Nothing Special   »   [go: up one dir, main page]

WO2024122433A1 - Resin composition, prepreg, metal substrate provided with resin, and wiring board - Google Patents

Resin composition, prepreg, metal substrate provided with resin, and wiring board Download PDF

Info

Publication number
WO2024122433A1
WO2024122433A1 PCT/JP2023/042806 JP2023042806W WO2024122433A1 WO 2024122433 A1 WO2024122433 A1 WO 2024122433A1 JP 2023042806 W JP2023042806 W JP 2023042806W WO 2024122433 A1 WO2024122433 A1 WO 2024122433A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
hollow silica
silica particles
resin composition
cured product
Prior art date
Application number
PCT/JP2023/042806
Other languages
French (fr)
Japanese (ja)
Inventor
博道 加茂
Original Assignee
Agc株式会社
Agcエスアイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, Agcエスアイテック株式会社 filed Critical Agc株式会社
Publication of WO2024122433A1 publication Critical patent/WO2024122433A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • This disclosure relates to a resin composition, a prepreg, a resin-coated metal substrate, and a wiring board.
  • the electrical insulation layer of a printed wiring board is required to have properties such as a low dielectric constant, a low dielectric loss tangent, and a low linear expansion coefficient.
  • a resin composition containing a thermosetting resin and silica particles has been used to manufacture an electrical insulation layer of a metal clad laminate that can be processed into a printed wiring board (see Patent Documents 1 and 2).
  • a metal clad laminate is used in which a semi-cured product of the above resin composition is laminated as an electrical insulation layer on the surface of a metal substrate layer.
  • a metal clad laminate is used in which a glass cloth impregnated with a resin composition is laminated as an electrical insulation layer on the surface of a metal substrate layer.
  • a filler is used as a material for a prepreg using a thermosetting resin, and the filler itself usually tends to increase the relative dielectric constant of the obtained prepreg.
  • a metal clad laminate using a hollow filler can reduce the relative dielectric constant compared to the case of using a solid filler, and is therefore being considered as described in Patent Documents 3 to 5.
  • the present inventors have found that some conventionally known resin compositions containing hollow particles and a resin have high viscosity, and that the adhesion between the resin composition, a semi-cured product thereof, a prepreg, etc. and a substrate made of a metal, etc. is insufficient.
  • the inventors have found that if the content of hollow particles is reduced in order to reduce the viscosity, a low relative dielectric constant cannot be achieved with conventional technology.
  • the problem to be solved by the first embodiment of the present disclosure is to provide a resin composition capable of producing a prepreg and a cured product, which have a low dielectric constant and excellent adhesion to a substrate, as well as a prepreg, a resin-coated metal substrate, and a wiring board, which use the resin composition.
  • the problem to be solved by the second embodiment of the present disclosure is to provide a resin composition capable of producing a prepreg and a cured product having a small variation in relative dielectric constant, as well as a prepreg, a resin-coated metal substrate, and a wiring board using the resin composition.
  • a resin composition comprising a resin and hollow silica particles, wherein, when the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is A (g/cm 3 ), and the BET specific surface area of the hollow silica particles is B1 (m 2 /g), A ⁇ B1 is 1.0 to 120.0 m 2 /cm 3 .
  • a resin composition comprising a resin and hollow silica particles, wherein when the density of the hollow silica particles and the density of the resin, which are determined by a constant volume expansion method using argon gas and a dry pycnometer, are A (g/cm 3 ) and B2 (g/cm 3 ), respectively, A/B2 is 0.3 to 1.5.
  • ⁇ 7> The resin composition according to any one of ⁇ 1> to ⁇ 6> above, wherein the content of the hollow silica particles is 10 to 70 volume% relative to the total volume of the resin composition.
  • a prepreg comprising the resin composition or a semi-cured product thereof according to any one of ⁇ 1> to ⁇ 7> above, and a fibrous base material.
  • the fibrous base material contains a glass component.
  • a resin-coated metal substrate comprising the resin composition or a semi-cured product thereof according to any one of ⁇ 1> to ⁇ 7> above, or the prepreg according to ⁇ 8> or ⁇ 9> above, and a metal substrate layer.
  • ⁇ 11> The resin-coated metal substrate according to ⁇ 10>, wherein the metal substrate layer is a copper foil.
  • a wiring board comprising a cured product of the resin composition according to any one of ⁇ 1> to ⁇ 7> above and a metal wiring.
  • a resin composition can be provided that has a low dielectric constant and excellent adhesion to a substrate, and can be used to produce a prepreg and a cured product.
  • a prepreg, a resin-coated metal substrate, and a wiring board can be provided that use the resin composition.
  • a resin composition can be provided that can be used to produce a prepreg with a small variation in relative dielectric constant.
  • a prepreg, a resin-coated metal substrate, and a wiring board can be provided that use the above resin composition.
  • FIG. 1 is a top view showing a pressed prepreg produced in the examples.
  • each component may contain multiple types of the corresponding substance.
  • the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
  • multiple types of particles corresponding to each component may be included.
  • “sphericity” refers to the average value obtained by measuring the maximum diameter (DL) and the minor diameter (DS) perpendicular to the maximum diameter (DL) of each of 100 random particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM) and calculating the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL).
  • the "dielectric tangent” and the “relative dielectric constant” are measured by a perturbation resonator method using a dedicated device (for example, "Vector Network Analyzer E5063A" manufactured by Keycom Corporation).
  • the term "semi-cured product” refers to a cured product in a state where an exothermic peak associated with the curing of a thermosetting resin appears when the cured product of a resin composition is measured by differential scanning calorimetry.
  • the term “semi-cured product” refers to a cured product in a state where uncured thermosetting resin remains.
  • the term “cured product” refers to a cured product in a state where no exothermic peak associated with the curing of the thermosetting resin appears when the cured product of the resin composition is measured by differential scanning calorimetry.
  • the term “cured product” refers to a cured product in a state where no uncured thermosetting resin remains.
  • the "maximum height roughness Rz” is measured in accordance with JIS B 0601 (2013) (corresponding ISO: ISO 4287 1997).
  • the "weight average molecular weight” is determined using gel permeation chromatography (GPC) in terms of polystyrene.
  • composition 1 contains a resin and hollow silica particles, and when the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is A (g/cm 3 ), and the BET specific surface area of the hollow silica particles is B1 (m 2 /g), A ⁇ B1 is 1.0 to 120.0 m 2 /cm 3 .
  • a prepreg and a cured product having a low dielectric constant and excellent adhesion to a substrate can be produced by using Composition 1.
  • Composition 1 The reason for this is not entirely clear, but is presumed to be as follows.
  • the hollow silica particles contained in composition 1 have a product of density A and BET specific surface area B1 of 1.0 to 120.0 m 2 /cm 3. This improves the dispersibility of the hollow silica particles in the resin composition and reduces the viscosity of the resin composition, which is presumably why the above-mentioned effects are achieved.
  • composition 2 contains a resin and hollow silica particles, and when the densities of the hollow silica particles and the resin determined by a constant volume expansion method using argon gas and a dry pycnometer are A (g/cm 3 ) and B2 (g/cm 3 ), respectively, A/B2 is 0.3 to 1.5.
  • Composition 2 It is possible to produce a prepreg and a cured product having a small variation in the relative dielectric constant by using Composition 2. The reason for this is not entirely clear, but is presumed to be as follows.
  • the density ratio A/B2 of the resin and hollow silica particles contained in Composition 2 is 0.3 to 1.5. This makes it possible to suppress excessive settling or floating of the hollow silica particles in the resin composition, and to suppress the hollow silica particles from being unevenly present in the produced prepreg and cured product, which is presumably why the above-mentioned effects are achieved.
  • Composition 1 and Composition 2 may be collectively referred to as “Composition.”
  • the viscosity of the composition is preferably 100 to 10,000 mPa ⁇ s, more preferably 130 to 5,000 mPa ⁇ s, even more preferably 150 to 3,000 mPa ⁇ s, particularly preferably 180 to 1,500 mPa ⁇ s, and most preferably 200 to 1,000 mPa ⁇ s.
  • viscosity refers to a value obtained by measuring the viscosity at 30 seconds at 25°C using a rotational rheometer (e.g., Modular Rheometer Physica MCR-301 manufactured by Anton Paar) at a shear rate of 1 rpm.
  • a rotational rheometer e.g., Modular Rheometer Physica MCR-301 manufactured by Anton Paar
  • the composition is preferably liquid at 25°C.
  • the composition may contain one type of resin or two or more types.
  • the resin contained in the composition is preferably a thermosetting resin.
  • the composition may contain two or more types of thermosetting resin, but preferably contains one type.
  • the thermosetting resin include epoxy resin, polyphenylene ether resin, polyester resin, polyimide resin, phenol resin, resin containing a divinylbenzene skeleton, resin containing a pyrimidine skeleton, etc.
  • the thermosetting resin is preferably one or more selected from epoxy resin, polyimide resin, polyphenylene ether resin, resin containing a divinylbenzene skeleton, and resin containing a pyrimidine skeleton.
  • epoxy resin examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, alicyclic epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, diglycidyl ethers of polyfunctional phenols, and diglycidyl ethers of polyfunctional alcohols.
  • polyimide resin examples include aromatic polyimide and aromatic polyamic acid.
  • the polyphenylene ether resin may be modified polyphenylene ether or unmodified polyphenylene ether, but from the viewpoint of adhesion, modified polyphenylene ether is preferred.
  • the modified polyphenylene ether has a polyphenylene ether chain and a substituent bonded to the end of the polyphenylene ether chain.
  • the substituent preferably has a carbon-carbon double bond.
  • the substituent is preferably represented by the following formula (1) or (2), more preferably represented by the following formula (2).
  • n is an integer of 0 to 10
  • Z is an arylene group
  • R 1 to R 3 are each independently hydrogen or an alkyl group.
  • Z is directly bonded to the end of the polyphenylene ether chain in the modified polyphenylene ether.
  • R 4 is hydrogen or an alkyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the polyphenylene ether chain is preferably represented by the following formula (3):
  • m is a number within the range of 1 to 50
  • R 5 to R 8 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group, with a hydrogen atom or an alkyl group being preferred.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • An example of a resin containing a divinylbenzene skeleton is ODV-XET manufactured by Nippon Steel Chemical & Material Co., Ltd.
  • resins containing a pyrimidine skeleton include the ELPAC HC-F series manufactured by JSR Corporation.
  • the weight average molecular weight (Mw) of the thermosetting resin is preferably 1,000 to 7,000, more preferably 1,000 to 5,000, and even more preferably 1,000 to 3,000.
  • the content of the curable resin relative to the total mass of the present composition is preferably 10 to 40 mass%, more preferably 15 to 35 mass%, and even more preferably 20 to 30 mass%.
  • the composition may contain resins other than thermosetting resins (hereinafter, also referred to as "other resins").
  • other resins include polytetrafluoroethylene, polyethylene terephthalate, polyolefins, silicones, etc.
  • the content of other resins relative to the total mass of the composition is not particularly limited, and is, for example, 1 to 50 mass%.
  • the density of the resin determined by a constant volume expansion method using argon gas and a dry pycnometer is preferably 0.5 to 3.0 g/ cm3 , and more preferably 0.8 to 2.3 g/ cm3 .
  • the density of the resin is measured at 25° C. after drying. In the case of a thermosetting resin, the density is measured after curing. The density can be measured by measuring the density of the cured resin with a dry pycnometer as described above.
  • the density of the resin is determined by measuring the density of the composition after drying or, in the case of a thermosetting resin, after heat curing, using an Ar pycnometer.
  • the present composition may contain a polymerization initiator, a polymerization accelerator, a plasticizer, and other components, as described below.
  • the polymerization initiator, the polymerization accelerator, the plasticizer, and other components include a resin or a component that is incorporated into the resin by reaction, the resin or component is also included in the "resin” in calculating the density of the resin.
  • the entire resin or components that are incorporated into the resin by reaction and that are included in the present composition are considered to be the "resin” in calculating the density of the resin. The same applies to the calculation of A/B2 in the present disclosure.
  • the hollow silica particles have a shell layer containing silica and have a space inside the shell layer.
  • the space can be confirmed by observation with a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • "having a space inside the shell layer” means that when a cross-section of a single hollow silica particle is observed, a hollow state exists in which a single space is surrounded by a shell layer.
  • the shell layer may have a single-layer structure or a multi-layer structure having two or more layers.
  • the content of silica in the shell layer is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 95% by mass or more, with the upper limit of the content being 100% by mass, and preferably 99.99% by mass.
  • the shell layer preferably contains at least one selected from alkali metals belonging to Groups 1 and 2 of the periodic table and their silicates.
  • improving the dielectric properties of the semi-cured product and the cured product means reducing the dielectric constant and dielectric loss tangent thereof.
  • the content of alkali metals belonging to Group 1 or 2 of the periodic table relative to the total mass of the shell layer is preferably 30 ppm by mass or more, more preferably 100 ppm by mass or more, even more preferably 150 ppm by mass or more, and particularly preferably 300 ppm by mass or more.
  • the content is preferably 1% by mass or less, more preferably 5000 ppm by mass or less, and most preferably 1000 ppm by mass or less.
  • the content of alkali metals belonging to Group 1 or 2 of the periodic table relative to the total mass of the shell layer is preferably 30 ppm by mass to 1 mass%, more preferably 100 ppm by mass to 5000 ppm by mass, and even more preferably 150 ppm by mass to 1000 ppm by mass.
  • the composition of the shell layer is measured by ICP emission spectrometry, flame atomic absorption spectrometry, or the like.
  • the shell layer preferably contains one or more selected from sodium, potassium, magnesium, calcium, and strontium, and more preferably contains one or more selected from sodium, magnesium, and calcium.
  • the average primary particle diameter of the hollow silica particles is preferably 10 nm to 10 ⁇ m, more preferably 20 nm to 7 ⁇ m, even more preferably 50 nm to 5 ⁇ m, particularly preferably 70 nm to 3 ⁇ m, and most preferably 100 nm to 1 ⁇ m.
  • the average primary particle size of hollow silica particles is determined by directly observing the particle diameter (diameter, the average value of the long and short sides if the particle is not spherical) by SEM observation. Specifically, the primary particle sizes of 100 hollow silica particles are measured from an SEM image, and the value at which the cumulative distribution of the primary particle sizes obtained by averaging them is 50% is estimated to be the average primary particle size of all primary particles.
  • the median diameter (hereinafter also simply referred to as "d50") of the hollow silica particles is preferably 0.1 to 10.0 ⁇ m, more preferably 0.2 to 10.0 ⁇ m, even more preferably 0.25 to 8.0 ⁇ m, particularly preferably 0.3 to 7.0 ⁇ m, most preferably 0.3 to 5.0 ⁇ m, and may be 0.3 to 3.0 ⁇ m.
  • d50 refers to the volume-based cumulative 50% diameter of hollow silica particles determined by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII” manufactured by Microtrack Bell Co., Ltd.). That is, d50 refers to the particle diameter at the point on the cumulative curve where the cumulative volume is 50% when the particle size distribution is measured by a laser diffraction/scattering method and a cumulative curve is calculated with the total volume of the hollow silica particles set to 100%. In the present disclosure, the d50 of the hollow silica particles is measured in a state including primary particles and secondary particles.
  • the d10 of the hollow silica particles is preferably 0.1 to 2.0 ⁇ m, more preferably 0.2 to 2.0 ⁇ m, even more preferably 0.3 to 1.8 ⁇ m, and particularly preferably 0.3 to 1.5 ⁇ m.
  • d10 is the volume-based cumulative 10% diameter of hollow silica particles obtained by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII” manufactured by Microtrack-Bell Co., Ltd.). That is, d10 is the particle diameter at the point where the cumulative volume is 10% on a cumulative curve obtained by measuring the particle size distribution by a laser diffraction/scattering method and assuming the total volume of the hollow silica particles to be 100%. In the present disclosure, the d10 of the hollow silica particles is measured in a state including primary particles and secondary particles.
  • the d90 of the hollow silica particles is preferably 0.7 to 15.0 ⁇ m, more preferably 0.8 to 12.0 ⁇ m, even more preferably 0.9 to 10.0 ⁇ m, particularly preferably 0.9 to 8.0 ⁇ m, most preferably 0.9 to 6.0 ⁇ m, and may be 0.9 to 5.0 ⁇ m.
  • d90 refers to the volume-based cumulative 90% diameter of hollow silica particles determined by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII” manufactured by Microtrack-Bell Co., Ltd.). That is, d90 refers to the particle diameter at the point on the cumulative curve where the cumulative volume is 90% when the particle size distribution is measured by a laser diffraction/scattering method and a cumulative curve is calculated with the total volume of the hollow silica particles being 100%. In the present disclosure, the d90 of the hollow silica particles is measured in a state including primary particles and secondary particles.
  • d50/d10 is preferably 6.0 or less, more preferably 5.0 or less, even more preferably 3.0 or less, and particularly preferably 2.5 or less.
  • the lower limit of d50/d10 is not particularly limited, and can be 1.3.
  • the proportion of hollow silica particles having a particle size of 10 ⁇ m or more as measured by the Coulter Counter method is preferably 500 ppm by mass or less, more preferably 200 ppm by mass or less, even more preferably 100 ppm by mass or less, and may be 0 ppm by mass.
  • the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is preferably 0.35 to 2.00 g/ cm3 , more preferably 0.35 to 1.50 g/ cm3 , and even more preferably 0.40 to 1.00 g/ cm3 .
  • the density of the hollow silica particles is determined by taking a weighted average of the densities of the individual hollow silica particles.
  • an AccuPycII 1340 manufactured by Micromeritics or an equivalent device can be used as the dry pycnometer.
  • the BET specific surface area of the hollow silica particles is preferably 1.0 to 100.0 m 2 /g, more preferably 1.0 to 50.0 m 2 /g, and even more preferably 1.0 to 30.0 m 2 /g.
  • a ⁇ B1 is 1.0 to 120.0 m 2 /cm 3.
  • a ⁇ B1 is preferably 2.0 to 80.0 m 2 /cm 3 , more preferably 2.5 to 40.0 m 2 /cm 3 , and even more preferably 3.0 to 20.0 m 2 /cm 3 .
  • a ⁇ B1 is preferably 1.0 to 120.0 m 2 /cm 3 , more preferably 2.0 to 80.0 m 2 /cm 3 , even more preferably 2.5 to 40.0 m 2 /cm 3 , and particularly preferably 3.0 to 20.0 m 2 /cm 3 .
  • A/B2 is preferably 0.3 to 1.5, and more preferably 0.4 to 1.0.
  • A/B2 is from 0.3 to 1.5, and from the viewpoint of further reducing the variation in the relative dielectric constant of the cured product, etc., it is preferably from 0.4 to 1.0.
  • the porosity of the hollow silica particles is preferably 30 to 90%, more preferably 40 to 90%, and even more preferably 50 to 85%.
  • the porosity of hollow silica particles is calculated by dividing the density of hollow silica particles by the true density of hollow silica particles and multiplying the result by 100. The true density of hollow silica particles is measured using He gas with an AccuPycII 1340 manufactured by Micromeritics or an equivalent device.
  • each hollow silica particle contained in the hollow silica particles is not particularly limited and may be spherical or non-spherical, but from the viewpoint of a low dielectric tangent, a spherical shape is preferred.
  • the sphericity of the spherical hollow silica particles is preferably 0.60 or more, more preferably 0.75 or more, even more preferably 0.90 or more, particularly preferably 0.93 or more, and most preferably 1.00.
  • the hollow silica particles are preferably non-porous particles.
  • the dielectric tangent of the hollow silica particles at a frequency of 1 GHz is preferably 0.0040 or less, more preferably 0.0030 or less, even more preferably 0.0020 or less, particularly preferably 0.0015 or less, and most preferably 0.0012 or less.
  • the oil absorption of the hollow silica particles is preferably from 20 to 500 mL/100 g, more preferably from 25 to 200 mL/100 g, even more preferably from 30 to 150 mL/100 g, particularly preferably from 30 to 100 mL/100 g, and most preferably from 30 to 80 mL/100 g.
  • oil absorption is measured in accordance with JIS K 5101-13-1 (2004) (corresponding ISO: ISO 787-5 1980). Note that the oil absorption in the present disclosure is a value obtained by multiplying the value measured in accordance with JIS K 5101-13-1 (2004) by the value of density/true density (i.e., oil absorption measured in accordance with JIS K 5101-13-1 (2004) ⁇ (density/true density)).
  • the 20% breakdown pressure of the hollow silica particles as measured by mercury porosimetry is preferably 120 MPa or more, more preferably 150 MPa or more, even more preferably 200 MPa or more, and particularly preferably 250 MPa or more.
  • the upper limit of the 20% breakdown pressure is not particularly limited, and can be, for example, 600 MPa or less.
  • the "20% burst pressure” refers to the burst pressure measured by mercury porosimetry, and is the minimum pressure that indicates a 20% decrease in capacity from the maximum integrated capacity when pressure is applied from 0 to 400 MPa by mercury porosimetry.
  • the 20% collapse pressure of the hollow silica particles as measured by mercury intrusion porosimeter is measured in accordance with ASTM D 3102-78.
  • the charge amount of the hollow silica particles is preferably 0.005 ⁇ C/g or more, more preferably 0.010 ⁇ C/g or more, even more preferably 0.015 ⁇ C/g or more, and particularly preferably 0.020 ⁇ C/g or more.
  • the upper limit of the charge amount is not particularly limited, and can be 0.080 ⁇ C/g or less.
  • the charge amount is measured by the following method.
  • a measuring device for example, a powder triboelectric charge measuring device NS-K100 type (manufactured by Nano Seeds Corporation) can be used.
  • Each hollow silica particle may be treated with a silane coupling agent.
  • a silane coupling agent By treating the surface of the hollow silica particle with a silane coupling agent, the amount of remaining silanol groups on the surface is reduced, the surface is hydrophobicized, moisture adsorption is suppressed, and the dielectric loss is improved. In addition, the affinity with the resin in the composition is improved, and the dispersibility and strength after the resin film are improved.
  • the silane coupling agent include aminosilane coupling agents, methacrylsilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, etc.
  • the silane coupling agents may be used alone or in combination of two or more.
  • the amount of the silane coupling agent attached is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 5 parts by mass, and even more preferably 0.10 to 2 parts by mass, based on 100 parts by mass of the hollow silica particles.
  • the fact that the surface of the hollow silica particles has been treated with a silane coupling agent can be confirmed by detecting a peak due to a substituent of the silane coupling agent by IR.
  • the amount of the silane coupling agent attached can be measured by the amount of carbon.
  • the hollow silica particles may contain impurity elements as long as the effects of the present disclosure are not hindered.
  • impurity elements include Al, Fe, Ti, etc.
  • the content of the hollow silica particles relative to the total volume of the present composition is preferably 10 to 70 volume %, more preferably 15 to 65 volume %, and even more preferably 18 to 60 volume %.
  • the hollow silica particles may be commercially available or may be prepared by a conventional method.
  • hollow silica particles prepared by the methods described in WO 2019/131658, WO 2021/006697, WO 2021/172294, etc. may be used.
  • the composition may contain one or more solvents.
  • the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-2-pyrrolidone, n-hexane, and cyclohexane.
  • the solvent contains at least one selected from the group consisting of toluene, cyclohexanone, methyl ethyl ketone, and N-methyl-2-pyrrolidone.
  • the content of the solvent relative to the total mass of the composition is not particularly limited, and may be, for example, 10 to 60% by mass.
  • the surface tension of the solvent is preferably 40 mN/m or less, more preferably 35 mN/m or less, and even more preferably 30 mN/m or less.
  • the lower limit of the surface tension is not particularly limited and may be, for example, 5 mN/m.
  • surface tension is measured by the Wilhelmy method using a surface tensiometer for a solvent at 25°C.
  • the viscosity of the solvent is preferably 10 mPa ⁇ s or less at 25°C, and more preferably 5 mPa ⁇ s or less.
  • the lower limit of the viscosity of the solvent is not particularly limited, and can be 2 mPa ⁇ s or more.
  • the content of the solvent relative to the total mass of the composition is not particularly limited, and can be, for example, 10% by mass to 90% by mass.
  • the composition may contain one or more polymerization initiators.
  • polymerization initiators include ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne, benzoyl peroxide, 3,3',5,5'-tetramethyl-1,4-diphenoquinone, chloranil, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, and azobisisobutyronitrile.
  • the content of the polymerization initiator per 100 parts by mass of resin is preferably 0.1 to 5 parts by mass.
  • the composition may contain one or more polymerization accelerators.
  • polymerization accelerators include trialkenyl isocyanurate compounds such as triallyl isocyanurate, polyfunctional acrylic compounds having two or more acryloyl or methacryloyl groups in the molecule, polyfunctional vinyl compounds having two or more vinyl groups in the molecule, and vinylbenzyl compounds such as styrene having a vinylbenzyl group in the molecule.
  • the content of the polymerization accelerator per 100 parts by mass of the resin is preferably 10 to 100 parts by mass.
  • the composition may contain one or more plasticizers.
  • plasticizers include butadiene-styrene copolymers.
  • the content of the plasticizer per 100 parts by mass of resin is preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass.
  • the composition may further contain other components such as surfactants, thixotropy imparting agents, pH adjusters, pH buffers, viscosity regulators, defoamers, silane coupling agents, dehydrating agents, plasticizers, weather resistance agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brightening agents, colorants, conductive materials, release agents, surface treatment agents, flame retardants, and various organic or inorganic fillers, to the extent that the effects of the composition are not impaired.
  • other components such as surfactants, thixotropy imparting agents, pH adjusters, pH buffers, viscosity regulators, defoamers, silane coupling agents, dehydrating agents, plasticizers, weather resistance agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brightening agents, colorants, conductive materials, release agents, surface treatment agents, flame retardants, and various organic or inorganic fillers, to the extent that the effects of the composition are not impaired.
  • This composition can be suitably used as a resin composition for producing electronic substrates for use in electronic devices such as personal computers, notebook computers, and digital cameras, and communication devices such as smartphones and game consoles.
  • the resin composition of the present invention is also expected to be applied to prepregs, metal foil-clad laminates, printed wiring boards, resin sheets, adhesive layers, adhesive films, solder resists, resin compositions for bump reflow, rewiring insulating layers, die bond materials, encapsulants, underfills, mold underfills, and laminated inductors, etc., in order to reduce dielectric constant, transmission loss, moisture absorption, and improve peel strength.
  • the prepreg of the present disclosure includes the present composition or a semi-cured product thereof, and a fibrous substrate.
  • the fibrous substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, and pulp paper.
  • the fibrous substrate preferably contains a glass component.
  • the thickness of the fibrous substrate is not particularly limited, and can be 12 ⁇ m to 1000 ⁇ m. Note that the present composition has been described above, so a description thereof will be omitted here.
  • the prepreg of the present disclosure can be produced by applying or impregnating the present composition to a fibrous substrate. After applying or impregnating the present composition, the resin composition may be heated and semi-cured.
  • the resin-coated metal substrate of the present disclosure includes the present composition or a semi-cured product thereof, or the prepreg, and a metal substrate layer.
  • the metal substrate layer may be provided on one surface or both surfaces of the present composition or a semi-cured product thereof, or the prepreg.
  • the type of the metal substrate layer is not particularly limited, and examples of metals constituting the metal substrate layer include copper, copper alloys, stainless steel, nickel, nickel alloys (including alloy 42), aluminum, aluminum alloys, titanium, and titanium alloys.
  • the metal substrate layer is preferably a metal foil, and more preferably a copper foil such as rolled copper foil or electrolytic copper foil.
  • the surface of the metal foil may be rust-proofed (oxide film such as chromate) or may be roughened.
  • a carrier-attached metal foil consisting of a carrier copper foil (thickness: 10 to 35 ⁇ m) and an ultra-thin copper foil (thickness: 2 to 5 ⁇ m) laminated on the carrier copper foil surface via a peeling layer may be used.
  • the surface of the metal substrate layer may be treated with a silane coupling agent.
  • the entire surface of the metal substrate layer may be treated with a silane coupling agent, or a part of the surface of the metal substrate layer may be treated with a silane coupling agent.
  • the silane coupling agent the above-mentioned ones can be used.
  • the thickness of the metal substrate layer is preferably 1 to 40 ⁇ m, more preferably 2 to 20 ⁇ m. From the viewpoint of reducing transmission loss when the resin-coated metal substrate is used as a printed wiring board, the maximum height roughness (Rz) of the metal substrate layer is preferably 6 ⁇ m or less, more preferably 4 ⁇ m or less.
  • the resin-attached metal substrate of the present disclosure can be produced by applying the present composition to the surface of a metal substrate layer. After applying the present composition, the resin composition may be heated to be semi-cured.
  • the resin-coated metal substrate of the present disclosure can be produced by laminating a metal substrate layer and a prepreg. Examples of a method for laminating the metal substrate layer and the prepreg include a method of thermocompression bonding them.
  • the wiring board of the present disclosure includes a cured product of the present composition and metal wiring.
  • the metal wiring can be produced by etching the above-mentioned metal substrate layer, etc.
  • the wiring board of the present disclosure can be manufactured by a method of etching the metal substrate layer of the resin-coated metal substrate, or by a method of forming a pattern circuit on the cured surface of the present composition by electrolytic plating (semi-additive method (SAP method), modified semi-additive method (MSAP method), etc.).
  • SAP method spin-additive method
  • MSAP method modified semi-additive method
  • particles refers to hollow silica particles, hollow particles, and/or solid particles, unless otherwise specified.
  • the d50 of the particles used in each example was measured by a laser diffraction/scattering method using a particle size distribution analyzer (MT3300EXII, manufactured by Microtrac-Bell). Specifically, the secondary particles were dispersed by irradiating with ultrasonic waves for 120 seconds, and then the measurement was performed. The value at which the cumulative distribution of the particle sizes obtained was 50% was taken as d50.
  • the average primary particle size of the particles used in each example was determined by directly observing the particle size (diameter, or the average of the long and short sides if the particle is not spherical) using SEM observation. Specifically, the primary particle sizes of 100 particles were measured using SEM images, and the value at which the cumulative distribution of the primary particle sizes obtained by averaging these was 50% was estimated to be the average primary particle size of all the primary particles.
  • the sphericity of the particles was determined by measuring the maximum diameter (DL) and the minor diameter (DS) perpendicular to the maximum diameter (DL) of any 100 particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM), calculating the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL), and calculating the average.
  • SEM scanning electron microscope
  • the dielectric loss tangent of the particles at a frequency of 1 GHz was measured by a perturbation resonator method using a vector network analyzer E5063A manufactured by Keycom Corporation.
  • the porosity of the particles was calculated by dividing the density of the particles by the true density of the particles and multiplying the result by 100.
  • the true density of the particles was measured using an AccuPycII 1340 manufactured by Micromeritics.
  • the density of the resin used in each example was measured as follows. - Density measurement of polyphenylene ether-containing resin - 59 parts by mass of polyphenylene ether, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, and 60 parts by mass of toluene were placed in a polyvinyl bottle and kneaded with a planetary disperser to obtain a resin.
  • the resin obtained was vacuum dried at 120°C to remove the solvent, and then cured in a nitrogen oven at 200°C. It was then pulverized using a cutter mill, and the density was measured with an Ar pycnometer, which gave a density of 1.1 g/ cm3 .
  • a polyimide resin (Arakawa Chemical Industries, Ltd., PIAD300, solid content 30%) was vacuum dried at 150°C to remove the solvent, and then pulverized using a cutter mill. The density was measured using an Ar pycnometer and found to be 1.5 g/ cm3 .
  • Example 1-1 to 1-7 Among the following Examples 1-1 to 1-7, Examples 1 to 5 are examples of the first embodiment, and Examples 6 and 7 are comparative examples of the first embodiment.
  • each component for producing a resin composition [thermosetting resin]
  • Polyphenylene ether Modified polyphenylene ether in which the terminal hydroxyl groups of polyphenylene ether are modified with methacrylic groups, manufactured by SABIC, Noryl SA9000, Mw 1700, two functional groups per molecule
  • the hollow silica particles A1 were prepared as follows.
  • the entire amount of the hollow silica precursor dispersion was neutralized with 2M hydrochloric acid to pH 2, and then filtered using quantitative filter paper 5C. Then, 350 ml of 80° C. ion-exchanged water was added and pressure filtered again to wash the hollow silica cake. The cake after filtration was dried in a nitrogen atmosphere at 100° C. for 1 hour and then at 400° C. for 2 hours (heating rate: 10° C./min) to remove the organic matter, thereby obtaining a hollow silica precursor. The obtained hollow silica precursor was baked at 1000° C. for 1 hour (heating rate: 10° C./min) to bake and tighten the shell, thereby obtaining baked hollow silica particles.
  • Hollow silica particles A2 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 2 g and the amount of sorbitan acid monooleate used was changed to 2 g.
  • Hollow silica particles A3 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 10 g, sorbitan acid monooleate was not used, and the pressure in emulsification was changed to 100 bar.
  • Hollow silica particles A4 were obtained in the same manner as hollow silica particles A1, except that the hollow silica precursor was calcined at 1,100° C. for 1 hour (temperature increase rate: 10° C./min).
  • Hollow silica particles A5 were obtained in the same manner as hollow silica particles A1, except that the calcination conditions of the hollow silica precursor were changed to 800° C. for 1 hour (heating time: 10° C./min).
  • ⁇ Hollow Particles B1> A silica-based hollow fine particle dispersion sol (Catalysts and Chemical Industries Co., Ltd., Sururia (registered trademark) 1420, average primary particle diameter 60 nm, concentration 20.5 mass%, dispersion medium: isopropanol) was subjected to vacuum drawing at 120° C. for 2 hours to dry out the solvent, thereby obtaining hollow particles B1.
  • Example 1-1 59 parts by mass of polyphenylene ether resin, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, parts by mass of hollow silica particles A1 accounting for 20% by volume of the total, and 80 parts by mass of toluene were placed in a polyvinyl chloride bottle and kneaded using a planetary dispenser to obtain a resin composition. The resin composition was applied to a glass cloth of IPC spec 2116 by impregnation, and then heated and dried at 160° C.
  • Examples 1-2 to 1-7 Except for changing the hollow silica particles A1 to the hollow silica particles or hollow particles shown in Table 1, a resin composition, a prepreg, and a resin-coated metal substrate were produced in the same manner as in Example 1-1.
  • the cured product obtained using this composition has a low dielectric constant and excellent adhesion to the substrate.
  • each component for producing a resin composition ⁇ Thermosetting resin>
  • Polyphenylene ether Modified polyphenylene ether in which the terminal hydroxyl groups of polyphenylene ether are modified with methacrylic groups, manufactured by SABIC Corporation, Noryl SA9000, Mw 1700, number of functional groups per molecule: 2
  • Polyimide resin Manufactured by Arakawa Chemical Industries, Ltd., PIAD300, solid content concentration 30% by mass
  • the hollow silica particles A1 were prepared as follows.
  • the entire amount of the hollow silica precursor dispersion was neutralized with 2M hydrochloric acid to pH 2, and then filtered using quantitative filter paper 5C. Then, 350 ml of 80° C. ion-exchanged water was added and pressure filtered again to wash the hollow silica cake. The cake after filtration was dried in a nitrogen atmosphere at 100° C. for 1 hour and then at 400° C. for 2 hours (heating rate: 10° C./min) to remove the organic matter, thereby obtaining a hollow silica precursor. The obtained hollow silica precursor was baked at 1000° C. for 1 hour (heating rate: 10° C./min) to bake and tighten the shell, thereby obtaining baked hollow silica particles.
  • Hollow silica particles A2 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 2 g and the amount of sorbitan acid monooleate used was changed to 2 g.
  • Hollow silica particles A3 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 10 g, sorbitan acid monooleate was not used, and the pressure in emulsification was changed to 100 bar.
  • the sodium content relative to the total mass of the first shell layer and the second shell layer was 1,200 ppm by mass.
  • Hollow silica particles A5 were obtained in the same manner as hollow silica particles A1, except that the calcination conditions of the hollow silica precursor were changed to 800° C. for 1 hour (heating time: 10° C./min).
  • Solid particle C1> SO-C2 solid silica particles with a median diameter (d50) of 0.6 ⁇ m, Admatechs Co., Ltd. was used as is.
  • Example 2-1 59 parts by mass of polyphenylene ether resin, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, parts by mass of hollow silica particles A1 accounting for 20% by volume of the total, and 80 parts by mass of toluene were placed in a polyvinyl chloride bottle and kneaded using a planetary dispenser to obtain a resin composition. The resin composition was allowed to stand in an environment of 25° C. and a relative humidity of 50% for 12 hours.
  • the resin composition was applied to impregnate a glass cloth of IPC spec 2116, and then heated and dried at 160° C. for 4 minutes to obtain a prepreg.
  • Three sheets of prepreg were stacked, low-profile copper foil (thickness: 18 ⁇ m, Rz: 3.5 ⁇ m, Mitsui Kinzoku Co., Ltd., 3EC-M3-V-18) was laminated on the top and bottom, and the resulting mixture was heated and molded at 230° C. and a pressure of 30 kg/cm 2 for 120 minutes to obtain a metal substrate with resin.
  • A/B2 was calculated and shown in Table 2. In the subsequent examples, similar calculations were performed and the results are summarized in Table 2. In Examples 2-5 to 2-6 and Examples 3-5 to 3-6, A was used as the density of the solid particles or hollow particles, not the density of the hollow silica particles.
  • Example 2-2 to 2-6 Except for changing the hollow silica particles A1 to the hollow silica particles, solid particles or hollow particles shown in Table 2, a resin composition, a prepreg and a resin-coated metal substrate were produced in the same manner as in Example 2-1.
  • Example 3-1 50 parts by mass of polyimide resin (manufactured by Arakawa Chemical Industries, Ltd., PIAD300, solid content 30%), 20 parts by mass of hollow silica particles A-1 corresponding to 20 volume % of the total, and 20 parts by mass of cyclohexanone were placed in a polyvinyl bottle, and alumina balls having a diameter of 20 mm were added and mixed at 30 rpm for 12 hours. The alumina balls were then removed to obtain a resin composition. The resin composition was allowed to stand in an environment of 25° C. and a relative humidity of 50% for 12 hours. After standing, the resin composition was applied to impregnate a glass cloth of IPC spec 2116, and then heated and dried at 160° C.
  • polyimide resin manufactured by Arakawa Chemical Industries, Ltd., PIAD300, solid content 30%
  • alumina balls having a diameter of 20 mm were added and mixed at 30 rpm for 12 hours.
  • the alumina balls were then removed to obtain a resin
  • a prepreg Three sheets of prepreg were stacked, low-profile copper foil (thickness: 18 ⁇ m, Rz: 3.5 ⁇ m, Mitsui Kinzoku Co., Ltd., 3EC-M3-V-18) was laminated on top and bottom, and the resulting mixture was heated and molded at 180° C. and a pressure of 30 kg/cm 2 for 120 minutes to obtain a metal substrate with resin.
  • Example 3-2 to 3-6 Except for changing the hollow silica particles A1 to the hollow silica particles, solid particles or hollow particles shown in Table 2, a resin composition, a prepreg and a resin-coated metal substrate were produced in the same manner as in Example 3-1.
  • the dielectric constants were measured at three points, 1/4L, 2/4L, and 3/4L, at the center X in the short side direction of the pressed prepreg shown in Figure 1, where L is the total length in the long side direction, and the standard deviation of the dielectric constants was calculated.
  • the measurement results are summarized in Table 2.
  • the prepreg is indicated by the reference symbol 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resin composition according to the present disclosure contains a resin and hollow silica particles. When A (g/cm3) is the density of the hollow silica particles as determined by a constant volume expansion method using an argon gas and a dry pycnometer, and B1 (m2/g) is the BET specific surface area of the hollow silica particles, A×B1 is 1.0 to 120.0 m2/cm3, or when A (g/cm3) and B2 (g/cm3) are respectively the density of the hollow silica particles and the density of the resin as determined by a constant volume expansion method using an argon gas and a dry pycnometer, A/B2 is 0.3 to 1.5.

Description

樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板Resin composition, prepreg, resin-coated metal substrate, and wiring board
 本開示は、樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板に関する。 This disclosure relates to a resin composition, a prepreg, a resin-coated metal substrate, and a wiring board.
 プリント配線板が備える電気絶縁層には、低誘電率、低誘電正接、低線膨張率等の特性が要求される。近年、熱硬化性樹脂及びシリカ粒子を含む樹脂組成物は、プリント配線板に加工可能な金属張積層体が備える電気絶縁層の製造に使用されている(特許文献1及び2参照)。具体的には、金属基材層の表面に、上記樹脂組成物の半硬化物を電気絶縁層として積層した金属張積層体が使用されている。他の例としては、樹脂組成物を含浸させたガラスクロス等を電気絶縁層として、金属基材層の表面に積層した金属張積層体が使用されている。ここで、フィラーは、熱硬化性樹脂を用いたプリプレグの材料として用いられるが、フィラー自体は、通常、得られるプリプレグの比誘電率を高くする傾向にある。その中でも、中空フィラーを用いた金属張積層体は、中実フィラーを用いた場合と比べて比誘電率を低下させることが出来るため、特許文献3~5に記載されているように、検討されている。 The electrical insulation layer of a printed wiring board is required to have properties such as a low dielectric constant, a low dielectric loss tangent, and a low linear expansion coefficient. In recent years, a resin composition containing a thermosetting resin and silica particles has been used to manufacture an electrical insulation layer of a metal clad laminate that can be processed into a printed wiring board (see Patent Documents 1 and 2). Specifically, a metal clad laminate is used in which a semi-cured product of the above resin composition is laminated as an electrical insulation layer on the surface of a metal substrate layer. As another example, a metal clad laminate is used in which a glass cloth impregnated with a resin composition is laminated as an electrical insulation layer on the surface of a metal substrate layer. Here, a filler is used as a material for a prepreg using a thermosetting resin, and the filler itself usually tends to increase the relative dielectric constant of the obtained prepreg. Among them, a metal clad laminate using a hollow filler can reduce the relative dielectric constant compared to the case of using a solid filler, and is therefore being considered as described in Patent Documents 3 to 5.
特開2013-212956号公報JP 2013-212956 A 特開2015-36357号公報JP 2015-36357 A 特開2008-31409号公報JP 2008-31409 A 特表2017-522580号公報JP 2017-522580 A 国際公開第2019/230661号International Publication No. 2019/230661
 本発明者は、中空粒子及び樹脂を含む従来公知の樹脂組成物には、高粘度のものが存在し、樹脂組成物、その半硬化物、プリプレグ等と、金属等から構成される基材との密着性が十分ではないとの知見を得た。また、粘度を低減するため、中空粒子の含有率を抑えると、従来の技術では低比誘電率を達成できないとの知見を得た。
 本開示の第1の実施形態が解決しようとする課題は、低比誘電率であって、基材との密着性に優れる、プリプレグ及び硬化物を作製可能な樹脂組成物、並びに上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供することである。
The present inventors have found that some conventionally known resin compositions containing hollow particles and a resin have high viscosity, and that the adhesion between the resin composition, a semi-cured product thereof, a prepreg, etc. and a substrate made of a metal, etc. is insufficient. In addition, the inventors have found that if the content of hollow particles is reduced in order to reduce the viscosity, a low relative dielectric constant cannot be achieved with conventional technology.
The problem to be solved by the first embodiment of the present disclosure is to provide a resin composition capable of producing a prepreg and a cured product, which have a low dielectric constant and excellent adhesion to a substrate, as well as a prepreg, a resin-coated metal substrate, and a wiring board, which use the resin composition.
 また、本発明者は、中空粒子及び樹脂を含む従来公知の樹脂組成物を用いて、プリプレグ、硬化物等を作製する場合、樹脂組成物において、中空粒子の過度な沈降又は浮遊が生じ、凝集体を形成し、作製したプリプレグ及び硬化物中において、中空粒子が不均一に存在することとなり、測定箇所により比誘電率のばらつきが生じるおそれがあるとの知見を得た。
 本開示の第2の実施形態が解決しようとする課題は、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製可能な樹脂組成物、並びに上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供することである。
Furthermore, the present inventors have found that when a prepreg, a cured product, or the like is produced using a conventionally known resin composition containing hollow particles and a resin, excessive sedimentation or floating of the hollow particles occurs in the resin composition, forming aggregates, and the hollow particles are present non-uniformly in the produced prepreg and cured product, which may result in variations in the dielectric constant depending on the measurement location.
The problem to be solved by the second embodiment of the present disclosure is to provide a resin composition capable of producing a prepreg and a cured product having a small variation in relative dielectric constant, as well as a prepreg, a resin-coated metal substrate, and a wiring board using the resin composition.
 本開示は以下の態様を含む。
<1> 樹脂及び中空シリカ粒子を含む樹脂組成物であって、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた上記中空シリカ粒子の密度をA(g/cm)、上記中空シリカ粒子のBET比表面積をB1(m/g)としたとき、A×B1が、1.0~120.0m/cmである、樹脂組成物。
<2> 樹脂及び中空シリカ粒子を含む樹脂組成物であって、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた前記中空シリカ粒子の密度及び前記樹脂の密度を、それぞれ、A(g/cm)、及びB2(g/cm)としたとき、A/B2が、0.3~1.5である、樹脂組成物。
<3> 上記中空シリカ粒子の密度が、0.35~2.00g/cmである、上記<1>又は<2>に記載の樹脂組成物。
<4> 上記中空シリカ粒子のBET比表面積が、1.0~100.0m/gである、上記<1>~<3>のいずれか1項に記載の樹脂組成物。
<5> 上記中空シリカ粒子のメジアン径(d50)が0.1~10.0μmである、上記<1>~<4>のいずれか1つに記載の樹脂組成物。
<6> 上記樹脂が、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ジビニルベンゼン骨格を含む樹脂、及びピリミジン骨格を含む樹脂から選択される少なくとも1つを含む、上記<1>~<5>のいずれか1つに記載の樹脂組成物。
<7> 樹脂組成物の総体積に対する上記中空シリカ粒子の含有量が10~70体積%である、上記<1>~<6>のいずれか1つに記載の樹脂組成物。
<8> 上記<1>~<7>のいずれか1つに記載の樹脂組成物又はその半硬化物と、繊維質基材と、を含むプリプレグ。
<9> 上記繊維質基材が、ガラス成分を含む、上記<8>に記載のプリプレグ。
<10> 上記<1>~<7>のいずれか1つに記載の樹脂組成物若しくはその半硬化物、又は上記<8>又は<9>に記載のプリプレグと、金属基材層と、を含む樹脂付き金属基材。
<11> 上記金属基材層が、銅箔である、上記<10>に記載の樹脂付き金属基材。
<12> 上記<1>~<7>のいずれか1つに記載の樹脂組成物の硬化物と、金属配線と、を含む配線板。
The present disclosure includes the following aspects.
<1> A resin composition comprising a resin and hollow silica particles, wherein, when the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is A (g/cm 3 ), and the BET specific surface area of the hollow silica particles is B1 (m 2 /g), A×B1 is 1.0 to 120.0 m 2 /cm 3 .
<2> A resin composition comprising a resin and hollow silica particles, wherein when the density of the hollow silica particles and the density of the resin, which are determined by a constant volume expansion method using argon gas and a dry pycnometer, are A (g/cm 3 ) and B2 (g/cm 3 ), respectively, A/B2 is 0.3 to 1.5.
<3> The resin composition according to <1> or <2> above, wherein the hollow silica particles have a density of 0.35 to 2.00 g/ cm3 .
<4> The resin composition according to any one of the above <1> to <3>, wherein the hollow silica particles have a BET specific surface area of 1.0 to 100.0 m 2 /g.
<5> The resin composition according to any one of <1> to <4> above, wherein the hollow silica particles have a median diameter (d50) of 0.1 to 10.0 μm.
<6> The resin composition according to any one of <1> to <5>, wherein the resin comprises at least one selected from an epoxy resin, a polyimide resin, a polyphenylene ether resin, a resin containing a divinylbenzene skeleton, and a resin containing a pyrimidine skeleton.
<7> The resin composition according to any one of <1> to <6> above, wherein the content of the hollow silica particles is 10 to 70 volume% relative to the total volume of the resin composition.
<8> A prepreg comprising the resin composition or a semi-cured product thereof according to any one of <1> to <7> above, and a fibrous base material.
<9> The prepreg according to <8> above, wherein the fibrous base material contains a glass component.
<10> A resin-coated metal substrate comprising the resin composition or a semi-cured product thereof according to any one of <1> to <7> above, or the prepreg according to <8> or <9> above, and a metal substrate layer.
<11> The resin-coated metal substrate according to <10>, wherein the metal substrate layer is a copper foil.
<12> A wiring board comprising a cured product of the resin composition according to any one of <1> to <7> above and a metal wiring.
 本開示の第1の実施形態によれば、低比誘電率であって、基材との密着性に優れる、プリプレグ及び硬化物を作製可能な樹脂組成物を提供できる。また、本開示の他の実施形態によれば、上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供できる。 According to a first embodiment of the present disclosure, a resin composition can be provided that has a low dielectric constant and excellent adhesion to a substrate, and can be used to produce a prepreg and a cured product. In addition, according to other embodiments of the present disclosure, a prepreg, a resin-coated metal substrate, and a wiring board can be provided that use the resin composition.
 本開示の第2の実施形態によれば、比誘電率のばらつきが小さいプリプレグを作製可能な樹脂組成物を提供できる。また、本開示の他の実施形態によれば、上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供できる。  According to a second embodiment of the present disclosure, a resin composition can be provided that can be used to produce a prepreg with a small variation in relative dielectric constant. In addition, according to another embodiment of the present disclosure, a prepreg, a resin-coated metal substrate, and a wiring board can be provided that use the above resin composition.
図1は、実施例において製造したプレス済プリプレグを示す上面図である。FIG. 1 is a top view showing a pressed prepreg produced in the examples.
 以下、本開示の実施形態を実施するための形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。 Below, the form for carrying out the embodiment of the present disclosure will be described in detail. However, the embodiment of the present disclosure is not limited to the following embodiment. In the following embodiment, the components (including element steps, etc.) are not essential unless specifically stated. The same applies to the numerical values and their ranges, and they do not limit the embodiment of the present disclosure.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に記載しない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に記載しない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において、「中空シリカ粒子」とは、特に断りがない限り、複数の中空シリカ粒子の群を指す。
 本開示において、「BET比表面積」は、比表面積・細孔分布測定装置(例えば、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBET法により求める。
 本開示において、「真球度」は、走査型電子顕微鏡(SEM)により写真撮影して得られる写真投影図における任意の100個の粒子について、それぞれの最大径(DL)と、これと直交する短径(DS)とを測定し、最大径(DL)に対する最小径(DS)の比(DS/DL)を算出した平均値で表す。
 本開示において、「誘電正接」及び「比誘電率」は、専用の装置(例えば、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定する。
 本開示において、「半硬化物」とは、樹脂組成物の硬化物を示査走査熱分析測定した際に、熱硬化性樹脂の硬化に伴う発熱ピークが現れる状態にある硬化物を意味する。すなわち、半硬化物とは、未硬化の熱硬化性樹脂が残存している状態の硬化物を意味する。
 本開示において、「硬化物」とは、樹脂組成物の硬化物を示査走査熱分析測定した際に、熱硬化性樹脂の硬化に伴う発熱ピークが現れない状態にある硬化物を意味する。すなわち、硬化物とは、未硬化の熱硬化性樹脂が残存していない状態の硬化物を意味する。
 本開示において、「最大高さ粗さRz」は、JIS B 0601(2013)(対応ISO:ISO 4287 1997)に準拠して測定する。
 本開示において、「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求める。
In the present disclosure, the numerical ranges indicated using "to" include the numerical values before and after "to" as the minimum and maximum values, respectively. In the numerical ranges indicated in stages in the present disclosure, the upper limit or lower limit indicated in one numerical range may be replaced with the upper limit or lower limit of another numerical range indicated in stages.
In the present disclosure, each component may contain multiple types of the corresponding substance. When multiple substances corresponding to each component are present in the composition, the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
In the present disclosure, multiple types of particles corresponding to each component may be included. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means the value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In this disclosure, the term "lamination" refers to stacking layers, where two or more layers may be bonded together or two or more layers may be removable.
In this disclosure, the term "hollow silica particles" refers to a group of multiple hollow silica particles, unless otherwise specified.
In the present disclosure, the "BET specific surface area" is determined by the BET method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (for example, "Tristar II" manufactured by Micromeritics, etc.).
In the present disclosure, "sphericity" refers to the average value obtained by measuring the maximum diameter (DL) and the minor diameter (DS) perpendicular to the maximum diameter (DL) of each of 100 random particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM) and calculating the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL).
In the present disclosure, the "dielectric tangent" and the "relative dielectric constant" are measured by a perturbation resonator method using a dedicated device (for example, "Vector Network Analyzer E5063A" manufactured by Keycom Corporation).
In the present disclosure, the term "semi-cured product" refers to a cured product in a state where an exothermic peak associated with the curing of a thermosetting resin appears when the cured product of a resin composition is measured by differential scanning calorimetry. In other words, the term "semi-cured product" refers to a cured product in a state where uncured thermosetting resin remains.
In the present disclosure, the term "cured product" refers to a cured product in a state where no exothermic peak associated with the curing of the thermosetting resin appears when the cured product of the resin composition is measured by differential scanning calorimetry. In other words, the term "cured product" refers to a cured product in a state where no uncured thermosetting resin remains.
In this disclosure, the "maximum height roughness Rz" is measured in accordance with JIS B 0601 (2013) (corresponding ISO: ISO 4287 1997).
In the present disclosure, the "weight average molecular weight" is determined using gel permeation chromatography (GPC) in terms of polystyrene.
 第1の実施形態に係る樹脂組成物(以下、「本組成物1」とも記す。)は、樹脂及び中空シリカ粒子を含み、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた前記中空シリカ粒子の密度をA(g/cm)、前記中空シリカ粒子のBET比表面積をB1(m/g)としたとき、A×B1が、1.0~120.0m/cmである。 The resin composition according to the first embodiment (hereinafter also referred to as "composition 1") contains a resin and hollow silica particles, and when the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is A (g/cm 3 ), and the BET specific surface area of the hollow silica particles is B1 (m 2 /g), A×B1 is 1.0 to 120.0 m 2 /cm 3 .
 本組成物1によれば、低比誘電率であり、基材との密着性に優れるプリプレグ及び硬化物が作製可能である。この理由は必ずしも明らかではないが、以下のように推測される。
 本組成物1に含まれる中空シリカ粒子は、密度AとBET比表面積B1との積が、1.0~120.0m/cmである。これにより、樹脂組成物における、中空シリカ粒子の分散性が向上し、樹脂組成物の粘度が低下する結果、上記効果が奏されると推測される。
A prepreg and a cured product having a low dielectric constant and excellent adhesion to a substrate can be produced by using Composition 1. The reason for this is not entirely clear, but is presumed to be as follows.
The hollow silica particles contained in composition 1 have a product of density A and BET specific surface area B1 of 1.0 to 120.0 m 2 /cm 3. This improves the dispersibility of the hollow silica particles in the resin composition and reduces the viscosity of the resin composition, which is presumably why the above-mentioned effects are achieved.
 第2の実施形態に係る樹脂組成物(以下、「本組成物2」とも記す。)は、樹脂及び中空シリカ粒子を含み、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた中空シリカ粒子及び樹脂の密度を、それぞれ、A(g/cm)、及びB2(g/cm)としたとき、A/B2が、0.3~1.5である。 The resin composition according to the second embodiment (hereinafter also referred to as "composition 2") contains a resin and hollow silica particles, and when the densities of the hollow silica particles and the resin determined by a constant volume expansion method using argon gas and a dry pycnometer are A (g/cm 3 ) and B2 (g/cm 3 ), respectively, A/B2 is 0.3 to 1.5.
 本組成物2によれば、比誘電率のばらつきが小さいプリプレグ及び硬化物が作製可能である。この理由は必ずしも明らかではないが、以下のように推測される。
 本組成物2に含まれる樹脂及び中空シリカ粒子の密度比A/B2は0.3~1.5である。これにより、樹脂組成物において、中空シリカ粒子の過度な沈降又は浮遊を抑制でき、作製したプリプレグ及び硬化物中において、中空シリカ粒子が不均一に存在してしまうことを抑制でき、上記効果が奏されると推測される。
It is possible to produce a prepreg and a cured product having a small variation in the relative dielectric constant by using Composition 2. The reason for this is not entirely clear, but is presumed to be as follows.
The density ratio A/B2 of the resin and hollow silica particles contained in Composition 2 is 0.3 to 1.5. This makes it possible to suppress excessive settling or floating of the hollow silica particles in the resin composition, and to suppress the hollow silica particles from being unevenly present in the produced prepreg and cured product, which is presumably why the above-mentioned effects are achieved.
 以下、本組成物1及び本組成物2を包括的に「本組成物」と記すことがある。 Hereinafter, Composition 1 and Composition 2 may be collectively referred to as "Composition."
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製しやすい観点から、本組成物の粘度は、100~10,000mPa・sが好ましく、130~5,000mPa・sがより好ましく、150~3,000mPa・sが更に好ましく、180~1,500mPa・sが特に好ましく、200~1,000mPa・sが最も好ましい。
 本開示において「粘度」は、25℃において、回転式レオメータ(例えば、アントンパール(Anton paar)社製、モジュラーレオメーター PhysicaMCR-301)を用いて、せん断速度1rpmで30秒測定し、得られた30秒時点での粘度を測定して得られる値である。
In composition 1, from the viewpoint of further reducing the dielectric constant and further improving the adhesion to the substrate, or in composition 2, from the viewpoint of easily producing a prepreg and a cured product having a small variation in the dielectric constant, the viscosity of the composition is preferably 100 to 10,000 mPa·s, more preferably 130 to 5,000 mPa·s, even more preferably 150 to 3,000 mPa·s, particularly preferably 180 to 1,500 mPa·s, and most preferably 200 to 1,000 mPa·s.
In this disclosure, "viscosity" refers to a value obtained by measuring the viscosity at 30 seconds at 25°C using a rotational rheometer (e.g., Modular Rheometer Physica MCR-301 manufactured by Anton Paar) at a shear rate of 1 rpm.
 本組成物は、25℃において、液状であることが好ましい。 The composition is preferably liquid at 25°C.
 本組成物は、樹脂を1種含んでもよく、2種以上含んでもよい。本組成物が含む樹脂としては、熱硬化性樹脂が好ましい。本組成物は、熱硬化性樹脂を2種以上含んでもよいが、1種を含むことが好ましい。
 熱硬化性樹脂としては、エポキシ樹脂、ポリフェニレンエーテル樹脂、ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂、ジビニルベンゼン骨格を含む樹脂、ピリミジン骨格を含む樹脂等が挙げられる。密着性、耐熱性等の観点から、熱硬化性樹脂は、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ジビニルベンゼン骨格を含む樹脂、及びピリミジン骨格を含む樹脂から選択される1つ以上が好ましい。
The composition may contain one type of resin or two or more types. The resin contained in the composition is preferably a thermosetting resin. The composition may contain two or more types of thermosetting resin, but preferably contains one type.
Examples of the thermosetting resin include epoxy resin, polyphenylene ether resin, polyester resin, polyimide resin, phenol resin, resin containing a divinylbenzene skeleton, resin containing a pyrimidine skeleton, etc. From the viewpoint of adhesion, heat resistance, etc., the thermosetting resin is preferably one or more selected from epoxy resin, polyimide resin, polyphenylene ether resin, resin containing a divinylbenzene skeleton, and resin containing a pyrimidine skeleton.
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、多官能フェノールのジグリシジルエーテル化物、多官能アルコールのジグリシジルエーテル化物等が挙げられる。
 ポリイミド樹脂としては、芳香族ポリイミド、芳香族ポリアミック酸等が挙げられる。
 ポリフェニレンエーテル樹脂は、変性ポリフェニレンエーテルであってもよく、未変性ポリフェニレンエーテルであってもよいが、密着性の観点からは、変性ポリフェニレンエーテルが好ましい。変性ポリフェニレンエーテルは、ポリフェニレンエーテル鎖及びポリフェニレンエーテル鎖の末端に結合する置換基を有する。置換基は、炭素-炭素二重結合を有することが好ましい。置換基は、下記式(1)又は下記式(2)で表されることが好ましく、下記式(2)で表されることがより好ましい。
Examples of the epoxy resin include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, alicyclic epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, diglycidyl ethers of polyfunctional phenols, and diglycidyl ethers of polyfunctional alcohols.
Examples of the polyimide resin include aromatic polyimide and aromatic polyamic acid.
The polyphenylene ether resin may be modified polyphenylene ether or unmodified polyphenylene ether, but from the viewpoint of adhesion, modified polyphenylene ether is preferred. The modified polyphenylene ether has a polyphenylene ether chain and a substituent bonded to the end of the polyphenylene ether chain. The substituent preferably has a carbon-carbon double bond. The substituent is preferably represented by the following formula (1) or (2), more preferably represented by the following formula (2).
 式(1)において、nは0~10の整数であり、Zはアリーレン基であり、R~Rは各々独立に水素又はアルキル基である。なお、式(1)におけるnが0である場合は、Zは変性ポリフェニレンエーテルにおけるポリフェニレンエーテル鎖の末端に直接結合する。式(2)において、Rは水素又はアルキル基である。式(1)及び(2)において、アルキル基は、炭素数1~10が好ましく、1~6がより好ましい。 In formula (1), n is an integer of 0 to 10, Z is an arylene group, and R 1 to R 3 are each independently hydrogen or an alkyl group. When n in formula (1) is 0, Z is directly bonded to the end of the polyphenylene ether chain in the modified polyphenylene ether. In formula (2), R 4 is hydrogen or an alkyl group. In formulas (1) and (2), the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
 ポリフェニレンエーテル鎖は、下記式(3)で表されることが好ましい。 The polyphenylene ether chain is preferably represented by the following formula (3):
 式(3)において、mは1~50の範囲内の数であり、R~Rは、各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基又はアルキニルカルボニル基であり、水素原子又はアルキル基が好ましい。式(3)において、アルキル基は、炭素数1~10が好ましく、1~6がより好ましい。 In formula (3), m is a number within the range of 1 to 50, and R 5 to R 8 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group, with a hydrogen atom or an alkyl group being preferred. In formula (3), the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
 ジビニルベンゼン骨格を含む樹脂としては、日鉄ケミカル&マテリアル株式会社製の、ODV―XET等が挙げられる。 An example of a resin containing a divinylbenzene skeleton is ODV-XET manufactured by Nippon Steel Chemical & Material Co., Ltd.
 ピリミジン骨格を含む樹脂としては、JSR社製ELPAC HC-Fシリーズ等が挙げられる。 Examples of resins containing a pyrimidine skeleton include the ELPAC HC-F series manufactured by JSR Corporation.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、熱硬化性樹脂の重量平均分子量(Mw)は、1,000~7,000が好ましく、1,000~5,000がより好ましく、1,000~3,000が更に好ましい。 In the present composition 1, from the viewpoint of further reducing the relative dielectric constant and further improving adhesion to the substrate, or in the present composition 2, from the viewpoint of improving the adhesion and dielectric properties of the semi-cured product and the cured product, the weight average molecular weight (Mw) of the thermosetting resin is preferably 1,000 to 7,000, more preferably 1,000 to 5,000, and even more preferably 1,000 to 3,000.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、本組成物の総質量に対する硬化性樹脂の含有率は、10~40質量%が好ましく、15~35質量%がより好ましく、20~30質量%が更に好ましい。 In the present composition 1, from the viewpoint of further reducing the relative dielectric constant and further improving adhesion to the substrate, or in the present composition 2, from the viewpoint of improving the adhesion and dielectric properties of the semi-cured product and the cured product, the content of the curable resin relative to the total mass of the present composition is preferably 10 to 40 mass%, more preferably 15 to 35 mass%, and even more preferably 20 to 30 mass%.
 本組成物は、熱硬化性樹脂以外の樹脂(以下、「その他の樹脂」とも記す。)を含んでいてもよい。その他の樹脂としては、ポリテトラフルオロエチレン、ポリエチレンテレフタラート、ポリオレフィン、シリコーン等が挙げられる。 The composition may contain resins other than thermosetting resins (hereinafter, also referred to as "other resins"). Examples of other resins include polytetrafluoroethylene, polyethylene terephthalate, polyolefins, silicones, etc.
 本組成物の総質量に対するその他の樹脂の含有率は、特に限定されるものではなく、例えば、1~50質量%である。 The content of other resins relative to the total mass of the composition is not particularly limited, and is, for example, 1 to 50 mass%.
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点から、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた樹脂の密度は、0.5~3.0g/cmが好ましく、0.8~2.3g/cmがより好ましい。
 なお、樹脂の密度測定は、25℃において、乾燥後の樹脂に対して行う。熱硬化性樹脂の場合は、硬化後の樹脂に対して行う。密度測定の方法としては、硬化後の樹脂を上記のように乾式ピクノメーターで測定する方法が挙げられる。
 なお、本組成物が、2種以上の樹脂を含む場合、樹脂の密度は、乾燥後又は熱硬化性樹脂の場合は熱硬化後の組成物の密度を、Arピクノメーターによって実測して求める。
 なお、本組成物は、後述するように、重合開始剤、重合促進剤、可塑剤、及び他の成分を含んでもよい。重合開始剤、重合促進剤、可塑剤、及び他の成分に、樹脂又は反応により樹脂に組み込まれる成分が含まれる場合には、当該樹脂又は成分も、樹脂の密度の算出における「樹脂」に含めるものとする。すなわち、本組成物に含まれる、樹脂又は反応により樹脂に組み込まれる成分の全体を、樹脂の密度の算出における「樹脂」とみなす。本開示におけるA/B2の算出についても同様である。
From the viewpoint of producing a prepreg and a cured product with small variation in the relative dielectric constant, the density of the resin determined by a constant volume expansion method using argon gas and a dry pycnometer is preferably 0.5 to 3.0 g/ cm3 , and more preferably 0.8 to 2.3 g/ cm3 .
The density of the resin is measured at 25° C. after drying. In the case of a thermosetting resin, the density is measured after curing. The density can be measured by measuring the density of the cured resin with a dry pycnometer as described above.
When the composition contains two or more resins, the density of the resin is determined by measuring the density of the composition after drying or, in the case of a thermosetting resin, after heat curing, using an Ar pycnometer.
In addition, the present composition may contain a polymerization initiator, a polymerization accelerator, a plasticizer, and other components, as described below. When the polymerization initiator, the polymerization accelerator, the plasticizer, and other components include a resin or a component that is incorporated into the resin by reaction, the resin or component is also included in the "resin" in calculating the density of the resin. In other words, the entire resin or components that are incorporated into the resin by reaction and that are included in the present composition are considered to be the "resin" in calculating the density of the resin. The same applies to the calculation of A/B2 in the present disclosure.
 中空シリカ粒子は、シリカを含むシェル層を備え、シェル層の内側に空間部を有する。上記空間部は、透過型電子顕微鏡(TEM)観察、走査型電子顕微鏡(SEM)等により確認できる。
 本開示において、「シェル層の内側に空間部を有する」とは、1個の中空シリカ粒子の断面を観察した際に、1個の空間部の周囲をシェル層が囲んでいる中空状態が存在することを意味する。
 シェル層は、単層構造を有するものであっても、2層以上の多層構造を有するものであってもよい。
The hollow silica particles have a shell layer containing silica and have a space inside the shell layer. The space can be confirmed by observation with a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like.
In the present disclosure, "having a space inside the shell layer" means that when a cross-section of a single hollow silica particle is observed, a hollow state exists in which a single space is surrounded by a shell layer.
The shell layer may have a single-layer structure or a multi-layer structure having two or more layers.
 シェル層の総質量に対するシリカの含有率は、50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上が更に好ましい。上記含有率の上限は、100質量%であるが、99.99質量%が好ましい。
 中空シリカ粒子の耐久性を向上する観点、並びに半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、シェル層は、周期表の第1族又は第2族に属するアルカリ金属分、及びこれらのケイ酸塩から選択される少なくとも1つを含むことが好ましい。なお、本開示において、半硬化物及び硬化物の誘電特性を向上するとは、これらの比誘電率及び誘電正接を低下させることを意味する。
 シェル層の総質量に対する周期表の第1族又は第2族に属するアルカリ金属分の含有率は、30質量ppm以上が好ましく、100質量ppm以上がより好ましく、150質量ppm以上が更に好ましく、300質量ppm以上が特に好ましい。また、前記含有率は、1質量%以下が好ましく、5000質量ppm以下がより好ましく、1000質量ppm以下が最も好ましい。
 すなわち、シェル層の総質量に対する周期表の第1族又は第2族に属するアルカリ金属
分の含有率は、30質量ppm~1質量%が好ましく、100質量ppm~5000質量
ppmがより好ましく、150質量ppm~1000質量ppmがさらに好ましい。
 シェル層の組成は、ICP発光分析法、フレーム原子吸光法等により測定する。
 周期表の第1族又は第2族に属するアルカリ金属分(アルカリ金属及びアルカリ土類金属)の中でも、入手の容易さの観点から、シェル層は、ナトリウム、カリウム、マグネシウム、カルシウム及びストロンチウムより選択される1つ以上を含むことが好ましく、ナトリウム、マグネシウム及びカルシウムより選択される1つ以上を含むことがより好ましい。
The content of silica in the shell layer is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 95% by mass or more, with the upper limit of the content being 100% by mass, and preferably 99.99% by mass.
From the viewpoint of improving the durability of the hollow silica particles and the adhesion and dielectric properties of the semi-cured product and the cured product, the shell layer preferably contains at least one selected from alkali metals belonging to Groups 1 and 2 of the periodic table and their silicates. In the present disclosure, improving the dielectric properties of the semi-cured product and the cured product means reducing the dielectric constant and dielectric loss tangent thereof.
The content of alkali metals belonging to Group 1 or 2 of the periodic table relative to the total mass of the shell layer is preferably 30 ppm by mass or more, more preferably 100 ppm by mass or more, even more preferably 150 ppm by mass or more, and particularly preferably 300 ppm by mass or more. The content is preferably 1% by mass or less, more preferably 5000 ppm by mass or less, and most preferably 1000 ppm by mass or less.
That is, the content of alkali metals belonging to Group 1 or 2 of the periodic table relative to the total mass of the shell layer is preferably 30 ppm by mass to 1 mass%, more preferably 100 ppm by mass to 5000 ppm by mass, and even more preferably 150 ppm by mass to 1000 ppm by mass.
The composition of the shell layer is measured by ICP emission spectrometry, flame atomic absorption spectrometry, or the like.
From the viewpoint of ease of availability, among the alkali metal components (alkali metals and alkaline earth metals) belonging to Group 1 or 2 of the periodic table, the shell layer preferably contains one or more selected from sodium, potassium, magnesium, calcium, and strontium, and more preferably contains one or more selected from sodium, magnesium, and calcium.
 中空シリカ粒子の耐久性を向上する観点、並びに半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、シェル層の平均厚みは、中空シリカ粒子の一次粒子の直径を1としたとき、0.01~0.3が好ましく、0.02~0.2がより好ましく、0.03~0.1が更に好ましい。
 シェル層の平均厚さは、TEM観察により測定する20個の中空シリカ粒子のシェル層の厚さの平均値である。
From the viewpoint of improving the durability of the hollow silica particles and improving the adhesion and dielectric properties of the semi-cured product and the cured product, the average thickness of the shell layer is preferably 0.01 to 0.3, more preferably 0.02 to 0.2, and even more preferably 0.03 to 0.1, relative to the diameter of the primary particle of the hollow silica particles being 1.
The average thickness of the shell layer is an average value of the thicknesses of the shell layers of 20 hollow silica particles measured by TEM observation.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の平均一次粒子径は、10nm~10μmが好ましく、20nm~7μmがより好ましく、50nm~5μmが更に好ましく、70nm~3μmが特に好ましく、100nm~1μmが最も好ましい。
 中空シリカ粒子の平均一次粒子の大きさは、SEM観察によりその粒子径(直径、球状でない場合は長辺と短辺の平均値)を直接観察することによって求められる。具体的には、SEM画像より100個の中空シリカ粒子の一次粒子の大きさを測定し、それらを平均して得られた一次粒子の大きさの累積分布が50%になる値を、全体の一次粒子の平均一次粒子径と推定する。
From the viewpoint of further reducing the dielectric constant and further improving the adhesion to the substrate in composition 1, or from the viewpoint of producing a prepreg and a cured product having a small variation in the dielectric constant in composition 2, and from the viewpoint of improving the dielectric properties of a semi-cured product and a cured product, the average primary particle diameter of the hollow silica particles is preferably 10 nm to 10 μm, more preferably 20 nm to 7 μm, even more preferably 50 nm to 5 μm, particularly preferably 70 nm to 3 μm, and most preferably 100 nm to 1 μm.
The average primary particle size of hollow silica particles is determined by directly observing the particle diameter (diameter, the average value of the long and short sides if the particle is not spherical) by SEM observation. Specifically, the primary particle sizes of 100 hollow silica particles are measured from an SEM image, and the value at which the cumulative distribution of the primary particle sizes obtained by averaging them is 50% is estimated to be the average primary particle size of all primary particles.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のメジアン径(以下、単に「d50」とも記す。)は、0.1~10.0μmが好ましく、0.2~10.0μmがより好ましく、0.25~8.0μmが更に好ましく、0.3~7.0μmが特に好ましく、0.3~5.0μmが最も好ましく、0.3~3.0μmであってもよい。また、中空シリカ粒子のd50を上記数値範囲とすることにより、プリプレグ及び硬化物の平滑性を向上でき、絶縁層を形成したときの回路における伝送損失を低減できる。
 本開示において、「d50」は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる中空シリカ粒子の体積基準累積50%径である。すなわち、d50は、レーザー回折・散乱法によって粒度分布を測定し、中空シリカ粒子の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 なお、本開示において、中空シリカ粒子のd50は、一次粒子及び二次粒子を含む状態で測定する。
From the viewpoint of further reducing the dielectric constant and further improving the adhesion to the substrate in the present composition 1, or from the viewpoint of producing a prepreg and a cured product having a small variation in the dielectric constant in the present composition 2, and from the viewpoint of improving the dielectric properties of a semi-cured product and a cured product, the median diameter (hereinafter also simply referred to as "d50") of the hollow silica particles is preferably 0.1 to 10.0 μm, more preferably 0.2 to 10.0 μm, even more preferably 0.25 to 8.0 μm, particularly preferably 0.3 to 7.0 μm, most preferably 0.3 to 5.0 μm, and may be 0.3 to 3.0 μm. Furthermore, by setting the d50 of the hollow silica particles to the above numerical range, the smoothness of the prepreg and the cured product can be improved, and the transmission loss in the circuit when an insulating layer is formed can be reduced.
In the present disclosure, "d50" refers to the volume-based cumulative 50% diameter of hollow silica particles determined by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII" manufactured by Microtrack Bell Co., Ltd.). That is, d50 refers to the particle diameter at the point on the cumulative curve where the cumulative volume is 50% when the particle size distribution is measured by a laser diffraction/scattering method and a cumulative curve is calculated with the total volume of the hollow silica particles set to 100%.
In the present disclosure, the d50 of the hollow silica particles is measured in a state including primary particles and secondary particles.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のd10は、0.1~2.0μmが好ましく、0.2~2.0μmがより好ましく、0.3~1.8μmが更に好ましく、0.3~1.5μmが特に好ましい。また、中空シリカ粒子のd10を上記数値範囲とすることにより、プリプレグ及び硬化物の平滑性を向上でき、絶縁層を形成したときの回路における伝送損失を低減できる。
 本開示において、「d10」は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる中空シリカ粒子の体積基準累積10%径である。すなわち、d10は、レーザー回折・散乱法によって粒度分布を測定し、中空シリカ粒子の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が10%となる点の粒子径である。
 なお、本開示において、中空シリカ粒子のd10は、一次粒子及び二次粒子を含む状態で測定する。
From the viewpoint of further reducing the dielectric constant and further improving the adhesion to the substrate in the present composition 1, or from the viewpoint of producing a prepreg and a cured product having a small variation in the dielectric constant in the present composition 2, and from the viewpoint of improving the dielectric properties of the semi-cured product and the cured product, the d10 of the hollow silica particles is preferably 0.1 to 2.0 μm, more preferably 0.2 to 2.0 μm, even more preferably 0.3 to 1.8 μm, and particularly preferably 0.3 to 1.5 μm. Furthermore, by setting the d10 of the hollow silica particles to the above numerical range, the smoothness of the prepreg and the cured product can be improved, and the transmission loss in the circuit when an insulating layer is formed can be reduced.
In the present disclosure, "d10" is the volume-based cumulative 10% diameter of hollow silica particles obtained by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII" manufactured by Microtrack-Bell Co., Ltd.). That is, d10 is the particle diameter at the point where the cumulative volume is 10% on a cumulative curve obtained by measuring the particle size distribution by a laser diffraction/scattering method and assuming the total volume of the hollow silica particles to be 100%.
In the present disclosure, the d10 of the hollow silica particles is measured in a state including primary particles and secondary particles.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のd90は、0.7~15.0μmが好ましく、0.8~12.0μmがより好ましく、0.9~10.0μmが更に好ましく、0.9~8.0μmが特に好ましく、0.9~6.0μmが最も好ましく、0.9~5.0μmであってもよい。また、中空シリカ粒子のd90を上記数値範囲とすることにより、プリプレグ及び硬化物の平滑性を向上でき、絶縁層を形成したときの回路における伝送損失を低減できる。
 本開示において、「d90」は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる中空シリカ粒子の体積基準累積90%径である。すなわち、d90は、レーザー回折・散乱法によって粒度分布を測定し、中空シリカ粒子の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 なお、本開示において、中空シリカ粒子のd90は、一次粒子及び二次粒子を含む状態で測定する。
From the viewpoint of further reducing the dielectric constant and further improving the adhesion to the substrate in the present composition 1, or from the viewpoint of producing a prepreg and a cured product having a small variation in the dielectric constant in the present composition 2, and from the viewpoint of improving the dielectric properties of the semi-cured product and the cured product, the d90 of the hollow silica particles is preferably 0.7 to 15.0 μm, more preferably 0.8 to 12.0 μm, even more preferably 0.9 to 10.0 μm, particularly preferably 0.9 to 8.0 μm, most preferably 0.9 to 6.0 μm, and may be 0.9 to 5.0 μm. Furthermore, by setting the d90 of the hollow silica particles to the above numerical range, the smoothness of the prepreg and the cured product can be improved, and the transmission loss in the circuit when an insulating layer is formed can be reduced.
In the present disclosure, "d90" refers to the volume-based cumulative 90% diameter of hollow silica particles determined by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII" manufactured by Microtrack-Bell Co., Ltd.). That is, d90 refers to the particle diameter at the point on the cumulative curve where the cumulative volume is 90% when the particle size distribution is measured by a laser diffraction/scattering method and a cumulative curve is calculated with the total volume of the hollow silica particles being 100%.
In the present disclosure, the d90 of the hollow silica particles is measured in a state including primary particles and secondary particles.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、d50/d10は、6.0以下が好ましく、5.0以下がより好ましく、3.0以下が更に好ましく、2.5以下が特に好ましい。d50/d10の下限値は、特に限定されるものではなく、1.3とすることができる。 In the present composition 1, from the viewpoint of further reducing the relative dielectric constant and further improving adhesion to the substrate, or in the present composition 2, from the viewpoint of producing a prepreg and a cured product with a small variation in the relative dielectric constant, and from the viewpoint of improving the dielectric properties of a semi-cured product and a cured product, d50/d10 is preferably 6.0 or less, more preferably 5.0 or less, even more preferably 3.0 or less, and particularly preferably 2.5 or less. The lower limit of d50/d10 is not particularly limited, and can be 1.3.
 半硬化物及び硬化物の平滑性を向上する観点から、中空シリカ粒子のコールターカウンター法により測定された10μm以上の粒子割合は、500質量ppm以下が好ましく、200質量ppm以下がより好ましく、100質量ppm以下が更に好ましく、0質量ppmであってもよい。 From the viewpoint of improving the smoothness of the semi-cured product and the cured product, the proportion of hollow silica particles having a particle size of 10 μm or more as measured by the Coulter Counter method is preferably 500 ppm by mass or less, more preferably 200 ppm by mass or less, even more preferably 100 ppm by mass or less, and may be 0 ppm by mass.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた中空シリカ粒子の密度は、0.35~2.00g/cmが好ましく、0.35~1.50g/cmがより好ましく、0.40~1.00g/cmが更に好ましい。
 なお、本組成物が、2種以上の中空シリカ粒子を含む場合、中空シリカ粒子の密度は、各中空シリカ粒子の密度を加重平均することにより求める。
 乾式ピクノメーターとしては、Micromeritics社製AccuPycII 1340又はこれと同等の装置を使用できる。
In the present composition 1, from the viewpoint of further reducing the relative dielectric constant and further improving the adhesion to the substrate, or in the present composition 2, from the viewpoint of producing a prepreg and a cured product having a small variation in the relative dielectric constant, and from the viewpoint of improving the dielectric properties of a semi-cured product and a cured product, the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is preferably 0.35 to 2.00 g/ cm3 , more preferably 0.35 to 1.50 g/ cm3 , and even more preferably 0.40 to 1.00 g/ cm3 .
When the composition contains two or more types of hollow silica particles, the density of the hollow silica particles is determined by taking a weighted average of the densities of the individual hollow silica particles.
As the dry pycnometer, an AccuPycII 1340 manufactured by Micromeritics or an equivalent device can be used.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のBET比表面積は、1.0~100.0m/gが好ましく、1.0~50.0m/gがより好ましく、1.0~30.0m/gが更に好ましい。 In the present composition 1, from the viewpoint of further reducing the relative dielectric constant and further improving the adhesion to the substrate, or in the present composition 2, from the viewpoint of improving the dielectric properties of the semi-cured product and the cured product, the BET specific surface area of the hollow silica particles is preferably 1.0 to 100.0 m 2 /g, more preferably 1.0 to 50.0 m 2 /g, and even more preferably 1.0 to 30.0 m 2 /g.
 本組成物1において、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた中空シリカ粒子の密度をA(g/cm)、中空シリカ粒子のBET比表面積をB1(m/g)としたとき、A×B1は、1.0~120.0m/cmである。比誘電率をより低下させ、基材との密着性をより向上する観点から、A×B1は、2.0~80.0m/cmが好ましく、2.5~40.0m/cmがより好ましく、3.0~20.0m/cmが更に好ましい。
 本組成物2において、半硬化物及び硬化物の密着強度を向上する観点、及び比誘電率を低減させる観点から、A×B1は、1.0~120.0m/cmが好ましく、2.0~80.0m/cmがより好ましく、2.5~40.0m/cmが更に好ましく、3.0~20.0m/cmが特に好ましい。
In the present composition 1, when the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is A (g/cm 3 ) and the BET specific surface area of the hollow silica particles is B1 (m 2 /g), A×B1 is 1.0 to 120.0 m 2 /cm 3. From the viewpoint of further reducing the relative dielectric constant and further improving the adhesion to the substrate, A×B1 is preferably 2.0 to 80.0 m 2 /cm 3 , more preferably 2.5 to 40.0 m 2 /cm 3 , and even more preferably 3.0 to 20.0 m 2 /cm 3 .
In the present composition 2, from the viewpoint of improving the adhesion strength of the semi-cured product and the cured product, and from the viewpoint of reducing the relative dielectric constant, A×B1 is preferably 1.0 to 120.0 m 2 /cm 3 , more preferably 2.0 to 80.0 m 2 /cm 3 , even more preferably 2.5 to 40.0 m 2 /cm 3 , and particularly preferably 3.0 to 20.0 m 2 /cm 3 .
 本組成物1において、プリプレグ、硬化物等の比誘電率のばらつきを小さくする観点から、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた中空シリカ粒子及び樹脂の密度を、それぞれ、A(g/cm)、及びB2(g/cm)としたとき、A/B2が、0.3~1.5であることが好ましく、0.4~1.0であることがより好ましい。
 本組成物2において、A/B2は、0.3~1.5であり、硬化物等の比誘電率のばらつきをより小さくする観点から、0.4~1.0であることが好ましい。
In the present composition 1, from the viewpoint of reducing the variation in the dielectric constant of the prepreg, the cured product, etc., when the densities of the hollow silica particles and the resin determined by a constant volume expansion method using argon gas and a dry pycnometer are A (g/cm 3 ) and B2 (g/cm 3 ), respectively, A/B2 is preferably 0.3 to 1.5, and more preferably 0.4 to 1.0.
In the present composition 2, A/B2 is from 0.3 to 1.5, and from the viewpoint of further reducing the variation in the relative dielectric constant of the cured product, etc., it is preferably from 0.4 to 1.0.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の空隙率は、30~90%が好ましく、40~90%がより好ましく、50~85%が更に好ましい。
 本開示において、中空シリカ粒子の空隙率は、中空シリカ粒子の真密度により、中空シリカ粒子の密度を除し、100倍することにより算出する。なお、中空シリカ粒子の真密度は、Micromeritics社製AccuPycII 1340又はこれと同等の装置により、Heガスを用いて測定する。
In the present composition 1, from the viewpoint of further reducing the dielectric constant and further improving the adhesion to the substrate, or in the present composition 2, from the viewpoint of producing a prepreg and a cured product having a small variation in the dielectric constant, and from the viewpoint of improving the dielectric properties of a semi-cured product and a cured product, the porosity of the hollow silica particles is preferably 30 to 90%, more preferably 40 to 90%, and even more preferably 50 to 85%.
In the present disclosure, the porosity of hollow silica particles is calculated by dividing the density of hollow silica particles by the true density of hollow silica particles and multiplying the result by 100. The true density of hollow silica particles is measured using He gas with an AccuPycII 1340 manufactured by Micromeritics or an equivalent device.
 中空シリカ粒子に含まれる個々の中空シリカ粒子の形状は、特に限定されるものではなく、球状であってもよく、非球状であってもよいが、低誘電正接の観点から、球状が好ましい。低誘電正接の観点から、球状中空シリカ粒子の真球度は、0.60以上が好ましく、0.75以上がより好ましく、0.90以上が更に好ましく、0.93以上が特に好ましく、1.00が最も好ましい。また、中空シリカ粒子は、低誘電正接の観点から、無孔質粒子が好ましい。 The shape of each hollow silica particle contained in the hollow silica particles is not particularly limited and may be spherical or non-spherical, but from the viewpoint of a low dielectric tangent, a spherical shape is preferred. From the viewpoint of a low dielectric tangent, the sphericity of the spherical hollow silica particles is preferably 0.60 or more, more preferably 0.75 or more, even more preferably 0.90 or more, particularly preferably 0.93 or more, and most preferably 1.00. From the viewpoint of a low dielectric tangent, the hollow silica particles are preferably non-porous particles.
 絶縁層を形成したときの回路における伝送損失を低減させる観点から、中空シリカ粒子の誘電正接は、周波数1GHzにおいて、0.0040以下が好ましく、0.0030以下がより好ましく、0.0020以下が更に好ましく、0.0015以下が特に好ましく、0.0012以下が最も好ましい。 From the viewpoint of reducing transmission loss in the circuit when an insulating layer is formed, the dielectric tangent of the hollow silica particles at a frequency of 1 GHz is preferably 0.0040 or less, more preferably 0.0030 or less, even more preferably 0.0020 or less, particularly preferably 0.0015 or less, and most preferably 0.0012 or less.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の吸油量は、20~500mL/100gが好ましく、25~200mL/100gがより好ましく、30~150mL/100gが更に好ましく、30~100mL/100gが特に好ましく、30~80mL/100gが最も好ましい。
 本開示において、「吸油量」は、JIS K 5101-13-1(2004)(対応ISO:ISO 787-5 1980)に従って測定する。なお、本開示における吸油量は、JIS K 5101-13-1(2004)に従って測定される値に、密度/真密度の値を乗じた値(すなわち、JIS K 5101-13-1(2004)に従って測定される吸油量×(密度/真密度))とする。
In the present composition 1, from the viewpoint of further reducing the dielectric constant and further improving the adhesion to the substrate, or in the present composition 2, from the viewpoint of producing a prepreg and a cured product having a small variation in the dielectric constant, and from the viewpoint of improving the dielectric properties of a semi-cured product and a cured product, the oil absorption of the hollow silica particles is preferably from 20 to 500 mL/100 g, more preferably from 25 to 200 mL/100 g, even more preferably from 30 to 150 mL/100 g, particularly preferably from 30 to 100 mL/100 g, and most preferably from 30 to 80 mL/100 g.
In the present disclosure, "oil absorption" is measured in accordance with JIS K 5101-13-1 (2004) (corresponding ISO: ISO 787-5 1980). Note that the oil absorption in the present disclosure is a value obtained by multiplying the value measured in accordance with JIS K 5101-13-1 (2004) by the value of density/true density (i.e., oil absorption measured in accordance with JIS K 5101-13-1 (2004) × (density/true density)).
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、又は本組成物2において、半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の水銀圧入法による20%破壊圧力は、120MPa以上が好ましく、150MPa以上がより好ましく、200MPa以上が更に好ましく、250MPa以上が特に好ましい。20%破壊圧力の上限は、特に限定されるものではなく、例えば、600MPa以下とすることができる。
 本開示において、「20%破壊圧力」とは、水銀圧入法によって測定される破壊圧力のことで、水銀圧入法で0~400MPaまで圧力をかけていった際、積算容量の最大値から20%減少した容量を示す最小の圧力のことである。
 中空シリカ粒子の水銀圧入法による20%破壊圧力は、ASTM D 3102-78に準拠して、水銀圧入ポロシメーター(例えば、MICROMERITICS INSTRUMENT社製のAutoPore IV 9500)を用いて測定する。
In the present composition 1, from the viewpoint of further reducing the relative dielectric constant and further improving the adhesion to the substrate, or in the present composition 2, from the viewpoint of improving the dielectric properties of the semi-cured product and the cured product, the 20% breakdown pressure of the hollow silica particles as measured by mercury porosimetry is preferably 120 MPa or more, more preferably 150 MPa or more, even more preferably 200 MPa or more, and particularly preferably 250 MPa or more. The upper limit of the 20% breakdown pressure is not particularly limited, and can be, for example, 600 MPa or less.
In this disclosure, the "20% burst pressure" refers to the burst pressure measured by mercury porosimetry, and is the minimum pressure that indicates a 20% decrease in capacity from the maximum integrated capacity when pressure is applied from 0 to 400 MPa by mercury porosimetry.
The 20% collapse pressure of the hollow silica particles as measured by mercury intrusion porosimeter (for example, AutoPore IV 9500 manufactured by MICROMERITICS INSTRUMENT) is measured in accordance with ASTM D 3102-78.
 半硬化物及び硬化物の曲げ強度を向上する観点から、中空シリカ粒子の帯電量は、0.005μC/g以上が好ましく、0.010μC/g以上がより好ましく、0.015μC/g以上が更に好ましく、0.020μC/g以上が特に好ましい。帯電量の上限値は、特に限定されるものではなく、0.080μC/g以下にできる。
 本開示において、帯電量は、以下の方法により測定する。なお、測定装置としては、例えば、粉体摩擦帯電量測定装置 NS-K100型(ナノシーズ社製)を使用できる。
 中空シリカ粒子10gをアルミ容器(内寸Φ42mm、深さ70mm)に入れ、試料回転用アームに固定して取り付ける。左右振り角は、左150度、右210度(左右振り速度は540deg/s)として12往復で1クールとする(中間の6往復終了時に2回転の粉払い落とし回転動作を加える)。3クールの摩擦攪拌を加えた後、帯電した中空シリカ粒子をファラデーケージに投入し、中空シリカ粒子の帯電量を測定し、質量当たりの帯電量に換算する(中空シリカ粒子の帯電量/中空シリカ粒子仕込み量10g)。
From the viewpoint of improving the bending strength of the semi-cured product and the cured product, the charge amount of the hollow silica particles is preferably 0.005 μC/g or more, more preferably 0.010 μC/g or more, even more preferably 0.015 μC/g or more, and particularly preferably 0.020 μC/g or more. The upper limit of the charge amount is not particularly limited, and can be 0.080 μC/g or less.
In the present disclosure, the charge amount is measured by the following method. As a measuring device, for example, a powder triboelectric charge measuring device NS-K100 type (manufactured by Nano Seeds Corporation) can be used.
10 g of hollow silica particles are placed in an aluminum container (inner dimensions Φ42 mm, depth 70 mm) and fixed to a sample rotation arm. The left and right swing angles are 150 degrees left and 210 degrees right (swing speed is 540 deg/s), and 12 round trips are counted as one cycle (2 rotations of powder brushing off rotation are added at the end of the intermediate 6 round trips). After 3 cycles of friction stirring, the charged hollow silica particles are placed in a Faraday cage, the charge amount of the hollow silica particles is measured, and converted to the charge amount per mass (charge amount of hollow silica particles/10 g of hollow silica particles).
 個々の中空シリカ粒子はシランカップリング剤によって処理されていてもよい。中空シリカ粒子の表面がシランカップリング剤によって処理されていることで、表面のシラノール基の残存量が少なくなり、表面が疎水化され、水分吸着を抑えて誘電損失を向上できるとともに、本組成物において樹脂との親和性が向上し、分散性、及び樹脂製膜後の強度を向上できる。
 シランカップリング剤の種類としては、アミノシラン系カップリング剤、メタクリルシラン系シランカップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物等が挙げられる。シランカップリング剤は1種類を用いてもよいし2種類以上を組み合わせて用いてもよい。
 シランカップリング剤の付着量は、中空シリカ粒子100質量部に対して、0.01~5質量部が好ましく、0.02~5質量部がより好ましく、0.10~2質量部が更に好ましい。
 中空シリカ粒子の表面がシランカップリング剤で処理されていることはIRによるシランカップリング剤の置換基によるピークの検出により確認できる。また、シランカップリング剤の付着量は、炭素量により測定できる。
Each hollow silica particle may be treated with a silane coupling agent. By treating the surface of the hollow silica particle with a silane coupling agent, the amount of remaining silanol groups on the surface is reduced, the surface is hydrophobicized, moisture adsorption is suppressed, and the dielectric loss is improved. In addition, the affinity with the resin in the composition is improved, and the dispersibility and strength after the resin film are improved.
Examples of the silane coupling agent include aminosilane coupling agents, methacrylsilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, etc. The silane coupling agents may be used alone or in combination of two or more.
The amount of the silane coupling agent attached is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 5 parts by mass, and even more preferably 0.10 to 2 parts by mass, based on 100 parts by mass of the hollow silica particles.
The fact that the surface of the hollow silica particles has been treated with a silane coupling agent can be confirmed by detecting a peak due to a substituent of the silane coupling agent by IR. The amount of the silane coupling agent attached can be measured by the amount of carbon.
 中空シリカ粒子は、本開示の効果を妨げない範囲において、不純物元素を含んでいてもよい。不純物元素としては、例えば、Al、Fe、Ti等が挙げられる。 The hollow silica particles may contain impurity elements as long as the effects of the present disclosure are not hindered. Examples of impurity elements include Al, Fe, Ti, etc.
 本組成物1において、比誘電率をより低下させ、基材との密着性をより向上する観点から、及び本組成物の吸水性を低減する観点から、又は本組成物2において、比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、半硬化物及び硬化物の誘電特性及び密着性を向上する観点、並びに本組成物の吸水性を低減する観点から、本組成物の総体積に対する中空シリカ粒子の含有量は、10~70体積%が好ましく、15~65体積%がより好ましく、18~60体積%が更に好ましい。 In the present composition 1, from the viewpoint of further reducing the relative dielectric constant and further improving adhesion to the substrate, and from the viewpoint of reducing the water absorption of the present composition, or in the present composition 2, from the viewpoint of producing a prepreg and a cured product with a small variation in the relative dielectric constant, from the viewpoint of improving the dielectric properties and adhesion of the semi-cured product and the cured product, and from the viewpoint of reducing the water absorption of the present composition, the content of the hollow silica particles relative to the total volume of the present composition is preferably 10 to 70 volume %, more preferably 15 to 65 volume %, and even more preferably 18 to 60 volume %.
 中空シリカ粒子は、市販されるものを使用してもよく、従来公知の方法により作製したものを使用してもよい。例えば、国際公開第2019/131658号、国際公開第2021/006697号、国際公開第2021/172294号等に記載の方法により作製した中空シリカ粒子を使用できる。 The hollow silica particles may be commercially available or may be prepared by a conventional method. For example, hollow silica particles prepared by the methods described in WO 2019/131658, WO 2021/006697, WO 2021/172294, etc. may be used.
 本組成物は、1種又は2種以上の溶剤を含んでもよい。溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-2-ピロリドン、n-ヘキサン、シクロヘキサン等が挙げられる。密着性等の観点から、溶剤は、トルエン、シクロヘキサノン、メチルエチルケトン、及びN-メチル-2-ピロリドンからなる群より選択される少なくとも1つを含むことが好ましい。本組成物の総質量に対する溶剤の含有率は、特に限定されず、例えば10~60質量%であってもよい。 The composition may contain one or more solvents. Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-2-pyrrolidone, n-hexane, and cyclohexane. From the viewpoint of adhesion, it is preferable that the solvent contains at least one selected from the group consisting of toluene, cyclohexanone, methyl ethyl ketone, and N-methyl-2-pyrrolidone. The content of the solvent relative to the total mass of the composition is not particularly limited, and may be, for example, 10 to 60% by mass.
 中空シリカ粒子の凝集抑制等の観点から、溶剤の表面張力は、40mN/m以下が好ましく、35mN/m以下がより好ましく、30mN/m以下が更に好ましい。表面張力の下限は、特に限定されず、例えば5mN/mでもよい。
 本開示において、「表面張力」は、表面張力計を用いて、25℃の溶剤に対してウィルヘルミー法により測定する。
From the viewpoint of suppressing aggregation of the hollow silica particles, the surface tension of the solvent is preferably 40 mN/m or less, more preferably 35 mN/m or less, and even more preferably 30 mN/m or less. The lower limit of the surface tension is not particularly limited and may be, for example, 5 mN/m.
In this disclosure, "surface tension" is measured by the Wilhelmy method using a surface tensiometer for a solvent at 25°C.
 溶剤の粘度は、25℃において、10mPa・s以下が好ましく、5mPa・s以下がより好ましい。溶剤の粘度の下限は、特に限定されるものではなく、2mPa・s以上にできる。 The viscosity of the solvent is preferably 10 mPa·s or less at 25°C, and more preferably 5 mPa·s or less. The lower limit of the viscosity of the solvent is not particularly limited, and can be 2 mPa·s or more.
 本組成物の総質量に対する溶剤の含有率は、特に限定されるものではなく、例えば、10質量%~90質量%にできる。 The content of the solvent relative to the total mass of the composition is not particularly limited, and can be, for example, 10% by mass to 90% by mass.
 本組成物は、重合開始剤を1種又は2種以上含有してもよい。重合開始剤としては、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等が挙げられる。樹脂100質量部に対する重合開始剤の含有量は、0.1~5質量部が好ましい。 The composition may contain one or more polymerization initiators. Examples of polymerization initiators include α,α'-bis(t-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne, benzoyl peroxide, 3,3',5,5'-tetramethyl-1,4-diphenoquinone, chloranil, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, and azobisisobutyronitrile. The content of the polymerization initiator per 100 parts by mass of resin is preferably 0.1 to 5 parts by mass.
 本組成物は、重合促進剤を1種又は2種以上含有してもよい。重合促進剤としては、トリアリルイソシアヌレート等のトリアルケニルイソシアヌレート化合物、分子中にアクリロイル基又はメタクリロイル基を2個以上有する多官能アクリル系化合物、分子中にビニル基を2個以上有する多官能ビニル化合物、分子中にビニルベンジル基を有するスチレン等のビニルベンジル化合物等が挙げられる。樹脂100質量部に対する重合促進剤の含有量は、10~100質量部が好ましい。 The composition may contain one or more polymerization accelerators. Examples of polymerization accelerators include trialkenyl isocyanurate compounds such as triallyl isocyanurate, polyfunctional acrylic compounds having two or more acryloyl or methacryloyl groups in the molecule, polyfunctional vinyl compounds having two or more vinyl groups in the molecule, and vinylbenzyl compounds such as styrene having a vinylbenzyl group in the molecule. The content of the polymerization accelerator per 100 parts by mass of the resin is preferably 10 to 100 parts by mass.
 本組成物は、可塑剤を1種又は2種以上含有してもよい。可塑剤としては、ブタジエン・スチレンコポリマー等が挙げられる。樹脂100質量部に対する可塑剤の含有量は、10~50質量部が好ましく、20~40質量部がより好ましい。 The composition may contain one or more plasticizers. Examples of plasticizers include butadiene-styrene copolymers. The content of the plasticizer per 100 parts by mass of resin is preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass.
 本組成物は、上記成分以外にも、その効果を損なわない範囲で、界面活性剤、チキソ性付与剤、pH調整剤、pH緩衝剤、粘度調節剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電材、離型剤、表面処理剤、難燃剤、各種有機又は無機フィラー等の他の成分を更に含んでいてもよい。 In addition to the above components, the composition may further contain other components such as surfactants, thixotropy imparting agents, pH adjusters, pH buffers, viscosity regulators, defoamers, silane coupling agents, dehydrating agents, plasticizers, weather resistance agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brightening agents, colorants, conductive materials, release agents, surface treatment agents, flame retardants, and various organic or inorganic fillers, to the extent that the effects of the composition are not impaired.
 本組成物は、パソコン、ノートパソコン、デジタルカメラ等の電子機器や、スマートフォン、ゲーム機等の通信機器等に用いられる電子基板の作製に用いられる樹脂組成物として好適に使用できる。また、本発明の樹脂組成物は、低誘電率化、低伝送損失化、低吸湿化、剥離強度向上のために、プリプレグ、金属箔張積層板、プリント配線板、樹脂シート、接着層、接着フィルム、ソルダーレジスト、バンプリフロー用樹脂組成物、再配線絶縁層、ダイボンド材、封止材、アンダーフィル、モールドアンダーフィル及び積層インダクタ等への応用も期待される。 This composition can be suitably used as a resin composition for producing electronic substrates for use in electronic devices such as personal computers, notebook computers, and digital cameras, and communication devices such as smartphones and game consoles. The resin composition of the present invention is also expected to be applied to prepregs, metal foil-clad laminates, printed wiring boards, resin sheets, adhesive layers, adhesive films, solder resists, resin compositions for bump reflow, rewiring insulating layers, die bond materials, encapsulants, underfills, mold underfills, and laminated inductors, etc., in order to reduce dielectric constant, transmission loss, moisture absorption, and improve peel strength.
 本開示のプリプレグは、本組成物又はその半硬化物と、繊維質基材と、を含む。繊維質基材としては、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙等が挙げられる。繊維質基材としては、ガラス成分を含むものが好ましい。繊維質基材の厚さは、特に限定されるものではなく、12μm~1000μmとできる。なお、本組成物については上記したため、ここでは記載を省略する。 The prepreg of the present disclosure includes the present composition or a semi-cured product thereof, and a fibrous substrate. Examples of the fibrous substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, and pulp paper. The fibrous substrate preferably contains a glass component. The thickness of the fibrous substrate is not particularly limited, and can be 12 μm to 1000 μm. Note that the present composition has been described above, so a description thereof will be omitted here.
 本開示のプリプレグは、繊維質基材に、本組成物を塗布又は含浸させることにより製造できる。本組成物の塗布又は含浸後に、樹脂組成物を加熱し、半硬化させてもよい。 The prepreg of the present disclosure can be produced by applying or impregnating the present composition to a fibrous substrate. After applying or impregnating the present composition, the resin composition may be heated and semi-cured.
 本開示の樹脂付き金属基材は、本組成物若しくはその半硬化物又は上記プリプレグと、金属基材層と、を含む。金属基材層は、本組成物若しくはその半硬化物又は上記プリプレグの一方の表面に設けられてもよく、両面に設けられてもよい。
 金属基材層の種類は特に限定されるものではなく、金属基材層を構成する金属としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む。)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。金属基材層は、金属箔であるのが好ましく、圧延銅箔、電解銅箔等の銅箔であるのがより好ましい。金属箔の表面は、防錆処理(クロメート等の酸化物皮膜等)されていてもよく、粗化処理されていてもよい。金属箔として、キャリア銅箔(厚さ:10~35μm)と、剥離層を介してキャリア銅箔表面に積層された極薄銅箔(厚さ:2~5μm)とからなるキャリア付金属箔を使用してもよい。金属基材層の表面は、シランカップリング剤により処理されていてもよい。この場合、金属基材層の表面の全体がシランカップリング剤により処理されていてもよく、金属基材層の表面の一部がシランカップリング剤により処理されていてもよい。シランカップリング剤としては、上記したものを使用できる。
The resin-coated metal substrate of the present disclosure includes the present composition or a semi-cured product thereof, or the prepreg, and a metal substrate layer. The metal substrate layer may be provided on one surface or both surfaces of the present composition or a semi-cured product thereof, or the prepreg.
The type of the metal substrate layer is not particularly limited, and examples of metals constituting the metal substrate layer include copper, copper alloys, stainless steel, nickel, nickel alloys (including alloy 42), aluminum, aluminum alloys, titanium, and titanium alloys. The metal substrate layer is preferably a metal foil, and more preferably a copper foil such as rolled copper foil or electrolytic copper foil. The surface of the metal foil may be rust-proofed (oxide film such as chromate) or may be roughened. As the metal foil, a carrier-attached metal foil consisting of a carrier copper foil (thickness: 10 to 35 μm) and an ultra-thin copper foil (thickness: 2 to 5 μm) laminated on the carrier copper foil surface via a peeling layer may be used. The surface of the metal substrate layer may be treated with a silane coupling agent. In this case, the entire surface of the metal substrate layer may be treated with a silane coupling agent, or a part of the surface of the metal substrate layer may be treated with a silane coupling agent. As the silane coupling agent, the above-mentioned ones can be used.
 金属基材層の厚さは1~40μmが好ましく、2~20μmがより好ましい。樹脂付き金属基材をプリント配線板として使用した場合の伝送損失を低減できる観点から、金属基材層の最大高さ粗さ(Rz)は、6μm以下が好ましく、4μm以下がより好ましい。 The thickness of the metal substrate layer is preferably 1 to 40 μm, more preferably 2 to 20 μm. From the viewpoint of reducing transmission loss when the resin-coated metal substrate is used as a printed wiring board, the maximum height roughness (Rz) of the metal substrate layer is preferably 6 μm or less, more preferably 4 μm or less.
 一実施形態において、本開示の樹脂付き金属基材は、金属基材層の表面に、本組成物を塗布することにより製造できる。本組成物の塗布後に、樹脂組成物を加熱し、半硬化させてもよい。
 他の実施形態において、本開示の樹脂付き金属基材は、金属基材層とプリプレグとを積層することにより製造できる。金属基材層とプリプレグとの積層方法としては、これらを熱圧着する方法等が挙げられる。
In one embodiment, the resin-attached metal substrate of the present disclosure can be produced by applying the present composition to the surface of a metal substrate layer. After applying the present composition, the resin composition may be heated to be semi-cured.
In another embodiment, the resin-coated metal substrate of the present disclosure can be produced by laminating a metal substrate layer and a prepreg. Examples of a method for laminating the metal substrate layer and the prepreg include a method of thermocompression bonding them.
 本開示の配線板は、本組成物の硬化物と、金属配線とを含む。金属配線としては、上記した金属基材層をエッチング等することにより製造したものを使用できる。 The wiring board of the present disclosure includes a cured product of the present composition and metal wiring. The metal wiring can be produced by etching the above-mentioned metal substrate layer, etc.
 本開示の配線板は、上記樹脂付き金属基材が備える金属基材層をエッチングする方法、本組成物の硬化物表面に電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等)によってパターン回路に形成する方法等により製造できる。 The wiring board of the present disclosure can be manufactured by a method of etching the metal substrate layer of the resin-coated metal substrate, or by a method of forming a pattern circuit on the cured surface of the present composition by electrolytic plating (semi-additive method (SAP method), modified semi-additive method (MSAP method), etc.).
 次に本開示の実施形態を実施例により具体的に説明するが、本開示の実施形態はこれらの実施例に限定されるものではない。以下の例において、「粒子」は、特に特定がない場合、中空シリカ粒子、中空粒子及び/又は中実粒子を表す。 Next, the embodiments of the present disclosure will be specifically explained using examples, but the embodiments of the present disclosure are not limited to these examples. In the following examples, "particles" refers to hollow silica particles, hollow particles, and/or solid particles, unless otherwise specified.
[評価方法]
(樹脂組成物の粘度の測定)
 樹脂組成物の粘度は、以下のようにして測定した。
 25℃において、回転式レオメータ(アントンパール(Anton paar)社製、モジュラーレオメーター PhysicaMCR-301)を用いて、せん断速度1rpmで30秒測定し、得られた30秒時点での粘度を測定した。
[Evaluation method]
(Measurement of Viscosity of Resin Composition)
The viscosity of the resin composition was measured as follows.
At 25° C., using a rotational rheometer (modular rheometer Physica MCR-301, manufactured by Anton Paar), measurements were performed at a shear rate of 1 rpm for 30 seconds, and the viscosity obtained at the 30 second point was measured.
(粒子の密度の測定方法)
 各例で用いた粒子を230℃で減圧乾燥して水分を完全に除去し、試料とした。この試料について、乾式ピクノメーター(Micromeritics社製AccuPycII 1340)を用いて密度を測定した。測定条件は下記の通りである。
(測定条件)
・試料セル:10cmセル
・試料重量:1.0g
・測定ガス:アルゴンガス
・パージ回数:10回
・パージ処理充填圧力:135kPag
・サイクル回数:10回
・サイクル充填圧力:135kPag
・圧力平衡を終了するレート:0.05kPag/分
(Method of Measuring Particle Density)
The particles used in each example were dried under reduced pressure at 230° C. to completely remove moisture, and used as a sample. The density of this sample was measured using a dry pycnometer (AccuPycII 1340 manufactured by Micromeritics). The measurement conditions were as follows.
(Measurement condition)
Sample cell: 10 cm3 cell Sample weight: 1.0 g
Measurement gas: Argon gas Purge times: 10 times Purge processing filling pressure: 135 kPag
Number of cycles: 10 Cycle filling pressure: 135 kPag
Rate to end pressure equilibration: 0.05 kPag/min
(粒子のBET比表面積の測定方法)
 各例で用いた粒子を230℃で減圧乾燥して水分を完全に除去し、試料とした。この試料について、マイクロメリティック社製の自動比表面積・細孔分布測定装置「トライスターII」にて、窒素ガスを用いて多点BET法により比表面積を求めた。
(Method of measuring BET specific surface area of particles)
The particles used in each example were dried under reduced pressure at 230° C. to completely remove moisture, and used as a sample. The specific surface area of this sample was determined by the multipoint BET method using nitrogen gas with an automatic specific surface area/pore distribution measuring device "Tristar II" manufactured by Micromeritics.
(粒子のd50の測定方法)
 各例で用いた粒子のd50は、レーザー回折・散乱法により、粒度分布測定装置(マイクロトラック・ベル社製、MT3300EXII)を用いて測定した。具体的には、超音波照射を120秒間行うことで二次粒子を分散させてから測定を行い、得られた粒子の大きさの累積分布が50%になる値をd50とした。
(Method of measuring d50 of particles)
The d50 of the particles used in each example was measured by a laser diffraction/scattering method using a particle size distribution analyzer (MT3300EXII, manufactured by Microtrac-Bell). Specifically, the secondary particles were dispersed by irradiating with ultrasonic waves for 120 seconds, and then the measurement was performed. The value at which the cumulative distribution of the particle sizes obtained was 50% was taken as d50.
(粒子の平均一次粒子径の測定方法)
 各例で用いた粒子の平均一次粒子径は、SEM観察によりその粒子径(直径、球状でない場合は長辺と短辺の平均値)を直接観察することによって求めた。具体的には、SEM画像より100個の粒子の一次粒子の大きさを測定し、それらを平均して得られた一次粒子の大きさの累積分布が50%になる値を、全体の一次粒子の平均一次粒子径と推定した。
(Method of measuring average primary particle size of particles)
The average primary particle size of the particles used in each example was determined by directly observing the particle size (diameter, or the average of the long and short sides if the particle is not spherical) using SEM observation. Specifically, the primary particle sizes of 100 particles were measured using SEM images, and the value at which the cumulative distribution of the primary particle sizes obtained by averaging these was 50% was estimated to be the average primary particle size of all the primary particles.
(粒子の真球度の測定方法)
 粒子の真球度は、走査型電子顕微鏡(SEM)により写真撮影して得られる写真投影図における任意の100個の粒子について、それぞれの最大径(DL)と、これと直交する短径(DS)とを測定し、最大径(DL)に対する最小径(DS)の比(DS/DL)を算出し、その平均を算出することにより求めた。
(Method of measuring particle sphericity)
The sphericity of the particles was determined by measuring the maximum diameter (DL) and the minor diameter (DS) perpendicular to the maximum diameter (DL) of any 100 particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM), calculating the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL), and calculating the average.
(粒子の誘電正接の測定方法)
 粒子の周波数1GHzにおける誘電正接は、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定した。
(Method of measuring dielectric tangent of particles)
The dielectric loss tangent of the particles at a frequency of 1 GHz was measured by a perturbation resonator method using a vector network analyzer E5063A manufactured by Keycom Corporation.
(粒子の空隙率の測定方法)
 粒子の空隙率は、粒子の真密度により、粒子の密度を除し、100倍することにより算出した。粒子の真密度は、Micromeritics社製AccuPycII 1340により測定した。
(Method of measuring particle porosity)
The porosity of the particles was calculated by dividing the density of the particles by the true density of the particles and multiplying the result by 100. The true density of the particles was measured using an AccuPycII 1340 manufactured by Micromeritics.
(粒子の吸油量の測定方法)
 粒子の吸油量は、JIS K 5101-13-1(2004)に従って測定した。
(Method of measuring oil absorption of particles)
The oil absorption of the particles was measured in accordance with JIS K 5101-13-1 (2004).
(樹脂の密度の測定方法)
 各例で用いた樹脂の密度は、下記のように測定した。
-ポリフェニレンエーテル含有樹脂の密度測定-
 ポリフェニレンエーテルの59質量部、ブタジエン・スチレンランダムコポリマーの16質量部、トリアリルイソシアヌレートの25質量部、α,α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼンの1質量部、トルエンの60質量部をポリビンに入れ、プラネタリーディスパで混練して樹脂を得た。得られた樹脂を120℃で真空乾燥し、溶剤を除いた後、200℃の窒素オーブンで硬化させたのち、カッターミルを用いて粉砕し、Arピクノメーターで密度を測定したところ、密度は1.1g/cmであった。
(Method of measuring resin density)
The density of the resin used in each example was measured as follows.
- Density measurement of polyphenylene ether-containing resin -
59 parts by mass of polyphenylene ether, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of α,α'-di(t-butylperoxy)diisopropylbenzene, and 60 parts by mass of toluene were placed in a polyvinyl bottle and kneaded with a planetary disperser to obtain a resin. The resin obtained was vacuum dried at 120°C to remove the solvent, and then cured in a nitrogen oven at 200°C. It was then pulverized using a cutter mill, and the density was measured with an Ar pycnometer, which gave a density of 1.1 g/ cm3 .
-ポリイミド樹脂の密度測定-
 ポリイミド樹脂(荒川化学工業製、PIAD300、固形分30%)を150℃で真空乾燥し、溶剤を除いた後、カッターミルを用いて粉砕し、Arピクノメーターで密度を測定したところ、密度は1.5g/cmであった。
- Measurement of density of polyimide resin -
A polyimide resin (Arakawa Chemical Industries, Ltd., PIAD300, solid content 30%) was vacuum dried at 150°C to remove the solvent, and then pulverized using a cutter mill. The density was measured using an Ar pycnometer and found to be 1.5 g/ cm3 .
≪例1-1~1~7≫
 以下の例1-1~1-7中、例1~5は第1の実施形態における実施例であり、例6~7は第1の実施形態における比較例である。
<Example 1-1 to 1-7>
Among the following Examples 1-1 to 1-7, Examples 1 to 5 are examples of the first embodiment, and Examples 6 and 7 are comparative examples of the first embodiment.
1.樹脂組成物を製造するための各成分の準備
[熱硬化性樹脂]
・ポリフェニレンエーテル:ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル、SABIC社製、Noryl SA9000、Mw1700、1分子あたりの官能基数2個
1. Preparation of each component for producing a resin composition [thermosetting resin]
Polyphenylene ether: Modified polyphenylene ether in which the terminal hydroxyl groups of polyphenylene ether are modified with methacrylic groups, manufactured by SABIC, Noryl SA9000, Mw 1700, two functional groups per molecule
<中空シリカ粒子A1>
 中空シリカ粒子A1は以下のようにして作製した。
<Hollow Silica Particles A1>
The hollow silica particles A1 were prepared as follows.
(エマルションの作製)
 純水1250gにEO-PO-EOブロックコポリマー(ADEKA社製、プルロニック(登録商標)F68)を4g添加し溶解するまで撹拌し、水溶液を得た。この水溶液にソルビタン酸モノオレート(三洋化成工業社製、イオネット(登録商標)S-80)4gを溶解したn-デカン42gを加え、IKA社製ホモジナイザーを使って液全体が均一になるまで撹拌し、粗エマルションを作製した。
 この粗エマルションを、高圧乳化機(エスエムテー社製、LAB1000)を使い、圧力50barで乳化を行い、エマルション径が1μmのエマルションを作製した。
(Preparation of emulsion)
4 g of EO-PO-EO block copolymer (Pluronic (registered trademark) F68, manufactured by ADEKA Corporation) was added to 1250 g of pure water and stirred until dissolved to obtain an aqueous solution. 42 g of n-decane in which 4 g of sorbitan acid monooleate (IONET (registered trademark) S-80, manufactured by Sanyo Chemical Industries, Ltd.) was dissolved was added to this aqueous solution, and the whole solution was stirred using an IKA homogenizer until it became uniform to prepare a crude emulsion.
This crude emulsion was emulsified at a pressure of 50 bar using a high-pressure emulsifier (LAB1000, manufactured by SMT Corporation) to produce an emulsion with an emulsion diameter of 1 μm.
(エージング)
 得られたエマルションを40℃で12時間静置した。
(aging)
The resulting emulsion was allowed to stand at 40° C. for 12 hours.
(1段目シェル層形成)
 静置後、エマルション1300gに、pHが2となるよう、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)23g及び2M塩酸を加え、30℃で保持しながら撹拌し、混合液を得た。
 次いで、混合液を撹拌しながら1M水酸化ナトリウム水溶液をpHが6となるようゆっくり滴下し、オイルコア-シリカシェル粒子分散液を得た。得られたオイルコア-シリカシェル粒子分散液を保持し、熟成させた。
(First shell layer formation)
After standing, 23 g of a diluted sodium silicate aqueous solution ( SiO2 concentration 10.4 mass%, Na2O concentration 3.6 mass%) and 2 M hydrochloric acid were added to 1,300 g of the emulsion so that the pH was 2, and the mixture was stirred while maintaining the temperature at 30° C. to obtain a mixed liquid.
Next, while stirring the mixture, a 1M aqueous solution of sodium hydroxide was slowly added dropwise so that the pH of the mixture became 6, thereby obtaining an oil core-silica shell particle dispersion. The obtained oil core-silica shell particle dispersion was retained and aged.
(2段目シェル層形成)
 オイルコア-シリカシェル粒子分散液を70℃に加熱し、撹拌しながら1M水酸化ナトリウム水溶液をゆっくり添加し、pHを9とした。
 次に、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)330gを、pH9になるように0.5M塩酸とともに徐々に添加した。
 この懸濁液を80℃で1日間保持した後、室温(25℃)まで冷却し、中空シリカ前駆体分散液を得た。
(Second shell layer formation)
The oil core-silica shell particle dispersion was heated to 70° C., and a 1M aqueous solution of sodium hydroxide was slowly added thereto with stirring to adjust the pH to 9.
Next, 330 g of a diluted aqueous sodium silicate solution ( SiO2 concentration 10.4% by mass, Na2O concentration 3.6% by mass) was gradually added together with 0.5 M hydrochloric acid to adjust the pH to 9.
This suspension was kept at 80° C. for 1 day and then cooled to room temperature (25° C.) to obtain a hollow silica precursor dispersion.
(ろ過、洗浄、乾燥、焼成)
 中空シリカ前駆体分散液全量を、2M塩酸でpH2まで中和後、定量ろ紙5Cを用いてろ過を行った。その後、80℃のイオン交換水350mlを加えて再度加圧濾過し、中空シリカケーキを洗浄した。
 ろ過後のケーキを、窒素雰囲気下で、100℃で1時間、続けて400℃で2時間乾燥し(昇温時間10℃/min)、有機分を除去することで中空シリカ前駆体を得た。
 得られた中空シリカ前駆体を、1000℃で1時間焼成(昇温時間10℃/min)することでシェルの焼き締めを行い、中空シリカ焼成粒子を得た。
(Filtering, washing, drying, firing)
The entire amount of the hollow silica precursor dispersion was neutralized with 2M hydrochloric acid to pH 2, and then filtered using quantitative filter paper 5C. Then, 350 ml of 80° C. ion-exchanged water was added and pressure filtered again to wash the hollow silica cake.
The cake after filtration was dried in a nitrogen atmosphere at 100° C. for 1 hour and then at 400° C. for 2 hours (heating rate: 10° C./min) to remove the organic matter, thereby obtaining a hollow silica precursor.
The obtained hollow silica precursor was baked at 1000° C. for 1 hour (heating rate: 10° C./min) to bake and tighten the shell, thereby obtaining baked hollow silica particles.
(表面処理)
 200mlガラスビーカーに、中空シリカ焼成粒子10g、イソプロパノール150ml、ビニルトリメトキシシラン0.1gを添加し、100℃で1時間還流した。その後、疎水性PTFEメンブレンフィルターを用いて減圧濾過し、イソプロパノール20mlで洗浄後、150℃に温度調整した真空乾燥機で2時間真空乾燥し、表面処理された中空シリカ粒子A1を得た。
 1段目シェル層及び2段目シェル層の総質量に対するナトリウムの含有率は、500質量ppmであった。
(surface treatment)
10 g of hollow calcined silica particles, 150 ml of isopropanol, and 0.1 g of vinyltrimethoxysilane were added to a 200 ml glass beaker and refluxed for 1 hour at 100° C. Thereafter, the mixture was filtered under reduced pressure using a hydrophobic PTFE membrane filter, washed with 20 ml of isopropanol, and then vacuum-dried for 2 hours in a vacuum dryer adjusted to a temperature of 150° C. to obtain surface-treated hollow silica particles A1.
The sodium content relative to the total mass of the first shell layer and the second shell layer was 500 ppm by mass.
<中空シリカ粒子A2>
 EO-PO-EOブロックコポリマーの使用量を2gに、ソルビタン酸モノオレートの使用量を2gに変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A2を得た。
<Hollow Silica Particles A2>
Hollow silica particles A2 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 2 g and the amount of sorbitan acid monooleate used was changed to 2 g.
<中空シリカ粒子A3>
 EO-PO-EOブロックコポリマーの使用量を10gに変更し、ソルビタン酸モノオレートを使用せず、乳化における圧力を100barに変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A3を得た。
<Hollow Silica Particles A3>
Hollow silica particles A3 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 10 g, sorbitan acid monooleate was not used, and the pressure in emulsification was changed to 100 bar.
<中空シリカ粒子A4>
 中空シリカ前駆体の焼成条件を、1100℃で1時間(昇温時間10℃/min)に変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A4を得た。
<Hollow Silica Particles A4>
Hollow silica particles A4 were obtained in the same manner as hollow silica particles A1, except that the hollow silica precursor was calcined at 1,100° C. for 1 hour (temperature increase rate: 10° C./min).
<中空シリカ粒子A5>
 中空シリカ前駆体の焼成条件を、800℃で1時間(昇温時間10℃/min)に変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A5を得た。
<Hollow Silica Particles A5>
Hollow silica particles A5 were obtained in the same manner as hollow silica particles A1, except that the calcination conditions of the hollow silica precursor were changed to 800° C. for 1 hour (heating time: 10° C./min).
<中空粒子B1>
 シリカ系中空微粒子分散ゾル(触媒化成工業(株)製、スルーリア(登録商標)1420、平均一次粒子径60nm、濃度20.5質量%、分散媒:イソプロパノール)を、120℃で2時間真空引きし、溶剤を乾固し、中空粒子B1を得た。
<Hollow Particles B1>
A silica-based hollow fine particle dispersion sol (Catalysts and Chemical Industries Co., Ltd., Sururia (registered trademark) 1420, average primary particle diameter 60 nm, concentration 20.5 mass%, dispersion medium: isopropanol) was subjected to vacuum drawing at 120° C. for 2 hours to dry out the solvent, thereby obtaining hollow particles B1.
<中空粒子B2>
 グラスバブルスiM16K(メジアン径17μmのガラスバルーン、3M社)をそのまま用いた。
<Hollow Particles B2>
Glass Bubbles iM16K (glass balloons with a median diameter of 17 μm, 3M Company) were used as is.
[例1-1]
 ポリフェニレンエーテル樹脂の59質量部、ブタジエン・スチレンランダムコポリマーの16質量部、トリアリルイソシアヌレートの25質量部、α,α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼンの1質量部、中空シリカ粒子A1を全体の20体積%となる質量部、トルエンの80質量部をポリビンに入れ、プラネタリーディスパで混練して樹脂組成物を得た。
 樹脂組成物を、IPCスペック2116のガラスクロスに含浸塗工し、160℃で4分間加熱乾燥してプリプレグを得た。
 プリプレグを3枚重ね、上下にロープロファイル銅箔(厚さ:18μm、Rz:3.5μm、三井金属社製、3EC-M3-V-18)を積層し、230℃、圧力30kg/cmで120分間加熱成形し、樹脂付き金属基材を得た。
[Example 1-1]
59 parts by mass of polyphenylene ether resin, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of α,α'-di(t-butylperoxy)diisopropylbenzene, parts by mass of hollow silica particles A1 accounting for 20% by volume of the total, and 80 parts by mass of toluene were placed in a polyvinyl chloride bottle and kneaded using a planetary dispenser to obtain a resin composition.
The resin composition was applied to a glass cloth of IPC spec 2116 by impregnation, and then heated and dried at 160° C. for 4 minutes to obtain a prepreg.
Three sheets of prepreg were stacked, low-profile copper foil (thickness: 18 μm, Rz: 3.5 μm, Mitsui Kinzoku Co., Ltd., 3EC-M3-V-18) was laminated on the top and bottom, and the resulting mixture was heated and molded at 230° C. and a pressure of 30 kg/cm 2 for 120 minutes to obtain a metal substrate with resin.
[例1-2~1-7]
 中空シリカ粒子A1を、表1に記載の中空シリカ粒子又は中空粒子に変更した以外は、例1-1と同様にして、樹脂組成物、プリプレグ及び樹脂付き金属基材を製造した。
[Examples 1-2 to 1-7]
Except for changing the hollow silica particles A1 to the hollow silica particles or hollow particles shown in Table 1, a resin composition, a prepreg, and a resin-coated metal substrate were produced in the same manner as in Example 1-1.
<剥離強度の測定>
 例1-1~1-7において製造した樹脂付き金属基材を用いて、IPC-TM650-2.4.8に準拠し、プリプレグの硬化物と銅箔との間の剥離強度を測定した。測定結果を表1にまとめた。
<Measurement of Peel Strength>
The resin-coated metal substrates produced in Examples 1-1 to 1-7 were used to measure the peel strength between the cured prepreg and the copper foil in accordance with IPC-TM650-2.4.8. The measurement results are summarized in Table 1.
<比誘電率及び誘電正接の測定>
 例1-1~1-7において製造した樹脂付き金属基材を、エッチング液(サンハヤト社製、H-1000A、塩化第二鉄水溶液)に浸漬し、片面の銅箔を完全に除去した後、オーブンにて100℃で10分乾燥した。得られたプレス済プリプレグを用いて、縦スプリットポスト誘電体共振器(Agilent Technologies社製)にて、比誘電率と誘電正接(測定周波数:10GHz)とを測定した。結果を表1に示す。
<Measurement of relative dielectric constant and dielectric loss tangent>
The resin-coated metal substrates produced in Examples 1-1 to 1-7 were immersed in an etching solution (H-1000A, ferric chloride aqueous solution, manufactured by Sanhayato Corporation) to completely remove the copper foil on one side, and then dried in an oven at 100°C for 10 minutes. The obtained pressed prepregs were used to measure the relative dielectric constant and dielectric loss tangent (measurement frequency: 10 GHz) using a vertical split post dielectric resonator (manufactured by Agilent Technologies). The results are shown in Table 1.
 表1に示されるように、本組成物を用いて得られた硬化物は、低比誘電率であり、また、基材との密着性に優れている。 As shown in Table 1, the cured product obtained using this composition has a low dielectric constant and excellent adhesion to the substrate.
≪例2-1~2-6及び例3-1~3-6≫
 以下の例2-1~2-7及び例3-1~3-6中、例2-1~2-4及び例3-1~3-4は第2の実施形態における実施例であり、例2-5~2-6及び例3-5~3-6は第2の実施形態における比較例である。
<Examples 2-1 to 2-6 and Examples 3-1 to 3-6>
Among the following Examples 2-1 to 2-7 and Examples 3-1 to 3-6, Examples 2-1 to 2-4 and Examples 3-1 to 3-4 are Examples in the second embodiment, and Examples 2-5 to 2-6 and Examples 3-5 to 3-6 are Comparative Examples in the second embodiment.
1.樹脂組成物を製造するための各成分の準備
<熱硬化性樹脂>
・ポリフェニレンエーテル:ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル、SABIC社製、Noryl SA9000、Mw1700、1分子あたりの官能基数2個
・ポリイミド樹脂:荒川化学社製、PIAD300、固形分濃度30質量%
1. Preparation of each component for producing a resin composition <Thermosetting resin>
Polyphenylene ether: Modified polyphenylene ether in which the terminal hydroxyl groups of polyphenylene ether are modified with methacrylic groups, manufactured by SABIC Corporation, Noryl SA9000, Mw 1700, number of functional groups per molecule: 2 Polyimide resin: Manufactured by Arakawa Chemical Industries, Ltd., PIAD300, solid content concentration 30% by mass
<中空シリカ粒子A1>
 中空シリカ粒子A1は以下のようにして作製した。
<Hollow Silica Particles A1>
The hollow silica particles A1 were prepared as follows.
(エマルションの作製)
 純水1250gにEO-PO-EOブロックコポリマー(ADEKA社製、プルロニック(登録商標)F68)を4g添加し溶解するまで撹拌し、水溶液を得た。この水溶液にソルビタン酸モノオレート(三洋化成工業社製、イオネット(登録商標)S-80)4gを溶解したn-デカン42gを加え、IKA社製ホモジナイザーを使って液全体が均一になるまで撹拌し、粗エマルションを作製した。
 この粗エマルションを、高圧乳化機(エスエムテー社製、LAB1000)を使い、圧力50barで乳化を行い、エマルション径が1μmのエマルションを作製した。
(Preparation of emulsion)
4 g of EO-PO-EO block copolymer (Pluronic (registered trademark) F68, manufactured by ADEKA Corporation) was added to 1250 g of pure water and stirred until dissolved to obtain an aqueous solution. 42 g of n-decane in which 4 g of sorbitan acid monooleate (IONET (registered trademark) S-80, manufactured by Sanyo Chemical Industries, Ltd.) was dissolved was added to this aqueous solution, and the whole solution was stirred using an IKA homogenizer until it became uniform to prepare a crude emulsion.
This crude emulsion was emulsified at a pressure of 50 bar using a high-pressure emulsifier (LAB1000, manufactured by SMT Corporation) to produce an emulsion with an emulsion diameter of 1 μm.
(エージング)
 得られたエマルションを40℃で12時間静置した。
(aging)
The resulting emulsion was allowed to stand at 40° C. for 12 hours.
(1段目シェル層形成)
 静置後、エマルション1300gに、pHが2となるよう、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)23g及び2M塩酸を加え、30℃で保持しながら撹拌し、混合液を得た。
 次いで、混合液を撹拌しながら1M水酸化ナトリウム水溶液をpHが6となるようゆっくり滴下し、オイルコア-シリカシェル粒子分散液を得た。得られたオイルコア-シリカシェル粒子分散液を保持し、熟成させた。
(First shell layer formation)
After standing, 23 g of a diluted sodium silicate aqueous solution ( SiO2 concentration 10.4 mass%, Na2O concentration 3.6 mass%) and 2 M hydrochloric acid were added to 1,300 g of the emulsion so that the pH was 2, and the mixture was stirred while maintaining the temperature at 30° C. to obtain a mixed liquid.
Next, while stirring the mixture, a 1M aqueous solution of sodium hydroxide was slowly added dropwise so that the pH of the mixture became 6, thereby obtaining an oil core-silica shell particle dispersion. The obtained oil core-silica shell particle dispersion was retained and aged.
(2段目シェル層形成)
 オイルコア-シリカシェル粒子分散液を70℃に加熱し、撹拌しながら1M水酸化ナトリウム水溶液をゆっくり添加し、pHを9とした。
 次に、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)330gを、pH9になるように0.5M塩酸とともに徐々に添加した。
 この懸濁液を80℃で1日間保持した後、室温まで冷却し、中空シリカ前駆体分散液を得た。
(Second shell layer formation)
The oil core-silica shell particle dispersion was heated to 70° C., and a 1M aqueous solution of sodium hydroxide was slowly added thereto with stirring to adjust the pH to 9.
Next, 330 g of a diluted aqueous sodium silicate solution ( SiO2 concentration 10.4% by mass, Na2O concentration 3.6% by mass) was gradually added together with 0.5 M hydrochloric acid to adjust the pH to 9.
This suspension was kept at 80° C. for 1 day and then cooled to room temperature to obtain a hollow silica precursor dispersion.
(ろ過、洗浄、乾燥、焼成)
 中空シリカ前駆体分散液全量を、2M塩酸でpH2まで中和後、定量ろ紙5Cを用いてろ過を行った。その後、80℃のイオン交換水350mlを加えて再度加圧濾過し、中空シリカケーキを洗浄した。
 ろ過後のケーキを、窒素雰囲気下で、100℃で1時間、続けて400℃で2時間乾燥し(昇温時間10℃/min)、有機分を除去することで中空シリカ前駆体を得た。
 得られた中空シリカ前駆体を、1000℃で1時間焼成(昇温時間10℃/min)することでシェルの焼き締めを行い、中空シリカ焼成粒子を得た。
(Filtering, washing, drying, firing)
The entire amount of the hollow silica precursor dispersion was neutralized with 2M hydrochloric acid to pH 2, and then filtered using quantitative filter paper 5C. Then, 350 ml of 80° C. ion-exchanged water was added and pressure filtered again to wash the hollow silica cake.
The cake after filtration was dried in a nitrogen atmosphere at 100° C. for 1 hour and then at 400° C. for 2 hours (heating rate: 10° C./min) to remove the organic matter, thereby obtaining a hollow silica precursor.
The obtained hollow silica precursor was baked at 1000° C. for 1 hour (heating rate: 10° C./min) to bake and tighten the shell, thereby obtaining baked hollow silica particles.
(表面処理)
 200mlガラスビーカーに、中空シリカ焼成粒子10g、イソプロパノール150ml、ビニルトリメトキシシラン0.1gを添加し、100℃で1時間還流した。その後、疎水性PTFEメンブレンフィルターを用いて減圧濾過し、イソプロパノール20mlで洗浄後、150℃に温度調整した真空乾燥機で2時間真空乾燥し、表面処理された中空シリカ粒子A1を得た。
 1段目シェル層及び2段目シェル層の総質量に対するナトリウムの含有率は、500質量ppmであった。
(surface treatment)
10 g of hollow calcined silica particles, 150 ml of isopropanol, and 0.1 g of vinyltrimethoxysilane were added to a 200 ml glass beaker and refluxed for 1 hour at 100° C. Thereafter, the mixture was filtered under reduced pressure using a hydrophobic PTFE membrane filter, washed with 20 ml of isopropanol, and then vacuum-dried for 2 hours in a vacuum dryer adjusted to a temperature of 150° C. to obtain surface-treated hollow silica particles A1.
The sodium content relative to the total mass of the first shell layer and the second shell layer was 500 ppm by mass.
<中空シリカ粒子A2>
 EO-PO-EOブロックコポリマーの使用量を2gに、ソルビタン酸モノオレートの使用量を2gに変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A2を得た。
<Hollow Silica Particles A2>
Hollow silica particles A2 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 2 g and the amount of sorbitan acid monooleate used was changed to 2 g.
<中空シリカ粒子A3>
 EO-PO-EOブロックコポリマーの使用量を10gに変更し、ソルビタン酸モノオレートを使用せず、乳化における圧力を100barに変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A3を得た。
 1段目シェル層及び2段目シェル層の総質量に対するナトリウムの含有率は、1200質量ppmであった。
<Hollow Silica Particles A3>
Hollow silica particles A3 were obtained in the same manner as hollow silica particles A1, except that the amount of EO-PO-EO block copolymer used was changed to 10 g, sorbitan acid monooleate was not used, and the pressure in emulsification was changed to 100 bar.
The sodium content relative to the total mass of the first shell layer and the second shell layer was 1,200 ppm by mass.
<中空シリカ粒子A5>
 中空シリカ前駆体の焼成条件を、800℃で1時間(昇温時間10℃/min)に変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A5を得た。
<Hollow Silica Particles A5>
Hollow silica particles A5 were obtained in the same manner as hollow silica particles A1, except that the calcination conditions of the hollow silica precursor were changed to 800° C. for 1 hour (heating time: 10° C./min).
<中実粒子C1>
 SO-C2(メジアン径(d50)0.6μmの中実シリカ粒子、アドマテックス社)をそのまま用いた。
<Solid particle C1>
SO-C2 (solid silica particles with a median diameter (d50) of 0.6 μm, Admatechs Co., Ltd.) was used as is.
<中空粒子C2>
 S22(メジアン径(d50)17μmのガラスバルーン、3M社)をそのまま用いた。
<Hollow Particles C2>
S22 (glass balloons with a median diameter (d50) of 17 μm, manufactured by 3M) was used as is.
[例2-1]
 ポリフェニレンエーテル樹脂の59質量部、ブタジエン・スチレンランダムコポリマーの16質量部、トリアリルイソシアヌレートの25質量部、α,α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼンの1質量部、中空シリカ粒子A1を全体の20体積%となる質量部、トルエンの80質量部をポリビンに入れ、プラネタリーディスパで混練して樹脂組成物を得た。
 樹脂組成物を25℃、相対湿度50%の環境に12時間静置した。
 静置後、樹脂組成物を、IPCスペック2116のガラスクロスに含浸塗工し、160℃で4分間加熱乾燥してプリプレグを得た。
 プリプレグを3枚重ね、上下にロープロファイル銅箔(厚さ:18μm、Rz:3.5μm、三井金属社製、3EC-M3-V-18)を積層し、230℃、圧力30kg/cmで120分間加熱成形し、樹脂付き金属基材を得た。
 なお、使用した中空シリカ粒子の密度をA(g/cm)、樹脂の密度をB2(g/cm)としたとき、A/B2を算出し、表2に示した。以降の例においても同様に算出し、表2にまとめた。なお、例2-5~2-6及び例3-5~3-6においては、中空シリカ粒子の密度ではなく、中実粒子、又は中空粒子の密度をAとした。
[Example 2-1]
59 parts by mass of polyphenylene ether resin, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of α,α'-di(t-butylperoxy)diisopropylbenzene, parts by mass of hollow silica particles A1 accounting for 20% by volume of the total, and 80 parts by mass of toluene were placed in a polyvinyl chloride bottle and kneaded using a planetary dispenser to obtain a resin composition.
The resin composition was allowed to stand in an environment of 25° C. and a relative humidity of 50% for 12 hours.
After standing, the resin composition was applied to impregnate a glass cloth of IPC spec 2116, and then heated and dried at 160° C. for 4 minutes to obtain a prepreg.
Three sheets of prepreg were stacked, low-profile copper foil (thickness: 18 μm, Rz: 3.5 μm, Mitsui Kinzoku Co., Ltd., 3EC-M3-V-18) was laminated on the top and bottom, and the resulting mixture was heated and molded at 230° C. and a pressure of 30 kg/cm 2 for 120 minutes to obtain a metal substrate with resin.
When the density of the hollow silica particles used is A (g/cm 3 ) and the density of the resin is B2 (g/cm 3 ), A/B2 was calculated and shown in Table 2. In the subsequent examples, similar calculations were performed and the results are summarized in Table 2. In Examples 2-5 to 2-6 and Examples 3-5 to 3-6, A was used as the density of the solid particles or hollow particles, not the density of the hollow silica particles.
[例2-2~2-6]
 中空シリカ粒子A1を、表2に記載の中空シリカ粒子、中実粒子又は中空粒子に変更した以外は、例2-1と同様にして、樹脂組成物、プリプレグ及び樹脂付き金属基材を製造した。
[Examples 2-2 to 2-6]
Except for changing the hollow silica particles A1 to the hollow silica particles, solid particles or hollow particles shown in Table 2, a resin composition, a prepreg and a resin-coated metal substrate were produced in the same manner as in Example 2-1.
[例3-1]
 ポリイミド樹脂(荒川化学工業製、PIAD300、固形分30%)の50質量部、中空シリカ粒子A-1を全体の20体積%となる質量部、シクロヘキサノン20質量部をポリビンに入れ、Φ20mmのアルミナボールを入れて30rpmで12時間混合し、アルミナボールを除いて樹脂組成物を得た。
 樹脂組成物を25℃、相対湿度50%の環境に12時間静置した。
 静置後、樹脂組成物を、IPCスペック2116のガラスクロスに含浸塗工し、160℃で4分間加熱乾燥してプリプレグを得た。
 プリプレグを3枚重ね、上下にロープロファイル銅箔(厚さ:18μm、Rz:3.5μm、三井金属社製、3EC-M3-V-18)を積層し180℃、圧力30kg/cmで120分間加熱成形し、樹脂付き金属基材を得た。
[Example 3-1]
50 parts by mass of polyimide resin (manufactured by Arakawa Chemical Industries, Ltd., PIAD300, solid content 30%), 20 parts by mass of hollow silica particles A-1 corresponding to 20 volume % of the total, and 20 parts by mass of cyclohexanone were placed in a polyvinyl bottle, and alumina balls having a diameter of 20 mm were added and mixed at 30 rpm for 12 hours. The alumina balls were then removed to obtain a resin composition.
The resin composition was allowed to stand in an environment of 25° C. and a relative humidity of 50% for 12 hours.
After standing, the resin composition was applied to impregnate a glass cloth of IPC spec 2116, and then heated and dried at 160° C. for 4 minutes to obtain a prepreg.
Three sheets of prepreg were stacked, low-profile copper foil (thickness: 18 μm, Rz: 3.5 μm, Mitsui Kinzoku Co., Ltd., 3EC-M3-V-18) was laminated on top and bottom, and the resulting mixture was heated and molded at 180° C. and a pressure of 30 kg/cm 2 for 120 minutes to obtain a metal substrate with resin.
[例3-2~3-6]
 中空シリカ粒子A1を、表2に記載の中空シリカ粒子、中実粒子又は中空粒子に変更した以外は、例3-1と同様にして、樹脂組成物、プリプレグ及び樹脂付き金属基材を製造した。
[Examples 3-2 to 3-6]
Except for changing the hollow silica particles A1 to the hollow silica particles, solid particles or hollow particles shown in Table 2, a resin composition, a prepreg and a resin-coated metal substrate were produced in the same manner as in Example 3-1.
<比誘電率の標準偏差の測定>
 例2-1~2-6及び例3-1~3-6の樹脂付き金属基材から、銅箔をエッチングし、十分に蒸留水で洗浄した後、100℃のオーブンで10分乾燥し、プレス済プリプレグを得た。得られたプレス済プリプレグの比誘電率を、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」を用い、摂動方式共振器法にて測定した。
 具体的には、図1に示すプレス済プリプレグの短辺方向の中央部Xで、長辺方向の全長をLとしたとき、1/4L、2/4L、3/4Lの3点の比誘電率を測定し、比誘電率の標準偏差を求めた。測定結果を表2にまとめた。なお、図1において、プリプレグを符号10で示す。
<Measurement of standard deviation of dielectric constant>
The copper foil was etched from the resin-coated metal substrates of Examples 2-1 to 2-6 and Examples 3-1 to 3-6, thoroughly washed with distilled water, and then dried for 10 minutes in an oven at 100° C. to obtain pressed prepregs. The relative dielectric constant of the pressed prepregs obtained was measured by a perturbation resonator method using a "Vector Network Analyzer E5063A" manufactured by Keycom Corporation.
Specifically, the dielectric constants were measured at three points, 1/4L, 2/4L, and 3/4L, at the center X in the short side direction of the pressed prepreg shown in Figure 1, where L is the total length in the long side direction, and the standard deviation of the dielectric constants was calculated. The measurement results are summarized in Table 2. In Figure 1, the prepreg is indicated by the reference symbol 10.
 表2に示されるように、本組成物を用いて得られた硬化物は、比誘電率の標準偏差が低く抑えられている。 As shown in Table 2, the standard deviation of the dielectric constant of the cured product obtained using this composition is kept low.
10:プレス済プリプレグ、X:プレス済プリプレグの短辺方向の中央部、L:プレス済プリプレグの長辺方向の全長 10: Pressed prepreg, X: Center of the pressed prepreg in the short side direction, L: Total length of the pressed prepreg in the long side direction
 2022年12月5日に出願された日本国特許出願第2022-194209号及び日本国特許出願第2022-194210号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosures of Japanese Patent Application Nos. 2022-194209 and 2022-194210, filed on December 5, 2022, are incorporated herein by reference in their entirety. All documents, patent applications, and technical standards described herein are incorporated herein by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference.

Claims (14)

  1.  樹脂及び中空シリカ粒子を含む樹脂組成物であって、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた前記中空シリカ粒子の密度をA(g/cm)、前記中空シリカ粒子のBET比表面積をB1(m/g)としたとき、A×B1が、1.0~120.0m/cmである、樹脂組成物。 A resin composition comprising a resin and hollow silica particles, wherein when the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is A (g/cm 3 ) and the BET specific surface area of the hollow silica particles is B1 (m 2 /g), A×B1 is 1.0 to 120.0 m 2 /cm 3 .
  2.  樹脂及び中空シリカ粒子を含む樹脂組成物であって、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた前記中空シリカ粒子の密度及び前記樹脂の密度を、それぞれ、A(g/cm)、及びB2(g/cm)としたとき、A/B2が、0.3~1.5である、樹脂組成物。 A resin composition comprising a resin and hollow silica particles, wherein when the density of the hollow silica particles and the density of the resin determined by a constant volume expansion method using argon gas and a dry pycnometer are A (g/cm 3 ) and B2 (g/cm 3 ), respectively, A/B2 is 0.3 to 1.5.
  3.  前記中空シリカ粒子の密度が、0.35~2.00g/cmである、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the hollow silica particles have a density of 0.35 to 2.00 g/ cm3 .
  4.  前記中空シリカ粒子のBET比表面積が、1.0~100.0m/gである、請求項1又は2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the hollow silica particles have a BET specific surface area of 1.0 to 100.0 m 2 /g.
  5.  前記中空シリカ粒子のメジアン径(d50)が0.1~10.0μmである、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the median diameter (d50) of the hollow silica particles is 0.1 to 10.0 μm.
  6.  前記樹脂が、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ジビニルベンゼン骨格を含む樹脂、及びピリミジン骨格を含む樹脂から選択される少なくとも1つを含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the resin comprises at least one selected from the group consisting of epoxy resins, polyimide resins, polyphenylene ether resins, resins containing a divinylbenzene skeleton, and resins containing a pyrimidine skeleton.
  7.  樹脂組成物の総体積に対する前記中空シリカ粒子の含有量が10~70体積%である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the content of the hollow silica particles relative to the total volume of the resin composition is 10 to 70 volume %.
  8.  請求項1又は2に記載の樹脂組成物又はその半硬化物と、繊維質基材と、を含むプリプレグ。 A prepreg comprising the resin composition or a semi-cured product thereof according to claim 1 or 2, and a fibrous base material.
  9.  前記繊維質基材が、ガラス成分を含む、請求項8に記載のプリプレグ。 The prepreg according to claim 8, wherein the fibrous base material contains a glass component.
  10.  請求項1若しくは2に記載の樹脂組成物又はその半硬化物と、金属基材層と、を含む樹脂付き金属基材。 A resin-coated metal substrate comprising the resin composition or semi-cured product thereof according to claim 1 or 2, and a metal substrate layer.
  11.  請求項9に記載のプリプレグと、金属基材層と、を含む樹脂付き金属基材。 A resin-coated metal substrate comprising the prepreg according to claim 9 and a metal substrate layer.
  12.  前記金属基材層が、銅箔である、請求項10に記載の樹脂付き金属基材。 The resin-coated metal substrate according to claim 10, wherein the metal substrate layer is copper foil.
  13.  前記金属基材層が、銅箔である、請求項11に記載の樹脂付き金属基材。 The resin-coated metal substrate according to claim 11, wherein the metal substrate layer is copper foil.
  14.  請求項1又は2に記載の樹脂組成物の硬化物と、金属配線と、を含む配線板。 A wiring board comprising a cured product of the resin composition according to claim 1 or 2 and metal wiring.
PCT/JP2023/042806 2022-12-05 2023-11-29 Resin composition, prepreg, metal substrate provided with resin, and wiring board WO2024122433A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022194210 2022-12-05
JP2022194209 2022-12-05
JP2022-194209 2022-12-05
JP2022-194210 2022-12-05

Publications (1)

Publication Number Publication Date
WO2024122433A1 true WO2024122433A1 (en) 2024-06-13

Family

ID=91379446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042806 WO2024122433A1 (en) 2022-12-05 2023-11-29 Resin composition, prepreg, metal substrate provided with resin, and wiring board

Country Status (1)

Country Link
WO (1) WO2024122433A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172294A1 (en) * 2020-02-27 2021-09-02 Agc株式会社 Hollow silica particles and method for producing same
WO2023140378A1 (en) * 2022-01-21 2023-07-27 花王株式会社 Method for producing hollow silica particles
WO2023218948A1 (en) * 2022-05-09 2023-11-16 Agc株式会社 Silica particle dispersion liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172294A1 (en) * 2020-02-27 2021-09-02 Agc株式会社 Hollow silica particles and method for producing same
WO2021172293A1 (en) * 2020-02-27 2021-09-02 Agc株式会社 Hollow silica particles and method for manufacturing hollow silica particles
WO2023140378A1 (en) * 2022-01-21 2023-07-27 花王株式会社 Method for producing hollow silica particles
WO2023218948A1 (en) * 2022-05-09 2023-11-16 Agc株式会社 Silica particle dispersion liquid

Similar Documents

Publication Publication Date Title
EP2860219B1 (en) Resin composition, prepreg, metal foil-clad laminate and printed wiring board
JP5864299B2 (en) Resin composition
US20090266591A1 (en) Prepreg and printed wiring board using thin quartz glass cloth
US10897818B2 (en) Metal-clad laminate, method for producing same, metal foil with resin, and printed wiring board
KR20210130710A (en) Low Loss Dielectric Composite Comprising Hydrophobized Fused Silica
US11820105B2 (en) Prepreg, metal-clad laminate, and wiring board
JP2010138366A (en) Resin composition, prepreg and metal foil-clad laminate
JP6981634B2 (en) A resin composition, a prepreg containing the resin composition, a laminated board containing the resin composition, and a resin-attached metal foil containing the resin composition.
CN111909476A (en) Prepreg and circuit board
CN114174411A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
WO2020071288A1 (en) Metal-clad laminate, wiring board, metal foil provided with resin, and resin composition
WO2024122433A1 (en) Resin composition, prepreg, metal substrate provided with resin, and wiring board
Yu et al. Improved dispersion and interfacial interaction of SiO2@ polydopamine fillers in polytetrafluoroethylene composites for reduced thermal expansion and suppressed dielectric deterioration
WO2024122435A1 (en) Resin composition, prepreg, resin-coated metal substrate, and wiring board
US20240308858A1 (en) Hollow silica particles and method for producing same
JP2023164341A (en) Liquid composition, prepreg, resin-coated metallic substrate, wiring board, and silica particles
JP2024081136A (en) Resin composition, prepreg, metal substrate with resin, and wiring board
JP2024081138A (en) Resin composition, prepreg, metal substrate with resin, and wiring board
Purushothaman et al. Inclusion of covalent triazine framework into fluorinated polyimides to obtain composites with low dielectric constant
JP2024081135A (en) Resin composition, prepreg, metal substrate with resin, and wiring board
WO2023210545A1 (en) Liquid composition, prepreg, resin-coated metallic substrate, wiring board, and silica particles
WO2024122434A1 (en) Resin composition, prepreg, resin-including metal substrate, and wiring board
JP2024081137A (en) Resin composition, prepreg, metal substrate with resin, and wiring board
JP2024081140A (en) Resin composition, prepreg, metal substrate with resin, and wiring board
CN114174433A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900548

Country of ref document: EP

Kind code of ref document: A1