Nothing Special   »   [go: up one dir, main page]

WO2024127451A1 - Piping equipment and piping equipment control method - Google Patents

Piping equipment and piping equipment control method Download PDF

Info

Publication number
WO2024127451A1
WO2024127451A1 PCT/JP2022/045633 JP2022045633W WO2024127451A1 WO 2024127451 A1 WO2024127451 A1 WO 2024127451A1 JP 2022045633 W JP2022045633 W JP 2022045633W WO 2024127451 A1 WO2024127451 A1 WO 2024127451A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
inner pipe
piping
liquefied gas
gas
Prior art date
Application number
PCT/JP2022/045633
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 武田
貴志 下垣
晴彦 冨永
麻子 三橋
翔 樋渡
まり子 ▲高▼須賀
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2022/045633 priority Critical patent/WO2024127451A1/en
Publication of WO2024127451A1 publication Critical patent/WO2024127451A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours

Definitions

  • This disclosure relates to piping equipment and a method for controlling piping equipment.
  • Patent Document 1 discloses a tank for storing liquefied hydrogen and hydrogen piping connected to the tank for transporting the liquefied hydrogen.
  • Liquefied gas tanks that store low-temperature liquefied gas such as liquefied hydrogen expand or contract depending on the amount of liquefied gas stored and the outside temperature.
  • the piping equipment connecting the liquefied gas tank to related equipment is equipped with an expansion joint that can expand and contract to absorb this displacement.
  • the expansion joint is thinner than other parts of the piping equipment and is therefore susceptible to damage. If the expansion joint is damaged, the transport of liquefied gas must be stopped until the expansion joint is repaired.
  • the piping equipment connecting the liquefied gas tank to related equipment may transport not only liquefied gas, but also vaporized gas that is the result of vaporization of liquefied gas.
  • the above liquefied gas and liquefied gas will be collectively referred to as "low-temperature fluid”.
  • the present disclosure aims to provide a piping system that connects a liquefied gas tank to related equipment and that can continue to transport cryogenic fluid even if an expansion joint is damaged.
  • the piping equipment is a piping equipment that connects a liquefied gas tank that stores liquefied gas to related equipment, and includes a first pipe having a first expansion joint that can expand and contract in response to an external force, and transporting a cryogenic fluid, which is liquefied gas or a vaporized gas obtained by vaporizing liquefied gas, from the liquefied gas tank to the related equipment or from the related equipment to the liquefied gas tank, and a second pipe having a second expansion joint that can expand and contract in response to an external force, positioned in parallel to the first pipe, and transporting the same cryogenic fluid in the same direction as the first pipe.
  • a cryogenic fluid which is liquefied gas or a vaporized gas obtained by vaporizing liquefied gas
  • FIG. 1 is a schematic side view of a piping installation.
  • FIG. 2 is a schematic plan view of the piping installation.
  • FIG. 3 is a block diagram of the electrical system of the piping fixture.
  • FIG. 4 is a flow diagram of the monitoring program.
  • Fig. 1 is a schematic side view of a piping equipment 100 according to an embodiment.
  • the piping equipment 100 according to the embodiment is equipment that connects a liquefied gas tank 101 and related equipment 102.
  • the liquefied gas tank 101 is a tank that stores liquefied gas.
  • the liquefied gas stored in the liquefied gas tank 101 is, for example, liquefied hydrogen, but is not limited thereto.
  • the liquefied gas tank 101 of this embodiment is mounted on a liquefied gas carrier 103.
  • the liquefied gas tank 101 does not have to be mounted on the liquefied gas carrier 103, and may be installed on the ground, for example.
  • the upper portion of the liquefied gas tank 101 of this embodiment is located above the upper deck 104 of the liquefied gas carrier 103.
  • the liquefied gas tank 101 has a dome 105 at the top, and the piping equipment 100 is connected to this dome 105.
  • the related equipment 102 is equipment that exchanges low-temperature fluid with the liquefied gas tank 101.
  • the related equipment 102 is a manifold with a collection of connection ports that connect to equipment such as ground equipment.
  • the related equipment 102 is not limited to a manifold, and may be, for example, an engine that uses liquefied gas as fuel, or equipment for re-liquefying vaporized gas that has evaporated from liquefied gas.
  • the related equipment 102 in this embodiment is installed on the upper deck 104 of the liquefied gas carrier 103, but may also be installed inside the liquefied gas carrier 103 or on land.
  • the liquefied gas tank 101 expands or contracts depending on the amount of liquefied gas stored therein, the outside air temperature, etc. As a result, the liquefied gas tank 101 displaces relative to the associated equipment 102.
  • the dome 105 in this embodiment displaces up and down relative to the associated equipment 102. Therefore, the piping equipment 100 is provided with piping 10, 20 having expandable expansion joints 11, 21 to absorb this displacement. Details of the piping equipment 100 will be described later.
  • Fig. 2 is a schematic plan view of the piping equipment 100.
  • the piping equipment 100 includes a first pipe 10, a second pipe 20, a tank-side common pipe 30, a related equipment-side common pipe 40, and a drip tray 50 (see Fig. 1). These components and components related to these components will be described in order below.
  • the first pipe 10 has a first expansion joint 11 and is a pipe for transporting a cryogenic fluid from the liquefied gas tank 101 to the related equipment 102 or from the related equipment 102 to the liquefied gas tank 101.
  • the first expansion joint 11 is expandable and contractible in response to an external force, and is, for example, a bellows or a flexible hose.
  • the first pipe 10 of this embodiment is a double pipe and includes a first inner pipe 12 and a first outer pipe 13 covering the first inner pipe 12.
  • the cryogenic fluid passes through the first inner pipe 12, and a vacuum is maintained between the first inner pipe 12 and the first outer pipe 13, that is, a state in which the air pressure is lower than the external air pressure.
  • the first expansion joint 11 is also formed double correspondingly.
  • the first expansion joint 11 includes an expandable first inner joint 14 located in the first inner pipe 12, and an expandable first outer joint 15 located in the first outer pipe 13 and covering the first inner joint 14.
  • the first inner joint 14 is not visible from the outside of the first piping 10, so damage to the first inner joint 14 cannot be confirmed visually.
  • a pair of first shutoff valves 16 are located upstream and downstream of the first inner fitting 14 of the first inner pipe 12.
  • first shutoff section 17 the section located between the pair of first shutoff valves 16 of the first inner pipe 12.
  • the first pipe 10 is provided with a first thermometer 60.
  • the first thermometer 60 measures the first gap temperature, which is the temperature between the first inner pipe 12 and the first outer pipe 13. If the first inner pipe 12 is damaged and the cryogenic fluid leaks from the first inner pipe 12, the air between the first inner pipe 12 and the first outer pipe 13 is cooled by the cryogenic fluid, and the first gap temperature drops. In other words, by monitoring the first gap temperature, it is possible to determine whether or not the cryogenic fluid has leaked from the first inner pipe 12.
  • a first gas supply pipe 61 is connected to the first isolation section 17 of the first inner pipe 12.
  • the first gas supply pipe 61 can supply inert gas to the first isolation section 17.
  • the first gas supply pipe 61 is always connected to an inert gas tank that stores inert gas.
  • the first gas supply pipe 61 may be connected to the inert gas tank depending on the situation.
  • a first gas supply valve 62 is located in the first gas supply pipe 61. By opening the first gas supply valve 62, inert gas can be supplied to the first isolation section 17. On the other hand, by closing the first gas supply valve 62, the supply of inert gas to the first isolation section 17 can be stopped.
  • a first gas exhaust pipe 63 is further connected to the first isolation section 17 of the first inner pipe 12.
  • the first gas exhaust pipe 63 can exhaust gas (vaporized gas and inert gas) within the first isolation section 17.
  • the first gas exhaust pipe 63 is constantly connected to a treatment facility such as a vent mast that processes (including exhausting) gas.
  • the first gas exhaust pipe 63 may be connected to a treatment facility depending on the situation.
  • a first gas exhaust valve 64 is located in the first gas exhaust pipe 63. By opening the first gas exhaust valve 64, gas can be exhausted from the first cut-off section 17. On the other hand, by closing the first gas exhaust valve 64, the exhaust of gas from the first cut-off section 17 can be stopped.
  • a first safety pipe 65 is further connected to the first cut-off section 17 of the first inner pipe 12.
  • the first safety pipe 65 can exhaust gas (vaporized gas and inert gas) within the first cut-off section 17.
  • the first gas exhaust pipe 63 is constantly connected to a treatment facility such as a vent mast that processes (including exhausting) the gas.
  • a first safety valve 66 is located in the first safety pipe 65.
  • the first safety valve 66 is configured to open when a pressure equal to or greater than a predetermined pressure is applied. As a result, if the internal pressure of the first cutoff section 17 rises too much, the first safety valve 66 opens and the internal pressure of the first cutoff section 17 decreases. As a result, damage to the first inner pipe 12 can be prevented.
  • the second pipe 20 is located in parallel to the first pipe 10 and transports the same cryogenic fluid in the same direction as the first pipe 10. For example, when the first pipe 10 transports liquefied gas from the liquefied gas tank 101 to the related equipment 102, the second pipe 20 also transports liquefied gas from the liquefied gas tank 101 to the related equipment 102. For example, when the first pipe 10 transports vaporized gas from the cryogenic fluid from the related equipment 102 to the liquefied gas tank 101, the second pipe 20 also transports vaporized gas from the related equipment 102 to the liquefied gas tank 101. As shown in FIG.
  • the first pipe 10 and the second pipe 20 are located symmetrically with respect to a reference plane 99 and have shapes symmetrical with respect to the reference plane.
  • the reference plane 99 in this embodiment is a vertical plane passing through the center of the liquefied gas tank 101.
  • the second pipe 20 is basically configured in the same way as the first pipe 10.
  • the second expansion joint 21, second inner pipe 22, second outer pipe 23, second inner joint 24, second outer joint 25, second shutoff valve 26, and second shutoff section 27 of the second pipe 20 shown in FIG. 2 correspond to the first expansion joint 11, first inner pipe 12, first outer pipe 13, first inner joint 14, first outer joint 15, first shutoff valve 16, and first shutoff section 17 of the first pipe 10, respectively, and therefore will not be described here.
  • thermometer 70 measures the second gap temperature, which is the temperature between the second inner pipe 22 and the second outer pipe 23.
  • the tank side common pipe 30 is a pipe located between the first pipe 10 and the second pipe 20 and the liquefied gas tank 101. One end of the tank side common pipe 30 is connected to the liquefied gas tank 101. The other end of the tank side common pipe 30 is connected to both the end of the first pipe 10 on the liquefied gas tank 101 side and the end of the second pipe 20 on the liquefied gas tank 101 side.
  • the tank side common piping 30 of this embodiment includes a tank side inner pipe 31 and a tank side outer pipe 32 that covers the tank side inner pipe 31.
  • the tank side inner pipe 31 has one end connected to the liquefied gas tank 101 and the other end connected to both the first inner pipe 12 and the second inner pipe 22.
  • the tank side outer pipe 32 has one end connected to the liquefied gas tank 101 and the other end connected to both the first outer pipe 13 and the second outer pipe 23.
  • the first pipe 10 and the second pipe 20 are connected to the liquefied gas tank 101 via the tank side common pipe 30. Therefore, the piping equipment 100 according to this embodiment can reduce the area occupied near the liquefied gas tank 101.
  • the first pipe 10 and the second pipe 20 may each be directly connected to the liquefied gas tank 101 without going through the tank side common pipe 30.
  • the related equipment side common pipe 40 is a pipe located between the first pipe 10 and the second pipe 20 and the related equipment 102. One end of the related equipment side common pipe 40 is connected to both the end of the first pipe 10 on the related equipment 102 side and the end of the second pipe 20 on the related equipment 102 side. The other end of the related equipment side common pipe 40 is connected to the related equipment 102.
  • the related equipment side common piping 40 in this embodiment includes a related equipment side inner pipe 41 and a related equipment side outer pipe 42 that covers the related equipment side inner pipe 41.
  • the related equipment side inner pipe 41 has one end connected to both the first inner pipe 12 and the second inner pipe 22, and the other end connected to the related equipment 102.
  • the related equipment side outer pipe 42 has one end connected to both the first outer pipe 13 and the second outer pipe 23, and the other end connected to the related equipment 102.
  • the first pipe 10 and the second pipe 20 are connected to the related equipment 102 via the related equipment side common pipe 40. Therefore, the piping equipment 100 according to this embodiment can reduce the area occupied near the related equipment 102.
  • the first pipe 10 and the second pipe 20 may each be directly connected to the related equipment 102 without going through the related equipment side common pipe 40.
  • the drip tray 50 is located vertically below the first expansion joint 11 and the second expansion joint 21. If each expansion joint 11, 21 is damaged, for example, if the first internal joint 14 or the second internal joint 24 is damaged, the air around the damaged area is cooled and liquid air is generated. The drip tray 50 can receive the liquid air that falls from the damaged area. Therefore, it is possible to prevent the upper deck 104 from being damaged due to temperature deformation caused by the liquid air falling onto the upper deck 104.
  • Fig. 3 is a block diagram of the piping equipment 100 according to this embodiment.
  • the piping equipment 100 includes a control device 90.
  • the control device 90 includes a processor, a volatile memory, a non-volatile memory, an I/O interface, and the like.
  • the non-volatile memory of the control device 90 stores a monitoring program and various data, which will be described later, and the processor performs arithmetic processing using the volatile memory based on each program.
  • the control device 90 is connected to the first thermometer 60 and the second thermometer 70, and can obtain the first gap temperature and the second gap temperature, respectively, based on signals received from these devices. Furthermore, the control device 90 is electrically connected to the first shutoff valve 16, the first gas supply valve 62, the first gas exhaust valve 64, the second shutoff valve 26, the second gas supply valve 72, and the second gas exhaust valve 74, and can open and close these valves by sending control signals to these valves.
  • circuits or processing circuits including general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or combinations thereof, configured or programmed to perform the disclosed functions.
  • Processors are considered processing circuits or circuits because they include transistors and other circuitry.
  • a circuit, unit, or means is hardware that performs the recited functions or hardware that is programmed to perform the recited functions.
  • the hardware may be hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. Where the hardware is a processor, which is considered a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware and/or the processor.
  • the monitoring program is a program for monitoring leakage of cryogenic fluid in the piping equipment 100 and taking appropriate measures.
  • the monitoring program is executed by the control device 90.
  • Fig. 4 is a flow diagram of the monitoring program.
  • the control device 90 first acquires the first gap temperature and the second gap temperature (step S1).
  • the first gap temperature and the second gap temperature can be acquired from the first thermometer 60 and the second thermometer 70.
  • the control device 90 determines whether the first gap temperature acquired in step S1 is lower than a first reference temperature (step S2). As described above, if the first inner pipe 12 (particularly the first inner joint 14) is damaged and the low-temperature fluid leaks, the first gap temperature drops. Therefore, it is possible to determine whether a low-temperature fluid leak has occurred in the first inner pipe 12 depending on whether the first gap temperature is lower than a predetermined first reference temperature.
  • step S2 determines in step S2 that the first gap temperature is lower than the first reference temperature (YES in step S2), that is, if it determines that a low-temperature fluid leak has occurred in the first inner pipe 12, it closes the pair of first shut-off valves 16 (step S3). If a low-temperature fluid leak has occurred in the first inner pipe 12, the leak is likely to be located in the first inner fitting 14. In this embodiment, the pair of first shut-off valves 16 located upstream and downstream of this first inner fitting 14 are closed, and the first shut-off section 17 in which the first inner fitting 14 is located is fluidly shut off.
  • the control device 90 supplies inert gas to the first isolation section 17 (step S4). Specifically, the control device 90 sends a control signal to the first gas supply valve 62, which opens the first gas supply valve 62, thereby supplying inert gas to the first isolation section 17. Note that in this embodiment, the control device 90 opens the first gas exhaust valve 64 at the same time as opening the first gas supply valve 62. As a result, the low-temperature fluid in the first isolation section 17 is pushed out by the inert gas, which is then exhausted to the outside via the first gas exhaust pipe 63.
  • the cryogenic fluid is discharged from the first shutoff section 17, so that repair work that may generate sparks, such as welding, can be carried out on the first internal fitting 14.
  • repair work that may generate sparks, such as welding
  • step S2 if the control device 90 determines that the first gap temperature is not lower than the first reference temperature (is equal to or higher than the first reference temperature) (NO in step S2), it proceeds to step S5.
  • step S5 the control device 90 determines whether the second gap temperature acquired in step S1 is lower than the second reference temperature. As in the case of step S2, whether a leak of low-temperature fluid has occurred in the second inner tube 22 can be determined depending on whether the second gap temperature is lower than the predetermined second reference temperature.
  • control device 90 determines in step S5 that the second gap temperature is not lower than the second reference temperature (is equal to or higher than the second reference temperature) (NO in step S5), it returns to step S1 and repeats each step.
  • step S5 determines in step S5 that the second gap temperature is lower than the second reference temperature (YES in step S5), that is, if it determines that a low-temperature fluid leak has occurred in the second inner pipe 22, it closes the pair of second shutoff valves 26 (step S6).
  • the second shutoff section 27 in which the second inner joint 24 is located is fluidically shut off by the second shutoff valves 26.
  • control device 90 supplies inert gas to the second cut-off section 27 (step S7). Specifically, the control device 90 supplies inert gas to the second cut-off section 27 by opening the second gas supply valve 72. In this embodiment, the control device 90 opens the second gas exhaust valve 74 at the same time as opening the second gas supply valve 72. This causes the low-temperature fluid in the second cut-off section 27 to be pushed out by the inert gas, which is then exhausted to the outside via the second gas exhaust pipe 73.
  • the cryogenic fluid is discharged from the second cutoff section 27, so that repair work that may generate sparks, such as welding, can be carried out on the second internal fitting 24.
  • repair work that may generate sparks, such as welding
  • control device 90 has been described as controlling the opening and closing of each valve based on the first gap temperature and the second gap temperature, but the opening and closing of each valve may be performed manually by an operator.
  • the control device 90 may be configured to output an alarm signal to a device such as a monitor or an alarm device when the first gap temperature becomes lower than the first reference temperature or when the second gap temperature becomes lower than the second reference temperature.
  • step S4 of the above monitoring program the control device 90 opens the first gas supply valve 62 and the first gas exhaust valve 64 at the same time, so that the low-temperature fluid in the first cut-off section 17 is discharged to the outside via the first gas exhaust pipe 63.
  • the low-temperature fluid in the first cut-off section 17 does not have to be discharged to the outside from the first gas exhaust pipe 63.
  • the low-temperature fluid in the first cut-off section 17 may be discharged via the first gas supply pipe 61.
  • the first gas exhaust pipe 63 and the first gas exhaust valve 64 can be omitted.
  • the second gas exhaust pipe 73 and the second gas exhaust valve 74 can also be omitted.
  • the control device 90 judges whether or not the cryogenic fluid has leaked from the first inner tube 12 based on the temperature between the first inner tube 12 and the first outer tube 13 measured by the first thermometer 60, and judges whether or not the cryogenic fluid has leaked from the second inner tube 22 based on the temperature between the second inner tube 22 and the second outer tube 23 measured by the second thermometer 70.
  • whether or not the cryogenic fluid has leaked from the first inner tube 12 and whether or not the cryogenic fluid has leaked from the second inner tube 22 may be judged by another method.
  • cryogenic fluid has leaked from the first inner tube 12 may be judged based on the pressure or the concentration of the cryogenic fluid between the first inner tube 12 and the first outer tube 13, and whether or not the cryogenic fluid has leaked from the second inner tube 22 may be judged based on the pressure or the concentration of the cryogenic fluid between the second inner tube 22 and the second outer tube 23.
  • a first item disclosed in this specification is a piping system connecting a liquefied gas tank that stores liquefied gas to related equipment, the piping system comprising: a first piping having a first expansion joint that can expand and contract in response to an external force, and transporting a cryogenic fluid, which is liquefied gas or a vaporized gas obtained by vaporizing liquefied gas, from the liquefied gas tank to the related equipment or from the related equipment to the liquefied gas tank; and a second piping having a second expansion joint that can expand and contract in response to an external force, positioned in parallel to the first piping, and transporting the same cryogenic fluid in the same direction as the first piping.
  • the transport of the cryogenic fluid can continue through the second piping. Also, even if the second expansion joint is damaged, the transport of the cryogenic fluid can continue through the first piping.
  • the second item disclosed in this specification is the piping equipment described in the first item, in which the first piping includes a first inner pipe and a first outer pipe covering the first inner pipe, the second piping includes a second inner pipe and a second outer pipe covering the second inner pipe, the first expansion joint includes a first inner joint located on the first inner pipe and capable of expanding and contracting in response to an external force, the second expansion joint includes a second inner joint located on the second inner pipe and capable of expanding and contracting in response to an external force, a pair of first shutoff valves located upstream and downstream of the first inner joint of the first inner pipe and capable of fluidically isolating the first inner pipe, and a pair of second shutoff valves located upstream and downstream of the second inner joint of the second inner pipe and capable of fluidically isolating the second inner pipe.
  • the third item disclosed in this specification is the piping equipment described in the second item, which includes a first gas supply pipe connected to a first cut-off section located between the pair of first cut-off valves of the first inner pipe and capable of supplying an inert gas to the first cut-off section, and a second gas supply pipe connected to a second cut-off section located between the pair of second cut-off valves of the second inner pipe and capable of supplying an inert gas to the second cut-off section.
  • the pair of first shutoff valves can be closed to shut off the first shutoff section, and inert gas can be supplied to the first shutoff section via the first gas supply pipe.
  • low-temperature fluid can be discharged from the first shutoff section where the first internal joint is located, and repair work can be performed that generates sparks for the first internal joint.
  • low-temperature fluid can be discharged from the second shutoff section, and repair work can be performed that generates sparks for the second internal joint.
  • the fourth item disclosed in this specification is the piping equipment described in the third item, which includes a first gas exhaust pipe connected to a first cut-off section of the first inner pipe and capable of exhausting gas within the first cut-off section, and a second gas exhaust pipe connected to a second cut-off section of the second inner pipe and capable of exhausting gas within the second cut-off section.
  • the low-temperature fluid in the first isolation section can be easily discharged to the outside via the first exhaust pipe.
  • the low-temperature fluid in the second isolation section can be easily discharged to the outside via the second exhaust pipe.
  • the fifth item disclosed in this specification is the piping equipment described in any one of the second to fourth items, which includes a first safety pipe connected to a first shutoff section located between the pair of first shutoff valves of the first inner pipe, a second safety pipe connected to a second shutoff section located between the pair of second shutoff valves of the second inner pipe, a first safety valve located in the first safety pipe and opening when a pressure equal to or greater than a predetermined pressure is applied, and a second safety valve located in the second safety pipe and opening when a pressure equal to or greater than a predetermined pressure is applied.
  • This configuration makes it possible to prevent damage to the first and second inner tubes due to an excessive increase in the internal pressure of the first and second inner tubes.
  • the sixth item disclosed in this specification is the piping equipment described in any one of the first to fifth items, in which the first pipe and the second pipe are positioned symmetrically with respect to a vertical reference plane passing through the center of the liquefied gas tank and have a symmetrical shape with respect to the reference plane.
  • the seventh item disclosed in this specification is the piping equipment described in any one of the first to sixth items, which is provided with a tank-side common pipe having one end connected to the liquefied gas tank and the other end connected to both the end of the first pipe on the liquefied gas tank side and the end of the second pipe on the liquefied gas tank side.
  • This configuration makes it possible to reduce the area occupied by the piping equipment near the liquefied gas tank.
  • the eighth item disclosed in this specification is the piping equipment described in any one of the first to fifth items, which is equipped with a control device that outputs a predetermined alarm signal when the low-temperature fluid leaks from the first inner pipe or when the low-temperature fluid leaks from the second inner pipe.
  • the ninth item disclosed in this specification is the piping equipment described in any one of the second to fifth items, which is equipped with a control device that closes the pair of first shutoff valves when the low-temperature fluid leaks from the first inner pipe, and closes the pair of second shutoff valves when the low-temperature fluid leaks from the second inner pipe.
  • the tenth item disclosed in this specification is a method for controlling piping equipment as described in claim 2, which closes the pair of first shutoff valves when the cryogenic fluid leaks from the first inner pipe, and closes the pair of second shutoff valves when the cryogenic fluid leaks from the second inner pipe.
  • the eleventh item disclosed in this specification is a control method for piping equipment described in any one of the third to fifth items, in which, when the cryogenic fluid leaks from the first inner pipe, the pair of first shutoff valves are closed and an inert gas is supplied to the first shutoff section via the first gas supply pipe, and, when the cryogenic fluid leaks from the second inner pipe, the pair of second shutoff valves are closed and an inert gas is supplied to the second shutoff section via the second gas supply pipe.
  • the cryogenic fluid when the first internal joint is damaged and a cryogenic fluid leaks, the cryogenic fluid can be discharged from the first blocking section where the first internal joint is located, and repair work can be performed that generates sparks for the first internal joint.
  • the cryogenic fluid when the second internal joint is damaged and a cryogenic fluid leaks, the cryogenic fluid can be discharged from the second blocking section where the second internal joint is located, and repair work can be performed that generates sparks for the second internal joint.
  • Second pipe 10 First pipe 11 First expansion joint 12 First inner pipe 13 First outer pipe 14 First inner joint 15 First outer joint 16 First shutoff valve 17 First shutoff section 20 Second pipe 21 Second expansion joint 22 Second inner pipe 23 Second outer pipe 24 Second inner joint 25 Second outer joint 26 Second shutoff valve 27 Second shutoff section 30
  • Tank side common pipe 50
  • First thermometer 61
  • First gas supply pipe 63
  • First gas exhaust pipe 65
  • First safety pipe 66
  • First safety valve 70
  • Second thermometer 70
  • First gas supply pipe 73
  • Second gas exhaust pipe 75
  • Second safety pipe 76 Second safety valve 90
  • Reference plane 100 Piping equipment 101 Liquefied gas tank 102 Related equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Piping equipment according to one aspect of the present disclosure is for connecting a liquefied gas tank for storing liquefied gas and related equipment, and comprises: a first pipe that has a first extending/retracting joint which can extend/retract in response to external force and that conveys, from the liquefied gas tank to the related equipment or from the related equipment to the liquefied gas tank, low-temperature fluid which is the liquefied gas or vaporized gas generated by vaporization of the liquefied gas; and a second pipe that has a second extending/retracting joint which can extend/retract in response to external force, that is disposed in parallel to the first pipe, and that conveys the same low-temperature fluid in the same direction as the first pipe.

Description

配管設備及び配管設備の制御方法Piping equipment and method for controlling piping equipment
 本開示は、配管設備及び配管設備の制御方法に関する。 This disclosure relates to piping equipment and a method for controlling piping equipment.
 特許文献1には、液化水素を貯留するタンク及び当該タンクに接続され液化水素を搬送する水素配管が開示されている。 Patent Document 1 discloses a tank for storing liquefied hydrogen and hydrogen piping connected to the tank for transporting the liquefied hydrogen.
特開2022-103902号公報JP 2022-103902 A
 液化水素などの低温の液化ガスを貯蔵する液化ガスタンクは、貯蔵している液化ガスの量や外気温に応じて膨張し、又は、収縮する。液化ガスタンクは、膨張及び収縮に伴って、液化ガスタンク以外の他の設備に対して変位する。そのため、液化ガスタンクと関連設備とをつなぐ配管設備は、この変位を吸収できるように、伸縮可能な伸縮継手を備えている。ただし、伸縮継手は配管設備の他の部分に比べて薄肉であり破損するおそれがある。仮に、伸縮継手が破損した場合には、伸縮継手の修復が完了するまで、液化ガスの搬送を停止しなければならない。なお、液化ガスタンクと関連設備とをつなぐ配管設備は、液化ガスだけでなく、液化ガスが気化した気化ガスを搬送する場合もある。以下では、上記の液化ガスと液化ガスを合わせて「低温流体」と称する。 Liquefied gas tanks that store low-temperature liquefied gas such as liquefied hydrogen expand or contract depending on the amount of liquefied gas stored and the outside temperature. As the liquefied gas tank expands and contracts, it displaces relative to other equipment other than the liquefied gas tank. For this reason, the piping equipment connecting the liquefied gas tank to related equipment is equipped with an expansion joint that can expand and contract to absorb this displacement. However, the expansion joint is thinner than other parts of the piping equipment and is therefore susceptible to damage. If the expansion joint is damaged, the transport of liquefied gas must be stopped until the expansion joint is repaired. Note that the piping equipment connecting the liquefied gas tank to related equipment may transport not only liquefied gas, but also vaporized gas that is the result of vaporization of liquefied gas. In the following, the above liquefied gas and liquefied gas will be collectively referred to as "low-temperature fluid".
 このような事情に鑑みて、本開示は、液化ガスタンクと関連設備とをつなぐ配管設備であって、伸縮継手が破損したとしても、低温流体の搬送を継続できる配管設備を提供することを目的とする。 In light of these circumstances, the present disclosure aims to provide a piping system that connects a liquefied gas tank to related equipment and that can continue to transport cryogenic fluid even if an expansion joint is damaged.
 本開示の一態様に係る配管設備は、液化ガスを貯蔵する液化ガスタンクと関連設備とをつなぐ配管設備であって、外力に応じて伸縮可能な第1伸縮継手を有し、前記液化ガスタンクから前記関連設備へ又は前記関連設備から前記液化ガスタンクへ液化ガス又は液化ガスが気化した気化ガスである低温流体を搬送する第1配管と、外力に応じて伸縮可能な第2伸縮継手を有し、前記第1配管に対して並列に位置し、前記第1配管と同一の方向に同一の低温流体を搬送する第2配管と、を備えている。 The piping equipment according to one embodiment of the present disclosure is a piping equipment that connects a liquefied gas tank that stores liquefied gas to related equipment, and includes a first pipe having a first expansion joint that can expand and contract in response to an external force, and transporting a cryogenic fluid, which is liquefied gas or a vaporized gas obtained by vaporizing liquefied gas, from the liquefied gas tank to the related equipment or from the related equipment to the liquefied gas tank, and a second pipe having a second expansion joint that can expand and contract in response to an external force, positioned in parallel to the first pipe, and transporting the same cryogenic fluid in the same direction as the first pipe.
 この構成によれば、第1伸縮継手又は第2伸縮継手が破損したとしても、低温流体の搬送を継続できる。 With this configuration, even if the first expansion joint or the second expansion joint is damaged, the transport of the low-temperature fluid can continue.
図1は、配管設備の概略側面図である。FIG. 1 is a schematic side view of a piping installation. 図2は、配管設備の概略平面図である。FIG. 2 is a schematic plan view of the piping installation. 図3は、配管設備の電気系のブロック図である。FIG. 3 is a block diagram of the electrical system of the piping fixture. 図4は、監視プログラムのフロー図である。FIG. 4 is a flow diagram of the monitoring program.
 (配管設備の概要)
 以下、実施形態について説明する。図1は、実施形態に係る配管設備100の概略側面図である。図1に示すように、実施形態に係る配管設備100は、液化ガスタンク101と関連設備102とをつなぐ設備である。
(Outline of piping equipment)
Hereinafter, an embodiment will be described. Fig. 1 is a schematic side view of a piping equipment 100 according to an embodiment. As shown in Fig. 1, the piping equipment 100 according to the embodiment is equipment that connects a liquefied gas tank 101 and related equipment 102.
 液化ガスタンク101は、液化ガスを貯蔵するタンクである。液化ガスタンク101が貯蔵する液化ガスは、例えば液化水素であるが、これに限定されない。本実施形態の液化ガスタンク101は、液化ガス運搬船103に搭載されている。ただし、液化ガスタンク101は液化ガス運搬船103に搭載されていなくてもよく、例えば地上に設置されていてもよい。本実施形態の液化ガスタンク101は、上方部分が液化ガス運搬船103の上甲板104よりも上方に位置している。液化ガスタンク101は、頂部にドーム105を備えており、配管設備100はこのドーム105に接続されている。 The liquefied gas tank 101 is a tank that stores liquefied gas. The liquefied gas stored in the liquefied gas tank 101 is, for example, liquefied hydrogen, but is not limited thereto. The liquefied gas tank 101 of this embodiment is mounted on a liquefied gas carrier 103. However, the liquefied gas tank 101 does not have to be mounted on the liquefied gas carrier 103, and may be installed on the ground, for example. The upper portion of the liquefied gas tank 101 of this embodiment is located above the upper deck 104 of the liquefied gas carrier 103. The liquefied gas tank 101 has a dome 105 at the top, and the piping equipment 100 is connected to this dome 105.
 関連設備102は、液化ガスタンク101との間で低温流体をやり取りする設備である。本実施形態の関連設備102は、地上設備などの設備と接続する接続口が集合したマニホールドである。ただし、関連設備102は、マニホールドに限定されず、例えば液化ガスを燃料とするエンジンであってもよく、液化ガスが気化した気化ガスを再度液化するための設備であってもよい。なお、本実施形態の関連設備102は、液化ガス運搬船103の上甲板104に設置されているが、液化ガス運搬船103の内部に設置されていてもよく、陸上に設置されていてもよい。 The related equipment 102 is equipment that exchanges low-temperature fluid with the liquefied gas tank 101. In this embodiment, the related equipment 102 is a manifold with a collection of connection ports that connect to equipment such as ground equipment. However, the related equipment 102 is not limited to a manifold, and may be, for example, an engine that uses liquefied gas as fuel, or equipment for re-liquefying vaporized gas that has evaporated from liquefied gas. The related equipment 102 in this embodiment is installed on the upper deck 104 of the liquefied gas carrier 103, but may also be installed inside the liquefied gas carrier 103 or on land.
 液化ガスタンク101は、貯蔵している液化ガスの量や外気温等に応じて膨張し、又は、収縮する。そのため、液化ガスタンク101は、関連設備102に対して変位する。例えば、本実施形態のドーム105は、関連設備102に対して上下に変位する。したがって、配管設備100は、この変位を吸収できるように、伸縮可能な伸縮継手11、21を有する配管10、20を備えている。配管設備100の詳細は後述する。 The liquefied gas tank 101 expands or contracts depending on the amount of liquefied gas stored therein, the outside air temperature, etc. As a result, the liquefied gas tank 101 displaces relative to the associated equipment 102. For example, the dome 105 in this embodiment displaces up and down relative to the associated equipment 102. Therefore, the piping equipment 100 is provided with piping 10, 20 having expandable expansion joints 11, 21 to absorb this displacement. Details of the piping equipment 100 will be described later.
 (配管設備の全体構造)
 次に、本実施形態に係る配管設備100の全体構造を説明する。図2は、配管設備100の概略平面図である。配管設備100は、第1配管10と、第2配管20と、タンク側共通配管30と、関連設備側共通配管40と、ドリップトレイ50(図1参照)と、を備えている。以下、これらの構成要素及びこれらの構成要素に関連する構成要素について順に説明する。
(Overall structure of piping equipment)
Next, the overall structure of the piping equipment 100 according to this embodiment will be described. Fig. 2 is a schematic plan view of the piping equipment 100. The piping equipment 100 includes a first pipe 10, a second pipe 20, a tank-side common pipe 30, a related equipment-side common pipe 40, and a drip tray 50 (see Fig. 1). These components and components related to these components will be described in order below.
 <第1配管>
 第1配管10には、第1伸縮継手11を有し、液化ガスタンク101から関連設備102へ又は関連設備102から液化ガスタンク101へ低温流体を搬送する配管である。第1伸縮継手11は、外力に応じて伸縮可能であって、例えばベローズやフレキシブルホース等である。本実施形態の第1配管10は、二重配管であって、第1内管12と、第1内管12を覆う第1外管13とを含んでいる。低温流体は、このうち第1内管12内を通過し、第1内管12と第1外管13の間は真空、つまり外気圧よりも気圧が低い状態に維持されている。第1配管10を二重配管とすることで、第1内管12を通過する低温流体の温度変化を抑制できるとともに、第1配管10の表面温度が低下するのを抑制することができる。
<First piping>
The first pipe 10 has a first expansion joint 11 and is a pipe for transporting a cryogenic fluid from the liquefied gas tank 101 to the related equipment 102 or from the related equipment 102 to the liquefied gas tank 101. The first expansion joint 11 is expandable and contractible in response to an external force, and is, for example, a bellows or a flexible hose. The first pipe 10 of this embodiment is a double pipe and includes a first inner pipe 12 and a first outer pipe 13 covering the first inner pipe 12. The cryogenic fluid passes through the first inner pipe 12, and a vacuum is maintained between the first inner pipe 12 and the first outer pipe 13, that is, a state in which the air pressure is lower than the external air pressure. By making the first pipe 10 a double pipe, it is possible to suppress a temperature change of the cryogenic fluid passing through the first inner pipe 12 and to suppress a decrease in the surface temperature of the first pipe 10.
 また、第1配管10は二重配管であるため、これに対応して第1伸縮継手11も二重に形成されている。具体的には、第1伸縮継手11は、第1内管12に位置する伸縮可能な第1内継手14と、第1外管13に位置し、第1内継手14を覆う伸縮可能な第1外継手15と、を含んでいる。このうち、第1内継手14は、第1配管10の外側から見えないため、第1内継手14の損傷は目視で確認できない。 In addition, since the first piping 10 is a double pipe, the first expansion joint 11 is also formed double correspondingly. Specifically, the first expansion joint 11 includes an expandable first inner joint 14 located in the first inner pipe 12, and an expandable first outer joint 15 located in the first outer pipe 13 and covering the first inner joint 14. Of these, the first inner joint 14 is not visible from the outside of the first piping 10, so damage to the first inner joint 14 cannot be confirmed visually.
 第1内管12の第1内継手14よりも上流と下流には、一対の第1遮断弁16が位置している。以下では、第1内管12の一対の第1遮断弁16の間に位置する区間を「第1遮断区間17」と称する。一対の第1遮断弁16を閉じることで、第1内継手14が位置する第1遮断区間17を流体的に遮断することができる。 A pair of first shutoff valves 16 are located upstream and downstream of the first inner fitting 14 of the first inner pipe 12. Hereinafter, the section located between the pair of first shutoff valves 16 of the first inner pipe 12 is referred to as the "first shutoff section 17." By closing the pair of first shutoff valves 16, the first shutoff section 17 in which the first inner fitting 14 is located can be fluidically shut off.
 第1配管10には、第1温度計60が設けられている。第1温度計60は、第1内管12と第1外管13の間の温度である第1間隙温度を測定する。仮に、第1内管12が破損して、第1内管12から低温流体が漏れると、第1内管12と第1外管13の間の空気が低温流体によって冷却され、第1間隙温度が低下する。つまり、第1間隙温度を監視することで、第1内管12から低温流体が漏れたか否かを判断できる。 The first pipe 10 is provided with a first thermometer 60. The first thermometer 60 measures the first gap temperature, which is the temperature between the first inner pipe 12 and the first outer pipe 13. If the first inner pipe 12 is damaged and the cryogenic fluid leaks from the first inner pipe 12, the air between the first inner pipe 12 and the first outer pipe 13 is cooled by the cryogenic fluid, and the first gap temperature drops. In other words, by monitoring the first gap temperature, it is possible to determine whether or not the cryogenic fluid has leaked from the first inner pipe 12.
 第1内管12の第1遮断区間17には、第1ガス供給管61が接続されている。第1ガス供給管61は、第1遮断区間17へ不活性ガスを供給することができる。本実施形態の第1ガス供給管61は、不活性ガスを貯蔵する不活性ガスタンクに常時接続されている。ただし、第1ガス供給管61は、状況に応じで不活性ガスタンクに接続されてもよい。 A first gas supply pipe 61 is connected to the first isolation section 17 of the first inner pipe 12. The first gas supply pipe 61 can supply inert gas to the first isolation section 17. In this embodiment, the first gas supply pipe 61 is always connected to an inert gas tank that stores inert gas. However, the first gas supply pipe 61 may be connected to the inert gas tank depending on the situation.
 第1ガス供給管61には、第1ガス供給弁62が位置している。第1ガス供給弁62を開くことで、第1遮断区間17へ不活性ガスを供給することができる。一方、第1ガス供給弁62を閉じることで、第1遮断区間17への不活性ガスの供給を停止することができる。 A first gas supply valve 62 is located in the first gas supply pipe 61. By opening the first gas supply valve 62, inert gas can be supplied to the first isolation section 17. On the other hand, by closing the first gas supply valve 62, the supply of inert gas to the first isolation section 17 can be stopped.
 第1内管12の第1遮断区間17には、さらに第1ガス排出管63が接続されている。第1ガス排出管63は、第1遮断区間17内のガス(気化ガス及び不活性ガス)を排出することができる。本実施形態の第1ガス排出管63は、ベントマストなどガスを処理(排出も含む)する処理設備に常時接続されている。ただし、第1ガス排出管63は、状況に応じて処理設備に接続されてもよい。 A first gas exhaust pipe 63 is further connected to the first isolation section 17 of the first inner pipe 12. The first gas exhaust pipe 63 can exhaust gas (vaporized gas and inert gas) within the first isolation section 17. In this embodiment, the first gas exhaust pipe 63 is constantly connected to a treatment facility such as a vent mast that processes (including exhausting) gas. However, the first gas exhaust pipe 63 may be connected to a treatment facility depending on the situation.
 第1ガス排出管63には、第1ガス排出弁64が位置している。第1ガス排出弁64を開くことで、第1遮断区間17からガスを排出することができる。一方、第1ガス排出弁64を閉じることで、第1遮断区間17からのガスの排出を停止することができる。 A first gas exhaust valve 64 is located in the first gas exhaust pipe 63. By opening the first gas exhaust valve 64, gas can be exhausted from the first cut-off section 17. On the other hand, by closing the first gas exhaust valve 64, the exhaust of gas from the first cut-off section 17 can be stopped.
 第1内管12の第1遮断区間17には、さらに第1安全管65が接続されている。第1安全管65は、第1遮断区間17内のガス(気化ガス及び不活性ガス)を排出することができる。第1ガス排出管63は、ベントマストなどガスを処理(排出も含む)する処理設備に常時接続されている。 A first safety pipe 65 is further connected to the first cut-off section 17 of the first inner pipe 12. The first safety pipe 65 can exhaust gas (vaporized gas and inert gas) within the first cut-off section 17. The first gas exhaust pipe 63 is constantly connected to a treatment facility such as a vent mast that processes (including exhausting) the gas.
 第1安全管65には、第1安全弁66が位置している。第1安全弁66は、所定圧力以上の圧力が加わると開放するように構成されている。これにより、第1遮断区間17の内部圧力が上昇しすぎると、第1安全弁66が開放して第1遮断区間17の内部圧力が低下する。その結果、第1内管12が破損するのを防ぐことができる。 A first safety valve 66 is located in the first safety pipe 65. The first safety valve 66 is configured to open when a pressure equal to or greater than a predetermined pressure is applied. As a result, if the internal pressure of the first cutoff section 17 rises too much, the first safety valve 66 opens and the internal pressure of the first cutoff section 17 decreases. As a result, damage to the first inner pipe 12 can be prevented.
 <第2配管>
 第2配管20は、第1配管10に対して並列に位置し、第1配管10と同一の方向に同一の低温流体を搬送する配管である。例えば、第1配管10が液化ガスタンク101から関連設備102へ低温流体のうち液化ガスを搬送するときは、第2配管20も液化ガスタンク101から関連設備102へ液化ガスを搬送する。また、例えば、第1配管10が関連設備102から液化ガスタンク101へ低温流体のうち気化ガスを搬送するときは、第2配管20も関連設備102から液化ガスタンク101へ気化ガスを搬送する。図2に示すように、第1配管10と第2配管20は、基準平面99を基準として対称に位置しているとともに基準平面を基準として対称な形状を有している。なお、本実施形態における基準平面99は、液化ガスタンク101の中心を通る鉛直な平面である。第1配管10及び第2配管20をこのように構成することにより、第1配管10と第2配管20の配管抵抗を同程度とすることができる。
<Second piping>
The second pipe 20 is located in parallel to the first pipe 10 and transports the same cryogenic fluid in the same direction as the first pipe 10. For example, when the first pipe 10 transports liquefied gas from the liquefied gas tank 101 to the related equipment 102, the second pipe 20 also transports liquefied gas from the liquefied gas tank 101 to the related equipment 102. For example, when the first pipe 10 transports vaporized gas from the cryogenic fluid from the related equipment 102 to the liquefied gas tank 101, the second pipe 20 also transports vaporized gas from the related equipment 102 to the liquefied gas tank 101. As shown in FIG. 2, the first pipe 10 and the second pipe 20 are located symmetrically with respect to a reference plane 99 and have shapes symmetrical with respect to the reference plane. Note that the reference plane 99 in this embodiment is a vertical plane passing through the center of the liquefied gas tank 101. By configuring the first pipe 10 and the second pipe 20 in this manner, the pipe resistances of the first pipe 10 and the second pipe 20 can be made approximately the same.
 第2配管20は、第1配管10と基本的に同じように構成されている。図2に示す第2配管20の第2伸縮継手21、第2内管22、第2外管23、第2内継手24、第2外継手25、第2遮断弁26、及び、第2遮断区間27は、それぞれ第1配管10の第1伸縮継手11、第1内管12、第1外管13、第1内継手14、第1外継手15、第1遮断弁16、及び、第1遮断区間17に相当するため、ここでは説明を省略する。 The second pipe 20 is basically configured in the same way as the first pipe 10. The second expansion joint 21, second inner pipe 22, second outer pipe 23, second inner joint 24, second outer joint 25, second shutoff valve 26, and second shutoff section 27 of the second pipe 20 shown in FIG. 2 correspond to the first expansion joint 11, first inner pipe 12, first outer pipe 13, first inner joint 14, first outer joint 15, first shutoff valve 16, and first shutoff section 17 of the first pipe 10, respectively, and therefore will not be described here.
 同様に、第2配管20周辺の第2温度計70、第2ガス供給管71、第2ガス供給弁72、第2ガス排出管73、第2ガス排出弁74、第2安全管75、及び、第2安全弁76は、それぞれ第1配管10周辺の第1温度計60、第1ガス供給管61、第1ガス供給弁62、第1ガス排出管63、第1ガス排出弁64、第1安全管65、及び、第1安全弁66に相当するため、ここでは説明を省略する。なお、第2温度計70は、第2内管22と第2外管23の間の温度である第2間隙温度を測定する。 Similarly, the second thermometer 70, second gas supply pipe 71, second gas supply valve 72, second gas exhaust pipe 73, second gas exhaust valve 74, second safety pipe 75, and second safety valve 76 around the second pipe 20 correspond to the first thermometer 60, first gas supply pipe 61, first gas supply valve 62, first gas exhaust pipe 63, first gas exhaust valve 64, first safety pipe 65, and first safety valve 66 around the first pipe 10, respectively, and therefore will not be described here. The second thermometer 70 measures the second gap temperature, which is the temperature between the second inner pipe 22 and the second outer pipe 23.
 <タンク側共通配管>
 タンク側共通配管30は、第1配管10及び第2配管20と液化ガスタンク101との間に位置する配管である。タンク側共通配管30の一方の端部は、液化ガスタンク101に接続している。また、タンク側共通配管30の他方の端部は、第1配管10の液化ガスタンク101側の端部と第2配管20の液化ガスタンク101側の端部の両方に接続している。
<Tank side common piping>
The tank side common pipe 30 is a pipe located between the first pipe 10 and the second pipe 20 and the liquefied gas tank 101. One end of the tank side common pipe 30 is connected to the liquefied gas tank 101. The other end of the tank side common pipe 30 is connected to both the end of the first pipe 10 on the liquefied gas tank 101 side and the end of the second pipe 20 on the liquefied gas tank 101 side.
 より具体的に説明すると、本実施形態のタンク側共通配管30は、タンク側内管31と、タンク側内管31を覆うタンク側外管32とを含んでいる。このうちタンク側内管31は、一方の端部が液化ガスタンク101に接続しており、他方の端部が第1内管12と第2内管22の両方に接続している。また、タンク側外管32は、一方の端部が液化ガスタンク101に接続しており、他方の端部が第1外管13と第2外管23の両方に接続している。 More specifically, the tank side common piping 30 of this embodiment includes a tank side inner pipe 31 and a tank side outer pipe 32 that covers the tank side inner pipe 31. Of these, the tank side inner pipe 31 has one end connected to the liquefied gas tank 101 and the other end connected to both the first inner pipe 12 and the second inner pipe 22. In addition, the tank side outer pipe 32 has one end connected to the liquefied gas tank 101 and the other end connected to both the first outer pipe 13 and the second outer pipe 23.
 このように、第1配管10及び第2配管20は、タンク側共通配管30を介して液化ガスタンク101と接続している。そのため、本実施形態に係る配管設備100は、液化ガスタンク101付近における占有領域を小さくすることができる。ただし、第1配管10及び第2配管20は、タンク側共通配管30を介さずに、それぞれ液化ガスタンク101と直接接続していてもよい。 In this way, the first pipe 10 and the second pipe 20 are connected to the liquefied gas tank 101 via the tank side common pipe 30. Therefore, the piping equipment 100 according to this embodiment can reduce the area occupied near the liquefied gas tank 101. However, the first pipe 10 and the second pipe 20 may each be directly connected to the liquefied gas tank 101 without going through the tank side common pipe 30.
 <関連設備側共通配管>
 関連設備側共通配管40は、第1配管10及び第2配管20と関連設備102との間に位置する配管である。関連設備側共通配管40の一方の端部が第1配管10の関連設備102側の端部と第2配管20の関連設備102側の端部の両方に接続している。また、関連設備側共通配管40の他方の端部が関連設備102に接続している。
<Common piping for related equipment>
The related equipment side common pipe 40 is a pipe located between the first pipe 10 and the second pipe 20 and the related equipment 102. One end of the related equipment side common pipe 40 is connected to both the end of the first pipe 10 on the related equipment 102 side and the end of the second pipe 20 on the related equipment 102 side. The other end of the related equipment side common pipe 40 is connected to the related equipment 102.
 より具体的に説明すると、本実施形態の関連設備側共通配管40は、関連設備側内管41と、関連設備側内管41を覆う関連設備側外管42とを含んでいる。このうち関連設備側内管41は、一方の端部が第1内管12と第2内管22の両方に接続しており、他方の端部が関連設備102に接続している。また、関連設備側外管42は、一方の端部が第1外管13と第2外管23の両方に接続しており、他方の端部が関連設備102に接続している。 More specifically, the related equipment side common piping 40 in this embodiment includes a related equipment side inner pipe 41 and a related equipment side outer pipe 42 that covers the related equipment side inner pipe 41. Of these, the related equipment side inner pipe 41 has one end connected to both the first inner pipe 12 and the second inner pipe 22, and the other end connected to the related equipment 102. In addition, the related equipment side outer pipe 42 has one end connected to both the first outer pipe 13 and the second outer pipe 23, and the other end connected to the related equipment 102.
 このように、第1配管10及び第2配管20は、関連設備側共通配管40を介して関連設備102と接続している。そのため、本実施形態に係る配管設備100は、関連設備102付近における占有領域を小さくすることができる。ただし、第1配管10及び第2配管20は、関連設備側共通配管40を介さずに、それぞれ関連設備102と直接接続していてもよい。 In this way, the first pipe 10 and the second pipe 20 are connected to the related equipment 102 via the related equipment side common pipe 40. Therefore, the piping equipment 100 according to this embodiment can reduce the area occupied near the related equipment 102. However, the first pipe 10 and the second pipe 20 may each be directly connected to the related equipment 102 without going through the related equipment side common pipe 40.
 <ドリップトレイ>
 図1に示すように、ドリップトレイ50は、第1伸縮継手11及び第2伸縮継手21の鉛直下方に位置している。各伸縮継手11、21が破損した場合、例えば第1内継手14又は第2内継手24が破損した場合は、破損箇所周辺の空気が冷却されて、液体空気が発生する。ドリップトレイ50は、この破損箇所から落ちる液体空気を受けることができる。そのため、液体空気が上甲板104に落下することで、上甲板104が温度変形により破損するのを防ぐことができる。
<Drip tray>
As shown in Fig. 1, the drip tray 50 is located vertically below the first expansion joint 11 and the second expansion joint 21. If each expansion joint 11, 21 is damaged, for example, if the first internal joint 14 or the second internal joint 24 is damaged, the air around the damaged area is cooled and liquid air is generated. The drip tray 50 can receive the liquid air that falls from the damaged area. Therefore, it is possible to prevent the upper deck 104 from being damaged due to temperature deformation caused by the liquid air falling onto the upper deck 104.
 (配管設備の電気系の構成)
 次に、本実施形態に係る配管設備100の電気系の構成を説明する。図3は、本実施形態に係る配管設備100のブロック図である。図3に示すように、配管設備100は、制御装置90を備えている。制御装置90は、プロセッサ、揮発性メモリ、不揮発性メモリ、及び、I/Oインターフェース等を有している。制御装置90の不揮発性メモリには、後述する監視プログラム、及び、各種データが保存されており、プロセッサが各プログラムに基づき揮発性メモリを用いて演算処理を行う。
(Configuration of electrical system of piping equipment)
Next, the configuration of the electrical system of the piping equipment 100 according to this embodiment will be described. Fig. 3 is a block diagram of the piping equipment 100 according to this embodiment. As shown in Fig. 3, the piping equipment 100 includes a control device 90. The control device 90 includes a processor, a volatile memory, a non-volatile memory, an I/O interface, and the like. The non-volatile memory of the control device 90 stores a monitoring program and various data, which will be described later, and the processor performs arithmetic processing using the volatile memory based on each program.
 制御装置90は、第1温度計60及び第2温度計70と接続されており、これらの機器から受信した信号に基づいて、第1間隙温度及び第2間隙温度をそれぞれ取得することができる。さらに、制御装置90は、第1遮断弁16、第1ガス供給弁62、第1ガス排出弁64、第2遮断弁26、第2ガス供給弁72、及び、第2ガス排出弁74と電気的に接続されており、これらの弁に制御信号を送信することで、これらの弁を開閉することができる。 The control device 90 is connected to the first thermometer 60 and the second thermometer 70, and can obtain the first gap temperature and the second gap temperature, respectively, based on signals received from these devices. Furthermore, the control device 90 is electrically connected to the first shutoff valve 16, the first gas supply valve 62, the first gas exhaust valve 64, the second shutoff valve 26, the second gas supply valve 72, and the second gas exhaust valve 74, and can open and close these valves by sending control signals to these valves.
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組合せ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組合せであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。 The functions of the elements disclosed herein may be performed using circuits or processing circuits, including general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or combinations thereof, configured or programmed to perform the disclosed functions. Processors are considered processing circuits or circuits because they include transistors and other circuitry. In this disclosure, a circuit, unit, or means is hardware that performs the recited functions or hardware that is programmed to perform the recited functions. The hardware may be hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. Where the hardware is a processor, which is considered a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware and/or the processor.
 (監視プログラム)
 次に、本実施形態の監視プログラムを説明する。監視プログラムは、配管設備100における低温流体の漏れを監視し、適切な処置を施すためのプログラムである。監視プログラムは、制御装置90によって実行される。図4は、監視プログラムのフロー図である。
(Monitoring Program)
Next, a monitoring program of this embodiment will be described. The monitoring program is a program for monitoring leakage of cryogenic fluid in the piping equipment 100 and taking appropriate measures. The monitoring program is executed by the control device 90. Fig. 4 is a flow diagram of the monitoring program.
 図4に示すように、監視プログラムが開始されると、はじめに制御装置90は、第1間隙温度及び第2間隙温度を取得する(ステップS1)。第1間隙温度及び第2間隙温度は、第1温度計60及び第2温度計70から取得することができる。 As shown in FIG. 4, when the monitoring program is started, the control device 90 first acquires the first gap temperature and the second gap temperature (step S1). The first gap temperature and the second gap temperature can be acquired from the first thermometer 60 and the second thermometer 70.
 続いて、制御装置90は、ステップS1で取得した第1間隙温度が第1基準温度よりも低いか否かを判定する(ステップS2)。前述のとおり、第1内管12(特に第1内継手14)が破損して低温流体が漏れると、第1間隙温度が低下する。そのため、第1間隙温度が予め定めた第1基準温度よりも低いか否かで、第1内管12で低温流体の漏れが発生したか否かを判断することができる。 The control device 90 then determines whether the first gap temperature acquired in step S1 is lower than a first reference temperature (step S2). As described above, if the first inner pipe 12 (particularly the first inner joint 14) is damaged and the low-temperature fluid leaks, the first gap temperature drops. Therefore, it is possible to determine whether a low-temperature fluid leak has occurred in the first inner pipe 12 depending on whether the first gap temperature is lower than a predetermined first reference temperature.
 制御装置90は、ステップS2において、第1間隙温度が第1基準温度よりも低いと判定した場合(ステップS2でYES)、つまり、第1内管12で低温流体の漏れが発生したと判断した場合、一対の第1遮断弁16を閉じる(ステップS3)。第1内管12で低温流体の漏れが発生した場合、その漏れ箇所は第1内継手14である可能性が高い。本実施形態では、この第1内継手14の上流及び下流に位置する一対の第1遮断弁16を閉じ、第1内継手14が位置する第1遮断区間17を流体的に遮断する。 If the control device 90 determines in step S2 that the first gap temperature is lower than the first reference temperature (YES in step S2), that is, if it determines that a low-temperature fluid leak has occurred in the first inner pipe 12, it closes the pair of first shut-off valves 16 (step S3). If a low-temperature fluid leak has occurred in the first inner pipe 12, the leak is likely to be located in the first inner fitting 14. In this embodiment, the pair of first shut-off valves 16 located upstream and downstream of this first inner fitting 14 are closed, and the first shut-off section 17 in which the first inner fitting 14 is located is fluidly shut off.
 制御装置90は、ステップS3を実施した後、第1遮断区間17へ不活性ガスを供給する(ステップS4)。具体的には、制御装置90は、第1ガス供給弁62に制御信号を送信し、第1ガス供給弁62を開くことで、第1遮断区間17へ不活性ガスを供給する。なお、本実施形態では、制御装置90は、第1ガス供給弁62を開くのと同時に第1ガス排出弁64を開く。これにより、第1遮断区間17内の低温流体が不活性ガスに押し出され、第1ガス排出管63を介して外部に排出される。 After performing step S3, the control device 90 supplies inert gas to the first isolation section 17 (step S4). Specifically, the control device 90 sends a control signal to the first gas supply valve 62, which opens the first gas supply valve 62, thereby supplying inert gas to the first isolation section 17. Note that in this embodiment, the control device 90 opens the first gas exhaust valve 64 at the same time as opening the first gas supply valve 62. As a result, the low-temperature fluid in the first isolation section 17 is pushed out by the inert gas, which is then exhausted to the outside via the first gas exhaust pipe 63.
 制御装置90により、ステップS3、S4が実施されると、第1遮断区間17から低温流体が排出されるため、第1内継手14に対して溶接などの火花が発生するような修繕作業を実施することができる。なお、このとき第1配管10を介しての低温流体の搬送はできなくなるが、第2配管20を介しての低温流体の搬送は可能である。そのため、配管設備100における低温流体の搬送を継続できる。 When steps S3 and S4 are carried out by the control device 90, the cryogenic fluid is discharged from the first shutoff section 17, so that repair work that may generate sparks, such as welding, can be carried out on the first internal fitting 14. At this time, it is no longer possible to transport the cryogenic fluid via the first piping 10, but it is possible to transport the cryogenic fluid via the second piping 20. Therefore, the transport of the cryogenic fluid in the piping equipment 100 can continue.
 ステップS2に戻って、制御装置90は、第1間隙温度が第1基準温度よりも低くない(第1基準温度以上である)と判定した場合(ステップS2でNO)、ステップS5へ進む。ステップS5では、制御装置90は、ステップS1で取得した第2間隙温度が第2基準温度よりも低いか否かを判定する。ステップS2の場合と同様に、第2間隙温度が予め定めた第2基準温度よりも低いか否かで、第2内管22で低温流体の漏れが発生したか否かを判断することができる。 Returning to step S2, if the control device 90 determines that the first gap temperature is not lower than the first reference temperature (is equal to or higher than the first reference temperature) (NO in step S2), it proceeds to step S5. In step S5, the control device 90 determines whether the second gap temperature acquired in step S1 is lower than the second reference temperature. As in the case of step S2, whether a leak of low-temperature fluid has occurred in the second inner tube 22 can be determined depending on whether the second gap temperature is lower than the predetermined second reference temperature.
 制御装置90は、ステップS5において、第2間隙温度が第2基準温度よりも低くない(第2基準温度以上である)と判定した場合(ステップS5でNO)、ステップS1へ戻って各ステップを繰り返す。 If the control device 90 determines in step S5 that the second gap temperature is not lower than the second reference temperature (is equal to or higher than the second reference temperature) (NO in step S5), it returns to step S1 and repeats each step.
 一方、制御装置90は、ステップS5において、第2間隙温度が第2基準温度よりも低いと判定した場合(ステップS5でYES)、つまり、第2内管22で低温流体の漏れが発生したと判断した場合、一対の第2遮断弁26を閉じる(ステップS6)。これにより、第2内継手24が位置する第2遮断区間27は第2遮断弁26によって流体的に遮断される。 On the other hand, if the control device 90 determines in step S5 that the second gap temperature is lower than the second reference temperature (YES in step S5), that is, if it determines that a low-temperature fluid leak has occurred in the second inner pipe 22, it closes the pair of second shutoff valves 26 (step S6). As a result, the second shutoff section 27 in which the second inner joint 24 is located is fluidically shut off by the second shutoff valves 26.
 制御装置90は、ステップS6を実施した後、第2遮断区間27へ不活性ガスを供給する(ステップS7)。具体的には、制御装置90は、第2ガス供給弁72を開くことで、第2遮断区間27へ不活性ガスを供給する。本実施形態では、制御装置90は、第2ガス供給弁72を開くのと同時に第2ガス排出弁74を開く。これにより、第2遮断区間27内の低温流体が不活性ガスに押し出され、第2ガス排出管73を介して外部に排出される。 After performing step S6, the control device 90 supplies inert gas to the second cut-off section 27 (step S7). Specifically, the control device 90 supplies inert gas to the second cut-off section 27 by opening the second gas supply valve 72. In this embodiment, the control device 90 opens the second gas exhaust valve 74 at the same time as opening the second gas supply valve 72. This causes the low-temperature fluid in the second cut-off section 27 to be pushed out by the inert gas, which is then exhausted to the outside via the second gas exhaust pipe 73.
 制御装置90により、ステップS5、S6が実施されると、第2遮断区間27から低温流体が排出されるため、第2内継手24に対して溶接などの火花が発生するような修繕作業を実施することができる。なお、このとき第2配管20を介しての低温流体の搬送はできなくなるが、第1配管10を介しての低温流体の搬送は可能である。そのため、配管設備100における低温流体の搬送を継続できる。 When steps S5 and S6 are carried out by the control device 90, the cryogenic fluid is discharged from the second cutoff section 27, so that repair work that may generate sparks, such as welding, can be carried out on the second internal fitting 24. At this time, it is no longer possible to transport the cryogenic fluid via the second piping 20, but it is possible to transport the cryogenic fluid via the first piping 10. Therefore, the transport of the cryogenic fluid in the piping equipment 100 can continue.
 (変形例)
 以上では、制御装置90は、第1間隙温度及び第2間隙温度に基づいて、各弁を開閉する制御を行う場合について説明したが、各弁の開閉は作業者が手動で行ってもよい。各弁の開閉を手動で行う場合、制御装置90は、第1間隙温度が第1基準温度よりも低くなったとき、又は、第2間隙温度が第2基準温度よりも低くなったとき、モニターや警報装置などの機器に警報信号を出力するように構成されていてもよい。この構成によれば、作業者はモニターや警報装置などから各弁を閉じるタイミングを容易に把握することができる。
(Modification)
In the above, the control device 90 has been described as controlling the opening and closing of each valve based on the first gap temperature and the second gap temperature, but the opening and closing of each valve may be performed manually by an operator. When the opening and closing of each valve is performed manually, the control device 90 may be configured to output an alarm signal to a device such as a monitor or an alarm device when the first gap temperature becomes lower than the first reference temperature or when the second gap temperature becomes lower than the second reference temperature. With this configuration, the operator can easily grasp the timing to close each valve from the monitor, alarm device, etc.
 また、上記の監視プログラムのステップS4では、制御装置90は、第1ガス供給弁62を開くのと同時に第1ガス排出弁64を開くことで、第1遮断区間17内の低温流体は第1ガス排出管63を介して外部に排出される。ただし、第1遮断区間17内の低温流体は、第1ガス排出管63から外部に排出しなくてもよい。例えば、第1ガス供給管61を介して第1遮断区間17内の低温流体を排出してもよい。この方法によれば、第1ガス排出管63及び第1ガス排出弁64を省略することができる。同様の理由から、第2ガス排出管73及び第2ガス排出弁74も省略することができる。 In addition, in step S4 of the above monitoring program, the control device 90 opens the first gas supply valve 62 and the first gas exhaust valve 64 at the same time, so that the low-temperature fluid in the first cut-off section 17 is discharged to the outside via the first gas exhaust pipe 63. However, the low-temperature fluid in the first cut-off section 17 does not have to be discharged to the outside from the first gas exhaust pipe 63. For example, the low-temperature fluid in the first cut-off section 17 may be discharged via the first gas supply pipe 61. According to this method, the first gas exhaust pipe 63 and the first gas exhaust valve 64 can be omitted. For the same reason, the second gas exhaust pipe 73 and the second gas exhaust valve 74 can also be omitted.
 また、上述した実施形態では、制御装置90が、第1温度計60が測定した第1内管12と第1外管13の間の温度に基づいて第1内管12から低温流体が漏れたか否かを判断し、第2温度計70が測定した第2内管22と第2外管23の間の温度に基づいて第2内管22から低温流体が漏れたか否かを判断している。ただし、第1内管12から低温流体が漏れたか否か、及び、第2内管22から低温流体が漏れたか否かは、別の方法によって判断してもよい。例えば、第1内管12と第1外管13の間における圧力又は低温流体の濃度に基づいて第1内管12から低温流体が漏れたか否かを判断し、第2内管22と第2外管23の間における圧力又は低温流体の濃度に基づいて第2内管22から低温流体が漏れたか否かを判断してもよい。 In the above embodiment, the control device 90 judges whether or not the cryogenic fluid has leaked from the first inner tube 12 based on the temperature between the first inner tube 12 and the first outer tube 13 measured by the first thermometer 60, and judges whether or not the cryogenic fluid has leaked from the second inner tube 22 based on the temperature between the second inner tube 22 and the second outer tube 23 measured by the second thermometer 70. However, whether or not the cryogenic fluid has leaked from the first inner tube 12 and whether or not the cryogenic fluid has leaked from the second inner tube 22 may be judged by another method. For example, whether or not the cryogenic fluid has leaked from the first inner tube 12 may be judged based on the pressure or the concentration of the cryogenic fluid between the first inner tube 12 and the first outer tube 13, and whether or not the cryogenic fluid has leaked from the second inner tube 22 may be judged based on the pressure or the concentration of the cryogenic fluid between the second inner tube 22 and the second outer tube 23.
 (まとめ)
 本明細書で開示する第1の項目は、液化ガスを貯蔵する液化ガスタンクと関連設備とをつなぐ配管設備であって、外力に応じて伸縮可能な第1伸縮継手を有し、前記液化ガスタンクから前記関連設備へ又は前記関連設備から前記液化ガスタンクへ液化ガス又は液化ガスが気化した気化ガスである低温流体を搬送する第1配管と、外力に応じて伸縮可能な第2伸縮継手を有し、前記第1配管に対して並列に位置し、前記第1配管と同一の方向に同一の低温流体を搬送する第2配管と、を備えている、配管設備である。
(summary)
A first item disclosed in this specification is a piping system connecting a liquefied gas tank that stores liquefied gas to related equipment, the piping system comprising: a first piping having a first expansion joint that can expand and contract in response to an external force, and transporting a cryogenic fluid, which is liquefied gas or a vaporized gas obtained by vaporizing liquefied gas, from the liquefied gas tank to the related equipment or from the related equipment to the liquefied gas tank; and a second piping having a second expansion joint that can expand and contract in response to an external force, positioned in parallel to the first piping, and transporting the same cryogenic fluid in the same direction as the first piping.
 この構成によれば。第1伸縮継手が破損しても、第2配管を介して低温流体の搬送を継続することができる。また、第2伸縮継手が破損しても、第1配管を介して低温流体の搬送を継続することができる。 According to this configuration, even if the first expansion joint is damaged, the transport of the cryogenic fluid can continue through the second piping. Also, even if the second expansion joint is damaged, the transport of the cryogenic fluid can continue through the first piping.
 本明細書で開示する第2の項目は、前記第1配管は、第1内管と、前記第1内管を覆う第1外管と、を含み、前記第2配管は、第2内管と、前記第2内管を覆う第2外管と、を含み、前記第1伸縮継手は、前記第1内管に位置し外力に応じて伸縮可能な第1内継手を含み、前記第2伸縮継手は、前記第2内管に位置し外力に応じて伸縮可能な第2内継手を含み、前記第1内管の前記第1内継手よりも上流と下流に位置し、前記第1内管を流体的に遮断可能な一対の第1遮断弁と、前記第2内管の前記第2内継手よりも上流と下流に位置し、前記第2内管を流体的に遮断可能な一対の第2遮断弁と、を備えた、第1の項目に記載の配管設備である。 The second item disclosed in this specification is the piping equipment described in the first item, in which the first piping includes a first inner pipe and a first outer pipe covering the first inner pipe, the second piping includes a second inner pipe and a second outer pipe covering the second inner pipe, the first expansion joint includes a first inner joint located on the first inner pipe and capable of expanding and contracting in response to an external force, the second expansion joint includes a second inner joint located on the second inner pipe and capable of expanding and contracting in response to an external force, a pair of first shutoff valves located upstream and downstream of the first inner joint of the first inner pipe and capable of fluidically isolating the first inner pipe, and a pair of second shutoff valves located upstream and downstream of the second inner joint of the second inner pipe and capable of fluidically isolating the second inner pipe.
 この構成によれば、第1内継手が破損したときに一対の第1遮断弁を閉じれば、第1内継手からの低温流体の漏れを防ぐことができる。同様に、第2内継手が破損したときに一対の第2遮断弁を閉じれば、第1内継手からの低温流体の漏れを防ぐことができる。 With this configuration, if the pair of first shutoff valves are closed when the first internal joint is damaged, leakage of cryogenic fluid from the first internal joint can be prevented. Similarly, if the pair of second shutoff valves are closed when the second internal joint is damaged, leakage of cryogenic fluid from the first internal joint can be prevented.
 本明細書で開示する第3の項目は、前記第1内管の前記一対の第1遮断弁の間に位置する第1遮断区間に接続し、前記第1遮断区間へ不活性ガスを供給可能な第1ガス供給管と、前記第2内管の前記一対の第2遮断弁の間に位置する第2遮断区間に接続し、前記第2遮断区間へ不活性ガスを供給可能な第2ガス供給管と、を備えた、第2の項目に記載の配管設備である。 The third item disclosed in this specification is the piping equipment described in the second item, which includes a first gas supply pipe connected to a first cut-off section located between the pair of first cut-off valves of the first inner pipe and capable of supplying an inert gas to the first cut-off section, and a second gas supply pipe connected to a second cut-off section located between the pair of second cut-off valves of the second inner pipe and capable of supplying an inert gas to the second cut-off section.
 この構成によれば、第1内継手が破損したときに一対の第1遮断弁を閉じて第1遮断区間を遮断するとともに、第1ガス供給管を介して第1遮断区間に不活性ガスを供給することができる。その結果、第1内継手が位置する第1遮断区間から低温流体を排出することができ、第1内継手に対して火花が発生するような修繕作業を行うことができる。同様の理由から、第2内継手が破損したときに、第2遮断区間から低温流体を排出でき、第2内継手に対して火花が発生するような修繕作業を行うことができる。 With this configuration, when the first internal joint is damaged, the pair of first shutoff valves can be closed to shut off the first shutoff section, and inert gas can be supplied to the first shutoff section via the first gas supply pipe. As a result, low-temperature fluid can be discharged from the first shutoff section where the first internal joint is located, and repair work can be performed that generates sparks for the first internal joint. For the same reason, when the second internal joint is damaged, low-temperature fluid can be discharged from the second shutoff section, and repair work can be performed that generates sparks for the second internal joint.
 本明細書で開示する第4の項目は、前記第1内管の第1遮断区間に接続し、前記第1遮断区間内のガスを排出可能な第1ガス排出管と、前記第2内管の第2遮断区間に接続し、前記第2遮断区間内のガスを排出可能な第2ガス排出管と、を備えている、第3の項目に記載の配管設備である。 The fourth item disclosed in this specification is the piping equipment described in the third item, which includes a first gas exhaust pipe connected to a first cut-off section of the first inner pipe and capable of exhausting gas within the first cut-off section, and a second gas exhaust pipe connected to a second cut-off section of the second inner pipe and capable of exhausting gas within the second cut-off section.
 この構成によれば、第1遮断区間に不活性ガスを供給したとき、第1排出管を介して第1遮断区間の低温流体を外部に容易に排出することができる。同様に、第2遮断区間に不活性ガスを供給したとき、第2排出管を介して第2遮断区間の低温流体を外部に容易に排出することができる。 With this configuration, when inert gas is supplied to the first isolation section, the low-temperature fluid in the first isolation section can be easily discharged to the outside via the first exhaust pipe. Similarly, when inert gas is supplied to the second isolation section, the low-temperature fluid in the second isolation section can be easily discharged to the outside via the second exhaust pipe.
 本明細書で開示する第5の項目は、前記第1内管の前記一対の第1遮断弁の間に位置する第1遮断区間に接続する第1安全管と、前記第2内管の前記一対の第2遮断弁の間に位置する第2遮断区間に接続する第2安全管と、前記第1安全管に位置し所定圧力以上の圧力が加わると開放する第1安全弁と、前記第2安全管に位置し所定圧力以上の圧力が加わると開放する第2安全弁と、を備えている、第2乃至第4の項目のうちいずれか一の項目に記載の配管設備である。 The fifth item disclosed in this specification is the piping equipment described in any one of the second to fourth items, which includes a first safety pipe connected to a first shutoff section located between the pair of first shutoff valves of the first inner pipe, a second safety pipe connected to a second shutoff section located between the pair of second shutoff valves of the second inner pipe, a first safety valve located in the first safety pipe and opening when a pressure equal to or greater than a predetermined pressure is applied, and a second safety valve located in the second safety pipe and opening when a pressure equal to or greater than a predetermined pressure is applied.
 この構成によれば、第1内管及び第2内管の内部圧力の過上昇に起因する、第1内管及び第2内管の破損を防ぐことができる。 This configuration makes it possible to prevent damage to the first and second inner tubes due to an excessive increase in the internal pressure of the first and second inner tubes.
 本明細書で開示する第6の項目は、前記第1配管及び前記第2配管は、前記液化ガスタンクの中心を通る鉛直な基準平面を基準として対称に位置しているとともに前記基準平面を基準として対称な形状を有している、第1乃至第5の項目のうちいずれか一の項目に記載の配管設備である。 The sixth item disclosed in this specification is the piping equipment described in any one of the first to fifth items, in which the first pipe and the second pipe are positioned symmetrically with respect to a vertical reference plane passing through the center of the liquefied gas tank and have a symmetrical shape with respect to the reference plane.
 この構成によれば、液化ガスタンクが関連設備に対して変位しても、第1配管と第2配管の配管抵抗を同程度とすることができる。 With this configuration, even if the liquefied gas tank is displaced relative to the associated equipment, the piping resistance of the first piping and the second piping can be kept at the same level.
 本明細書で開示する第7の項目は、一方の端部が前記液化ガスタンクに接続し、他方の端部が前記第1配管の前記液化ガスタンク側の端部と前記第2配管の前記液化ガスタンク側の端部の両方に接続するタンク側共通配管を備えている、第1乃至第6の項目のうちいずれか一の項目に記載の配管設備である。 The seventh item disclosed in this specification is the piping equipment described in any one of the first to sixth items, which is provided with a tank-side common pipe having one end connected to the liquefied gas tank and the other end connected to both the end of the first pipe on the liquefied gas tank side and the end of the second pipe on the liquefied gas tank side.
 この構成によれば、液化ガスタンク付近における配管設備の占有領域を小さくすることができる。 This configuration makes it possible to reduce the area occupied by the piping equipment near the liquefied gas tank.
 本明細書で開示する第8の項目は、前記第1内管から前記低温流体が漏れたとき、又は、前記第2内管から前記低温流体が漏れたとき所定の警報信号を出力する制御装置と、を備えている、第1乃至第5の項目のうちいずれか一の項目に記載の配管設備である。 The eighth item disclosed in this specification is the piping equipment described in any one of the first to fifth items, which is equipped with a control device that outputs a predetermined alarm signal when the low-temperature fluid leaks from the first inner pipe or when the low-temperature fluid leaks from the second inner pipe.
 この構成によれば、第1内管又は第2内管で低温流体の漏れが発生したとき、例えば作業者がその発生を認知することができ、適切な対応を行うことができる。 With this configuration, when a cryogenic fluid leak occurs in the first or second inner pipe, for example, an operator can recognize the occurrence and take appropriate action.
 本明細書で開示する第9の項目は、前記第1内管から前記低温流体が漏れたとき前記一対の第1遮断弁を閉じ、前記第2内管から前記低温流体が漏れたとき前記一対の第2遮断弁を閉じる制御装置と、を備えている、第2乃至第5の項目のうちいずれか一の項目に記載の配管設備である。 The ninth item disclosed in this specification is the piping equipment described in any one of the second to fifth items, which is equipped with a control device that closes the pair of first shutoff valves when the low-temperature fluid leaks from the first inner pipe, and closes the pair of second shutoff valves when the low-temperature fluid leaks from the second inner pipe.
 この構成によれば、第1内継手又は第2内継手が破損して低温流体の漏れが発生したとき、自動で一対の第1遮断弁又は一対の第2遮断弁を閉じるため、第1内継手又は第2内継手からの低温流体の漏れを抑制することができる。  With this configuration, when the first or second internal joint is damaged and a cryogenic fluid leaks, the pair of first shutoff valves or the pair of second shutoff valves are automatically closed, thereby preventing the cryogenic fluid from leaking from the first or second internal joint.
 本明細書で開示する第10の項目は、請求項2に記載の配管設備の制御方法であって、前記第1内管から前記低温流体が漏れたとき前記一対の第1遮断弁を閉じ、前記第2内管から前記低温流体が漏れたとき前記一対の第2遮断弁を閉じる、配管設備の制御方法である。 The tenth item disclosed in this specification is a method for controlling piping equipment as described in claim 2, which closes the pair of first shutoff valves when the cryogenic fluid leaks from the first inner pipe, and closes the pair of second shutoff valves when the cryogenic fluid leaks from the second inner pipe.
 この方法によれば、第1内継手又は第2内継手が破損して低温流体の漏れが発生したとき、一対の第1遮断弁又は一対の第2遮断弁を閉じるため、第1内継手又は第2内継手からの低温流体の漏れを抑制することができる。  With this method, when the first or second internal joint is damaged and a cryogenic fluid leaks, the pair of first shutoff valves or the pair of second shutoff valves are closed, thereby preventing the cryogenic fluid from leaking from the first or second internal joint.
 本明細書で開示する第11の項目は、第3乃至第5の項目のうちいずれか一の項目に記載の配管設備の制御方法であって、前記第1内管から前記低温流体が漏れたとき、前記一対の第1遮断弁を閉じるとともに前記第1ガス供給管を介して前記第1遮断区間へ不活性ガスを供給し、前記第2内管から前記低温流体が漏れたとき、前記一対の第2遮断弁を閉じるとともに前記第2ガス供給管を介して前記第2遮断区間へ不活性ガスを供給する、配管設備の制御方法である。 The eleventh item disclosed in this specification is a control method for piping equipment described in any one of the third to fifth items, in which, when the cryogenic fluid leaks from the first inner pipe, the pair of first shutoff valves are closed and an inert gas is supplied to the first shutoff section via the first gas supply pipe, and, when the cryogenic fluid leaks from the second inner pipe, the pair of second shutoff valves are closed and an inert gas is supplied to the second shutoff section via the second gas supply pipe.
 この方法によれば、第1内継手が破損して低温流体の漏れが発生したとき、第1内継手が位置する第1遮断区間から低温流体を排出することができ、第1内継手に対して火花が発生するような修繕作業を行うことができる。同様に、第2内継手が破損して低温流体の漏れが発生したとき、第2内継手が位置する第2遮断区間から低温流体を排出することができ、第2内継手に対して火花が発生するような修繕作業を行うことができる。  According to this method, when the first internal joint is damaged and a cryogenic fluid leaks, the cryogenic fluid can be discharged from the first blocking section where the first internal joint is located, and repair work can be performed that generates sparks for the first internal joint. Similarly, when the second internal joint is damaged and a cryogenic fluid leaks, the cryogenic fluid can be discharged from the second blocking section where the second internal joint is located, and repair work can be performed that generates sparks for the second internal joint.
10 第1配管
11 第1伸縮継手
12 第1内管
13 第1外管
14 第1内継手
15 第1外継手
16 第1遮断弁
17 第1遮断区間
20 第2配管
21 第2伸縮継手
22 第2内管
23 第2外管
24 第2内継手
25 第2外継手
26 第2遮断弁
27 第2遮断区間
30 タンク側共通配管
50 ドリップトレイ
60 第1温度計
61 第1ガス供給管
63 第1ガス排出管
65 第1安全管
66 第1安全弁
70 第2温度計
71 第1ガス供給管
73 第2ガス排出管
75 第2安全管
76 第2安全弁
90 制御装置
99 基準平面
100 配管設備
101 液化ガスタンク
102 関連設備
 
10 First pipe 11 First expansion joint 12 First inner pipe 13 First outer pipe 14 First inner joint 15 First outer joint 16 First shutoff valve 17 First shutoff section 20 Second pipe 21 Second expansion joint 22 Second inner pipe 23 Second outer pipe 24 Second inner joint 25 Second outer joint 26 Second shutoff valve 27 Second shutoff section 30 Tank side common pipe 50 Drip tray 60 First thermometer 61 First gas supply pipe 63 First gas exhaust pipe 65 First safety pipe 66 First safety valve 70 Second thermometer 71 First gas supply pipe 73 Second gas exhaust pipe 75 Second safety pipe 76 Second safety valve 90 Control device 99 Reference plane 100 Piping equipment 101 Liquefied gas tank 102 Related equipment

Claims (11)

  1.  液化ガスを貯蔵する液化ガスタンクと関連設備とをつなぐ配管設備であって、
     外力に応じて伸縮可能な第1伸縮継手を有し、前記液化ガスタンクから前記関連設備へ又は前記関連設備から前記液化ガスタンクへ液化ガス又は液化ガスが気化した気化ガスである低温流体を搬送する第1配管と、
     外力に応じて伸縮可能な第2伸縮継手を有し、前記第1配管に対して並列に位置し、前記第1配管と同一の方向に同一の低温流体を搬送する第2配管と、を備えている、配管設備。
    A piping system that connects a liquefied gas tank that stores liquefied gas to related equipment,
    A first pipe having a first expansion joint that can expand and contract in response to an external force, and transporting a cryogenic fluid that is a liquefied gas or a vaporized gas obtained by vaporizing the liquefied gas from the liquefied gas tank to the related equipment or from the related equipment to the liquefied gas tank;
    a second piping having a second expansion joint that can expand and contract in response to an external force, the second piping being positioned in parallel to the first piping and transporting the same cryogenic fluid in the same direction as the first piping.
  2.  前記第1配管は、第1内管と、前記第1内管を覆う第1外管と、を含み、
     前記第2配管は、第2内管と、前記第2内管を覆う第2外管と、を含み、
     前記第1伸縮継手は、前記第1内管に位置し外力に応じて伸縮可能な第1内継手を含み、
     前記第2伸縮継手は、前記第2内管に位置し外力に応じて伸縮可能な第2内継手を含み、
     前記第1内管の前記第1内継手よりも上流と下流に位置し、前記第1内管を流体的に遮断可能な一対の第1遮断弁と、
     前記第2内管の前記第2内継手よりも上流と下流に位置し、前記第2内管を流体的に遮断可能な一対の第2遮断弁と、を備えた、請求項1に記載の配管設備。
    the first piping includes a first inner pipe and a first outer pipe covering the first inner pipe,
    the second piping includes a second inner pipe and a second outer pipe covering the second inner pipe,
    The first expansion joint includes a first inner joint located in the first inner pipe and capable of expanding and contracting in response to an external force,
    The second expansion joint includes a second inner joint located in the second inner pipe and capable of expanding and contracting in response to an external force,
    a pair of first shutoff valves located upstream and downstream of the first inner joint of the first inner pipe and capable of fluidly shutting off the first inner pipe;
    The piping equipment according to claim 1 , further comprising: a pair of second shutoff valves located upstream and downstream of the second inner joint of the second inner pipe and capable of fluidly shutting off the second inner pipe.
  3.  前記第1内管の前記一対の第1遮断弁の間に位置する第1遮断区間に接続し、前記第1遮断区間へ不活性ガスを供給可能な第1ガス供給管と、
     前記第2内管の前記一対の第2遮断弁の間に位置する第2遮断区間に接続し、前記第2遮断区間へ不活性ガスを供給可能な第2ガス供給管と、を備えた、請求項2に記載の配管設備。
    a first gas supply pipe connected to a first isolation section located between the pair of first isolation valves of the first inner pipe and capable of supplying an inert gas to the first isolation section;
    3. The piping equipment according to claim 2, further comprising: a second gas supply pipe connected to a second isolation section located between the pair of second isolation valves of the second inner pipe and capable of supplying an inert gas to the second isolation section.
  4.  前記第1内管の第1遮断区間に接続し、前記第1遮断区間内のガスを排出可能な第1ガス排出管と、
     前記第2内管の第2遮断区間に接続し、前記第2遮断区間内のガスを排出可能な第2ガス排出管と、を備えている、請求項3に記載の配管設備。
    a first gas exhaust pipe connected to a first cut-off section of the first inner pipe and capable of exhausting gas within the first cut-off section;
    The piping equipment according to claim 3 , further comprising: a second gas exhaust pipe connected to a second blocked section of the second inner pipe and capable of exhausting gas within the second blocked section.
  5.  前記第1内管の前記一対の第1遮断弁の間に位置する第1遮断区間に接続する第1安全管と、
     前記第2内管の前記一対の第2遮断弁の間に位置する第2遮断区間に接続する第2安全管と、
     前記第1安全管に位置し所定圧力以上の圧力が加わると開放する第1安全弁と、
     前記第2安全管に位置し所定圧力以上の圧力が加わると開放する第2安全弁と、を備えている、請求項2に記載の配管設備。
    a first safety pipe connected to a first shutoff section located between the pair of first shutoff valves of the first inner pipe;
    a second safety pipe connected to a second shutoff section located between the pair of second shutoff valves of the second inner pipe;
    a first safety valve located in the first safety pipe and opening when a pressure equal to or greater than a predetermined pressure is applied;
    3. The piping equipment according to claim 2, further comprising: a second safety valve located in the second safety pipe and opening when a pressure equal to or greater than a predetermined pressure is applied.
  6.  前記第1配管及び前記第2配管は、前記液化ガスタンクの中心を通る鉛直な基準平面を基準として対称に位置しているとともに前記基準平面を基準として対称な形状を有している、請求項1に記載の配管設備。 The piping equipment according to claim 1, wherein the first pipe and the second pipe are positioned symmetrically with respect to a vertical reference plane passing through the center of the liquefied gas tank and have a symmetric shape with respect to the reference plane.
  7.  一方の端部が前記液化ガスタンクに接続し、他方の端部が前記第1配管の前記液化ガスタンク側の端部と前記第2配管の前記液化ガスタンク側の端部の両方に接続するタンク側共通配管を備えている、請求項1に記載の配管設備。 The piping equipment according to claim 1, further comprising a tank-side common pipe having one end connected to the liquefied gas tank and the other end connected to both the end of the first pipe on the liquefied gas tank side and the end of the second pipe on the liquefied gas tank side.
  8.  前記第1内管から前記低温流体が漏れたとき、又は、前記第2内管から前記低温流体が漏れたとき所定の警報信号を出力する制御装置と、を備えている、請求項1に記載の配管設備。 The piping equipment according to claim 1, further comprising a control device that outputs a predetermined alarm signal when the low-temperature fluid leaks from the first inner pipe or when the low-temperature fluid leaks from the second inner pipe.
  9.  前記第1内管から前記低温流体が漏れたとき前記一対の第1遮断弁を閉じ、前記第2内管から前記低温流体が漏れたとき前記一対の第2遮断弁を閉じる制御装置と、を備えている、請求項2に記載の配管設備。 The piping equipment according to claim 2, further comprising a control device that closes the pair of first shutoff valves when the low-temperature fluid leaks from the first inner pipe, and closes the pair of second shutoff valves when the low-temperature fluid leaks from the second inner pipe.
  10.  請求項2に記載の配管設備の制御方法であって、
     前記第1内管から前記低温流体が漏れたとき前記一対の第1遮断弁を閉じ、
     前記第2内管から前記低温流体が漏れたとき前記一対の第2遮断弁を閉じる、配管設備の制御方法。
    The method for controlling piping equipment according to claim 2,
    closing the pair of first shutoff valves when the cryogenic fluid leaks from the first inner pipe;
    and closing the pair of second shutoff valves when the cryogenic fluid leaks from the second inner pipe.
  11.  請求項3に記載の配管設備の制御方法であって、
     前記第1内管から前記低温流体が漏れたとき、前記一対の第1遮断弁を閉じるとともに前記第1ガス供給管を介して前記第1遮断区間へ不活性ガスを供給し、
     前記第2内管から前記低温流体が漏れたとき、前記一対の第2遮断弁を閉じるとともに前記第2ガス供給管を介して前記第2遮断区間へ不活性ガスを供給する、配管設備の制御方法。
     
    The method for controlling piping equipment according to claim 3,
    when the cryogenic fluid leaks from the first inner pipe, the pair of first shutoff valves are closed and an inert gas is supplied to the first shutoff section via the first gas supply pipe;
    a second gas supply pipe for supplying an inert gas to the second shutoff section via the second gas supply pipe when the cryogenic fluid leaks from the second inner pipe;
PCT/JP2022/045633 2022-12-12 2022-12-12 Piping equipment and piping equipment control method WO2024127451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/045633 WO2024127451A1 (en) 2022-12-12 2022-12-12 Piping equipment and piping equipment control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/045633 WO2024127451A1 (en) 2022-12-12 2022-12-12 Piping equipment and piping equipment control method

Publications (1)

Publication Number Publication Date
WO2024127451A1 true WO2024127451A1 (en) 2024-06-20

Family

ID=91484580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045633 WO2024127451A1 (en) 2022-12-12 2022-12-12 Piping equipment and piping equipment control method

Country Status (1)

Country Link
WO (1) WO2024127451A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120026756A (en) * 2010-09-10 2012-03-20 삼성중공업 주식회사 Fluid cargo distributor for loading arm
JP2016075306A (en) * 2014-10-03 2016-05-12 川崎重工業株式会社 Liquefaction hydrogen transfer system
JP2017019552A (en) * 2015-07-15 2017-01-26 川崎重工業株式会社 Liquid hydrogen loading arm and liquid hydrogen transferring method
KR102111473B1 (en) * 2019-08-09 2020-05-15 (주)앤써 A vacuum insulated pipe
US20200189692A1 (en) * 2017-09-06 2020-06-18 Connect Lng As A process system and a fluid transfer system comprising such a process system
WO2022080348A1 (en) * 2020-10-14 2022-04-21 川崎重工業株式会社 Heat-insulating double-pipe unit for liquefied gas, and liquefied gas storage vessel comprising same
WO2022138721A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen, and emergency disengagement method
WO2022138628A1 (en) * 2020-12-24 2022-06-30 川崎重工業株式会社 Vacuum insulated pipe unit for liquefied gas and method for detecting damage in vacuum insulated pipe for liquefied gas
JP2022103512A (en) * 2020-12-28 2022-07-08 川崎重工業株式会社 Vessel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120026756A (en) * 2010-09-10 2012-03-20 삼성중공업 주식회사 Fluid cargo distributor for loading arm
JP2016075306A (en) * 2014-10-03 2016-05-12 川崎重工業株式会社 Liquefaction hydrogen transfer system
JP2017019552A (en) * 2015-07-15 2017-01-26 川崎重工業株式会社 Liquid hydrogen loading arm and liquid hydrogen transferring method
US20200189692A1 (en) * 2017-09-06 2020-06-18 Connect Lng As A process system and a fluid transfer system comprising such a process system
KR102111473B1 (en) * 2019-08-09 2020-05-15 (주)앤써 A vacuum insulated pipe
WO2022080348A1 (en) * 2020-10-14 2022-04-21 川崎重工業株式会社 Heat-insulating double-pipe unit for liquefied gas, and liquefied gas storage vessel comprising same
WO2022138628A1 (en) * 2020-12-24 2022-06-30 川崎重工業株式会社 Vacuum insulated pipe unit for liquefied gas and method for detecting damage in vacuum insulated pipe for liquefied gas
WO2022138721A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen, and emergency disengagement method
JP2022103512A (en) * 2020-12-28 2022-07-08 川崎重工業株式会社 Vessel

Similar Documents

Publication Publication Date Title
AU2006254686B2 (en) Storage tank for a cryogenic liquid and method of re-filling same
AU2015325623A1 (en) Liquefied hydrogen transport system
KR20150137812A (en) Fuel gas supplying appratus for ship and fuel gas supplying method for ship
WO2024127451A1 (en) Piping equipment and piping equipment control method
EP2268950B1 (en) Double pipe apparatus
US11441738B2 (en) Pressure vessel system for a motor vehicle
US20240052977A1 (en) Portable cargo handling equipment for liquid hydrogen and emergency release method
BR112020009784B1 (en) AN INTERNAL SAFETY DEVICE, A LIQUEFIED FUEL GAS SYSTEM, AND A VEHICLE
JP2009079600A (en) Natural gas feeder
EP3321552B1 (en) Emergency release device for fluid loading/unloading apparatus
JPH09178096A (en) Disaster corresponding type lp gas vessel valve
JP2014173661A (en) Liquefaction gas supply connection mechanism
JP5635813B2 (en) Check valve with built-in liquid seal prevention mechanism
WO2022138628A1 (en) Vacuum insulated pipe unit for liquefied gas and method for detecting damage in vacuum insulated pipe for liquefied gas
KR20120136326A (en) Gas passage way structure and liquefied natural gas storage tank having the same
US20210270213A1 (en) Leakage Diagnosis Device for Fuel Vapor Processing Apparatus
JP4038647B2 (en) Liquefied gas supply device
EP3682101A1 (en) A gaseous fuel feeding system and a valve
KR101875089B1 (en) Abnormal pressure protection apparatus for flng storage
FR3078133A1 (en) DILATATION COMPENSATOR FOR CONDUITS WITH EMERGENCY ASSEMBLY AND CORRESPONDING METHOD.
JPH06235354A (en) Trouble diagnosing device for evaporated fuel dispersion preventing device and protecting device for evaporated fuel feeding system
WO2024154181A1 (en) Liquefied hydrogen facility
KR20130119368A (en) Pressure adjustment system for cryostat
US20240229937A9 (en) Safety valves, vehicles and fueling stations including the same, and related methods
KR102119380B1 (en) fault diagnosis method of evaporation gas active purge system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22968363

Country of ref document: EP

Kind code of ref document: A1