WO2024117157A1 - Diffusion plate, light-emitting device, and sensor module - Google Patents
Diffusion plate, light-emitting device, and sensor module Download PDFInfo
- Publication number
- WO2024117157A1 WO2024117157A1 PCT/JP2023/042670 JP2023042670W WO2024117157A1 WO 2024117157 A1 WO2024117157 A1 WO 2024117157A1 JP 2023042670 W JP2023042670 W JP 2023042670W WO 2024117157 A1 WO2024117157 A1 WO 2024117157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- convex lens
- diffusion plate
- optical axis
- concentration
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 61
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 55
- 238000009826 distribution Methods 0.000 claims abstract description 38
- 229910044991 metal oxide Inorganic materials 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 9
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
Definitions
- This disclosure relates to a diffuser, a light-emitting device, and a sensor module.
- JP 2003-4907 A discloses a technique for reducing the occurrence of interference fringes in outgoing light by irregularly setting the spacing between the vertices of each lens in a microlens array that diffuses incoming light.
- a microlens array in which a plurality of convex lenses are regularly arranged is provided, The carbon concentration distribution of the diffusion plate varies among the plurality of convex lenses.
- Another aspect of the present disclosure is The above-mentioned diffusion plate, A light emitting element that emits light to be incident on the diffusion plate; A light emitting device comprising: Another aspect of the present disclosure is The light-emitting device as described above; a light receiving device for detecting incident light;
- the sensor module includes:
- FIG. 1 is a schematic cross-sectional view of a sensor module including a light-emitting device using a diffusion plate according to an embodiment of the present invention.
- FIG. 4 is a contour map of the bottom side of the diffuser plate.
- FIG. 4 is a diagram illustrating a carbon concentration distribution of a convex lens.
- FIG. 13 is a diagram showing another example of the carbon concentration distribution of the convex lens.
- FIG. 13 is a diagram showing another example of the carbon concentration distribution of the convex lens.
- FIG. 1 is a schematic cross-sectional view of a sensor module 100 including a light-emitting device 1 using a diffusion plate 10 of the present embodiment.
- the sensor module 100 includes a light-emitting device 1 and a light-receiving device 2.
- the light-emitting device 1 and the light-receiving device 2 may be positioned side by side on a module substrate 3.
- the sensor module 100 is, for example, a photoelectric sensor that detects incident light emitted by the light-emitting device 1 and reflected by an object or the like and returns using the light-receiving device 2 to perform object detection, but is not limited to this.
- the light-emitting device 1 includes a light-emitting element 15, a diffusion plate 10, and a housing 16.
- the light-emitting element 15 may be a surface-emitting laser, for example a vertical-cavity surface-emitting laser (VCSEL).
- the housing 16 may have a shape with a recess that is open on one side, for example a box shape, and is a package in which the light-emitting element 15 is located.
- the housing 16 also has signal lines and connection terminals for supplying power related to light emission to the light-emitting element 15 from the outside.
- the diffusion plate 10 covers the open surface of the housing 16.
- the diffusion plate 10 diffuses the light emitted by the light-emitting element 15 and emits it to the outside.
- the diffusion plate 10 will be described later.
- the light receiving device 2 may include a substrate 21, an optical member 23, a support portion 24, and the like.
- the light receiving element 22 may be, for example, a photodiode.
- the light receiving element 22 is capable of receiving incident light from above, and may be connected to a connection terminal on the substrate 21.
- the substrate 21 may have a signal line that outputs a signal according to the amount of received light to the outside, and one end of the signal line may be connected to the connection terminal.
- the optical member 23 may include a lens, a filter, and the like.
- the optical member 23 focuses the light incident from above onto the entrance of the light receiving element 22.
- the optical member 23 may also include a bandpass filter that selectively passes light in the emission wavelength band of the light emitting element 15 and blocks light of other wavelengths. The other wavelengths of light that are blocked may include non-visible light such as infrared light.
- the support portion 24 supports the optical member 23.
- the support portion 24 may also function as a light blocking member that prevents light from entering the light receiving element 22 without passing through the optical member 23.
- Fig. 2A is a contour map of the surface of the diffusion plate 10 of this embodiment as viewed from the bottom side
- Fig. 2B is a cross-sectional view of the diffusion plate 10 taken along the section line AA.
- the diffusion plate 10 has a microlens array 110 in which a plurality of convex lenses 11 are regularly arranged. Each of the convex lenses 11 protrudes downward (in the -Z direction) and diffuses light from a light-emitting element 15 located further below the microlens array 110 (in the -Z direction), emitting the light approximately evenly over a wider range. That is, the convex portions of the convex lenses 11 protrude toward the inner surface of the housing 16.
- the microlens array 110 may be located on, but is not limited to, a glass substrate 120, which is a transparent flat plate, and has an uneven shape due to a transparent resin.
- the glass substrate 120 may be borosilicate glass.
- the thickness of the glass substrate 120 is, but is not limited to, about 100 to 1000 ⁇ m.
- the transparent resin may be, for example, an acrylic resin, an epoxy resin, a silicone resin, or the like.
- the diffusion plate 10 may be formed integrally with the microlens array 110 and the flat plate portion that corresponds to the glass substrate 120, by a transparent resin.
- the transparent resin layer may also contain carbon and a metal oxide.
- the metal oxide has a higher refractive index than the transparent resin, and is not limited to, but may be, for example, zirconium oxide, titanium oxide, cerium oxide, niobium oxide, or the like.
- the amount of these metal oxides may be, for example, 50% or less of the resin component by volume.
- the refractive index of the microlens array 110 may be, but is not limited to, about 1.5 to 2.0.
- the convex lenses 11 are arranged on the lattice points of a square lattice, but the arrangement is not limited to this.
- the convex lens 11 may be a wide-angle lens type with a large concave/convex surface B compared to its width in a cross-sectional view passing through the apex/center. This makes it easier for the incident light from the light-emitting element 15 to enter the convex lens 11 at a large angle of incidence, and accordingly the direction of the light changes significantly at the lens surface. The light incident from each convex surface of the convex lens 11 does not need to converge to a single point.
- Light path L is shown as an example.
- the refraction pattern of the incident light i.e., the output intensity distribution of the output light
- the shapes of the convex lenses 11 are made different from each other, it takes time to manufacture them and is likely to affect the optical characteristics. For example, it becomes difficult to maintain the output intensity of the incident light with respect to the angle of incidence uniform.
- the convex lenses 11 of this embodiment have a variation in the internal carbon concentration distribution instead of the shape, thereby causing the distribution of the refractive index of each convex lens 11 to vary.
- the convex lenses 11 each include a high-concentration portion in which the carbon concentration is partially high inside, and the distribution of the high-concentration portion varies, resulting in a large difference in the optical path difference according to the carbon concentration distribution on the optical path, which is the path of the incident light.
- the high-concentration portion may cover the area through which the light incident from each portion of the surface of the convex lens 11 passes in common.
- the high-concentration portion may be located at least near the center of the base (+Z side) of each convex lens 11, i.e., including the optical axis.
- the optical path length of each incident light is also different.
- the phase of the light exiting from the diffusion plate 10 is shifted, and the occurrence of interference fringes is reduced.
- the term "varies" here does not mean that the carbon concentration distribution is different from one another in all of the convex lenses 11. However, the carbon concentration distribution may be different between the convex lenses 11 involved in the generation of interference fringes.
- each convex lens 11 contains a metal oxide with a high refractive index, which further amplifies the difference in optical path length according to the difference in carbon concentration distribution. This allows the diffusion plate 10 to properly disperse the incident light with further reduced occurrence of interference fringes and the like.
- FIG. 3 is a diagram showing a schematic diagram of the carbon concentration distribution of the convex lens 11.
- the carbon concentration at the apex of the convex lens 11, i.e., at the cross section passing through the center in a plan view, does not need to be clearly divided into high and low regions. Overall, it is sufficient that the carbon concentration is relatively high in the dot region near the center of each convex lens 11, and the carbon concentration is relatively low near the connection part with other convex lenses 11 at the periphery of each convex lens 11.
- a reference line S that intersects with the optical axis of each convex lens 11 and is perpendicular to them, and is on the root side (+Z side) of the height in the Z direction at the periphery of each convex lens 11, i.e., the point of height Zm where the value of the Z component is minimal, may be considered. That is, the reference line S may pass only through the convex lens 11.
- the width W2 of the high concentration part H2 in which the carbon concentration is higher than the reference carbon concentration by a predetermined percentage or more in a certain convex lens 11 may be wider than the width W1 of the high concentration part H1 in the other convex lens 11.
- the reference carbon concentration may be, for example, 75% or the like, which is the average carbon concentration in the multiple convex lenses 11 of the microlens array 110.
- the predetermined percentage may be, for example, 5%.
- the average carbon concentration may be an absolute value previously determined as a general product standard, or the average value along the reference line S of the product or the product may be used.
- Such a high-concentration portion H also spreads in the height direction (Z direction), and in particular, the point with the smallest Z coordinate, which is the upper end of the high-concentration portion H, is located on the tip side of the periphery of the convex lens 11, so that the length of the thick line portion of the optical path L2 passing through the high-concentration portion H is longer than that of the optical path L1. Therefore, the optical path length of the optical path L2 is longer than that of the optical path L1.
- the inclination of the optical paths L1 and L2 also changes slightly according to the increase in the refractive index.
- the high concentration portion H may occur not only in the spatial size of the high concentration portion H, i.e., in the width and height, but also in the carbon concentration itself. That is, the distribution of the carbon concentration in the high concentration portion H may vary for each convex lens 11.
- the high concentration portion H may extend up and down across the position of height Zm where adjacent convex lenses 11 are connected at their peripheries. That is, the upper end, which is one end in the height direction of the high concentration portion H, may be located closer to the tip of the convex lens 11 than the periphery, and the lower end, which is the other end opposite to the one end, may be located closer to the base of the convex lens 11 than the periphery.
- the high concentration portion H may tend to be thicker on the base (+Z side) side of each convex lens 11, that is, the planar size may tend to increase the further from the tip.
- FIG. 4A and 4B are diagrams showing other examples of the carbon concentration distribution of the convex lens 11.
- the carbon concentration represented by the density of hatches may tend to increase further away from the convex surface of the convex lens 11, particularly the tip.
- the carbon concentration is highest just below the apex of each convex lens 11, but the region with the highest carbon concentration may spread in the arrangement direction of the convex lenses 11.
- the concentration trend referred to here does not need to take into account the presence of fine local minimum/maximum portions of concentration. It may be to the extent that the concentration distribution trends match when the concentration distribution is approximated by a curve on a line or by a curved surface for each convex lens 11.
- the high-concentration portion H may be connected at least in part to the high-concentration portion Hc, which is the base portion of the microlens array 110, which is a transparent resin layer in which multiple convex lenses 11 are connected.
- the level of concentration referred to here is a level that is significant in breaking up the interference fringes, and is greater than manufacturing errors or variations.
- the length of the widths W1 and W2 of the high-concentration portion H, or the difference in the maximum carbon concentration on the reference line S within the widths W1 and W2 may be 5% or more greater within the microlens array 110.
- the upper limit of the variation is not limited as long as it is within a range in which light is appropriately transmitted, and may be, for example, 30% or less.
- the element concentration in a cross section may be determined, for example, from the concentration distribution in a certain cross section obtained by an energy dispersive X-ray spectrometer (EDS). Alternatively, a wavelength dispersive X-ray spectrometer (WDS) or the like may be used to measure the element concentration instead of an EDS.
- EDS energy dispersive X-ray spectrometer
- These convex lenses 11 have a width and a height longer than the wavelength of the incident visible light.
- the width and the height of the convex lenses 11 may each be 5 ⁇ m or more.
- the light emission patterns of the convex lenses 11 do not overlap periodically, but are shifted, thereby reducing the occurrence of interference fringes.
- the distribution of the metal oxide may be uniform within the microlens array 110.
- the concentration distribution of the metal oxide may not be correlated with the concentration distribution of carbon.
- a diffusion plate 10 having such an uneven structure of a microlens array 110 may be obtained by filling a transparent resin into a mold such as an electroforming mold or a secondary mold having the shape of a lens surface, pressing the resin to harden it, and then releasing the resin from the mold.
- a mold such as an electroforming mold or a secondary mold having the shape of a lens surface
- UV curing by irradiation with ultraviolet light may be used to harden the transparent resin.
- the mold may also be made of a resin film, and ultraviolet light may be irradiated from the convex side of the transparent resin through the resin film.
- ultraviolet light may be irradiated from the convex side of the transparent resin through the resin film.
- This causes the UV light to refract in the same way as the incident light from the light emitting element 15 during use. Since the refracted light passes mostly near the center of the convex lens 11, hardening proceeds preferentially in this vicinity. This causes a polymer to be formed near the center of the convex lens 11, and the carbon concentration is higher than in the surrounding area.
- a convex lens structure having the carbon concentration distribution disclosed herein is obtained.
- the irradiation time of the UV light may be appropriately varied.
- multiple resin compositions may be applied to make it easier to produce variation in the carbon concentration distribution.
- the diffusion plate 10 of this embodiment has a microlens array 110 in which multiple convex lenses 11 are regularly arranged.
- the multiple convex lenses 11 have variations in the distribution of carbon concentration. This causes the optical path length of light passing through each convex lens 11 to vary according to the distribution of carbon concentration. This makes it possible to reduce the periodic interference of light passing through the multiple convex lenses 11, resulting in interference fringes and the like. Furthermore, since there is no need to vary the shape of the convex lenses 11 itself, the effect of this variation on the optical characteristics can be more appropriately reduced.
- each of the multiple convex lenses 11 may have a high concentration portion H where the carbon concentration is partially high, in a range including an intersection point with the optical axis on a reference line S within the convex lens 11 that intersects with the optical axis of the convex lens 11 and is perpendicular to the optical axis.
- the variation may exist at least on a reference line S within the convex lens 11 that intersects with the optical axis of the convex lens 11 and is perpendicular to the optical axis.
- this diffusion plate 10 can more appropriately reduce the deterioration of the optical properties of the outgoing light and the occurrence of interference fringes.
- the width of the high-concentration portion H on the reference line S may vary according to the variation in carbon concentration. In other words, the range of incident light passing through the high-concentration portion H varies, so the diffuser 10 can easily reduce the occurrence of interference fringes and the like.
- the reference line S may be located closer to the base (+Z side) of the convex lens 11 than the periphery in the Z direction along the optical axis of the convex lens 11.
- the lower end of the high-concentration portion H may be located closer to the base (+Z side) than the periphery of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. That is, the high-concentration portion H may extend toward the base in the direction along the optical axis of each convex lens 11. This makes it easier for incident light at various angles of incidence on each convex lens 11 to pass through the high-concentration portion H. This allows the diffuser 10 to disperse the refraction direction of the incident light while reducing the effect on the optical characteristics, thereby further reducing the occurrence of interference fringes and the like.
- the upper end of the high-concentration portion H may be located on the tip side (-Z side) of the periphery of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. That is, the high-concentration portion H may extend in the direction along the optical axis in each convex lens 11. This tends to lengthen the optical path that the light incident on each convex lens 11 takes through each high-concentration portion H, and this tends to cause variation.
- the diffuser 10 can further reduce the occurrence of interference fringes while reducing the effect on the optical characteristics.
- the high-concentration portion H may have a larger planar size the farther it is from the tip of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. In this way, the high-concentration portion H becomes thicker near the base of the convex lens 11, which is originally thick, so that incident light passes through the high-concentration portion H appropriately, and the optical path length varies according to this variation. This allows the diffuser 10 to reduce the occurrence of interference fringes and the like while reducing the impact on the optical characteristics.
- the carbon concentration of the high concentration portion H may be higher the farther from the tip of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. In other words, the carbon concentration distribution within the high concentration portion H does not need to be uniform and may be biased.
- incident light passes through the high concentration portion at a variety of angles.
- the optical path length of the incident light varies more efficiently depending on the length passing through this portion. This allows the diffuser 10 to reduce the occurrence of interference fringes while reducing the impact on the optical characteristics.
- the high-density portion H may also have a high-density portion Hc that is at least partially connected between the convex lenses 11. Since the incident light always passes through the high-density portion Hc before being emitted to the outside of the diffuser plate 10, the emitted light tends to be emitted in the same direction.
- the convex lens 11 may also contain a metal oxide with a higher refractive index than carbon. This further increases the refractive index of the convex lens 11, further accentuating the variation in optical path length according to the carbon concentration distribution. Therefore, the diffuser 10 can further reduce the occurrence of interference fringes while reducing the impact on the optical characteristics.
- the light-emitting device 1 of this embodiment also includes the above-mentioned diffusion plate 10 and a light-emitting element 15 that emits light to be incident on the diffusion plate 10.
- a light-emitting element 15 that emits light to be incident on the diffusion plate 10.
- the sensor module 100 of this embodiment also includes the above-mentioned light-emitting device 1 and the light-receiving device 2 that detects incident light.
- the light-emitting device 1 emits light while reducing the effect on the optical characteristics as described above, so the light-receiving device 2 that measures the reflected light of the emitted light can easily measure the appropriate amount of light to evaluate the measurement target.
- the size of the high concentration portion H and the distribution of the carbon concentration may be constant, i.e., isotropic, regardless of the orientation of the reference line S in each convex lens 11, or may have anisotropy. If the high concentration portion H and the carbon concentration distribution are anisotropic, the anisotropic characteristics, for example, the tendency of bias, may be different for each convex lens 11.
- the convex lens is described as having at least a variation in the widths W1 and W2 of the high-concentration portion H on a straight line passing through the base side of the periphery, but this is not limited to this.
- the variation in the carbon concentration distribution may be evaluated at other positions and by other methods.
- the range of the high concentration portion H and the corresponding reference line S are not limited to the above examples. If there is variation in the distribution of carbon concentration and the incident light from each surface position of the convex lens 11 passes through the range of variation, the occurrence of interference fringes and the like can be appropriately reduced.
- the method for generating the high-concentration portion H in the convex lens 11 is not limited to the above-mentioned method.
- the high-concentration portion H may be generated by other methods.
- the light emitting device 1 is described as a part of the sensor module 100, but the present invention is not limited to this. Only the light emitting device 1 may be used for trading separately from the light receiving device 2. Furthermore, the diffusion plate 10 may be sold and used separately from the light emitting device 1 .
- This disclosure can be used in diffusers, light-emitting devices, and sensor modules.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
This diffusion plate has a microlens array in which a plurality of convex lenses are regularly arranged, and has variation in the distribution of a carbon concentration among the plurality of convex lenses. The plurality of convex lenses may each have a high-concentration portion in which the carbon concentration is locally high in a range that includes a point of intersection of the optical axis of the convex lens with a reference line in the convex lens that intersects with the optical axis and is perpendicular to the optical axis. Among the plurality of convex lenses, the distribution of the carbon concentration along the reference line may have variation. The width on the reference line of the high-concentration portion may vary in accordance with the variation in the distribution of the carbon concentration.
Description
本開示は、拡散板、発光デバイス及びセンサモジュールに関する。
This disclosure relates to a diffuser, a light-emitting device, and a sensor module.
特開2003-4907号公報には、入射光を拡散させるマイクロレンズアレイにおける各レンズ頂点の間隔を不規則に定めることで、出射光の干渉縞の発生を低減させる技術が示されている。
JP 2003-4907 A discloses a technique for reducing the occurrence of interference fringes in outgoing light by irregularly setting the spacing between the vertices of each lens in a microlens array that diffuses incoming light.
本開示の一の態様は、
複数の凸レンズが規則的に並ぶマイクロレンズアレイを有し、
前記複数の凸レンズ間で、炭素濃度の分布にばらつきを有する
拡散板である。
また、本開示の他の態様は、
上記の拡散板と、
前記拡散板へ入射させる光を発する発光素子と、
を備える発光デバイスである。
また、本開示の他の態様は、
上記の発光デバイスと、
入射光を検出する受光デバイスと、
を備えるセンサモジュールである。 One aspect of the present disclosure is
A microlens array in which a plurality of convex lenses are regularly arranged is provided,
The carbon concentration distribution of the diffusion plate varies among the plurality of convex lenses.
Another aspect of the present disclosure is
The above-mentioned diffusion plate,
A light emitting element that emits light to be incident on the diffusion plate;
A light emitting device comprising:
Another aspect of the present disclosure is
The light-emitting device as described above;
a light receiving device for detecting incident light;
The sensor module includes:
複数の凸レンズが規則的に並ぶマイクロレンズアレイを有し、
前記複数の凸レンズ間で、炭素濃度の分布にばらつきを有する
拡散板である。
また、本開示の他の態様は、
上記の拡散板と、
前記拡散板へ入射させる光を発する発光素子と、
を備える発光デバイスである。
また、本開示の他の態様は、
上記の発光デバイスと、
入射光を検出する受光デバイスと、
を備えるセンサモジュールである。 One aspect of the present disclosure is
A microlens array in which a plurality of convex lenses are regularly arranged is provided,
The carbon concentration distribution of the diffusion plate varies among the plurality of convex lenses.
Another aspect of the present disclosure is
The above-mentioned diffusion plate,
A light emitting element that emits light to be incident on the diffusion plate;
A light emitting device comprising:
Another aspect of the present disclosure is
The light-emitting device as described above;
a light receiving device for detecting incident light;
The sensor module includes:
以下、実施の形態を図面に基づいて説明する。
図1は、本実施形態の拡散板10を用いた発光デバイス1を含むセンサモジュール100の断面模式図である。 Hereinafter, an embodiment will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of asensor module 100 including a light-emitting device 1 using a diffusion plate 10 of the present embodiment.
図1は、本実施形態の拡散板10を用いた発光デバイス1を含むセンサモジュール100の断面模式図である。 Hereinafter, an embodiment will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a
センサモジュール100は、発光デバイス1と、受光デバイス2とを備える。発光デバイス1及び受光デバイス2は、モジュール基板3の上に並んで位置していてもよい。センサモジュール100は、例えば、発光デバイス1の発光した光が物体などで反射されて戻ってきた入射光を受光デバイス2で検出して物体検知などを行う光電センサなどであるが、これに限られない。
The sensor module 100 includes a light-emitting device 1 and a light-receiving device 2. The light-emitting device 1 and the light-receiving device 2 may be positioned side by side on a module substrate 3. The sensor module 100 is, for example, a photoelectric sensor that detects incident light emitted by the light-emitting device 1 and reflected by an object or the like and returns using the light-receiving device 2 to perform object detection, but is not limited to this.
発光デバイス1は、発光素子15と、拡散板10と、筐体16などを備える。発光素子15は、面発光レーザー、例えば、垂直共振器面発光型レーザー(VCSEL)などであってもよい。筐体16は、一方が開放された凹部を有する形状、例えば箱形を有していてもよく、内部に発光素子15が位置するパッケージである。また、筐体16は、発光素子15へ発光に係る電力供給を外部から行う信号線や接続端子などを有している。
The light-emitting device 1 includes a light-emitting element 15, a diffusion plate 10, and a housing 16. The light-emitting element 15 may be a surface-emitting laser, for example a vertical-cavity surface-emitting laser (VCSEL). The housing 16 may have a shape with a recess that is open on one side, for example a box shape, and is a package in which the light-emitting element 15 is located. The housing 16 also has signal lines and connection terminals for supplying power related to light emission to the light-emitting element 15 from the outside.
拡散板10は、上記筐体16の開放面を覆っている。拡散板10は、発光素子15の発した光を拡散させて外部へ出射させる。拡散板10については後述する。
The diffusion plate 10 covers the open surface of the housing 16. The diffusion plate 10 diffuses the light emitted by the light-emitting element 15 and emits it to the outside. The diffusion plate 10 will be described later.
受光デバイス2は、受光素子22に加えて、基板21と、光学部材23と、支持部24などを備えていてもよい。
受光素子22は、例えば、フォトダイオードであってもよい。受光素子22は、上方からの入射光を受光可能であり、基板21上の接続端子と接続されていてもよい。基板21は、受光量に応じた信号を外部へ出力する信号線を有し、一端が上記接続端子とつながっていてもよい。 In addition to thelight receiving element 22, the light receiving device 2 may include a substrate 21, an optical member 23, a support portion 24, and the like.
Thelight receiving element 22 may be, for example, a photodiode. The light receiving element 22 is capable of receiving incident light from above, and may be connected to a connection terminal on the substrate 21. The substrate 21 may have a signal line that outputs a signal according to the amount of received light to the outside, and one end of the signal line may be connected to the connection terminal.
受光素子22は、例えば、フォトダイオードであってもよい。受光素子22は、上方からの入射光を受光可能であり、基板21上の接続端子と接続されていてもよい。基板21は、受光量に応じた信号を外部へ出力する信号線を有し、一端が上記接続端子とつながっていてもよい。 In addition to the
The
光学部材23は、レンズやフィルタなどを含み得る。光学部材23は、上方から入射した光を受光素子22の入射口へ集光させる。また、光学部材23は、発光素子15の出射波長帯の光を選択的に通過させて、その他の波長の光を遮断するバンドパスフィルタを含んでいてもよい。遮断されるその他の波長の光には、赤外などの可視光外が含まれ得る。支持部24は、光学部材23を支持する。また、支持部24は、光学部材23を介さずに受光素子22への光の入射を妨げる遮光部材としても機能し得る。
The optical member 23 may include a lens, a filter, and the like. The optical member 23 focuses the light incident from above onto the entrance of the light receiving element 22. The optical member 23 may also include a bandpass filter that selectively passes light in the emission wavelength band of the light emitting element 15 and blocks light of other wavelengths. The other wavelengths of light that are blocked may include non-visible light such as infrared light. The support portion 24 supports the optical member 23. The support portion 24 may also function as a light blocking member that prevents light from entering the light receiving element 22 without passing through the optical member 23.
次に、拡散板10について説明する。
図2Aは、本実施形態の拡散板10を底面側から見た表面の等高線図である。図2Bは、拡散板10を断面線AAで切った断面図である。
図2Aに示すように、拡散板10は、複数の凸レンズ11が規則的に並んだマイクロレンズアレイ110を有する。凸レンズ11は、各々下方(-Z方向)に突出し、マイクロレンズアレイ110の更に下方(-Z方向)に位置する発光素子15からの光を拡散させて、更に広い範囲へ略均等に出射する。すなわち、凸レンズ11の凸部は、筐体16の内面側に各々突出している。 Next, thediffusion plate 10 will be described.
Fig. 2A is a contour map of the surface of thediffusion plate 10 of this embodiment as viewed from the bottom side, and Fig. 2B is a cross-sectional view of the diffusion plate 10 taken along the section line AA.
2A, thediffusion plate 10 has a microlens array 110 in which a plurality of convex lenses 11 are regularly arranged. Each of the convex lenses 11 protrudes downward (in the -Z direction) and diffuses light from a light-emitting element 15 located further below the microlens array 110 (in the -Z direction), emitting the light approximately evenly over a wider range. That is, the convex portions of the convex lenses 11 protrude toward the inner surface of the housing 16.
図2Aは、本実施形態の拡散板10を底面側から見た表面の等高線図である。図2Bは、拡散板10を断面線AAで切った断面図である。
図2Aに示すように、拡散板10は、複数の凸レンズ11が規則的に並んだマイクロレンズアレイ110を有する。凸レンズ11は、各々下方(-Z方向)に突出し、マイクロレンズアレイ110の更に下方(-Z方向)に位置する発光素子15からの光を拡散させて、更に広い範囲へ略均等に出射する。すなわち、凸レンズ11の凸部は、筐体16の内面側に各々突出している。 Next, the
Fig. 2A is a contour map of the surface of the
2A, the
マイクロレンズアレイ110は、特には限られないが、例えば、透明な平板であるガラス基板120上に位置していてもよく、透明樹脂による凹凸形状を有する。ガラス基板120は、ホウケイ酸ガラスであってもよい。ガラス基板120の厚さは、例えば、100~1000μm程度であるが、これに限られない。透明樹脂は、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂などであってもよい。あるいは、拡散板10は、マイクロレンズアレイ110とガラス基板120に当たる平板部分とが透明樹脂により一体的に形成されていてもよい。また、この透明樹脂層には、炭素及び金属酸化物が含まれていてもよい。金属酸化物は、透明樹脂と比較して屈折率が高く、特に限定されないが、例えば、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化ニオブなどであってもよい。これら金属酸化物の分量は、例えば、体積比で樹脂成分の50%以下であってもよい。これらにより、マイクロレンズアレイ110の屈折率は、特には限られないが、1.5~2.0程度であってもよい。
The microlens array 110 may be located on, but is not limited to, a glass substrate 120, which is a transparent flat plate, and has an uneven shape due to a transparent resin. The glass substrate 120 may be borosilicate glass. The thickness of the glass substrate 120 is, but is not limited to, about 100 to 1000 μm. The transparent resin may be, for example, an acrylic resin, an epoxy resin, a silicone resin, or the like. Alternatively, the diffusion plate 10 may be formed integrally with the microlens array 110 and the flat plate portion that corresponds to the glass substrate 120, by a transparent resin. The transparent resin layer may also contain carbon and a metal oxide. The metal oxide has a higher refractive index than the transparent resin, and is not limited to, but may be, for example, zirconium oxide, titanium oxide, cerium oxide, niobium oxide, or the like. The amount of these metal oxides may be, for example, 50% or less of the resin component by volume. As a result, the refractive index of the microlens array 110 may be, but is not limited to, about 1.5 to 2.0.
ここでは、凸レンズ11が正方格子の格子点上に並んでいるが、並び方はこれに限られない。
Here, the convex lenses 11 are arranged on the lattice points of a square lattice, but the arrangement is not limited to this.
図2Bに示すように、凸レンズ11は、頂点/中心を通る断面視で横幅に比しBて凹凸の大きい広角レンズタイプであってもよい。これにより、発光素子15からの入射光は、大きい入射角で凸レンズ11に入射しやすくなり、これに応じてレンズ面で大きく光の向きが変化する。凸レンズ11の各凸面から入射した光は、一点に収束しなくてもよい。ガラス基板の+Z側の上面は平面であり、大きな入射角で拡散板10の裏面に進入した光は、更に大きな出射角で拡散板10の表面から外部へ放出される。一例として、光路Lが示されている。
As shown in FIG. 2B, the convex lens 11 may be a wide-angle lens type with a large concave/convex surface B compared to its width in a cross-sectional view passing through the apex/center. This makes it easier for the incident light from the light-emitting element 15 to enter the convex lens 11 at a large angle of incidence, and accordingly the direction of the light changes significantly at the lens surface. The light incident from each convex surface of the convex lens 11 does not need to converge to a single point. The upper surface on the +Z side of the glass substrate is flat, and light that enters the back surface of the diffuser plate 10 at a large angle of incidence is emitted to the outside from the surface of the diffuser plate 10 at an even larger exit angle. Light path L is shown as an example.
ここで、複数の凸レンズ11が一様であると、入射光の屈折パターン、すなわち、出射光の出射強度分布が周期的になり、出射光に干渉縞などが生じやすくなる。一方で、凸レンズ11の形状を互いに異ならせるのでは、製造に手間がかかるうえに、光学特性に影響が出やすい。例えば、入射光の入射角度に対する出射強度などが一様に保ちづらくなる。本実施形態の凸レンズ11は、形状の代わりに内部の炭素濃度分布にばらつきを有することで、各凸レンズ11の屈折率の分布をばらつかせる。特に、凸レンズ11が、内部にそれぞれ炭素濃度が部分的に高い高濃度部分を含み、当該高濃度部分の分布がばらつくことで、入射した光の経路である光路上の炭素濃度分布に応じた光路差に大きな差が出る。高濃度部分は、凸レンズ11表面の各部分から入射した光が共通して通る領域をカバーしていてもよい。一実施形態において、高濃度部分は、少なくとも各凸レンズ11の根元付近(+Z側)の中心付近、すなわち光軸付近を含んで位置していてもよい。これにより、複数の凸レンズ11の相対的に同一位置から入射した光がそれぞれ通過する光路上の炭素濃度分布が異なる。したがって、各入射光の光路長もそれぞれ異なる。その結果、拡散板10から出射する光の位相がずれて、干渉縞の発生が低減される。
ここでいう「ばらつく」は、全ての凸レンズ11において互いに異なる炭素濃度分布であることを意味しない。しかしながら、干渉縞の発生に関係する凸レンズ11同士では、炭素濃度分布が異なっていてもよい。 Here, if the multipleconvex lenses 11 are uniform, the refraction pattern of the incident light, i.e., the output intensity distribution of the output light, becomes periodic, and interference fringes and the like are likely to occur in the output light. On the other hand, if the shapes of the convex lenses 11 are made different from each other, it takes time to manufacture them and is likely to affect the optical characteristics. For example, it becomes difficult to maintain the output intensity of the incident light with respect to the angle of incidence uniform. The convex lenses 11 of this embodiment have a variation in the internal carbon concentration distribution instead of the shape, thereby causing the distribution of the refractive index of each convex lens 11 to vary. In particular, the convex lenses 11 each include a high-concentration portion in which the carbon concentration is partially high inside, and the distribution of the high-concentration portion varies, resulting in a large difference in the optical path difference according to the carbon concentration distribution on the optical path, which is the path of the incident light. The high-concentration portion may cover the area through which the light incident from each portion of the surface of the convex lens 11 passes in common. In one embodiment, the high-concentration portion may be located at least near the center of the base (+Z side) of each convex lens 11, i.e., including the optical axis. As a result, the carbon concentration distribution on the optical path through which the light incident from the same relative position on the multiple convex lenses 11 passes is different. Therefore, the optical path length of each incident light is also different. As a result, the phase of the light exiting from the diffusion plate 10 is shifted, and the occurrence of interference fringes is reduced.
The term "varies" here does not mean that the carbon concentration distribution is different from one another in all of theconvex lenses 11. However, the carbon concentration distribution may be different between the convex lenses 11 involved in the generation of interference fringes.
ここでいう「ばらつく」は、全ての凸レンズ11において互いに異なる炭素濃度分布であることを意味しない。しかしながら、干渉縞の発生に関係する凸レンズ11同士では、炭素濃度分布が異なっていてもよい。 Here, if the multiple
The term "varies" here does not mean that the carbon concentration distribution is different from one another in all of the
また、上記のように、各凸レンズ11には、屈折率の高い金属酸化物が含まれているので、上記炭素濃度分布の違いに応じた光路長の差が更に増幅される。これにより、拡散板10は、更に干渉縞などの発生が低減されて適切に入射光を分散させる。
In addition, as described above, each convex lens 11 contains a metal oxide with a high refractive index, which further amplifies the difference in optical path length according to the difference in carbon concentration distribution. This allows the diffusion plate 10 to properly disperse the incident light with further reduced occurrence of interference fringes and the like.
図3は、凸レンズ11の炭素濃度分布を模式的に示す図である。
凸レンズ11の頂点、すなわち平面視の中心を通る断面での炭素濃度は、明確に高い領域と低い領域で分かれている必要はない。全体として、各凸レンズ11の中心付近の網点領域で部分的に炭素濃度が相対的に高く、各凸レンズ11の周縁における他の凸レンズ11との接続部付近では、炭素濃度が相対的に低い傾向があればよい。一実施形態において、各凸レンズ11の光軸と交差しかつこれらに垂直であって、各凸レンズ11の周縁におけるZ方向についての高さ、すなわちZ成分の値が極小の高さZmの点よりも根元側(+Z側)である基準線Sを考慮してもよい。すなわち、基準線Sは、凸レンズ11内のみを通っていてもよい。この基準線Sに沿って、ある凸レンズ11において基準となる炭素濃度よりも所定の割合以上炭素濃度が高い高濃度部分H2の幅W2は、他の凸レンズ11における高濃度部分H1の幅W1よりも広くてもよい。以下では高濃度部分をまとめて高濃度部分Hとも記す。基準となる炭素濃度は、例えば、マイクロレンズアレイ110の複数の凸レンズ11における平均的な炭素濃度であって、75%などであってもよい。所定の割合は、例えば5%であってもよい。平均的な炭素濃度は、全般的な製品基準として予め絶対値が定められてもよいし、当該製品、あるいは更に製品の上記基準線S上に沿った平均値が各々利用されてもよい。このような高濃度部分Hが高さ方向(Z方向)にも広がり、特に高濃度部分Hの上端であるZ座標が最小の点が凸レンズ11の周縁よりも先端側に位置していることで、光路L2は、光路L1に比べて高濃度部分Hを通る太線表示部分の長さが長い。したがって、光路L2の光路長が光路L1の光路長よりも長くなる。また、屈折率の上昇に応じて、光路L1、L2の傾きも若干変化する。 FIG. 3 is a diagram showing a schematic diagram of the carbon concentration distribution of theconvex lens 11. As shown in FIG.
The carbon concentration at the apex of theconvex lens 11, i.e., at the cross section passing through the center in a plan view, does not need to be clearly divided into high and low regions. Overall, it is sufficient that the carbon concentration is relatively high in the dot region near the center of each convex lens 11, and the carbon concentration is relatively low near the connection part with other convex lenses 11 at the periphery of each convex lens 11. In one embodiment, a reference line S that intersects with the optical axis of each convex lens 11 and is perpendicular to them, and is on the root side (+Z side) of the height in the Z direction at the periphery of each convex lens 11, i.e., the point of height Zm where the value of the Z component is minimal, may be considered. That is, the reference line S may pass only through the convex lens 11. Along this reference line S, the width W2 of the high concentration part H2 in which the carbon concentration is higher than the reference carbon concentration by a predetermined percentage or more in a certain convex lens 11 may be wider than the width W1 of the high concentration part H1 in the other convex lens 11. Hereinafter, the high concentration parts are collectively referred to as high concentration parts H. The reference carbon concentration may be, for example, 75% or the like, which is the average carbon concentration in the multiple convex lenses 11 of the microlens array 110. The predetermined percentage may be, for example, 5%. The average carbon concentration may be an absolute value previously determined as a general product standard, or the average value along the reference line S of the product or the product may be used. Such a high-concentration portion H also spreads in the height direction (Z direction), and in particular, the point with the smallest Z coordinate, which is the upper end of the high-concentration portion H, is located on the tip side of the periphery of the convex lens 11, so that the length of the thick line portion of the optical path L2 passing through the high-concentration portion H is longer than that of the optical path L1. Therefore, the optical path length of the optical path L2 is longer than that of the optical path L1. In addition, the inclination of the optical paths L1 and L2 also changes slightly according to the increase in the refractive index.
凸レンズ11の頂点、すなわち平面視の中心を通る断面での炭素濃度は、明確に高い領域と低い領域で分かれている必要はない。全体として、各凸レンズ11の中心付近の網点領域で部分的に炭素濃度が相対的に高く、各凸レンズ11の周縁における他の凸レンズ11との接続部付近では、炭素濃度が相対的に低い傾向があればよい。一実施形態において、各凸レンズ11の光軸と交差しかつこれらに垂直であって、各凸レンズ11の周縁におけるZ方向についての高さ、すなわちZ成分の値が極小の高さZmの点よりも根元側(+Z側)である基準線Sを考慮してもよい。すなわち、基準線Sは、凸レンズ11内のみを通っていてもよい。この基準線Sに沿って、ある凸レンズ11において基準となる炭素濃度よりも所定の割合以上炭素濃度が高い高濃度部分H2の幅W2は、他の凸レンズ11における高濃度部分H1の幅W1よりも広くてもよい。以下では高濃度部分をまとめて高濃度部分Hとも記す。基準となる炭素濃度は、例えば、マイクロレンズアレイ110の複数の凸レンズ11における平均的な炭素濃度であって、75%などであってもよい。所定の割合は、例えば5%であってもよい。平均的な炭素濃度は、全般的な製品基準として予め絶対値が定められてもよいし、当該製品、あるいは更に製品の上記基準線S上に沿った平均値が各々利用されてもよい。このような高濃度部分Hが高さ方向(Z方向)にも広がり、特に高濃度部分Hの上端であるZ座標が最小の点が凸レンズ11の周縁よりも先端側に位置していることで、光路L2は、光路L1に比べて高濃度部分Hを通る太線表示部分の長さが長い。したがって、光路L2の光路長が光路L1の光路長よりも長くなる。また、屈折率の上昇に応じて、光路L1、L2の傾きも若干変化する。 FIG. 3 is a diagram showing a schematic diagram of the carbon concentration distribution of the
The carbon concentration at the apex of the
このような高濃度部分Hに係るばらつきは、当該高濃度部分Hの空間サイズ、すなわち、幅や高さに加えて、炭素濃度自体にも生じていてもよい。すなわち、高濃度部分Hにおける炭素濃度の分布が凸レンズ11ごとにばらついていてもよい。一実施形態において、高濃度部分Hは、隣り合う凸レンズ11が周縁で接続する高さZmの位置を挟んで上下に伸びていてもよい。すなわち、高濃度部分Hの高さ方向についての一端である上端は、周縁よりも凸レンズ11の先端側にあってもよく、上記一端とは反対の他端である下端は、周縁よりも凸レンズ11の根元側にあってもよい。また、高濃度部分Hは、各凸レンズ11の根元(+Z側)の側で太くなる、すなわち、先端から遠いほど平面視サイズが大きくなる傾向が見られてもよい。
Such variations in the high concentration portion H may occur not only in the spatial size of the high concentration portion H, i.e., in the width and height, but also in the carbon concentration itself. That is, the distribution of the carbon concentration in the high concentration portion H may vary for each convex lens 11. In one embodiment, the high concentration portion H may extend up and down across the position of height Zm where adjacent convex lenses 11 are connected at their peripheries. That is, the upper end, which is one end in the height direction of the high concentration portion H, may be located closer to the tip of the convex lens 11 than the periphery, and the lower end, which is the other end opposite to the one end, may be located closer to the base of the convex lens 11 than the periphery. In addition, the high concentration portion H may tend to be thicker on the base (+Z side) side of each convex lens 11, that is, the planar size may tend to increase the further from the tip.
図4A及び図4Bは、凸レンズ11の炭素濃度分布の他の例を示す図である。
図4Aに示すように、ハッチの密度で表されている炭素濃度は、更に凸レンズ11の凸面から離れた位置、特に先端から離れるほど高くなる傾向が見られてもよい。この図4Aでは、各凸レンズ11の頂点の真下で炭素濃度が最も高くなっているが、炭素濃度が最も高い領域は、凸レンズ11の並び方向に広がっていてもよい。ここでいう濃度の傾向は、局所的に細かい濃度の極小/極大部分などの存在を考慮しなくてもよい。濃度分布をある線上で曲線近似したり、凸レンズ11ごとに曲面近似したりする場合の濃度分布の傾向が合致する程度であってもよい。 4A and 4B are diagrams showing other examples of the carbon concentration distribution of theconvex lens 11. In FIG.
As shown in Fig. 4A, the carbon concentration represented by the density of hatches may tend to increase further away from the convex surface of theconvex lens 11, particularly the tip. In Fig. 4A, the carbon concentration is highest just below the apex of each convex lens 11, but the region with the highest carbon concentration may spread in the arrangement direction of the convex lenses 11. The concentration trend referred to here does not need to take into account the presence of fine local minimum/maximum portions of concentration. It may be to the extent that the concentration distribution trends match when the concentration distribution is approximated by a curve on a line or by a curved surface for each convex lens 11.
図4Aに示すように、ハッチの密度で表されている炭素濃度は、更に凸レンズ11の凸面から離れた位置、特に先端から離れるほど高くなる傾向が見られてもよい。この図4Aでは、各凸レンズ11の頂点の真下で炭素濃度が最も高くなっているが、炭素濃度が最も高い領域は、凸レンズ11の並び方向に広がっていてもよい。ここでいう濃度の傾向は、局所的に細かい濃度の極小/極大部分などの存在を考慮しなくてもよい。濃度分布をある線上で曲線近似したり、凸レンズ11ごとに曲面近似したりする場合の濃度分布の傾向が合致する程度であってもよい。 4A and 4B are diagrams showing other examples of the carbon concentration distribution of the
As shown in Fig. 4A, the carbon concentration represented by the density of hatches may tend to increase further away from the convex surface of the
図4Bに示すように、高濃度部分Hは、複数の凸レンズ11がつながっている状態の透明樹脂層であるマイクロレンズアレイ110の根元部分である高濃度部分Hcの少なくとも一部でつながっていてもよい。
As shown in FIG. 4B, the high-concentration portion H may be connected at least in part to the high-concentration portion Hc, which is the base portion of the microlens array 110, which is a transparent resin layer in which multiple convex lenses 11 are connected.
ここでいう濃度の高低は、上記干渉縞を崩すのに意味がある大きさであり、製造上の誤差やばらつきよりも大きい。例えば、各凸レンズ11において、高濃度部分Hの上記幅W1、W2の長さ、又は幅W1、W2内での基準線S上の炭素濃度の最大値の差は、マイクロレンズアレイ110内で5%以上大きくてもよい。ばらつきの上限は、光が適切に透過する範囲であれば限定されないが、例えば、上記差が30%以下などであってもよい。断面内での元素濃度は、例えば、エネルギー分散型X線分光器(EDS)により得られるある断面での濃度分布により求められてもよい。あるいは、EDSの代わりに波長分散型X線分光器(WDS)などが元素濃度の計測に用いられてもよい。
The level of concentration referred to here is a level that is significant in breaking up the interference fringes, and is greater than manufacturing errors or variations. For example, in each convex lens 11, the length of the widths W1 and W2 of the high-concentration portion H, or the difference in the maximum carbon concentration on the reference line S within the widths W1 and W2, may be 5% or more greater within the microlens array 110. The upper limit of the variation is not limited as long as it is within a range in which light is appropriately transmitted, and may be, for example, 30% or less. The element concentration in a cross section may be determined, for example, from the concentration distribution in a certain cross section obtained by an energy dispersive X-ray spectrometer (EDS). Alternatively, a wavelength dispersive X-ray spectrometer (WDS) or the like may be used to measure the element concentration instead of an EDS.
これらの凸レンズ11は、入射される可視光の波長よりは長い幅や高さを有する。例えば、凸レンズ11の幅及び高さは、それぞれ5μm以上であってもよい。
これらにより、凸レンズ11ごとに周期的に光の出射パターンが重ならず、ずれが生じて干渉縞の発生が低減されることになる。 Theseconvex lenses 11 have a width and a height longer than the wavelength of the incident visible light. For example, the width and the height of the convex lenses 11 may each be 5 μm or more.
As a result, the light emission patterns of theconvex lenses 11 do not overlap periodically, but are shifted, thereby reducing the occurrence of interference fringes.
これらにより、凸レンズ11ごとに周期的に光の出射パターンが重ならず、ずれが生じて干渉縞の発生が低減されることになる。 These
As a result, the light emission patterns of the
なお、マイクロレンズアレイ110に金属酸化物が含まれている場合、この金属酸化物の分布は当該マイクロレンズアレイ110内で一様であってもよい。すなわち、金属酸化物の濃度分布が炭素の濃度分布と相関を有しなくてもよい。
When the microlens array 110 contains a metal oxide, the distribution of the metal oxide may be uniform within the microlens array 110. In other words, the concentration distribution of the metal oxide may not be correlated with the concentration distribution of carbon.
このようなマイクロレンズアレイ110の凹凸構造を有する拡散板10は、周知のように、レンズ面の形を有する電鋳型又は二次型などの鋳型に透明樹脂を充填、押圧して硬化させた後、鋳型から離型させることで得られてもよい。透明樹脂の硬化には、例えば、紫外光の照射によるUV硬化が利用されてもよい。
As is well known, a diffusion plate 10 having such an uneven structure of a microlens array 110 may be obtained by filling a transparent resin into a mold such as an electroforming mold or a secondary mold having the shape of a lens surface, pressing the resin to harden it, and then releasing the resin from the mold. For example, UV curing by irradiation with ultraviolet light may be used to harden the transparent resin.
このとき、鋳型も樹脂フィルムにより作成し、当該樹脂フィルムを通して透明樹脂の凸部側から紫外光を照射してもよい。これにより、UV光は、使用時の発光素子15からの入射光と同じように屈折する。屈折光は、凸レンズ11の中心付近を多く通るので、この付近では優先的に硬化が進む。これにより、凸レンズ11の中心付近には、重合体が形成されて、炭素濃度が周辺部位に比較して上昇する。よって、本開示の炭素濃度分布を有する凸レンズ構造が得られる。この高濃度部分Hの炭素濃度分布を明確に異ならせるために、UV光の照射時間は、適宜ばらつかせてもよい。また、樹脂の組成を複数適用し、炭素濃度分布のばらつきを生じやすくしてもよい。
At this time, the mold may also be made of a resin film, and ultraviolet light may be irradiated from the convex side of the transparent resin through the resin film. This causes the UV light to refract in the same way as the incident light from the light emitting element 15 during use. Since the refracted light passes mostly near the center of the convex lens 11, hardening proceeds preferentially in this vicinity. This causes a polymer to be formed near the center of the convex lens 11, and the carbon concentration is higher than in the surrounding area. Thus, a convex lens structure having the carbon concentration distribution disclosed herein is obtained. In order to clearly differentiate the carbon concentration distribution of this high concentration portion H, the irradiation time of the UV light may be appropriately varied. Also, multiple resin compositions may be applied to make it easier to produce variation in the carbon concentration distribution.
以上のように、本実施形態の拡散板10は、複数の凸レンズ11が規則的に並ぶマイクロレンズアレイ110を有する。複数の凸レンズ11は、炭素濃度の分布にばらつきを有する。これにより、炭素濃度の分布に応じて各々凸レンズ11を通過する光の光路長がばらつく。したがって、複数の凸レンズ11を通過した光が周期的に干渉して干渉縞などが生じるのを低減することができる。また、凸レンズ11の形状自体をばらつかせる必要はないので、当該ばらつきによる光学特性への影響をより適切に低減することができる。
As described above, the diffusion plate 10 of this embodiment has a microlens array 110 in which multiple convex lenses 11 are regularly arranged. The multiple convex lenses 11 have variations in the distribution of carbon concentration. This causes the optical path length of light passing through each convex lens 11 to vary according to the distribution of carbon concentration. This makes it possible to reduce the periodic interference of light passing through the multiple convex lenses 11, resulting in interference fringes and the like. Furthermore, since there is no need to vary the shape of the convex lenses 11 itself, the effect of this variation on the optical characteristics can be more appropriately reduced.
また、複数の凸レンズ11は、それぞれ当該凸レンズ11の光軸と交差し当該光軸に垂直な凸レンズ11内のある基準線S上において前記光軸との交点を含む範囲に、炭素濃度が部分的に高い高濃度部分Hを有していてもよい。ばらつきは、少なくとも凸レンズ11の光軸と交差し当該光軸に垂直な凸レンズ11内のある基準線S上に存在していてもよい。
このように凸レンズ11の中心に位置する光軸付近に高濃度部分Hがあることで、入射位置や角度によらず入射光が高濃度部分Hを通りやすくなり、その屈折率に応じてその通過光の位相がずれる。よって、この拡散板10は、より適切に出射光の光学特性の低下や干渉縞などの発生などを低減することができる。 Furthermore, each of the multipleconvex lenses 11 may have a high concentration portion H where the carbon concentration is partially high, in a range including an intersection point with the optical axis on a reference line S within the convex lens 11 that intersects with the optical axis of the convex lens 11 and is perpendicular to the optical axis. The variation may exist at least on a reference line S within the convex lens 11 that intersects with the optical axis of the convex lens 11 and is perpendicular to the optical axis.
In this way, the presence of the high-density portion H near the optical axis located at the center of theconvex lens 11 makes it easier for incident light to pass through the high-density portion H regardless of the incident position or angle, and the phase of the passing light is shifted according to the refractive index. Therefore, this diffusion plate 10 can more appropriately reduce the deterioration of the optical properties of the outgoing light and the occurrence of interference fringes.
このように凸レンズ11の中心に位置する光軸付近に高濃度部分Hがあることで、入射位置や角度によらず入射光が高濃度部分Hを通りやすくなり、その屈折率に応じてその通過光の位相がずれる。よって、この拡散板10は、より適切に出射光の光学特性の低下や干渉縞などの発生などを低減することができる。 Furthermore, each of the multiple
In this way, the presence of the high-density portion H near the optical axis located at the center of the
また、高濃度部分Hの基準線S上における幅は、炭素濃度のばらつきに応じてばらついていてもよい。すなわち、高濃度部分Hを通過する入射光の範囲がばらつくので、拡散板10は、容易に干渉縞などの発生を低減することができる。
The width of the high-concentration portion H on the reference line S may vary according to the variation in carbon concentration. In other words, the range of incident light passing through the high-concentration portion H varies, so the diffuser 10 can easily reduce the occurrence of interference fringes and the like.
また、基準線Sは、凸レンズ11の光軸に沿ったZ方向について、凸レンズ11の周縁よりも根元側(+Z側)に位置していてもよい。基準線S上、すなわち、周縁よりも根元側に高濃度部分Hがあることにより、各凸レンズ11への種々の入射角での入射光が各々高濃度部分Hを通過しやすくなる。これにより、拡散板10は、光学特性への影響を低減しつつ、入射光の屈折方向を分散させ、干渉縞などの発生をより低減することができる。
Furthermore, the reference line S may be located closer to the base (+Z side) of the convex lens 11 than the periphery in the Z direction along the optical axis of the convex lens 11. By having the high-density portion H on the reference line S, i.e., closer to the base than the periphery, incident light at various angles of incidence on each convex lens 11 can easily pass through the high-density portion H. This allows the diffuser 10 to disperse the refraction direction of the incident light while reducing the effect on the optical characteristics, thereby further reducing the occurrence of interference fringes and the like.
また、高濃度部分Hの下端は、凸レンズ11の光軸に沿ったZ方向について凸レンズ11の周縁よりも根元側(+Z側)に位置していてもよい。すなわち、高濃度部分Hが各凸レンズ11において光軸に沿った方向に根元側へ伸びていてもよい。これにより、各凸レンズ11への種々の入射角での入射光が各々高濃度部分Hを通過しやすくなる。これにより、拡散板10は、光学特性への影響を低減しつつ、入射光の屈折方向を分散させ、干渉縞などの発生をより低減することができる。
The lower end of the high-concentration portion H may be located closer to the base (+Z side) than the periphery of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. That is, the high-concentration portion H may extend toward the base in the direction along the optical axis of each convex lens 11. This makes it easier for incident light at various angles of incidence on each convex lens 11 to pass through the high-concentration portion H. This allows the diffuser 10 to disperse the refraction direction of the incident light while reducing the effect on the optical characteristics, thereby further reducing the occurrence of interference fringes and the like.
また、高濃度部分Hの上端は、凸レンズ11の光軸に沿ったZ方向について凸レンズ11の周縁よりも先端側(-Z側)に位置していてもよい。すなわち、高濃度部分Hが各凸レンズ11において光軸に沿った方向に伸びていてもよい。これにより、各凸レンズ11への入射光が各々高濃度部分Hを通過する光路が長くなりやすく、またそのばらつきも生じやすくなる。よって、拡散板10は、光学特性への影響を低減しつつ、干渉縞などの発生をより低減することができる。
The upper end of the high-concentration portion H may be located on the tip side (-Z side) of the periphery of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. That is, the high-concentration portion H may extend in the direction along the optical axis in each convex lens 11. This tends to lengthen the optical path that the light incident on each convex lens 11 takes through each high-concentration portion H, and this tends to cause variation. Thus, the diffuser 10 can further reduce the occurrence of interference fringes while reducing the effect on the optical characteristics.
また、高濃度部分Hは、凸レンズ11の光軸に沿ったZ方向について凸レンズ11の先端から遠いほど平面視サイズが大きくてもよい。このように、元々太さのある凸レンズ11の根元付近で、高濃度部分Hも太くなっていることで、入射光が適切に当該高濃度部分H内を通過し、そのばらつきに応じて光路長もばらつく。これにより、拡散板10は、光学特性への影響を低減しつつ、干渉縞などの発生を低減することができる。
Furthermore, the high-concentration portion H may have a larger planar size the farther it is from the tip of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. In this way, the high-concentration portion H becomes thicker near the base of the convex lens 11, which is originally thick, so that incident light passes through the high-concentration portion H appropriately, and the optical path length varies according to this variation. This allows the diffuser 10 to reduce the occurrence of interference fringes and the like while reducing the impact on the optical characteristics.
また、高濃度部分Hの炭素濃度は、凸レンズ11の光軸に沿ったZ方向について凸レンズ11の先端から遠いほど高くてもよい。すなわち、高濃度部分Hの内部で炭素濃度分布が一様である必要はなく、偏りがあってもよい。特に根元付近で炭素濃度が高いことで、多様な角度での入射光が当該高濃度部分を通過する。この部分を通過する長さに応じて、より効率的に入射光の光路長がばらつく。これにより、拡散板10は、光学特性への影響を低減しつつ、干渉縞などの発生を低減することができる。
The carbon concentration of the high concentration portion H may be higher the farther from the tip of the convex lens 11 in the Z direction along the optical axis of the convex lens 11. In other words, the carbon concentration distribution within the high concentration portion H does not need to be uniform and may be biased. By having a high carbon concentration especially near the base, incident light passes through the high concentration portion at a variety of angles. The optical path length of the incident light varies more efficiently depending on the length passing through this portion. This allows the diffuser 10 to reduce the occurrence of interference fringes while reducing the impact on the optical characteristics.
また、高濃度部分Hは、凸レンズ11間で少なくとも一部つながっている高濃度部分Hcがあってもよい。入射光は必ず高濃度部分Hcを通って拡散板10の外部へ出射されるので、出射光の出射方向がそろいやすくなる。
The high-density portion H may also have a high-density portion Hc that is at least partially connected between the convex lenses 11. Since the incident light always passes through the high-density portion Hc before being emitted to the outside of the diffuser plate 10, the emitted light tends to be emitted in the same direction.
また、凸レンズ11は、炭素よりも屈折率の高い金属酸化物を含んでいてもよい。これにより、凸レンズ11の屈折率が更に上がるので、炭素濃度分布に応じた光路長のばらつきがより強調される。したがって、拡散板10は、光学特性への影響を低減しつつ、より干渉縞などの発生を低減することができる。
The convex lens 11 may also contain a metal oxide with a higher refractive index than carbon. This further increases the refractive index of the convex lens 11, further accentuating the variation in optical path length according to the carbon concentration distribution. Therefore, the diffuser 10 can further reduce the occurrence of interference fringes while reducing the impact on the optical characteristics.
また、本実施形態の発光デバイス1は、上記の拡散板10と、拡散板10へ入射させる光を発する発光素子15と、を備える。このような発光デバイス1によれば、発光素子15の発した光を、その光学特性への影響を低減しながら適切に外部へ出射させることができる。
The light-emitting device 1 of this embodiment also includes the above-mentioned diffusion plate 10 and a light-emitting element 15 that emits light to be incident on the diffusion plate 10. With this type of light-emitting device 1, the light emitted by the light-emitting element 15 can be appropriately emitted to the outside while reducing the effect on the optical characteristics.
また、本実施形態のセンサモジュール100は、上記の発光デバイス1と、入射光を検出する受光デバイス2と、を備える。このセンサモジュール100において、発光デバイス1が上記のように光学特性への影響を低減しながら光を出射させるので、当該出射光の反射光などを計測する受光デバイス2も容易に適正な光量を計測して、計測対象を評価することができる。
The sensor module 100 of this embodiment also includes the above-mentioned light-emitting device 1 and the light-receiving device 2 that detects incident light. In this sensor module 100, the light-emitting device 1 emits light while reducing the effect on the optical characteristics as described above, so the light-receiving device 2 that measures the reflected light of the emitted light can easily measure the appropriate amount of light to evaluate the measurement target.
なお、上記実施の形態は例示であって、様々な変更が可能である。
例えば、高濃度部分Hのサイズや炭素濃度の分布は、各凸レンズ11における基準線Sの向きによらず一定、すなわち等方的であってもよいし、異方性を有していてもよい。異方性を有する場合、凸レンズ11ごとに異方性の特性、例えば、偏りの傾向が異なっていてもよい。 The above-described embodiment is merely an example, and various modifications are possible.
For example, the size of the high concentration portion H and the distribution of the carbon concentration may be constant, i.e., isotropic, regardless of the orientation of the reference line S in eachconvex lens 11, or may have anisotropy. If the high concentration portion H and the carbon concentration distribution are anisotropic, the anisotropic characteristics, for example, the tendency of bias, may be different for each convex lens 11.
例えば、高濃度部分Hのサイズや炭素濃度の分布は、各凸レンズ11における基準線Sの向きによらず一定、すなわち等方的であってもよいし、異方性を有していてもよい。異方性を有する場合、凸レンズ11ごとに異方性の特性、例えば、偏りの傾向が異なっていてもよい。 The above-described embodiment is merely an example, and various modifications are possible.
For example, the size of the high concentration portion H and the distribution of the carbon concentration may be constant, i.e., isotropic, regardless of the orientation of the reference line S in each
また、上記実施の形態では、凸レンズがその周縁よりも根元側を通る直線上における高濃度部分Hの幅W1、W2のばらつきを少なくとも有するとして説明したが、これに限られない。他の位置や方法で炭素濃度分布のばらつきが評価されてもよい。
In the above embodiment, the convex lens is described as having at least a variation in the widths W1 and W2 of the high-concentration portion H on a straight line passing through the base side of the periphery, but this is not limited to this. The variation in the carbon concentration distribution may be evaluated at other positions and by other methods.
また、高濃度部分Hの範囲及び対応する基準線Sは、上記の例示内容に限られない。炭素濃度の分布にばらつきがあり、当該ばらついた範囲を凸レンズ11の各表面位置からの入射光が通過する構造であれば、適宜干渉縞などの発生を低減することができる。
Furthermore, the range of the high concentration portion H and the corresponding reference line S are not limited to the above examples. If there is variation in the distribution of carbon concentration and the incident light from each surface position of the convex lens 11 passes through the range of variation, the occurrence of interference fringes and the like can be appropriately reduced.
また、凸レンズ11における高濃度部分Hの生成方法は、上記した方法に限られない。他の方法で高濃度部分Hが生成されてもよい。
Furthermore, the method for generating the high-concentration portion H in the convex lens 11 is not limited to the above-mentioned method. The high-concentration portion H may be generated by other methods.
また、上記実施の形態では、センサモジュール100の一部としての発光デバイス1を例に挙げて説明したが、これに限られない。受光デバイス2とは別個に発光デバイス1のみが取引利用されてもよい。
また、更に、拡散板10は、発光デバイス1とは別個に単独で取引、利用されてもよい。 In the above embodiment, thelight emitting device 1 is described as a part of the sensor module 100, but the present invention is not limited to this. Only the light emitting device 1 may be used for trading separately from the light receiving device 2.
Furthermore, thediffusion plate 10 may be sold and used separately from the light emitting device 1 .
また、更に、拡散板10は、発光デバイス1とは別個に単独で取引、利用されてもよい。 In the above embodiment, the
Furthermore, the
また、上記の光学部材23におけるレンズやフィルタの組み合わせ、例えば、フィルタの数、特性、位置関係などは、必要に応じて変更されてもよい。その他、上記実施の形態で示した具体的な構成、構造、材質、製造方法の内容などは、本開示の趣旨を逸脱しない範囲において適宜変更可能である。本発明の範囲は、特許請求の範囲に記載した発明の範囲とその均等な範囲とを含む。
Furthermore, the combination of lenses and filters in the optical member 23, for example, the number, characteristics, and positional relationship of the filters, may be changed as necessary. In addition, the specific configurations, structures, materials, and manufacturing methods shown in the above embodiments may be changed as appropriate without departing from the spirit of this disclosure. The scope of the present invention includes the scope of the invention described in the claims and its equivalents.
本開示は、拡散板、発光デバイス及びセンサモジュールに利用することができる。
This disclosure can be used in diffusers, light-emitting devices, and sensor modules.
1 発光デバイス
2 受光デバイス
3 モジュール基板
10 拡散板
11 凸レンズ
15 発光素子
16 筐体
21 基板
22 受光素子
23 光学部材
24 支持部
100センサモジュール
110マイクロレンズアレイ
120ガラス基板
H、H1、H2、Hc 高濃度部分
L、L1、L2 光路
S 基準線
W1、W2 幅 REFERENCE SIGNSLIST 1 Light emitting device 2 Light receiving device 3 Module substrate 10 Diffuser 11 Convex lens 15 Light emitting element 16 Housing 21 Substrate 22 Light receiving element 23 Optical member 24 Support 100 Sensor module 110 Microlens array 120 Glass substrate H, H1, H2, Hc High density portion L, L1, L2 Light path S Reference line W1, W2 Width
2 受光デバイス
3 モジュール基板
10 拡散板
11 凸レンズ
15 発光素子
16 筐体
21 基板
22 受光素子
23 光学部材
24 支持部
100センサモジュール
110マイクロレンズアレイ
120ガラス基板
H、H1、H2、Hc 高濃度部分
L、L1、L2 光路
S 基準線
W1、W2 幅 REFERENCE SIGNS
Claims (12)
- 複数の凸レンズが規則的に並ぶマイクロレンズアレイを有し、
前記複数の凸レンズ間で、炭素濃度の分布にばらつきを有する
拡散板。 A microlens array is provided in which a plurality of convex lenses are regularly arranged.
a diffusion plate having a carbon concentration distribution that varies among the plurality of convex lenses. - 前記複数の凸レンズは、それぞれ当該凸レンズの光軸と交差し当該光軸に垂直な前記凸レンズ内のある基準線上において前記光軸との交点を含む範囲に、炭素濃度が部分的に高い高濃度部分を有し、
前記複数の凸レンズ間で、前記基準線に沿った炭素濃度の分布にばらつきを有する請求項1記載の拡散板。 each of the plurality of convex lenses has a high-concentration portion having a locally high carbon concentration in a range including an intersection point with the optical axis on a reference line within the convex lens that intersects with the optical axis and is perpendicular to the optical axis;
2. The diffusion plate according to claim 1, wherein the carbon concentration distribution along the reference line varies among the plurality of convex lenses. - 前記高濃度部分の前記基準線上における幅は、前記ばらつきに応じてばらついている
請求項2記載の拡散板。 The diffusion plate according to claim 2 , wherein a width of the high-density portion on the reference line varies according to the variation. - 前記基準線は、前記光軸に沿った方向について前記凸レンズの周縁よりも根元側に位置している請求項2又は3記載の拡散板。 The diffuser plate according to claim 2 or 3, wherein the reference line is located closer to the base side than the periphery of the convex lens in the direction along the optical axis.
- 前記高濃度部分の下端は、前記光軸に沿った方向について前記凸レンズの周縁よりも根元側に位置している請求項2~4のいずれか一項に記載の拡散板。 The diffusion plate according to any one of claims 2 to 4, wherein the lower end of the high-concentration portion is located closer to the base than the periphery of the convex lens in the direction along the optical axis.
- 前記高濃度部分の上端は、前記光軸に沿った方向について前記凸レンズの周縁よりも先端側に位置している請求項2~5のいずれか一項に記載の拡散板。 The diffuser plate according to any one of claims 2 to 5, wherein the upper end of the high-concentration portion is located on the tip side of the periphery of the convex lens in the direction along the optical axis.
- 前記高濃度部分は、前記光軸に沿った方向について前記凸レンズの先端から遠いほど平面視サイズが大きい、請求項2~6のいずれか一項に記載の拡散板。 The diffusion plate according to any one of claims 2 to 6, wherein the high-concentration portion has a larger planar size the farther it is from the tip of the convex lens in the direction along the optical axis.
- 前記高濃度部分の炭素濃度は、前記光軸に沿った方向について前記凸レンズの先端から遠いほど高い、請求項2~7のいずれか一項に記載の拡散板。 The diffuser plate according to any one of claims 2 to 7, wherein the carbon concentration of the high concentration portion is higher the farther it is from the tip of the convex lens in the direction along the optical axis.
- 前記高濃度部分は、前記複数の凸レンズのうち少なくとも一部の間でつながっている請求項2~8のいずれか一項に記載の拡散板。 The diffusion plate according to any one of claims 2 to 8, wherein the high-concentration portions are connected between at least some of the multiple convex lenses.
- 前記凸レンズは、炭素よりも屈折率の高い金属酸化物を含む請求項1~9のいずれか一項に記載の拡散板。 The diffuser plate according to any one of claims 1 to 9, wherein the convex lens contains a metal oxide having a higher refractive index than carbon.
- 請求項1~10のいずれか一項に記載の拡散板と、
前記拡散板へ入射させる光を発する発光素子と、
を備える発光デバイス。 The diffusion plate according to any one of claims 1 to 10,
A light emitting element that emits light to be incident on the diffusion plate;
A light emitting device comprising: - 請求項11記載の発光デバイスと、
入射光を検出する受光デバイスと、
を備えるセンサモジュール。 A light emitting device according to claim 11;
a light receiving device for detecting incident light;
A sensor module comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022191763 | 2022-11-30 | ||
JP2022-191763 | 2022-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024117157A1 true WO2024117157A1 (en) | 2024-06-06 |
Family
ID=91323851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/042670 WO2024117157A1 (en) | 2022-11-30 | 2023-11-29 | Diffusion plate, light-emitting device, and sensor module |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024117157A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007034063A (en) * | 2005-07-28 | 2007-02-08 | Keio Gijuku | Method for manufacturing improved refractive index distribution type light transmitter according to self-propagating frontal polymerization utilizing heat storage effect |
JP2007246877A (en) * | 2005-10-03 | 2007-09-27 | Toray Ind Inc | Siloxane-based resin composition, optical article and method for producing siloxane-based resin composition |
US20130235335A1 (en) * | 2010-11-03 | 2013-09-12 | James Arthur Forrest | Method for altering the optical density and spectral transmission or reflectance of contact lenses |
JP2014074874A (en) * | 2011-12-28 | 2014-04-24 | Fujifilm Corp | Optical member set and solid-state imaging device using the same |
WO2020032034A1 (en) * | 2018-08-08 | 2020-02-13 | 京セラ株式会社 | Light-blocking member |
WO2020032035A1 (en) * | 2018-08-08 | 2020-02-13 | 京セラ株式会社 | Substrate |
-
2023
- 2023-11-29 WO PCT/JP2023/042670 patent/WO2024117157A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007034063A (en) * | 2005-07-28 | 2007-02-08 | Keio Gijuku | Method for manufacturing improved refractive index distribution type light transmitter according to self-propagating frontal polymerization utilizing heat storage effect |
JP2007246877A (en) * | 2005-10-03 | 2007-09-27 | Toray Ind Inc | Siloxane-based resin composition, optical article and method for producing siloxane-based resin composition |
US20130235335A1 (en) * | 2010-11-03 | 2013-09-12 | James Arthur Forrest | Method for altering the optical density and spectral transmission or reflectance of contact lenses |
JP2014074874A (en) * | 2011-12-28 | 2014-04-24 | Fujifilm Corp | Optical member set and solid-state imaging device using the same |
WO2020032034A1 (en) * | 2018-08-08 | 2020-02-13 | 京セラ株式会社 | Light-blocking member |
WO2020032035A1 (en) * | 2018-08-08 | 2020-02-13 | 京セラ株式会社 | Substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6279531B2 (en) | Coating methods for optoelectronic chip-on-board modules | |
JP4221513B2 (en) | Integrated beam shaper and method of use thereof | |
WO2014054420A1 (en) | Light sensor | |
JP7061823B2 (en) | Optical system equipment and optical element manufacturing method | |
US12092836B2 (en) | Optical element and optical system | |
CN110710071B (en) | Laser diode and method for producing a laser diode | |
US20190384141A1 (en) | Lighting device comprising led and grating | |
TWI431257B (en) | The optical system for measurement and the color meter and colorimeter | |
JP2011150100A (en) | Erecting equal-magnification lens array plate and image reading device | |
JP2018109656A (en) | Optical module | |
KR20220004709A (en) | Screen fingerprint recognition assembly and terminal equipment | |
US9188308B2 (en) | Light emitting device package and illumination apparatus | |
JP6430048B1 (en) | Diffusion plate and optical equipment | |
WO2024117157A1 (en) | Diffusion plate, light-emitting device, and sensor module | |
JP2011119662A (en) | Light emitting module and design method thereof | |
KR101251167B1 (en) | Optical system, illumination optical system, and projection optical system | |
JP2019079765A (en) | Line light source and optical line sensor unit provided with the same | |
US20220029381A1 (en) | Light emitting modules with irregular and/or aperiodic conductive traces | |
JPWO2016133216A1 (en) | Light guide, light source device and image reading device | |
KR20220012947A (en) | Optoelectronic devices and methods for manufacturing optoelectronic devices | |
WO2023032094A1 (en) | Optical element and optical system device using same | |
US20240200937A1 (en) | Optical tilt sensor | |
JP7530169B2 (en) | Light-emitting device | |
CN218615465U (en) | Light source subassembly and 3D printer | |
CN215494475U (en) | Projection module, three-dimensional imaging device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23897804 Country of ref document: EP Kind code of ref document: A1 |