Nothing Special   »   [go: up one dir, main page]

WO2024111637A1 - Grain-oriented electrical steel sheet and manufacturing method therefor - Google Patents

Grain-oriented electrical steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2024111637A1
WO2024111637A1 PCT/JP2023/042039 JP2023042039W WO2024111637A1 WO 2024111637 A1 WO2024111637 A1 WO 2024111637A1 JP 2023042039 W JP2023042039 W JP 2023042039W WO 2024111637 A1 WO2024111637 A1 WO 2024111637A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
groove
cold
oriented electrical
Prior art date
Application number
PCT/JP2023/042039
Other languages
French (fr)
Japanese (ja)
Inventor
克 高橋
雅人 安田
秀行 濱村
直樹 和田
将嵩 岩城
尚 茂木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024111637A1 publication Critical patent/WO2024111637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2022-186165, filed on November 22, 2022, the contents of which are incorporated herein by reference.
  • Grain-oriented electrical steel sheet is a soft magnetic material that is primarily used as a transformer core material.
  • Grain-oriented electrical steel sheet is a steel sheet that contains, for example, 2.00-6.00% Si, and the crystal orientation of the product is highly concentrated in the ⁇ 110 ⁇ 001> orientation. Its magnetic properties require high magnetic flux density, as represented by the B8 value, and low iron loss, as represented by W17/50.
  • B8 value high magnetic flux density
  • W17/50 low iron loss
  • Patent Document 1 discloses a method of irradiating the surface of a grain-oriented electrical steel sheet after finish annealing with a laser beam to subdivide magnetic domains (reduce the magnetic domain width) and reduce eddy current loss, thereby reducing iron loss.
  • the reduction in iron loss by this method utilizes the magnetic domain subdivision phenomenon caused mainly by thermal distortion introduced into the steel sheet by laser irradiation, and the method cannot be used for wound core applications that require stress relief annealing after forming the transformer core.
  • Wound cores which are often used primarily in small and medium-sized transformers, are often manufactured using a core manufacturing method that involves mechanical bending.
  • stress relief annealing for example, at 800°C for 2-4 hours
  • stress relief annealing reduces or eliminates the distortion introduced into the core by the machining process
  • the thermal distortion introduced for magnetic domain refinement disappears in steel sheets that have been subjected to magnetic domain control by the aforementioned laser irradiation.
  • grain-oriented electrical steel sheets that have been subjected to magnetic domain refinement by the introduction of thermal distortion, as typified by laser irradiation are generally considered not applicable to wound cores.
  • a widely known magnetic domain control technology that does not lose its magnetic domain control effect even when the above-mentioned strain relief annealing is performed is the "groove-introducing magnetic domain control technology" that forms linear grooves periodically in a direction intersecting the rolling direction.
  • Such groove-introducing magnetic domain control technologies include groove formation technology by machining, groove formation technology by etching, and groove formation technology by laser irradiation.
  • Patent Document 2 discloses a groove formation technology by laser irradiation.
  • these groove formation methods alone are not sufficient to meet the increasing demand for iron loss reduction in recent years.
  • Patent Document 3 discloses a technique in which sharp and fine irregularities are formed on the surface of a steel sheet before decarburization annealing to activate the surface, and an oxide layer rich in silica is formed after decarburization annealing.
  • Patent Document 4 discloses a technology in which, in order to improve film properties and magnetic properties, an annealed film made of oxides mainly containing Mg, Si, and Al is provided on the surface, and the proportion of crystal orientation grains having a deviation angle of 10 degrees or less from the Goss orientation is set to 50% or less in the crystal orientation distribution of steel sheet crystal grains in a steel sheet portion within 3 ⁇ m of the boundary between the film and the steel sheet, or in a mixed region of the film and steel sheet crystal grains.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet having excellent magnetic properties (high magnetic flux density and low core loss commensurate with the magnetic flux density) and a manufacturing method thereof.
  • the object of the present invention is to provide a grain-oriented electrical steel sheet that is manufactured without non-heat-resistant magnetic domain control (the aforementioned method of controlling magnetic domains by introducing thermal strain into the steel sheet through laser irradiation of the steel sheet surface) and that has excellent magnetic properties (high magnetic flux density and low core loss commensurate with the magnetic flux density) and a manufacturing method thereof, assuming application to iron cores that are subjected to stress relief annealing, such as wound cores.
  • the inventors have investigated how to improve the magnetic properties of grain-oriented electrical steel sheets suitable for use in wound cores, i.e., how to increase magnetic flux density and reduce iron loss.
  • they have found that by having one or more oxides of Mg, Al, and Si present at a predetermined density near the surface of the silicon steel sheet (base steel sheet) that the grain-oriented electrical steel sheet comprises, and by forming flat crystal grains on the surface side of the silicon steel sheet whose crystal orientation deviates by 10° or more from the Goss orientation ( ⁇ 110 ⁇ 001> orientation), it is possible to energetically control the 180° magnetic domain width to a small state, and as a result, it is possible to reduce eddy current loss and iron loss.
  • the present inventors also investigated the influence of production conditions, and as a result, obtained the following findings. That is, the Goss orientation, which develops high magnetic properties in grain-oriented electrical steel sheets, is highly accumulated by the abnormal grain growth phenomenon called "secondary recrystallization" that utilizes the pinning effect of the precipitates, which are called inhibitors, and are precipitated at the grain boundaries in the final annealing process of the manufacturing process. After the accumulation of the Goss orientation in the steel sheet is completed, that is, after the steel sheet surface is almost completely covered with Goss orientation grains, the inhibitor that has completed its role is decomposed and oxidized by the temperature rise in the latter half of the final annealing process and removed from the steel sheet.
  • the decomposition and oxidation of the inhibitor occur before the Goss orientation is sufficiently accumulated in the steel sheet. Furthermore, by suppressing the decomposition and oxidation of the inhibitor to a higher temperature, it is possible to accumulate the Goss orientation to a higher degree, that is, to accumulate crystals closer to the ideal Goss orientation. Therefore, a method is used to increase the heat resistance of the precipitates that act as inhibitors.
  • the present inventors have found that, as a method for enhancing the heat resistance of the inhibitor, it is effective to make oxides capable of suppressing the decomposition and oxidation of the inhibitor present on the surface of the steel sheet during the decarburization annealing process normally performed in the manufacture of grain-oriented electrical steel sheets, which can be performed during the subsequent finish annealing.
  • oxides capable of suppressing the decomposition and oxidation of the inhibitor present on the surface of the steel sheet by utilizing the decarburization annealing process before the finish annealing, it is possible to generate flat crystal grains whose crystal orientation is deviated from the Goss orientation by 10° or more near the interface between the oxides on the surface of the steel sheet and the steel sheet, and that these flat crystal grains contribute to improving the magnetic properties.
  • the inventors also discovered that in order to generate more preferable flat crystal grains for improving magnetic properties, it is effective to form oxide particles more densely, thickly and uniformly on the surface side of the cold-rolled sheet that becomes the base steel sheet in the decarburization annealing process, and that in order to form oxide particles more densely, thickly and uniformly, it is effective to grind the cold-rolled sheet under specified conditions before the decarburization annealing process in order to remove reaction products with the surface of the steel sheet that inhibit uniform oxidation of the steel sheet surface during decarburization annealing.
  • the flat crystal grains are present on a surface side of the silicon steel sheet, the flat crystal grains having an average thickness in a direction perpendicular to the surface of 0.5 to 5.0 ⁇ m, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average thickness of 1.5 or more, and a crystal orientation that deviates from the Goss orientation by 10° or more, and in the cross section in the sheet thickness direction, a length of the grain boundary of the flat crystal grains accounts for 70% or more of the length of the interface between the silicon steel sheet and the oxide layer.
  • the average thickness of the flat crystal grains may be more than 2.0 ⁇ m and not more than 5.0 ⁇ m.
  • the coverage of the oxide layer on the surfaces of the flat crystal grains constituting the interfaces may be 50% or more.
  • the silicon steel sheet may have a plurality of grooves having a depth of 10 to 30 ⁇ m and extending in a direction at an angle of 80 to 100° to the rolling direction, and the distance between adjacent grooves in the rolling direction may be 1.0 to 20.0 mm.
  • the grain-oriented electrical steel sheet according to [3] may have a plurality of grooves in the silicon steel sheet, each groove having a depth of 10 to 30 ⁇ m and extending in a direction at an angle of 80 to 100° to the rolling direction, and the distance between adjacent grooves in the rolling direction may be 1.0 to 20.0 mm.
  • the grain-oriented electrical steel sheet according to [4] may have flat grains on the surface side of the grooves of the silicon steel sheet, the flat grains having an average diameter of 0.5 to 5.0 ⁇ m in a direction perpendicular to the surface of the grooves, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average diameter of 2.0 or more, and a crystal orientation which deviates from the Goss orientation by 10° or more, and in a cross section in the sheet thickness direction perpendicular to the extension direction of the grooves, the length of the grain boundaries of the flat grains in the grooves accounts for 70% or more of the length of the inner surface of the grooves.
  • the grain-oriented electrical steel sheet according to [5] may have flat grains on the surface side of the groove of the silicon steel sheet, the flat grains having an average diameter of 0.5 to 5.0 ⁇ m in a direction perpendicular to the surface of the groove, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average diameter of 2.0 or more, and a crystal orientation which deviates from the Goss orientation by 10° or more, and in a cross section in the sheet thickness direction perpendicular to the extension direction of the groove, the length of the grain boundary of the flat grains in the groove accounts for 70% or more of the length of the inner surface of the groove.
  • the average of the average diameter of the flat crystal grains in the grooves may be more than 2.0 ⁇ m and not more than 5.0 ⁇ m.
  • the average of the average diameter of the flat crystal grains in the grooves may be more than 2.0 ⁇ m and not more than 5.0 ⁇ m.
  • a method for producing a grain-oriented electrical steel sheet includes a hot rolling process of heating and hot rolling a slab to obtain a hot-rolled sheet, a hot-rolled sheet annealing process of annealing the hot-rolled sheet after the hot rolling process, a pickling process of pickling the hot-rolled sheet after the hot-rolled sheet annealing process, a cold rolling process of cold-rolling the hot-rolled sheet after the pickling process to obtain a cold-rolled sheet, a grinding process of grinding a surface of the cold-rolled sheet after the cold rolling process, a contacting process of contacting the cold-rolled sheet after the grinding process with an aqueous liquid having a pH of 4.0 to 10.0, a decarburization annealing process of performing decarburization annealing on the cold-rolled sheet after the contacting process, and a sintering process of the cold-rolled sheet after the decarburization annealing process.
  • the method includes a finish annealing process in which a annealing separator is applied to the surface of the cold-rolled sheet which becomes a base steel sheet, and the surface is finish annealed to form an oxide layer made of one or more oxides of Mg, Al, and Si; and an insulating coating forming process in which an insulating coating layer is formed on the surface of the oxide layer after the finish annealing process.
  • grinding is performed with a reduction amount of 1.0 to 5.0 mm and a grinding speed of 500 mpm or more using abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size of more than 50 ⁇ m and not more than 500 ⁇ m, or abrasive paper, roll, or brush to which the abrasive grains are fixed, and the grinding amount of the cold-rolled sheet is 0.10 to 10.0 g/m 2 on at least one surface.
  • the method for producing a grain-oriented electrical steel sheet according to [10] may further include, prior to the grinding step, a groove forming step of forming, in the cold-rolled sheet, a plurality of grooves having a depth of 10 to 30 ⁇ m, extending in a direction forming an angle of 80 to 100° with respect to the rolling direction, at intervals of 1.0 to 20 mm in the rolling direction.
  • the groove in the groove forming step, the groove may be formed by irradiating a laser onto a surface of the cold-rolled sheet to melt a part of the steel sheet surface and removing the molten material from the surface.
  • the above aspect of the present invention makes it possible to provide a grain-oriented electrical steel sheet with excellent magnetic properties and a method for manufacturing the same.
  • FIG. 1 is a schematic diagram of a cross section of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. FIG. 2 is a schematic diagram of a cross section of the grain-oriented electrical steel sheet according to the present embodiment when a groove is formed.
  • FIG. 2 is a diagram for explaining a method for measuring the average thickness and aspect ratio of crystal grains.
  • FIG. 2 is a diagram illustrating a method for measuring the coverage of an oxide layer on a flat crystal grain.
  • grain-oriented electromagnetic steel sheet according to one embodiment of the present invention (grain-oriented electromagnetic steel sheet according to this embodiment) and its manufacturing method.
  • the grain-oriented electrical steel sheet 1 has a silicon steel sheet 11 (hereinafter sometimes referred to as a base steel sheet or simply as a steel sheet), an oxide layer 21 formed on the surface of the silicon steel sheet 11 and made of one or more oxides of Mg, Al, and Si, and an insulating coating layer 31 formed on the surface of the oxide layer 21.
  • the oxide layer 21 and the insulating coating layer 31 may be formed on only one side of the steel sheet, but it is preferable from the viewpoint of insulation properties and the like that they be formed on both sides. Each of these will be explained below.
  • [Silicon steel sheet] One or more oxides of Mg, Al, and Si, each having a circle equivalent diameter of 0.1 to 3.0 ⁇ m, are present at a density of 0.010 to 0.200 pieces/ ⁇ m2 within a range of 10 ⁇ m in the plate thickness direction from the interface between the silicon steel plate and the oxide layer.)
  • inhibitors precipitates present at grain boundaries, such as AlN
  • the size of the precipitates that become inhibitors is very small, ranging from several tens of nm to about 100 nm in circle equivalent diameter. There is also a size distribution. When there is a size distribution, the decomposition and oxidation of small-sized inhibitors is completed at low temperatures, and the inhibitor effect is lost. In that case, secondary recrystallization in the Goss orientation closer to the ideal Goss orientation becomes difficult, and it is difficult to improve the magnetic flux density. On the other hand, the above problem can be solved by controlling the size distribution of the inhibitors to a constant value (so that the size difference is small), but this is extremely difficult industrially.
  • the inhibitor can be made to exist up to high temperatures by suppressing decomposition and oxidation by some method even in a state where the size distribution of the inhibitor occurs, secondary recrystallization of crystal grains closer to the ideal Goss orientation can be caused.
  • a method of using a highly heat-resistant inhibitor can be used to suppress the decomposition and oxidation of the inhibitor.
  • oxide particles of Si hereinafter sometimes referred to as Si-based pre-oxides
  • Si-based pre-oxides oxide particles of Si (hereinafter sometimes referred to as Si-based pre-oxides) formed on the steel sheet surface or in the surface layer of the steel sheet (in the steel) in the decarburization annealing process contribute.
  • the mechanism is speculation, it is thought that the oxidation of the inhibitor occurs when a small amount of oxygen contained in the finish annealing atmosphere oxidizes AlN and the like on the steel sheet surface, and that the above-mentioned Si-based pre-oxides prevent and reduce the oxidation.
  • the Si-based pre-oxides tend to be formed unevenly at various locations on the surface of the silicon steel sheet, and if the formation is uneven, the inhibitor's effect of suppressing decomposition and oxidation varies depending on the location on the steel sheet surface, making it difficult to obtain the intended effect.
  • the present inventors have investigated the cause of the non-uniform formation of the oxide layer at each site on the surface after finish annealing, and have found that Fe-based oxides and reaction products between the surface metal of the steel sheet and oiliness agents or extreme pressure additives contained in the rolling oil used during cold rolling are present non-uniformly on the surface of the silicon steel sheet (cold-rolled sheet) before decarburization annealing, and that these Fe-based oxides and reaction products prevent the Si-based pre-oxide from being densely and uniformly formed in a certain thickness region from the surface during decarburization annealing.
  • the present inventors have conducted research into neutralizing the factors inhibiting the formation of these Si-based pre-oxides.
  • the inventors have found that by uniformly grinding the surface (at least one side) of the cold-rolled sheet before the decarburization annealing process using abrasive grains or abrasive paper, roll, or brush with abrasive grains fixed thereon to expose a clean metal surface, and then immediately contacting the surface with an aqueous liquid, it is possible to remove the Fe-based oxides and reaction products that are factors inhibiting the formation of Si-based pre-oxides from the surface of the steel sheet, and it is possible to form the Si-based pre-oxides at a predetermined number density in a region of a certain thickness from the surface of the steel sheet after the decarburization annealing process.
  • oxides 101 oxide particles which are oxides of one or more of Mg, Al, and Si and have a circle equivalent diameter of 0.1 to 3.0 ⁇ m, and which are oxides formed by oxidation of an inhibitor or a solid-phase reaction with an annealing separator in a process such as finish annealing, are present at a density of 0.010 to 0.200 pieces/ ⁇ m 2.
  • the oxides 101 may be one or more oxides of Mg, Al, and Si (including composite oxides), but when the manufacturing conditions described later are assumed, they are often oxides containing Mg, Al, and Si, such as spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), and mullite (2SiO 2 ⁇ 3Al 2 O 3 ). If the number density of the oxides 101 is too small, the adhesion of the oxide layer 21 to the steel sheet is poor, and the formation of the flat crystal grains 102 described below becomes non-uniform. On the other hand, if the number density of the oxides 101 is too large, the area occupied by the metal portion of the steel sheet 11 is reduced, and the magnetic flux density is reduced.
  • the proportion of the flat crystal grains 102 is relatively small, making it difficult to obtain the effect of reducing iron loss.
  • the oxide 101 is uniformly formed in a predetermined region, which reduces the variation from location to location in the effect of suppressing the decomposition and oxidation of the inhibitor during finish annealing, thereby improving the magnetic flux density in the grain-oriented electrical steel sheet 1.
  • the 180° magnetic domain width becomes smaller, and an iron loss reduction effect commensurate with the magnetic flux density can be obtained.
  • the oxide 101 is often present in flat crystal grains 102, which will be described later.
  • the decarburization annealing process is mainly used to uniformly form Si-based pre-oxides in the surface layer (within 10 ⁇ m from the surface) of the silicon steel sheet (base steel sheet), thereby suppressing the decomposition and oxidation of the inhibitor during the final annealing and allowing it to exist up to high temperatures.
  • Hysteresis loss is reduced by improving the magnetic flux density.
  • eddy current loss which is reduced by reducing the sheet thickness and increasing the resistivity of the steel sheet
  • abnormal eddy current loss which is reduced by reducing the magnetic domain width formed in the Goss-oriented grains. Since the reduction in sheet thickness and the increase in the resistivity of the steel sheet in the reduction of classical eddy current loss often affect productivity, it is important to reduce the abnormal eddy current loss, i.e., to reduce the magnetic domain width.
  • the magnetic domain width is generally correlated with the crystal grain size of the Goss orientation.
  • the magnetic domain width of the so-called 180° magnetic domain generated in the grain-oriented electrical steel sheet is also reduced by reducing the grain size. That is, although the magnetic flux density is improved by controlling the above oxides, there is a concern that the abnormal eddy current loss increases due to the coarsening of the crystal grain size, and therefore the iron loss reduction effect commensurate with the improvement in magnetic flux density cannot be obtained.
  • the inventors have studied a method of reducing iron loss commensurate with the improvement of magnetic flux density, that is, a method of reducing the magnetic domain width to solve the coarsening of the grain size that occurs secondarily after increasing the frequency of the ideal Goss orientation crystal grains.
  • the average thickness of each flat crystal grain is preferably more than 2.0 ⁇ m and not more than 5.0 ⁇ m in order to fully obtain the effect of reducing the magnetic domain width.
  • the length of the grain boundary of the flat crystal grains accounts for 70% or more of the length of the interface between the base steel sheet and the oxide layer in the cross section in the sheet thickness direction. If the ratio of flat crystal grains constituting the interface is small, the effect of reducing the magnetic domain width is insufficient, and therefore a sufficient effect of reducing iron loss cannot be obtained.
  • the average thickness, aspect ratio, and deviation of crystal orientation of the crystal grains present on the surface side can be measured by the following method.
  • a sample of, for example, about 20 mm square is cut out from the steel sheet so that a surface parallel to the rolling direction (RD direction) is obtained as a cross section, and the cross section is polished to a mirror surface.
  • a polishing material such as colloidal silica is used in the final polishing process to prepare a polished sample so that no distortion is introduced.
  • the polished sample is used to observe the cross-sectional shape with an FE-SEM, and then the crystal orientation is measured by EBSD measurement.
  • FE-SEM For the FE-SEM, "SU-70" (manufactured by Hitachi High-Tech Corporation) is used as an example, and for the EBSD measurement, “Digiview” (manufactured by TSL Solutions) is used as an example. Specific examples of the method include the following.
  • the cross section is observed with an FE-SEM at a magnification of 500 times, and an electron microscope image is obtained.
  • the interface between the insulating coating layer and the oxide layer and the interface between the oxide layer and the steel sheet, which will be described later, are identified from the difference in electron density in the electron microscope image.
  • the FE-SEM is equipped with an elemental analyzer (EDS)
  • EDS elemental analyzer
  • the crystal orientation of the steel sheet is measured by EBSD on the cross section of the same field of view. Specifically, in a 500x field of view where it is assumed that 100 or more flat grains are included, the crystal orientation is measured at measurement point pitches of 0.25 ⁇ m in an area with a cross-sectional length of 200 ⁇ m in the rolling direction and 70 ⁇ m in the sheet thickness direction.
  • the boundary where the crystal orientation difference is 15° or more is defined as a grain boundary, and the area surrounded by this grain boundary is defined as a grain. If the number of grains in the field of view is less than 100, measurements are performed on additional fields of view. Regarding these crystal grains, the average thickness of the crystal grains is determined by the methods shown in a) to d) in FIG. a) Draw an imaginary line (1) in the thickness direction (normal direction) of the steel plate to determine both ends of the grain. b) Draw imaginary lines (2) in the thickness direction at 2.5% of the distance L between both ends of the crystal grain (the lines between them indicate 95% of the grain width).
  • the crystal orientation of the Fe ferrite phase is measured for all of the above crystal grains with an average thickness of 0.5 to 5.0 ⁇ m and an aspect ratio of 1.5 or more.
  • the measured crystal orientation is then used to obtain a crystal orientation map called an IPF map, which shows the crystal orientation relative to the rolling direction (RD direction) and the normal direction of the steel sheet surface (ND direction).
  • the average orientation difference between each crystal grain and the Goss orientation is calculated, and this is taken as the deviation from the Goss orientation. If the deviation from the Goss orientation is 10° or more, the grain is considered to be a flattened grain.
  • the average (simple average) of the average thickness of the flat crystal grains is obtained by dividing the sum of the average thicknesses of each flat crystal grain obtained above by the number of flat crystal grains.
  • any method may be used to observe the cross section in the thickness direction, but the method of obtaining a cross section of the above-mentioned steel plate parallel to the rolling direction (RD direction) and obtaining a crystal orientation map by EBSD to confirm the presence of "flat crystal grains” is preferable because it has high accuracy.
  • Another method of simply confirming the presence of "flat crystal grains” is to polish a surface parallel to the rolling direction (RD direction) to obtain a smooth cross section, and then to confirm by a method such as the so-called nital method (nitric acid ethanol method, described in JIS-G-0553 (2019)), which reveals the crystal grain boundaries.
  • this method does not identify the crystal orientation, and it is necessary to measure the crystal orientation separately using EBSD, etc., so in this embodiment, the method of using the above-mentioned FE-SEM and EBSD in combination is adopted.
  • the ratio of the length of the grain boundary of the flat crystal grains to the length of the interface between the base steel sheet and the oxide layer can be determined by the following method. For example, in a field of view observed at a magnification of 500 times, SEM observation and EBSD measurement are performed on an area of 200 ⁇ m in cross-sectional length in the rolling direction of the interface between the silicon steel sheet and the oxide layer. This is performed at five locations, that is, for an interface length of 1000 ⁇ m.
  • the proportion (percentage) of the grain boundaries of flat crystal grains with an average thickness of 0.5 to 5.0 ⁇ m, an aspect ratio of 1.5 or more, and an orientation difference from the Goss orientation of 10° or more is measured in the length (1000 ⁇ m) of the interface between the silicon steel sheet and the oxide layer. Identification of the interfaces of the insulating coating layer, the oxide layer, and the silicon steel sheet, and of the flat crystal grains, etc. can be performed in the same manner as above.
  • grooves G are formed on the surface of the base steel sheet 11 as shown in FIG. 2.
  • the silicon steel sheet (base steel sheet) 11 has a plurality of grooves G with a depth (sheet thickness direction) of 10 to 30 ⁇ m and extending in a direction at an angle of 80 to 100° to the rolling direction, and the distance between adjacent grooves G in the rolling direction is 1.0 to 20.0 mm.
  • the distance between adjacent grooves G in the rolling direction is more preferably 2.0 to 10.0 mm.
  • the spacing of the grooves is the distance from the center of the width of one groove to the center of the width of the adjacent groove.
  • the shape of the groove is not limited, and for example, the cross section is substantially rectangular or substantially triangular. The cross section may also be a bow shape constituting a part of a circle.
  • the width of the groove is preferably about 0.5 to 3.0 times the depth of the groove. If the width of the groove is less than 0.5 times the depth of the groove, a sufficient magnetic domain control effect cannot be obtained, and the groove itself is difficult to form.
  • the width of the groove is more than 3.0 times the depth of the groove, the occupancy rate of the groove on the steel sheet surface increases, resulting in a decrease in magnetic flux density, while the magnetic domain control effect is saturated, so that the iron loss reduction effect cannot be obtained, and may even lead to an increase in iron loss.
  • the above-mentioned effect of reducing abnormal eddy current loss due to flat crystal grains is also effective for magnetic domain control material formed by grooves. That is, when the inner surface (bottom surface, side surface) of the groove is the surface of the base steel sheet, as shown in FIG.
  • the flat crystal grains in the groove G102 there are flat crystal grains (flat crystal grains in the groove) G102 on the surface side of the groove of the base steel sheet, which have an average diameter in the direction perpendicular to the surface of 0.5 to 5.0 ⁇ m, an aspect ratio which is the ratio of the grain width in the direction parallel to the surface to the average diameter of 2.0 or more, and a deviation of the crystal orientation from the Goss orientation of 10° or more (the flat crystal grains in the groove G102 exist as grains constituting the outermost layer of the groove of the silicon steel sheet), and in a cross section in the plate thickness direction perpendicular to the extension direction, if the length of the grain boundary of the flat crystal grains in the groove G102 occupies 70% or more of the length of the inner surface of the groove G, in addition to the magnetic domain refinement effect due to the groove formation, the eddy current loss reduction effect due to the flat crystal grains in the groove G102 can be obtained, which is more preferable.
  • the average diameter of the flat crystal grains G102 in the grooves is more
  • the presence or absence of flat crystal grains in grooves, as well as their average diameter, aspect ratio, and deviation of crystal orientation from the Goss orientation, can be determined in the same manner as for the flat crystal grains on the surface of the base steel sheet described above.
  • the grooves on the surface of the steel sheet are not straight but curved, for example, a cross section perpendicular to the tangent of the curve in the observation target portion is revealed.
  • the deviation angle of the cross section with respect to the rolling direction (RD direction) is measured and corrected when measuring the crystal orientation of the flattened crystal grains.
  • the length of the grain boundaries of the flat crystal grains in the groove relative to the length of the inner surface of the groove can be determined by performing EBSD measurement of a cross section in the plate thickness direction perpendicular to the extension direction of the groove in the same manner as the measurement of the flat crystal grains on the surface side of the silicon steel plate.
  • the chemical composition of the silicon steel sheet is not limited as long as it is the same as the base steel sheet of a known grain-oriented electrical steel sheet.
  • the composition may be within the range described below.
  • the chemical composition of the silicon steel sheet contains, in mass%, 2.00 to 6.00% Si, in order to control the crystal orientation to a Goss texture concentrated in the ⁇ 110 ⁇ 001> orientation and ensure good magnetic properties.
  • the other elements are not particularly limited, and known elements may be contained in known ranges in place of Fe, with the balance being Fe and impurities.
  • Representative content ranges (mass %) of representative elements other than Si are as follows: C: 0 to 0.0050%, Mn: 0 to 1.0%, S: 0 to 0.0150%, Se: 0 to 0.0150%, Al: 0 to 0.0650%, N: 0 to 0.0050%, Cu: 0 to 0.40%, Bi: 0 to 0.010%, B: 0 to 0.080%, P: 0 to 0.50%, Ti: 0 to 0.0150%, Sn: 0 to 0.10%, Sb: 0 to 0.10%, Cr: 0 to 0.30%, Ni: 0 to 1.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo: 0 to 0.030%, Ta: 0 to 0.030%, W: 0 to 0.030%, These selective elements may be contained according to the purpose, so there is no need to limit the lower limit, and they may not be contained substantially.
  • Impurities refer to elements that are unintentionally contained, and refer to elements that are mixed in from raw materials such as ores and scraps, or the manufacturing environment, when industrially manufacturing the base steel sheet.
  • the chemical composition of the silicon steel sheet is determined by the following method.
  • a solution is obtained by acid decomposing a silicon steel sheet with hydrochloric acid or the like.
  • a calibration curve is obtained by ICP (inductively coupled plasma) analysis of each element solution whose concentration is already known.
  • the solution obtained is then analyzed, and the elements contained therein are quantified and determined.
  • an oxide layer and/or an insulating coating layer is formed on the surface of a silicon steel sheet (when a grain-oriented electrical steel sheet includes a silicon steel sheet, an oxide layer, and an insulating coating layer), the oxide layer and the insulating coating layer can be removed before measurement.
  • the insulating coating layer is removed by immersing the grain-oriented electrical steel sheet having the insulating coating layer for 7 to 10 minutes in an aqueous sodium hydroxide solution at 80 to 90°C containing 30 to 50 mass% NaOH and 50 to 70 mass% H 2 O.
  • the grain-oriented electrical steel sheet from which the insulating coating layer has been removed is washed with water, and then dried with a hot air blower for just under 1 minute.
  • the oxide layer is removed by immersing the grain-oriented electrical steel sheet having the oxide layer for 1 to 10 minutes in an aqueous hydrochloric acid solution containing 10 mass% HCl at 80 to 90° C.
  • a silicon steel sheet which is the base steel sheet, can be taken out from the grain-oriented electrical steel sheet on which the oxide layer and/or insulating coating layer is formed.
  • the thickness of the silicon steel sheet of the grain-oriented electrical steel sheet according to this embodiment is not limited, but is preferably 0.15 to 0.35 mm. If the thickness exceeds 0.35 mm, the classical eddy current loss described above increases, resulting in large iron loss. On the other hand, if the thickness is less than 0.15 mm, the rolling efficiency decreases, which is disadvantageous in terms of productivity and cost.
  • an oxide layer made of one or more oxides of Mg, Al, and Si is formed on the surface of the base steel sheet.
  • This oxide layer is formed by a solid-phase reaction between Mg and/or Al contained in the annealing separator and the Si-based pre-oxide formed on the steel sheet surface during the final annealing.
  • a forsterite (Mg 2 SiO 4 ) film is mainly formed as the oxide layer.
  • AlN contained in the steel as an inhibitor is oxidized by oxygen in the annealing atmosphere on the surface of the silicon steel sheet in the latter half of the final annealing.
  • spinel MgAl 2 O 4
  • alumina Al 2 O 3
  • mullite 2SiO 2 .3Al 2 O 3
  • spinel MgAl 2 O 4
  • the oxide layer covers the surfaces of the flat crystal grains, thereby improving the adhesion to the insulating coating layer applied thereon. To obtain a sufficient effect, it is preferable that the coverage of the oxide layer on the flat crystal grains is 50% or more.
  • the coverage can be determined by the following method. That is, the presence of flat crystal grains is identified by EBSD in the manner described above. Then, attention is paid to FE-SEM images of each flat crystal grain or elemental analysis images obtained by performing elemental analysis using EDS or the like based on the FE-SEM images.
  • the length of the flat crystal grain where one or more oxide layers of Mg, Al, and Si exist between the insulating coating layer and the flat crystal grain or in the projected portion from the surface side of the flat crystal grain toward the inside of the steel sheet is measured.
  • the percentage of the length where the oxide layer exists per 1000 ⁇ m of the interface length between the oxide layer or insulating coating layer and the flat crystal grain is calculated. For example, in the state shown in FIG. 4, the coverage rate (%) can be calculated by (A1+A2+A3)/(a1+a2+a3) ⁇ 100.
  • an insulating coating layer is formed on the surface (as an upper layer) of the oxide layer.
  • This insulating coating layer is essential when the grain-oriented electrical steel sheet is used as a transformer.
  • the grain-oriented electrical steel sheet is used as a transformer, it is laminated and used.
  • the laminated steel sheets silicon steel sheets
  • eddy currents are generated in the transformer core, which causes an increase in core core loss. Therefore, an insulating coating layer is formed on the surface of the steel sheet to impart electrical insulation, thereby reducing the core core loss of the transformer.
  • the insulating coating of grain-oriented electrical steel sheets is also required to have various properties necessary for producing iron cores, such as corrosion resistance, heat resistance, and slipperiness.
  • a coating type whose main components are phosphate and colloidal silica is used for the insulating coating.
  • a coating whose main component is aluminum borate or a coating made of aluminum borate and silica may be used. Either coating may be a known coating formed by applying a coating liquid in which the components contained therein are dissolved or dispersed to the surface of an oxide layer and baking it.
  • the grain-oriented electrical steel sheet according to this embodiment can obtain its effects as long as it has the above-mentioned characteristics regardless of the manufacturing method, but a manufacturing method including the following steps is preferable because it can be stably manufactured.
  • a hot rolling step of heating and hot rolling the slab into a hot-rolled sheet
  • a hot-rolled sheet annealing step of annealing the hot-rolled sheet after the hot rolling step
  • IV a cold rolling step of cold rolling the hot-rolled sheet after the pickling step to obtain a cold-rolled sheet
  • V a grinding step of grinding the surface of the cold-rolled sheet after the cold rolling step
  • the method for producing a grain-oriented electrical steel sheet according to this embodiment may further include any one or more of the following steps.
  • a groove forming step which is performed before the grinding step, further comprises forming a plurality of grooves having a depth of 10 to 30 ⁇ m in the cold-rolled sheet, the grooves extending in a direction at an angle of 80 to 100° with respect to the rolling direction, the grooves being spaced apart from each other in the rolling direction by 1.0 to 20.0 mm;
  • the manufacturing method of the grain-oriented electrical steel sheet according to the present embodiment is characterized by the grinding step, the contacting step, and the groove forming step, while the hot rolling step, the hot-rolled sheet annealing step, the cold rolling step, the decarburization annealing step, the nitriding treatment step, the finish annealing step, and the insulating coating forming step can be performed under known conditions. Preferred conditions are described below. Even if conditions are not described, the reaction can be carried out under known conditions.
  • a slab having a predetermined chemical composition (a chemical composition corresponding to the chemical composition of the silicon steel sheet of the grain-oriented electrical steel sheet according to this embodiment) is heated and hot rolled to form a hot-rolled sheet.
  • the slab heating temperature is, for example, 1000 to 1400°C.
  • the chemical composition of the slab to be subjected to hot rolling may be determined according to the desired chemical composition of the grain-oriented electrical steel sheet, taking into consideration changes in the chemical composition in each process.
  • the hot rolling stage may contain, by mass%, C: 0.040 to 0.100%, Si: 2.00 to 6.00%, and in addition, Al, Mn, Se, S, B, N, etc. are contained in predetermined ranges as inhibitors to obtain AlN, MnS, MnSe, BN, and further elements such as Cu, Sn, Cr, Ni, Mo, Nb, Bi, Sb, P, Ti, V, Ta, W, etc. as necessary.
  • the method for obtaining the slab is not limited.
  • molten steel having a predetermined chemical composition may be melted and the molten steel may be used to produce the slab.
  • the slab may be produced by a continuous casting method, or the molten steel may be used to produce an ingot and the ingot may be bloomed to produce the slab.
  • the slab may be produced by other methods.
  • the thickness of the slab is not particularly limited, but is, for example, 150 to 350 mm.
  • the thickness of the slab is preferably 220 to 280 mm.
  • As the slab a so-called thin slab having a thickness of 10 to 70 mm may be used.
  • a so-called hot-rolled sheet (hot-rolled steel sheet) is obtained by hot rolling.
  • the thickness (finished thickness) of the hot-rolled sheet is not particularly limited.
  • the hot-rolled sheet is annealed, pickled, and then cold-rolled. It is known that the so-called cold rolling reduction rate affects the magnetic properties of the grain-oriented electrical steel sheet, and the thickness of the hot-rolled sheet is selected taking into account the required cold rolling reduction rate for the final thickness. For example, when the final thickness is 0.20 to 0.30 mm, the finished thickness of the hot-rolled sheet is preferably in the range of 2.0 to 4.0 mm.
  • the hot-rolled sheet annealing process In the hot-rolled sheet annealing process, the hot-rolled sheet after the hot rolling process is annealed. By carrying out such annealing treatment, recrystallization occurs in the steel sheet structure, making it possible to realize good magnetic properties.
  • the hot-rolled sheet annealing process of this embodiment the hot-rolled sheet manufactured through the hot rolling process may be annealed according to a known method.
  • the means for heating the hot-rolled sheet during annealing is not particularly limited, and a known heating method can be adopted. For example, so-called continuous annealing may be used, or the hot-rolled sheet may be coiled and subjected to batch annealing.
  • the annealing conditions are also not particularly limited, but for example, the hot-rolled sheet may be annealed for 10 seconds to 5 minutes in a temperature range of 900 to 1200 ° C.
  • the atmosphere is not particularly limited, but it is preferable to suppress oxidation of the steel sheet, and it is preferable to perform the annealing in a non-oxidizing atmosphere such as nitrogen, argon, or hydrogen.
  • the cold rolling process In the cold rolling process, the steel sheet after pickling is cold rolled to obtain a cold rolled sheet.
  • the cold rolling may be a single cold rolling (a series of cold rolling without intermediate annealing) or may be multiple cold rollings with intermediate annealing by interrupting the cold rolling and performing at least one or more intermediate annealings before the final pass of the cold rolling process.
  • the cold rolling conditions may be in accordance with known methods.
  • the cold rolling reduction of grain-oriented electrical steel sheet has a large effect on its magnetic properties. In particular, the final reduction has a large effect, and the final reduction can be set to 80 to 95%.
  • the final reduction is the cumulative reduction of cold rolling, and in the case where intermediate annealing is performed, it is the cumulative reduction of cold rolling after final intermediate annealing.
  • intermediate annealing for example, the steel sheet is held at a temperature of 800 to 1200°C for 5 to 180 seconds.
  • the annealing atmosphere is not particularly limited, but it is preferable to perform the annealing in a non-oxidizing atmosphere such as nitrogen, argon, or hydrogen in order to prevent oxidation of the steel sheet.
  • the annealing method may be either so-called continuous annealing or batch annealing in a coil shape, or other methods may be used.
  • the number of times intermediate annealing is preferably three or less, taking into account the manufacturing cost.
  • grooves are formed in the cold-rolled sheet before the grinding step, extending in a direction at an angle of 80 to 100° with respect to the rolling direction, and having a depth of 10 to 30 ⁇ m.
  • a plurality of grooves are formed so that the intervals in the rolling direction are 1.0 to 20.0 mm.
  • the intervals in the rolling direction are more preferably 2.0 to 10.0 mm.
  • the method for forming the grooves is not particularly limited, and known methods such as those shown below can be used. For example, physical contact methods (methods of scratching the surface of the steel sheet with a blade or the like, or methods of roll transfer or pressing using a die with a blade, etc.), non-physical contact methods (methods of locally melting a part of the steel sheet surface with a laser, electron beam, plasma, etc.
  • grooves are introduced into the steel sheet at a pitch of 1.0 to 20.0 mm in the rolling direction, so the blades and dies are subject to significant wear when grooves are applied to a steel sheet coil that is several thousand meters long. This necessitates frequent replacement, which has the disadvantage of poor productivity.
  • the chemical method as mentioned above, it is necessary to carry out multiple steps such as masking the steel sheet surface with a resin, removing a part of the mask, and then etching, which is a problem mainly in terms of productivity.
  • a strong acidic solution with a pH of about 1, such as hydrochloric acid is often used for etching, and the costs of removing Fe dissolved in the strong acidic solution and treating the strong acidic solution as waste liquid are high.
  • a method that does not rely on physical contact one method is to irradiate the surface of a cold-rolled sheet with a laser, melt a part of the steel sheet surface, and remove the molten material from the surface to form grooves.
  • This method has the great advantage that it uses a high-energy source with high linearity such as a laser, which allows for high-level control of the irradiation position on the steel sheet surface and allows grooves to be formed accurately at a specified location.
  • the molten material generated from the steel sheet during irradiation can be removed outside the system by installing a suction duct in the laser irradiation section, and this does not affect the laser irradiation control.
  • a high-power laser generally used for industrial purposes, such as a fiber laser, a YAG laser, a semiconductor laser, or a CO2 laser, can be used.
  • the output form may be a pulsed laser or a continuous wave laser.
  • an assist gas for example, air, CO2 , argon, etc.
  • the groove forming step is not essential and can be omitted.
  • the grinding process In the grinding process, the surface of the cold-rolled sheet after the cold rolling process (the cold-rolled sheet after the groove forming process when the groove forming process is performed) is ground. At that time, grinding is performed using abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size of more than 50 ⁇ m and 500 ⁇ m or less, or abrasive paper, rolls, or brushes to which the abrasive grains are fixed.
  • abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size of more than 50 ⁇ m and 500 ⁇ m or less, or abrasive paper, rolls, or brushes to which the abrasive grains are fixed.
  • the inhibitors precipitates present at grain boundaries, such as AlN
  • the inhibitors can exist at as high a temperature as possible during the final annealing, only crystal grains having a crystal orientation closer to the ideal Goss orientation are allowed to grow, thereby improving the magnetic flux density.
  • the size of the inhibitor is very small, ranging from several tens of nm to about 100 nm, there is a size distribution. When there is a size distribution, the small size inhibitor starts to decompose at a low temperature.
  • these Si-based pre-oxides are easily affected by the process before the decarburization annealing process, and the formation state of these pre-oxides tends to be non-uniform at each part of the steel sheet surface. If the formation state is non-uniform, the inhibitor's effect of suppressing decomposition and oxidation varies depending on the location on the steel sheet surface, and the desired effect cannot be obtained.
  • Fe-based oxides that have been formed non-uniformly on the steel sheet surface during cold rolling, etc., and that inhibit the uniform formation of such oxide layers, as well as reaction products with the steel sheet surface such as oiliness agents or extreme pressure additives, are removed from the steel sheet surface before decarburization annealing in addition to grinding the steel sheet surface.
  • At least one surface of the steel sheet is ground with abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size exceeding 50 ⁇ m and not exceeding 500 ⁇ m, or with abrasive paper, roll or brush to which the abrasive grains are fixed, thereby removing the Fe-based oxide film and reaction products from the surface of the steel sheet.
  • Knoop hardness is less than 1000, the hardness of the abrasive grains is insufficient for the steel plate, making grinding difficult. Or the grinding efficiency is reduced.
  • the maximum particle size of the abrasive grains is 50 ⁇ m or less, the particle size of the abrasive grains becomes relatively small compared to the roughness of the steel plate surface, making grinding difficult.
  • the grinding efficiency is reduced.
  • the maximum particle size exceeds 500 ⁇ m, the particle size of the abrasive grains becomes too large relative to the roughness of the steel plate surface, making surface scratches more noticeable during grinding and reducing the quality of the product's appearance.
  • the Knoop hardness is preferably 8000 or less, more preferably 5000 or less.
  • the abrasive grains are mainly made of alumina (Knoop hardness: about 2000), silicon carbide (Knoop hardness: about 2500), boron nitride (Knoop hardness: about 5000), diamond (Knoop hardness: about 7000), or the like.
  • the brush roll is a metal roll with a resin lining on the surface, and the abrasive grains are embedded in fibers made of acrylic resin or the like, which are then planted in the form of hairs on the resin layer surface of the roll.
  • the sheet passing speed of the steel sheet when grinding the steel sheet with the brush roll is in the range of about 20 to 200 mpm (meter per minute), and the steel sheet is ground by contacting the brush roll, which rotates in the direction opposite to the sheet passing direction, with the steel sheet while moving the steel sheet at the position where the steel sheet and the brush roll contact each other.
  • the steel sheet with the brush roll the steel sheet is sandwiched between the brush roll and the idle roll, and the brush roll is pressed down against the sheet passing line (pass line) to the idle roll side to perform grinding.
  • the amount of reduction at this time is 1.0 to 5.0 mm. If the amount of reduction is small, the amount of grinding is small.
  • the passing speed of the steel sheet is in the range of 20 to 200 mpm as mentioned above, and in this case, the grinding speed (corresponding to the rotation speed in the case of a brush roll) is set to 500 mpm or more. If the grinding speed (rotation speed in the case of a brush roll) is low, the amount of grinding becomes insufficient, and the Si-based preoxides are not sufficiently formed, resulting in insufficient formation of flat crystal grains. On the other hand, in the case of a brush roll, if the rotation speed exceeds 2000 mpm, the frictional force between the brush roll and the steel plate becomes too large, causing not only the above-mentioned "chatter" but also an overload on the motor driving the brush roll.
  • the rotation speed of the brush roll is preferably 2000 mpm or less.
  • the grinding amount is 0.10 g/ m2 or more on at least one surface.
  • the service life of the abrasive grains is shortened and sludge generation due to grinding becomes significant, and the processing of the sludge is time-consuming, which causes defects on the steel sheet surface due to pressing, etc. Therefore, the grinding amount is 10.0 g/ m2 or less.
  • the amount of grinding can be confirmed from the weight difference of the steel sheet before and after grinding.
  • the amount of grinding is the amount of grinding per side. When grinding is performed on both sides, the amount of grinding per both sides is obtained, and for convenience, this value is halved, and from the viewpoint of removing the front and rear Fe-based oxide films and reaction products from the entire surface of the steel sheet, the preferable range of the amount of grinding is 0.30 g/ m2 or more and 3.0 g/ m2 or less.
  • the optimum groove depth is 10 to 30 ⁇ m, and the steel sheet surface inside the groove is also ground, so the effect of grinding is also effective on the inner surface of the groove formed on the surface of the cold-rolled sheet. Therefore, flat crystal grains (flat crystal grains inside the groove) are also formed on the surface side inside the groove of the base steel sheet that has undergone decarburization annealing and finish annealing.
  • the surface of the cold-rolled sheet is brought into contact with an aqueous liquid having a pH of 4.0 to 10.0. This removes the abrasive grains attached to the surface of the steel sheet during grinding and the steel sludge generated during grinding.
  • the aqueous liquid may be ion-exchanged water, or may contain minerals such as Ca and Mg, or may contain carbonic acid or silicic acid as a counter ion.
  • the pH may be added at about 0.01 wt %, and the pH may be adjusted with an alkali metal or alkaline earth metal.
  • carboxylic acid and phosphonic acid are highly effective in removing abrasive grains and sludge from the steel sheet.
  • the electrical conductivity is preferably 0.1 to 10 ⁇ S/cm from the viewpoint of preventing dissolution. If the pH is less than 4.0, the steel sheet surface is etched by the acidic aqueous solution, causing corrosion of the steel sheet.
  • the alkaline aqueous solution acts to promote oxidation of the metal surface after grinding, reducing the effect of removing the Fe-based oxides that were unevenly formed on the steel sheet surface in the grinding process.
  • the initial intended effect of uniformly forming an oxide layer and oxide particles after finish annealing cannot be sufficiently obtained.
  • the contact time is preferably 0.1 to 60 seconds, more preferably 1 to 60 seconds, and even more preferably 5 to 60 seconds.
  • the flow rate of the aqueous liquid is preferably 1 to 100 L/min.
  • abrasive grains and sludge can be removed from the surface of the steel sheet, and factors that inhibit the uniform formation of an oxide layer and oxide particles after the finish annealing can be avoided.
  • the surface of the cold-rolled sheet may be brought into contact with the aqueous liquid during the grinding step, but the above-mentioned effect cannot be obtained unless the contacting step is carried out after the grinding step.
  • decarburization annealing process In the decarburization annealing process, the cold-rolled sheet after the grinding process is subjected to decarburization annealing, which removes (decarburizes) C, which adversely affects magnetic properties, from the steel sheet and causes primary recrystallization of the cold-rolled sheet.
  • the decarburization annealing conditions are not limited, but the annealing is performed in a nitrogen/hydrogen mixed atmosphere for decarburization, in which the oxygen potential is increased by humidification.
  • the humidification temperature (dew point) is determined from the viewpoints of the annealing temperature required for recrystallization and the oxygen potential capable of decarburization at the annealing temperature.
  • the annealing temperature is about 700 to 900° C., and since annealing is generally performed in a continuous annealing process, soaking is performed for about 60 seconds.
  • Si-based pre-oxides the so-called Si contained in the steel forms a layered oxide on the steel sheet surface and oxide particles inside the steel sheet.
  • the nitrogen content of the steel sheet is increased to increase the amount of nitrides, thereby promoting secondary recrystallization of crystal grains closer to the Goss orientation in the finish annealing process.
  • the nitrogen content of the steel sheet after the nitriding process is preferably 0.015 to 0.050 mass%.
  • the method of the nitriding process is not limited, and any known method may be used.
  • the nitriding step is not essential and may be omitted. If nitriding is performed, it is preferable to perform it between the decarburization annealing step and the finish annealing step.
  • an annealing separator is applied to the cold-rolled sheet after the decarburization annealing process (or after the nitriding process if nitriding has been performed), and the cold-rolled sheet is then finish-annealed to form an oxide layer made of one or more oxides of Mg, Al, and Si on the surface of the cold-rolled sheet which becomes the base steel sheet (silicon steel sheet). Since the annealing time is long, the steel sheet is usually wound into a coil and then batch annealed. Since the temperature of the steel sheet rises to about 1200°C, an annealing separator is applied to prevent the coiled steel sheet from seizing.
  • MgO is generally used as the annealing separator.
  • Mg contained in the annealing separator reacts with the Si-based pre-oxide formed on the steel sheet surface in the decarburization annealing process in a solid phase, and an oxide layer consisting of one or more oxides of Mg and Si is formed on the surface of the cold-rolled sheet.
  • a layer of forsterite (Mg 2 SiO 4 ) coating is mainly formed as the oxide layer.
  • AlN contained in steel as an inhibitor is oxidized by oxygen in the annealing atmosphere on the surface of the steel sheet in the latter half of the finish annealing, and at that time, it forms spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), or mullite (2SiO 2 .3Al 2 O 3 ).
  • spinel MgAl 2 O 4
  • Al 2 O 3 alumina
  • mullite 2SiO 2 .3Al 2 O 3
  • the size of the inhibitor is controlled to be larger and more uniform than usual in the cold-rolled sheet to be subjected to finish annealing, so that secondary recrystallization occurs only in grains close to the Goss orientation (grains having an orientation close to the Goss orientation).
  • the conditions for the finish annealing are not limited, but for example, the temperature is raised from room temperature at a rate of 10 to 100°C/h, and in the temperature range of 900 to 1000°C, where secondary recrystallization in the Goss orientation generally occurs, the temperature is raised at a rate of 5 to 20°C/h to promote preferential growth (secondary recrystallization) in the Goss orientation, and then, as described above, the inhibitor that has completed its role is purified at around 1200°C (for example, 1150 to 1250°C).Then, the coil is slowly cooled in a non-oxidizing atmosphere such as hydrogen or nitrogen, and then removed from the furnace.
  • a non-oxidizing atmosphere such as hydrogen or nitrogen
  • an insulating coating layer is formed on the surface of the oxide layer after the final annealing step.
  • the insulating coating layer can be formed by applying a coating solution containing phosphoric acid or a phosphate, colloidal silica, and chromic anhydride or a chromate to a cold-rolled sheet (base steel sheet + oxide layer) after finish annealing, and baking and drying at 300 to 950 ° C for 10 seconds or more.
  • the atmosphere during baking is not particularly limited, but it is preferable to suppress oxidation of the steel sheet, and it is preferable to perform the baking in a non-oxidizing atmosphere such as nitrogen, argon, or hydrogen.
  • a coating solution mainly composed of boric acid and alumina sol instead of the above-mentioned phosphate, or a coating solution mainly composed of boric acid and aluminosilicate (kaolin mineral, etc.), etc., as the coating type, and form an insulating coating mainly composed of aluminum borate.
  • the application of aluminum borate can impart a large tension to the steel sheet, thereby reducing iron loss. This process also plays a role in flattening the coiled steel sheet produced by the batch annealing in the above-mentioned final annealing, by continuous annealing.
  • the insulating coating is baked and the coiled steel sheet is subjected to continuous annealing at about 800°C while applying a certain tension to obtain a flat steel sheet. For this reason, it is sometimes called the flattening annealing process.
  • a grain-oriented electrical steel sheet that comprises a silicon steel sheet (base steel sheet), an oxide layer, and an insulating coating layer.
  • Example 1 Molten steel containing 3.25 mass% Si, 0.13 mass% Mn, 0.006 mass% S, 0.050 mass% C, 0.025 mass% acid-soluble Al, and 0.007 mass% N was continuously cast to obtain a slab with a thickness of 300 mm.
  • the slab was heated at 1150° C. for 60 minutes in an electric furnace adjusted to a nitrogen atmosphere, and then roughly hot rolled to obtain a steel plate having a thickness of 40 mm.
  • the slab was then finish rolled to obtain a hot rolled plate having a thickness of 2.3 mm. Thereafter, the hot-rolled sheet was annealed in a continuous annealing furnace adjusted to a nitrogen atmosphere by heating at 1100° C. for 60 seconds and then cooling.
  • the obtained steel sheet (hot-rolled sheet) was pickled with 10% hydrochloric acid to remove scale from the steel sheet. Thereafter, cold rolling was carried out to obtain a cold-rolled sheet having a thickness of 0.22 mm.
  • the surface of the obtained cold-rolled sheet was ground using various brushes containing abrasive grains as shown in Table 1 while flowing ion-exchanged water having a pH of 2.5 to 12.0. After grinding, the surface was brought into contact with ion-exchanged water having a pH of 2.5 to 12.0.
  • Table 1 for comparison, some steel sheets were not ground, and were not brought into contact with ion-exchanged water after grinding. During the contact, the contact time was 5 seconds, and the flow rate of the aqueous liquid was 10 L/min.
  • decarburization annealing was performed on the steel sheet that had been ground and contacted with an aqueous liquid (the cold-rolled sheet after cold rolling when neither was performed, or the cold-rolled sheet after the grinding process when no contact with an aqueous liquid was performed).
  • the annealing atmosphere was a 50% nitrogen + 50% hydrogen atmosphere, and the oxygen potential (P H2O /P H2 ) was 0.33.
  • the oxygen potential was adjusted by humidifying the atmosphere before introducing it into the furnace.
  • decarburization annealing was performed by soaking at 850°C for 60 seconds. Thereafter, the material was subjected to nitriding treatment by soaking in a nitrogen-hydrogen-ammonia atmosphere at 750° C.
  • an aqueous slurry of an annealing separator mainly composed of MgO was prepared, and the annealing separator was applied to both sides of the steel sheet so that the post-dry adhesion amount per side was 6 g/ m2 , and then dried.
  • the composition of the annealing separator was 100 parts by mass of MgO, 5 parts by weight of TiO2 , and 0.020% by mass of FeCl2 as Cl.
  • the sample was placed in a batch annealing furnace and heated at an average heating rate of 20°C/h in an atmosphere of 50% nitrogen and 50% hydrogen. After heating up to 1200°C, the atmosphere was switched to 100% hydrogen and soaked for 20 hours, and then cooled to room temperature. After the completion of the final annealing, the steel sheet was taken out of the furnace and the annealing separator was removed by washing with water. At this time, a glass coating made of forsterite and an oxide layer made of granular spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ) and/or mullite were formed on the surface of the steel sheet (silicon steel sheet).
  • MgAl 2 O 4 granular spinel
  • Al 2 O 3 alumina
  • mullite a glass coating made of forsterite and an oxide layer made of granular spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ) and/or mullite were formed on the surface of the steel sheet (sili
  • a chemical solution containing insulating coating components consisting of aluminum phosphate, colloidal silica, and chromic anhydride was applied to this steel sheet (a steel sheet having a glass coating, which is an oxide layer, formed on the surface of a silicon steel sheet, which is a base steel sheet), and the sheet was baked by heating to 800°C in a nitrogen atmosphere and holding for 30 seconds to form an insulating coating layer.
  • the amount of the insulating coating layer attached was 4.8 g/ m2 per side.
  • the oxides and flat crystal grains in the range of 10 ⁇ m from the interface with the oxide layer in the sheet thickness direction of the obtained silicon steel sheet were evaluated by the above-mentioned method. The results are shown in Table 2.
  • one or more oxides of Mg, Al, and Si having a circle equivalent diameter of 0.1 to 3.0 ⁇ m within a range of 10 ⁇ m from the interface with the oxide layer in the plate thickness direction were spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), and mullite (2SiO 2.3Al 2 O 3 ), that is, oxides containing Mg, Al, and Si.
  • Example 2 The same molten steel and slab as those used in Example 1 were used, and hot rolling, hot-rolled sheet annealing, pickling, and cold rolling were carried out in the same manner as in Example 1 to obtain a cold-rolled sheet having a thickness of 0.22 mm.
  • One side of the obtained cold-rolled sheet was irradiated with a laser using a commercially available fiber laser under the conditions of the laser output, focused spot diameter (sheet width direction TD and rolling direction RD), and scanning speed shown in the table.
  • Argon was sprayed as an assist gas simultaneously with the laser irradiation so that the molten material generated from the steel sheet during the laser irradiation would not reattach to the steel sheet, and a suction duct was installed at a position opposite to the assist gas outlet to collect dust caused by the molten material generated by the laser irradiation.
  • This laser irradiation formed linear grooves on the surface, with a cross-sectional projection shape of approximately a triangle and a width and depth shown in the table. The grooves extended in the direction shown in the table, and each groove was formed parallel to the rolling direction and periodically at intervals shown in the table in the rolling direction.
  • the surface of the cold-rolled sheet on which the grooves were formed was ground while flowing ion-exchanged water having a pH of 4.0 to 6.0, and the surface was ground under the conditions shown in Table 2.
  • the steel sheet was brought into contact with ion-exchanged water having a pH of 4.0 to 6.0.
  • the contact time was 5 seconds, and the flow rate of the aqueous liquid was 10 L/min.
  • Example 2 Thereafter, under the same conditions as in Example 1, decarburization annealing, nitriding treatment, application of an annealing separator containing MgO as a main component, and finish annealing were performed. After the final annealing, the annealing separator was removed by rinsing with water, and as a result, a glass film (oxide layer) was formed on the surface of the steel sheet.
  • a chemical solution containing insulating coating components consisting of aluminum phosphate, colloidal silica, and chromic anhydride was applied to the silicon steel plate having the glass coating, and the insulating coating was baked by heating to 800°C in a nitrogen atmosphere and holding for 30 seconds. At this time, the amount of the insulating coating layer attached was 5.0 g/ m2 per side.
  • the oxides in a range of 10 ⁇ m from the interface with the oxide layer in the plate thickness direction and the flat crystal grains were evaluated in the same manner as in Example 1. In this example, the flat crystal grains in the grooves were also evaluated.
  • the present invention provides a grain-oriented electrical steel sheet with excellent magnetic properties and a manufacturing method thereof. Therefore, it has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

This grain-oriented electrical steel sheet has a silicon steel sheet, an oxide layer that is formed on a surface of the silicon steel sheet and comprises an oxide or oxides of one or more of Mg, Al, and Si, and an insulating film layer that is formed on the surface of the oxide layer. In the silicon steel sheet, in a range that is 10 μm in the sheet thickness direction from the interface between the silicon steel sheet and the oxide layer, instances of the oxide or oxides of one or more of Mg, Al, and Si with an equivalent circle diameter of 0.1-3.0 μm are present at a density of 0.010-0.200 instances/μm2. On the surface side of the silicon steel sheet, there are flat crystal grains that have an average thickness of 0.5-5.0 μm in the direction normal to the surface, have an aspect ratio of 1.5 or greater, said aspect ratio being the ratio of the grain width in a direction parallel to the surface to the average thickness, and have crystal orientations deviating by 10° or more from the Goss orientation. In a cross-section in the sheet thickness direction, the length of the grain boundaries of the flat crystal grains accounts for 70% or more of the length of the interface between the silicon steel sheet and the oxide layer.

Description

方向性電磁鋼板及びその製造方法Grain-oriented electrical steel sheet and its manufacturing method
 本発明は方向性電磁鋼板及びその製造方法に関する。
 本願は、2022年11月22日に、日本に出願された特願2022-186165号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a grain-oriented electrical steel sheet and a manufacturing method thereof.
This application claims priority based on Japanese Patent Application No. 2022-186165, filed on November 22, 2022, the contents of which are incorporated herein by reference.
 方向性電磁鋼板は、軟磁性材料であり、主に、変圧器の鉄心材料として用いられる。方向性電磁鋼板は、例えばSiを2.00~6.00%含有し製品の結晶方位を{110}<001>方位に高度に集積させた鋼板である。その磁気特性として、B8値で代表される磁束密度が高いこと、及び、W17/50で代表される鉄損が低いことが要求される。特に、最近では省エネルギーの観点から変圧器の電力損失の低減に対する要求が高まっており、方向性電磁鋼板の鉄損低減の要求は高まっている。 Grain-oriented electrical steel sheet is a soft magnetic material that is primarily used as a transformer core material. Grain-oriented electrical steel sheet is a steel sheet that contains, for example, 2.00-6.00% Si, and the crystal orientation of the product is highly concentrated in the {110}<001> orientation. Its magnetic properties require high magnetic flux density, as represented by the B8 value, and low iron loss, as represented by W17/50. In particular, there has been a growing demand in recent years for reduced power loss in transformers from the perspective of energy conservation, and there is an increasing demand for reduced iron loss in grain-oriented electrical steel sheet.
 この要求に応え、方向性電磁鋼板の鉄損を低減させる手段として、鋼板内に存在する磁区幅を小さくする、いわゆる磁区細分化技術が開発された。以下、このような技術、すなわち磁区細分化する技術を「磁区制御技術」と称し、磁区制御技術による効果を「磁区制御効果」とも称する場合がある。
 例えば、仕上焼鈍後の方向性電磁鋼板の表面にレーザービームを照射することにより、磁区を細分化(磁区幅を小さく)して渦電流損を低減し、結果鉄損を低減させる方法が、特許文献1に開示されている。しかしながら、該方法による鉄損の低減はレーザ照射により鋼板に導入された主に熱歪に起因する磁区細分化現象を利用しており、変圧器用鉄心を成形した後に歪取り焼鈍を必要とする巻鉄心用途として使用することができない。
In response to this demand, a so-called magnetic domain refining technique has been developed to reduce the magnetic domain width in the steel sheet as a means of reducing the iron loss of grain-oriented electrical steel sheet. Hereinafter, this technique, i.e., the technique of refining magnetic domains, will be referred to as "magnetic domain control technique," and the effect of magnetic domain control technique will also be referred to as "magnetic domain control effect."
For example, Patent Document 1 discloses a method of irradiating the surface of a grain-oriented electrical steel sheet after finish annealing with a laser beam to subdivide magnetic domains (reduce the magnetic domain width) and reduce eddy current loss, thereby reducing iron loss. However, the reduction in iron loss by this method utilizes the magnetic domain subdivision phenomenon caused mainly by thermal distortion introduced into the steel sheet by laser irradiation, and the method cannot be used for wound core applications that require stress relief annealing after forming the transformer core.
 中小型変圧器に主に用いられることの多い巻鉄心は、機械的な曲げ加工による鉄心製造方法により製造されることが多い。この製造方法では、曲げ加工により鋼板に導入された加工歪による鉄損増加を解消するため、鉄心形状を機械加工により作成後、歪取り焼鈍(例えば800℃で2~4時間程度)が一般的に行われる。このような歪取り焼鈍により、鉄心に導入された機械加工による歪は減少・消失するものの、前記のレーザ照射により磁区制御がなされた鋼板は磁区細分化のために導入した熱歪が消失してしまう。このため、レーザ照射に代表される熱歪の導入により磁区細分化された方向性電磁鋼板は、一般的に巻鉄心には適用できないとされている。 Wound cores, which are often used primarily in small and medium-sized transformers, are often manufactured using a core manufacturing method that involves mechanical bending. In this manufacturing method, in order to eliminate the increase in iron loss caused by processing distortion introduced into the steel sheet by bending, stress relief annealing (for example, at 800°C for 2-4 hours) is generally performed after the core shape is machined. Although such stress relief annealing reduces or eliminates the distortion introduced into the core by the machining process, the thermal distortion introduced for magnetic domain refinement disappears in steel sheets that have been subjected to magnetic domain control by the aforementioned laser irradiation. For this reason, grain-oriented electrical steel sheets that have been subjected to magnetic domain refinement by the introduction of thermal distortion, as typified by laser irradiation, are generally considered not applicable to wound cores.
 上記のような歪取り焼鈍を施しても磁区制御効果が失われない磁区制御技術としては、圧延方向と交差する方向に周期的に線状の溝を形成する「溝導入型磁区制御技術」が広く知られている。このような溝導入型磁区制御技術としては、機械加工による溝形成技術、エッチングによる溝形成技術、レーザ照射による溝形成技術等が知られている。例えば特許文献2にはレーザ照射による溝形成技術が開示されている。しかしながら、これらの溝形成方法のみでは、近年ますます高まってきている鉄損低減要求には十分に応えられていない。 A widely known magnetic domain control technology that does not lose its magnetic domain control effect even when the above-mentioned strain relief annealing is performed is the "groove-introducing magnetic domain control technology" that forms linear grooves periodically in a direction intersecting the rolling direction. Such groove-introducing magnetic domain control technologies include groove formation technology by machining, groove formation technology by etching, and groove formation technology by laser irradiation. For example, Patent Document 2 discloses a groove formation technology by laser irradiation. However, these groove formation methods alone are not sufficient to meet the increasing demand for iron loss reduction in recent years.
 また、その他の方法で鉄損を低減させる技術として、特許文献3には、脱炭焼鈍の前に鋼板表面に鋭利でかつ微細な凹凸を形成して該表面を活性化し、脱炭焼鈍後の時点でシリカに富んだ酸化層を形成する技術が開示されている。
 また、特許文献4には、皮膜特性と磁気特性の向上のため、表面にMg、Si、Alを主とする酸化物からなる焼鈍皮膜を有し、皮膜と鋼板の境界より3μm以内の鋼板部分、あるいは、皮膜と鋼板結晶粒の混在領域における鋼板結晶粒の結晶方位分布において、Goss方位からの偏差角度が10度以内の結晶方位粒の存在割合を50%以下とする技術が開示されている。
As another technique for reducing iron loss, Patent Document 3 discloses a technique in which sharp and fine irregularities are formed on the surface of a steel sheet before decarburization annealing to activate the surface, and an oxide layer rich in silica is formed after decarburization annealing.
Furthermore, Patent Document 4 discloses a technology in which, in order to improve film properties and magnetic properties, an annealed film made of oxides mainly containing Mg, Si, and Al is provided on the surface, and the proportion of crystal orientation grains having a deviation angle of 10 degrees or less from the Goss orientation is set to 50% or less in the crystal orientation distribution of steel sheet crystal grains in a steel sheet portion within 3 μm of the boundary between the film and the steel sheet, or in a mixed region of the film and steel sheet crystal grains.
 しかしながら、これらの方法でも、近年ますます高まってきている鉄損低減要求には十分に応えられていない。 However, these methods are not sufficient to meet the increasing demand for reducing iron loss in recent years.
日本国特開昭56-51522号公報Japanese Patent Publication No. 56-51522 日本国特開2005-59014号公報Japanese Patent Publication No. 2005-59014 日本国特開昭62-151522号公報Japanese Patent Publication No. 62-151522 日本国特開2003-27194号公報Japanese Patent Publication No. 2003-27194
 上述の通り、磁束密度の向上、かつその向上代に見合った鉄損低減効果を得ることは検討されているが、近年ますます高まってきている要求に対しては十分とは言えなかった。特に、鉄心加工時に歪取り焼鈍を施され製造される巻鉄心への適用に好適な方向性電磁鋼板(GO)において、磁束密度の向上、かつその向上代に見合った鉄損低減効果は十分に得られていなかった。
 そのため、本発明は、優れた磁気特性(高い磁束密度とその磁束密度に見合った低い鉄損)を有する方向性電磁鋼板及びその製造方法を提供することを課題とする。好ましくは、巻鉄心などの歪取り焼鈍が施される鉄心への適用を想定し、非耐熱磁区制御(前述の鋼板表面へのレーザ照射により鋼板に熱歪を導入し磁区制御を図るもの)によることなく製造される方向性電磁鋼板であって、優れた磁気特性(高い磁束密度とその磁束密度に見合った低い鉄損)を有する方向性電磁鋼板及びその製造方法を提供することを課題とする。
As described above, studies have been conducted on improving magnetic flux density and achieving a corresponding reduction in iron loss, but these efforts have not been sufficient to meet the increasingly high demands of recent years. In particular, in grain-oriented electrical steel sheets (GO) suitable for use in wound cores that are manufactured by performing stress relief annealing during core processing, it has not been possible to achieve a sufficient improvement in magnetic flux density and a corresponding reduction in iron loss.
Therefore, an object of the present invention is to provide a grain-oriented electrical steel sheet having excellent magnetic properties (high magnetic flux density and low core loss commensurate with the magnetic flux density) and a manufacturing method thereof. Preferably, the object of the present invention is to provide a grain-oriented electrical steel sheet that is manufactured without non-heat-resistant magnetic domain control (the aforementioned method of controlling magnetic domains by introducing thermal strain into the steel sheet through laser irradiation of the steel sheet surface) and that has excellent magnetic properties (high magnetic flux density and low core loss commensurate with the magnetic flux density) and a manufacturing method thereof, assuming application to iron cores that are subjected to stress relief annealing, such as wound cores.
 本発明者らは、巻鉄心への適用に好適な方向性電磁鋼板の磁気特性の改善、すなわち磁束密度の向上および鉄損低減について検討を行った。その結果、方向性電磁鋼板が備える珪素鋼板(母材鋼板)の表面近傍にMg、Al、Siの1種以上の酸化物が所定の密度で存在し、さらに、珪素鋼板の表面側において、扁平かつ結晶方位がGoss方位({110}<001>方位)からのずれ角が10°以上である結晶粒を形成させることで、エネルギー的に180°磁区幅を小さい状態に制御でき、結果として、渦電流損を低減できかつ鉄損を低減できることが分かった。 The inventors have investigated how to improve the magnetic properties of grain-oriented electrical steel sheets suitable for use in wound cores, i.e., how to increase magnetic flux density and reduce iron loss. As a result, they have found that by having one or more oxides of Mg, Al, and Si present at a predetermined density near the surface of the silicon steel sheet (base steel sheet) that the grain-oriented electrical steel sheet comprises, and by forming flat crystal grains on the surface side of the silicon steel sheet whose crystal orientation deviates by 10° or more from the Goss orientation ({110}<001> orientation), it is possible to energetically control the 180° magnetic domain width to a small state, and as a result, it is possible to reduce eddy current loss and iron loss.
 また、本発明者らは、製造条件の影響について検討を行った。その結果、以下に点について知見を得た。
 すなわち、方向性電磁鋼板において高度な磁気特性を発現させるGoss方位は、その製造工程の仕上焼鈍工程において、インヒビターと呼ばれるAlNやMnSなどを結晶粒界に析出物として存在させ、その析出物のピン止め効果を活用した、「二次再結晶」と呼ばれる異常粒成長現象によって高度に集積される。鋼板内にGoss方位の集積が終了、すなわち鋼板面内がほぼGoss方位粒で覆いつくされた後、役割を終えたインヒビターは仕上焼鈍工程の後半の昇温により分解、酸化され鋼板内から除去される。すなわち、鋼板内にGoss方位が十分集積する前にインヒビターの分解・酸化が生じることは好ましくない。さらに、インヒビターについてより高温まで分解・酸化を抑制することで、より高度にGoss方位を集積、すなわち、より理想Goss方位に近い結晶を集積させることが可能である。そのためインヒビターの役割を果たす析出物の耐熱性を高める手法が用いられる。
 本発明者らは、インヒビターの耐熱性を高める手法として、方向性電磁鋼板の製造において通常行われる脱炭焼鈍工程において、後の仕上焼鈍時にインヒビターの分解・酸化を抑制できる酸化物を鋼板表面に存在せしめることが有効であることを見出した。さらに、前記のインヒビターの分解・酸化を抑制できる酸化物を仕上焼鈍前の脱炭焼鈍工程を利用し鋼板表面に存在せしめることにより、扁平かつ結晶方位のGoss方位からのずれが10°以上である結晶粒を鋼板表面の酸化物と鋼板との界面付近に生成させることができ、この扁平結晶粒が磁気特性の改善に寄与することを見出した。
 また、本発明者らは、磁気特性改善のためにより好ましい扁平結晶粒を生成させるには、脱炭焼鈍工程において酸化物粒子を母材鋼板となる冷延板の表面側により密に厚くかつ均一に形成させることが有効であること、酸化物粒子を密に厚くかつ均一に形成させるためには、脱炭焼鈍工程前に、脱炭焼鈍時に鋼板表面の均一な酸化を阻害する鋼板の表面との反応物を除去するために、所定の条件で冷延板を研削することが有効であることを見出した。
The present inventors also investigated the influence of production conditions, and as a result, obtained the following findings.
That is, the Goss orientation, which develops high magnetic properties in grain-oriented electrical steel sheets, is highly accumulated by the abnormal grain growth phenomenon called "secondary recrystallization" that utilizes the pinning effect of the precipitates, which are called inhibitors, and are precipitated at the grain boundaries in the final annealing process of the manufacturing process. After the accumulation of the Goss orientation in the steel sheet is completed, that is, after the steel sheet surface is almost completely covered with Goss orientation grains, the inhibitor that has completed its role is decomposed and oxidized by the temperature rise in the latter half of the final annealing process and removed from the steel sheet. That is, it is not preferable that the decomposition and oxidation of the inhibitor occur before the Goss orientation is sufficiently accumulated in the steel sheet. Furthermore, by suppressing the decomposition and oxidation of the inhibitor to a higher temperature, it is possible to accumulate the Goss orientation to a higher degree, that is, to accumulate crystals closer to the ideal Goss orientation. Therefore, a method is used to increase the heat resistance of the precipitates that act as inhibitors.
The present inventors have found that, as a method for enhancing the heat resistance of the inhibitor, it is effective to make oxides capable of suppressing the decomposition and oxidation of the inhibitor present on the surface of the steel sheet during the decarburization annealing process normally performed in the manufacture of grain-oriented electrical steel sheets, which can be performed during the subsequent finish annealing. Furthermore, they have found that by making oxides capable of suppressing the decomposition and oxidation of the inhibitor present on the surface of the steel sheet by utilizing the decarburization annealing process before the finish annealing, it is possible to generate flat crystal grains whose crystal orientation is deviated from the Goss orientation by 10° or more near the interface between the oxides on the surface of the steel sheet and the steel sheet, and that these flat crystal grains contribute to improving the magnetic properties.
The inventors also discovered that in order to generate more preferable flat crystal grains for improving magnetic properties, it is effective to form oxide particles more densely, thickly and uniformly on the surface side of the cold-rolled sheet that becomes the base steel sheet in the decarburization annealing process, and that in order to form oxide particles more densely, thickly and uniformly, it is effective to grind the cold-rolled sheet under specified conditions before the decarburization annealing process in order to remove reaction products with the surface of the steel sheet that inhibit uniform oxidation of the steel sheet surface during decarburization annealing.
 また、上記の鋼板は、所定の条件下で溝導入型磁区制御技術と組み合わせることで、さらに鉄損の低減を図れることを見出した。 In addition, they discovered that by combining the above steel sheet with groove-type magnetic domain control technology under certain conditions, they could further reduce iron loss.
 本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る方向性電磁鋼板は、珪素鋼板と、前記珪素鋼板の表面に形成された、Mg、Al、及びSiの1種以上の酸化物からなる酸化物層と、前記酸化物層の表面に形成された絶縁被膜層と、を有し、前記珪素鋼板の、前記珪素鋼板と前記酸化物層との界面から板厚方向に10μmの範囲に、円相当径で0.1~3.0μmである、Mg、Al、Siの1種以上の酸化物が、0.010~0.200個/μmの密度で存在し、前記珪素鋼板の表面側に、前記表面に垂直な方向の平均厚みが0.5~5.0μm、前記平均厚みに対する前記表面に平行な方向の粒幅の比であるアスペクト比が1.5以上、かつ、結晶方位のGoss方位からのずれが10°以上である、扁平結晶粒が存在し、前記板厚方向の断面において、前記珪素鋼板と前記酸化物層との前記界面の長さに占める、前記扁平結晶粒の粒界の長さが、70%以上である。
[2][1]に記載の方向性電磁鋼板は、前記扁平結晶粒の前記平均厚みの平均が2.0μm超5.0μm以下であってもよい。
[3][1]または[2]に記載の方向性電磁鋼板は、前記界面を構成する前記扁平結晶粒の表面において、前記酸化物層の被覆率が50%以上であってもよい。
[4][1]または[2]に記載の方向性電磁鋼板は、前記珪素鋼板に、深さが10~30μmで、圧延方向に対して80~100°の方向に延在する溝が、複数存在し、隣り合う前記溝の前記圧延方向の間隔が、1.0~20.0mmであってもよい。
[5][3]に記載の方向性電磁鋼板は、前記珪素鋼板に、深さが10~30μmで、圧延方向に対して80~100°の方向に延在する溝が、複数存在し、隣り合う前記溝の前記圧延方向の間隔が、1.0~20.0mmであってもよい。
[6][4]に記載の方向性電磁鋼板は、前記珪素鋼板の前記溝の表面側に、前記溝の前記表面に垂直な方向の平均径が0.5~5.0μm、前記平均径に対する前記表面に平行な方向の粒幅の比であるアスペクト比が2.0以上、かつ、結晶方位のGoss方位からのずれが10°以上である、溝内扁平結晶粒が存在し前記溝の延在方向に垂直な前記板厚方向の断面において、前記溝の内面の長さに占める、前記溝内扁平結晶粒の粒界の長さが、70%以上であってもよい。
[7][5]に記載の方向性電磁鋼板は、前記珪素鋼板の前記溝の表面側に、前記溝の前記表面に垂直な方向の平均径が0.5~5.0μm、前記平均径に対する前記表面に平行な方向の粒幅の比であるアスペクト比が2.0以上、かつ、結晶方位のGoss方位からのずれが10°以上である、溝内扁平結晶粒が存在し前記溝の延在方向に垂直な前記板厚方向の断面において、前記溝の内面の長さに占める、前記溝内扁平結晶粒の粒界の長さが、70%以上であってもよい。
[8][6]に記載の方向性電磁鋼板は、前記溝内扁平結晶粒の前記平均径の平均が、2.0μm超5.0μm以下であってもよい。
[9][7]に記載の方向性電磁鋼板は、前記溝内扁平結晶粒の前記平均径の平均が、2.0μm超5.0μm以下であってもよい。
[10]本発明の別の態様に係る方向性電磁鋼板の製造方法は、スラブを、加熱して熱間圧延して熱延板とする熱間圧延工程と、前記熱間圧延工程後の前記熱延板を焼鈍する熱延板焼鈍工程と、前記熱延板焼鈍工程後の前記熱延板を酸洗する酸洗工程と、前記酸洗工程後の前記熱延板を、冷間圧延して冷延板とする冷間圧延工程と、前記冷間圧延工程後の前記冷延板の表面を研削する研削工程と、前記研削工程後の前記冷延板を、pH4.0~10.0の水性液に接触させる、接触工程と、前記接触工程後の前記冷延板に、脱炭焼鈍を行う脱炭焼鈍工程と、前記脱炭焼鈍工程後の前記冷延板に焼鈍分離剤を塗布し、仕上焼鈍し、母材鋼板となる前記冷延板の表面にMg、Al、及びSiの1種以上の酸化物からなる酸化物層を形成する仕上焼鈍工程と、前記仕上焼鈍工程後の前記酸化物層の表面に、絶縁被膜層を形成する絶縁被膜形成工程と、を備え、前記研削工程では、ヌープ硬度が1000以上かつ最大粒子径が50μmを超え500μm以下の砥粒、あるいは前記砥粒が固定された研磨紙、ロールまたはブラシを用いて、1.0~5.0mmの圧下量かつ500mpm以上の研削速度で研削を行い、前記冷延板の研削量を、少なくとも一方の表面において、0.10~10.0g/mとする。
[11][10]に記載の方向性電磁鋼板の製造方法は、前記研削工程の前に、さらに、前記冷延板に、圧延方向に対して80~100°の角度をなす方向に延在する、深さが10~30μmの溝を、前記圧延方向の間隔がそれぞれ1.0~20mmとなるように複数形成する、溝形成工程を備えてもよい。
[12][11]に記載の方向性電磁鋼板の製造方法は、前記溝形成工程において、前記冷延板の表面にレーザを照射し、鋼板表面の一部を溶融させるとともに、溶融物を表面から除去することにより、前記溝を形成してもよい。
The present invention has been made in view of the above findings.
[1] A grain-oriented electrical steel sheet according to one embodiment of the present invention comprises a silicon steel sheet, an oxide layer formed on the surface of the silicon steel sheet and made of one or more oxides of Mg, Al, and Si, and an insulating coating layer formed on the surface of the oxide layer, wherein the silicon steel sheet has an oxide of one or more oxides of Mg, Al, and Si with a circle equivalent diameter of 0.1 to 3.0 μm within a range of 10 μm from an interface between the silicon steel sheet and the oxide layer in the sheet thickness direction, and the oxide of one or more oxides of Mg, Al, and Si is present at a density of 0.010 to 0.200 particles/μm. and a density of 2.2 , and flat crystal grains are present on a surface side of the silicon steel sheet, the flat crystal grains having an average thickness in a direction perpendicular to the surface of 0.5 to 5.0 μm, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average thickness of 1.5 or more, and a crystal orientation that deviates from the Goss orientation by 10° or more, and in the cross section in the sheet thickness direction, a length of the grain boundary of the flat crystal grains accounts for 70% or more of the length of the interface between the silicon steel sheet and the oxide layer.
[2] In the grain-oriented electrical steel sheet according to [1], the average thickness of the flat crystal grains may be more than 2.0 μm and not more than 5.0 μm.
[3] In the grain-oriented electrical steel sheet according to [1] or [2], the coverage of the oxide layer on the surfaces of the flat crystal grains constituting the interfaces may be 50% or more.
[4] In the grain-oriented electrical steel sheet according to [1] or [2], the silicon steel sheet may have a plurality of grooves having a depth of 10 to 30 μm and extending in a direction at an angle of 80 to 100° to the rolling direction, and the distance between adjacent grooves in the rolling direction may be 1.0 to 20.0 mm.
[5] The grain-oriented electrical steel sheet according to [3] may have a plurality of grooves in the silicon steel sheet, each groove having a depth of 10 to 30 μm and extending in a direction at an angle of 80 to 100° to the rolling direction, and the distance between adjacent grooves in the rolling direction may be 1.0 to 20.0 mm.
[6] The grain-oriented electrical steel sheet according to [4] may have flat grains on the surface side of the grooves of the silicon steel sheet, the flat grains having an average diameter of 0.5 to 5.0 μm in a direction perpendicular to the surface of the grooves, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average diameter of 2.0 or more, and a crystal orientation which deviates from the Goss orientation by 10° or more, and in a cross section in the sheet thickness direction perpendicular to the extension direction of the grooves, the length of the grain boundaries of the flat grains in the grooves accounts for 70% or more of the length of the inner surface of the grooves.
[7] The grain-oriented electrical steel sheet according to [5] may have flat grains on the surface side of the groove of the silicon steel sheet, the flat grains having an average diameter of 0.5 to 5.0 μm in a direction perpendicular to the surface of the groove, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average diameter of 2.0 or more, and a crystal orientation which deviates from the Goss orientation by 10° or more, and in a cross section in the sheet thickness direction perpendicular to the extension direction of the groove, the length of the grain boundary of the flat grains in the groove accounts for 70% or more of the length of the inner surface of the groove.
[8] In the grain-oriented electrical steel sheet according to [6], the average of the average diameter of the flat crystal grains in the grooves may be more than 2.0 μm and not more than 5.0 μm.
[9] In the grain-oriented electrical steel sheet according to [7], the average of the average diameter of the flat crystal grains in the grooves may be more than 2.0 μm and not more than 5.0 μm.
[10] A method for producing a grain-oriented electrical steel sheet according to another aspect of the present invention includes a hot rolling process of heating and hot rolling a slab to obtain a hot-rolled sheet, a hot-rolled sheet annealing process of annealing the hot-rolled sheet after the hot rolling process, a pickling process of pickling the hot-rolled sheet after the hot-rolled sheet annealing process, a cold rolling process of cold-rolling the hot-rolled sheet after the pickling process to obtain a cold-rolled sheet, a grinding process of grinding a surface of the cold-rolled sheet after the cold rolling process, a contacting process of contacting the cold-rolled sheet after the grinding process with an aqueous liquid having a pH of 4.0 to 10.0, a decarburization annealing process of performing decarburization annealing on the cold-rolled sheet after the contacting process, and a sintering process of the cold-rolled sheet after the decarburization annealing process. The method includes a finish annealing process in which a annealing separator is applied to the surface of the cold-rolled sheet which becomes a base steel sheet, and the surface is finish annealed to form an oxide layer made of one or more oxides of Mg, Al, and Si; and an insulating coating forming process in which an insulating coating layer is formed on the surface of the oxide layer after the finish annealing process. In the grinding process, grinding is performed with a reduction amount of 1.0 to 5.0 mm and a grinding speed of 500 mpm or more using abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size of more than 50 μm and not more than 500 μm, or abrasive paper, roll, or brush to which the abrasive grains are fixed, and the grinding amount of the cold-rolled sheet is 0.10 to 10.0 g/m 2 on at least one surface.
[11] The method for producing a grain-oriented electrical steel sheet according to [10] may further include, prior to the grinding step, a groove forming step of forming, in the cold-rolled sheet, a plurality of grooves having a depth of 10 to 30 μm, extending in a direction forming an angle of 80 to 100° with respect to the rolling direction, at intervals of 1.0 to 20 mm in the rolling direction.
[12] In the method for manufacturing a grain-oriented electrical steel sheet according to [11], in the groove forming step, the groove may be formed by irradiating a laser onto a surface of the cold-rolled sheet to melt a part of the steel sheet surface and removing the molten material from the surface.
 本発明の上記態様によれば、優れた磁気特性を有する方向性電磁鋼板及びその製造方法を提供することができる。 The above aspect of the present invention makes it possible to provide a grain-oriented electrical steel sheet with excellent magnetic properties and a method for manufacturing the same.
本実施形態に係る方向性電磁鋼板の断面の模式図である。1 is a schematic diagram of a cross section of a grain-oriented electrical steel sheet according to an embodiment of the present invention. FIG. 溝が形成された場合の、本実施形態に係る方向性電磁鋼板の断面の模式図である。FIG. 2 is a schematic diagram of a cross section of the grain-oriented electrical steel sheet according to the present embodiment when a groove is formed. 結晶粒の平均厚み、アスペクト比を測定する方法を説明する図である。FIG. 2 is a diagram for explaining a method for measuring the average thickness and aspect ratio of crystal grains. 扁平結晶粒における、酸化物層の被覆率の測定方法を説明する図である。FIG. 2 is a diagram illustrating a method for measuring the coverage of an oxide layer on a flat crystal grain.
 以下、本発明の一実施形態に係る方向性電磁鋼板(本実施形態に係る方向性電磁鋼板)及びその製造方法について説明する。 The following describes a grain-oriented electromagnetic steel sheet according to one embodiment of the present invention (grain-oriented electromagnetic steel sheet according to this embodiment) and its manufacturing method.
<方向性電磁鋼板>
 図1に示すように、本実施形態に係る方向性電磁鋼板1は、珪素鋼板11(以下母材鋼板、または単に鋼板と言う場合がある)と、前記珪素鋼板11の表面に形成された、Mg、Al、及びSiの1種以上の酸化物からなる酸化物層21と、前記酸化物層21の表面に形成された絶縁被膜層31とを有する。
 酸化物層21及び絶縁被膜層31は、鋼板の片面のみに形成されていてもよいが、両面に形成されていた方が絶縁性等の観点で好ましい。
 以下それぞれについて説明する。
<Grain-oriented electrical steel sheet>
As shown in FIG. 1 , the grain-oriented electrical steel sheet 1 according to this embodiment has a silicon steel sheet 11 (hereinafter sometimes referred to as a base steel sheet or simply as a steel sheet), an oxide layer 21 formed on the surface of the silicon steel sheet 11 and made of one or more oxides of Mg, Al, and Si, and an insulating coating layer 31 formed on the surface of the oxide layer 21.
The oxide layer 21 and the insulating coating layer 31 may be formed on only one side of the steel sheet, but it is preferable from the viewpoint of insulation properties and the like that they be formed on both sides.
Each of these will be explained below.
[珪素鋼板]
(珪素鋼板と酸化物層との界面から板厚方向に10μmの範囲に、円相当径で0.1~3.0μmである、Mg、Al、Siの1種以上の酸化物が、0.010~0.200個/μmの密度で存在する)
 方向性電磁鋼板では、仕上焼鈍時にインヒビター(AlN等の結晶粒界に存在する析出物)の分解、酸化を抑制し高温まで存在せしめることで、二次再結晶時に高度にGoss方位を集積、すなわちより理想Goss方位に近い結晶を集積させることが可能となり磁束密度を向上させることができるので、鉄損低減を図ることができる。
 インヒビターとなる析出物のサイズは円相当径にて数10nm~約100nmと非常に小さい。またそのサイズには分布がある。サイズに分布がある場合、サイズの小さいインヒビターは低温で分解・酸化が完了し、インヒビターとして効果が失活する。その場合、理想Goss方位により近いGoss方位の二次再結晶が困難となり、磁束密度を向上させることが難しい。一方、インヒビターのサイズ分布を一定に(サイズの差が少なくなるように)制御すれば前記課題は解消するが工業的には極めて困難である。
 これに対し、インヒビターのサイズ分布が生じた状態でも何かしらの方法で分解・酸化を抑制しインヒビターを高温まで存在せしめることができれば、理想Goss方位により近い結晶粒の二次再結晶を生じさせることができる。また、インヒビターの分解・酸化の抑制には、耐熱性の高いインヒビターを使用する方法がある。一方インヒビターの成分などに変更を加えず達成する方法として脱炭焼鈍工程にて鋼板表面上あるいは鋼板の表層部(鋼中)に形成されるSiの酸化物粒子(以下Si系プレ酸化物という場合がある)が寄与することが知られている。その機構は推測となるが、インヒビターの酸化は仕上焼鈍雰囲気に含まれる微量の酸素が鋼板表面でAlNなどを酸化させることで生じるが、上記のSi系プレ酸化物がその酸化を防止・軽減するためと考えられる。
 しかしながら、このSi系プレ酸化物は珪素鋼板の表面の各部位での形成状態が不均一になりやすい。形成状態が不均一であると、鋼板面内の場所によってインヒビターの分解・酸化の抑制効果にばらつきが生じ、目的の効果が十分に得られない。
[Silicon steel sheet]
(One or more oxides of Mg, Al, and Si, each having a circle equivalent diameter of 0.1 to 3.0 μm, are present at a density of 0.010 to 0.200 pieces/ μm2 within a range of 10 μm in the plate thickness direction from the interface between the silicon steel plate and the oxide layer.)
In grain-oriented electrical steel sheets, by suppressing the decomposition and oxidation of inhibitors (precipitates present at grain boundaries, such as AlN) during final annealing and allowing them to exist up to high temperatures, it becomes possible to accumulate a high degree of Goss orientation during secondary recrystallization, in other words, to accumulate crystals closer to the ideal Goss orientation, thereby improving magnetic flux density and reducing iron loss.
The size of the precipitates that become inhibitors is very small, ranging from several tens of nm to about 100 nm in circle equivalent diameter. There is also a size distribution. When there is a size distribution, the decomposition and oxidation of small-sized inhibitors is completed at low temperatures, and the inhibitor effect is lost. In that case, secondary recrystallization in the Goss orientation closer to the ideal Goss orientation becomes difficult, and it is difficult to improve the magnetic flux density. On the other hand, the above problem can be solved by controlling the size distribution of the inhibitors to a constant value (so that the size difference is small), but this is extremely difficult industrially.
On the other hand, if the inhibitor can be made to exist up to high temperatures by suppressing decomposition and oxidation by some method even in a state where the size distribution of the inhibitor occurs, secondary recrystallization of crystal grains closer to the ideal Goss orientation can be caused. In addition, a method of using a highly heat-resistant inhibitor can be used to suppress the decomposition and oxidation of the inhibitor. On the other hand, as a method of achieving this without changing the components of the inhibitor, it is known that oxide particles of Si (hereinafter sometimes referred to as Si-based pre-oxides) formed on the steel sheet surface or in the surface layer of the steel sheet (in the steel) in the decarburization annealing process contribute. Although the mechanism is speculation, it is thought that the oxidation of the inhibitor occurs when a small amount of oxygen contained in the finish annealing atmosphere oxidizes AlN and the like on the steel sheet surface, and that the above-mentioned Si-based pre-oxides prevent and reduce the oxidation.
However, the Si-based pre-oxides tend to be formed unevenly at various locations on the surface of the silicon steel sheet, and if the formation is uneven, the inhibitor's effect of suppressing decomposition and oxidation varies depending on the location on the steel sheet surface, making it difficult to obtain the intended effect.
 本発明者らは、表面の各部位で仕上焼鈍後の酸化物層の形成状態が不均一になる原因を調査した。その結果、脱炭焼鈍前の珪素鋼板(冷延板)の表面にはFe系酸化物や、冷間圧延時に使用される圧延油に含まれる油性剤あるいは極圧添加剤などと鋼板の表面金属との反応物が、鋼板表面に不均一に存在しており、これらのFe系酸化物や反応物が、脱炭焼鈍時にSi系プレ酸化物が表面から一定の厚み領域に密に厚くかつ均一に形成されることを阻害していることを見出した。
 本発明者らは、冷間圧延時に前記のFe系酸化膜や反応物を均一にすることは困難であるため、それらSi系プレ酸化物の形成阻害因子を無害化する検討を行った。その結果、後述するように、脱炭焼鈍工程前の冷延板の表面(少なくとも一方の面)を、砥粒、あるいは砥粒が固定された研磨紙、ロールまたはブラシを用いて、一定に研削して清浄な金属面を露出させその直後に水性液に接触させるにすることで、鋼板の表面からSi系プレ酸化物の形成阻害因子となるFe系酸化物や反応物を除去でき、脱炭焼鈍工程後にSi系プレ酸化物を鋼板の表面から一定の厚みの領域に、所定の個数密度で形成することができることを見出した。
 これらの知見に基づいて、本実施形態に係る方向性電磁鋼板では、図1に示すように、鋼板(珪素鋼板)11と酸化物層21との界面から板厚方向に10μmの範囲に、Si系プレ酸化物が仕上焼鈍等の工程にてインヒビターの酸化、または焼鈍分離剤との固相反応により変化した酸化物である、Mg、Al、Siの1種以上の酸化物であってかつ円相当径で0.1~3.0μmの酸化物101(酸化物粒子)が、0.010~0.200個/μmの密度で存在する。この酸化物101は、Mg、Al、Siの1種以上の酸化物(複合酸化物を含む)であればよいが、後述する製造条件を前提とした場合には、スピネル(MgAl)、アルミナ(Al)、ムライト(2SiO・3Al)などのMg、Al及びSiを含む酸化物であることが多い。
 酸化物101の個数密度が小さすぎると、酸化物層21の鋼板への密着性が悪くなり、後述する扁平結晶粒102の形成が不均一となる。一方、酸化物101の個数密度が大きすぎると鋼板11の金属部分が占める部分が少なくなるため磁束密度が低下する。また、扁平結晶粒102の割合も相対的に小さくなるので鉄損低減の効果が得られにくい。
 酸化物101が所定の領域に均一に形成されることで、仕上焼鈍においてインヒビターの分解・酸化の抑制効果について、場所ごとのばらつきが低減され、方向性電磁鋼板1において、磁束密度が向上する。また、適切に扁平結晶粒102を形成させることで180°磁区幅が小さくなり、磁束密度に相応した鉄損低減効果が得られる。
 形成の過程を考慮すると、上記酸化物101は後述する扁平結晶粒102中に存在することが多い。
The present inventors have investigated the cause of the non-uniform formation of the oxide layer at each site on the surface after finish annealing, and have found that Fe-based oxides and reaction products between the surface metal of the steel sheet and oiliness agents or extreme pressure additives contained in the rolling oil used during cold rolling are present non-uniformly on the surface of the silicon steel sheet (cold-rolled sheet) before decarburization annealing, and that these Fe-based oxides and reaction products prevent the Si-based pre-oxide from being densely and uniformly formed in a certain thickness region from the surface during decarburization annealing.
Since it is difficult to make the Fe-based oxide film and reaction products uniform during cold rolling, the present inventors have conducted research into neutralizing the factors inhibiting the formation of these Si-based pre-oxides. As a result, as described below, the inventors have found that by uniformly grinding the surface (at least one side) of the cold-rolled sheet before the decarburization annealing process using abrasive grains or abrasive paper, roll, or brush with abrasive grains fixed thereon to expose a clean metal surface, and then immediately contacting the surface with an aqueous liquid, it is possible to remove the Fe-based oxides and reaction products that are factors inhibiting the formation of Si-based pre-oxides from the surface of the steel sheet, and it is possible to form the Si-based pre-oxides at a predetermined number density in a region of a certain thickness from the surface of the steel sheet after the decarburization annealing process.
Based on these findings, in the grain-oriented electrical steel sheet according to the present embodiment, as shown in Fig. 1, within a range of 10 µm in the sheet thickness direction from the interface between the steel sheet (silicon steel sheet) 11 and the oxide layer 21, oxides 101 (oxide particles) which are oxides of one or more of Mg, Al, and Si and have a circle equivalent diameter of 0.1 to 3.0 µm, and which are oxides formed by oxidation of an inhibitor or a solid-phase reaction with an annealing separator in a process such as finish annealing, are present at a density of 0.010 to 0.200 pieces/µm 2. The oxides 101 may be one or more oxides of Mg, Al, and Si (including composite oxides), but when the manufacturing conditions described later are assumed, they are often oxides containing Mg, Al, and Si, such as spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), and mullite (2SiO 2 ·3Al 2 O 3 ).
If the number density of the oxides 101 is too small, the adhesion of the oxide layer 21 to the steel sheet is poor, and the formation of the flat crystal grains 102 described below becomes non-uniform. On the other hand, if the number density of the oxides 101 is too large, the area occupied by the metal portion of the steel sheet 11 is reduced, and the magnetic flux density is reduced. In addition, the proportion of the flat crystal grains 102 is relatively small, making it difficult to obtain the effect of reducing iron loss.
The oxide 101 is uniformly formed in a predetermined region, which reduces the variation from location to location in the effect of suppressing the decomposition and oxidation of the inhibitor during finish annealing, thereby improving the magnetic flux density in the grain-oriented electrical steel sheet 1. In addition, by appropriately forming the flat crystal grains 102, the 180° magnetic domain width becomes smaller, and an iron loss reduction effect commensurate with the magnetic flux density can be obtained.
Considering the formation process, the oxide 101 is often present in flat crystal grains 102, which will be described later.
(珪素鋼板の表面側に、表面に垂直な方向の平均厚みが0.5~5.0μm、平均厚みに対する表面に平行な方向の粒幅の比であるアスペクト比が1.5以上、かつ、結晶方位のGoss方位からのずれが10°以上である、扁平結晶粒が存在する)
(板厚方向の断面において、珪素鋼板と酸化物層との界面の長さに占める、扁平結晶粒の粒界の長さが、70%以上である)
 上述の通り、本実施形態に係る方向性電磁鋼板では、主に脱炭焼鈍焼鈍工程などを利用し珪素鋼板(母材鋼板)の表層部(表面から10μmの範囲)にSi系プレ酸化物を均一に形成させることで、仕上焼鈍時にインヒビターの分解、酸化を抑制し高温まで存在せしめる。この場合、高度にGoss方位を集積、すなわちより理想Goss方位に近い結晶を集積させることが可能となり結果磁束密度が向上する。すなわち鉄損低減を図ることができる。
 一方で、より高温で二次再結晶を生じさせるということは、より理想Goss方位に近い結晶粒のみ二次再結晶が生じるということである。この場合、二次再結晶するGoss方位粒の数が少なくなるため、鋼板の単位面積当たりのGoss方位粒の数が少なくなる。すなわち、Goss方位粒一つあたりの結晶粒径がより大きくなる。
 方向性電磁鋼板に要求される鉄損は、その内訳としてヒステリシス損と渦電流損とに分けられる。ヒステリシス損は磁束密度の向上により低減する。一方渦電流損は板厚の減少、鋼板の比抵抗上昇により低減する古典的渦電流損と、Goss方位粒内に形成する磁区幅が小さくなることにより低減する異常渦電流損がある。前記古典的渦電流損低減における板厚の減少および鋼板の比抵抗上昇は、生産性に影響を及ぼす場合が多いので、異常渦電流損の低減すなわち磁区幅を小さくすることは重要である。磁区幅は一般的にGoss方位の結晶粒径と相関関係にある。一般的には結晶粒径の小径化により方向性電磁鋼板内に生成するいわゆる180°磁区の磁区幅も合わせて小さくなる。
 すなわち、上記の酸化物の制御によって磁束密度が向上するものの、結晶粒径の粗大化によって異常渦電流損が増大し、磁束密度の向上に見合った鉄損低減効果は得られないことが懸念される。
(On the surface side of the silicon steel sheet, there are flat crystal grains with an average thickness in the direction perpendicular to the surface of 0.5 to 5.0 μm, an aspect ratio, which is the ratio of the grain width in the direction parallel to the surface to the average thickness, of 1.5 or more, and a deviation of the crystal orientation from the Goss orientation of 10° or more.)
(In the cross section in the plate thickness direction, the length of the grain boundary of the flat crystal grains accounts for 70% or more of the length of the interface between the silicon steel plate and the oxide layer)
As described above, in the grain-oriented electrical steel sheet according to this embodiment, the decarburization annealing process is mainly used to uniformly form Si-based pre-oxides in the surface layer (within 10 μm from the surface) of the silicon steel sheet (base steel sheet), thereby suppressing the decomposition and oxidation of the inhibitor during the final annealing and allowing it to exist up to high temperatures. In this case, it is possible to highly accumulate the Goss orientation, that is, to accumulate crystals closer to the ideal Goss orientation, resulting in improved magnetic flux density. In other words, it is possible to reduce iron loss.
On the other hand, inducing secondary recrystallization at a higher temperature means that only crystal grains closer to the ideal Goss orientation undergo secondary recrystallization. In this case, the number of Goss-oriented grains undergoing secondary recrystallization decreases, and the number of Goss-oriented grains per unit area of the steel sheet decreases. In other words, the crystal grain size per Goss-oriented grain becomes larger.
The iron loss required for grain-oriented electrical steel sheets is divided into hysteresis loss and eddy current loss. Hysteresis loss is reduced by improving the magnetic flux density. On the other hand, there are two types of eddy current loss: classical eddy current loss, which is reduced by reducing the sheet thickness and increasing the resistivity of the steel sheet, and abnormal eddy current loss, which is reduced by reducing the magnetic domain width formed in the Goss-oriented grains. Since the reduction in sheet thickness and the increase in the resistivity of the steel sheet in the reduction of classical eddy current loss often affect productivity, it is important to reduce the abnormal eddy current loss, i.e., to reduce the magnetic domain width. The magnetic domain width is generally correlated with the crystal grain size of the Goss orientation. In general, the magnetic domain width of the so-called 180° magnetic domain generated in the grain-oriented electrical steel sheet is also reduced by reducing the grain size.
That is, although the magnetic flux density is improved by controlling the above oxides, there is a concern that the abnormal eddy current loss increases due to the coarsening of the crystal grain size, and therefore the iron loss reduction effect commensurate with the improvement in magnetic flux density cannot be obtained.
 そこで、本発明者らは、磁束密度向上に見合った鉄損低減方法、すなわち理想Goss方位結晶粒の存在頻度を高めた上で、副次的に生じる結晶粒径の粗大化を解決するための、磁区幅を小さくする方法について検討を行った。その結果、前記のようにより高温で二次再結晶を生じさせ、より理想Goss方位に近い結晶粒のみ二次再結晶を生じさせ、その結晶粒径が大きい場合においても、その鋼板の表面に、扁平かつGoss方位からのずれ角が10°以上の結晶粒(扁平結晶粒)を存在させることにより、エネルギー的に180°磁区幅を小さい状態に制御できることができ、渦電流損増加を抑制できることが分かった。
 具体的には、図1に示すように、母材鋼板11の表面側に、表面に垂直な方向の平均厚みが0.5~5.0μm、平均厚みに対する表面に平行な方向の粒幅の比であるアスペクト比が1.5以上、かつ、結晶方位のGoss方位からのずれ(ずれ角)が10°以上である、扁平結晶粒102が存在する(扁平結晶粒102が珪素鋼板11の最表層を構成する粒として存在する)場合に渦電流損が低減されることが分かった。
 平均厚みが0.5μm未満、アスペクト比が1.5未満、またはGoss方位からのずれが10°未満の結晶粒では、磁区幅を小さくする効果が十分に得られず、鉄損が十分に低減できない。
 一方、この結晶粒はGoss方位からのずれがあるので、結晶粒の平均厚みが5.0μmを超えると、全体の磁気特性の劣化、すなわち、磁束密度が低減し鉄損が増加する。
 各扁平結晶粒の平均厚みの平均は、磁区幅を小さくする効果を十分に得る点で、2.0μm超5.0μm以下であることが好ましい。
Therefore, the inventors have studied a method of reducing iron loss commensurate with the improvement of magnetic flux density, that is, a method of reducing the magnetic domain width to solve the coarsening of the grain size that occurs secondarily after increasing the frequency of the ideal Goss orientation crystal grains. As a result, it was found that, as described above, secondary recrystallization is caused at a higher temperature, and only crystal grains closer to the ideal Goss orientation undergo secondary recrystallization, and even when the grain size is large, the surface of the steel sheet is made to have flat crystal grains (flat crystal grains) with a deviation angle of 10° or more from the Goss orientation, so that the 180° magnetic domain width can be energetically controlled to a small state, and an increase in eddy current loss can be suppressed.
Specifically, as shown in FIG. 1, it has been found that eddy current loss is reduced when flat crystal grains 102 are present on the surface side of the base steel sheet 11 (flat crystal grains 102 are present as grains constituting the outermost layer of the silicon steel sheet 11) having an average thickness in a direction perpendicular to the surface of 0.5 to 5.0 μm, an aspect ratio which is the ratio of the grain width in a direction parallel to the surface to the average thickness of 1.5 or more, and a crystal orientation that deviates (deviation angle) from the Goss orientation of 10° or more.
Crystal grains with an average thickness of less than 0.5 μm, an aspect ratio of less than 1.5, or a deviation from the Goss orientation of less than 10° cannot sufficiently reduce the magnetic domain width, and therefore cannot sufficiently reduce core loss.
On the other hand, since the crystal grains are deviated from the Goss orientation, if the average thickness of the crystal grains exceeds 5.0 μm, the overall magnetic properties deteriorate, that is, the magnetic flux density decreases and the core loss increases.
The average thickness of each flat crystal grain is preferably more than 2.0 μm and not more than 5.0 μm in order to fully obtain the effect of reducing the magnetic domain width.
 また、上記の磁区細分化効果を十分に得るため、板厚方向の断面において、母材鋼板と酸化物層との界面の長さに占める、扁平結晶粒の粒界の長さが、70%以上である。
 界面を構成する扁平結晶粒の割合が小さいと、磁区幅を小さくする効果は不十分なため鉄損低減に十分な効果が得られない。
In order to fully obtain the above-mentioned magnetic domain refinement effect, the length of the grain boundary of the flat crystal grains accounts for 70% or more of the length of the interface between the base steel sheet and the oxide layer in the cross section in the sheet thickness direction.
If the ratio of flat crystal grains constituting the interface is small, the effect of reducing the magnetic domain width is insufficient, and therefore a sufficient effect of reducing iron loss cannot be obtained.
 方向性電磁鋼板の製造方法では、仕上焼鈍の際に、鋼板の板厚方向内側にある微小なGoss方位粒が周囲のGoss方位以外の方位を有する結晶粒を蚕食しながら成長することで、板厚方向の内側から板厚表面にかけてさらに圧延方向、幅方向に対してGoss方位粒(珪素鋼板の長手方向が<100>方向で面方向は<110>方向である結晶粒)の割合が増加する。
 本実施形態に係る方向性電磁鋼板では、上述の通り珪素鋼板の表層部に離散的に(所定の個数密度で)酸化物が存在することで、板厚内部に存在するGoss方位粒の粒成長に際し、鋼板表層部に微小な扁平状の結晶粒がGoss方位粒に対する蚕食されず残存することで、結果的に扁平状の粒として確認される、「扁平結晶粒」が形成されると考えられる。
In the manufacturing method of grain-oriented electrical steel sheet, during finish annealing, tiny Goss orientation grains on the inside of the steel sheet in the sheet thickness direction grow while encroaching on surrounding crystal grains having orientations other than the Goss orientation, and as a result, the proportion of Goss orientation grains (crystal grains in which the longitudinal direction of the silicon steel sheet is the <100> direction and the surface direction is the <110> direction) increases from the inside of the sheet thickness direction to the sheet thickness surface, and further in the rolling direction and width direction.
In the grain-oriented electrical steel sheet according to this embodiment, as described above, oxides are present discretely (at a predetermined number density) in the surface layer portion of the silicon steel sheet. As a result, when the Goss-oriented grains present inside the sheet thickness grow, tiny flat crystal grains remain in the surface layer portion of the steel sheet without being encroached upon by the Goss-oriented grains, resulting in the formation of "flat crystal grains" that are confirmed as flat grains.
 表面側に存在する結晶粒の平均厚み、アスペクト比、結晶方位のずれは、以下の方法で測定することができる。
 鋼板から、圧延方向(RD方向)に平行な面が断面として得られるよう、例えば20mm角程度の試料を切り出し、その断面を鏡面となるよう研磨する。また研磨による歪が鋼板に付与されている状態では、結晶方位の測定が困難となるので、研磨の最終工程ではコロイダルシリカなどの研磨材を用いて歪が入らないよう研磨試料を作成する。当該研磨試料を用いてFE-SEMにより断面形状を観察し、その後EBSD測定により結晶方位の測定を行う。FE-SEMに関しては「SU-70」(日立ハイテク社製)が例として用いられ、EBSD測定に関してはTSLソリューションズ社製「Digiview」が例として用いられる。具体的な手法としては以下が例として挙げられる。FE-SEMにて断面について500倍の倍率で、母材鋼板、酸化物層、絶縁被膜層が含まれる範囲を観察し、電子顕微鏡像を得る。電子顕微鏡像における電子密度の差から後述の絶縁被膜層と酸化物層の界面および酸化物層と鋼板の界面を特定する。上記の界面の特定に際して、FE-SEMに元素分析装置(EDS)が付属されている場合は、P、B、O、Feなど、絶縁被膜層、酸化物層、珪素鋼板に含まれる元素種の違いから、より精緻に界面を特定することが可能である。
 続いて同じ視野の断面についてEBSDにより鋼板の結晶方位の測定を行う。具体的には扁平結晶粒が100個以上含まれると想定される、500倍の視野において、断面長として、圧延方向に200μm、板厚方向に70μmの領域を対象とし、測定点ピッチとして0.25μmおきに、結晶方位の測定を行う。結晶方位差が15°以上である境界を結晶粒界として、この結晶粒界で囲まれる範囲を結晶粒とする。視野のうち、結晶粒の数が100個未満であった場合、追加の視野について測定を行う。
 この結晶粒に関し、図3に示すように、a)~d)に示す方法で結晶粒の平均厚みを求める。
a)鋼板の板厚方向(法線方向)に粒の両端を決める仮想線(1)を引く。
b)両端の距離Lに対して、結晶粒の両端からそれぞれLの2.5%のところに板厚方向の仮想線(その間が粒の95%幅を示す線)(2)を引く。
c)上記b)で引いた仮想線の間(結晶粒の95%幅部分)について、結晶粒と酸化物層との界面および結晶粒の下側(酸化物層とは反対側の結晶粒界)の包絡線について平均線(3)を引く。
d)上記c)で引いた2つの平均線の距離を厚みt(4)として求める(両端と中心、両端と中心の中間点の合計5箇所を平均)。
 また、上記a)で引いた粒の両端の範囲をこの結晶粒の幅として、アスペクト比を算出する。
The average thickness, aspect ratio, and deviation of crystal orientation of the crystal grains present on the surface side can be measured by the following method.
A sample of, for example, about 20 mm square is cut out from the steel sheet so that a surface parallel to the rolling direction (RD direction) is obtained as a cross section, and the cross section is polished to a mirror surface. In addition, since it is difficult to measure the crystal orientation when the steel sheet is distorted by polishing, a polishing material such as colloidal silica is used in the final polishing process to prepare a polished sample so that no distortion is introduced. The polished sample is used to observe the cross-sectional shape with an FE-SEM, and then the crystal orientation is measured by EBSD measurement. For the FE-SEM, "SU-70" (manufactured by Hitachi High-Tech Corporation) is used as an example, and for the EBSD measurement, "Digiview" (manufactured by TSL Solutions) is used as an example. Specific examples of the method include the following. The cross section is observed with an FE-SEM at a magnification of 500 times, and an electron microscope image is obtained. The interface between the insulating coating layer and the oxide layer and the interface between the oxide layer and the steel sheet, which will be described later, are identified from the difference in electron density in the electron microscope image. When identifying the above-mentioned interface, if the FE-SEM is equipped with an elemental analyzer (EDS), it is possible to identify the interface more precisely from differences in elemental species, such as P, B, O, and Fe, contained in the insulating coating layer, the oxide layer, and the silicon steel plate.
Next, the crystal orientation of the steel sheet is measured by EBSD on the cross section of the same field of view. Specifically, in a 500x field of view where it is assumed that 100 or more flat grains are included, the crystal orientation is measured at measurement point pitches of 0.25 μm in an area with a cross-sectional length of 200 μm in the rolling direction and 70 μm in the sheet thickness direction. The boundary where the crystal orientation difference is 15° or more is defined as a grain boundary, and the area surrounded by this grain boundary is defined as a grain. If the number of grains in the field of view is less than 100, measurements are performed on additional fields of view.
Regarding these crystal grains, the average thickness of the crystal grains is determined by the methods shown in a) to d) in FIG.
a) Draw an imaginary line (1) in the thickness direction (normal direction) of the steel plate to determine both ends of the grain.
b) Draw imaginary lines (2) in the thickness direction at 2.5% of the distance L between both ends of the crystal grain (the lines between them indicate 95% of the grain width).
c) Between the imaginary lines drawn in b) above (95% width portion of the crystal grain), draw an average line (3) on the envelope of the interface between the crystal grain and the oxide layer and on the lower side of the crystal grain (the grain boundary on the opposite side to the oxide layer).
d) The distance between the two average lines drawn in c) above is calculated as the thickness t(4) (average of both ends, the center, and the midpoint between both ends and the center, a total of five points).
The range between both ends of the grain drawn in the above step a) is regarded as the width of this crystal grain, and the aspect ratio is calculated.
 上記結晶粒のうち、平均厚みが0.5~5.0μm、アスペクト比が1.5以上である結晶粒全てについて、Feのフェライト相の結晶方位を測定する。その上で測定した結晶方位をIPFマップと呼ばれる結晶方位マップとして圧延方向(RD方向)および鋼板面法線方向(ND方向)に対する結晶方位を図示したマップ図を得る。各結晶粒のGoss方位との方位差の平均を算出し、Goss方位からのずれとする。Goss方位からのずれが10°以上であれば、扁平結晶粒であるとする。 The crystal orientation of the Fe ferrite phase is measured for all of the above crystal grains with an average thickness of 0.5 to 5.0 μm and an aspect ratio of 1.5 or more. The measured crystal orientation is then used to obtain a crystal orientation map called an IPF map, which shows the crystal orientation relative to the rolling direction (RD direction) and the normal direction of the steel sheet surface (ND direction). The average orientation difference between each crystal grain and the Goss orientation is calculated, and this is taken as the deviation from the Goss orientation. If the deviation from the Goss orientation is 10° or more, the grain is considered to be a flattened grain.
 扁平結晶粒の平均厚みの平均(単純平均)は、上記で得られた各扁平結晶粒の平均厚みの和を、扁平結晶粒の数で除することで得られる。 The average (simple average) of the average thickness of the flat crystal grains is obtained by dividing the sum of the average thicknesses of each flat crystal grain obtained above by the number of flat crystal grains.
 扁平結晶粒は、圧延方向(長手方向)及び幅方向に扁平であることから、板厚方向の断面であれば、いずれの方法で観察してもよいが、上述の鋼板を圧延方向(RD方向)に平行な面を断面として得てEBSDで結晶方位マップを得て「扁平結晶粒」の存在を確認する方法が、精度が高いので好ましい。他にも単に「扁平結晶粒」の存在を確認する方法として圧延方向(RD方向)に平行な面を研磨し平滑な断面として得た後、通称ナイタール法(硝酸エタノール法、JIS-G-0553(2019)などに記載)などにより結晶粒界を現出する方法により確認する方法はあるものの、本手法では結晶方位の特定は出来ず、別にEBSD等により結晶方位測定の必要があるので、本実施形態では前記のFE-SEMとEBSDとを併用する方法を採用する。 Since the flat crystal grains are flat in the rolling direction (longitudinal direction) and width direction, any method may be used to observe the cross section in the thickness direction, but the method of obtaining a cross section of the above-mentioned steel plate parallel to the rolling direction (RD direction) and obtaining a crystal orientation map by EBSD to confirm the presence of "flat crystal grains" is preferable because it has high accuracy. Another method of simply confirming the presence of "flat crystal grains" is to polish a surface parallel to the rolling direction (RD direction) to obtain a smooth cross section, and then to confirm by a method such as the so-called nital method (nitric acid ethanol method, described in JIS-G-0553 (2019)), which reveals the crystal grain boundaries. However, this method does not identify the crystal orientation, and it is necessary to measure the crystal orientation separately using EBSD, etc., so in this embodiment, the method of using the above-mentioned FE-SEM and EBSD in combination is adopted.
 また、母材鋼板と酸化物層との界面の長さに占める、扁平結晶粒の粒界の長さの割合は、以下の方法で求めることができる。
 例えば500倍の倍率で観察した視野において、圧延方向の断面長として珪素鋼板と酸化物層との界面について、200μmの領域を対象として、SEM観察およびEBSD測定を行う。これを5箇所、すなわち、界面長さとして1000μm分についてSEM観察およびEBSD測定を行う。珪素鋼板と酸化物層との界面の長さ(1000μm)のうち、平均厚みが0.5~5.0μm、アスペクト比が1.5以上、Goss方位との方位差が10°以上の扁平結晶粒の粒界が占める割合(百分率)を測定する。絶縁被膜層、酸化物層、珪素鋼板の界面や、扁平結晶粒の同定等、は上記と同等の要領で行うことができる。
 測定に際しては、測定範囲Bのうち、珪素鋼板の表面に酸化物層が形成されている長さをB’とし(測定範囲全域に酸化物層が形成されているのであればB=B’)このうち、珪素鋼板の最表層に扁平結晶粒が形成され、珪素鋼板と酸化物層との界面が、扁平結晶粒の結晶粒界である部分の長さをb1、b2...biとし(図ではi=3)、b1~biの長さの合計(Σbi)を珪素鋼板の表面に酸化物層が形成されている長さをB’で除する(Σbi/B’)ことで、母材鋼板と酸化物層との界面の長さに占める、扁平結晶粒の粒界の長さの割合を測定する。
The ratio of the length of the grain boundary of the flat crystal grains to the length of the interface between the base steel sheet and the oxide layer can be determined by the following method.
For example, in a field of view observed at a magnification of 500 times, SEM observation and EBSD measurement are performed on an area of 200 μm in cross-sectional length in the rolling direction of the interface between the silicon steel sheet and the oxide layer. This is performed at five locations, that is, for an interface length of 1000 μm. The proportion (percentage) of the grain boundaries of flat crystal grains with an average thickness of 0.5 to 5.0 μm, an aspect ratio of 1.5 or more, and an orientation difference from the Goss orientation of 10° or more is measured in the length (1000 μm) of the interface between the silicon steel sheet and the oxide layer. Identification of the interfaces of the insulating coating layer, the oxide layer, and the silicon steel sheet, and of the flat crystal grains, etc. can be performed in the same manner as above.
In the measurement, the length of the measurement range B where an oxide layer is formed on the surface of the silicon steel sheet is defined as B' (if the oxide layer is formed over the entire measurement range, B = B'), and the lengths of the parts where flat crystal grains are formed on the outermost layer of the silicon steel sheet and the interface between the silicon steel sheet and the oxide layer are the grain boundaries of the flat crystal grains are defined as b1, b2...bi (i = 3 in the figure), and the total length of b1 to bi (Σbi) is divided by the length where an oxide layer is formed on the surface of the silicon steel sheet by B'(Σbi/B') to measure the ratio of the length of the grain boundaries of the flat crystal grains to the length of the interface between the base steel sheet and the oxide layer.
(溝)
 圧延方向と交差する方向に周期的に線状の溝を形成することで、磁区制御を行うことができる。本実施形態に係る方向性電磁鋼板では、この効果を得るため図2に示すように、母材鋼板11の表面に溝Gが形成されていることが好ましい。具体的には、珪素鋼板(母材鋼板)11に、深さ(板厚方向)が10~30μmで、圧延方向に対して80~100°の方向に延在する溝Gが、複数存在し、隣り合う溝Gの圧延方向の間隔が、1.0~20.0mmであることが好ましい。隣り合う溝Gの圧延方向の間隔は、より好ましくは2.0~10.0mmである。
 溝のサイズや間隔が上記の範囲でないと、十分な効果が得られない。溝の間隔とは、溝の幅の中心から隣の溝の幅の中心までの距離である。
 溝の形状は、限定されず、例えば断面が、略矩形状または略三角形である。また、断面が、円の一部を構成する弓型などであってもよい。溝の幅は溝の深さの0.5倍から3.0倍程度であることが好ましい。溝の幅が溝の深さの0.5倍より小さい場合は十分な磁区制御効果が得られず、また溝自体も形成しにくい。一方、溝の幅が溝の深さの3.0倍より大きい場合は、鋼板表面の溝の占有率が大きくなり、結果磁束密度が低下してしまう一方、磁区制御効果が飽和するため鉄損低減効果は得られず、却って鉄損の増加を招くこともある。
(groove)
By forming linear grooves periodically in a direction intersecting the rolling direction, magnetic domain control can be performed. In the grain-oriented electrical steel sheet according to this embodiment, in order to obtain this effect, it is preferable that grooves G are formed on the surface of the base steel sheet 11 as shown in FIG. 2. Specifically, it is preferable that the silicon steel sheet (base steel sheet) 11 has a plurality of grooves G with a depth (sheet thickness direction) of 10 to 30 μm and extending in a direction at an angle of 80 to 100° to the rolling direction, and the distance between adjacent grooves G in the rolling direction is 1.0 to 20.0 mm. The distance between adjacent grooves G in the rolling direction is more preferably 2.0 to 10.0 mm.
If the size and spacing of the grooves are not within the above ranges, sufficient effect cannot be obtained. The spacing of the grooves is the distance from the center of the width of one groove to the center of the width of the adjacent groove.
The shape of the groove is not limited, and for example, the cross section is substantially rectangular or substantially triangular. The cross section may also be a bow shape constituting a part of a circle. The width of the groove is preferably about 0.5 to 3.0 times the depth of the groove. If the width of the groove is less than 0.5 times the depth of the groove, a sufficient magnetic domain control effect cannot be obtained, and the groove itself is difficult to form. On the other hand, if the width of the groove is more than 3.0 times the depth of the groove, the occupancy rate of the groove on the steel sheet surface increases, resulting in a decrease in magnetic flux density, while the magnetic domain control effect is saturated, so that the iron loss reduction effect cannot be obtained, and may even lead to an increase in iron loss.
 上述した扁平結晶粒による異常渦電流損低減効果は、溝形成による磁区制御材についても効果がある。
 すなわち、溝の内面(底面、側面)を母材鋼板の表面とした場合に、図2に示すように、母材鋼板の溝の表面側に、表面に垂直な方向の平均径が0.5~5.0μm、平均径に対する表面に平行な方向の粒幅の比であるアスペクト比が2.0以上、かつ、結晶方位のGoss方位からのずれが10°以上である、扁平結晶粒(溝内扁平結晶粒)G102が存在し(溝内扁平結晶粒G102が珪素鋼板の溝の最表層を構成する粒として存在し)、延在方向に垂直な板厚方向の断面において、溝Gの内面の長さに占める、溝内扁平結晶粒G102の粒界の長さが、70%以上であると、溝形成による磁区細分化効果に加えて、さらに溝内扁平結晶粒G102による渦電流損低減効果が得られるので、より好ましい。
 溝内扁平結晶粒G102の平均径の平均は、2.0μm超5.0μm以下であることがより好ましい。
The above-mentioned effect of reducing abnormal eddy current loss due to flat crystal grains is also effective for magnetic domain control material formed by grooves.
That is, when the inner surface (bottom surface, side surface) of the groove is the surface of the base steel sheet, as shown in FIG. 2, there are flat crystal grains (flat crystal grains in the groove) G102 on the surface side of the groove of the base steel sheet, which have an average diameter in the direction perpendicular to the surface of 0.5 to 5.0 μm, an aspect ratio which is the ratio of the grain width in the direction parallel to the surface to the average diameter of 2.0 or more, and a deviation of the crystal orientation from the Goss orientation of 10° or more (the flat crystal grains in the groove G102 exist as grains constituting the outermost layer of the groove of the silicon steel sheet), and in a cross section in the plate thickness direction perpendicular to the extension direction, if the length of the grain boundary of the flat crystal grains in the groove G102 occupies 70% or more of the length of the inner surface of the groove G, in addition to the magnetic domain refinement effect due to the groove formation, the eddy current loss reduction effect due to the flat crystal grains in the groove G102 can be obtained, which is more preferable.
The average diameter of the flat crystal grains G102 in the grooves is more preferably more than 2.0 μm and not more than 5.0 μm.
 溝内扁平結晶粒の有無並びに、その平均径、アスペクト比及び結晶方位のGoss方位からのずれについては、上述した母材鋼板の表面の扁平結晶粒と同様の要領で求めることができる。
 ただし、鋼板の表面に設けられている溝が直線でなく例えば曲線の場合には、観察対象部における曲線の接線に対して垂直となる断面を現出する。この場合は当該断面が圧延方向(RD方向)に対するずれ角を測定して求め、扁平結晶粒の結晶方位測定時において補正する。
 また、溝の内面の長さに占める、溝内扁平結晶粒の粒界の長さは、溝の延在方向に垂直な板厚方向の断面のEBSD測定を、珪素鋼板の表面側の扁平結晶粒の測定と同様の要領で行って求めることができる。
The presence or absence of flat crystal grains in grooves, as well as their average diameter, aspect ratio, and deviation of crystal orientation from the Goss orientation, can be determined in the same manner as for the flat crystal grains on the surface of the base steel sheet described above.
However, when the grooves on the surface of the steel sheet are not straight but curved, for example, a cross section perpendicular to the tangent of the curve in the observation target portion is revealed. In this case, the deviation angle of the cross section with respect to the rolling direction (RD direction) is measured and corrected when measuring the crystal orientation of the flattened crystal grains.
In addition, the length of the grain boundaries of the flat crystal grains in the groove relative to the length of the inner surface of the groove can be determined by performing EBSD measurement of a cross section in the plate thickness direction perpendicular to the extension direction of the groove in the same manner as the measurement of the flat crystal grains on the surface side of the silicon steel plate.
(化学組成)
 珪素鋼板の化学組成は限定されず、公知の方向性電磁鋼板の母材鋼板と同等であればよい。例えば、以下に記載の範囲の組成が挙げられる。
 珪素鋼板の化学組成は、質量%で、Si:2.00~6.00%を含有する。これは、結晶方位を{110}<001>方位に集積させたGoss集合組織に制御し、良好な磁気特性を確保するためである。
 その他の元素については、特に限定されるものではなく、Feに置き換えて、公知の元素を公知の範囲で含有することが許容される。また、残部はFe及び不純物である。
 Si以外の代表的な元素の代表的な含有範囲(質量%)は以下のようである。
  C:0~0.0050%、
  Mn:0~1.0%、
  S:0~0.0150%、
  Se:0~0.0150%、
  Al:0~0.0650%、
  N:0~0.0050%、
  Cu:0~0.40%、
  Bi:0~0.010%、
  B:0~0.080%、
  P:0~0.50%、
  Ti:0~0.0150%、
  Sn:0~0.10%、
  Sb:0~0.10%、
  Cr:0~0.30%、
  Ni:0~1.0%、
  Nb:0~0.030%、
  V:0~0.030%、
  Mo:0~0.030%、
  Ta:0~0.030%、
  W:0~0.030%、
 これらの選択元素は、その目的に応じて含有させればよいので下限値を制限する必要がなく、実質的に含有していなくてもよい。また、これらの選択元素が不純物として含有されても、本発明の効果は損なわれない。不純物は意図せず含有される元素を指し、母材鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から混入する元素を意味する。
(Chemical Composition)
The chemical composition of the silicon steel sheet is not limited as long as it is the same as the base steel sheet of a known grain-oriented electrical steel sheet. For example, the composition may be within the range described below.
The chemical composition of the silicon steel sheet contains, in mass%, 2.00 to 6.00% Si, in order to control the crystal orientation to a Goss texture concentrated in the {110}<001> orientation and ensure good magnetic properties.
The other elements are not particularly limited, and known elements may be contained in known ranges in place of Fe, with the balance being Fe and impurities.
Representative content ranges (mass %) of representative elements other than Si are as follows:
C: 0 to 0.0050%,
Mn: 0 to 1.0%,
S: 0 to 0.0150%,
Se: 0 to 0.0150%,
Al: 0 to 0.0650%,
N: 0 to 0.0050%,
Cu: 0 to 0.40%,
Bi: 0 to 0.010%,
B: 0 to 0.080%,
P: 0 to 0.50%,
Ti: 0 to 0.0150%,
Sn: 0 to 0.10%,
Sb: 0 to 0.10%,
Cr: 0 to 0.30%,
Ni: 0 to 1.0%,
Nb: 0 to 0.030%,
V: 0 to 0.030%,
Mo: 0 to 0.030%,
Ta: 0 to 0.030%,
W: 0 to 0.030%,
These selective elements may be contained according to the purpose, so there is no need to limit the lower limit, and they may not be contained substantially. Furthermore, even if these selective elements are contained as impurities, the effects of the present invention are not impaired. Impurities refer to elements that are unintentionally contained, and refer to elements that are mixed in from raw materials such as ores and scraps, or the manufacturing environment, when industrially manufacturing the base steel sheet.
 珪素鋼板の化学組成は、以下の方法で求める。
 珪素鋼板を塩酸などで酸分解して得られた溶液とする。その上で予め濃度が既知の各元素溶液をICP(誘導結合プラズマ)分析により検量線を求める。その上で得られた溶液の分析を行い、含有する元素について定量し、求めることができる。
 珪素鋼板の表面に酸化物層及び/又は絶縁被膜層が形成されている場合(方向性電磁鋼板が珪素鋼板、酸化物層及び絶縁被膜層を含む場合)、酸化物層及び絶縁被膜層を除去してから測定することができる。
 具体的には、絶縁被膜層が形成されている場合、絶縁被膜層を有する方向性電磁鋼板を、NaOH:30~50質量%及びHO:50~70質量%を含有する80~90℃の水酸化ナトリウム水溶液に、7~10分間浸漬することで、絶縁被膜層を除去する。絶縁被膜層が除去された方向性電磁鋼板は水洗し、水洗後、温風のブロアーで1分間弱、乾燥させる。
 酸化物層が形成されている場合、酸化物層を有する方向性電磁鋼板を、10質量%のHClを含有し、80~90℃の塩酸水溶液に、1~10分間浸漬することで、酸化物層を除去する。浸漬後の母材鋼板は水洗し、水洗後、温風のブロアーで1分間弱、乾燥させる。
 以上の工程により、酸化物層及び/または絶縁被膜層が形成されている方向性電磁鋼板から、母材鋼板である珪素鋼板を取り出すことができる。
The chemical composition of the silicon steel sheet is determined by the following method.
A solution is obtained by acid decomposing a silicon steel sheet with hydrochloric acid or the like. Then, a calibration curve is obtained by ICP (inductively coupled plasma) analysis of each element solution whose concentration is already known. The solution obtained is then analyzed, and the elements contained therein are quantified and determined.
When an oxide layer and/or an insulating coating layer is formed on the surface of a silicon steel sheet (when a grain-oriented electrical steel sheet includes a silicon steel sheet, an oxide layer, and an insulating coating layer), the oxide layer and the insulating coating layer can be removed before measurement.
Specifically, when an insulating coating layer is formed, the insulating coating layer is removed by immersing the grain-oriented electrical steel sheet having the insulating coating layer for 7 to 10 minutes in an aqueous sodium hydroxide solution at 80 to 90°C containing 30 to 50 mass% NaOH and 50 to 70 mass% H 2 O. The grain-oriented electrical steel sheet from which the insulating coating layer has been removed is washed with water, and then dried with a hot air blower for just under 1 minute.
When an oxide layer is formed, the oxide layer is removed by immersing the grain-oriented electrical steel sheet having the oxide layer for 1 to 10 minutes in an aqueous hydrochloric acid solution containing 10 mass% HCl at 80 to 90° C. After immersion, the base steel sheet is washed with water and then dried with a hot air blower for just under 1 minute.
Through the above steps, a silicon steel sheet, which is the base steel sheet, can be taken out from the grain-oriented electrical steel sheet on which the oxide layer and/or insulating coating layer is formed.
(板厚)
 本実施形態に係る方向性電磁鋼板の珪素鋼板の板厚は限定されないが、0.15~0.35mmであることが好ましい。0.35mmを超えると板厚が大きいため、前述の古典的渦電流損が大きくなり、鉄損が大きくなる。一方、板厚が0.15mmよりも小さいと圧延効率が低下し生産性面、コスト面で不利である。
(Thickness)
The thickness of the silicon steel sheet of the grain-oriented electrical steel sheet according to this embodiment is not limited, but is preferably 0.15 to 0.35 mm. If the thickness exceeds 0.35 mm, the classical eddy current loss described above increases, resulting in large iron loss. On the other hand, if the thickness is less than 0.15 mm, the rolling efficiency decreases, which is disadvantageous in terms of productivity and cost.
[酸化物層]
 本実施形態に係る方向性電磁鋼板では、母材鋼板の表面にMg、Al、及びSiの1種以上の酸化物からなる酸化物層が形成されている。
 この酸化物層は、仕上焼鈍の際に、焼鈍分離剤に含まれるMg及び/またはAlと鋼板表面に形成されたSi系プレ酸化物とが固相反応して形成される。例えば、MgOを含む焼鈍分離剤を用いた場合、酸化物層として、主にフォルステライト(MgSiO)被膜の層が形成される。また鋼中にインヒビターとして含有されるAlNは仕上焼鈍の後半で珪素鋼板の表面において、焼鈍雰囲気中の酸素により酸化される。これに伴い、珪素鋼板の表面には、スピネル(MgAl)、アルミナ(Al)、あるいはムライト(2SiO・3Al)が生成される。ただし、MgOが主成分である焼鈍分離剤を使用する場合は、ほぼスピネル(MgAl)として生成する。
 この酸化物層が、扁平結晶粒の表面を覆うことで、その上層に施される絶縁被膜層との密着性を向上させるという効果が得られる。十分な効果を得る場合、扁平結晶粒における、酸化物層の被覆率が50%以上であることが好ましい。
[Oxide layer]
In the grain-oriented electrical steel sheet according to this embodiment, an oxide layer made of one or more oxides of Mg, Al, and Si is formed on the surface of the base steel sheet.
This oxide layer is formed by a solid-phase reaction between Mg and/or Al contained in the annealing separator and the Si-based pre-oxide formed on the steel sheet surface during the final annealing. For example, when an annealing separator containing MgO is used, a forsterite (Mg 2 SiO 4 ) film is mainly formed as the oxide layer. Furthermore, AlN contained in the steel as an inhibitor is oxidized by oxygen in the annealing atmosphere on the surface of the silicon steel sheet in the latter half of the final annealing. As a result, spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), or mullite (2SiO 2 .3Al 2 O 3 ) is formed on the surface of the silicon steel sheet. However, when an annealing separator containing MgO as the main component is used, it is mostly formed as spinel (MgAl 2 O 4 ).
The oxide layer covers the surfaces of the flat crystal grains, thereby improving the adhesion to the insulating coating layer applied thereon. To obtain a sufficient effect, it is preferable that the coverage of the oxide layer on the flat crystal grains is 50% or more.
 被覆率は、以下の方法で求めることができる。
 すなわち、前述の要領で、EBSDにより扁平結晶粒の存在を特定する。その上で各扁平結晶粒のFE-SEM像あるいはFE-SEM像を元にEDS等で元素分析を行った元素分析像に着目する。扁平結晶粒において絶縁被膜層と扁平結晶粒の間あるいは扁平結晶粒の表面側から鋼板内部の方向の投影部にMg、Al、及びSiの1種以上の酸化物層が存在する長さを計測する。酸化物層または絶縁被膜層と扁平結晶粒との界面長さとして1000μm分について酸化物層が存在する長さ率を百分率として求める。
 例えば、図4のような状態であれば、(A1+A2+A3)/(a1+a2+a3)×100で被覆率(%)を求めることができる。
The coverage can be determined by the following method.
That is, the presence of flat crystal grains is identified by EBSD in the manner described above. Then, attention is paid to FE-SEM images of each flat crystal grain or elemental analysis images obtained by performing elemental analysis using EDS or the like based on the FE-SEM images. The length of the flat crystal grain where one or more oxide layers of Mg, Al, and Si exist between the insulating coating layer and the flat crystal grain or in the projected portion from the surface side of the flat crystal grain toward the inside of the steel sheet is measured. The percentage of the length where the oxide layer exists per 1000 μm of the interface length between the oxide layer or insulating coating layer and the flat crystal grain is calculated.
For example, in the state shown in FIG. 4, the coverage rate (%) can be calculated by (A1+A2+A3)/(a1+a2+a3)×100.
[絶縁被膜層]
 本実施形態に係る方向性電磁鋼板では、酸化物層の表面に(上層として)、絶縁被膜層が形成されている。この絶縁被膜層は、方向性電磁鋼板を変圧器として用いる際に必要不可欠である。方向性電磁鋼板は変圧器として使用する際に積層して使用されるが、その積層された鋼板(珪素鋼板)間が短絡すると変圧器鉄心に渦電流が発生し鉄心鉄損増加の要因となる。そのため、鋼板表面に絶縁被膜の層を形成し、電気絶縁性を付与することで変圧器の鉄心鉄損を低減する。また方向性電磁鋼板の絶縁被膜において鋼板に張力を付与することで、磁区幅を小さくすることができ異常渦電流損の低減、ひいては鉄損低減を図ることができる。
 また方向性電磁鋼板の絶縁被膜に関しては、上記のような電気絶縁性以外にも、耐蝕性、耐熱性、すべり性といった鉄心作成時に必要な種々の特性が具備することが求められる。それらのニーズを踏まえ絶縁被膜には、例えば、リン酸塩とコロイダルシリカとを主成分とする被膜種が用いられる。また鋼板により大きな張力を付与することを目的として、ほう酸アルミを主成分とするものやほう酸アルミとシリカからなる被膜が用いられる場合もある。いずれの被膜も、それらに含まれる成分を溶解あるいは分散させたコーティング液を酸化物層の表面に塗布し、焼付けることによって形成される公知の被膜であってよい。
[Insulating coating layer]
In the grain-oriented electrical steel sheet according to the present embodiment, an insulating coating layer is formed on the surface (as an upper layer) of the oxide layer. This insulating coating layer is essential when the grain-oriented electrical steel sheet is used as a transformer. When the grain-oriented electrical steel sheet is used as a transformer, it is laminated and used. When the laminated steel sheets (silicon steel sheets) are short-circuited, eddy currents are generated in the transformer core, which causes an increase in core core loss. Therefore, an insulating coating layer is formed on the surface of the steel sheet to impart electrical insulation, thereby reducing the core core loss of the transformer. In addition, by applying tension to the steel sheet in the insulating coating of the grain-oriented electrical steel sheet, the magnetic domain width can be reduced, and abnormal eddy current loss and therefore iron loss can be reduced.
In addition to the electrical insulation properties described above, the insulating coating of grain-oriented electrical steel sheets is also required to have various properties necessary for producing iron cores, such as corrosion resistance, heat resistance, and slipperiness. In consideration of these needs, for example, a coating type whose main components are phosphate and colloidal silica is used for the insulating coating. In addition, for the purpose of imparting greater tension to the steel sheet, a coating whose main component is aluminum borate or a coating made of aluminum borate and silica may be used. Either coating may be a known coating formed by applying a coating liquid in which the components contained therein are dissolved or dispersed to the surface of an oxide layer and baking it.
<製造方法>
 本実施形態に係る方向性電磁鋼板は、製造方法によらず上記の特徴を有していれば、その効果は得られるが、以下の工程を含む製造方法であれば安定して製造できるので好ましい。
(I)スラブを、加熱して熱間圧延して熱延板とする熱間圧延工程と、
(II)前記熱間圧延工程後の前記熱延板を焼鈍する熱延板焼鈍工程と、
(III)前記熱延板焼鈍工程後の前記熱延板を酸洗する酸洗工程と、
(IV)前記酸洗工程後の前記熱延板を冷間圧延して冷延板とする冷間圧延工程と、
(V)前記冷間圧延工程後の前記冷延板の表面を研削する研削工程と、
(VI)前記研削工程後の前記冷延板をpH4.0~10.0の水性液に接触させる接触工程と、
(VII)前記接触工程後の前記冷延板に、脱炭焼鈍を行う脱炭焼鈍工程と、
(VIII)前記脱炭焼鈍工程後の前記冷延板に焼鈍分離剤を塗布し、仕上焼鈍し、母材鋼板となる前記冷延板の表面にMg、Al、及びSiの1種以上の酸化物からなる酸化物層を形成する仕上焼鈍工程と、
(IX)前記仕上焼鈍工程後の前記酸化物層の表面に、絶縁被膜層を形成する絶縁被膜形成工程。
 また、本実施形態に係る方向性電磁鋼板の製造方法はさらに、以下の工程のいずれか1つ以上を有していてもよい。
(X)前記研削工程の前に、さらに、前記冷延板に、圧延方向に対して80~100°の角度をなす方向に延在する、深さが10~30μmの溝を、前記圧延方向の間隔がそれぞれ1.0~20.0mmとなるように複数形成する、溝形成工程、
(XI)前記冷延板の窒素量を増加させる窒化処理工程。
<Production Method>
The grain-oriented electrical steel sheet according to this embodiment can obtain its effects as long as it has the above-mentioned characteristics regardless of the manufacturing method, but a manufacturing method including the following steps is preferable because it can be stably manufactured.
(I) a hot rolling step of heating and hot rolling the slab into a hot-rolled sheet;
(II) a hot-rolled sheet annealing step of annealing the hot-rolled sheet after the hot rolling step;
(III) a pickling process for pickling the hot-rolled sheet after the hot-rolled sheet annealing process;
(IV) a cold rolling step of cold rolling the hot-rolled sheet after the pickling step to obtain a cold-rolled sheet;
(V) a grinding step of grinding the surface of the cold-rolled sheet after the cold rolling step;
(VI) a contacting step of contacting the cold-rolled sheet after the grinding step with an aqueous liquid having a pH of 4.0 to 10.0;
(VII) a decarburization annealing step of performing decarburization annealing on the cold-rolled sheet after the contact step;
(VIII) a finish annealing step in which an annealing separator is applied to the cold-rolled sheet after the decarburization annealing step, and finish annealing is performed to form an oxide layer composed of one or more oxides of Mg, Al, and Si on the surface of the cold-rolled sheet which becomes a base steel sheet;
(IX) An insulating coating forming step of forming an insulating coating layer on the surface of the oxide layer after the final annealing step.
The method for producing a grain-oriented electrical steel sheet according to this embodiment may further include any one or more of the following steps.
(X) A groove forming step, which is performed before the grinding step, further comprises forming a plurality of grooves having a depth of 10 to 30 μm in the cold-rolled sheet, the grooves extending in a direction at an angle of 80 to 100° with respect to the rolling direction, the grooves being spaced apart from each other in the rolling direction by 1.0 to 20.0 mm;
(XI) A nitriding process for increasing the nitrogen content of the cold-rolled sheet.
 これらの内、本実施形態に係る方向性電磁鋼板の製造方法では、研削工程、接触工程、溝形成工程に特徴がある。一方、熱間圧延工程、熱延板焼鈍工程、冷間圧延工程、脱炭焼鈍工程、窒化処理工程、仕上焼鈍工程、絶縁被膜形成工程については、公知の条件で行うことができる。
 以下、好ましい条件について説明する。説明しない条件についても、公知の条件で行うことができる。
Among these, the manufacturing method of the grain-oriented electrical steel sheet according to the present embodiment is characterized by the grinding step, the contacting step, and the groove forming step, while the hot rolling step, the hot-rolled sheet annealing step, the cold rolling step, the decarburization annealing step, the nitriding treatment step, the finish annealing step, and the insulating coating forming step can be performed under known conditions.
Preferred conditions are described below. Even if conditions are not described, the reaction can be carried out under known conditions.
[熱間圧延工程]
 熱間圧延工程では、所定の化学組成(本実施形態に係る方向性電磁鋼板の珪素鋼板の化学組成に応じた化学組成)を有するスラブを、加熱して熱間圧延して熱延板とする。
 スラブ加熱温度は、例えば1000~1400℃である。
[Hot rolling process]
In the hot rolling process, a slab having a predetermined chemical composition (a chemical composition corresponding to the chemical composition of the silicon steel sheet of the grain-oriented electrical steel sheet according to this embodiment) is heated and hot rolled to form a hot-rolled sheet.
The slab heating temperature is, for example, 1000 to 1400°C.
 熱間圧延に供するスラブの化学組成は、方向性電磁鋼板として得たい化学組成に応じ、各工程での化学組成の変化を考慮して決定すればよい。
 上述した好ましい本実施形態に係る方向性電磁鋼板の珪素鋼板の化学組成を得る場合、熱間圧延段階では、質量%で、C:0.040~0.100%、Si:2.00~6.00%を含有し、その他、インヒビターとして、AlN、MnS、MnSe、BNとなるように、Al、Mn、Se、S、B、Nなどを所定の範囲で含有し、さらに必要に応じてCu、Sn、Cr、Ni、Mo、Nb、Bi、Sb、P、Ti、V、Ta、Wなどの元素が含有される化学組成が例示される。
The chemical composition of the slab to be subjected to hot rolling may be determined according to the desired chemical composition of the grain-oriented electrical steel sheet, taking into consideration changes in the chemical composition in each process.
When obtaining the chemical composition of the silicon steel sheet of the grain-oriented electrical steel sheet according to the preferred embodiment described above, the hot rolling stage may contain, by mass%, C: 0.040 to 0.100%, Si: 2.00 to 6.00%, and in addition, Al, Mn, Se, S, B, N, etc. are contained in predetermined ranges as inhibitors to obtain AlN, MnS, MnSe, BN, and further elements such as Cu, Sn, Cr, Ni, Mo, Nb, Bi, Sb, P, Ti, V, Ta, W, etc. as necessary.
 スラブを得る方法は限定されない。例えば所定の化学組成を有する溶鋼を溶製し、その溶鋼を用いて製造すればよい。連続鋳造法によりスラブを製造してもよく、溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。また、他の方法によりスラブを製造してもよい。
 スラブの厚さは、特に限定されないが、たとえば、150~350mmである。スラブの厚さは好ましくは、220~280mmである。スラブとして、厚さが10~70mmの、いわゆる薄スラブを用いてもよい。
 熱間圧延によりいわゆる熱延板(熱延鋼板)を得る。熱延板の板厚(仕上板厚)は特に限定されない。但し熱延板に熱延板焼鈍を施し、酸洗後、冷間圧延がなされるが、いわゆる冷間圧延率は方向性電磁鋼板の磁気特性に影響を及ぼすことが知られており、最終板厚に対して必要な冷間圧延率を加味した形で熱延板の板厚が選択される。例えば最終板厚が0.20~0.30mmの場合、熱延板の仕上板厚は2.0~4.0mmの範囲が好ましい。
The method for obtaining the slab is not limited. For example, molten steel having a predetermined chemical composition may be melted and the molten steel may be used to produce the slab. The slab may be produced by a continuous casting method, or the molten steel may be used to produce an ingot and the ingot may be bloomed to produce the slab. Alternatively, the slab may be produced by other methods.
The thickness of the slab is not particularly limited, but is, for example, 150 to 350 mm. The thickness of the slab is preferably 220 to 280 mm. As the slab, a so-called thin slab having a thickness of 10 to 70 mm may be used.
A so-called hot-rolled sheet (hot-rolled steel sheet) is obtained by hot rolling. The thickness (finished thickness) of the hot-rolled sheet is not particularly limited. However, the hot-rolled sheet is annealed, pickled, and then cold-rolled. It is known that the so-called cold rolling reduction rate affects the magnetic properties of the grain-oriented electrical steel sheet, and the thickness of the hot-rolled sheet is selected taking into account the required cold rolling reduction rate for the final thickness. For example, when the final thickness is 0.20 to 0.30 mm, the finished thickness of the hot-rolled sheet is preferably in the range of 2.0 to 4.0 mm.
[熱延板焼鈍工程]
 熱延板焼鈍工程では、熱間圧延工程後の前記熱延板を焼鈍する。このような焼鈍処理を施すことで、鋼板組織に再結晶が生じ、良好な磁気特性を実現することが可能となる。
 本実施形態の熱延板焼鈍工程では、公知の方法に従い、熱間圧延工程を経て製造された熱延板を焼鈍すればよい。焼鈍に際して熱延板を加熱する手段については、特に限定されるものではなく、公知の加熱方式を採用することが可能である。例えば、いわゆる連続焼鈍でもよく、熱延板をコイル状のものとしてバッチ焼鈍としても良い。また、焼鈍条件についても、特に限定されるものではないが、例えば、熱延板に対して、900~1200℃の温度域で10秒~5分間の焼鈍を行うことができる。また雰囲気は特に制限されるものではないが、鋼板の酸化は抑制した方が好ましく窒素やアルゴン、水素などの非酸化雰囲気で行うことが好ましい。
[Hot-rolled sheet annealing process]
In the hot-rolled sheet annealing process, the hot-rolled sheet after the hot rolling process is annealed. By carrying out such annealing treatment, recrystallization occurs in the steel sheet structure, making it possible to realize good magnetic properties.
In the hot-rolled sheet annealing process of this embodiment, the hot-rolled sheet manufactured through the hot rolling process may be annealed according to a known method. The means for heating the hot-rolled sheet during annealing is not particularly limited, and a known heating method can be adopted. For example, so-called continuous annealing may be used, or the hot-rolled sheet may be coiled and subjected to batch annealing. The annealing conditions are also not particularly limited, but for example, the hot-rolled sheet may be annealed for 10 seconds to 5 minutes in a temperature range of 900 to 1200 ° C. The atmosphere is not particularly limited, but it is preferable to suppress oxidation of the steel sheet, and it is preferable to perform the annealing in a non-oxidizing atmosphere such as nitrogen, argon, or hydrogen.
[酸洗工程]
 酸洗工程では、熱間圧延および熱延板焼鈍にて鋼板表面に生成したスケール(酸化物)を除去する。本実施形態の酸洗工程では、公知の方法が用いられる。酸洗液としては塩酸や硫酸、硝酸など公知の酸が用いられる。また酸洗液には必要に応じ公知の酸洗抑制剤や酸洗促進剤等を添加してもよい。さらに鋼板を酸洗液に接触させる前に、スケールと鋼板の界面に酸洗液を浸透させ、酸洗効率を向上させる目的で、酸洗前に鋼板へのショットブラスト等の物理的な処理を行うことも可能である。
[Pickling process]
In the pickling process, scale (oxides) formed on the surface of the steel sheet during hot rolling and hot-rolled sheet annealing is removed. In the pickling process of this embodiment, a known method is used. As the pickling solution, known acids such as hydrochloric acid, sulfuric acid, and nitric acid are used. In addition, known pickling inhibitors, pickling accelerators, and the like may be added to the pickling solution as necessary. Furthermore, before the steel sheet is brought into contact with the pickling solution, it is also possible to perform physical treatment such as shot blasting on the steel sheet before pickling in order to penetrate the pickling solution into the interface between the scale and the steel sheet and improve the pickling efficiency.
[冷間圧延工程]
 冷間圧延工程では、酸洗後の鋼板を冷間圧延して冷延板とする。冷間圧延は、一回の(中間焼鈍を挟まない一連の)冷間圧延でもよく、冷延工程の最終パスの前に、冷延を中断し少なくとも一回または二回以上の中間焼鈍を実施して、中間焼鈍をはさむ複数回の冷間圧延を施してもよい。
 冷間圧延の条件は、公知の方法に従えばよい。方向性電磁鋼板における冷間圧延率はその磁気特性に大きく影響をおよぼす。特に最終圧下率の影響が大きく、最終圧下率を80~95%とすることができる。最終圧下率とは、冷間圧延の累積圧下率であり、中間焼鈍を行う場合には、最終中間焼鈍後の冷間圧延の累積圧下率である。
 中間焼鈍を行う場合、例えば、800~1200℃の温度に5~180秒間保持する。焼鈍雰囲気は特には限定されないが、鋼板の酸化を防ぐため、窒素やアルゴン、水素などの非酸化雰囲気で行うことが好ましい。また焼鈍方法としていわゆる連続焼鈍でもコイル形状でのバッチ焼鈍でもいずれでも良く、他の手法でもよい。中間焼鈍の回数は製造コストを考慮すると3回以内が好ましい。
[Cold rolling process]
In the cold rolling process, the steel sheet after pickling is cold rolled to obtain a cold rolled sheet. The cold rolling may be a single cold rolling (a series of cold rolling without intermediate annealing) or may be multiple cold rollings with intermediate annealing by interrupting the cold rolling and performing at least one or more intermediate annealings before the final pass of the cold rolling process.
The cold rolling conditions may be in accordance with known methods. The cold rolling reduction of grain-oriented electrical steel sheet has a large effect on its magnetic properties. In particular, the final reduction has a large effect, and the final reduction can be set to 80 to 95%. The final reduction is the cumulative reduction of cold rolling, and in the case where intermediate annealing is performed, it is the cumulative reduction of cold rolling after final intermediate annealing.
When intermediate annealing is performed, for example, the steel sheet is held at a temperature of 800 to 1200°C for 5 to 180 seconds. The annealing atmosphere is not particularly limited, but it is preferable to perform the annealing in a non-oxidizing atmosphere such as nitrogen, argon, or hydrogen in order to prevent oxidation of the steel sheet. The annealing method may be either so-called continuous annealing or batch annealing in a coil shape, or other methods may be used. The number of times intermediate annealing is preferably three or less, taking into account the manufacturing cost.
[溝形成工程]
 溝形成工程では、研削工程の前の冷延板に、圧延方向に対して80~100°の角度をなす方向に延在する、深さが10~30μmの溝を形成する。この溝は、圧延方向の間隔がそれぞれ1.0~20.0mmとなるように複数形成する。圧延方向の間隔は、より好ましくは2.0~10.0mmである。
 冷延板(母材鋼板)の表面に上記の溝を形成することで、Goss方位を再結晶させた際に溝の効果により磁区が細分化され、磁気特性が向上する。具体的には、異常渦電流損が低減し鉄損が低減する。溝の方向、間隔、形状等が上記範囲外であると、十分な効果が得られない。
 溝形成の方法としては、特に限定されず、以下に示すような公知の方法が使用できる。例えば、物理的な接触による手法(刃など鋼板表面を傷つける方法、また刃付き金型によるロール転写やプレスを行う方法など)、物理的な接触によらない手法(レーザや電子ビーム、プラズマ等により鋼板表面の一部を局部的に溶融させ溶融物を系外に除去する方法など)、また、化学的手法(鋼板表面に樹脂等でマスクし、造形する溝形状に合わせて一部のマスクを除去し、マスク除去部に酸などを接触させそのエッチングにより鋼板を一部溶損させ溝を形成する方法)などが挙げられる。
 このうち、前記の物理的な接触によらない方法が以下に示す点で、物理的な接触による手法および化学的手法に対して優位である。
 物理的な接触による手法は鋼板に刃や金型を接触させるため、鋼板に歪が付与され磁気特性劣化の原因となる。また溝は鋼板に圧延方向に対して1.0~20.0mmのピッチで導入するため、数千mに及ぶ鋼板コイルに溝を付与するには刃や金型の摩耗が著しくなる。そのため頻繁な交換が必要となることから生産性に劣るという欠点がある。
 また化学的な手法に関しては前記のように鋼板表面を樹脂マスクし一部のマスクを除去後エッチングという多工程を経る必要があることが主に生産性の面で課題がある。さらにエッチングには塩酸などのpH1程度の強酸性液を使用することが多く、強酸性液に溶解したFeの除去や、強酸性液の廃液処理などのコストも大きい。
 物理的な接触によらない手法については、一手法として冷延板の表面にレーザを照射し、鋼板表面の一部を溶融させるとともに、溶融物を表面から除去することにより、溝を形成する、方法がある。本手法はレーザのような直進性の高い高エネルギー源を用いることで、鋼板表面の照射位置の高度な制御が可能で決められた箇所に正確に溝を形成できることが大きな利点である。また照射時に鋼板から発生する溶融物はレーザ照射部に吸引ダクトを設置することで、系外に除去することができ、またこれはレーザ照射制御に対して影響を与えない。また溶融物はなるべくなら鋼板表面に付着させず除去することが望ましいが、万が一鋼板表面に溶融物が付着したとしても研削工程にて脱炭焼鈍工程前に鋼板表面から除去が可能であり、鋼板表面を清浄に保つことができる。
 レーザを照射する際には、例えばファイバレーザ、YAGレーザ、半導体レーザまたCOレーザ等一般的に工業用に用いられる高出力レーザが使用できる。また出力形式はパルスレーザでも連続波レーザでも良い。所定の形状の溝を形成するためはレーザ出力として200~3000W、レーザ光の、圧延方向における集光スポット径(レーザ出力の86%を含む直径)を10~1000μmに、板幅方向における集光スポット径を10~1000μmに、レーザ走査速度を5~100m/sの範囲とすることが好ましい。また溶融物を表面から除去する方法としては、アシストガスの吹付などが挙げられ、例えば空気やCOやアルゴンなどをレーザ照射と同時に照射部に吹き付け、一方その近傍に吸引部を設けることで鋼板表面に溶融物の再付着を低減できる。
 溝形成工程は必須ではなく、省略可能である。
[Groove forming process]
In the groove forming step, grooves are formed in the cold-rolled sheet before the grinding step, extending in a direction at an angle of 80 to 100° with respect to the rolling direction, and having a depth of 10 to 30 μm. A plurality of grooves are formed so that the intervals in the rolling direction are 1.0 to 20.0 mm. The intervals in the rolling direction are more preferably 2.0 to 10.0 mm.
By forming the above-mentioned grooves on the surface of the cold-rolled sheet (base steel sheet), the magnetic domains are subdivided due to the effect of the grooves when the Goss orientation is recrystallized, improving the magnetic properties. Specifically, abnormal eddy current loss is reduced, and iron loss is reduced. If the direction, interval, shape, etc. of the grooves are outside the above ranges, sufficient effects cannot be obtained.
The method for forming the grooves is not particularly limited, and known methods such as those shown below can be used. For example, physical contact methods (methods of scratching the surface of the steel sheet with a blade or the like, or methods of roll transfer or pressing using a die with a blade, etc.), non-physical contact methods (methods of locally melting a part of the steel sheet surface with a laser, electron beam, plasma, etc. and removing the molten material outside the system, etc.), and chemical methods (methods of masking the steel sheet surface with a resin or the like, removing a part of the mask according to the shape of the groove to be formed, contacting the part where the mask has been removed with an acid or the like, and etching the steel sheet to dissolve and form a groove) can be mentioned.
Among these, the above-mentioned methods not relying on physical contact are superior to the methods relying on physical contact and the chemical methods in the following respects.
In physical contact methods, blades and dies are brought into contact with the steel sheet, which causes distortion in the steel sheet and leads to deterioration of the magnetic properties. In addition, grooves are introduced into the steel sheet at a pitch of 1.0 to 20.0 mm in the rolling direction, so the blades and dies are subject to significant wear when grooves are applied to a steel sheet coil that is several thousand meters long. This necessitates frequent replacement, which has the disadvantage of poor productivity.
As for the chemical method, as mentioned above, it is necessary to carry out multiple steps such as masking the steel sheet surface with a resin, removing a part of the mask, and then etching, which is a problem mainly in terms of productivity. Furthermore, a strong acidic solution with a pH of about 1, such as hydrochloric acid, is often used for etching, and the costs of removing Fe dissolved in the strong acidic solution and treating the strong acidic solution as waste liquid are high.
As a method that does not rely on physical contact, one method is to irradiate the surface of a cold-rolled sheet with a laser, melt a part of the steel sheet surface, and remove the molten material from the surface to form grooves. This method has the great advantage that it uses a high-energy source with high linearity such as a laser, which allows for high-level control of the irradiation position on the steel sheet surface and allows grooves to be formed accurately at a specified location. In addition, the molten material generated from the steel sheet during irradiation can be removed outside the system by installing a suction duct in the laser irradiation section, and this does not affect the laser irradiation control. In addition, it is preferable to remove the molten material without allowing it to adhere to the steel sheet surface, but even if the molten material does adhere to the steel sheet surface, it can be removed from the steel sheet surface in the grinding process before the decarburization annealing process, and the steel sheet surface can be kept clean.
When irradiating the laser, for example, a high-power laser generally used for industrial purposes, such as a fiber laser, a YAG laser, a semiconductor laser, or a CO2 laser, can be used. The output form may be a pulsed laser or a continuous wave laser. In order to form a groove of a predetermined shape, it is preferable to set the laser output to 200 to 3000 W, the laser light focusing spot diameter in the rolling direction (diameter including 86% of the laser output) to 10 to 1000 μm, the focusing spot diameter in the sheet width direction to 10 to 1000 μm, and the laser scanning speed to 5 to 100 m/s. In addition, as a method for removing the molten material from the surface, there is a method of blowing an assist gas, for example, air, CO2 , argon, etc., is blown onto the irradiated part at the same time as the laser irradiation, while providing a suction part in the vicinity thereof, thereby reducing the reattachment of the molten material to the steel sheet surface.
The groove forming step is not essential and can be omitted.
[研削工程]
 研削工程では、冷間圧延工程後の冷延板(溝形成工程を行った場合には溝形成工程後の冷延板)の表面を研削する。その際、ヌープ硬度が1000以上かつ最大粒子径が50μmを超え500μm以下の砥粒、あるいは前記砥粒が固定された研磨紙、ロールまたはブラシを用いて、研削を行う。コイル状の冷延板に対して研削を行う場合、通板ラインを用いて連続的に研削することが生産性面および品質面で好ましい。その場合主に砥粒がブラシ内に固定されたものを用いるのが一般的である。もちろんコイルではなく板状の冷延板も用いることが可能で、その場合は研磨紙などにより研削することも可能である。
 上述したように、仕上焼鈍時にインヒビター(AlN等の結晶粒界に存在する析出物)をなるべく高温まで存在させることで、より理想Goss方位に近い結晶方位を有する結晶粒のみを粒成長させることとなり、磁束密度が向上する。
 しかしながら、インヒビターのサイズは数10nm~約100nmと非常に小さいものの、そのサイズには分布がある。サイズに分布がある場合、サイズの小さいインヒビターは低温で分解が始まる。その場合、Goss方位(理想Goss方位)に近い結晶粒のみの二次再結晶が困難となり、磁束密度を向上させることが難しい。一方、インヒビターのサイズを好ましいサイズに一定に(サイズの差が少なくなるように)制御することは工業的には極めて困難である。
 これに対し、インヒビターの分解・酸化を抑制することで、インヒビターを高温まで存在させることができれば、よりGoss方位に近い結晶粒のみの二次再結晶を生じさせることができる。また、インヒビターの分解・酸化の抑制には、脱炭焼鈍工程に母材鋼板(となる冷延板)に形成される、前述のSi系プレ酸化物が寄与することが知られている。
 しかしながら、このSi系プレ酸化物は脱炭焼鈍工程の前工程の影響を受けやすく、鋼板表面の各部位で形成状態が不均一になりやすい。その形成状態が不均一であると、鋼板面内の場所によってインヒビターの分解・酸化の抑制効果にばらつきが生じ、目的の効果が得られない。
[Grinding process]
In the grinding process, the surface of the cold-rolled sheet after the cold rolling process (the cold-rolled sheet after the groove forming process when the groove forming process is performed) is ground. At that time, grinding is performed using abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size of more than 50 μm and 500 μm or less, or abrasive paper, rolls, or brushes to which the abrasive grains are fixed. When grinding a coiled cold-rolled sheet, it is preferable in terms of productivity and quality to continuously grind using a sheet passing line. In that case, it is common to use a brush in which the abrasive grains are mainly fixed. Of course, it is also possible to use a plate-shaped cold-rolled sheet instead of a coil, in which case grinding can also be performed using abrasive paper or the like.
As described above, by allowing the inhibitors (precipitates present at grain boundaries, such as AlN) to exist at as high a temperature as possible during the final annealing, only crystal grains having a crystal orientation closer to the ideal Goss orientation are allowed to grow, thereby improving the magnetic flux density.
However, although the size of the inhibitor is very small, ranging from several tens of nm to about 100 nm, there is a size distribution. When there is a size distribution, the small size inhibitor starts to decompose at a low temperature. In that case, secondary recrystallization of only crystal grains close to the Goss orientation (ideal Goss orientation) becomes difficult, and it is difficult to improve the magnetic flux density. On the other hand, it is extremely difficult industrially to control the size of the inhibitor to a constant preferred size (so that the size difference is small).
On the other hand, if the decomposition and oxidation of the inhibitor can be suppressed so that the inhibitor can exist up to high temperatures, secondary recrystallization can occur only in crystal grains closer to the Goss orientation. It is also known that the aforementioned Si-based pre-oxides formed in the base steel sheet (the cold-rolled sheet to be used) in the decarburization annealing process contribute to the suppression of the decomposition and oxidation of the inhibitor.
However, these Si-based pre-oxides are easily affected by the process before the decarburization annealing process, and the formation state of these pre-oxides tends to be non-uniform at each part of the steel sheet surface. If the formation state is non-uniform, the inhibitor's effect of suppressing decomposition and oxidation varies depending on the location on the steel sheet surface, and the desired effect cannot be obtained.
 そのため、本実施形態に係る方向性電磁鋼板の製造方法では、仕上焼鈍後の酸化物層の形成状態を鋼板の表面の一定の厚み領域にかつできるだけ均一とするため、それらの酸化物層の均一な形成を阻害している冷間圧延等の実施に伴って鋼板表面に不均一に形成されたFe系酸化物や、油性剤あるいは極圧添加剤などの鋼板表面との反応物を、鋼板表面を研削することと合わせて脱炭焼鈍前に鋼板表面から除去する。
 具体的にはヌープ硬度が1000以上かつ最大粒子径が50μmを超え、500μm以下の砥粒、あるいは前記砥粒が固定された研磨紙、ロールまたはブラシを用いて、鋼板の少なくとも一方の面を研削することで鋼板表面からFe系酸化膜や反応物を除去する。
 ヌープ硬度が1000未満であると、鋼板に対して砥粒の硬さが不足するため研削が行いにくくなる。または研削効率が低下する。また、砥粒の最大粒子径が50μm以下であると、鋼板表面の粗さに対して砥粒の粒子径が相対的に小さくなるため研削が行いにくくなる。または研削効率が低下する。一方、最大粒子径が500μmを超えると、鋼板表面の粗さに対して砥粒の粒子径が相対的に大きくなりすぎるため研削時に表面きずが目立ちやすく製品の外観の品位が低下する。ヌープ硬度の上限は限定されないが、硬い砥粒は脆くなりやすく、砥粒を含む研磨紙やロール、ブラシなどの連続使用にて研削不良などの支障が生じやすいため、8000以下が好ましく、5000以下がより好ましい。砥粒としては主にアルミナ(ヌープ硬度約2000)、あるいは炭化珪素(ヌープ硬度約2500)、窒化ほう素(ヌープ硬度約5000)、ダイヤモンド(ヌープ硬度約7000)などが用いられる。
 具体的に、冷延板を研削する際の工程について砥粒入りブラシロールを用いた場合を例にとって説明する。ブラシロールは金属製ロールに表面に樹脂ライニングを行い、アクリル樹脂などに作成した繊維に前記砥粒を埋め込んだものを、ロール表面の樹脂層表面に毛状に植え付けたものである。連続通板ラインでの適用を例にとり説明すると、ブラシロールにより鋼板を研削する際の鋼板の通板速度はおよそ20~200mpm(meter per minute)の範囲であり鋼板を移動させながら、鋼板とブラシロールが接触する位置では鋼板通板方向と対向する方向に回転するブラシロールを鋼板に接触させて鋼板を研削する。ブラシロールにて鋼板を研削する際には鋼板をブラシロールとアイドルロールで挟み込み、さらに通板ライン(パスライン)に対してブラシロールをアイドルロール側に圧下押し込み研削を行う。この時の圧下量は1.0~5.0mmとする。圧下量が小さいと研削量が小さくなる。一方、研削量を増加させるために圧下量を大きくするとブラシロールと鋼板の通板方向が対向するため、鋼板とブラシロール間の摩擦力により鋼板がスムーズに通板せず寸動が生じるいわゆる「ビビリ」が生じやすくなる。「ビビリ」は鋼板表面の研削が不均一となるため極めて好ましくなく避けるべき事象である。ブラシロール径は通常200~500mm程度のものが用いられる。小さすぎるとブラシや砥粒の摩耗が早く、大きすぎると金属製ロールが大きくなりすぎ設備が大掛かりとなるためである。ブラシは前記のように鋼板の通板方向と対向方向に回転させ研削を行う。鋼板の通板速度は前記のように20~200mpmの範囲であるが、その場合研削速度(ブラシロールであれば回転速度に相当)は、は500mpm以上とする。研削速度(ブラシロールであれば回転速度)が小さいと、研削量が不十分となり、Si系プレ酸化物が十分形成されないことで、扁平結晶粒の形成が不十分となる。
 一方、ブラシロールの場合、回転速度が2000mpmより大きくなるとブラシロールと鋼板との摩擦力が大きくなりすぎ、前記の「ビビリ」が生じるだけでなくブラシロールを駆動するモータに対して過負荷が生じる。そのため、ブラシロールの回転速度は2000mpm以下が好ましい。
 また、冷延板の表面に不均一に形成したFe系酸化膜や反応物十分な除去を行うため、研削量は、少なくとも一方の表面において、0.10g/m以上である。一方で、研削量が10.0g/m超であると、Fe系酸化膜や反応物は鋼板表面から十分に除去される一方、砥粒の使用寿命が短くなることや研削に伴いスラッジ発生が顕著となり、その処理に手間がかかることは押し込み等による鋼板表面の欠陥原因となる。そのため、研削量は10.0g/m以下である。
 研削量は研削前後の鋼板の重量差から確認することができる。研削量は片面当りの研削量である。研削を両面行った場合は両面あたりの研削量として求められ、便宜的にその数値を半分として前後のFe系酸化膜や反応物を鋼板全面から除去する観点で、研削量が好適な範囲は0.30g/m以上3.0g/m以下である。
Therefore, in the manufacturing method of the grain-oriented electrical steel sheet according to this embodiment, in order to make the state of formation of the oxide layer after finish annealing as uniform as possible over a certain thickness region on the surface of the steel sheet, Fe-based oxides that have been formed non-uniformly on the steel sheet surface during cold rolling, etc., and that inhibit the uniform formation of such oxide layers, as well as reaction products with the steel sheet surface such as oiliness agents or extreme pressure additives, are removed from the steel sheet surface before decarburization annealing in addition to grinding the steel sheet surface.
Specifically, at least one surface of the steel sheet is ground with abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size exceeding 50 μm and not exceeding 500 μm, or with abrasive paper, roll or brush to which the abrasive grains are fixed, thereby removing the Fe-based oxide film and reaction products from the surface of the steel sheet.
If the Knoop hardness is less than 1000, the hardness of the abrasive grains is insufficient for the steel plate, making grinding difficult. Or the grinding efficiency is reduced. Also, if the maximum particle size of the abrasive grains is 50 μm or less, the particle size of the abrasive grains becomes relatively small compared to the roughness of the steel plate surface, making grinding difficult. Or the grinding efficiency is reduced. On the other hand, if the maximum particle size exceeds 500 μm, the particle size of the abrasive grains becomes too large relative to the roughness of the steel plate surface, making surface scratches more noticeable during grinding and reducing the quality of the product's appearance. Although there is no upper limit for the Knoop hardness, hard abrasive grains tend to become brittle, and continuous use of abrasive paper, rolls, brushes, etc. containing abrasive grains tends to cause problems such as grinding defects, so that the Knoop hardness is preferably 8000 or less, more preferably 5000 or less. The abrasive grains are mainly made of alumina (Knoop hardness: about 2000), silicon carbide (Knoop hardness: about 2500), boron nitride (Knoop hardness: about 5000), diamond (Knoop hardness: about 7000), or the like.
Specifically, the process of grinding a cold-rolled sheet will be described using an example of a brush roll containing abrasive grains. The brush roll is a metal roll with a resin lining on the surface, and the abrasive grains are embedded in fibers made of acrylic resin or the like, which are then planted in the form of hairs on the resin layer surface of the roll. To explain the application to a continuous sheet passing line as an example, the sheet passing speed of the steel sheet when grinding the steel sheet with the brush roll is in the range of about 20 to 200 mpm (meter per minute), and the steel sheet is ground by contacting the brush roll, which rotates in the direction opposite to the sheet passing direction, with the steel sheet while moving the steel sheet at the position where the steel sheet and the brush roll contact each other. When grinding the steel sheet with the brush roll, the steel sheet is sandwiched between the brush roll and the idle roll, and the brush roll is pressed down against the sheet passing line (pass line) to the idle roll side to perform grinding. The amount of reduction at this time is 1.0 to 5.0 mm. If the amount of reduction is small, the amount of grinding is small. On the other hand, if the reduction amount is increased to increase the amount of grinding, the brush roll and the steel sheet pass in opposite directions, and the friction between the steel sheet and the brush roll makes it easy for the steel sheet to pass smoothly and move in an inching motion, which is called "chattering". "Chattering" is an extremely undesirable phenomenon that should be avoided because it causes uneven grinding of the steel sheet surface. Brush rolls with a diameter of about 200 to 500 mm are usually used. If the diameter is too small, the brush and abrasive grains wear out quickly, and if the diameter is too large, the metal roll becomes too large and the equipment becomes large. As mentioned above, the brush is rotated in the direction opposite to the passing direction of the steel sheet to perform grinding. The passing speed of the steel sheet is in the range of 20 to 200 mpm as mentioned above, and in this case, the grinding speed (corresponding to the rotation speed in the case of a brush roll) is set to 500 mpm or more. If the grinding speed (rotation speed in the case of a brush roll) is low, the amount of grinding becomes insufficient, and the Si-based preoxides are not sufficiently formed, resulting in insufficient formation of flat crystal grains.
On the other hand, in the case of a brush roll, if the rotation speed exceeds 2000 mpm, the frictional force between the brush roll and the steel plate becomes too large, causing not only the above-mentioned "chatter" but also an overload on the motor driving the brush roll. Therefore, the rotation speed of the brush roll is preferably 2000 mpm or less.
In addition, in order to sufficiently remove the Fe-based oxide film and reactants unevenly formed on the surface of the cold-rolled sheet, the grinding amount is 0.10 g/ m2 or more on at least one surface. On the other hand, if the grinding amount exceeds 10.0 g/ m2 , while the Fe-based oxide film and reactants are sufficiently removed from the steel sheet surface, the service life of the abrasive grains is shortened and sludge generation due to grinding becomes significant, and the processing of the sludge is time-consuming, which causes defects on the steel sheet surface due to pressing, etc. Therefore, the grinding amount is 10.0 g/ m2 or less.
The amount of grinding can be confirmed from the weight difference of the steel sheet before and after grinding. The amount of grinding is the amount of grinding per side. When grinding is performed on both sides, the amount of grinding per both sides is obtained, and for convenience, this value is halved, and from the viewpoint of removing the front and rear Fe-based oxide films and reaction products from the entire surface of the steel sheet, the preferable range of the amount of grinding is 0.30 g/ m2 or more and 3.0 g/ m2 or less.
 後述のように冷延板に対し研削工程前に溝形成を行った場合において、好適な溝の深さは10~30μmであり、溝内部の鋼板表面も研削されるので、研削による効果は、冷延板表面に形成された溝内部表面にも有効である。そのため、脱炭焼鈍、仕上焼鈍を経た母材鋼板の溝の内部の表面側にも扁平結晶粒(溝内扁平結晶粒)が形成される。 As described below, when grooves are formed on cold-rolled sheet prior to the grinding process, the optimum groove depth is 10 to 30 μm, and the steel sheet surface inside the groove is also ground, so the effect of grinding is also effective on the inner surface of the groove formed on the surface of the cold-rolled sheet. Therefore, flat crystal grains (flat crystal grains inside the groove) are also formed on the surface side inside the groove of the base steel sheet that has undergone decarburization annealing and finish annealing.
[接触工程]
 接触工程では、研削工程後、脱炭焼鈍工程前に、冷延板の表面を、pH4.0~10.0の水性液に接触させる。これにより、研削時に鋼板表面に付着した砥粒や研削時に発生した鋼スラッジを除去する。水性液としては、イオン交換水でも良く、それらにCaやMgなどのミネラルを含んだものでも良く、対イオンとして炭酸やケイ酸を含むものでも良い。また硫酸や硝酸、りん酸、炭酸、カルボン酸、ホスホン酸などから選ばれる酸を0.01wt%程度加え、アルカリ金属やアルカリ土類金属などでpH調整したものを用いてもよい。特にカルボン酸やホスホン酸は砥粒やスラッジを鋼板から除去する効果が高い。イオン交換水の場合、溶損防止の観点から、その電気伝導度は、0.1~10μS/cmであることが好ましい。
 pHが4.0未満であると、酸性水性液による鋼板表面のエッチングにより鋼板の溶損が発生する。pHが10.0超であると、アルカリ性水性液作用により、研削後の金属面の酸化を促すため、研削工程で鋼板表面に不均一に形成されたFe系酸化物を除去したにも関わらず、その効果を減じるものとなる。この場合、仕上焼鈍後の酸化物層および酸化物粒子の均一な形成という当初の目的の効果が十分に得られない。
 上記の目的のためには、接触時間は0.1~60秒が好ましく、1~60秒がより好ましく、5~60秒がさらに好ましい。水性液の流量は、1~100L/minが好ましい。
 また、接触工程を行うことで、砥粒やスラッジを鋼板表面から除去でき、仕上焼鈍後の酸化物層および酸化物粒子の均一形成の阻害因子を回避できる。
 研削工程中にも冷延板の表面を水性液に接触させてもよいが、研削工程後に接触工程を行わなければ、上記の効果は得られない。
[Contacting step]
In the contact step, after the grinding step and before the decarburization annealing step, the surface of the cold-rolled sheet is brought into contact with an aqueous liquid having a pH of 4.0 to 10.0. This removes the abrasive grains attached to the surface of the steel sheet during grinding and the steel sludge generated during grinding. The aqueous liquid may be ion-exchanged water, or may contain minerals such as Ca and Mg, or may contain carbonic acid or silicic acid as a counter ion. In addition, an acid selected from sulfuric acid, nitric acid, phosphoric acid, carbonic acid, carboxylic acid, phosphonic acid, etc. may be added at about 0.01 wt %, and the pH may be adjusted with an alkali metal or alkaline earth metal. In particular, carboxylic acid and phosphonic acid are highly effective in removing abrasive grains and sludge from the steel sheet. In the case of ion-exchanged water, the electrical conductivity is preferably 0.1 to 10 μS/cm from the viewpoint of preventing dissolution.
If the pH is less than 4.0, the steel sheet surface is etched by the acidic aqueous solution, causing corrosion of the steel sheet. If the pH is more than 10.0, the alkaline aqueous solution acts to promote oxidation of the metal surface after grinding, reducing the effect of removing the Fe-based oxides that were unevenly formed on the steel sheet surface in the grinding process. In this case, the initial intended effect of uniformly forming an oxide layer and oxide particles after finish annealing cannot be sufficiently obtained.
For the above purpose, the contact time is preferably 0.1 to 60 seconds, more preferably 1 to 60 seconds, and even more preferably 5 to 60 seconds. The flow rate of the aqueous liquid is preferably 1 to 100 L/min.
Furthermore, by carrying out the contact step, abrasive grains and sludge can be removed from the surface of the steel sheet, and factors that inhibit the uniform formation of an oxide layer and oxide particles after the finish annealing can be avoided.
The surface of the cold-rolled sheet may be brought into contact with the aqueous liquid during the grinding step, but the above-mentioned effect cannot be obtained unless the contacting step is carried out after the grinding step.
[脱炭焼鈍工程]
 脱炭焼鈍工程では、研削工程後の冷延板に、脱炭焼鈍を行う。この脱炭焼鈍では、鋼板から磁気特性に悪影響を及ぼすCが除去(脱炭)されるとともに、冷延板が一次再結晶する。
 脱炭焼鈍条件は限定されないが、脱炭のための窒素水素混合雰囲気とし加湿により酸素ポテンシャルを高めた雰囲気にて焼鈍がなされる。また合わせて一次再結晶組織を形成させることが必要なため、再結晶に必要な焼鈍温度と当該焼鈍温度で脱炭可能な酸素ポテンシャルの観点で加湿温度(露点)が決定される。
 焼鈍温度は700~900℃程度であり、一般的に連続焼鈍工程にて焼鈍がなされるため、60秒程度の均熱がなされる。前記のように脱炭のため酸素ポテンシャルの高い加湿雰囲気で焼鈍するので、いわゆる鋼中に含まれるSiが鋼板表面に層状の酸化物としてまた鋼板内部に酸化物粒子として形成することが知られている(以下、前記同様Si系プレ酸化物と称する)。
[Decarburization annealing process]
In the decarburization annealing process, the cold-rolled sheet after the grinding process is subjected to decarburization annealing, which removes (decarburizes) C, which adversely affects magnetic properties, from the steel sheet and causes primary recrystallization of the cold-rolled sheet.
The decarburization annealing conditions are not limited, but the annealing is performed in a nitrogen/hydrogen mixed atmosphere for decarburization, in which the oxygen potential is increased by humidification. In addition, since it is necessary to form a primary recrystallized structure, the humidification temperature (dew point) is determined from the viewpoints of the annealing temperature required for recrystallization and the oxygen potential capable of decarburization at the annealing temperature.
The annealing temperature is about 700 to 900° C., and since annealing is generally performed in a continuous annealing process, soaking is performed for about 60 seconds. As described above, since annealing is performed in a humid atmosphere with a high oxygen potential for decarburization, it is known that the so-called Si contained in the steel forms a layered oxide on the steel sheet surface and oxide particles inside the steel sheet (hereinafter, as above, these will be referred to as Si-based pre-oxides).
[窒化処理工程]
 窒化処理工程では、鋼板の窒素量を増加させ窒化物を増加させることで、仕上焼鈍工程にてよりGoss方位に近い結晶粒の二次再結晶を促進させる。窒化処理工程では、窒化処理後の鋼板の窒素量を0.015~0.050質量%とすることが好ましい。窒化処理の方法は限定されず、公知の方法でよい。
 窒化処理工程は必須ではなく、省略してもよい。窒化処理を行う場合、脱炭焼鈍工程と仕上焼鈍工程の間に行うことが好ましい。
[Nitriding process]
In the nitriding process, the nitrogen content of the steel sheet is increased to increase the amount of nitrides, thereby promoting secondary recrystallization of crystal grains closer to the Goss orientation in the finish annealing process. In the nitriding process, the nitrogen content of the steel sheet after the nitriding process is preferably 0.015 to 0.050 mass%. The method of the nitriding process is not limited, and any known method may be used.
The nitriding step is not essential and may be omitted. If nitriding is performed, it is preferable to perform it between the decarburization annealing step and the finish annealing step.
[仕上焼鈍工程]
 仕上焼鈍工程では、脱炭焼鈍工程後(窒化処理を行った場合には窒化処理工程後)の冷延板に焼鈍分離剤を塗布し、仕上焼鈍し、母材鋼板(珪素鋼板)となる冷延板の表面にMg、Al、及びSiの1種以上の酸化物からなる酸化物層を形成する。
 仕上焼鈍は、焼鈍時間が長いため通常、鋼板をコイル状に巻き取ってバッチ焼鈍にて行う。鋼板温度が1200℃程度まで高まるため、コイル状の鋼板が焼付かないように、焼鈍分離剤が塗布される。焼鈍分離剤は、一般に主としてMgOが使用される。このような焼鈍分離剤を塗布してから仕上焼鈍を行うことで、焼鈍分離剤に含まれるMgと、脱炭焼鈍工程で、鋼板表面に形成されたSi系プレ酸化物とが固相反応し、冷延板の表面にMg、およびSiの1種以上の酸化物からなる酸化物層が形成される。例えば、MgOを含む焼鈍分離剤を用いた場合、酸化物層として、主にフォルステライト(MgSiO)被膜の層が形成される。また鋼中にインヒビターとして含有されるAlNは仕上焼鈍の後半で鋼板表面において、焼鈍雰囲気中の酸素により酸化されるが、その際にスピネル(MgAl)あるいはアルミナ(Al)、あるいはムライト(2SiO・3Al)として形成する。実質的にMgOのみからなる焼鈍分離剤を使用する場合は、ほぼスピネル(MgAl)として生成する。
 また、仕上焼鈍工程では、鋼板の加熱により脱炭焼鈍工程で得られた一次再結晶粒を二次再結晶させ、Goss方位を有する結晶粒を得るとともに、1200℃に近い焼鈍温度で所定時間保持することで、インヒビターとしての役割を終えた窒化物(例:AlN)や硫化物(例:MnS)などの鋼中析出物を磁気特性に悪影響を及ぼさないように除去(純化)する。
 本実施形態に係る方向性電磁鋼板の製造方法では、仕上焼鈍に供する冷延板において、インヒビターのサイズが通常よりも大きくかつ均一に制御されている。そのため、Goss方位に近い結晶粒(Goss方位に近い方位を有する結晶粒)のみの二次再結晶が生じる。
 仕上焼鈍の条件は限定されないが、例えば室温から10~100℃/hの範囲で昇温し、一般的にGoss方位に二次再結晶が生じるとされている900~1000℃の温度範囲においては5~20℃/hで昇温し、Goss方位に優先成長(二次再結晶)を促し、その後前記のように1200℃付近(例えば1150~1250℃)で役割を終えたインヒビターの純化を行う。その後は水素や窒素などの非酸化雰囲気で徐冷しコイルを炉から取り出す。
[Finish annealing process]
In the final annealing process, an annealing separator is applied to the cold-rolled sheet after the decarburization annealing process (or after the nitriding process if nitriding has been performed), and the cold-rolled sheet is then finish-annealed to form an oxide layer made of one or more oxides of Mg, Al, and Si on the surface of the cold-rolled sheet which becomes the base steel sheet (silicon steel sheet).
Since the annealing time is long, the steel sheet is usually wound into a coil and then batch annealed. Since the temperature of the steel sheet rises to about 1200°C, an annealing separator is applied to prevent the coiled steel sheet from seizing. MgO is generally used as the annealing separator. By applying such an annealing separator and then performing the finish annealing, Mg contained in the annealing separator reacts with the Si-based pre-oxide formed on the steel sheet surface in the decarburization annealing process in a solid phase, and an oxide layer consisting of one or more oxides of Mg and Si is formed on the surface of the cold-rolled sheet. For example, when an annealing separator containing MgO is used, a layer of forsterite (Mg 2 SiO 4 ) coating is mainly formed as the oxide layer. Furthermore, AlN contained in steel as an inhibitor is oxidized by oxygen in the annealing atmosphere on the surface of the steel sheet in the latter half of the finish annealing, and at that time, it forms spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), or mullite (2SiO 2 .3Al 2 O 3 ).When an annealing separator consisting essentially of MgO is used, it forms almost entirely as spinel (MgAl 2 O 4 ).
In the final annealing process, the steel sheet is heated to cause secondary recrystallization of the primary recrystallized grains obtained in the decarburization annealing process, thereby obtaining crystal grains having the Goss orientation. By holding the steel sheet at an annealing temperature close to 1200°C for a predetermined time, precipitates in the steel, such as nitrides (e.g., AlN) and sulfides (e.g., MnS), which have completed their role as inhibitors, are removed (purified) so as not to adversely affect the magnetic properties.
In the method for producing a grain-oriented electrical steel sheet according to the present embodiment, the size of the inhibitor is controlled to be larger and more uniform than usual in the cold-rolled sheet to be subjected to finish annealing, so that secondary recrystallization occurs only in grains close to the Goss orientation (grains having an orientation close to the Goss orientation).
The conditions for the finish annealing are not limited, but for example, the temperature is raised from room temperature at a rate of 10 to 100°C/h, and in the temperature range of 900 to 1000°C, where secondary recrystallization in the Goss orientation generally occurs, the temperature is raised at a rate of 5 to 20°C/h to promote preferential growth (secondary recrystallization) in the Goss orientation, and then, as described above, the inhibitor that has completed its role is purified at around 1200°C (for example, 1150 to 1250°C).Then, the coil is slowly cooled in a non-oxidizing atmosphere such as hydrogen or nitrogen, and then removed from the furnace.
[絶縁被膜形成工程]
 絶縁被膜形成工程では、仕上焼鈍工程後の前記酸化物層の表面に、絶縁被膜層を形成する。
 例えば、絶縁被膜層は、仕上焼鈍後の冷延板(母材鋼板+酸化物層)に、燐酸又は燐酸塩、コロイド状シリカ、及び、無水クロム酸又はクロム酸塩を含むコ-ティング溶液を塗布し、300~950℃で10秒以上焼き付け乾燥することにより、形成することができる。焼付時の雰囲気は特に制限されるものではないが、鋼板の酸化は抑制した方が好ましく窒素やアルゴン、水素などの非酸化雰囲気で行うことが好ましい。被膜種としては前記のりん酸塩ではなくほう酸とアルミナゾルを主成分とするコーティング液あるいは、ほう酸とアルミノケイ酸塩(カオリン鉱物など)などを主成分とするコーティング液を使用し、ほう酸アルミを主成分とする絶縁被膜を形成することも可能である。ほう酸アルミ適用により大きな張力を鋼板に付与できるので、鉄損が低減できる。
 この工程では前記の仕上焼鈍におけるバッチ焼鈍にてコイル形状となった鋼板を、連続焼鈍にて平坦化する役割も果たしている。即ち絶縁被膜の焼付とコイル形状の鋼板を800℃程度で一定の張力を付与しながら連続焼鈍を行い、平坦な鋼板を得る。そのため平坦化焼鈍工程とも呼ばれることがある。
[Insulating film forming process]
In the insulating coating forming step, an insulating coating layer is formed on the surface of the oxide layer after the final annealing step.
For example, the insulating coating layer can be formed by applying a coating solution containing phosphoric acid or a phosphate, colloidal silica, and chromic anhydride or a chromate to a cold-rolled sheet (base steel sheet + oxide layer) after finish annealing, and baking and drying at 300 to 950 ° C for 10 seconds or more. The atmosphere during baking is not particularly limited, but it is preferable to suppress oxidation of the steel sheet, and it is preferable to perform the baking in a non-oxidizing atmosphere such as nitrogen, argon, or hydrogen. It is also possible to use a coating solution mainly composed of boric acid and alumina sol instead of the above-mentioned phosphate, or a coating solution mainly composed of boric acid and aluminosilicate (kaolin mineral, etc.), etc., as the coating type, and form an insulating coating mainly composed of aluminum borate. The application of aluminum borate can impart a large tension to the steel sheet, thereby reducing iron loss.
This process also plays a role in flattening the coiled steel sheet produced by the batch annealing in the above-mentioned final annealing, by continuous annealing. That is, the insulating coating is baked and the coiled steel sheet is subjected to continuous annealing at about 800°C while applying a certain tension to obtain a flat steel sheet. For this reason, it is sometimes called the flattening annealing process.
 これらの工程を経て、珪素鋼板(母材鋼板)、酸化物層、及び絶縁被膜層を備える方向性電磁鋼板を得ることができる。 Through these processes, a grain-oriented electrical steel sheet can be obtained that comprises a silicon steel sheet (base steel sheet), an oxide layer, and an insulating coating layer.
 (実施例1)
 Si:3.25質量%、Mn:0.13質量%、S:0.006質量%、C:0.050質量%、酸可溶性Al:0.025質量%、N:0.007質量%を含む溶鋼を、連続鋳造して厚み300mmのスラブを得た。
 スラブを、窒素雰囲気に調整した電気炉内にて1150℃で60分間加熱後、粗熱延し板厚40mmの鋼板を得てから、さらに、仕上圧延を行って板厚が2.3mmの熱延板を得た。
 その後、窒素雰囲気に調整した連続焼鈍炉にて1100℃で60秒加熱後冷却する熱延板焼鈍を行った。
 得られた鋼板(熱延板)を10%塩酸にて酸洗し、鋼板のスケールを除去した。
 その後、冷間圧延を行い板厚が0.22mmの冷延板を得た。
 得られた冷延板を、表1に記載した各種の砥粒入りのブラシを用いて、pH=2.5~12.0のイオン交換水を流しながら表面を研削した。また、研削終了後、pH=2.5~12.0のイオン交換水を表面に接触させた。ただし、表1に示すように、比較として一部の鋼板については、研削を行わない、研削後イオン交換水に接触させない鋼板とした。接触に際しては、接触時間は5秒、水性液の流量は10L/min、とした。
Example 1
Molten steel containing 3.25 mass% Si, 0.13 mass% Mn, 0.006 mass% S, 0.050 mass% C, 0.025 mass% acid-soluble Al, and 0.007 mass% N was continuously cast to obtain a slab with a thickness of 300 mm.
The slab was heated at 1150° C. for 60 minutes in an electric furnace adjusted to a nitrogen atmosphere, and then roughly hot rolled to obtain a steel plate having a thickness of 40 mm. The slab was then finish rolled to obtain a hot rolled plate having a thickness of 2.3 mm.
Thereafter, the hot-rolled sheet was annealed in a continuous annealing furnace adjusted to a nitrogen atmosphere by heating at 1100° C. for 60 seconds and then cooling.
The obtained steel sheet (hot-rolled sheet) was pickled with 10% hydrochloric acid to remove scale from the steel sheet.
Thereafter, cold rolling was carried out to obtain a cold-rolled sheet having a thickness of 0.22 mm.
The surface of the obtained cold-rolled sheet was ground using various brushes containing abrasive grains as shown in Table 1 while flowing ion-exchanged water having a pH of 2.5 to 12.0. After grinding, the surface was brought into contact with ion-exchanged water having a pH of 2.5 to 12.0. However, as shown in Table 1, for comparison, some steel sheets were not ground, and were not brought into contact with ion-exchanged water after grinding. During the contact, the contact time was 5 seconds, and the flow rate of the aqueous liquid was 10 L/min.
 研削及び水性液との接触を行った鋼板(いずれも行わなかった場合には冷間圧延後の冷延板、または水性液との接触を行わなかった場合には研削工程後の冷延板)について、1000mm×1000mmの試料を採取し、目視にて観察して外観を評価した。
 判断基準は以下の通りとした。
5:非常に美麗
4:美麗
3:一部スジきず有
2:付着物凹凸有
1:全面スジきず有り
 外観の評価が1であった場合には、一般的な外観の要求が満足できないとして、その後の評価を行わなかった。
For the steel sheets that had been ground and contacted with an aqueous liquid (the cold-rolled sheets after cold rolling if neither was performed, or the cold-rolled sheets after the grinding step if no contact with an aqueous liquid was performed), samples of 1000 mm x 1000 mm were taken and visually observed to evaluate the appearance.
The criteria for judgment were as follows:
5: Very beautiful 4: Beautiful 3: Some streaks present 2: Unevenness of attached matter present 1: Streaks present over the entire surface When the appearance was rated as 1, it was determined that the general requirements for appearance were not met, and further evaluation was not carried out.
 また、研削及び水性液との接触を行った鋼板(いずれも行わなかった場合には冷間圧延後の冷延板、または水性液との接触を行わなかった場合には研削工程後の冷延板)について脱炭焼鈍を行った。焼鈍雰囲気は窒素50%+水素50%雰囲気とし、酸素ポテンシャル(PH2O/PH2)を0.33とした。酸素ポテンシャルは、雰囲気を炉内に導入する前に加湿し水分量を調整した。この雰囲気で、850℃で60秒間均熱することで脱炭焼鈍を行った。
 その後、窒素-水素-アンモニア雰囲気にて750℃で30秒間均熱して窒化処理を行った。その際、窒化処理後の窒素含有量が0.020質量%となるようにアンモニア濃度を調整した。
 その後、MgOを主体とする焼鈍分離剤の水スラリーを調整し、鋼板に、片面当りの乾燥後付着量が6g/mとなるように鋼板の両面に焼鈍分離剤を塗布し、乾燥させた。その際に焼鈍分離剤の組成としてはMgO:100質量部に対してTiO:5重量部とし、FeClをClとして0.020質量%とした。
 その後、仕上焼鈍として、バッチ焼鈍炉に試料を入れ窒素50%+水素50%雰囲気にて平均加熱速度20℃/hで昇温し、1200℃まで昇温後、雰囲気を水素100%に切り替え20h均熱し、その後室温まで降温した。
 仕上焼鈍完了後、炉から鋼板を取り出し、焼鈍分離剤を水洗除去した。この際、鋼板(珪素鋼板)の表面には、フォルステライトからなるグラス被膜と、グラス被膜と鋼板との間に形成された粒状のスピネル(MgAl)、アルミナ(Al)及び/またはムライトと、からなる酸化物層が形成されていた。
 この鋼板(母材鋼板である珪素鋼板の表面に酸化物層であるグラス被膜が形成された鋼板)に、りん酸アルミニウム、コロイダルシリカ、無水クロム酸からなる絶縁被膜成分を含有する薬液を塗布し、窒素雰囲気で800℃まで加熱し30秒間保持することで、焼き付けを行い、絶縁被膜層を形成した。絶縁被膜層の付着量は片面当り4.8g/mであった。
In addition, decarburization annealing was performed on the steel sheet that had been ground and contacted with an aqueous liquid (the cold-rolled sheet after cold rolling when neither was performed, or the cold-rolled sheet after the grinding process when no contact with an aqueous liquid was performed). The annealing atmosphere was a 50% nitrogen + 50% hydrogen atmosphere, and the oxygen potential (P H2O /P H2 ) was 0.33. The oxygen potential was adjusted by humidifying the atmosphere before introducing it into the furnace. In this atmosphere, decarburization annealing was performed by soaking at 850°C for 60 seconds.
Thereafter, the material was subjected to nitriding treatment by soaking in a nitrogen-hydrogen-ammonia atmosphere at 750° C. for 30 seconds, with the ammonia concentration adjusted so that the nitrogen content after the nitriding treatment was 0.020 mass %.
Thereafter, an aqueous slurry of an annealing separator mainly composed of MgO was prepared, and the annealing separator was applied to both sides of the steel sheet so that the post-dry adhesion amount per side was 6 g/ m2 , and then dried. The composition of the annealing separator was 100 parts by mass of MgO, 5 parts by weight of TiO2 , and 0.020% by mass of FeCl2 as Cl.
Then, as a finish annealing, the sample was placed in a batch annealing furnace and heated at an average heating rate of 20°C/h in an atmosphere of 50% nitrogen and 50% hydrogen. After heating up to 1200°C, the atmosphere was switched to 100% hydrogen and soaked for 20 hours, and then cooled to room temperature.
After the completion of the final annealing, the steel sheet was taken out of the furnace and the annealing separator was removed by washing with water. At this time, a glass coating made of forsterite and an oxide layer made of granular spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ) and/or mullite were formed on the surface of the steel sheet (silicon steel sheet).
A chemical solution containing insulating coating components consisting of aluminum phosphate, colloidal silica, and chromic anhydride was applied to this steel sheet (a steel sheet having a glass coating, which is an oxide layer, formed on the surface of a silicon steel sheet, which is a base steel sheet), and the sheet was baked by heating to 800°C in a nitrogen atmosphere and holding for 30 seconds to form an insulating coating layer. The amount of the insulating coating layer attached was 4.8 g/ m2 per side.
 また、得られた珪素鋼板(珪素鋼板、グラス被膜(酸化物層)、及び絶縁被膜層を有する)において、酸化物層との界面から板厚方向に10μmの範囲の酸化物、および扁平結晶粒の評価を上述の方法で行った。結果を表2に示す。
 本実施例では、表に示す通り、酸化物層との界面から板厚方向に10μmの範囲における円相当径が0.1~3.0μmのMg、Al、Siの1種以上の酸化物は、スピネル(MgAl)、アルミナ(Al)、及びムライト(2SiO・3Al)であり、すなわち、Mg、Al、及びSiを含む酸化物であった。
In addition, the oxides and flat crystal grains in the range of 10 μm from the interface with the oxide layer in the sheet thickness direction of the obtained silicon steel sheet (having the silicon steel sheet, the glass coating (oxide layer), and the insulating coating layer) were evaluated by the above-mentioned method. The results are shown in Table 2.
In this example, as shown in the table, one or more oxides of Mg, Al, and Si having a circle equivalent diameter of 0.1 to 3.0 μm within a range of 10 μm from the interface with the oxide layer in the plate thickness direction were spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), and mullite (2SiO 2.3Al 2 O 3 ), that is, oxides containing Mg, Al, and Si.
 得られた方向性電磁鋼板(珪素鋼板、グラス被膜(酸化物層)、及び絶縁被膜層を有する)から、板幅方向が30mm×圧延方向が280mmの試料を36枚剪断によって採取し、これらの試料に、窒素雰囲気において800℃で2h保持する歪取り焼鈍を行った。
 その後JIS-C-2550-1:2011に記載されたエプスタイン法にて規定されている磁気特性測定法にて、磁化力800A/m励磁時の磁束密度(以下B8)と励磁周波数50Hz、磁束密度1.7Tに励磁した時の鉄損(以下W17/50)を測定した。
 B8が1.90T以上かつW17/50が0.85W/kg以下であれば、優れた磁気特性を有すると判断した。結果を表2に示す。
From the obtained grain-oriented electrical steel sheet (having a silicon steel sheet, a glass coating (oxide layer), and an insulating coating layer), 36 samples each measuring 30 mm in the sheet width direction and 280 mm in the rolling direction were taken by shearing, and these samples were subjected to stress relief annealing by holding them at 800°C for 2 hours in a nitrogen atmosphere.
Thereafter, the magnetic flux density when excited with a magnetizing force of 800 A/m (hereinafter referred to as B8) and the iron loss when excited with an excitation frequency of 50 Hz and a magnetic flux density of 1.7 T (hereinafter referred to as W17/50) were measured using the magnetic property measurement method specified by the Epstein method described in JIS-C-2550-1:2011.
If B8 was 1.90 T or more and W17/50 was 0.85 W/kg or less, it was determined that the material had excellent magnetic properties. The results are shown in Table 2.
 また、得られた方向性電磁鋼板から、圧延方向に300mm×幅方向に300mmの試料を採取し、この試料を直径が20mm(φ20mm)のSUS304製の丸棒に巻き付け、巻戻した後、巻き付けた内側の凹部の絶縁被膜を観察することで絶縁被膜の密着性を評価した。
 判断基準は以下の通りとした。
G(GOOD):被膜剥離なし
P(POOR):一部被膜剥離
B(BAD):全面被膜剥離
 結果を表2に示す。
In addition, a sample of 300 mm in the rolling direction × 300 mm in the width direction was taken from the obtained grain-oriented electrical steel sheet, and this sample was wound around a SUS304 round bar with a diameter of 20 mm (φ20 mm). After unwinding, the insulating coating in the recess on the inside where it was wound was observed to evaluate the adhesion of the insulating coating.
The criteria for judgment were as follows:
G (GOOD): no coating peeling off P (POOR): partial coating peeling off B (BAD): full coating peeling off The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、表2に示す結果より、本発明の条件で鋼板の表面の研削及び水性液との接触を行った例では、珪素鋼板と前記酸化物層との界面から板厚方向に10μmの範囲に、円相当径で0.1~3.0μmである、Mg、Al、Siの1種以上の酸化物が、0.010~0.200個/μmの密度で存在し、板厚方向の断面において、珪素鋼板と酸化物層との前記界面の長さに占める、扁平結晶粒の粒界の長さが、70%以上であった。また、その結果、これらの例では、磁気特性に優れていた。
 一方、所定の水性液との接触を行わない、または研削条件が好ましくない例では、通常求められる外観を満足しない、あるいは、表層部の酸化物が十分に形成されないまたは扁平結晶粒が十分に形成されなかった。また、その結果、磁気特性に劣っていた(外観不良の一部については評価せず)。
From the results shown in Tables 1 and 2, in the examples where the surface of the steel sheet was ground and brought into contact with an aqueous liquid under the conditions of the present invention, one or more oxides of Mg, Al, and Si having a circle equivalent diameter of 0.1 to 3.0 μm were present at a density of 0.010 to 0.200 pieces/ μm2 within a range of 10 μm in the sheet thickness direction from the interface between the silicon steel sheet and the oxide layer, and the length of the grain boundary of the flat crystal grains accounted for 70% or more of the length of the interface between the silicon steel sheet and the oxide layer in the cross section in the sheet thickness direction. Furthermore, as a result, these examples had excellent magnetic properties.
On the other hand, in the cases where the contact with the prescribed aqueous liquid was not performed or the grinding conditions were not favorable, the appearance required in general was not satisfied, or the oxide in the surface layer was not sufficiently formed or the flat crystal grains were not sufficiently formed, and as a result, the magnetic properties were inferior (some of the appearance defects were not evaluated).
 (実施例2)
 実施例1にて使用したものと同様の溶鋼・スラブを用い、実施例1と同様の方法で熱間圧延、熱延板焼鈍、酸洗、冷間圧延を行い板厚0.22mmの冷延板を得た。
 得られた冷延板の片面に、市販のファイバレーザを用い、表に示すレーザ出力、集光スポット径(板幅方向TDおよび圧延方向RD)、走査速度の条件でレーザ照射を施した。レーザ照射時に鋼板から発生する溶融物が鋼板に再付着しないようアシストガスとしてアルゴンをレーザ照射と同時に吹き付け、アシストガス噴出口と対向位置に吸引ダクトを設置し、レーザ照射で発生する溶融物に起因するダストを回収した。本レーザ照射により、その表面に表に示す幅、深さの断面投影形状が略三角形の直線状の溝を形成した。この溝は、表に示す方向に延在し、各溝が圧延方向に平行かつ圧延方向に表に示す間隔で周期的に形成した。
 次に溝が形成された冷延板の表面を、pH=4.0~6.0のイオン交換水を流しながら鋼板の表面を研削し、表2に示す条件で研削した。さらに研削が終了後pH=4.0~6.0のイオン交換水に接触させた。接触に際しては、接触時間は5秒、水性液の流量は、10L/minとした。
Example 2
The same molten steel and slab as those used in Example 1 were used, and hot rolling, hot-rolled sheet annealing, pickling, and cold rolling were carried out in the same manner as in Example 1 to obtain a cold-rolled sheet having a thickness of 0.22 mm.
One side of the obtained cold-rolled sheet was irradiated with a laser using a commercially available fiber laser under the conditions of the laser output, focused spot diameter (sheet width direction TD and rolling direction RD), and scanning speed shown in the table. Argon was sprayed as an assist gas simultaneously with the laser irradiation so that the molten material generated from the steel sheet during the laser irradiation would not reattach to the steel sheet, and a suction duct was installed at a position opposite to the assist gas outlet to collect dust caused by the molten material generated by the laser irradiation. This laser irradiation formed linear grooves on the surface, with a cross-sectional projection shape of approximately a triangle and a width and depth shown in the table. The grooves extended in the direction shown in the table, and each groove was formed parallel to the rolling direction and periodically at intervals shown in the table in the rolling direction.
Next, the surface of the cold-rolled sheet on which the grooves were formed was ground while flowing ion-exchanged water having a pH of 4.0 to 6.0, and the surface was ground under the conditions shown in Table 2. After grinding was completed, the steel sheet was brought into contact with ion-exchanged water having a pH of 4.0 to 6.0. The contact time was 5 seconds, and the flow rate of the aqueous liquid was 10 L/min.
 その後、実施例1と同様の条件で脱炭焼鈍、窒化処理、MgOを主成分とする焼鈍分離剤塗布、仕上焼鈍を行った。
 仕上焼鈍後、焼鈍分離剤を水洗除去した結果、鋼板の表面にグラス被膜(酸化物層)が形成されていた。
 このグラス被膜を有する珪素鋼板に、りん酸アルミニウム、コロイダルシリカ、無水クロム酸からなる絶縁被膜成分を含有する薬液を、塗布し、窒素雰囲気で800℃に加熱し30秒間保持することで、絶縁被膜を焼き付けた。このときに絶縁被膜層の付着量は片面当り5.0g/mであった。
Thereafter, under the same conditions as in Example 1, decarburization annealing, nitriding treatment, application of an annealing separator containing MgO as a main component, and finish annealing were performed.
After the final annealing, the annealing separator was removed by rinsing with water, and as a result, a glass film (oxide layer) was formed on the surface of the steel sheet.
A chemical solution containing insulating coating components consisting of aluminum phosphate, colloidal silica, and chromic anhydride was applied to the silicon steel plate having the glass coating, and the insulating coating was baked by heating to 800°C in a nitrogen atmosphere and holding for 30 seconds. At this time, the amount of the insulating coating layer attached was 5.0 g/ m2 per side.
 得られた珪素鋼板(珪素鋼板、グラス被膜(酸化物層)、及び絶縁被膜層を有する)において、酸化物層との界面から板厚方向に10μmの範囲の酸化物、および扁平結晶粒の評価を実施例1と同様の要領で行った。また、本実施例では、溝内扁平結晶粒についても評価を行った。 In the obtained silicon steel plate (having a silicon steel plate, a glass coating (oxide layer), and an insulating coating layer), the oxides in a range of 10 μm from the interface with the oxide layer in the plate thickness direction and the flat crystal grains were evaluated in the same manner as in Example 1. In this example, the flat crystal grains in the grooves were also evaluated.
 得られた方向性電磁鋼板(珪素鋼板、グラス被膜(酸化物層)、及び絶縁被膜層を有する)から、板幅方向が30mm×圧延方向が280mmの試料を36枚剪断によって採取し、これらの試料に、窒素雰囲気で800℃2hの歪取り焼鈍を行った。
 その後JIS-C-2550-1:2011に記載されたエプスタイン法にて規定されている磁気特性測定法にて、磁化力800A/m励磁時の磁束密度(以下B8)と励磁周波数50Hz、磁束密度1.7Tに励磁した時の鉄損(以下W17/50)を測定した。
From the obtained grain-oriented electrical steel sheet (having a silicon steel sheet, a glass coating (oxide layer), and an insulating coating layer), 36 samples each measuring 30 mm in the sheet width direction and 280 mm in the rolling direction were taken by shearing, and these samples were subjected to stress relief annealing at 800°C for 2 hours in a nitrogen atmosphere.
Thereafter, the magnetic flux density when excited with a magnetizing force of 800 A/m (hereinafter referred to as B8) and the iron loss when excited with an excitation frequency of 50 Hz and a magnetic flux density of 1.7 T (hereinafter referred to as W17/50) were measured using the magnetic property measurement method specified by the Epstein method described in JIS-C-2550-1:2011.
 また、得られた方向性電磁鋼板から、圧延方向300mm×幅方向300mmの試料を採取し、この試料を直径が20mm(φ20mm)のSUS304製の丸棒に巻き付け、巻戻した後、巻き付けた内側の凹部の絶縁被膜を観察することで絶縁被膜の密着性を評価した。
 判断基準は以下の通りとした。
G(GOOD):被膜剥離なし
P(POOR):一部被膜剥離
B(BAD):全面被膜剥離
In addition, a sample of 300 mm in the rolling direction × 300 mm in the width direction was taken from the obtained grain-oriented electrical steel sheet, and this sample was wound around a SUS304 round bar with a diameter of 20 mm (φ20 mm). After unwinding, the insulating coating in the recess on the inside where it was wound was observed to evaluate the adhesion of the insulating coating.
The criteria for judgment were as follows:
G (GOOD): No coating peeling P (POOR): Partial coating peeling B (BAD): Full coating peeling
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3~表5から分かるように、いずれの場合でも十分な被膜の密着性が得られ、かつ0.85W/kg以下の低鉄損となっているが、好ましい条件で溝を形成した例では、さらに鉄損が低くなり、0.76W/Kg以下となった。 As can be seen from Tables 3 to 5, sufficient adhesion of the coating was obtained in all cases, and low iron loss of 0.85 W/kg or less was achieved. However, in the example where the grooves were formed under favorable conditions, the iron loss was even lower, at 0.76 W/kg or less.
 本発明によれば、優れた磁気特性を有する方向性電磁鋼板及びその製造方法を提供することができる。そのため、産業上の利用可能性が高い。 The present invention provides a grain-oriented electrical steel sheet with excellent magnetic properties and a manufacturing method thereof. Therefore, it has high industrial applicability.
 1  方向性電磁鋼板
 11  珪素鋼板
 21  酸化物層
 31  絶縁被膜層
 101  酸化物(酸化物粒子)
 102  扁平結晶粒
 G  溝
 t  厚み
 G102  溝内扁平結晶粒
REFERENCE SIGNS LIST 1 Grain-oriented electrical steel sheet 11 Silicon steel sheet 21 Oxide layer 31 Insulation coating layer 101 Oxide (oxide particles)
102 Flat crystal grain G Groove t Thickness G102 Flat crystal grain in groove

Claims (12)

  1.  珪素鋼板と、
     前記珪素鋼板の表面に形成された、Mg、Al、及びSiの1種以上の酸化物からなる酸化物層と、
     前記酸化物層の表面に形成された絶縁被膜層と、
    を有し、
     前記珪素鋼板の、前記珪素鋼板と前記酸化物層との界面から板厚方向に10μmの範囲に、円相当径で0.1~3.0μmである、Mg、Al、Siの1種以上の酸化物が、0.010~0.200個/μmの密度で存在し、
     前記珪素鋼板の表面側に、前記表面に垂直な方向の平均厚みが0.5~5.0μm、前記平均厚みに対する前記表面に平行な方向の粒幅の比であるアスペクト比が1.5以上、かつ、結晶方位のGoss方位からのずれが10°以上である、扁平結晶粒が存在し、
     前記板厚方向の断面において、前記珪素鋼板と前記酸化物層との前記界面の長さに占める、前記扁平結晶粒の粒界の長さが、70%以上である、
    ことを特徴とする、方向性電磁鋼板。
    A silicon steel sheet;
    an oxide layer formed on a surface of the silicon steel sheet and made of one or more oxides of Mg, Al, and Si;
    an insulating coating layer formed on a surface of the oxide layer;
    having
    One or more oxides of Mg, Al, and Si having a circle equivalent diameter of 0.1 to 3.0 μm are present at a density of 0.010 to 0.200 pieces/ μm2 within a range of 10 μm in the sheet thickness direction from the interface between the silicon steel sheet and the oxide layer of the silicon steel sheet,
    The silicon steel sheet has flat crystal grains on a surface side thereof, the flat crystal grains having an average thickness in a direction perpendicular to the surface of 0.5 to 5.0 μm, an aspect ratio, which is the ratio of the grain width in a direction parallel to the surface to the average thickness, of 1.5 or more, and a crystal orientation deviation from the Goss orientation of 10° or more;
    In the cross section in the plate thickness direction, the length of the grain boundary of the flat crystal grains accounts for 70% or more of the length of the interface between the silicon steel plate and the oxide layer.
    The grain-oriented electrical steel sheet is characterized in that
  2.  前記扁平結晶粒の前記平均厚みの平均が2.0μm超5.0μm以下である、
    ことを特徴とする、請求項1に記載の方向性電磁鋼板。
    The average thickness of the flat crystal grains is more than 2.0 μm and 5.0 μm or less.
    The grain-oriented electrical steel sheet according to claim 1 .
  3.  前記界面を構成する前記扁平結晶粒の表面において、前記酸化物層の被覆率が50%以上である、
    ことを特徴とする、請求項1または2に記載の方向性電磁鋼板。
    The coverage of the oxide layer on the surface of the flat crystal grain constituting the interface is 50% or more.
    The grain-oriented electrical steel sheet according to claim 1 or 2.
  4.  前記珪素鋼板に、深さが10~30μmで、圧延方向に対して80~100°の方向に延在する溝が、複数存在し、
     隣り合う前記溝の前記圧延方向の間隔が、1.0~20.0mmである、
    ことを特徴とする、請求項1または2に記載の方向性電磁鋼板。
    The silicon steel plate has a plurality of grooves having a depth of 10 to 30 μm and extending in a direction of 80 to 100° with respect to the rolling direction,
    The interval between adjacent grooves in the rolling direction is 1.0 to 20.0 mm;
    The grain-oriented electrical steel sheet according to claim 1 or 2.
  5.  前記珪素鋼板に、深さが10~30μmで、圧延方向に対して80~100°の方向に延在する溝が、複数存在し、
     隣り合う前記溝の前記圧延方向の間隔が、1.0~20.0mmである、
    ことを特徴とする、請求項3に記載の方向性電磁鋼板。
    The silicon steel plate has a plurality of grooves having a depth of 10 to 30 μm and extending in a direction of 80 to 100° with respect to the rolling direction,
    The interval between adjacent grooves in the rolling direction is 1.0 to 20.0 mm;
    The grain-oriented electrical steel sheet according to claim 3 .
  6.  前記珪素鋼板の前記溝の表面側に、前記溝の前記表面に垂直な方向の平均径が0.5~5.0μm、前記平均径に対する前記表面に平行な方向の粒幅の比であるアスペクト比が2.0以上、かつ、結晶方位のGoss方位からのずれが10°以上である、溝内扁平結晶粒が存在し、
     前記溝の延在方向に垂直な前記板厚方向の断面において、前記溝の内面の長さに占める、前記溝内扁平結晶粒の粒界の長さが、70%以上である、
    ことを特徴とする、請求項4に記載の方向性電磁鋼板。
    On the surface side of the groove of the silicon steel plate, there are present groove flattened crystal grains having an average diameter of 0.5 to 5.0 μm in a direction perpendicular to the surface of the groove, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average diameter of 2.0 or more, and a crystal orientation deviation from the Goss orientation of 10° or more;
    In a cross section in the plate thickness direction perpendicular to the extension direction of the groove, the length of the grain boundary of the flat crystal grain in the groove is 70% or more of the length of the inner surface of the groove.
    The grain-oriented electrical steel sheet according to claim 4 .
  7.  前記珪素鋼板の前記溝の表面側に、前記溝の前記表面に垂直な方向の平均径が0.5~5.0μm、前記平均径に対する前記表面に平行な方向の粒幅の比であるアスペクト比が2.0以上、かつ、結晶方位のGoss方位からのずれが10°以上である、溝内扁平結晶粒が存在し、
     前記溝の延在方向に垂直な前記板厚方向の断面において、前記溝の内面の長さに占める、前記溝内扁平結晶粒の粒界の長さが、70%以上である、
    ことを特徴とする、請求項5に記載の方向性電磁鋼板。
    On the surface side of the groove of the silicon steel plate, there are present groove flattened crystal grains having an average diameter of 0.5 to 5.0 μm in a direction perpendicular to the surface of the groove, an aspect ratio which is a ratio of a grain width in a direction parallel to the surface to the average diameter of 2.0 or more, and a crystal orientation deviation from the Goss orientation of 10° or more;
    In a cross section in the plate thickness direction perpendicular to the extension direction of the groove, the length of the grain boundary of the flat crystal grain in the groove is 70% or more of the length of the inner surface of the groove.
    The grain-oriented electrical steel sheet according to claim 5 .
  8.  前記溝内扁平結晶粒の前記平均径の平均が、2.0μm超5.0μm以下である、
    ことを特徴とする、請求項6に記載の方向性電磁鋼板。
    The average diameter of the flat crystal grains in the groove is more than 2.0 μm and 5.0 μm or less.
    The grain-oriented electrical steel sheet according to claim 6 .
  9.  前記溝内扁平結晶粒の前記平均径の平均が、2.0μm超5.0μm以下である、
    ことを特徴とする、請求項7に記載の方向性電磁鋼板。
    The average diameter of the flat crystal grains in the groove is more than 2.0 μm and 5.0 μm or less.
    The grain-oriented electrical steel sheet according to claim 7 .
  10.  スラブを、加熱して熱間圧延して熱延板とする熱間圧延工程と、
     前記熱間圧延工程後の前記熱延板を焼鈍する熱延板焼鈍工程と、
     前記熱延板焼鈍工程後の前記熱延板を酸洗する酸洗工程と、
     前記酸洗工程後の前記熱延板を、冷間圧延して冷延板とする冷間圧延工程と、
     前記冷間圧延工程後の前記冷延板の表面を研削する研削工程と、
     前記研削工程後の前記冷延板を、pH4.0~10.0の水性液に接触させる、接触工程と、
     前記接触工程後の前記冷延板に、脱炭焼鈍を行う脱炭焼鈍工程と、
     前記脱炭焼鈍工程後の前記冷延板に焼鈍分離剤を塗布し、仕上焼鈍し、母材鋼板となる前記冷延板の表面にMg、Al、及びSiの1種以上の酸化物からなる酸化物層を形成する仕上焼鈍工程と、
     前記仕上焼鈍工程後の前記酸化物層の表面に、絶縁被膜層を形成する絶縁被膜形成工程と、
    を備え、
     前記研削工程では、ヌープ硬度が1000以上かつ最大粒子径が50μmを超え500μm以下の砥粒、あるいは前記砥粒が固定された研磨紙、ロールまたはブラシを用いて、1.0~5.0mmの圧下量かつ500mpm以上の研削速度で研削を行い、前記冷延板の研削量を、少なくとも一方の表面において、0.10~10.0g/mとする、
    ことを特徴とする、方向性電磁鋼板の製造方法。
    a hot rolling step of heating and hot rolling the slab into a hot rolled sheet;
    A hot-rolled sheet annealing process for annealing the hot-rolled sheet after the hot rolling process;
    A pickling process of pickling the hot-rolled sheet after the hot-rolled sheet annealing process;
    A cold rolling process in which the hot-rolled sheet after the pickling process is cold-rolled to obtain a cold-rolled sheet;
    A grinding step of grinding the surface of the cold-rolled sheet after the cold rolling step;
    A contacting step of contacting the cold-rolled sheet after the grinding step with an aqueous liquid having a pH of 4.0 to 10.0;
    a decarburization annealing step of performing decarburization annealing on the cold-rolled sheet after the contact step;
    A finish annealing process in which an annealing separator is applied to the cold-rolled sheet after the decarburization annealing process, and the cold-rolled sheet is finish annealed to form an oxide layer composed of one or more oxides of Mg, Al, and Si on the surface of the cold-rolled sheet which becomes a base steel sheet;
    an insulating coating forming step of forming an insulating coating layer on a surface of the oxide layer after the final annealing step;
    Equipped with
    In the grinding step, grinding is performed using abrasive grains having a Knoop hardness of 1000 or more and a maximum particle size of more than 50 μm and not more than 500 μm, or abrasive paper, roll or brush to which the abrasive grains are fixed, at a rolling reduction of 1.0 to 5.0 mm and a grinding speed of 500 mpm or more, and the grinding amount of the cold-rolled sheet is 0.10 to 10.0 g / m 2 on at least one surface.
    A method for producing a grain-oriented electrical steel sheet.
  11.  前記研削工程の前に、さらに、前記冷延板に、圧延方向に対して80~100°の角度をなす方向に延在する、深さが10~30μmの溝を、前記圧延方向の間隔がそれぞれ1.0~20mmとなるように複数形成する、溝形成工程を備える、
    ことを特徴とする、請求項10に記載の方向性電磁鋼板の製造方法。
    Prior to the grinding step, the method further includes forming a groove in the cold-rolled sheet, the groove having a depth of 10 to 30 μm and extending in a direction at an angle of 80 to 100° with respect to the rolling direction, the groove being spaced apart from each other by 1.0 to 20 mm in the rolling direction.
    The method for producing a grain-oriented electrical steel sheet according to claim 10 .
  12.  前記溝形成工程において、前記冷延板の表面にレーザを照射し、鋼板表面の一部を溶融させるとともに、溶融物を表面から除去することにより、前記溝を形成する、
    ことを特徴とする、請求項11に記載の方向性電磁鋼板の製造方法。
    In the groove forming step, a laser is irradiated onto the surface of the cold-rolled sheet to melt a part of the steel sheet surface and remove the molten material from the surface to form the groove.
    The method for producing a grain-oriented electrical steel sheet according to claim 11.
PCT/JP2023/042039 2022-11-22 2023-11-22 Grain-oriented electrical steel sheet and manufacturing method therefor WO2024111637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022186165 2022-11-22
JP2022-186165 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024111637A1 true WO2024111637A1 (en) 2024-05-30

Family

ID=91196076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042039 WO2024111637A1 (en) 2022-11-22 2023-11-22 Grain-oriented electrical steel sheet and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2024111637A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196082A (en) * 1984-10-18 1986-05-14 Kawasaki Steel Corp Production of grain oriented silicon steel strip
JP2003027194A (en) * 2001-07-12 2003-01-29 Nippon Steel Corp Grain-oriented electrical steel sheet with excellent film characteristics and magnetic property, and its manufacturing method
WO2008062853A1 (en) * 2006-11-22 2008-05-29 Nippon Steel Corporation Unidirectionally grain oriented electromagnetic steel sheet having excellent film adhesion, and method for manufacturing the same
JP2021123768A (en) * 2020-02-06 2021-08-30 日本製鉄株式会社 Method for producing directional electromagnetic steel sheet and directional electromagnetic steel sheet, and annealing separation agent
JP2022022494A (en) * 2020-06-24 2022-02-07 日本製鉄株式会社 Grain oriented electrical steel sheet
JP2022515235A (en) * 2018-12-19 2022-02-17 ポスコ Directional electrical steel sheet and its manufacturing method
KR20220089467A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196082A (en) * 1984-10-18 1986-05-14 Kawasaki Steel Corp Production of grain oriented silicon steel strip
JP2003027194A (en) * 2001-07-12 2003-01-29 Nippon Steel Corp Grain-oriented electrical steel sheet with excellent film characteristics and magnetic property, and its manufacturing method
WO2008062853A1 (en) * 2006-11-22 2008-05-29 Nippon Steel Corporation Unidirectionally grain oriented electromagnetic steel sheet having excellent film adhesion, and method for manufacturing the same
JP2022515235A (en) * 2018-12-19 2022-02-17 ポスコ Directional electrical steel sheet and its manufacturing method
JP2021123768A (en) * 2020-02-06 2021-08-30 日本製鉄株式会社 Method for producing directional electromagnetic steel sheet and directional electromagnetic steel sheet, and annealing separation agent
JP2022022494A (en) * 2020-06-24 2022-02-07 日本製鉄株式会社 Grain oriented electrical steel sheet
KR20220089467A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP4321634A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPWO2020149340A1 (en) Directional electrical steel sheet and its manufacturing method
WO2019013351A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP7269505B2 (en) Manufacturing method of grain-oriented electrical steel sheet
RU2767356C1 (en) Method for producing a sheet of electrotechnical steel with oriented grain structure
JP7052864B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
WO2024111637A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
WO2024111638A1 (en) Grain-oriented electromagnetic steel sheet and production method therefor
WO2022215710A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
RU2768094C1 (en) Method for producing electrotechnical steel sheet with oriented grain structure
JP7269504B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2024111647A1 (en) Grain-oriented electrical steel sheet
WO2024111641A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
WO2024096082A1 (en) Grain-oriented electromagnetic steel sheet
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP7553869B2 (en) Grain-oriented electrical steel sheet
JP7151792B2 (en) Manufacturing method of grain-oriented electrical steel sheet
RU2825096C2 (en) Sheet of anisotropic electrical steel and method of forming insulating coating
JP7510078B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7522383B1 (en) Grain-oriented electrical steel sheet
WO2024214824A1 (en) Grain-oriented electrical steel sheet and method for forming insulating coating film
WO2024075788A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
RU2768932C1 (en) Method of producing electrotechnical steel sheet with oriented grain structure
WO2024210205A1 (en) Grain-oriented electrical steel sheet and method for forming insulating coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894641

Country of ref document: EP

Kind code of ref document: A1