WO2024111322A1 - Liquid droplet ejection device, method for driving liquid droplet ejection device, and program - Google Patents
Liquid droplet ejection device, method for driving liquid droplet ejection device, and program Download PDFInfo
- Publication number
- WO2024111322A1 WO2024111322A1 PCT/JP2023/038336 JP2023038336W WO2024111322A1 WO 2024111322 A1 WO2024111322 A1 WO 2024111322A1 JP 2023038336 W JP2023038336 W JP 2023038336W WO 2024111322 A1 WO2024111322 A1 WO 2024111322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse
- pressure chamber
- droplet ejection
- expansion
- volume
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 10
- 239000007788 liquid Substances 0.000 title abstract description 7
- 230000008602 contraction Effects 0.000 claims abstract description 49
- 230000008859 change Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 10
- 230000005499 meniscus Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 5
- 230000015654 memory Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/055—Devices for absorbing or preventing back-pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
Definitions
- the present invention relates to a droplet ejection device, a method for driving a droplet ejection device, and a program.
- a droplet ejection device that ejects droplets by sequentially applying a first expansion pulse that expands the volume of a pressure chamber, a contraction pulse that contracts the volume of the pressure chamber, and a second expansion pulse that expands the volume of the pressure chamber again (see, for example, Patent Document 1).
- a droplet ejection device can eject small droplets at a high drive frequency.
- Satellites are droplets that are not necessary for image recording operations, and the landing position and timing are shifted from the original intention. Therefore, if satellites adhere to the formed image, the image quality is reduced. In addition, if the satellites do not reach the recording medium and adhere to the nozzle or the periphery of the nozzle opening and solidify, the droplet ejection performance is deteriorated. For this reason, in a droplet ejection device, it is preferable to suppress the occurrence of satellites.
- the present invention has been made in consideration of these circumstances. Its purpose is to provide a droplet ejection device, a method for driving a droplet ejection device, and a program that can reduce the occurrence of satellites even when ejecting small droplets.
- the present invention provides a droplet ejection device, comprising: a droplet ejection head including a head drive unit that deforms a pressure chamber that communicates with a nozzle; A drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses; a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium, the drive signal generating section generates, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
- AL is half the acoustic resonance period of the pressure chamber
- the pulse width of the contraction pulse is not less than 0.1 AL and not more than 0.5 AL
- the pulse width of the second expansion pulse is not less than 1.2 AL and not more than 2.8 AL.
- the present invention relates to a droplet ejection device, comprising:
- the pulse width of the first expansion pulse is not less than 0.8 AL and not more than 1.5 AL.
- the present invention relates to a droplet ejection device according to claim 1 or 2,
- the potential of the contraction pulse is the opposite potential of the first expansion pulse.
- the invention according to claim 4 is the droplet ejection device according to claim 1 or 2,
- the pulse width of the first expansion pulse is equal to or less than the sum of the pulse width of the contraction pulse and the pulse width of the second expansion pulse.
- the invention according to claim 5 is the droplet ejection device according to claim 1 or 2,
- the droplets have a viscosity of 8 cp or more.
- a sixth aspect of the present invention is a method for driving a droplet ejection device, comprising the steps of: A method for driving a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle, comprising: A drive signal generating step of generating a drive signal including a plurality of drive pulses; an ejection control step of applying the drive signal to the head drive unit to change the volume of the pressure chamber and eject droplets from the nozzle to perform a recording operation on a recording medium, the drive signal generating step sequentially generates, as the drive pulse, a first expansion pulse for expanding a volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again;
- AL is half the acoustic resonance period of the pressure chamber
- the pulse width of the contraction pulse is set to 0.1 AL or more and 0.5 AL or less
- a computer of a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle, a drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses; a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium; causing the drive signal generating unit to generate, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
- AL is half the acoustic resonance period of the pressure chamber
- the pulse width of the contraction pulse is set to 0.1 AL or more and 0.5 AL or less
- the pulse width of the second expansion pulse is set to 1.2 AL or more and 2.8 AL or less.
- the occurrence of satellites can be reduced even when small droplets are ejected.
- 1 is a block diagram of a droplet ejection device according to the present invention.
- 4 is a schematic diagram of a pressure chamber and a nozzle as viewed in the axial direction of the nozzle, showing a change in the pressure chamber in response to an expansion pulse.
- 1 is a schematic diagram of a pressure chamber and a nozzle as viewed in the axial direction of the nozzle, showing the pressure chamber when the potential is returned to zero.
- 4 is a schematic diagram of a pressure chamber and a nozzle as viewed in the axial direction of the nozzle, showing a change in the pressure chamber in response to a contraction pulse.
- 13 is a diagram showing a drive signal for applying a plurality of pulses within one pixel period for ejecting droplets.
- FIG. 13 is a diagram showing the state of ink in a nozzle when a first expansion pulse is applied.
- 13A and 13B are diagrams showing the state of ink in a nozzle when a contraction pulse is applied.
- FIG. 13 is a diagram showing the state of ink in a nozzle when a second expansion pulse is applied.
- FIG. 13 is a diagram showing the state of ink in a nozzle when a cancellation waveform is applied.
- FIG. 1 is a block diagram showing the functional configuration of an inkjet recording apparatus 1. As shown in FIG.
- the inkjet recording device 1 includes, for example, a conveying unit 10, an image forming unit 20, a cleaning unit 30, a control unit 40, a memory unit 50, a communication unit 60, an operation reception unit 70, a display unit 80, and a power supply unit 90.
- the conveying unit 10 moves a recording medium on which an image is to be recorded.
- the conveying unit 10 then brings the recording medium into opposition to a recording area of the image forming unit 20.
- the conveying unit 10 includes a conveying motor 11 that pulls out a long recording medium wound up in a roll at a predetermined speed.
- the recording medium is, for example, paper, but may also be fabric or other materials.
- the image forming unit 20 ejects ink droplets onto a recording medium to record an image.
- the image forming unit 20 has a plurality of inkjet heads 23 arranged along the transport direction of the recording medium.
- the inkjet heads 23 have a number of nozzles 21 arranged in a predetermined pattern and piezoelectric elements 22 that eject ink droplets from openings.
- the image forming unit 20 also includes a head drive unit 24. Based on the control of the control unit 40, the head drive unit 24 applies a drive signal W (see FIG. 3) including multiple drive pulses to the piezoelectric element 22. As the piezoelectric element 22 deforms due to the drive pulse, it deforms the side wall 26 of the ink flow path (pressure chamber) 25 that communicates with the nozzle 21 to supply ink, as shown in FIGS. 2A to 2C. This deformation causes the pressure chamber 25 to expand or contract, causing pressure fluctuations in the ink inside, resulting in the ejection of ink droplets from the opening of the nozzle 21.
- a drive signal W see FIG. 3
- the piezoelectric element 22 deforms due to the drive pulse, it deforms the side wall 26 of the ink flow path (pressure chamber) 25 that communicates with the nozzle 21 to supply ink, as shown in FIGS. 2A to 2C. This deformation causes the pressure chamber 25 to expand or contract, causing pressure fluctuations in the in
- the cleaning unit 30 cleans the nozzle surface of the inkjet head 23 on which the openings of the nozzles 21 are arranged.
- the cleaning unit 30 includes a wiping member 32 that wipes off ink and solidified ink adhering to the nozzle surface.
- the cleaning unit 30 also includes a drive unit 31 that drives the wiping member 32.
- the wiping member 32 is not particularly limited, but may be, for example, a nonwoven fabric that absorbs ink, or a blade-shaped resin member that scrapes off solid matter.
- the control unit 40 is a processor that controls the overall operation of the inkjet recording apparatus 1 .
- the control unit 40 includes, for example, a central processing unit (CPU) 41 and a random access memory (RAM) 42.
- the CPU 41 performs calculations and executes various control processes.
- the RAM 42 provides a working memory space for the CPU 41 and stores temporary data.
- the control unit 40 executes a predetermined program to function as a drive signal generating unit and an ejection control unit.
- the control unit 40 serves as a drive signal generating unit and generates a drive signal W made up of a plurality of drive pulses. Furthermore, the control unit 40 , functioning as an ejection control unit, controls the head driving unit 24 to output a driving signal W to the piezoelectric element 22 , thereby ejecting ink droplets from the nozzle 21 .
- the drive signal W, the deformation of the pressure chamber 25 due to the drive signal W, and the ejection of ink droplets accompanying the deformation will be described in detail later.
- the storage unit 50 stores image data to be recorded, processing data thereof, other setting data, and programs.
- Image data may be stored in, for example, a dynamic random access memory (DRAM) capable of temporarily storing large amounts of data and outputting data at high speed.
- DRAM dynamic random access memory
- Setting data and programs are stored in a non-volatile memory such as a flash memory and/or a hard disk drive (HDD). In this way, even if the power supply to the inkjet recording apparatus 1 is stopped, the setting data can be stored.
- the communication unit 60 controls data transmission and reception with external devices in accordance with a predetermined communication standard, for example, TCP/IP (Transmission Control Protocol/Internet Protocol).
- TCP/IP Transmission Control Protocol/Internet Protocol
- the communication unit 60 may be connected to a LAN (Local Area Network) and may be connectable to the external Internet via a router.
- the communication unit 60 may also be connectable directly to peripheral devices via a Universal Serial Bus (USB) cable connected to a USB terminal.
- USB Universal Serial Bus
- the operation reception unit 70 receives an input operation by the user, and outputs the received content to the control unit 40 as an input signal.
- the operation reception unit 70 includes, for example, a touch panel and a push button switch.
- the touch panel is positioned so as to overlap with the display screen of the display unit 80, and the operation content may be specified in synchronization with the display content on the display screen.
- the display unit 80 displays status and selection menus to the user.
- the display unit 80 has, for example, a display screen and an indicator (lamp).
- the indicator may be, for example, an LED (Light Emitting Diode) lamp that is used to indicate the presence or absence of power supply or the presence or absence of an operational abnormality.
- the display unit 80 has, for example, a liquid crystal display, and can display various characters and figures on the display screen in a dot matrix format.
- the power supply unit 90 supplies power from a power source to the inkjet recording apparatus 1 .
- FIG. 3 shows a driving signal W for implementing the driving method according to the present embodiment.
- the driving signal W includes, in chronological order, a first expansion pulse W1, a contraction pulse W2, and a second expansion pulse W3.
- FIG. 4 is a cross-sectional view of one nozzle 21, showing the state of ink when each drive pulse is applied.
- the horizontal axis indicates time (AL (Acoustic Length; 1/2 the acoustic resonance period of the pressure chamber 25)) and the vertical axis indicates voltage. Also in FIG. 3, t1 indicates the pulse width of the first expansion pulse W1, t2 indicates the pulse width of the contraction pulse W2, and t3 indicates the pulse width of the second expansion pulse W3.
- the AL is obtained by applying a rectangular wave driving pulse to the side wall 26, which is an electromechanical conversion means, and measuring the speed of the ink droplets ejected from the nozzle 21. Specifically, AL is determined as the pulse width at which the flying speed of the ink droplets becomes maximum when the voltage value of the square wave is kept constant and the pulse width is changed. Therefore, AL is determined depending on the structure of the inkjet head 23, the density of the ink, etc.
- a pulse is a rectangular wave with a constant voltage peak value.
- the pulse width is the time between 10% of the beginning of the rise or fall from 0V and 10% of the beginning of the fall or rise, where 0V is 0% and the peak value voltage is 100%.
- a rectangular wave is a waveform in which the rise time and fall time between 10% and 90% of the voltage are both within 1/10 of the AL, and preferably within 1/20 of the AL.
- the head driver 24 applies a first expansion pulse W1 (P1), which is a rectangular wave that rises to a predetermined positive voltage, the Von voltage value, and then is maintained for a certain period of time. Then, as shown in FIG. 2A, the side walls 26, 26 on both sides deform toward the outside, and the volume of the pressure chamber 25 expands. This generates a negative pressure in the ink in the pressure chamber 25, causing the ink to flow in. Also, as shown in FIG. 4A, the ink in the nozzle is maintained with the meniscus pulled into the nozzle 21.
- W1 is a rectangular wave that rises to a predetermined positive voltage, the Von voltage value, and then is maintained for a certain period of time. Then, as shown in FIG. 2A, the side walls 26, 26 on both sides deform toward the outside, and the volume of the pressure chamber 25 expands. This generates a negative pressure in the ink in the pressure chamber 25, causing the ink to flow in. Also, as shown in FIG. 4A, the ink in the
- the head driver 24 then applies a contraction pulse W2 (P3), which is a rectangular wave that falls to Voff, which is the voltage of the opposite potential to the first expansion pulse W1.
- P3 contraction pulse W2
- Voff voltage of the opposite potential
- the contraction pulse W2 falls, the side walls 26, 26 deform in opposite directions, as shown in FIG. 2C, and the volume of the pressure chamber 25 contracts. This contraction applies even higher pressure to the ink in the pressure chamber 25. As a result, an ink column protrudes from the opening of the nozzle 21, as shown in FIG. 4B.
- the inkjet head 23 is driven by repeatedly applying the above series of drive signals W. Therefore, the more the pressure wave is damped, the faster the ink for the next pixel can be ejected, allowing for faster printing, which is preferable.
- the pulse width t2 of the contraction pulse W2 is not less than 0.1 AL and not more than 0.5 AL. If the pulse width t2 of the contraction pulse W2 is less than 0.1 AL, the side walls 26, 26 are insufficiently contracted, and small ink droplets cannot be formed. If the pulse width t2 of the contraction pulse W2 is more than 0.5 AL, the volume of the ink droplets increases rapidly, and small ink droplets cannot be formed. On the other hand, when the pulse width t2 of the contraction pulse W2 is set to be equal to or greater than 0.1 AL and equal to or less than 0.5 AL, small ink droplets can be formed.
- the pulse width t3 of the second expansion pulse W3 is not less than 1.2 AL and not more than 2.8 AL.
- the likelihood of satellites forming depends on the length of the tail of the ink droplet before it separates from the meniscus, i.e., shortening the length of the tail of the ink droplet can suppress the formation of satellites. If the pulse width t3 is less than 1.2 AL, the cancel waveform is applied before the ink droplet is separated from the meniscus, which tends to result in a long tail and makes it difficult to suppress the generation of satellites. Furthermore, if the pulse width t3 of the second expansion pulse W3 is greater than 2.8 AL, a phenomenon known as droplet separation, in which minute droplets separate from a main droplet, becomes more likely to occur.
- the pulse width t3 is set to 1.2 AL or more, the cancel waveform is added after the ink droplet is separated from the meniscus, so that the tail is less likely to become long and the occurrence of satellites can be suppressed. Also, when the pulse width t3 is set to 2.8 AL or less, droplet separation is less likely to occur.
- the pulse width t1 of the first expansion pulse W1 is 0.8 AL or more and 1.5 AL or less.
- the pulse width t1 of the first expansion pulse W1 has a large effect on the ejection force of the ink droplets, and if the pulse width t1 is in the above range, the ejection force of the ink droplets, i.e., the ejection speed, can be further increased.
- the pressure wave in the pressure chamber 25 also repeatedly inverts every 1 AL. For this reason, it is particularly preferable to set the pulse width t1 of the first expansion pulse W1 to 1 AL.
- the pulse width t1 of the first expansion pulse W1 is set to 1 AL, the pressure wave in the pressure chamber 25 that has inverted to a positive pressure overlaps with the positive pressure wave generated by the contraction of the pressure chamber 25 due to the falling edge of the first expansion pulse W1 and the falling edge of the contraction pulse W2. As a result, the most efficient ejection force is obtained, and the ejection speed of the ink droplets can be increased.
- the volume of the ink droplet by appropriately changing the pulse width t2 of the contraction pulse W2 within a range from 0.1 AL to 0.5 AL. This is because even when printing is performed using the same drive signal W based on the same image data, the size of the dots formed on the printing medium P becomes unstable depending on the temperature of the inkjet head 23 .
- the volume of the ink droplets ejected from the nozzles 21 and the dots recorded by the ink droplets become smaller.
- the temperature of the inkjet head 23 is high, the volume of the ink droplets ejected from the nozzles 21 and the dots recorded by the ink droplets become larger. If the size of the printed dots is unstable in this way, the image density will not be stable, which may cause density unevenness.
- the control unit 40 appropriately changes the pulse width t2 of the contraction pulse W2 to control the volume of the ink droplets ejected from the nozzles 21.
- This makes it possible to keep the volume of the ink droplets within a predetermined control range even if the temperature of the inkjet head 23 changes, and thus makes it possible to suppress the occurrence of density unevenness.
- the volume of the ink droplet may be controlled according to conditions other than the temperature of the inkjet head 23, such as the resolution and gradation of the image. Specifically, to reduce the volume of the ink droplet, the pulse width t2 of the contraction pulse W2 is narrowed. To increase the volume of the ink droplet, the pulse width t2 of the contraction pulse W2 is widened.
- the pulse width t1 of the first expansion pulse W1 is smaller than the sum of the pulse width t2 of the contraction pulse W2 and the pulse width t3 of the second expansion pulse W3. This is because when the pulse width t1 of the first expansion pulse W1 is small, a small ink droplet is ejected from the nozzle 21.
- the pulse width t1 of the first expansion pulse W1 is 1 AL
- the pulse width t2 of the contraction pulse W2 is 0.5 AL
- the voltage value Von of the first expansion pulse W1 and the second expansion pulse W3 is 16 V
- the voltage value Voff of the contraction pulse W2 is -8 V.
- the temperature of the inkjet head 23 is 45°C.
- the liquid ejected from the inkjet head 23 is UV ink. More specifically, the ink has a viscosity of 10.7 cP at 45° C., a density of 1.1 g/cm 3 , a surface tension of 22.96 mN/m, and an average particle size of 99.8 nm.
- Table I shows the results of measuring whether satellites occurred. The evaluation was done visually, with G (Good) being the case where no satellites occurred, and NG (No Good) being the case where satellites occurred or the ejection of ink droplets became unstable.
- the pulse width t3 of the second expansion pulse W3 is 0.5 AL, and as shown in Table I, a meniscus occurs when the droplet ejection speed is increased to above 4.0 m/s.
- the pulse width t3 of the second expansion pulse W3 is set to 1.2 AL or more and 2.8 AL or less, as in the present invention, it can be seen that a meniscus does not occur even if the droplet ejection speed is increased to above 4.0 m/s.
- the control unit 40 of the droplet ejection device 1 generates the first expansion pulse W1, the contraction pulse W2, and the second expansion pulse W3 in that order.
- the pulse width t2 of the contraction pulse W2 is set to 0.1 AL or more and 0.5 AL or less
- the pulse width t3 of the second expansion pulse W3 is set to 1.2 AL or more and 2.8 AL or less. According to this configuration, small droplets can be formed by the contraction pulse W2. Also, according to this configuration, the falling edge of the second expansion pulse W3 occurs after the tail is cut off, so that the generation of satellites can be suppressed.
- the pulse width t1 of the first expansion pulse W1 is not less than 0.8 AL and not more than 1.5 AL. According to this configuration, the droplet ejection speed can be increased.
- the voltage of the contraction pulse W2 is the reverse potential of the voltage of the first expansion pulse W1. According to this configuration, the droplet ejection speed can be increased by the falling edge of the first expansion pulse W1 and the falling edge of the contraction pulse W2.
- the sum of the pulse width t2 of the contraction pulse W2 and the pulse width t3 of the second expansion pulse W3 is greater than the pulse width t1 of the first expansion pulse W1. According to this configuration, the pulse width t1 of the first expansion pulse W1 is narrow, so that small droplets can be formed.
- the viscosity of the droplets discharged by the droplet discharge device 1 is 8 cp or more.
- the occurrence of satellites can be suppressed even if the droplet ejection speed is increased.
- the voltage value of the first expansion pulse W1 and the voltage value of the second expansion pulse W3 are both Von, i.e., the same value, as illustrated in the drive signal W, but this is not limited to this.
- the voltage value of the first expansion pulse W1 and the voltage value of the second expansion pulse W3 may both be different values.
- the contraction pulse W2 it is preferable to set the contraction pulse W2 to a negative voltage and the second expansion pulse W3 to a positive voltage, so that the amount of displacement from the contraction pulse W2 to the second expansion pulse W3 is large.
- the tail is more easily cut off, and the occurrence of satellites can be further suppressed.
- the droplet ejection head 23 is described above as an inkjet head, the droplets ejected by the droplet ejection head 23 are not limited to ink droplets.
- the present invention can be used in a droplet ejection device that can reduce the occurrence of satellites even when ejecting small droplets, and a method and program for driving the droplet ejection device.
- Inkjet recording device (droplet ejection device) 21 Nozzle 23 Inkjet head (droplet ejection head) 25 Pressure chamber 40 Control unit (driving signal generating unit, ejection control unit) W Drive signal W1 First expansion pulse W2 Contraction pulse W3 Second expansion pulse t1 Pulse width of first expansion pulse t2 Pulse width of contraction pulse t3 Pulse width of second expansion pulse
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
A liquid droplet ejection device 1 comprises: a liquid droplet ejection head 23 equipped with a head drive unit 24 that deforms a pressure chamber 25 connected to a nozzle 21; and a control unit 40 that generates a drive signal W composed of a plurality of drive pulses, that changes the capacity of the pressure chamber 25 by applying the drive signal W to the head drive unit 24, and that causes liquid droplets to be ejected from the nozzle 21 to perform recording operation on a recording medium. The control unit 40 sequentially generates, as the drive pulses, a first expansion pulse W1 that causes the capacity of the pressure chamber 25 to increase, a contraction pulse W2 that has a pulse width t2 of 0.1-0.5 AL and that causes the capacity of the pressure chamber 25 to decrease, and a second expansion pulse W3 that has a pulse width t3 of 1.2-2.8 AL and that causes the capacity of the pressure chamber 25 to increase again.
Description
本発明は、液滴吐出装置、液滴吐出装置の駆動方法及びプログラムに関する。
The present invention relates to a droplet ejection device, a method for driving a droplet ejection device, and a program.
従来、記録媒体の記録面に液滴を吐出して画像を記録する液滴吐出装置が知られている。当該液滴吐出装置においては、画像データに基づいて液滴吐出ヘッドのノズルから適切なタイミングで液滴を吐出する。
Conventionally, there is known a droplet ejection device that ejects droplets onto the recording surface of a recording medium to record an image. In such a droplet ejection device, droplets are ejected from the nozzles of a droplet ejection head at appropriate timing based on image data.
具体的には、圧力室の容積を膨張させる第1膨張パルス、圧力室の容積を収縮させる収縮パルス、再度圧力室の容積を膨張させる第2膨張パルスを順に印加して液滴を吐出する液滴吐出装置が知られている(例えば、特許文献1参照)。このような液滴吐出装置によれば、小さな液滴を高い駆動周波数で吐出できる。
Specifically, a droplet ejection device is known that ejects droplets by sequentially applying a first expansion pulse that expands the volume of a pressure chamber, a contraction pulse that contracts the volume of the pressure chamber, and a second expansion pulse that expands the volume of the pressure chamber again (see, for example, Patent Document 1). Such a droplet ejection device can eject small droplets at a high drive frequency.
しかしながら、特許文献1の液滴吐出装置は、小さな液滴を高速に吐出した際に、液滴の吐出後にサテライトと呼ばれる微小液滴が発生することがある。サテライトは、画像記録動作には不要な液滴であり、着弾位置やタイミングが本来の意図からズレる。そのため、形成した画像にサテライトが付着すると、その画質を低下させる。また、サテライトが記録媒体に届かず、ノズルやその開口周囲等に付着して固化すると、液滴の吐出性能を悪化させる。
そのため、液滴吐出装置においては、サテライトの発生を抑制するのが好ましい。 However, when the droplet ejection device ofPatent Document 1 ejects small droplets at high speed, minute droplets called satellites may be generated after the droplets are ejected. Satellites are droplets that are not necessary for image recording operations, and the landing position and timing are shifted from the original intention. Therefore, if satellites adhere to the formed image, the image quality is reduced. In addition, if the satellites do not reach the recording medium and adhere to the nozzle or the periphery of the nozzle opening and solidify, the droplet ejection performance is deteriorated.
For this reason, in a droplet ejection device, it is preferable to suppress the occurrence of satellites.
そのため、液滴吐出装置においては、サテライトの発生を抑制するのが好ましい。 However, when the droplet ejection device of
For this reason, in a droplet ejection device, it is preferable to suppress the occurrence of satellites.
本発明はかかる事情に鑑みてなされたものである。その目的は、小さな液滴を吐出してもサテライトの発生を低減できる液滴吐出装置、液滴吐出装置の駆動方法及びプログラムを提供することである。
The present invention has been made in consideration of these circumstances. Its purpose is to provide a droplet ejection device, a method for driving a droplet ejection device, and a program that can reduce the occurrence of satellites even when ejecting small droplets.
以上の課題を解決するために、請求項1記載の発明は、液滴吐出装置であって、
ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドと、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成部と、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御部と、を備える液滴吐出装置であって、
前記駆動信号生成部は、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成し、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅は、0.1AL以上0.5AL以下であり、前記第2膨張パルスのパルス幅は、1.2AL以上2.8AL以下である。 In order to solve the above problems, the present invention provides a droplet ejection device, comprising:
a droplet ejection head including a head drive unit that deforms a pressure chamber that communicates with a nozzle;
A drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses;
a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium,
the drive signal generating section generates, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
When AL is half the acoustic resonance period of the pressure chamber, the pulse width of the contraction pulse is not less than 0.1 AL and not more than 0.5 AL, and the pulse width of the second expansion pulse is not less than 1.2 AL and not more than 2.8 AL.
ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドと、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成部と、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御部と、を備える液滴吐出装置であって、
前記駆動信号生成部は、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成し、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅は、0.1AL以上0.5AL以下であり、前記第2膨張パルスのパルス幅は、1.2AL以上2.8AL以下である。 In order to solve the above problems, the present invention provides a droplet ejection device, comprising:
a droplet ejection head including a head drive unit that deforms a pressure chamber that communicates with a nozzle;
A drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses;
a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium,
the drive signal generating section generates, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
When AL is half the acoustic resonance period of the pressure chamber, the pulse width of the contraction pulse is not less than 0.1 AL and not more than 0.5 AL, and the pulse width of the second expansion pulse is not less than 1.2 AL and not more than 2.8 AL.
請求項2記載の発明は、請求項1記載の液滴吐出装置であって、
前記第1膨張パルスのパルス幅は、0.8AL以上1.5AL以下である。 The present invention relates to a droplet ejection device, comprising:
The pulse width of the first expansion pulse is not less than 0.8 AL and not more than 1.5 AL.
前記第1膨張パルスのパルス幅は、0.8AL以上1.5AL以下である。 The present invention relates to a droplet ejection device, comprising:
The pulse width of the first expansion pulse is not less than 0.8 AL and not more than 1.5 AL.
請求項3記載の発明は、請求項1又は2記載の液滴吐出装置であって、
前記収縮パルスの電位は、前記第1膨張パルスの逆電位である。 The present invention relates to a droplet ejection device according toclaim 1 or 2,
The potential of the contraction pulse is the opposite potential of the first expansion pulse.
前記収縮パルスの電位は、前記第1膨張パルスの逆電位である。 The present invention relates to a droplet ejection device according to
The potential of the contraction pulse is the opposite potential of the first expansion pulse.
請求項4記載の発明は、請求項1又は2記載の液滴吐出装置であって、
前記第1膨張パルスのパルス幅は、前記収縮パルスのパルス幅と前記第2膨張パルスのパルス幅の和以下である。 The invention according to claim 4 is the droplet ejection device according toclaim 1 or 2,
The pulse width of the first expansion pulse is equal to or less than the sum of the pulse width of the contraction pulse and the pulse width of the second expansion pulse.
前記第1膨張パルスのパルス幅は、前記収縮パルスのパルス幅と前記第2膨張パルスのパルス幅の和以下である。 The invention according to claim 4 is the droplet ejection device according to
The pulse width of the first expansion pulse is equal to or less than the sum of the pulse width of the contraction pulse and the pulse width of the second expansion pulse.
請求項5記載の発明は、請求項1又は2記載の液滴吐出装置であって、
前記液滴は、粘度が8cp以上である。 The invention according to claim 5 is the droplet ejection device according toclaim 1 or 2,
The droplets have a viscosity of 8 cp or more.
前記液滴は、粘度が8cp以上である。 The invention according to claim 5 is the droplet ejection device according to
The droplets have a viscosity of 8 cp or more.
請求項6記載の発明は、液滴吐出装置の駆動方法であって、
ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドを備える液滴吐出装置の駆動方法であって、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成ステップと、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御ステップと、を有し、
前記駆動信号生成ステップは、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成し、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅を0.1AL以上0.5AL以下、前記第2膨張パルスのパルス幅を1.2AL以上2.8AL以下とする。 A sixth aspect of the present invention is a method for driving a droplet ejection device, comprising the steps of:
A method for driving a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle, comprising:
A drive signal generating step of generating a drive signal including a plurality of drive pulses;
an ejection control step of applying the drive signal to the head drive unit to change the volume of the pressure chamber and eject droplets from the nozzle to perform a recording operation on a recording medium,
the drive signal generating step sequentially generates, as the drive pulse, a first expansion pulse for expanding a volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again;
When AL is half the acoustic resonance period of the pressure chamber, the pulse width of the contraction pulse is set to 0.1 AL or more and 0.5 AL or less, and the pulse width of the second expansion pulse is set to 1.2 AL or more and 2.8 AL or less.
ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドを備える液滴吐出装置の駆動方法であって、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成ステップと、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御ステップと、を有し、
前記駆動信号生成ステップは、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成し、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅を0.1AL以上0.5AL以下、前記第2膨張パルスのパルス幅を1.2AL以上2.8AL以下とする。 A sixth aspect of the present invention is a method for driving a droplet ejection device, comprising the steps of:
A method for driving a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle, comprising:
A drive signal generating step of generating a drive signal including a plurality of drive pulses;
an ejection control step of applying the drive signal to the head drive unit to change the volume of the pressure chamber and eject droplets from the nozzle to perform a recording operation on a recording medium,
the drive signal generating step sequentially generates, as the drive pulse, a first expansion pulse for expanding a volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again;
When AL is half the acoustic resonance period of the pressure chamber, the pulse width of the contraction pulse is set to 0.1 AL or more and 0.5 AL or less, and the pulse width of the second expansion pulse is set to 1.2 AL or more and 2.8 AL or less.
請求項7記載の発明は、プログラムであって、
ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドを備える液滴吐出装置のコンピューターを、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成部、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御部、として機能させ、
前記駆動信号生成部に、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成させ、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅を0.1AL以上0.5AL以下、前記第2膨張パルスのパルス幅を1.2AL以上2.8AL以下とする。 The invention described in claim 7 is a program,
A computer of a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle,
a drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses;
a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium;
causing the drive signal generating unit to generate, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
When AL is half the acoustic resonance period of the pressure chamber, the pulse width of the contraction pulse is set to 0.1 AL or more and 0.5 AL or less, and the pulse width of the second expansion pulse is set to 1.2 AL or more and 2.8 AL or less.
ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドを備える液滴吐出装置のコンピューターを、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成部、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御部、として機能させ、
前記駆動信号生成部に、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成させ、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅を0.1AL以上0.5AL以下、前記第2膨張パルスのパルス幅を1.2AL以上2.8AL以下とする。 The invention described in claim 7 is a program,
A computer of a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle,
a drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses;
a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium;
causing the drive signal generating unit to generate, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
When AL is half the acoustic resonance period of the pressure chamber, the pulse width of the contraction pulse is set to 0.1 AL or more and 0.5 AL or less, and the pulse width of the second expansion pulse is set to 1.2 AL or more and 2.8 AL or less.
本発明によれば、小さな液滴を吐出してもサテライトの発生を低減できる。
According to the present invention, the occurrence of satellites can be reduced even when small droplets are ejected.
以下に本発明の一実施形態につき、各図面を参照して説明する。以下の説明は本発明の一実施形態を例示するものであって、本発明を限定するものではない。
Below, one embodiment of the present invention will be described with reference to the drawings. The following description is intended to illustrate one embodiment of the present invention and is not intended to limit the present invention.
[インクジェット記録装置の全体構成]
初めに、本実施形態に係る液滴吐出装置として、液滴吐出ヘッドであるインクジェットヘッド23を備えるインクジェット記録装置1の構成例を開示する。
図1は、インクジェット記録装置1の機能構成を示すブロック図である。 [Overall configuration of inkjet recording apparatus]
First, as a droplet ejection device according to the present embodiment, a configuration example of aninkjet recording device 1 including an inkjet head 23 that is a droplet ejection head will be disclosed.
FIG. 1 is a block diagram showing the functional configuration of aninkjet recording apparatus 1. As shown in FIG.
初めに、本実施形態に係る液滴吐出装置として、液滴吐出ヘッドであるインクジェットヘッド23を備えるインクジェット記録装置1の構成例を開示する。
図1は、インクジェット記録装置1の機能構成を示すブロック図である。 [Overall configuration of inkjet recording apparatus]
First, as a droplet ejection device according to the present embodiment, a configuration example of an
FIG. 1 is a block diagram showing the functional configuration of an
インクジェット記録装置1は、例えば搬送部10、画像形成部20、クリーニング部30、制御部40、記憶部50、通信部60、操作受付部70、表示部80及び電力供給部90を備える。
The inkjet recording device 1 includes, for example, a conveying unit 10, an image forming unit 20, a cleaning unit 30, a control unit 40, a memory unit 50, a communication unit 60, an operation reception unit 70, a display unit 80, and a power supply unit 90.
(搬送部)
搬送部10は、画像を記録する対象となる記録媒体を移動させる。そして、搬送部10は、記録媒体を画像形成部20による記録範囲に対向させる。 (Transportation section)
Theconveying unit 10 moves a recording medium on which an image is to be recorded. The conveying unit 10 then brings the recording medium into opposition to a recording area of the image forming unit 20.
搬送部10は、画像を記録する対象となる記録媒体を移動させる。そして、搬送部10は、記録媒体を画像形成部20による記録範囲に対向させる。 (Transportation section)
The
搬送部10は、例えば、ロール状に巻き上げられた長尺の記録媒体を所定の速度で引き出す搬送モーター11を備える。記録媒体は、例えば、紙であるが、布帛や他の材質であってもよい。
The conveying unit 10 includes a conveying motor 11 that pulls out a long recording medium wound up in a roll at a predetermined speed. The recording medium is, for example, paper, but may also be fabric or other materials.
(画像形成部)
画像形成部20は、記録媒体上にインク滴を吐出して画像を記録する。 (Image forming section)
Theimage forming unit 20 ejects ink droplets onto a recording medium to record an image.
画像形成部20は、記録媒体上にインク滴を吐出して画像を記録する。 (Image forming section)
The
画像形成部20は、記録媒体の搬送方向に沿って複数配置されたインクジェットヘッド23を備える。インクジェットヘッド23は、多数が所定のパターンで配列されて開口部からインク滴を吐出するノズル21及び圧電素子22を備える。
The image forming unit 20 has a plurality of inkjet heads 23 arranged along the transport direction of the recording medium. The inkjet heads 23 have a number of nozzles 21 arranged in a predetermined pattern and piezoelectric elements 22 that eject ink droplets from openings.
また、画像形成部20は、ヘッド駆動部24を備える。ヘッド駆動部24は、制御部40の制御に基づき、駆動パルスを複数含む駆動信号W(図3参照)を圧電素子22に印加する。圧電素子22は、駆動パルスによる変形に伴って、ノズル21と連通してインクを供給するインク流路(圧力室)25の側壁26を図2Aから図2Cに示すように変形させる。当該変形により、圧力室25が膨張又は収縮し、内部のインクに圧力変動が生じた結果、ノズル21の開口からインク滴が吐出される。
The image forming unit 20 also includes a head drive unit 24. Based on the control of the control unit 40, the head drive unit 24 applies a drive signal W (see FIG. 3) including multiple drive pulses to the piezoelectric element 22. As the piezoelectric element 22 deforms due to the drive pulse, it deforms the side wall 26 of the ink flow path (pressure chamber) 25 that communicates with the nozzle 21 to supply ink, as shown in FIGS. 2A to 2C. This deformation causes the pressure chamber 25 to expand or contract, causing pressure fluctuations in the ink inside, resulting in the ejection of ink droplets from the opening of the nozzle 21.
(クリーニング部)
図1に戻って、クリーニング部30は、インクジェットヘッド23のうちノズル21の開口が配列されたノズル面を清掃する。 (Cleaning Department)
Returning to FIG. 1, thecleaning unit 30 cleans the nozzle surface of the inkjet head 23 on which the openings of the nozzles 21 are arranged.
図1に戻って、クリーニング部30は、インクジェットヘッド23のうちノズル21の開口が配列されたノズル面を清掃する。 (Cleaning Department)
Returning to FIG. 1, the
クリーニング部30は、ノズル面に付着したインクやその固化物を払拭するワイピング部材32を備える。また、クリーニング部30は、当該ワイピング部材32を動作させる駆動部31を備える。
ワイピング部材32は、特には限定されないが、例えば、インクを吸い込む不織布や、固体を削り取るブレード状の樹脂部材である。 Thecleaning unit 30 includes a wiping member 32 that wipes off ink and solidified ink adhering to the nozzle surface. The cleaning unit 30 also includes a drive unit 31 that drives the wiping member 32.
The wipingmember 32 is not particularly limited, but may be, for example, a nonwoven fabric that absorbs ink, or a blade-shaped resin member that scrapes off solid matter.
ワイピング部材32は、特には限定されないが、例えば、インクを吸い込む不織布や、固体を削り取るブレード状の樹脂部材である。 The
The wiping
(制御部)
制御部40は、インクジェット記録装置1の全体動作を統括制御するプロセッサーである。 (Control Unit)
Thecontrol unit 40 is a processor that controls the overall operation of the inkjet recording apparatus 1 .
制御部40は、インクジェット記録装置1の全体動作を統括制御するプロセッサーである。 (Control Unit)
The
制御部40は、例えば、CPU41(Central Processing Unit)及びRAM42(Random Access Memory)を備える。CPU41は、演算動作をして、各種制御処理をする。
RAM42は、CPU41に作業用のメモリー空間を提供し、一時データを記憶する。
制御部40は、所定のプログラムを実行することにより、駆動信号生成部及び吐出制御部として機能する。 Thecontrol unit 40 includes, for example, a central processing unit (CPU) 41 and a random access memory (RAM) 42. The CPU 41 performs calculations and executes various control processes.
TheRAM 42 provides a working memory space for the CPU 41 and stores temporary data.
Thecontrol unit 40 executes a predetermined program to function as a drive signal generating unit and an ejection control unit.
RAM42は、CPU41に作業用のメモリー空間を提供し、一時データを記憶する。
制御部40は、所定のプログラムを実行することにより、駆動信号生成部及び吐出制御部として機能する。 The
The
The
制御部40は、駆動信号生成部として、複数の駆動パルスからなる駆動信号Wを生成する。
また、制御部40は、吐出制御部として、ヘッド駆動部24が駆動信号Wを圧電素子22に出力するよう制御して、ノズル21からインク滴を吐出させる。
駆動信号W、駆動信号Wによる圧力室25の変形並びに当該変形に伴うインク滴の吐出の詳細については、後述する。 Thecontrol unit 40 serves as a drive signal generating unit and generates a drive signal W made up of a plurality of drive pulses.
Furthermore, thecontrol unit 40 , functioning as an ejection control unit, controls the head driving unit 24 to output a driving signal W to the piezoelectric element 22 , thereby ejecting ink droplets from the nozzle 21 .
The drive signal W, the deformation of thepressure chamber 25 due to the drive signal W, and the ejection of ink droplets accompanying the deformation will be described in detail later.
また、制御部40は、吐出制御部として、ヘッド駆動部24が駆動信号Wを圧電素子22に出力するよう制御して、ノズル21からインク滴を吐出させる。
駆動信号W、駆動信号Wによる圧力室25の変形並びに当該変形に伴うインク滴の吐出の詳細については、後述する。 The
Furthermore, the
The drive signal W, the deformation of the
(記憶部)
記憶部50は、記録対象の画像データやその処理データ、その他の設定データやプログラムを記憶する。画像データは、例えば、一時的に大容量の記憶を行って高速出力が可能なDRAM(Dynamic Random Access Memory)に記憶されてよい。また、設定データやプログラムは、フラッシュメモリといった不揮発性メモリー、及び/又はHDD(Hard Disk Drive)に記憶される。
このようにすることで、インクジェット記録装置1への電力供給が停止された状況でも、設定データを記憶可能となる。 (Memory unit)
Thestorage unit 50 stores image data to be recorded, processing data thereof, other setting data, and programs. Image data may be stored in, for example, a dynamic random access memory (DRAM) capable of temporarily storing large amounts of data and outputting data at high speed. Setting data and programs are stored in a non-volatile memory such as a flash memory and/or a hard disk drive (HDD).
In this way, even if the power supply to theinkjet recording apparatus 1 is stopped, the setting data can be stored.
記憶部50は、記録対象の画像データやその処理データ、その他の設定データやプログラムを記憶する。画像データは、例えば、一時的に大容量の記憶を行って高速出力が可能なDRAM(Dynamic Random Access Memory)に記憶されてよい。また、設定データやプログラムは、フラッシュメモリといった不揮発性メモリー、及び/又はHDD(Hard Disk Drive)に記憶される。
このようにすることで、インクジェット記録装置1への電力供給が停止された状況でも、設定データを記憶可能となる。 (Memory unit)
The
In this way, even if the power supply to the
(通信部)
通信部60は、所定の通信規格、例えばTCP/IP(Transmission Control Protocol/Internet Protocol)に従って外部機器とのデータ送受信を制御する。 (Communications Department)
Thecommunication unit 60 controls data transmission and reception with external devices in accordance with a predetermined communication standard, for example, TCP/IP (Transmission Control Protocol/Internet Protocol).
通信部60は、所定の通信規格、例えばTCP/IP(Transmission Control Protocol/Internet Protocol)に従って外部機器とのデータ送受信を制御する。 (Communications Department)
The
通信部60は、LAN(Local Area Network)に接続され、ルーターを介して外部インターネットと接続可能であってもよい。また、通信部60は、USB(Universal Serial Bus)端子に接続されたUSBケーブルを介して直接周辺機器と接続可能であってもよい。
The communication unit 60 may be connected to a LAN (Local Area Network) and may be connectable to the external Internet via a router. The communication unit 60 may also be connectable directly to peripheral devices via a Universal Serial Bus (USB) cable connected to a USB terminal.
(操作受付部)
操作受付部70は、ユーザーによる入力操作を受け付けて、受け付けた内容を入力信号として制御部40に出力する。 (Operation reception unit)
Theoperation reception unit 70 receives an input operation by the user, and outputs the received content to the control unit 40 as an input signal.
操作受付部70は、ユーザーによる入力操作を受け付けて、受け付けた内容を入力信号として制御部40に出力する。 (Operation reception unit)
The
操作受付部70は、例えば、タッチパネルや押しボタンスイッチを備える。タッチパネルは、表示部80の表示画面と重なって位置し、表示画面への表示内容と同期して操作内容が特定されてもよい。
The operation reception unit 70 includes, for example, a touch panel and a push button switch. The touch panel is positioned so as to overlap with the display screen of the display unit 80, and the operation content may be specified in synchronization with the display content on the display screen.
(表示部)
表示部80は、ユーザーに対してステータスや選択メニューを表示する。 (Display)
Thedisplay unit 80 displays status and selection menus to the user.
表示部80は、ユーザーに対してステータスや選択メニューを表示する。 (Display)
The
表示部80は、例えば、表示画面とインディケーター(ランプ)を有する。インディケーターは、例えば、LED(Light Emitting Diode)ランプにより電力供給の有無や動作異常の有無を示す場合に利用されてもよい。
また、表示部80は、例えば、液晶ディスプレイを有し、表示画面に各種文字や図形をドットマトリクス表示できる。 Thedisplay unit 80 has, for example, a display screen and an indicator (lamp). The indicator may be, for example, an LED (Light Emitting Diode) lamp that is used to indicate the presence or absence of power supply or the presence or absence of an operational abnormality.
Thedisplay unit 80 has, for example, a liquid crystal display, and can display various characters and figures on the display screen in a dot matrix format.
また、表示部80は、例えば、液晶ディスプレイを有し、表示画面に各種文字や図形をドットマトリクス表示できる。 The
The
(電力供給部)
電力供給部90は、電源からインクジェット記録装置1に電力を供給する。 (Power supply section)
Thepower supply unit 90 supplies power from a power source to the inkjet recording apparatus 1 .
電力供給部90は、電源からインクジェット記録装置1に電力を供給する。 (Power supply section)
The
[駆動信号について]
図3は、本実施形態に係る駆動方法を実現するための駆動信号Wを示している。図3に示すように、駆動信号Wは、時系列順に、第1膨張パルスW1、収縮パルスW2及び第2膨張パルスW3を有する。
また、図4は各駆動パルスが印加された際のインクの様子を示す、1つのノズル21の断面図である。 [About the drive signal]
3 shows a driving signal W for implementing the driving method according to the present embodiment. As shown in FIG. 3, the driving signal W includes, in chronological order, a first expansion pulse W1, a contraction pulse W2, and a second expansion pulse W3.
FIG. 4 is a cross-sectional view of onenozzle 21, showing the state of ink when each drive pulse is applied.
図3は、本実施形態に係る駆動方法を実現するための駆動信号Wを示している。図3に示すように、駆動信号Wは、時系列順に、第1膨張パルスW1、収縮パルスW2及び第2膨張パルスW3を有する。
また、図4は各駆動パルスが印加された際のインクの様子を示す、1つのノズル21の断面図である。 [About the drive signal]
3 shows a driving signal W for implementing the driving method according to the present embodiment. As shown in FIG. 3, the driving signal W includes, in chronological order, a first expansion pulse W1, a contraction pulse W2, and a second expansion pulse W3.
FIG. 4 is a cross-sectional view of one
なお、図3において、横軸は時間(AL(Acoustic Length;圧力室25の音響的共振周期の1/2))、縦軸は電圧をそれぞれ示す。また、図3において、t1は第1膨張パルスW1のパルス幅、t2は収縮パルスW2のパルス幅、t3は第2膨張パルスW3のパルス幅をそれぞれ示す。
In FIG. 3, the horizontal axis indicates time (AL (Acoustic Length; 1/2 the acoustic resonance period of the pressure chamber 25)) and the vertical axis indicates voltage. Also in FIG. 3, t1 indicates the pulse width of the first expansion pulse W1, t2 indicates the pulse width of the contraction pulse W2, and t3 indicates the pulse width of the second expansion pulse W3.
ALは、電気・機械的変換手段である側壁26に矩形波の駆動パルスを印加して、ノズル21から吐出されるインク滴の速度を測定することで求められる。
具体的には、ALは、矩形波の電圧値を一定にしてそのパルス幅を変化させた際に、インク滴の飛翔速度が最大になるパルス幅として求められる。そのため、ALは、インクジェットヘッド23の構造やインクの密度等に依存して求められる。 The AL is obtained by applying a rectangular wave driving pulse to theside wall 26, which is an electromechanical conversion means, and measuring the speed of the ink droplets ejected from the nozzle 21.
Specifically, AL is determined as the pulse width at which the flying speed of the ink droplets becomes maximum when the voltage value of the square wave is kept constant and the pulse width is changed. Therefore, AL is determined depending on the structure of theinkjet head 23, the density of the ink, etc.
具体的には、ALは、矩形波の電圧値を一定にしてそのパルス幅を変化させた際に、インク滴の飛翔速度が最大になるパルス幅として求められる。そのため、ALは、インクジェットヘッド23の構造やインクの密度等に依存して求められる。 The AL is obtained by applying a rectangular wave driving pulse to the
Specifically, AL is determined as the pulse width at which the flying speed of the ink droplets becomes maximum when the voltage value of the square wave is kept constant and the pulse width is changed. Therefore, AL is determined depending on the structure of the
また、パルスとは、一定電圧波高値の矩形波である。そして、パルス幅とは、0Vを0%、波高値電圧を100%とした場合に、0Vからの立ち上がり又は立ち下がり始めの10%から、立ち下がり始め又は立ち上がり始めの10%の間の時間である。また、矩形波とは、電圧の10%と90%との間の立ち上がり時間、立ち下がり時間のいずれもがALの1/10以内、好ましくは1/20以内であるような波形を指す。
A pulse is a rectangular wave with a constant voltage peak value. The pulse width is the time between 10% of the beginning of the rise or fall from 0V and 10% of the beginning of the fall or rise, where 0V is 0% and the peak value voltage is 100%. A rectangular wave is a waveform in which the rise time and fall time between 10% and 90% of the voltage are both within 1/10 of the AL, and preferably within 1/20 of the AL.
図3に示すように、ヘッド駆動部24は、所定の正電圧であるVon電圧値まで立ち上がり、その後一定時間保持する矩形波からなる第1膨張パルスW1を印加する(P1)。すると、図2Aに示すように両側の側壁26、26が互いに外側に向けて変形し、圧力室25の容積が膨張する。これにより、圧力室25内のインクに負の圧力が生じてインクが流れ込む。また、図4Aに示すように、ノズル内のインクは、メニスカスがノズル21内に引き込まれた状態で保持される。
As shown in FIG. 3, the head driver 24 applies a first expansion pulse W1 (P1), which is a rectangular wave that rises to a predetermined positive voltage, the Von voltage value, and then is maintained for a certain period of time. Then, as shown in FIG. 2A, the side walls 26, 26 on both sides deform toward the outside, and the volume of the pressure chamber 25 expands. This generates a negative pressure in the ink in the pressure chamber 25, causing the ink to flow in. Also, as shown in FIG. 4A, the ink in the nozzle is maintained with the meniscus pulled into the nozzle 21.
第1膨張パルスW1の印加からt1経過後、電位を0に戻す(P2)。すると、側壁26、26は膨張位置から図2Bに示す中立位置に戻り、圧力室25内のインクに高い圧力がかかる。
After t1 has elapsed since the application of the first expansion pulse W1, the potential is returned to 0 (P2). Then, the side walls 26, 26 return from the expansion position to the neutral position shown in FIG. 2B, and high pressure is applied to the ink in the pressure chamber 25.
引き続いて、ヘッド駆動部24は、第1膨張パルスW1の逆電位の電圧であるVoffまで立ち下がる矩形波からなる収縮パルスW2を印加する(P3)。収縮パルスW2の立ち下がりによって、図2Cに示すように、側壁26、26は互いに逆方向に変形して、圧力室25の容積が収縮する。当該収縮により、圧力室25内のインクには更に高い圧力がかかる。結果、図4Bに示すように、ノズル21の開口からインク柱が突出する。
The head driver 24 then applies a contraction pulse W2 (P3), which is a rectangular wave that falls to Voff, which is the voltage of the opposite potential to the first expansion pulse W1. As the contraction pulse W2 falls, the side walls 26, 26 deform in opposite directions, as shown in FIG. 2C, and the volume of the pressure chamber 25 contracts. This contraction applies even higher pressure to the ink in the pressure chamber 25. As a result, an ink column protrudes from the opening of the nozzle 21, as shown in FIG. 4B.
収縮パルスW2の印加からt2経過後、電位を0に戻す(P4)。そして更に、所定の正電圧まで立ち上がる矩形波からなる第2膨張パルスW3を印加する(P5)。すると、図2Aに示すように、圧力室25の容積が再度膨張することで、圧力室25内のインクに再び高い負の圧力が加わる。これにより、図4Cに示すように、インクのメニスカスが引き込まれ、突出したインク柱の後端が引き戻される。そして、所定時間が経過すると、当該インク柱の径が細くなり、インク滴が切り離される。
After t2 has elapsed since the application of the contraction pulse W2, the potential is returned to 0 (P4). Then, a second expansion pulse W3 consisting of a square wave that rises to a predetermined positive voltage is applied (P5). Then, as shown in FIG. 2A, the volume of the pressure chamber 25 expands again, and a high negative pressure is again applied to the ink in the pressure chamber 25. This causes the ink meniscus to retract, and the rear end of the protruding ink pillar is pulled back, as shown in FIG. 4C. Then, after a predetermined time has elapsed, the diameter of the ink pillar narrows and the ink droplet is detached.
第2膨張パルスW3の印加からt3経過後、電位を0に戻す(P6)。そして、圧力室25を図2Aに示す状態から図2Bに示す状態に戻すことにより、圧力波を急速に減衰させることができる。結果、図4Dに示すように、ノズル内のインクは、メニスカスがノズル21内に引き込まれた状態で保持される。
After t3 has elapsed since the application of the second expansion pulse W3, the potential is returned to 0 (P6). Then, by returning the pressure chamber 25 from the state shown in FIG. 2A to the state shown in FIG. 2B, the pressure wave can be rapidly attenuated. As a result, as shown in FIG. 4D, the ink in the nozzle is held in a state where the meniscus is pulled into the nozzle 21.
インクジェットヘッド23は、上記の一連の駆動信号Wが繰り返し印加されることで駆動する。したがって、圧力波の減衰が激しいほど、次の画素のインクを早く吐出でき、より高速に印刷ができ、好ましい。
The inkjet head 23 is driven by repeatedly applying the above series of drive signals W. Therefore, the more the pressure wave is damped, the faster the ink for the next pixel can be ejected, allowing for faster printing, which is preferable.
なお、本発明において、収縮パルスW2のパルス幅t2は、0.1AL以上0.5AL以下である。
収縮パルスW2のパルス幅t2が0.1AL未満であると、側壁26、26が収縮するには不十分であり、小さなインク滴を形成できない。また、収縮パルスW2のパルス幅t2が0.5ALより大きいと、インク滴の体積が急激に大きくなり、小さなインク滴を形成できない。
一方で、収縮パルスW2のパルス幅t2を0.1AL以上0.5AL以下とすると、小さなインク滴を形成できる。 In the present invention, the pulse width t2 of the contraction pulse W2 is not less than 0.1 AL and not more than 0.5 AL.
If the pulse width t2 of the contraction pulse W2 is less than 0.1 AL, the side walls 26, 26 are insufficiently contracted, and small ink droplets cannot be formed. If the pulse width t2 of the contraction pulse W2 is more than 0.5 AL, the volume of the ink droplets increases rapidly, and small ink droplets cannot be formed.
On the other hand, when the pulse width t2 of the contraction pulse W2 is set to be equal to or greater than 0.1 AL and equal to or less than 0.5 AL, small ink droplets can be formed.
収縮パルスW2のパルス幅t2が0.1AL未満であると、側壁26、26が収縮するには不十分であり、小さなインク滴を形成できない。また、収縮パルスW2のパルス幅t2が0.5ALより大きいと、インク滴の体積が急激に大きくなり、小さなインク滴を形成できない。
一方で、収縮パルスW2のパルス幅t2を0.1AL以上0.5AL以下とすると、小さなインク滴を形成できる。 In the present invention, the pulse width t2 of the contraction pulse W2 is not less than 0.1 AL and not more than 0.5 AL.
If the pulse width t2 of the contraction pulse W2 is less than 0.1 AL, the
On the other hand, when the pulse width t2 of the contraction pulse W2 is set to be equal to or greater than 0.1 AL and equal to or less than 0.5 AL, small ink droplets can be formed.
また、第2膨張パルスW3のパルス幅t3は、1.2AL以上2.8AL以下である。
サテライトの発生しやすさは、メニスカスから分離するまでのインク滴の尾の長さに依存する。すなわち、インク滴の尾の長さを短くするとサテライトの発生を抑制できる。
パルス幅t3が1.2AL未満であると、インク滴がメニスカスから切り離される前にキャンセル波形が加えられ、尾が長くなりやすく、サテライトの発生を抑制できない。
また、第2膨張パルスW3のパルス幅t3が2.8ALより大きいと、主滴から微小液滴が分離する、いわゆる液滴分離と呼ばれる現象が生じやすくなる。
一方で、パルス幅t3を1.2AL以上とすると、インク滴がメニスカスから切り離された後にキャンセル波形が加えられるため、尾が長くなりにくく、サテライトの発生を抑制できる。また、パルス幅t3を2.8AL以下とすると、液滴分離が生じにくい。 The pulse width t3 of the second expansion pulse W3 is not less than 1.2 AL and not more than 2.8 AL.
The likelihood of satellites forming depends on the length of the tail of the ink droplet before it separates from the meniscus, i.e., shortening the length of the tail of the ink droplet can suppress the formation of satellites.
If the pulse width t3 is less than 1.2 AL, the cancel waveform is applied before the ink droplet is separated from the meniscus, which tends to result in a long tail and makes it difficult to suppress the generation of satellites.
Furthermore, if the pulse width t3 of the second expansion pulse W3 is greater than 2.8 AL, a phenomenon known as droplet separation, in which minute droplets separate from a main droplet, becomes more likely to occur.
On the other hand, when the pulse width t3 is set to 1.2 AL or more, the cancel waveform is added after the ink droplet is separated from the meniscus, so that the tail is less likely to become long and the occurrence of satellites can be suppressed. Also, when the pulse width t3 is set to 2.8 AL or less, droplet separation is less likely to occur.
サテライトの発生しやすさは、メニスカスから分離するまでのインク滴の尾の長さに依存する。すなわち、インク滴の尾の長さを短くするとサテライトの発生を抑制できる。
パルス幅t3が1.2AL未満であると、インク滴がメニスカスから切り離される前にキャンセル波形が加えられ、尾が長くなりやすく、サテライトの発生を抑制できない。
また、第2膨張パルスW3のパルス幅t3が2.8ALより大きいと、主滴から微小液滴が分離する、いわゆる液滴分離と呼ばれる現象が生じやすくなる。
一方で、パルス幅t3を1.2AL以上とすると、インク滴がメニスカスから切り離された後にキャンセル波形が加えられるため、尾が長くなりにくく、サテライトの発生を抑制できる。また、パルス幅t3を2.8AL以下とすると、液滴分離が生じにくい。 The pulse width t3 of the second expansion pulse W3 is not less than 1.2 AL and not more than 2.8 AL.
The likelihood of satellites forming depends on the length of the tail of the ink droplet before it separates from the meniscus, i.e., shortening the length of the tail of the ink droplet can suppress the formation of satellites.
If the pulse width t3 is less than 1.2 AL, the cancel waveform is applied before the ink droplet is separated from the meniscus, which tends to result in a long tail and makes it difficult to suppress the generation of satellites.
Furthermore, if the pulse width t3 of the second expansion pulse W3 is greater than 2.8 AL, a phenomenon known as droplet separation, in which minute droplets separate from a main droplet, becomes more likely to occur.
On the other hand, when the pulse width t3 is set to 1.2 AL or more, the cancel waveform is added after the ink droplet is separated from the meniscus, so that the tail is less likely to become long and the occurrence of satellites can be suppressed. Also, when the pulse width t3 is set to 2.8 AL or less, droplet separation is less likely to occur.
また、第1膨張パルスW1のパルス幅t1は、0.8AL以上1.5AL以下とするのが好ましい。第1膨張パルスW1のパルス幅t1は、インク滴の吐出力に大きく影響し、パルス幅t1が上記範囲であるとインク滴の吐出力、すなわち吐出速度をより高められる。
Furthermore, it is preferable that the pulse width t1 of the first expansion pulse W1 is 0.8 AL or more and 1.5 AL or less. The pulse width t1 of the first expansion pulse W1 has a large effect on the ejection force of the ink droplets, and if the pulse width t1 is in the above range, the ejection force of the ink droplets, i.e., the ejection speed, can be further increased.
また、圧力室25内の圧力波は、1AL毎に反転を繰り返す。そのため、特に第1膨張パルスW1のパルス幅t1は、1ALとするのが好ましい。第1膨張パルスW1のパルス幅t1を1ALとすると、正圧に反転した圧力室25内の圧力波と、第1膨張パルスW1の立ち下がり及び収縮パルスW2の立ち下がりによる圧力室25の収縮により発生した正の圧力波が重なる。結果、最も効率の良い吐出力が得られ、インク滴の吐出速度を高められる。
The pressure wave in the pressure chamber 25 also repeatedly inverts every 1 AL. For this reason, it is particularly preferable to set the pulse width t1 of the first expansion pulse W1 to 1 AL. When the pulse width t1 of the first expansion pulse W1 is set to 1 AL, the pressure wave in the pressure chamber 25 that has inverted to a positive pressure overlaps with the positive pressure wave generated by the contraction of the pressure chamber 25 due to the falling edge of the first expansion pulse W1 and the falling edge of the contraction pulse W2. As a result, the most efficient ejection force is obtained, and the ejection speed of the ink droplets can be increased.
また、収縮パルスW2のパルス幅t2は、0.1ALから0.5ALの範囲で適宜変化させることで、インク滴の体積を制御するのが好ましい。
同じ画像データに基づく同じ駆動信号Wにより記録を行った場合でも、インクジェットヘッド23の温度に応じて、記録媒体Pに形成されるドットの大きさは不安定になるからである。 Moreover, it is preferable to control the volume of the ink droplet by appropriately changing the pulse width t2 of the contraction pulse W2 within a range from 0.1 AL to 0.5 AL.
This is because even when printing is performed using the same drive signal W based on the same image data, the size of the dots formed on the printing medium P becomes unstable depending on the temperature of theinkjet head 23 .
同じ画像データに基づく同じ駆動信号Wにより記録を行った場合でも、インクジェットヘッド23の温度に応じて、記録媒体Pに形成されるドットの大きさは不安定になるからである。 Moreover, it is preferable to control the volume of the ink droplet by appropriately changing the pulse width t2 of the contraction pulse W2 within a range from 0.1 AL to 0.5 AL.
This is because even when printing is performed using the same drive signal W based on the same image data, the size of the dots formed on the printing medium P becomes unstable depending on the temperature of the
具体的には、インクジェットヘッド23の温度が低いと、ノズル21から吐出されるインク滴の体積並びに当該インク滴によって記録されるドットは小さくなる。逆に、インクジェットヘッド23の温度が高いと、ノズル21から吐出されるインク滴の体積並びに当該インク滴によって記録されるドットは大きくなる。
このように、記録されるドットの大きさが不安定であると、画像濃度が安定せず、濃度ムラを引き起こすおそれがある。 Specifically, when the temperature of theinkjet head 23 is low, the volume of the ink droplets ejected from the nozzles 21 and the dots recorded by the ink droplets become smaller. Conversely, when the temperature of the inkjet head 23 is high, the volume of the ink droplets ejected from the nozzles 21 and the dots recorded by the ink droplets become larger.
If the size of the printed dots is unstable in this way, the image density will not be stable, which may cause density unevenness.
このように、記録されるドットの大きさが不安定であると、画像濃度が安定せず、濃度ムラを引き起こすおそれがある。 Specifically, when the temperature of the
If the size of the printed dots is unstable in this way, the image density will not be stable, which may cause density unevenness.
したがって、制御部40は、収縮パルスW2のパルス幅t2を適宜変化させて、ノズル21から吐出されるインク滴の体積を制御するのが好ましい。これにより、インクジェットヘッド23の温度が変化しても、インク滴の体積を所定の制御範囲内とでき、濃度ムラの発生を抑制できる。
なお、インクジェットヘッド23の温度に限られず、画像の解像度や階調などの条件に応じてインク滴の体積を制御してもよい。具体的には、インク滴の体積を小さくしたい場合は、収縮パルスW2のパルス幅t2を狭くする。また、インク滴の体積を大きくしたい場合は、収縮パルスW2のパルス幅t2を広くする。 Therefore, it is preferable that thecontrol unit 40 appropriately changes the pulse width t2 of the contraction pulse W2 to control the volume of the ink droplets ejected from the nozzles 21. This makes it possible to keep the volume of the ink droplets within a predetermined control range even if the temperature of the inkjet head 23 changes, and thus makes it possible to suppress the occurrence of density unevenness.
The volume of the ink droplet may be controlled according to conditions other than the temperature of theinkjet head 23, such as the resolution and gradation of the image. Specifically, to reduce the volume of the ink droplet, the pulse width t2 of the contraction pulse W2 is narrowed. To increase the volume of the ink droplet, the pulse width t2 of the contraction pulse W2 is widened.
なお、インクジェットヘッド23の温度に限られず、画像の解像度や階調などの条件に応じてインク滴の体積を制御してもよい。具体的には、インク滴の体積を小さくしたい場合は、収縮パルスW2のパルス幅t2を狭くする。また、インク滴の体積を大きくしたい場合は、収縮パルスW2のパルス幅t2を広くする。 Therefore, it is preferable that the
The volume of the ink droplet may be controlled according to conditions other than the temperature of the
また、第1膨張パルスW1のパルス幅t1は、収縮パルスW2のパルス幅t2と第2膨張パルスW3のパルス幅t3の和よりも小さいのが好ましい。
このように第1膨張パルスW1のパルス幅t1が小さいと、ノズル21から小さなインク滴が吐出されるからである。 Moreover, it is preferable that the pulse width t1 of the first expansion pulse W1 is smaller than the sum of the pulse width t2 of the contraction pulse W2 and the pulse width t3 of the second expansion pulse W3.
This is because when the pulse width t1 of the first expansion pulse W1 is small, a small ink droplet is ejected from thenozzle 21.
このように第1膨張パルスW1のパルス幅t1が小さいと、ノズル21から小さなインク滴が吐出されるからである。 Moreover, it is preferable that the pulse width t1 of the first expansion pulse W1 is smaller than the sum of the pulse width t2 of the contraction pulse W2 and the pulse width t3 of the second expansion pulse W3.
This is because when the pulse width t1 of the first expansion pulse W1 is small, a small ink droplet is ejected from the
次に、本発明について、好ましい構成を評価した結果を説明する。
なお、以下においては、本発明を実施例等に基づいて具体的に説明するが、本発明は以下の具体例のみに限定されるものではない。 Next, the results of evaluation of preferred configurations of the present invention will be described.
In the following, the present invention will be specifically described based on examples, but the present invention is not limited to the following specific examples.
なお、以下においては、本発明を実施例等に基づいて具体的に説明するが、本発明は以下の具体例のみに限定されるものではない。 Next, the results of evaluation of preferred configurations of the present invention will be described.
In the following, the present invention will be specifically described based on examples, but the present invention is not limited to the following specific examples.
インクジェットヘッド23が搭載されたインクジェット記録装置1において、駆動信号Wの第2膨張パルスW3のパルス幅t3を0.5ALから3.0AL、液滴吐出速度を4.0m/sから10.0m/sにそれぞれ変化させた際に、1ノズルからサテライトが発生するか否かを測定した。
In an inkjet recording device 1 equipped with an inkjet head 23, we measured whether satellites were generated from one nozzle when the pulse width t3 of the second expansion pulse W3 of the drive signal W was changed from 0.5 AL to 3.0 AL and the droplet ejection speed was changed from 4.0 m/s to 10.0 m/s.
なお、本実施例に係る駆動信号Wにおいて、第1膨張パルスW1のパルス幅t1は、1ALであり、収縮パルスW2のパルス幅t2は、0.5ALである。また、第1膨張パルスW1及び第2膨張パルスW3の電圧値Vonは16Vであり、収縮パルスW2の電圧値Voffは-8Vである。また、インクジェットヘッド23の温度は45℃である。
In the drive signal W in this embodiment, the pulse width t1 of the first expansion pulse W1 is 1 AL, and the pulse width t2 of the contraction pulse W2 is 0.5 AL. The voltage value Von of the first expansion pulse W1 and the second expansion pulse W3 is 16 V, and the voltage value Voff of the contraction pulse W2 is -8 V. The temperature of the inkjet head 23 is 45°C.
また、インクジェットヘッド23から吐出する液体は、UVインクである。詳細には、45℃時の粘度が10.7cP、密度が1.1g/cm3、表面張力が22.96mN/mであり、平均粒形が99.8nmのインクである。
The liquid ejected from the inkjet head 23 is UV ink. More specifically, the ink has a viscosity of 10.7 cP at 45° C., a density of 1.1 g/cm 3 , a surface tension of 22.96 mN/m, and an average particle size of 99.8 nm.
表Iにサテライトの発生の有無を測定した結果を示す。なお、サテライトが発生しなかった場合をG(Good)、サテライトが発生した場合あるいはインク滴の射出が不安定になった場合をNG(No Good)として、目視で評価を行った。
Table I shows the results of measuring whether satellites occurred. The evaluation was done visually, with G (Good) being the case where no satellites occurred, and NG (No Good) being the case where satellites occurred or the ejection of ink droplets became unstable.
従来の駆動信号Wは、第2膨張パルスW3のパルス幅t3が0.5ALであり、表Iに示すように、液滴吐出速度を4.0m/sより高くした際にメニスカスが発生していた。一方で、本発明のように、第2膨張パルスW3のパルス幅t3を1.2AL以上2.8AL以下とすると、液滴吐出速度を4.0m/sよりも高くしてもメニスカスが生じないことがわかる。
In the conventional drive signal W, the pulse width t3 of the second expansion pulse W3 is 0.5 AL, and as shown in Table I, a meniscus occurs when the droplet ejection speed is increased to above 4.0 m/s. On the other hand, when the pulse width t3 of the second expansion pulse W3 is set to 1.2 AL or more and 2.8 AL or less, as in the present invention, it can be seen that a meniscus does not occur even if the droplet ejection speed is increased to above 4.0 m/s.
[発明の効果]
以上に示すように、液滴吐出装置1の制御部40は、第1膨張パルスW1、収縮パルスW2、第2膨張パルスW3を順に生成する。また、収縮パルスW2のパルス幅t2を0.1AL以上0.5AL以下、第2膨張パルスW3のパルス幅t3を1.2AL以上2.8AL以下とする。
当該構成によれば、収縮パルスW2により小さな液滴を形成できる。また、当該構成によれば、第2膨張パルスW3の立ち下がりが尾の切断後となるため、サテライトの発生を抑制できる。 [Effect of the invention]
As described above, thecontrol unit 40 of the droplet ejection device 1 generates the first expansion pulse W1, the contraction pulse W2, and the second expansion pulse W3 in that order. The pulse width t2 of the contraction pulse W2 is set to 0.1 AL or more and 0.5 AL or less, and the pulse width t3 of the second expansion pulse W3 is set to 1.2 AL or more and 2.8 AL or less.
According to this configuration, small droplets can be formed by the contraction pulse W2. Also, according to this configuration, the falling edge of the second expansion pulse W3 occurs after the tail is cut off, so that the generation of satellites can be suppressed.
以上に示すように、液滴吐出装置1の制御部40は、第1膨張パルスW1、収縮パルスW2、第2膨張パルスW3を順に生成する。また、収縮パルスW2のパルス幅t2を0.1AL以上0.5AL以下、第2膨張パルスW3のパルス幅t3を1.2AL以上2.8AL以下とする。
当該構成によれば、収縮パルスW2により小さな液滴を形成できる。また、当該構成によれば、第2膨張パルスW3の立ち下がりが尾の切断後となるため、サテライトの発生を抑制できる。 [Effect of the invention]
As described above, the
According to this configuration, small droplets can be formed by the contraction pulse W2. Also, according to this configuration, the falling edge of the second expansion pulse W3 occurs after the tail is cut off, so that the generation of satellites can be suppressed.
また、第1膨張パルスW1のパルス幅t1は、0.8AL以上1.5AL以下である。
当該構成によれば、液滴の吐出速度をより高められる。 The pulse width t1 of the first expansion pulse W1 is not less than 0.8 AL and not more than 1.5 AL.
According to this configuration, the droplet ejection speed can be increased.
当該構成によれば、液滴の吐出速度をより高められる。 The pulse width t1 of the first expansion pulse W1 is not less than 0.8 AL and not more than 1.5 AL.
According to this configuration, the droplet ejection speed can be increased.
また、収縮パルスW2の電圧は、第1膨張パルスW1の電圧の逆電位である。
当該構成によれば、第1膨張パルスW1の立ち下がりと収縮パルスW2の立ち下がりとにより、液滴の吐出速度を高められる。 The voltage of the contraction pulse W2 is the reverse potential of the voltage of the first expansion pulse W1.
According to this configuration, the droplet ejection speed can be increased by the falling edge of the first expansion pulse W1 and the falling edge of the contraction pulse W2.
当該構成によれば、第1膨張パルスW1の立ち下がりと収縮パルスW2の立ち下がりとにより、液滴の吐出速度を高められる。 The voltage of the contraction pulse W2 is the reverse potential of the voltage of the first expansion pulse W1.
According to this configuration, the droplet ejection speed can be increased by the falling edge of the first expansion pulse W1 and the falling edge of the contraction pulse W2.
また、収縮パルスW2のパルス幅t2と第2膨張パルスW3のパルス幅t3との和は、第1膨張パルスW1のパルス幅t1よりも大きい。
当該構成によれば、第1膨張パルスW1のパルス幅t1が幅狭となるため、小さな液滴を形成できる。 Moreover, the sum of the pulse width t2 of the contraction pulse W2 and the pulse width t3 of the second expansion pulse W3 is greater than the pulse width t1 of the first expansion pulse W1.
According to this configuration, the pulse width t1 of the first expansion pulse W1 is narrow, so that small droplets can be formed.
当該構成によれば、第1膨張パルスW1のパルス幅t1が幅狭となるため、小さな液滴を形成できる。 Moreover, the sum of the pulse width t2 of the contraction pulse W2 and the pulse width t3 of the second expansion pulse W3 is greater than the pulse width t1 of the first expansion pulse W1.
According to this configuration, the pulse width t1 of the first expansion pulse W1 is narrow, so that small droplets can be formed.
また、液滴吐出装置1が吐出する液滴の粘度は8cp以上である。
上記実施例にて示したように、8cP以上の高粘度の液体を液滴として吐出する場合、液滴吐出速度を速くするとサテライトが発生しやすい。しかしながら、本願発明においては、液滴吐出速度を速くしてもサテライトの発生を抑制できる。 Furthermore, the viscosity of the droplets discharged by thedroplet discharge device 1 is 8 cp or more.
As shown in the above examples, when a liquid with a high viscosity of 8 cP or more is ejected as droplets, satellites are likely to occur if the droplet ejection speed is increased. However, in the present invention, the occurrence of satellites can be suppressed even if the droplet ejection speed is increased.
上記実施例にて示したように、8cP以上の高粘度の液体を液滴として吐出する場合、液滴吐出速度を速くするとサテライトが発生しやすい。しかしながら、本願発明においては、液滴吐出速度を速くしてもサテライトの発生を抑制できる。 Furthermore, the viscosity of the droplets discharged by the
As shown in the above examples, when a liquid with a high viscosity of 8 cP or more is ejected as droplets, satellites are likely to occur if the droplet ejection speed is increased. However, in the present invention, the occurrence of satellites can be suppressed even if the droplet ejection speed is increased.
[その他の構成]
以上、本発明に係る実施の形態に基づいて具体的に説明を行ったが、本発明が上述の実施の形態に限定されるものではない。特許請求の範囲に記載された発明の範囲とその均等の範囲を含む様々な変更が可能であるのはもちろんである。 [Other configurations]
Although the present invention has been specifically described above based on the embodiment of the present invention, the present invention is not limited to the above embodiment. Of course, various modifications are possible within the scope of the invention described in the claims and its equivalents.
以上、本発明に係る実施の形態に基づいて具体的に説明を行ったが、本発明が上述の実施の形態に限定されるものではない。特許請求の範囲に記載された発明の範囲とその均等の範囲を含む様々な変更が可能であるのはもちろんである。 [Other configurations]
Although the present invention has been specifically described above based on the embodiment of the present invention, the present invention is not limited to the above embodiment. Of course, various modifications are possible within the scope of the invention described in the claims and its equivalents.
例えば図3においては、第1膨張パルスW1の電圧値と、第2膨張パルスW3の電圧値が共にVon、すなわち同値である駆動信号Wを例示したが、これに限られない。第1膨張パルスW1の電圧値と、第2膨張パルスW3の電圧値とは共に異なる値としてよい。
For example, in FIG. 3, the voltage value of the first expansion pulse W1 and the voltage value of the second expansion pulse W3 are both Von, i.e., the same value, as illustrated in the drive signal W, but this is not limited to this. The voltage value of the first expansion pulse W1 and the voltage value of the second expansion pulse W3 may both be different values.
ただし、収縮パルスW2を負電圧、第2膨張パルスW3を正電圧として、収縮パルスW2から第2膨張パルスW3の変位量を大きくするのが好ましい。当該構成とすると、尾が切断されやすくなり、サテライトの発生をより抑制できる。
However, it is preferable to set the contraction pulse W2 to a negative voltage and the second expansion pulse W3 to a positive voltage, so that the amount of displacement from the contraction pulse W2 to the second expansion pulse W3 is large. With this configuration, the tail is more easily cut off, and the occurrence of satellites can be further suppressed.
また、上記においては液滴吐出ヘッド23をインクジェットヘッドであるとしたが、液滴吐出ヘッド23が吐出する液滴は、インク滴に限られない。
In addition, although the droplet ejection head 23 is described above as an inkjet head, the droplets ejected by the droplet ejection head 23 are not limited to ink droplets.
また、上記においては、本発明に係るプログラムのコンピューター読み取り可能な媒体としてハードディスクや半導体の不揮発性メモリー等を使用した例を開示したが、この例に限定されない。その他のコンピューター読み取り可能な媒体として、CD-ROM等の可搬型記録媒体を適用できる。また、本発明に係るプログラムのデータを、通信回線を介して提供する媒体として、キャリアウエーブ(搬送波)も適用される。
In addition, although the above discloses examples in which a hard disk or semiconductor non-volatile memory is used as a computer-readable medium for the program according to the present invention, the present invention is not limited to this example. Portable recording media such as CD-ROMs can be used as other computer-readable media. Furthermore, carrier waves can also be used as a medium for providing data for the program according to the present invention via a communication line.
本発明は、小さな液滴を吐出してもサテライトの発生を低減できる液滴吐出装置、液滴吐出装置の駆動方法及びプログラムに利用することができる。
The present invention can be used in a droplet ejection device that can reduce the occurrence of satellites even when ejecting small droplets, and a method and program for driving the droplet ejection device.
1 インクジェット記録装置(液滴吐出装置)
21 ノズル
23 インクジェットヘッド(液滴吐出ヘッド)
25 圧力室
40 制御部(駆動信号生成部、吐出制御部)
W 駆動信号
W1 第1膨張パルス
W2 収縮パルス
W3 第2膨張パルス
t1 第1膨張パルスのパルス幅
t2 収縮パルスのパルス幅
t3 第2膨張パルスのパルス幅 1. Inkjet recording device (droplet ejection device)
21Nozzle 23 Inkjet head (droplet ejection head)
25Pressure chamber 40 Control unit (driving signal generating unit, ejection control unit)
W Drive signal W1 First expansion pulse W2 Contraction pulse W3 Second expansion pulse t1 Pulse width of first expansion pulse t2 Pulse width of contraction pulse t3 Pulse width of second expansion pulse
21 ノズル
23 インクジェットヘッド(液滴吐出ヘッド)
25 圧力室
40 制御部(駆動信号生成部、吐出制御部)
W 駆動信号
W1 第1膨張パルス
W2 収縮パルス
W3 第2膨張パルス
t1 第1膨張パルスのパルス幅
t2 収縮パルスのパルス幅
t3 第2膨張パルスのパルス幅 1. Inkjet recording device (droplet ejection device)
21
25
W Drive signal W1 First expansion pulse W2 Contraction pulse W3 Second expansion pulse t1 Pulse width of first expansion pulse t2 Pulse width of contraction pulse t3 Pulse width of second expansion pulse
Claims (7)
- ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドと、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成部と、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御部と、を備える液滴吐出装置であって、
前記駆動信号生成部は、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成し、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅は、0.1AL以上0.5AL以下であり、前記第2膨張パルスのパルス幅は、1.2AL以上2.8AL以下である液滴吐出装置。 a droplet ejection head including a head drive unit that deforms a pressure chamber that communicates with a nozzle;
A drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses;
a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium,
the drive signal generating section generates, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
A droplet ejection device, wherein, when AL is half the acoustic resonance period of the pressure chamber, the pulse width of the contraction pulse is not less than 0.1 AL and not more than 0.5 AL, and the pulse width of the second expansion pulse is not less than 1.2 AL and not more than 2.8 AL. - 前記第1膨張パルスのパルス幅は、0.8AL以上1.5AL以下である請求項1記載の液滴吐出装置。 The droplet ejection device according to claim 1, wherein the pulse width of the first expansion pulse is 0.8 AL or more and 1.5 AL or less.
- 前記収縮パルスの電位は、前記第1膨張パルスの逆電位である請求項1又は2記載の液滴吐出装置。 The droplet ejection device according to claim 1 or 2, wherein the potential of the contraction pulse is the opposite potential of the first expansion pulse.
- 前記第1膨張パルスのパルス幅は、前記収縮パルスのパルス幅と前記第2膨張パルスのパルス幅の和以下である請求項1又は2記載の液滴吐出装置。 The droplet ejection device according to claim 1 or 2, wherein the pulse width of the first expansion pulse is equal to or less than the sum of the pulse width of the contraction pulse and the pulse width of the second expansion pulse.
- 前記液滴は、粘度が8cp以上である請求項1又は2記載の液滴吐出装置。 The droplet ejection device according to claim 1 or 2, wherein the droplets have a viscosity of 8 cp or more.
- ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドを備える液滴吐出装置の駆動方法であって、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成ステップと、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御ステップと、を有し、
前記駆動信号生成ステップは、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成し、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅を0.1AL以上0.5AL以下、前記第2膨張パルスのパルス幅を1.2AL以上2.8AL以下とする液滴吐出装置の駆動方法。 A method for driving a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle, comprising:
A drive signal generating step of generating a drive signal including a plurality of drive pulses;
an ejection control step of applying the drive signal to the head drive unit to change the volume of the pressure chamber and eject droplets from the nozzle to perform a recording operation on a recording medium,
the drive signal generating step sequentially generates, as the drive pulse, a first expansion pulse for expanding a volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again;
A method for driving a droplet ejection device, wherein the pulse width of the contraction pulse is 0.1 AL or more and 0.5 AL or less, and the pulse width of the second expansion pulse is 1.2 AL or more and 2.8 AL or less, where AL is half the acoustic resonance period of the pressure chamber. - ノズルに連通する圧力室を変形させるヘッド駆動部を備える液滴吐出ヘッドを備える液滴吐出装置のコンピューターを、
複数の駆動パルスからなる駆動信号を生成する駆動信号生成部、
前記駆動信号を前記ヘッド駆動部に印加させることで前記圧力室の容積を変化させて、前記ノズルから液滴を吐出させて記録媒体に記録動作を行う吐出制御部、として機能させ、
前記駆動信号生成部に、前記駆動パルスとして、前記圧力室の容積を膨張させる第1膨張パルスと、前記圧力室の容積を収縮させる収縮パルスと、前記圧力室の容積を再度膨張させる第2膨張パルスと、を順に生成させ、
前記圧力室の音響的共振周期の1/2をALとした場合、前記収縮パルスのパルス幅を0.1AL以上0.5AL以下、前記第2膨張パルスのパルス幅を1.2AL以上2.8AL以下とするプログラム。 A computer of a droplet ejection device including a droplet ejection head having a head drive unit that deforms a pressure chamber that communicates with a nozzle,
a drive signal generating unit that generates a drive signal consisting of a plurality of drive pulses;
a discharge control unit that applies the drive signal to the head drive unit to change the volume of the pressure chamber and discharges droplets from the nozzle to perform a recording operation on a recording medium;
causing the drive signal generating unit to generate, as the drive pulse, a first expansion pulse for expanding the volume of the pressure chamber, a contraction pulse for contracting the volume of the pressure chamber, and a second expansion pulse for expanding the volume of the pressure chamber again, in that order;
A program for setting the pulse width of the contraction pulse to 0.1 AL or more and 0.5 AL or less, and the pulse width of the second expansion pulse to 1.2 AL or more and 2.8 AL or less, where AL is 1/2 of the acoustic resonance period of the pressure chamber.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022188071 | 2022-11-25 | ||
JP2022-188071 | 2022-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024111322A1 true WO2024111322A1 (en) | 2024-05-30 |
Family
ID=91195456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/038336 WO2024111322A1 (en) | 2022-11-25 | 2023-10-24 | Liquid droplet ejection device, method for driving liquid droplet ejection device, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024111322A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2072259A1 (en) * | 2007-12-21 | 2009-06-24 | Agfa Graphics N.V. | A system and method for high-speed, reliable ink jet printing |
WO2016104756A1 (en) * | 2014-12-26 | 2016-06-30 | コニカミノルタ株式会社 | Method for driving droplet-discharging head and droplet-discharging device |
WO2017099021A1 (en) * | 2015-12-08 | 2017-06-15 | コニカミノルタ株式会社 | Inkjet printing apparatus, inkjet head driving method, and driving waveform-designing method |
JP2018047674A (en) * | 2016-09-23 | 2018-03-29 | 東芝テック株式会社 | Inkjet head driving device and driving method |
-
2023
- 2023-10-24 WO PCT/JP2023/038336 patent/WO2024111322A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2072259A1 (en) * | 2007-12-21 | 2009-06-24 | Agfa Graphics N.V. | A system and method for high-speed, reliable ink jet printing |
WO2016104756A1 (en) * | 2014-12-26 | 2016-06-30 | コニカミノルタ株式会社 | Method for driving droplet-discharging head and droplet-discharging device |
WO2017099021A1 (en) * | 2015-12-08 | 2017-06-15 | コニカミノルタ株式会社 | Inkjet printing apparatus, inkjet head driving method, and driving waveform-designing method |
JP2018047674A (en) * | 2016-09-23 | 2018-03-29 | 東芝テック株式会社 | Inkjet head driving device and driving method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7195327B2 (en) | Droplet ejection apparatus and its drive method | |
JP5724355B2 (en) | Ink jet recording apparatus and drive waveform signal generation method | |
JP2010058385A (en) | Liquid ejecting apparatus, and control method for the same | |
JP4534504B2 (en) | Droplet discharge apparatus and droplet discharge head driving method | |
JPH0929996A (en) | Ink jet recording method | |
JP3056191B1 (en) | Driving apparatus and method for ink jet printer head | |
WO2024111322A1 (en) | Liquid droplet ejection device, method for driving liquid droplet ejection device, and program | |
JP4631285B2 (en) | Inkjet recording apparatus and inkjet recording method | |
JP4379026B2 (en) | Inkjet recording device | |
JP2006218727A (en) | Head driving device of inkjet printer | |
JP2006256094A (en) | Inkjet driving method | |
WO2024070782A1 (en) | Method for driving liquid droplet discharge head, liquid droplet discharge device, and program | |
JPH08174823A (en) | Ink-jet type print head and its driving method | |
JP4196704B2 (en) | Inkjet recording device | |
JPH02184449A (en) | Driver for ink jet head | |
JP4474988B2 (en) | Driving method of droplet discharge head | |
EP4091819B1 (en) | Ink-jet recording device and recording operation driving method | |
JP5115620B2 (en) | Inkjet printer head drive apparatus and inkjet printer head drive method | |
JP4678158B2 (en) | Droplet ejection head driving method, droplet ejection head, and droplet ejection apparatus | |
JP4449473B2 (en) | Inkjet recording device | |
JP2011020343A (en) | Head unit, liquid ejector, and method for driving head unit | |
WO2021149217A1 (en) | Ink-jet recording device and recording operation driving method | |
JP2005280199A (en) | Liquid jet device | |
JP4604491B2 (en) | Droplet discharge head driving method, droplet discharge head, and droplet discharge apparatus | |
JP2002326357A (en) | Method for driving ink-jet recording head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23894334 Country of ref document: EP Kind code of ref document: A1 |