Nothing Special   »   [go: up one dir, main page]

WO2024125560A1 - 一种薄膜光伏串联组件及其制备方法 - Google Patents

一种薄膜光伏串联组件及其制备方法 Download PDF

Info

Publication number
WO2024125560A1
WO2024125560A1 PCT/CN2023/138501 CN2023138501W WO2024125560A1 WO 2024125560 A1 WO2024125560 A1 WO 2024125560A1 CN 2023138501 W CN2023138501 W CN 2023138501W WO 2024125560 A1 WO2024125560 A1 WO 2024125560A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
transport layer
thin
electron transport
hole transport
Prior art date
Application number
PCT/CN2023/138501
Other languages
English (en)
French (fr)
Inventor
李美珍
Original Assignee
李美珍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李美珍 filed Critical 李美珍
Publication of WO2024125560A1 publication Critical patent/WO2024125560A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to the field of semiconductor technology, and in particular relates to a thin-film photovoltaic series assembly and a preparation method thereof.
  • organic-inorganic hybrid perovskite cells PSCs
  • organic solar cells OLEDs
  • polymer solar cells PLCs
  • advantages such as low cost, easy manufacturing, low carbon emissions during the production process, and the ability to be made into flexible devices are unmatched by crystalline silicon cells.
  • organic-inorganic hybrid perovskite cells are widely considered to be the next generation of thin-film photovoltaic cells that are most likely to replace crystalline silicon cells.
  • the new generation of thin-film photovoltaic cell devices containing organic materials, represented by perovskite solar cells, can be mainly divided into two categories, namely the conventional structure (n-i-p) and the inverted structure (p-i-n).
  • the absorption layer (i) is sandwiched by the charge transport layer to form a sandwich structure.
  • n is the electron transport layer (ETL for short)
  • p is the hole transport layer (HTL for short).
  • Some structures omit the p or n layer and use electrodes instead or dope the absorption layer (i) with p or n type.
  • the electrode deposition process is usually evaporation and magnetron sputtering, which is used to connect the back electrode of the subcell (which can be called electrode B) and the top electrode of the adjacent subcell (which can be called electrode A). This is a mature interconnection or series connection method that is widely used.
  • the defects of this interconnection or series connection method include: 1) The area of the dead zone usually accounts for about 5% or more of the total power generation area, and the geometric fill factor (GFF) of the component will not exceed 95.5% (see reference: SH Reddy, F. Di Giacomo, and A. Di Carlo, "Low-Temperature-Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review,” Adv. Energy Mater., vol. 12, no. 13, pp.
  • Evaporation and magnetron sputtering are non-conformal deposition processes, so the sidewalls of the cell material that are (laser) cut cannot be effectively covered by the electrode layer, resulting in a large series resistance (reduced component fill factor/efficiency); while conformal deposition processes such as atomic layer deposition (ALD) are too expensive and can damage device materials; 3) If the area where the back electrode layer contacts the top electrode layer is too small, it will result in a large contact resistance (resulting in a decrease in component fill factor/efficiency), while if it is too large, it will increase the dead zone area; 4) The sidewalls of the cell material that are (laser) etched will affect the stability of the device (see reference: E.Bi et al., “Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers,” Joule, vol.3, no.11,
  • the FF of high-efficiency small-area ( ⁇ 1 cm 2 ) cells in the prior art is 82-86%.
  • the FF is often only 70-80% (see references: Y. Ding et al., "Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules," Nat. Nanotechnol., vol. 17, no. 6, pp. 598–605, 2022, doi: 10.1038/s41565-022-01108-1.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a thin-film photovoltaic series module and a preparation method thereof.
  • the thin-film photovoltaic series module of the present invention reduces the dead zone to less than 1% of the power generation area through a new series connection method, and correspondingly increases the GFF (geometric fill factor) of the thin-film photovoltaic series module to more than 99%, thereby proportionally improving the efficiency of the thin-film photovoltaic series module; avoiding the exposure of the side wall of the battery material and increasing the stability; eliminating the high series resistance loss of the side wall and the contact resistance loss of the back electrode contacting the top electrode, and eliminating the loss of the fill factor (FF) and efficiency caused by this.
  • FF fill factor
  • the thin-film photovoltaic series assembly of the present invention is a plurality of sub-cells (the sub-cells are composed of From bottom to top, it includes a substrate, an electrode A, an absorption layer, and an electrode B in sequence, and the electrode A corresponds to two electrodes B that are not connected to each other, and the electrode B corresponds to two electrodes A that are not connected to each other) connected in series through the staggered correspondence of electrodes A and electrodes B (because in the sub-battery, the electrode A corresponds to two electrodes B that are not connected to each other, and the electrode B corresponds to two electrodes A that are not connected to each other, so the electrodes A and electrodes B form a staggered correspondence relationship).
  • the thin-film photovoltaic series assembly of the present invention reduces the dead zone to less than 1% of the power generation area, and correspondingly increases the GFF (geometric fill factor) of the thin-film photovoltaic series assembly to more than 99%, thereby proportionally improving the efficiency of the thin-film photovoltaic series assembly; avoiding the exposure of the side wall of the battery material, increasing stability; eliminating the high series resistance loss of the side wall and the contact resistance loss of the back electrode (electrode B) contacting the top electrode (electrode A), eliminating the fill factor (FF) and efficiency loss caused by this.
  • the preparation method of the thin-film photovoltaic series assembly reduces the etching process and reduces the manufacturing cost.
  • a first aspect of the present invention provides a thin-film photovoltaic series module.
  • a thin-film photovoltaic series assembly the thin-film photovoltaic series assembly is composed of a plurality of sub-cells;
  • the sub-battery includes, from bottom to top, a substrate, an electrode A, an absorption layer, and an electrode B, and corresponding to the electrode A are two electrodes B that are not connected to each other, and corresponding to the electrode B are two electrodes A that are not connected to each other.
  • an electron transport layer and a hole transport layer are further provided between the electrode A and the absorption layer.
  • the electron transport layer and the hole transport layer between the electrode A and the absorption layer can be selectively provided as required.
  • a hole transport layer and an electron transport layer are further provided between the electrode B and the absorption layer.
  • the hole transport layer and the electron transport layer between the electrode B and the absorption layer can be selectively provided as required.
  • an electron transport layer and a hole transport layer are further arranged between the electrode A and the absorption layer, and a hole transport layer and an electron transport layer are further arranged between the electrode B and the absorption layer.
  • the corresponding positions on the upper and lower sides of the absorption layer are the electron transport layer and the hole transport layer (that is, the hole transport layer between the electrode B and the absorption layer corresponds to the electron transport layer position between the electrode A and the absorption layer, and the electron transport layer between the electrode B and the absorption layer corresponds to the hole transport layer position between the electrode A and the absorption layer).
  • the current can flow in from the electrode B of a sub-battery, pass through the electron transport layer, absorption layer, hole transport layer, and electrode A under the electrode B in sequence, and then flow from electrode A into the adjacent sub-battery of the common electrode A, and the current continues to flow from the electrode A of the adjacent sub-battery of the common electrode A into the electron transport layer, absorption layer, hole transport layer, and electrode B in sequence. Then the current flows from electrode B into the adjacent sub-battery of the common electrode B, and each sub-battery is connected in series in this way.
  • the thin-film photovoltaic series assembly is a solar cell assembly.
  • the solar cell module includes at least one of a perovskite solar cell module, an organic solar cell module, a polymer solar cell module, and a cadmium telluride solar cell module.
  • the number of sub-cells is n, where n is a positive integer (eg, an even number), for example, n is 2-10.
  • the substrate comprises glass, metal or organic matter.
  • the substrate may be replaced by a cover plate.
  • the electrode A is a conductive oxide or a conductive organic material, such as indium-doped tin oxide (ITO).
  • ITO indium-doped tin oxide
  • the thickness of the electrode A is 10 nm-1 ⁇ m; further preferably, the thickness of the electrode A is 200-600 nm.
  • the electron transport layer comprises at least one of tin oxide, C 60 and 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (CAS No.: 4733-39-5).
  • the compositions of the electron transport layer between electrode A and the absorption layer and the electron transport layer between electrode B and the absorption layer may be the same or different.
  • the hole transport layer comprises at least one of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (CAS No.: 1333317-99-9), poly(3-hexylthiophene-2,5-diyl) (CAS No.: 156074-98-5, 104934-50-1) and nickel oxide.
  • the thickness of the electron transport layer is 1-200 nm, preferably 10-100 nm.
  • the thickness of the hole transport layer is 1-200 nm, preferably 10-100 nm.
  • the absorption layer is at least one of a perovskite absorption layer, an organic absorption layer, a polymer absorption layer and a cadmium telluride absorption layer, for example, a Cs 0.17 FA 0.83 PbI 3 absorption layer.
  • the absorption layer has a thickness of 100-2000 nm, preferably 300-700 nm.
  • the electrode B is a conductive oxide or metal, such as indium tin oxide (ITO), gold, silver or copper.
  • ITO indium tin oxide
  • the thickness of the electrode B is 10 nm-1 ⁇ m, preferably 50-200 nm.
  • the dead area of the thin-film photovoltaic series module is reduced to less than 1% of the power generation area.
  • the GFF (geometric fill factor) of the thin-film photovoltaic series module is increased to more than 99%.
  • a second aspect of the present invention provides a method for preparing a thin-film photovoltaic series module.
  • a method for preparing a thin-film photovoltaic tandem module comprises the following steps:
  • the electrode B is divided into blocks to obtain the thin-film photovoltaic series module.
  • the deposition method includes at least one of evaporation, sputtering, atomic layer deposition (ALD), vapor deposition (CVD), remote plasma deposition, printing, and spraying.
  • ALD atomic layer deposition
  • CVD vapor deposition
  • remote plasma deposition printing, and spraying.
  • the electrode may be a transparent or opaque electrode, such as indium-doped tin oxide (ITO).
  • ITO indium-doped tin oxide
  • the method of dividing the electrode A into blocks comprises at least one of laser ablation, probe scribing, and photolithography.
  • a mask plate shielding method is adopted to form a block electrode A, and the electrode A does not need to be separately blocked.
  • the method for preparing the absorption layer includes at least one of evaporation, sputtering, atomic layer deposition (ALD), vapor deposition (CVD), remote plasma deposition, printing, and spraying.
  • ALD atomic layer deposition
  • CVD vapor deposition
  • remote plasma deposition printing, and spraying.
  • Different absorption layers can be deposited on the electron and hole transport layers on the electrode A, or the same absorption layer can be deposited.
  • the method of depositing electrode B includes at least one of evaporation, sputtering, atomic layer deposition (ALD), vapor deposition (CVD), remote plasma deposition, printing, and spraying.
  • ALD atomic layer deposition
  • CVD vapor deposition
  • remote plasma deposition printing, and spraying.
  • the method of dividing the electrode B into blocks includes at least one of laser ablation, probe scribing, photolithography or mask covering.
  • a mask plate shielding method is used to form a block electrode B, so that there is no need to separately block the electrode B.
  • the block electrode B corresponds to the block electrode A in an alternating manner.
  • the block electrode B and the block electrode A have the same size.
  • an electron transport layer is deposited on the electrode A, and a hole transport layer is deposited on the electrode A of another adjacent but unconnected segment.
  • the electron transport layer and the hole transport layer are staggered to cover all the segmented electrodes A.
  • the electron transport layer and the hole transport layer may be deposited simultaneously or at different times.
  • the hole transport layer and the electron transport layer are first deposited on the absorption layer.
  • the hole transport layer and the electron transport layer are arranged alternately, and the hole transport layer deposited on the absorption layer corresponds to the electron transport layer on the electrode A, and the electron transport layer deposited on the absorption layer corresponds to the hole transport layer on the electrode A.
  • the electron transport layer and the hole transport layer are deposited simultaneously.
  • a method for preparing a thin-film photovoltaic tandem module comprises the following steps:
  • step (4) depositing a hole transport layer and an electron transport layer on the absorption layer of step (4), so that the hole transport layer and the electron transport layer are arranged alternately, and the hole transport layer deposited on the absorption layer corresponds to the electron transport layer on electrode A, and the electron transport layer deposited on the absorption layer corresponds to the hole transport layer on electrode A;
  • Step (6) depositing electrode B, and dividing electrode B into blocks to obtain the thin film photovoltaic series module. Step (6) realizes that the hole transport layer and the electron transport layer are alternately located under electrode B.
  • the hole transport layer under electrode B corresponds to the electron transport layer on electrode A
  • the electron transport layer under electrode B corresponds to the hole transport layer on electrode A.
  • the electron transport layer can be deposited by first applying a tape, then the tape is removed, and the electron transport layer is shielded by a mask plate before the hole transport layer is deposited, and the block formation of the electrode A in step (2) can be performed after step (3) is completed.
  • the interval between two adjacent but unconnected block electrodes A is 5-60 ⁇ m, preferably 20-30 ⁇ m.
  • an absorption layer precursor solution is first prepared, and then the absorption layer precursor solution is deposited or coated on the electron transport layer and the hole transport layer in step (3) to form the absorption layer.
  • a method for preparing a thin-film photovoltaic tandem module comprises the following steps:
  • ITO indium-doped tin oxide
  • the electrode A on the glass substrate is divided into blocks, the width of each block formed is 0.8-1.2 cm, and the etching width is 20-60 ⁇ m;
  • step (7) the line width of the center line is 20-30 ⁇ m.
  • the purpose of step (7) is to form a block electrode B.
  • the line width of the two long sides of the glass substrate covered by the mask plate is 0.3-0.5 cm, and the line width of the short side is 0.5-1 cm.
  • the thin-film photovoltaic series assembly of the present invention is to connect multiple sub-cells (the sub-cells, from bottom to top, sequentially include a substrate, an electrode A, an absorption layer, and an electrode B, and the corresponding to the electrode A are two electrodes B that are not connected to each other, and the corresponding to the electrode B are two electrodes A that are not connected to each other) in series through the staggered correspondence of electrodes A and electrodes B. Further, an electron transport layer and a hole transport layer are also arranged between the electrode A and the absorption layer, and a hole transport layer and an electron transport layer are also arranged between the electrode B and the absorption layer.
  • the thin-film photovoltaic series assembly of the present invention reduces the dead zone to less than 1% of the power generation area, and correspondingly increases the GFF (geometric filling factor) of the thin-film photovoltaic series assembly to more than 99%, thereby proportionally improving the efficiency of the thin-film photovoltaic series assembly; avoiding the exposure of the side wall of the battery material, increasing stability; eliminating the high series resistance loss of the side wall, and the contact resistance loss of the back electrode (electrode B) contacting the top electrode (electrode A), eliminating the loss of filling factor (FF) and efficiency caused by this.
  • the preparation method of the thin-film photovoltaic series assembly reduces the etching process and reduces the manufacturing cost.
  • FIG1 is a schematic diagram of the structure of a thin-film photovoltaic series module prepared in Example 1 of the present invention.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial sources, or It can be obtained by existing known methods.
  • a thin-film photovoltaic series assembly consisting of 6 sub-cells;
  • the sub-cell includes, from bottom to top, a substrate, an electrode A, an absorption layer, and an electrode B, and corresponding to the electrode A are two electrodes B that are not connected to each other, and corresponding to the electrode B are two electrodes A that are not connected to each other;
  • An electron transport layer and a hole transport layer are also provided between electrode A and the absorption layer, and a hole transport layer and an electron transport layer are also provided between electrode B and the absorption layer.
  • the electron transport layer and the hole transport layer are provided at the corresponding positions on the upper and lower sides of the absorption layer. Then the current can flow in from electrode B of a sub-battery, pass through the electron transport layer, absorption layer, hole transport layer, and electrode A under electrode B in sequence, and then flow from electrode A into the adjacent sub-battery sharing electrode A.
  • the current continues to flow from electrode A of the adjacent sub-battery sharing electrode A into the electron transport layer, absorption layer, hole transport layer, and electrode B in sequence.
  • the current flows from electrode B into the adjacent sub-battery sharing electrode B, and in this way, the sub-batteries are connected in series.
  • the substrate is glass.
  • Electrode A is indium-doped tin oxide (ITO).
  • the electron transport layer on the electrode A is composed of tin oxide, and the electron transport layer on the absorption layer is composed of C 60 and 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline.
  • the hole transport layer is composed of a poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] layer.
  • Electrode B is silver.
  • FIG1 is a schematic diagram of the structure of a thin-film photovoltaic tandem assembly prepared in Example 1 of the present invention.
  • an electrode A is arranged on a substrate, a hole transport layer and an electron transport layer are arranged on electrode A, an absorption layer is arranged on the hole transport layer and the electron transport layer, an electron transport layer and a hole transport layer are arranged on the absorption layer, and an electrode B is arranged on the electron transport layer and the hole transport layer.
  • the thin-film photovoltaic tandem assembly includes sub-cell 1, cell 2, cell 3, cell 4, cell 5, and cell 6.
  • the thin-film photovoltaic series assembly of the present invention can be composed of multiple sub-cells connected in series
  • sub-cells that can be further connected in series are schematically shown on the left side of sub-cell 1 and on the right side of sub-cell 6 in FIG. 1 .
  • the current can flow in from the electrode B of a sub-cell, pass through the electron transport layer, absorption layer, hole transport layer, and electrode A under electrode B in sequence, and then flow from electrode A into the adjacent sub-cell sharing electrode A.
  • the current continues to flow from the electrode A of the adjacent sub-cell sharing electrode A into the electron transport layer, absorption layer, hole transport layer, and electrode B in sequence. Then the current The current flows from electrode B to the adjacent sub-cells sharing electrode B, thereby connecting the sub-cells in series.
  • a method for preparing a thin-film photovoltaic tandem module comprises the following steps:
  • ITO indium-doped tin oxide
  • the method for preparing the tin oxide film is a conventional method, such as a chemical bath plus sintering method.
  • the specific process can be found in the literature: T. Bu et al., "Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules," Science (80)., vol. 372, no. 6548, pp.
  • the electrode A on the glass substrate is divided into blocks at the junction of the electron transport layer and the hole transport layer by laser etching (for the specific parameters of laser etching, see P1 in Table 1).
  • the etching width is 60 ⁇ m to ensure that the two blocks are not conductive to each other (resistance>1 M ⁇ ).
  • the long side of the glass is shifted 12 mm and this step is repeated.
  • a window area is 3.6cm ⁇ 4cm (the window area is the size of the window area of the entire thin-film photovoltaic series module, that is, the effective area of all 6 sub-cells plus the dead area, but excluding the edge area not covered by the upper and lower electrodes).
  • the module contains 6 0.6cm wide sub-cells, including 3 conventional structure sub-cells and 3 inverted structure sub-cells, which are staggered and connected in series.
  • the area of the perovskite absorption layer covered by electrode A and electrode B is the effective area, and the area not covered by the two electrodes is the dead area.
  • a method for preparing a thin-film photovoltaic tandem module comprises the following steps:
  • ITO indium-doped tin oxide
  • the method for preparing the tin oxide film is a conventional method, such as a chemical bath plus sintering method, and the specific process can be found in the literature: T.Bu et al., "Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules," Science (80)., vol.372, no.6548, pp.1327–1332, 2021, doi:10.1126/science.abh1035) to form an electron transport layer (remove the vacuum tape before sintering); covering the tin oxide film with a mask plate, and evaporating a 5 nm thick poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine] film to form a hole transport layer;
  • the electrode A on the glass substrate is divided into blocks at the junction of the electron transport layer and the hole transport layer by laser etching (for the specific parameters of laser etching, see P1 in Table 1).
  • the etching width is 60 ⁇ m to ensure that the two blocks are not conductive to each other (resistance>1 M ⁇ ).
  • the long side of the glass is shifted 12 mm and this step is repeated.
  • a mask plate was used to cover the interface between part of the electron transport layer and the hole transport layer along the short side of the glass substrate (the line width was 30 ⁇ m), the two long sides and one short side of the glass substrate (the line width of the two long sides of the glass substrate covered by the mask plate was 0.5 cm, and the line width of the short side was 1 cm), and 100 nm thick silver was evaporated (evaporation rate was 0.5 nm/s, background pressure was 10 -6 T) to form an electrode B, thereby obtaining a thin-film photovoltaic series module.
  • a window area is 3.6cm ⁇ 4cm, and the assembly contains 6 sub-cells, including 3 conventional structure sub-cells, 0.58cm wide, and 3 inverted structure sub-cells, 0.62cm wide, staggered and connected in series.
  • the area of the perovskite absorption layer covered by electrode A and electrode B is the effective area, and the area not covered by the two electrodes is the dead area.
  • a method for preparing a thin-film photovoltaic tandem module comprises the following steps:
  • ITO indium-doped tin oxide
  • magnetron sputtering (parameters during the deposition process: background pressure of 10 -6 T, working pressure of 1.5 mT, power of 100 W, rate of 1 nm/s) to form electrode A
  • the ITO layer was divided into blocks by laser etching (for specific parameters of laser etching, see P1 in Table 1), each block was non-conductive (resistance>1 M ⁇ ), the size was 0.6 cm wide, the etching line was parallel to the short side of the glass, the etching width was 40 ⁇ m, and then placed in a UVO chamber for cleaning for 15 minutes, and then placed in a UVO chamber for cleaning for 15 minutes;
  • the method for preparing the tin oxide film is a conventional method, such as a chemical bath method, and the specific process can be found in the literature: T. Bu et al., "Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules," Science (80)., vol. 372, no. 6548, pp. 1327–1332, 2021, doi: 10.1126/science.abh1035) to form an electron transport layer;
  • a line parallel to P1 i.e., P2 line, for the specific parameters of laser etching, see P2 in Table 1
  • P2 line the line formed under the P1 laser etching parameters is called the P1 line
  • all layers except the ITO layer are completely removed, with a line width of 255 ⁇ m;
  • One window area is 3.6 cm ⁇ 4 cm, and contains 6 0.6 cm wide sub-cells of conventional structure connected in series.
  • the GFF is calculated by the formula to be 91.7%.
  • a method for preparing a thin-film photovoltaic tandem module comprises the following steps:
  • ITO indium-doped tin oxide
  • the ITO layer was divided into blocks by laser etching (for specific parameters of laser etching, see P1 in Table 1). Each block was non-conductive (resistance>1 M ⁇ ) and had a size of 0.6 cm wide.
  • the etching line was parallel to the short side of the glass and the etching width was 40 ⁇ m.
  • the electrode was then placed in a UVO chamber for cleaning for 15 minutes.
  • the electrode was then placed in a UVO chamber for cleaning for 15 minutes.
  • a laser is used to etch a line parallel to P2 (i.e., P3 line, for specific laser etching parameters, see P3 in Table 1) from the glass surface at a distance of 110 ⁇ m from the P2 line on the side of the P2 line away from the P1 line, completely removing all layers except the glass, with a line width of 88 ⁇ m.
  • a window area of 3.6 cm ⁇ 4 cm contains 6 0.6 cm wide inverted sub-cells connected in series.
  • the GFF is calculated to be 91.6% by the formula.
  • the thin-film photovoltaic tandem modules prepared in the examples and comparative examples were tested under the conditions of one sunlight intensity, AAA light source, and a window area of 14.4 cm2 (when testing, sunlight was incident from the bottom of the substrate).
  • the scanning range was from 7V to -0.1V, and the scanning rate was 1V/s.
  • the test results are shown in Table 2.
  • Voc represents open circuit voltage
  • Jsc short circuit current density
  • FF fill factor
  • GFF geometric fill factor
  • PCE power conversion efficiency

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于半导体技术领域,公开了一种薄膜光伏串联组件及其制备方法。该薄膜光伏串联组件由多个子电池构成;子电池,由下往上,依次包括衬底、电极A、吸收层、电极B,且与电极A相对应的是两块互不相连的电极B,与电极B相对应的是两块互不相连的电极A。本发明的薄膜光伏串联组件将死区占发电面积减少至1%以下,相应地将薄膜光伏串联组件的几何填充因子提高到99%以上,从而等比例地提高薄膜光伏串联组件的效率;避免电池材料的侧壁暴露,增加稳定性;消除侧壁的高串联电阻损失,提高效率。该薄膜光伏串联组件的制备方法减少刻蚀工序,降低制造成本。

Description

一种薄膜光伏串联组件及其制备方法 技术领域
本发明属于半导体技术领域,特别涉及一种薄膜光伏串联组件及其制备方法。
背景技术
现今,有机-无机杂化钙钛矿电池(PSC)、有机太阳能电池(OPV)、聚合物太阳能电池等新一代薄膜光伏电池的光电转换效率和可靠性正日益趋近于主流的晶硅太阳能电池,而其低成本、易制造、生产过程中的低碳排放、可制成柔性器件等优势为晶硅电池所不能比拟。特别是有机-无机杂化钙钛矿电池被广泛地认为是最有希望取代晶硅电池的下一代薄膜光伏电池。
以钙钛矿太阳能电池为代表的新一代含有机物的薄膜光伏电池器件结构主要可以分为两类,即常规结构(n-i-p)和倒置结构(p-i-n)。在上述两种结构中,吸收层(i)被电荷传输层夹在中间,形成一个三明治结构。n为电子传输层(简称ETL),p为空穴传输层(简称HTL)。有的结构省略了p或n层,用电极代替或者在吸收层(i)作p或n型的掺杂。
将单片的薄膜光伏电池互联成为组件通常采用(激光)刻蚀加电极沉积的方法将每个子电池串联起来,需要至少3道刻蚀工序和1道电极沉积工序,共4道工序(参见文献:M.Schüle et al.,“Laser patterning of CIGSe solar cells using nano-and picosecond pulses-possibilities and challenges,”28th Eur.Photovolt.Sol.Energy Conf.Exhib.,no.September,pp.2302–2306,2013,doi:10.4229/28thEUPVSEC2013-3BV.5.39)。针对不同的电池材料,有时需要增加到4道刻蚀工序和2道沉积工序,共6道工序,以便对电池侧壁加以保护或绝缘。被刻蚀影响的区域为死区,不贡献光伏发电。电极沉积的工艺通常为蒸镀和磁控溅射,用于连接子电池的背电极(可称为电极B)和相邻子电池的顶电极(可称为电极A)。这是一种被广泛采用的成熟互联或串联方法。但该互联或串联方法的缺陷包括:1)死区的面积通常占总发电面积5%左右或更多,组件的几何填充因子(GFF)不会超过95.5%(参见文献:S.H.Reddy,F.Di Giacomo,and A.Di Carlo,“Low-Temperature-Processed Stable Perovskite Solar Cells and Modules:A Comprehensive Review,”Adv.Energy Mater.,vol.12,no.13,pp.1–37,2022,doi: 10.1002/aenm.202103534.);2)蒸镀和磁控溅射是非共形沉积工艺,因此被(激光)划开的电池材料侧壁无法被电极层有效覆盖,从而导致串联电阻较大(组件填充因子/效率下降);而共形沉积工艺如原子层沉积(ALD)成本太高且会对器件材料造成损伤;3)背电极层接触顶电极层的区域太小会导致较大的接触电阻(导致组件填充因子/效率下降),太大又会增加死区面积;4)被(激光)刻蚀的电池材料侧壁会对器件的稳点性造成影响(参见文献:E.Bi et al.,“Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers,”Joule,vol.3,no.11,pp.2748–2760,2019,doi:10.1016/j.joule.2019.07.030.)。因此,薄膜电池的互联或串联有很大的改进空间。
以钙钛矿电池为例,现有技术中高效小面积(<1cm2)电池的FF在82-86%,用传统互联方法制得组件后,FF往往只有70-80%(参见文献:Y.Ding et al.,“Single-crystalline TiO2nanoparticles for stable and efficient perovskite modules,”Nat.Nanotechnol.,vol.17,no.6,pp.598–605,2022,doi:10.1038/s41565-022-01108-1.S.Chen,X.Xiao,H.Gu,and J.Huang,“Iodine reduction for reproducible and high-performance perovskite solar cells and modules,”Sci.Adv.,vol.7,no.10,pp.1–7,2021,doi:10.1126/sciadv.abe8130.Y.Gao et al.,“Can Nanosecond Laser Achieve High-Performance Perovskite Solar Modules with Aperture Area Efficiency Over 21%?,”Adv.Energy Mater.,vol.2202287,pp.1–8,2022,doi:10.1002/aenm.202202287.),且GFF最高在96%以下。
因此,亟需提供一种新的薄膜光伏电池的互联或串联方法,用于解决上述传统互联或串联方法的弊端。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种薄膜光伏串联组件及其制备方法,本发明所述薄膜光伏串联组件,通过新的串联方法将死区占发电面积减少至1%以下,相应地将薄膜光伏串联组件的GFF(几何填充因子)提高到99%以上,从而等比例地提高薄膜光伏串联组件的效率;避免电池材料的侧壁暴露,增加稳定性;消除侧壁的高串联电阻损失,和背电极接触顶电极的接触电阻损失,消除因此而导致的填充因子(FF)和效率的损失。减少刻蚀工序,降低制造成本。
本发明的发明构思为:本发明所述薄膜光伏串联组件是将多个子电池(所述子电池,由 下往上,依次包括衬底、电极A、吸收层、电极B,且与所述电极A相对应的是两块互不相连的电极B,与所述电极B相对应的是两块互不相连的电极A)通过电极A和电极B交错对应(由于子电池中,与所述电极A相对应的是两块互不相连的电极B,与所述电极B相对应的是两块互不相连的电极A,因此电极A和电极B形成交错对应关系)而串联起来。进一步的,所述电极A与吸收层之间还设置电子传输层和空穴传输层,所述电极B与吸收层之间还设置空穴传输层和电子传输层。本发明所述薄膜光伏串联组件将死区占发电面积减少至1%以下,相应地将薄膜光伏串联组件的GFF(几何填充因子)提高到99%以上,从而等比例地提高薄膜光伏串联组件的效率;避免电池材料的侧壁暴露,增加稳定性;消除侧壁的高串联电阻损失,和背电极(电极B)接触顶电极(电极A)的接触电阻损失,消除因此而导致的填充因子(FF)和效率的损失。所述薄膜光伏串联组件的制备方法减少刻蚀工序,降低制造成本。
本发明的第一方面提供一种薄膜光伏串联组件。
具体的,一种薄膜光伏串联组件,所述薄膜光伏串联组件由多个子电池构成;
所述子电池,由下往上,依次包括衬底、电极A、吸收层、电极B,且与所述电极A相对应的是两块互不相连的电极B,与所述电极B相对应的是两块互不相连的电极A。
优选的,所述电极A与吸收层之间还设置电子传输层和空穴传输层。电极A与吸收层之间的电子传输层和空穴传输层可根据需要选择性设置。
优选的,所述电极B与吸收层之间还设置空穴传输层和电子传输层。电极B与吸收层之间的空穴传输层和电子传输层可根据需要选择性设置。
优选的,所述电极A与吸收层之间还设置电子传输层和空穴传输层,且所述电极B与吸收层之间还设置空穴传输层和电子传输层。所述吸收层上下两侧相对应位置是电子传输层和空穴传输层(即所述电极B与吸收层之间的空穴传输层与所述电极A与吸收层之间的电子传输层位置对应,所述电极B与吸收层之间的电子传输层与所述电极A与吸收层之间的空穴传输层位置对应)。则电流可以从一个子电池的电极B流入,依次经过电极B下方的电子传输层、吸收层、空穴传输层、电极A,然后从电极A流入到共用电极A的相邻子电池中,电流继续从共用电极A的相邻子电池的电极A中依次流入到电子传输层、吸收层、空穴传输层、电极B。然后电流从电极B流入到共用电极B的相邻子电池中,以此方式进行串联各子电池。
优选的,所述薄膜光伏串联组件为太阳能电池组件。
进一步优选的,所述太阳能电池组件包括钙钛矿太阳能电池组件、有机太阳能电池组件、聚合物太阳能电池组件、碲化镉太阳能电池组件中的至少一种。
优选的,所述薄膜光伏串联组件中,子电池的数量为n,n为正整数(例如偶数),例如n为2-10。
优选的,所述衬底包括玻璃、金属或有机物。
优选的,所述衬底可用覆板代替。
优选的,所述电极A为导电氧化物或导电有机物,例如掺铟氧化锡(ITO)。
优选的,所述电极A的厚度为10nm-1μm;进一步优选的,所述电极A的厚度为200-600nm。
优选的,所述电子传输层包括氧化锡、C60和2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(CAS号:4733-39-5)中的至少一种。电极A与吸收层之间的电子传输层、电极B与吸收层之间的电子传输层的组成可相同,也可不同。
优选的,所述空穴传输层包括聚[双(4-苯基)(2,4,6-三甲基苯基)胺](CAS号:1333317-99-9),聚(3-己基噻吩-2,5-二基)(CAS号:156074-98-5,104934-50-1)和氧化镍中的至少一种。
优选的,所述电子传输层的厚度为1-200nm,优选10-100nm。
优选的,所述空穴传输层的厚度为1-200nm,优选10-100nm。
优选的,所述吸收层为所述吸收层为钙钛矿吸收层、有机物吸收层、聚合物吸收层和碲化镉吸收层中的至少一种。例如Cs0.17FA0.83PbI3吸收层。
优选的,所述吸收层的厚度为100-2000nm,优选300-700nm。
优选的,所述电极B为导电氧化物或金属,例如氧化铟锡(ITO)、金、银或铜。优选的,所述电极B的厚度为10nm-1μm,优选50-200nm。
优选的,所述薄膜光伏串联组件的死区占发电面积减少至1%以下。
优选的,所述薄膜光伏串联组件的GFF(几何填充因子)提高到99%以上。
本发明的第二方面提供一种薄膜光伏串联组件的制备方法。
具体的,一种薄膜光伏串联组件的制备方法,包括以下步骤:
在衬底上沉积电极A;
将电极A区块化;
制备吸收层;
沉积电极B;
将电极B区块化,制得所述薄膜光伏串联组件。
优选的,所述沉积的方法包括蒸镀、溅射、原子层沉积(ALD)、气相沉积(CVD)、远程等离子体沉积(remote plasma deposition)、印刷、喷涂中的至少一种。
优选的,所述电极可为透明或者不透明电极,例如掺铟氧化锡(ITO)。
优选的,所述将电极A区块化的方法包括激光烧融、探针刻划、光刻中的至少一种。
优选的,在沉积电极A时,采用掩膜板遮挡的方法,可形成区块化的电极A,则无需再单独对电极A进行区块化。
优选的,制备吸收层的方法包括蒸镀、溅射、原子层沉积(ALD)、气相沉积(CVD)、远程等离子体沉积(remote plasma deposition)、印刷、喷涂中的至少一种。在电极A上的电子和空穴传输层上可沉积不同的吸收层,也可沉积相同的吸收层。
优选的,沉积电极B的方法包括蒸镀、溅射、原子层沉积(ALD)、气相沉积(CVD)、远程等离子体沉积(remote plasma deposition)、印刷、喷涂中的至少一种。
优选的,所述将电极B区块化的方法包括激光烧融、探针刻划、光刻或掩膜板覆盖中的至少一种。
优选的,在沉积电极B时,采用掩膜板遮挡的方法,可形成区块化的电极B,则无需再单独对电极B进行区块化。所述区块化的电极B与区块化的电极A交错对应。所述区块化的电极B与区块化的电极A的尺寸保持一致。
优选的,将电极A区块化后,且制备吸收层前,在电极A上沉积电子传输层,在相邻但不相连的另一区块的电极A上沉积空穴传输层。实现电子传输层和空穴传输层交错地覆盖所有区块化的电极A。可同时或不同时沉积电子传输层和空穴传输层。
优选的,在制备吸收层后,且在沉积电极B前,先在吸收层上沉积空穴传输层和电子传输层。实现空穴传输层和电子传输层交错地排布,且吸收层上沉积的空穴传输层与电极A上的电子传输层对应,吸收层上沉积的电子传输层与电极A上的空穴传输层对应。可同时或不 同时沉积电子传输层和空穴传输层。
优选的,一种薄膜光伏串联组件的制备方法,包括以下步骤:
(1)在衬底上沉积电极A;
(2)将电极A区块化;
(3)在电极A的一个区块上的部分区域沉积电子传输层,在电极A剩余区域沉积空穴传输层;
(4)在步骤(3)的电子传输层和空穴传输层上制备吸收层;
(5)在步骤(4)的吸收层上沉积空穴传输层和电子传输层,实现空穴传输层和电子传输层交错地排布,且吸收层上沉积的空穴传输层与电极A上的电子传输层位置对应,吸收层上沉积的电子传输层与电极A上的空穴传输层位置对应;
(6)沉积电极B,将电极B区块化,制得所述薄膜光伏串联组件。步骤(6)实现空穴传输层和电子传输层交错地位于电极B下。且与电极B下的空穴传输层与电极A上的电子传输层对应,电极B下的电子传输层与电极A上的空穴传输层对应。
优选的,步骤(3)中,可采用先贴胶带沉积电子传输层,然后去除胶带,用掩膜板遮挡电子传输层在沉积空穴传输层,且步骤(2)的电极A区块化可在步骤(3)完成后进行。相邻但不相连的两区块化的电极A之间的间隔为5-60μm,优选20-30μm。
优选的,步骤(4)中,先制备吸收层前驱体溶液,然后在步骤(3)的电子传输层、空穴传输层上沉积或涂布吸收层前驱体溶液,形成吸收层。
优选的,一种薄膜光伏串联组件的制备方法,包括以下步骤:
(1)在长方形的玻璃衬底上,通过磁控溅射,沉积厚度为300-500nm的掺铟氧化锡(ITO),形成电极A;
(2)将长方形的真空胶带贴在距离玻璃衬底边缘0.5-1cm处,且真空胶带和玻璃衬底短边平行,再重复贴几次真空胶带,每条真空胶带的间隔为0.4-0.6cm;
(3)在电极A上制备氧化锡薄膜,形成电子传输层;除去真空胶带,用掩膜板覆盖氧化锡薄膜,蒸镀聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
(4)利用激光蚀刻部分电子传输层和空穴传输层的交界处,将玻璃衬底上的电极A区块化,形成的每个区块的宽度为0.8-1.2cm,蚀刻的宽度为20-60μm;
(5)制备吸收层前驱体溶液,然后将所述吸收层前驱体溶液沉积或涂布在电子传输层和空穴传输层上,形成吸收层;
(6)用掩膜板覆盖所有电子传输层所在区块,蒸镀C60和BCP(2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲),形成电子传输层,移开掩膜板;再用掩膜板覆盖所有空穴传输层所在区块,蒸镀聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
(7)用掩膜板覆盖部分电子传输层和空穴传输层的交界位置、玻璃衬底的两个长边和一个短边,蒸镀银,形成电极B,即制得所述薄膜光伏串联组件。
优选的,步骤(7)中,中线的线宽为20-30μm。步骤(7)的目的是形成区块化的电极B。
优选的,步骤(7)中,用掩膜板覆盖的玻璃衬底的两个长边的线宽为0.3-0.5cm,短边的线宽为0.5-1cm。
相对于现有技术,本发明的有益效果如下:
本发明所述薄膜光伏串联组件是将多个子电池(所述子电池,由下往上,依次包括衬底、电极A、吸收层、电极B,且与所述电极A相对应的是两块互不相连的电极B,与所述电极B相对应的是两块互不相连的电极A)通过电极A和电极B交错对应而串联起来。进一步的,所述电极A与吸收层之间还设置电子传输层和空穴传输层,所述电极B与吸收层之间还设置空穴传输层和电子传输层。本发明所述薄膜光伏串联组件将死区占发电面积减少至1%以下,相应地将薄膜光伏串联组件的GFF(几何填充因子)提高到99%以上,从而等比例地提高薄膜光伏串联组件的效率;避免电池材料的侧壁暴露,增加稳定性;消除侧壁的高串联电阻损失,和背电极(电极B)接触顶电极(电极A)的接触电阻损失,消除因此而导致的填充因子(FF)和效率的损失。所述薄膜光伏串联组件的制备方法减少刻蚀工序,降低制造成本。
附图说明
图1为本发明实施例1制得的薄膜光伏串联组件的结构示意图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者 可以通过现有已知方法得到。
实施例1
一种薄膜光伏串联组件,该薄膜光伏串联组件由6个子电池构成;
子电池,由下往上,依次包括衬底、电极A、吸收层、电极B,且与电极A相对应的是两块互不相连的电极B,与电极B相对应的是两块互不相连的电极A;
电极A与吸收层之间还设置电子传输层和空穴传输层,且电极B与吸收层之间还设置空穴传输层和电子传输层。吸收层上下两侧相对应位置是电子传输层和空穴传输层。则电流可以从一个子电池的电极B流入,依次经过电极B下方的电子传输层、吸收层、空穴传输层、电极A,然后从电极A流入到共用电极A的相邻子电池中,电流继续从共用电极A的相邻子电池的电极A中依次流入到电子传输层、吸收层、空穴传输层、电极B。然后电流从电极B流入到共用电极B的相邻子电池中,以此方式进行串联各子电池。
衬底为玻璃。
电极A为掺铟氧化锡(ITO)。
电极A上的电子传输层由氧化锡构成,吸收层上的电子传输层由C60和2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲构成。
空穴传输层由聚[双(4-苯基)(2,4,6-三甲基苯基)胺]层构成。
电极B为银。
图1为本发明实施例1制得的薄膜光伏串联组件的结构示意图。从图1可以看出,从下往上,在衬底上设置电极A,在电极A上设置空穴传输层和电子传输层,在空穴传输层和电子传输层上设置有吸收层,在吸收层上设置电子传输层和空穴传输层,在电子传输层和空穴传输层上设置有电极B。薄膜光伏串联组件包括子电池1、电池2、电池3、电池4、电池5、电池6。
为了进一步体现本发明的薄膜光伏串联组件可由多个子电池串联而言,在图1的子电池1左侧和子电池6右侧,示意画出了还可进一步设置串联的子电池。
电流可以从一个子电池的电极B流入,依次经过电极B下方的电子传输层、吸收层、空穴传输层、电极A,然后从电极A流入到共用电极A的相邻子电池中,电流继续从共用电极A的相邻子电池的电极A中依次流入到电子传输层、吸收层、空穴传输层、电极B。然后电 流从电极B流入到共用电极B的相邻子电池中,以此方式进行串联各子电池。
一种薄膜光伏串联组件的制备方法,包括以下步骤:
(1)在长方形(长5.6cm,宽5cm)的干净玻璃衬底上,通过磁控溅射,沉积厚度为500nm的掺铟氧化锡(ITO)(沉积过程中的参数:背景气压为10-6T,工作压力为1.5mT,功率为100W,速率为1nm/s),形成电极A,然后放入UVO仓(紫外臭氧清洁仓)清洁15分钟;
(2)利用贴胶机,将无残留的长方形的真空胶带(真空胶带宽度为0.6cm,长度超过5cm)贴在距离玻璃衬底边缘0.5cm处的电极A上,且真空胶带和玻璃衬底短边平行,再重复贴2次真空胶带,每条真空胶带的间隔为0.6cm;
(3)在电极A上制备氧化锡薄膜(制备氧化锡薄膜的方法为常规方法,例如采用化学浴加烧结的方法,具体的过程可参见文献:T.Bu et al.,“Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules,”Science(80).,vol.372,no.6548,pp.1327–1332,2021,doi:10.1126/science.abh1035),形成电子传输层(烧结前除去真空胶带);用掩膜板覆盖氧化锡薄膜,蒸镀5nm厚的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
(4)利用激光蚀刻(激光蚀刻的具体参数参见表1中的P1)电子传输层和空穴传输层的交界处,将玻璃衬底上的电极A区块化,蚀刻的宽度为60μm,以保证两个区块间互不导电(电阻>1MΩ),沿玻璃长边平移12mm,重复这一步骤;
(5)用分析天平在充满惰性氮气气体(水汽<100ppm,氧气<100ppm)的手套箱内称取142.8mg FAI(碘化甲脒)、44.2mg CsI、461mg PbI2、27.8mg PbCl2、2.8mg KPF6,溶于96μL NMP(N-甲基吡咯烷酮)和500μL DMF(二甲基甲酰胺)中,震荡直至完全溶解制备Cs0.17FA0.83PbI3吸收层前驱体溶液,然后将吸收层前驱体溶液通过狭缝涂布沉积涂布(涂布过程中的参数:涂布头和电子传输层、空穴传输层的间距为0.2mm,涂布速度为3.5mm/s,溶液出速为1.1μL/s,风刀出口和涂布出口间距为10cm,风刀出口和电子传输层、空穴传输层的间距为3mm,风刀出口和电子传输层、空穴传输层夹角为60°,朝向远离涂布头的方向,气体为干燥压缩空气,气压为0.3MPa,出气速率为35mm/s,涂布环境温度20±2℃,相对湿度为15±5%)在步骤(4)的电子传输层和空穴传输层上,形成吸收层;
(6)用掩膜板覆盖所有电子传输层所在区块,蒸镀(蒸镀速率为0.05nm/s,背景气压为 10-6T)20nm厚度的C60和5nm厚度的BCP(2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲),形成电子传输层,移开掩膜板;再用掩膜板覆盖所有空穴传输层所在区块,蒸镀(蒸镀速率为0.5nm/s,背景气压为10-6T)20nm厚的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层,移开掩膜板;
(7)用掩膜板覆盖沿玻璃衬底的短边方向的区块A的中线(线宽为30μm)位置、玻璃衬底的两个长边和一个短边(用掩膜板覆盖的玻璃衬底的两个长边的线宽为0.5cm,短边的线宽为1cm),蒸镀(蒸镀速率为0.5nm/s,背景气压为10-6T)100nm厚的银,形成电极B,即制得薄膜光伏串联组件。
一个窗口区域为3.6cm×4cm(窗口区域是整个薄膜光伏串联组件的窗口区域的尺寸,即所有6个子电池的有效区域加上死区,但不包括未被上下电极覆盖的边缘区域),组件包含6个0.6cm宽的子电池,其中常规结构子电池3个,倒置结构子电池3个,交错排列,互相串联。钙钛矿吸收层被电极A和电极B共同覆盖的区域为有效区域,未被两个电极共同覆盖的区域为死区。计算GFF[GFF=1-死区宽度/(有效区域宽度+死区宽度)]为99.4%。
实施例2
一种薄膜光伏串联组件的制备方法,包括以下步骤:
(1)在长方形(长5.6cm,宽5cm)的干净玻璃衬底上,通过磁控溅射,沉积厚度为500nm的掺铟氧化锡(ITO)(沉积过程中的参数:背景气压为10-6T,工作压力为1.5mT,功率为100W,速率为1nm/s),形成电极A,然后放入UVO仓清洁15分钟;
(2)利用贴胶机,将无残留的长方形的真空胶带(真空胶带宽度为0.62cm,长度超过5cm)贴在距离玻璃衬底边缘0.5cm处的电极A上,且真空胶带和玻璃衬底短边平行,再重复贴2次真空胶带,每条真空胶带的间隔为0.58cm;
(3)在电极A上制备氧化锡薄膜(制备氧化锡薄膜的方法为常规方法,例如采用化学浴加烧结的方法,具体的过程可参见文献:T.Bu et al.,“Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules,”Science(80).,vol.372,no.6548,pp.1327–1332,2021,doi:10.1126/science.abh1035),形成电子传输层(烧结前除去真空胶带);用掩膜板覆盖氧化锡薄膜,蒸镀5nm厚的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
(4)利用激光蚀刻(激光蚀刻的具体参数参见表1中的P1)电子传输层和空穴传输层的交界处,将玻璃衬底上的电极A区块化,蚀刻的宽度为60μm,以保证两个区块间互不导电(电阻>1MΩ),沿玻璃长边平移12mm,重复这一步骤;
(5)用分析天平在充满惰性氮气气体(水汽<100ppm,氧气<100ppm)的手套箱内称取142.8mg FAI、44.2mg CsI、461mg PbI2、27.8mg PbCl2、2.8mg KPF6,溶于96μL NMP(N-甲基吡咯烷酮)和500μL DMF(二甲基甲酰胺)中,震荡直至完全溶解制备Cs0.17FA0.83PbI3吸收层前驱体溶液,然后将吸收层前驱体溶液通过狭缝涂布沉积涂布(涂布过程中的参数:涂布头和电子传输层、空穴传输层的间距为0.2mm,涂布速度为3.5mm/s,溶液出速为1.1μL/s,风刀出口和涂布出口间距为10cm,风刀出口和电子传输层、空穴传输层的间距为3mm,风刀出口和电子传输层、空穴传输层夹角为60°,朝向远离涂布头的方向,气体为干燥压缩空气,气压为0.3MPa,出气速率为35mm/s,涂布环境温度20±2℃,相对湿度为15±5%)在步骤(4)的电子传输层和空穴传输层上,形成吸收层;
(6)用掩膜板覆盖所有电子传输层所在区块,蒸镀(蒸镀速率为0.05nm/s,背景气压为10-6T)20nm厚度的C60和5nm厚度的BCP(2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲),形成电子传输层,移开掩膜板;再用掩膜板覆盖所有空穴传输层所在区块,蒸镀(蒸镀速率为0.5nm/s,背景气压为10-6T)20nm厚的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层,移开掩膜板;
(7)用掩膜板覆盖沿玻璃衬底的短边方向的部分电子传输层和空穴传输层的交界位置(线宽为30μm)、玻璃衬底的两个长边和一个短边(用掩膜板覆盖的玻璃衬底的两个长边的线宽为0.5cm,短边的线宽为1cm),蒸镀(蒸镀速率为0.5nm/s,背景气压为10-6T)100nm厚的银,形成电极B,即制得薄膜光伏串联组件。
一个窗口区域为3.6cm×4cm,组件包含6个子电池,其中常规结构子电池3个,0.58cm宽,倒置结构子电池3个,0.62cm宽,交错排列,互相串联。钙钛矿吸收层被电极A和电极B共同覆盖的区域为有效区域,未被两个电极共同覆盖的区域为死区。计算GFF[GFF=1-死区宽度/(有效区域宽度+死区宽度)]为99.4%。
对比例1(常规结构)
一种薄膜光伏串联组件的制备方法,包括以下步骤:
(1)在长方形(长5.6cm,宽5cm)的干净玻璃衬底上,通过磁控溅射,沉积厚度为500nm的掺铟氧化锡(ITO)(沉积过程中的参数:背景气压为10-6T,工作压力为1.5mT,功率为100W,速率为1nm/s),形成电极A,用激光刻蚀(激光蚀刻的具体参数参见表1中的P1)将ITO层区块化,各区块间互不导电(电阻>1MΩ),尺寸为0.6cm宽,刻蚀线和玻璃的短边平行,刻蚀宽度40μm,然后放入UVO仓清洁15分钟,然后放入UVO仓清洁15分钟;
(2)在电极A上制备氧化锡薄膜(制备氧化锡薄膜的方法为常规方法,例如采用化学浴的方法,具体的过程可参见文献:T.Bu et al.,“Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules,”Science(80).,vol.372,no.6548,pp.1327–1332,2021,doi:10.1126/science.abh1035),形成电子传输层;
(3)用分析天平在充满惰性氮气气体(水汽<100ppm,氧气<100ppm)的手套箱内称取142.8mg FAI、44.2mg CsI、461mg PbI2、27.8mg PbCl2、2.8mg KPF6,溶于96μL NMP(N-甲基吡咯烷酮)和500μL DMF(二甲基甲酰胺)中,震荡直至完全溶解制备Cs0.17FA0.83PbI3吸收层前驱体溶液,然后将吸收层前驱体溶液通过狭缝涂布沉积涂布(涂布过程中的参数:涂布头和电子传输层、空穴传输层的间距为0.2mm,涂布速度为3.5mm/s,溶液出速为1.1μL/s,风刀出口和涂布出口间距为10cm,风刀出口和电子传输层、空穴传输层的间距为3mm,风刀出口和电子传输层、空穴传输层夹角为60°,朝向远离涂布头的方向,气体为干燥压缩空气,气压为0.3MPa,出气速率为35mm/s,涂布环境温度20±2℃,相对湿度为15±5%)在步骤(2)的电子传输层和空穴传输层上,形成吸收层;
(4)蒸镀(蒸镀速率为0.5nm/s,背景气压为10-6T)20nm厚的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
(5)用激光在距离P1线(在P1激光蚀刻参数下形成的线称为P1线)200μm处,从玻璃面刻蚀一条和P1平行的线(即P2线,激光蚀刻的具体参数参见表1中的P2),将除了ITO层外的其他层完全去除,线宽255μm;
(6)用掩膜板覆盖玻璃的两个长边(线宽为0.5cm)和一个短边(线宽为1cm),通过蒸镀,蒸镀100nm银层,速率为0.05nm/s,背景气压10-6T;
(7)用激光在P2线远离P1线的一侧,距离P2线100μm处,从玻璃面刻蚀一条和P2平行的线(即P3线,激光蚀刻的具体参数参见表1中的P3),将除了玻璃以外的所有层完 全去除,线宽64μm。
一个窗口区域为3.6cm×4cm,包含6个0.6cm宽的相互串联的常规结构的子电池的组件。通过公式计算GFF为91.7%。
对比例2(倒置结构)
一种薄膜光伏串联组件的制备方法,包括以下步骤:
(1)在长方形(长5.6cm,宽5cm)的干净玻璃衬底上,通过磁控溅射,沉积厚度为500nm的掺铟氧化锡(ITO)(沉积过程中的参数:背景气压为10-6T,工作压力为1.5mT,功率为100W,速率为1nm/s),形成电极A,用激光刻蚀(激光蚀刻的具体参数参见表1中的P1)将ITO层区块化,各区块间互不导电(电阻>1MΩ),尺寸为0.6cm宽,刻蚀线和玻璃的短边平行,刻蚀宽度40μm,然后放入UVO仓清洁15分钟,然后放入UVO仓清洁15分钟;
(2)蒸镀(蒸镀速率为0.05nm/s,背景气压为10-6T)5nm厚的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
(3)用分析天平在充满惰性氮气气体(水汽<100ppm,氧气<100ppm)的手套箱内称取142.8mg FAI、44.2mg CsI、461mg PbI2、27.8mg PbCl2、2.8mg KPF6,溶于96μL NMP(N-甲基吡咯烷酮)和500μL DMF(二甲基甲酰胺)中,震荡直至完全溶解制备Cs0.17FA0.83PbI3吸收层前驱体溶液,然后将吸收层前驱体溶液通过狭缝涂布沉积涂布(涂布过程中的参数:涂布头和电子传输层、空穴传输层的间距为0.2mm,涂布速度为3.5mm/s,溶液出速为1.1μL/s,风刀出口和涂布出口间距为10cm,风刀出口和电子传输层、空穴传输层的间距为3mm,风刀出口和电子传输层、空穴传输层夹角为60°,朝向远离涂布头的方向,气体为干燥压缩空气,气压为0.3MPa,出气速率为35mm/s,涂布环境温度20±2℃,相对湿度为15±5%)在步骤(2)的电子传输层和空穴传输层上,形成吸收层;
(4)蒸镀(蒸镀速率为0.05nm/s,背景气压为10-6T)20nm厚度的C60和5nm厚度的BCP(2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲),形成电子传输层;
(5)用激光(激光参数参考表1里的P2)在距离P1线(P1激光参数下蚀刻形成的线称为P1线)190μm处,从玻璃面刻蚀一条和P1平行的线(即P2线),将除了ITO层外的其他层完全去除,线宽238μm;
(6)用掩膜板覆盖玻璃的两个长边(线宽为0.5cm)和一个短边(线宽为1cm),通过 蒸镀,蒸镀100nm银层,速率为0.05nm/s,背景气压10-6T;
(7)用激光在P2线远离P1线的一侧,距离P2线110μm处,从玻璃面刻蚀一条和P2平行的线(即P3线,激光蚀刻的具体参数参见表1中的P3),将除了玻璃以外的所有层完全去除,线宽88μm。
一个窗口区域为3.6cm×4cm,包含6个0.6cm宽的相互串联的倒置结构的子电池的组件。通过公式计算GFF为91.6%。
表1:激光蚀刻工艺参数
产品效果测试
对实施例和对比例制备得到的薄膜光伏串联组件进行测试,测试条件为一个太阳光光强,光源AAA级别,窗口面积14.4cm2(测试时,太阳光从衬底底面入射)。扫描范围从7V到-0.1V,扫描速率为1V/s。测试结果见表2。
表2:薄膜光伏串联组件效率及参数结果
表2中的Voc表示开路电压,Jsc表示短路电流密度,FF表示填充因子,GFF表示几何填充因子,PCE表示能量转化效率。
从表2可以看出,实施例1-2的薄膜光伏串联组件几何填充因子和能量转化效率明显高于对比例1-2。

Claims (10)

  1. 一种薄膜光伏串联组件,其特征在于,所述薄膜光伏串联组件由多个子电池构成;
    所述子电池,由下往上,依次包括衬底、电极A、吸收层、电极B,且与所述电极A相对应的是两块互不相连的电极B,与所述电极B相对应的是两块互不相连的电极A。
  2. 根据权利要求1所述的薄膜光伏串联组件,其特征在于,所述电极A与吸收层之间还设置电子传输层和空穴传输层。
  3. 根据权利要求1所述的薄膜光伏串联组件,其特征在于,所述电极B与吸收层之间还设置空穴传输层和电子传输层。
  4. 根据权利要求1所述的薄膜光伏串联组件,其特征在于,所述电极A与吸收层之间还设置电子传输层和空穴传输层,且所述电极B与吸收层之间还设置空穴传输层和电子传输层。
  5. 根据权利要求1所述的薄膜光伏串联组件,其特征在于,所述薄膜光伏串联组件为太阳能电池组件,所述太阳能电池组件包括钙钛矿太阳能电池组件、有机太阳能电池组件、聚合物太阳能电池组件、碲化镉太阳能电池组件中的至少一种。
  6. 根据权利要求5所述的薄膜光伏串联组件,其特征在于,所述电子传输层包括氧化锡、C60和2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲中的至少一种;所述空穴传输层包括聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、聚(3-己基噻吩-2,5-二基)和氧化镍中的至少一种;所述吸收层为钙钛矿吸收层、有机物吸收层、聚合物吸收层和碲化镉吸收层中的至少一种。
  7. 权利要求1-6任一项所述的薄膜光伏串联组件的制备方法,其特征在于,包括以下步骤:
    在衬底上沉积电极A;
    将电极A区块化;
    制备吸收层;
    沉积电极B;
    将电极B区块化,制得所述薄膜光伏串联组件。
  8. 根据权利要求7所述的制备方法,其特征在于,在沉积电极A时,采用掩膜板遮挡的方法,形成区块化的电极A,则无需再单独对电极A进行区块化;在沉积电极B时,采用掩膜板遮挡的方法,形成区块化的电极B,则无需再单独对电极B进行区块化;所述区块化的 电极B与区块化的电极A交错对应。
  9. 根据权利要求7所述的制备方法,其特征在于,包括以下步骤:
    (1)在衬底上沉积电极A;
    (2)将电极A区块化;
    (3)在电极A的一个区块上的部分区域沉积电子传输层,在电极A剩余区域沉积空穴传输层;
    (4)在步骤(3)的电子传输层和空穴传输层上制备吸收层;
    (5)在步骤(4)的吸收层上沉积空穴传输层和电子传输层,实现空穴传输层和电子传输层交错地排布,且吸收层上沉积的空穴传输层与电极A上的电子传输层位置对应,吸收层上沉积的电子传输层与电极A上的空穴传输层位置对应;
    (6)沉积电极B,将电极B区块化,制得所述薄膜光伏串联组件。
  10. 根据权利要求7所述的制备方法,其特征在于,包括以下步骤:
    (1)在长方形的玻璃衬底上,通过磁控溅射,沉积厚度为300-500nm的掺铟氧化锡,形成电极A;
    (2)将长方形的真空胶带贴在距离玻璃衬底边缘0.5-1cm处,且真空胶带和玻璃衬底短边平行,再重复贴几次真空胶带,每条真空胶带的间隔为0.4-0.6cm;
    (3)在电极A上制备氧化锡薄膜,形成电子传输层;除去真空胶带,用掩膜板覆盖氧化锡薄膜,蒸镀聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
    (4)利用激光蚀刻部分电子传输层和空穴传输层的交界处,将玻璃衬底上的电极A区块化,形成的每个区块的宽度为0.8-1.2cm,蚀刻的宽度为20-60μm;
    (5)制备吸收层前驱体溶液,然后将所述吸收层前驱体溶液沉积或涂布在电子传输层和空穴传输层上,形成吸收层;
    (6)用掩膜板覆盖所有电子传输层所在区块,蒸镀C60和2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲,形成电子传输层,移开掩膜板;再用掩膜板覆盖所有空穴传输层所在区块,蒸镀聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜,形成空穴传输层;
    (7)用掩膜板覆盖部分电子传输层和空穴传输层的交界位置、玻璃衬底的两个长边和一个短边,蒸镀银,形成电极B,即制得所述薄膜光伏串联组件。
PCT/CN2023/138501 2022-12-16 2023-12-13 一种薄膜光伏串联组件及其制备方法 WO2024125560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211622855.9 2022-12-16
CN202211622855.9A CN115835664A (zh) 2022-12-16 2022-12-16 一种薄膜光伏串联组件及其制备方法

Publications (1)

Publication Number Publication Date
WO2024125560A1 true WO2024125560A1 (zh) 2024-06-20

Family

ID=85516291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138501 WO2024125560A1 (zh) 2022-12-16 2023-12-13 一种薄膜光伏串联组件及其制备方法

Country Status (2)

Country Link
CN (1) CN115835664A (zh)
WO (1) WO2024125560A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835664A (zh) * 2022-12-16 2023-03-21 李美珍 一种薄膜光伏串联组件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018809A (ja) * 2005-07-06 2007-01-25 Sharp Corp 色素増感型太陽電池モジュールおよびその製造方法
CN104979477A (zh) * 2015-05-18 2015-10-14 常州天合光能有限公司 Z型串联钙钛矿太阳电池组件及其制备方法
US20170077432A1 (en) * 2012-09-26 2017-03-16 Kabushiki Kaisha Toshiba Photovoltaic cell module
CN108550647A (zh) * 2018-05-23 2018-09-18 华中科技大学 一种太阳能电池模组及其制作方法
CN115835664A (zh) * 2022-12-16 2023-03-21 李美珍 一种薄膜光伏串联组件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018809A (ja) * 2005-07-06 2007-01-25 Sharp Corp 色素増感型太陽電池モジュールおよびその製造方法
US20170077432A1 (en) * 2012-09-26 2017-03-16 Kabushiki Kaisha Toshiba Photovoltaic cell module
CN104979477A (zh) * 2015-05-18 2015-10-14 常州天合光能有限公司 Z型串联钙钛矿太阳电池组件及其制备方法
CN108550647A (zh) * 2018-05-23 2018-09-18 华中科技大学 一种太阳能电池模组及其制作方法
CN115835664A (zh) * 2022-12-16 2023-03-21 李美珍 一种薄膜光伏串联组件及其制备方法

Also Published As

Publication number Publication date
CN115835664A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US20100229914A1 (en) Solar cells with shunt resistance
US20160284882A1 (en) Solar Cell
TW201513380A (zh) 高效率堆疊太陽電池
CN106057919A (zh) 具有通过电镀制造的金属栅的太阳能电池
CN105140319A (zh) 一种薄膜太阳能电池及其制备方法
KR20120052310A (ko) 태양 전지 전면 컨택트 도핑
CN102282297A (zh) 包括异质结的光伏装置
CN211789098U (zh) 晶硅-钙钛矿组件
CN114256387A (zh) 一种钙钛矿-异质结三端mwt结构叠层太阳能电池的制备方法
WO2024125560A1 (zh) 一种薄膜光伏串联组件及其制备方法
CN114784198A (zh) 一种高效钙钛矿太阳能电池、电池组件、电池器件及其制备方法
WO2017175491A1 (ja) 多接合光電変換装置の製造方法
US9761752B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
JPH0432552B2 (zh)
CN118175861A (zh) 一种钙钛矿/硅叠层太阳能电池组件及其制备方法
CN118173635A (zh) 一种晶体硅二端叠层太阳能电池及其制备方法
CN218244272U (zh) 一种钙钛矿电池及其内部串联结构
KR20130033803A (ko) 태양전지 모듈의 제조방법 및 이에 의하여 제조된 태양전지 모듈
WO2023098038A1 (zh) 一种钙钛矿太阳能电池的柱状电极结构的制备方法
CN111540803B (zh) 一种太阳能电池组件及其制作方法
KR101306529B1 (ko) 태양전지 및 이의 제조방법
CN113451446A (zh) 切片硅异质结太阳能电池及制备方法、太阳能电池组件
CN118524723B (zh) 叠层太阳能电池及其制备方法
TWI816357B (zh) 太陽能電池模組及其製備方法
WO2016171157A1 (ja) 光電変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23902755

Country of ref document: EP

Kind code of ref document: A1