it is preferable to obtain a thin polarizer by a manufacturing method including a step of supplementary air stretching before stretching in a boric acid aqueous solution as described in Patent Nos. 4751481 and 4815544. These thin polarizers can be obtained by a manufacturing method including a step of stretching a polyvinyl alcohol resin (hereinafter also referred to as PVA-based resin) layer and a resin substrate for stretching in a laminate and a step of dyeing. With this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching because it is supported by the resin substrate for stretching.
 偏光フィルムを構成する光学フィルムとして、例えば透明保護フィルムが挙げられる。透明保護フィルムを構成する材料としては、例えば透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れる熱可塑性樹脂が用いられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロース系樹脂フィルムなどのセルロース樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、(メタ)アクリル樹脂、環状ポリオレフィン樹脂(ノルボルネン系樹脂)、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、およびこれらの混合物が挙げられる。本発明に係る偏光フィルムに関しては、これらの中でも、トリアセチルセルロース系樹脂フィルムを使用することが好ましい。偏光子の少なくとも一方の面に接着剤層を介してトリアセチルセルロース系樹脂フィルムが積層された偏光フィルムである場合、トリアセチルセルロース系樹脂フィルムは透湿性が高く、湿熱耐久性が悪いため、偏光フィルムの偏光特性の加湿信頼性が悪化する傾向がある。しかしながら、本発明に係る偏光フィルムでは、2以上の2級チオール基を有するポリチオール化合物と、硬化性成分と、ラジカル発生剤とを含有する硬化性組成物の硬化物層により接着剤層が形成されているため、偏光フィルムがトリアセチルセルロース系樹脂フィルムを備える場合であっても、偏光フィルムの偏光特性の加湿信頼性が向上するため好ましい。透明保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。透明保護フィルム中の上記熱可塑性樹脂の含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。透明保護フィルム中の上記熱可塑性樹脂の含有量が50重量%以下の場合、熱可塑性樹脂が本来有する高透明性等が十分に発現できないおそれがある。 An example of an optical film constituting a polarizing film is a transparent protective film. A thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture blocking properties, isotropy, etc. is used as a material constituting a transparent protective film. Specific examples of such thermoplastic resins include cellulose resins such as triacetyl cellulose-based resin films, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic polyolefin resins (norbornene-based resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof. Among these, it is preferable to use a triacetyl cellulose-based resin film for the polarizing film according to the present invention. In the case of a polarizing film in which a triacetyl cellulose-based resin film is laminated on at least one surface of a polarizer via an adhesive layer, the triacetyl cellulose-based resin film has high moisture permeability and poor wet heat durability, so that the humidification reliability of the polarization properties of the polarizing film tends to deteriorate. However, in the polarizing film according to the present invention, since the adhesive layer is formed by a cured layer of a curable composition containing a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator, even if the polarizing film has a triacetyl cellulose-based resin film, the humidification reliability of the polarization properties of the polarizing film is improved, which is preferable. The transparent protective film may contain one or more suitable additives. Examples of additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, release agents, coloring inhibitors, flame retardants, nucleating agents, antistatic agents, pigments, and colorants. The content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, even more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. If the content of the thermoplastic resin in the transparent protective film is 50% by weight or less, the inherent high transparency of the thermoplastic resin may not be fully expressed.
 また透明保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましく、特に透湿度が150g/m/24h以下であるものがより好ましく、140g/m/24h以下のものが特に好ましく、120g/m/24h以下のものさらに好ましい。 Furthermore, as a material for forming the transparent protective film, one having excellent transparency, mechanical strength, thermal stability, moisture blocking properties, isotropy, etc. is preferred, and one having a moisture permeability of 150 g/ m2 /24 h or less is more preferred, one having a moisture permeability of 140 g/ m2 /24 h or less is particularly preferred, and one having a moisture permeability of 120 g/ m2 /24 h or less is even more preferred.
 透明保護フィルムの偏光子を接着させない面には、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などの機能層を設けることができる。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、透明保護フィルムそのものに設けることができるほか、別途、透明保護フィルムとは別体のものとして設けることもできる。  Functional layers such as a hard coat layer, an anti-reflection layer, an anti-sticking layer, a diffusion layer, or an anti-glare layer can be provided on the surface of the transparent protective film to which the polarizer is not attached. The above-mentioned functional layers such as the hard coat layer, the anti-reflection layer, the anti-sticking layer, the diffusion layer, and the anti-glare layer can be provided on the transparent protective film itself, or can be provided separately from the transparent protective film.
 透明保護フィルムの厚みは、適宜に決定しうるが、一般には強度や取扱性などの作業性、薄層性などの点より1~500μm程度であり、1~300μmが好ましく、5~200μmがより好ましい。さらには10~200μmが好ましく、20~80μmが好ましい。 The thickness of the transparent protective film can be determined as appropriate, but is generally about 1 to 500 μm in terms of strength, ease of handling, thinness, etc., with 1 to 300 μm being preferred, and 5 to 200 μm being more preferred. Furthermore, 10 to 200 μm is more preferred, and 20 to 80 μm is more preferred.
 前記透明保護フィルムとして、正面位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有する位相差フィルムを用いることができる。正面位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。透明保護フィルムとして位相差フィルムを用いる場合には、当該位相差フィルムが透明保護フィルムとしても機能するため、薄型化を図ることができる。 As the transparent protective film, a retardation film having a front retardation of 40 nm or more and/or a thickness direction retardation of 80 nm or more can be used. The front retardation is usually controlled to be in the range of 40 to 200 nm, and the thickness direction retardation is usually controlled to be in the range of 80 to 300 nm. When a retardation film is used as the transparent protective film, the retardation film also functions as the transparent protective film, making it possible to achieve a thinner film.
 位相差フィルムとしては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差フィルムの厚さも特に制限されないが、20~150μm程度が一般的である。 Examples of retardation films include birefringent films made by uniaxially or biaxially stretching polymer materials, oriented films of liquid crystal polymers, and films in which an oriented layer of liquid crystal polymer is supported by a film. There are no particular restrictions on the thickness of the retardation film, but it is generally around 20 to 150 μm.
 位相差フィルムとしては、下記式(1)ないし(3):
0.70<Re[450]/Re[550]<0.97・・・(1)
1.5×10-3<Δn<6×10-3・・・(2)
1.13<NZ<1.50・・・(3)
(式中、Re[450]およびRe[550]は、それぞれ、23℃における波長450nmおよび550nmの光で測定した位相差フィルムの面内の位相差値であり、Δnは位相差フィルムの遅相軸方向、進相軸方向の屈折率を、それぞれnx、nyとしたときのnx-nyである面内複屈折であり、NZはnzを位相差フィルムの厚み方向の屈折率としたときの、厚み方向複屈折であるnx-nzと面内複屈折であるnx-nyとの比である)を満足する逆波長分散型の位相差フィルムを用いてもよい。
The retardation film may be any of the following formulas (1) to (3):
0.70<Re[450]/Re[550]<0.97... (1)
1.5 × 10 −3 < Δn < 6 × 10 −3 ... (2)
1.13<NZ<1.50...(3)
(wherein Re[450] and Re[550] are in-plane retardation values of the retardation film measured with light having wavelengths of 450 nm and 550 nm at 23° C., respectively; Δn is in-plane birefringence, which is nx-ny, where nx and ny are the refractive indices in the slow axis direction and fast axis direction of the retardation film, respectively; and NZ is the ratio of nx-nz, which is the thickness direction birefringence, to nx-ny, which is the in-plane birefringence, where nz is the refractive index in the thickness direction of the retardation film.) A reverse wavelength dispersion type retardation film that satisfies the above may be used.
 本発明に係る偏光フィルムにおいては位相差層が設けられてもよい。位相差層は単層であっても複数層であってもよく、位相差層が偏光子の保護層を兼ねてもよい。 The polarizing film according to the present invention may be provided with a retardation layer. The retardation layer may be a single layer or multiple layers, and the retardation layer may also serve as a protective layer for the polarizer.
 位相差層の形成には液晶性化合物が好ましく用いられ 該液晶性化合物を含む溶媒を、例えばワイヤーバー、ギャップコーター、コンマコーター、グラビアコーター、スロットダイなどを使用して塗布することができる。この際、塗布された液晶性溶液は、自然乾燥させてもよいし、加熱乾燥させてもよい。なお、液晶性溶液は、等方相-液晶相転移濃度よりも低い濃度、即ち、等方相状態で塗工することが好ましい。この場合、ラビング処理や光配向などの方法により安定的に配向させることができる。 A liquid crystal compound is preferably used to form the retardation layer, and a solvent containing the liquid crystal compound can be applied using, for example, a wire bar, a gap coater, a comma coater, a gravure coater, a slot die, or the like. In this case, the applied liquid crystal solution may be dried naturally or by heating. It is preferable that the liquid crystal solution is applied at a concentration lower than the isotropic phase-liquid crystal phase transition concentration, i.e., in an isotropic phase state. In this case, stable alignment can be achieved by a method such as rubbing treatment or photoalignment.
 本発明に係る偏光フィルムは、例えば下記の製造方法により製造可能である。 The polarizing film according to the present invention can be manufactured, for example, by the following manufacturing method.
 偏光子の少なくとも一方の面に接着剤層を介して光学フィルムが積層された偏光フィルムの製造方法であって、接着剤層は硬化性組成物の硬化物層であり、前記硬化性組成物は、2以上の2級チオール基を有するポリチオール化合物と、硬化性成分と、光重合開始剤とを含有する硬化性組成物であり、偏光子の貼合面および透明保護フィルムの貼合面のいずれか一方または両方に前記硬化性組成物を塗工する塗工工程と、偏光子および光学フィルムを貼り合わせる貼合工程と、偏光子面側または光学フィルム面側から活性エネルギー線を照射して、硬化性組成物を硬化させることにより得られた接着剤層を介して、偏光子および光学フィルムを接着させる接着工程とを含む偏光フィルムの製造方法。以下、各工程などについて説明する。 A method for producing a polarizing film in which an optical film is laminated on at least one surface of a polarizer via an adhesive layer, the adhesive layer being a cured layer of a curable composition, the curable composition being a curable composition containing a polythiol compound having two or more secondary thiol groups, a curable component, and a photopolymerization initiator, the method comprising a coating step of coating the curable composition on either or both of the lamination surface of the polarizer and the lamination surface of the transparent protective film, a lamination step of laminating the polarizer and the optical film, and an adhesion step of bonding the polarizer and the optical film via the adhesive layer obtained by irradiating the polarizer surface or the optical film surface with active energy rays to cure the curable composition. Each step will be described below.
 硬化性組成物を塗工する方法としては、組成物の粘度や目的とする厚みによって適宜選択され、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーターなどが挙げられる。硬化性組成物の粘度は3~100mPa・sであることが好ましく、より好ましくは5~50mPa・sであり、最も好ましくは10~30mPa・sである。組成物の粘度が高い場合、塗工後の表面平滑性が乏しく外観不良が発生するため好ましくない。このため、各組成物を加熱または冷却して好ましい範囲の粘度に調整して塗布することができる。 The method for applying the curable composition is appropriately selected depending on the viscosity of the composition and the desired thickness, and examples include a reverse coater, gravure coater (direct, reverse or offset), bar reverse coater, roll coater, die coater, bar coater, and rod coater. The viscosity of the curable composition is preferably 3 to 100 mPa·s, more preferably 5 to 50 mPa·s, and most preferably 10 to 30 mPa·s. If the viscosity of the composition is high, it is not preferable because the surface smoothness after application is poor and a poor appearance occurs. For this reason, each composition can be heated or cooled to adjust the viscosity to a preferred range before application.
 なお偏光子および/または光学フィルムは、塗工工程前に表面改質処理を行ってもよい。特に偏光子は表面改質処理を行うことが好ましい。表面改質処理としては、コロナ処理、プラズマ処理、イトロ処理などの処理が挙げられ、特にコロナ処理であることが好ましい。コロナ処理を行うことで偏光子表面にカルボニル基やアミノ基などの反応性官能基が生成し、接着剤層との密着性が向上する。また、アッシング効果により表面の異物が除去されたり、表面の凹凸が軽減されたりして、外観特性に優れる偏光フィルムを作成することができる。 The polarizer and/or optical film may be subjected to a surface modification treatment before the coating process. In particular, it is preferable to perform a surface modification treatment on the polarizer. Examples of surface modification treatments include corona treatment, plasma treatment, and itro treatment, with corona treatment being particularly preferable. Corona treatment generates reactive functional groups such as carbonyl groups and amino groups on the polarizer surface, improving adhesion to the adhesive layer. In addition, the ashing effect removes foreign matter from the surface and reduces surface irregularities, making it possible to create a polarizing film with excellent appearance characteristics.
 上記のように塗工した硬化性組成物を介して、偏光子と光学フィルムとをロールラミネーターなどを使用して貼り合わせる(貼合工程)。 The polarizer and the optical film are bonded together using a roll laminator or the like via the curable composition applied as described above (bonding process).
 偏光子および光学フィルムを貼り合わせた後に、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、硬化性組成物を硬化して接着剤層を形成する。活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。 After the polarizer and the optical film are bonded together, they are irradiated with active energy rays (electron beams, ultraviolet rays, visible light, etc.) to cure the curable composition and form an adhesive layer. The irradiation direction of the active energy rays (electron beams, ultraviolet rays, visible light, etc.) can be any appropriate direction.
 電子線を照射する場合の照射条件は、上記硬化性組成物を硬化し得る条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、偏光子および透明保護フィルムにダメージを与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、光学機能層および基材フィルムにダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。 When irradiating with electron beams, any suitable irradiation conditions can be adopted as long as the above-mentioned curable composition can be cured. For example, the acceleration voltage of the electron beam irradiation is preferably 5 kV to 300 kV, more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive, resulting in insufficient curing, and if the acceleration voltage is more than 300 kV, the penetration force through the sample may be too strong, resulting in damage to the polarizer and transparent protective film. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. If the irradiation dose is less than 5 kGy, the adhesive may not be cured sufficiently, and if it exceeds 100 kGy, the optical functional layer and the base film may be damaged, resulting in a decrease in mechanical strength and yellowing, and the desired optical characteristics may not be obtained.
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。偏光子および透明保護フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる光学機能層および基材フィルム面にあえて酸素阻害を生じさせ、偏光子および透明保護フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。 Electron beam irradiation is usually performed in an inert gas, but if necessary it can be performed in air or with a small amount of oxygen introduced. Depending on the materials of the polarizer and transparent protective film, by appropriately introducing oxygen, oxygen inhibition can be intentionally created on the optical functional layer and base film surface that are first hit by the electron beam, preventing damage to the polarizer and transparent protective film and allowing the electron beam to be efficiently irradiated only on the adhesive.
 本発明に係る偏光フィルムを製造する場合、活性エネルギー線として、波長範囲380nm~450nmの可視光線を含むもの、特には波長範囲380nm~450nmの可視光線の照射量が最も多い活性エネルギー線を使用することが好ましい。紫外線、可視光線を使用する場合であって、紫外線吸収能を付与した透明保護フィルム(紫外線不透過型透明保護フィルム)を使用する場合、およそ380nmより短波長の光を吸収するため、380nmより短波長の光は硬化性組成物に到達せず、その重合反応に寄与しない。さらに、偏光子または透明保護フィルムによって吸収された380nmより短波長の光は熱に変換され、偏光子または透明保護フィルム自体が発熱し、偏光フィルムのカール・シワなど不良の原因となる。そのため、本発明において紫外線、可視光線を採用する場合、活性エネルギー線発生装置として380nmより短波長の光を発光しない装置を使用することが好ましく、より具体的には、波長範囲380~440nmの積算照度と波長範囲250~370nmの積算照度との比が100:0~100:50であることが好ましく、100:0~100:40であることがより好ましい。本発明に係る偏光フィルムを製造する場合、活性エネルギー線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光などの紫外線と可視光線を含む光源を使用することができ、バンドパスフィルターを用いて380nmより短波長の紫外線を遮断して用いることもできる。偏光子と透明保護フィルムとの間の接着剤層の接着性能を高めつつ、偏光フィルムのカールを防止するためには、ガリウム封入メタルハライドランプを使用し、かつ380nmより短波長の光を遮断可能なバンドパスフィルターを介して得られた活性エネルギー線、またはLED光源を使用して得られる波長405nmの活性エネルギー線を使用することが好ましい。 When manufacturing the polarizing film of the present invention, it is preferable to use as the active energy rays those containing visible light in the wavelength range of 380 nm to 450 nm, and in particular those with the greatest exposure to visible light in the wavelength range of 380 nm to 450 nm. When using ultraviolet rays and visible light and a transparent protective film with ultraviolet absorption ability (ultraviolet-opaque transparent protective film) is used, light with wavelengths shorter than approximately 380 nm is absorbed, so that light with wavelengths shorter than 380 nm does not reach the curable composition and does not contribute to the polymerization reaction. Furthermore, light with wavelengths shorter than 380 nm absorbed by the polarizer or transparent protective film is converted into heat, and the polarizer or transparent protective film itself generates heat, causing defects such as curling and wrinkling of the polarizing film. Therefore, when ultraviolet rays and visible light are employed in the present invention, it is preferable to use an active energy ray generator that does not emit light with a wavelength shorter than 380 nm, and more specifically, the ratio of the integrated illuminance in the wavelength range of 380 to 440 nm to the integrated illuminance in the wavelength range of 250 to 370 nm is preferably 100:0 to 100:50, more preferably 100:0 to 100:40. When producing the polarizing film according to the present invention, the active energy ray is preferably a gallium-encapsulated metal halide lamp or an LED light source that emits light in the wavelength range of 380 to 440 nm. Alternatively, a light source containing ultraviolet rays and visible light such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultra-high pressure mercury lamp, an incandescent lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a metal halide lamp, a fluorescent lamp, a tungsten lamp, a gallium lamp, an excimer laser, or sunlight can be used, and a bandpass filter can be used to block ultraviolet rays with a wavelength shorter than 380 nm. In order to prevent curling of the polarizing film while improving the adhesive performance of the adhesive layer between the polarizer and the transparent protective film, it is preferable to use a gallium-filled metal halide lamp and active energy rays obtained through a bandpass filter capable of blocking light with wavelengths shorter than 380 nm, or active energy rays with a wavelength of 405 nm obtained using an LED light source.
 本発明に係る偏光フィルムを連続ラインで製造する場合、ライン速度は、硬化性組成物の硬化時間によるが、好ましくは1~500m/min、より好ましくは5~300m/min、さらに好ましくは10~100m/minである。ライン速度が小さすぎる場合は、生産性が乏しい、あるいは光偏光子または透明保護フィルムへのダメージが大きすぎ、耐久性試験などに耐え得る偏光フィルムが作製できない。ライン速度が大きすぎる場合は、硬化性組成物の硬化が不十分となり、目的とする接着性が得られない場合がある。 When the polarizing film according to the present invention is produced on a continuous line, the line speed depends on the curing time of the curable composition, but is preferably 1 to 500 m/min, more preferably 5 to 300 m/min, and even more preferably 10 to 100 m/min. If the line speed is too slow, productivity will be poor, or the damage to the optical polarizer or transparent protective film will be too great, making it impossible to produce a polarizing film that can withstand durability tests and the like. If the line speed is too high, the curable composition will not cure sufficiently, and the desired adhesion may not be obtained.
 前述した偏光フィルムや、偏光フィルムを少なくとも1層積層されている積層光学フィルムには、液晶セルなどの他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。 The above-mentioned polarizing film and the laminated optical film having at least one layer of polarizing film can also be provided with an adhesive layer for bonding to other components such as liquid crystal cells. There are no particular limitations on the adhesive that forms the adhesive layer, but it is possible to appropriately select and use an adhesive whose base polymer is, for example, an acrylic polymer, a silicone polymer, polyester, polyurethane, polyamide, polyether, a fluorine-based polymer, or a rubber-based polymer. In particular, it is preferable to use an adhesive that has excellent optical transparency, such as an acrylic adhesive, and adhesive properties such as moderate wettability, cohesion, and adhesion, and has excellent weather resistance and heat resistance.
 粘着層は、異なる組成または種類などのものの重畳層として偏光フィルムや光学フィルムの片面または両面に設けることもできる。また両面に設ける場合に、偏光フィルムや光学フィルムの表裏において異なる組成や種類や厚みなどの粘着層とすることもできる。粘着層の厚みは、使用目的や接着力などに応じて適宜に決定でき、一般には1~500μmであり、1~200μmが好ましく、特に1~100μmが好ましい。 The adhesive layer can be provided on one or both sides of the polarizing film or optical film as a superimposed layer of different compositions or types. When provided on both sides, the adhesive layers on the front and back of the polarizing film or optical film can be of different compositions, types, thicknesses, etc. The thickness of the adhesive layer can be determined appropriately depending on the intended use, adhesive strength, etc., and is generally 1 to 500 μm, preferably 1 to 200 μm, and particularly preferably 1 to 100 μm.
 粘着層の露出面に対しては、実用に供するまでの間、その汚染防止などを目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚み条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体などの適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデンなどの適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。 A separator is temporarily attached to cover the exposed surface of the adhesive layer to prevent contamination until it is put into practical use. This prevents contact with the adhesive layer during normal handling. As a separator, apart from the thickness conditions mentioned above, any suitable thin material such as plastic film, rubber sheet, paper, cloth, nonwoven fabric, net, foam sheet, metal foil, or laminates thereof, coated as necessary with a suitable release agent such as silicone, long-chain alkyl, fluorine, or molybdenum sulfide, may be used in accordance with conventional methods.
 本発明の偏光フィルムや光学フィルムは液晶表示装置などの各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光フィルムまたは光学フィルム、および必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光フィルムまたは光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。 The polarizing film or optical film of the present invention can be preferably used in the formation of various devices such as liquid crystal display devices. The formation of liquid crystal display devices can be carried out in a conventional manner. That is, liquid crystal display devices are generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or optical film, and, if necessary, a lighting system, and incorporating a driving circuit, but in the present invention, there are no particular limitations other than the use of the polarizing film or optical film of the present invention, and the method can be carried out in a conventional manner. As for the liquid crystal cell, any type can be used, such as TN type, STN type, or π type.
 液晶セルの片側または両側に光学積層体を配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による光学積層体は液晶セルの片側または両側に設置することができる。両側に光学積層体を設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層または2層以上配置することができる。 It is possible to form suitable liquid crystal display devices, such as those in which an optical laminate is disposed on one or both sides of a liquid crystal cell, or those in which a backlight or reflector is used in the lighting system. In such cases, the optical laminate according to the present invention can be disposed on one or both sides of a liquid crystal cell. When optical laminates are disposed on both sides, they may be the same or different. Furthermore, when forming a liquid crystal display device, suitable components such as a diffuser plate, anti-glare layer, anti-reflection film, protective plate, prism array, lens array sheet, light diffuser plate, backlight, etc. can be disposed in one or more layers in suitable positions.
 以下に、本発明の実施例を記載するが、本発明の実施形態はこれらに限定されない。 The following are examples of the present invention, but the present invention is not limited to these.
<偏光子>
 非晶性PET基材に9μm厚のPVA層が製膜された積層体を延伸温度130℃の空中補助延伸によって延伸積層体を生成し、次に、延伸積層体を染色によって着色積層体を生成し、さらに着色積層体を延伸温度65度のホウ酸水中延伸によって総延伸倍率が5.94倍になるように非晶性PET基材と一体に延伸された5μm厚のPVA層を含む光学フィルム積層体を生成した。このような2段延伸によって非晶性PET基材に製膜されたPVA層のPVA分子が高次に配向され、染色によって吸着されたヨウ素がポリヨウ素イオン錯体として一方向に高次に配向された薄型偏光子を構成する、厚さ5.5μmのPVA層を含む光学フィルム積層体を得た。
<Polarizer>
A laminate having a 9 μm-thick PVA layer formed on an amorphous PET substrate was subjected to auxiliary air stretching at a stretching temperature of 130° C. to produce a stretched laminate, the stretched laminate was then dyed to produce a colored laminate, and the colored laminate was further stretched in boric acid water at a stretching temperature of 65° C. to produce an optical film laminate including a 5 μm-thick PVA layer, in which the PVA molecules of the PVA layer formed on the amorphous PET substrate were highly oriented by such two-stage stretching, and an optical film laminate including a 5.5 μm-thick PVA layer was obtained, which constitutes a thin polarizer in which iodine adsorbed by dyeing was highly oriented in one direction as a polyiodine ion complex.
<光学フィルム(透明保護フィルム)>
・光学フィルム1:トリアセチルセルロース系樹脂フィルム(商品名「KC2UA」、コニカミノルタ社製
<Optical film (transparent protective film)>
Optical film 1: Triacetyl cellulose-based resin film (product name "KC2UA", manufactured by Konica Minolta)
<活性エネルギー線>
 活性エネルギー線として、可視光線(ガリウム封入メタルハライドランプ) 照射装置:Fusion UV Systems,Inc社製Light HAMMER10 バルブ:Vバルブ ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用した。なお、可視光線の照度は、Solatell社製Sola-Checkシステムを使用して測定した。
<Active energy rays>
Visible light (gallium-filled metal halide lamp) was used as the active energy ray. Irradiation device: Light HAMMER10 manufactured by Fusion UV Systems, Inc. Bulb: V bulb Peak illuminance: 1600 mW/cm 2 , cumulative irradiation amount 1000/mJ/cm 2 (wavelength 380 to 440 nm) was used. The illuminance of visible light was measured using a Sola-Check system manufactured by Solatell.
(硬化性組成物の調整)
 表1の配合に従い、実施例1~7および比較例1~2の硬化性組成物を調製した。表中の数値は各組成物全量を100質量%としたときの重量%を示す。
(Preparation of Curable Composition)
Curable compositions of Examples 1 to 7 and Comparative Examples 1 and 2 were prepared according to the formulations in Table 1. The values in the table indicate the weight percentages when the total amount of each composition is taken as 100 mass %.
 硬化性組成物を構成する各材料を以下に示す。
(ポリチオール化合物)
・ペンタエリスリトールテトラキス(3-メルカプトブチレート):商品名「カレンズMT-PE1」、昭和電工社製
・1,4-ビス(3-メルカプトブチリルオキシ)ブタン:商品名「カレンズMT-BD1」、昭和電工社製
(硬化性成分)
・N-アクリロイルモルホリン(一般式(2)で表される化合物):商品名「ACMO」、興人社製
・トリプロピレングリコールジアクリレート:商品名「TPGDA」、東亞合成社製
(開始剤)
・ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド:商品名「Omnirad 819」、IGM Resins B.V.社製
The materials constituting the curable composition are shown below.
(Polythiol Compound)
Pentaerythritol tetrakis(3-mercaptobutyrate): Trade name "Karenz MT-PE1", manufactured by Showa Denko K.K. 1,4-bis(3-mercaptobutyryloxy)butane: Trade name "Karenz MT-BD1", manufactured by Showa Denko K.K. (curable component)
N-Acryloylmorpholine (compound represented by general formula (2)): Trade name "ACMO", manufactured by Kohjin Co., Ltd. Tripropylene glycol diacrylate: Trade name "TPGDA", manufactured by Toagosei Co., Ltd. (initiator)
Bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide: Trade name "Omnirad 819", manufactured by IGM Resins B.V.
(偏光フィルムの製造)
 実施例1~7および比較例1~2
 MCDコーター(富士機械社製)(セル形状:ハニカム、グラビアロール線数:1000本/inch、回転速度140%/対ライン速)を用いて、透明保護フィルム1の貼合面に、表1に記載の効果性樹脂組成物を塗工した(塗工工程)。次に透明光学フィルム1と薄型偏光子を備える光学フィルム積層体とをそれぞれ塗工面側からロール機で貼り合わせた(貼合工程)。その後、貼り合わせた透明保護フィルム側から、活性エネルギー線照射装置により上記可視光線を照射して、硬化性組成物を硬化させることにより得られた接着剤層を介して、薄型偏光子および前記透明保護フィルムを接着させた。次に光学フィルム積層体の非晶性PET基材を剥離した。
(Production of polarizing film)
Examples 1 to 7 and Comparative Examples 1 to 2
Using an MCD coater (manufactured by Fuji Machinery Co., Ltd.) (cell shape: honeycomb, gravure roll line count: 1000 rolls/inch, rotation speed 140%/to line speed), the effective resin composition shown in Table 1 was applied to the bonding surface of the transparent protective film 1 (coating step). Next, the transparent optical film 1 and the optical film laminate including the thin polarizer were bonded together from the coated side by a roller (bonding step). Thereafter, the above-mentioned visible light was irradiated from the bonded transparent protective film side by an active energy ray irradiation device to cure the curable composition, thereby bonding the thin polarizer and the transparent protective film together via an adhesive layer obtained. Next, the amorphous PET substrate of the optical film laminate was peeled off.
<偏光フィルムの偏光特性の加湿信頼性評価>
 粘着剤層(厚み20μm)を介して、実施例1~7および比較例1~2で製造した偏光フィルムを厚さ0.7mmの無アルカリガラスの一方に貼り合わせた偏光フィルム(加湿耐久性試験評価用サンプル)を準備した。該サンプルを使用し、85℃-85%湿度の環境下にて、偏光特性の加湿信頼性試験を実施した。加湿信頼性試験の詳細を下記に示す。
<Evaluation of Humidification Reliability of Polarizing Properties of Polarizing Film>
The polarizing films produced in Examples 1 to 7 and Comparative Examples 1 and 2 were attached to one side of a 0.7 mm thick alkali-free glass sheet via an adhesive layer (thickness 20 μm) to prepare polarizing films (samples for evaluating humid durability test). Using the samples, a humid reliability test of the polarization characteristics was carried out in an environment of 85° C. and 85% humidity. Details of the humid reliability test are shown below.
 得られた偏光フィルムを85℃-85%湿度の環境下に120時間暴露し、投入前と投入後の偏光度を、積分球付き分光光度計(日本分光(株)製のV7100)を用いて測定し、偏光度の変化量ΔPz(%)=|(投入前の偏光度(%))-(投入後の偏光度(%))|を求めた。偏光度の変化量ΔPz(%)が小さいほど過酷な加湿環境下における偏光特性の加湿信頼性に優れると判断した。                                        The obtained polarizing film was exposed to an environment of 85°C and 85% humidity for 120 hours, and the degree of polarization before and after insertion was measured using a spectrophotometer with an integrating sphere (V7100 manufactured by JASCO Corporation), and the change in the degree of polarization ΔPz (%) = | (degree of polarization before insertion (%)) - (degree of polarization after insertion (%)) | was calculated. It was determined that the smaller the change in the degree of polarization ΔPz (%), the better the humidification reliability of the polarization characteristics in a harsh humid environment.
<接着剤層の硬化性評価>
 上記製造方法によって得られた偏光フィルムのPVA面に、両面テープ(No.500、日東電工社製)を貼り合わせた。さらに、偏光フィルムの延伸方向と平行に200mm、直行方向に15mmの大きさに切り出し、偏光膜と透明保護フィルムとの間にカッターナイフで切り込みを入れた後、両面テープの剥離フィルムを剥がし、粘着剤面をガラス板に貼り合わせた。偏光膜と透明保護フィルムとを引き剥がし、剥離後の透明保護フィルム側をFT-IR(ATR法)により測定し、TACフィルムのピークのみ検出された場合を○、接着剤成分のピークが検出された場合は接着剤の凝集破壊が起こっているとし、×とした。
<Evaluation of Curing Property of Adhesive Layer>
A double-sided tape (No. 500, manufactured by Nitto Denko Corporation) was attached to the PVA surface of the polarizing film obtained by the above manufacturing method. The polarizing film was then cut into a size of 200 mm parallel to the stretching direction and 15 mm perpendicular to the stretching direction, and a cut was made between the polarizing film and the transparent protective film with a cutter knife. The release film of the double-sided tape was then peeled off, and the adhesive surface was attached to a glass plate. The polarizing film and the transparent protective film were peeled off, and the transparent protective film side after peeling was measured by FT-IR (ATR method). When only the peak of the TAC film was detected, it was marked as ◯, and when the peak of the adhesive component was detected, it was marked as ×, indicating that the adhesive had cohesive failure.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1の結果から、実施例1~7に係る偏光フィルムは、偏光特性の加湿信頼性に優れることがわかる。また、接着剤層の硬化性にも優れることから、偏光フィルムとしての耐久性および信頼性に優れることがわかる。一方、比較例1に係る偏光フィルムは、高温高湿下でのヨウ素抜けを抑制できないことから、加湿信頼性が悪化することがわかる。なお、比較例2に係る偏光フィルムは硬化性が不十分で、接着剤層の剥離強度が悪化することから、偏光フィルムの耐久性および信頼性に劣ることがわかる。 The results in Table 1 show that the polarizing films of Examples 1 to 7 have excellent humidification reliability of polarization properties. In addition, the adhesive layer also has excellent curing properties, which indicates that the polarizing films have excellent durability and reliability. On the other hand, the polarizing film of Comparative Example 1 cannot suppress iodine loss under high temperature and humidity conditions, which indicates that the humidification reliability is deteriorated. The polarizing film of Comparative Example 2 has insufficient curing properties, which indicates that the peel strength of the adhesive layer is deteriorated, which indicates that the polarizing film has poor durability and reliability.

Claims (14)

  1.  2以上の2級チオール基を有するポリチオール化合物と、硬化性成分と、ラジカル発生剤とを含有することを特徴とする硬化性組成物。 A curable composition comprising a polythiol compound having two or more secondary thiol groups, a curable component, and a radical generator.
  2.  前記ラジカル発生剤が光重合開始剤である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the radical generator is a photopolymerization initiator.
  3.  組成物中の全量を100質量%としたとき、前記ポリチオール化合物の含有量が0.5~10質量%である請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the content of the polythiol compound is 0.5 to 10 mass % when the total amount of the composition is 100 mass %.
  4. 組成物中の全量を100質量%としたとき、前記ラジカル発生剤の含有量が0.5~5質量%である請求項1~3のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the content of the radical generator is 0.5 to 5 mass % when the total amount of the composition is 100 mass %.
  5.  前記ポリチオール化合物の含有量をa質量%、前記ラジカル発生剤の含有量をb質量%としたとき、a/bが0.5~10である請求項4に記載の硬化性組成物。 The curable composition according to claim 4, wherein the content of the polythiol compound is a mass % and the content of the radical generator is b mass %, and a/b is 0.5 to 10.
  6.  硬化性組成物が、活性エネルギー線硬化性組成物である請求項1~5のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the curable composition is an active energy ray curable composition.
  7.  偏光子の少なくとも一方の面に接着剤層を介して光学フィルムが積層された偏光フィルムであって、前記接着剤層が請求項1~6のいずれかに記載の硬化性組成物の硬化物層であることを特徴とする偏光フィルム。 A polarizing film in which an optical film is laminated on at least one surface of a polarizer via an adhesive layer, the adhesive layer being a layer of a cured product of the curable composition according to any one of claims 1 to 6.
  8.  前記偏光子の厚みが7μm以下である請求項7に記載の偏光フィルム。 The polarizing film according to claim 7, wherein the thickness of the polarizer is 7 μm or less.
  9.  前記光学フィルムが透明保護フィルムである請求項7または8に記載の偏光フィルム。 The polarizing film according to claim 7 or 8, wherein the optical film is a transparent protective film.
  10.  前記光学フィルムがトリアセチルセルロース系樹脂フィルムである請求項7~9のいずれかに記載の偏光フィルム。 The polarizing film according to any one of claims 7 to 9, wherein the optical film is a triacetyl cellulose-based resin film.
  11.  前記偏光子が二色性色素を吸着配向させたポリビニルアルコール系フィルムである請求項7~10のいずれかに記載の偏光フィルム。 The polarizing film according to any one of claims 7 to 10, wherein the polarizer is a polyvinyl alcohol-based film on which a dichroic dye is adsorbed and oriented.
  12.  前記偏光子がヨウ素を吸着配向させたポリビニルアルコール系フィルムである請求項7~11のいずれかに記載の偏光フィルム。 The polarizing film according to any one of claims 7 to 11, wherein the polarizer is a polyvinyl alcohol-based film in which iodine is adsorbed and oriented.
  13.  請求項7~12のいずれかに記載の偏光フィルムが、少なくとも1枚積層されていることを特徴とする光学フィルム。 An optical film comprising at least one laminate of the polarizing film according to any one of claims 7 to 12.
  14.  請求項7~12のいずれかに記載の偏光フィルム、または請求項13に記載の光学フィルムが用いられていることを特徴とする画像表示装置。 An image display device comprising the polarizing film according to any one of claims 7 to 12 or the optical film according to claim 13.
PCT/JP2023/031397 2022-12-12 2023-08-30 Curable composition, polarizing film, optical film, and image display device WO2024127733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-197601 2022-12-12
JP2022197601A JP2024083671A (en) 2022-12-12 2022-12-12 Curable composition, polarization film, optical film and image display unit

Publications (1)

Publication Number Publication Date
WO2024127733A1 true WO2024127733A1 (en) 2024-06-20

Family

ID=91484766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031397 WO2024127733A1 (en) 2022-12-12 2023-08-30 Curable composition, polarizing film, optical film, and image display device

Country Status (3)

Country Link
JP (1) JP2024083671A (en)
TW (1) TW202428821A (en)
WO (1) WO2024127733A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140000482A1 (en) * 2012-06-29 2014-01-02 Tae Hyun Lee Adhesive composition for polarizing plate, polarizing plate using the same, and optical member including the same
WO2015141383A1 (en) * 2014-03-18 2015-09-24 綜研化学株式会社 Adhesive composition for polarizing plate, adhesive sheet and polarizing plate with adhesive layer
WO2022113842A1 (en) * 2020-11-30 2022-06-02 日東電工株式会社 Polarizing plate and image display device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140000482A1 (en) * 2012-06-29 2014-01-02 Tae Hyun Lee Adhesive composition for polarizing plate, polarizing plate using the same, and optical member including the same
WO2015141383A1 (en) * 2014-03-18 2015-09-24 綜研化学株式会社 Adhesive composition for polarizing plate, adhesive sheet and polarizing plate with adhesive layer
WO2022113842A1 (en) * 2020-11-30 2022-06-02 日東電工株式会社 Polarizing plate and image display device using same

Also Published As

Publication number Publication date
JP2024083671A (en) 2024-06-24
TW202428821A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
KR20190007410A (en) Laminated resin film, method for producing the same, laminated optical film, image display apparatus and resin film for easy adhesion
WO2016143435A1 (en) Crosslinking agent, curable resin composition, polarizing film, method for producing polarizing film, optical film and image display device
JP7315357B2 (en) Method for manufacturing polarizing film
JP7297608B2 (en) Method for manufacturing polarizing film
JP7214397B2 (en) Polarizers, polarizing films, optical films, and image display devices
WO2022071387A1 (en) Polarizing film, optical film, and image display device
JP7265882B2 (en) Method for producing polarizing film, polarizer with easy-adhesion layer, polarizing film, optical film, and image display device
JP7219137B2 (en) Method for manufacturing polarizing film
WO2020039895A1 (en) Polarizer, polarizing film, optical film and image display device
WO2024127733A1 (en) Curable composition, polarizing film, optical film, and image display device
JP7213037B2 (en) Polarizers, polarizing films, optical films, and image display devices
JP7336319B2 (en) Method for manufacturing polarizing film
JP2020034898A (en) Polarizer, polarizing film, optical film and image display device
WO2024232159A1 (en) Method for manufacturing layered optical film
WO2024247412A1 (en) Polarizing film and method for manufacturing same
WO2024247658A1 (en) Adhesive composition for laminated optical film and laminated optical film
JP2024083675A (en) Laminate optical film and image display device
JP2024173362A (en) Method for producing laminated optical film
JP2024173266A (en) LAMINATED OPTICAL FILM AND METHOD FOR PRODUCING LAMINATED OPTICAL FILM
WO2024247657A1 (en) Adhesive agent composition for laminated optical films, and laminated optical film
WO2024127722A1 (en) Curable resin composition, polarizing film, multilayer optical film and image display device
WO2024127721A1 (en) Curable resin composition, polarizing film, multilayer optical film, and image display device
WO2020039899A1 (en) Polarizer, polarizing film, optical film and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23903037

Country of ref document: EP

Kind code of ref document: A1