Nothing Special   »   [go: up one dir, main page]

WO2024109289A1 - 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法 - Google Patents

一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法 Download PDF

Info

Publication number
WO2024109289A1
WO2024109289A1 PCT/CN2023/119365 CN2023119365W WO2024109289A1 WO 2024109289 A1 WO2024109289 A1 WO 2024109289A1 CN 2023119365 W CN2023119365 W CN 2023119365W WO 2024109289 A1 WO2024109289 A1 WO 2024109289A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerogel
thermal insulation
sunscreen
coating
parts
Prior art date
Application number
PCT/CN2023/119365
Other languages
English (en)
French (fr)
Inventor
孔勇
沈晓冬
Original Assignee
江苏安珈新材料科技有限公司
江苏珈云新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏安珈新材料科技有限公司, 江苏珈云新材料有限公司 filed Critical 江苏安珈新材料科技有限公司
Publication of WO2024109289A1 publication Critical patent/WO2024109289A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/30Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
    • C04B26/32Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/68Silicic acid; Silicates

Definitions

  • the invention belongs to the technical field of thermal insulation materials and relates to an aerogel thermal insulation material with a sunscreen coating on the surface and a preparation method thereof.
  • Aerogel composites have excellent thermal insulation properties and are widely used in industrial energy conservation, aerospace, major equipment, new energy vehicles and other fields.
  • the structural characteristics of aerogel enable it to effectively inhibit heat conduction and convection heat transfer, but the high and low heat transfer mainly depends on thermal radiation, so the thermal conductivity of aerogel composites at high temperatures will increase significantly, and the thermal insulation performance will decay with temperature.
  • aerogel composites are generally modified by adding sunscreen powder to aerogel composites to improve their ability to inhibit thermal radiation at high temperatures.
  • the addition of such sunscreens is generally achieved in the following manner: first, the sunscreen is dispersed in the precursor solution (sol) of the aerogel, and then the sol is compounded with the fiber reinforcement by impregnation.
  • CN201680010607.5 discloses "Felt containing silica aerogel and its preparation method" which introduces sunscreen into silica aerogel composite material by impregnation. It is found that when sunscreen is doped by impregnation, the average particle size of the sunscreen is preferably 300-600nm.
  • Patent CN202210668753.4 "A preparation method of high-temperature resistant aerogel composite material and its composite material” uses chemical vapor deposition to pre-load the sunscreen on the fiber reinforcement in order to overcome the shortcomings of the impregnation method, and then impregnates and compounds with silica sol, but the chemical vapor deposition used in this method requires special equipment and has relatively low efficiency.
  • the purpose of the present invention is to make up for the insufficient thermal insulation performance of existing aerogel composite materials at high temperatures, as well as the deficiency of aerogel composite materials modified by sunscreen agent by doping sunscreen agent powder with sol, and to provide an aerogel thermal insulation material with a sunscreen agent coating on the surface.
  • Another purpose of the present invention is to provide a method for preparing the above-mentioned aerogel composite material.
  • the technical solution of the present invention is: an aerogel thermal insulation material with a sunscreen coating on the surface, characterized in that the surface of the aerogel composite material has a sunscreen coating; wherein the raw material components of the sunscreen coating and the weight parts of each component are respectively: 100 parts of sunscreen, 1 to 25 parts of silane coupling agent, 30 to 70 parts of dispersant and 5 to 15 parts of binder.
  • the aerogel composite material is a glass fiber composite silica aerogel material, a ceramic fiber composite silica aerogel material, a ceramic fiber composite silica-alumina aerogel material or a silica aerogel composite material with a polymer coating on the surface; and its thickness is 1 to 10 mm.
  • the thickness of the sunscreen coating is 0.1 to 0.9 mm.
  • the sunscreen is boron nitride, boron carbide, silicon carbide or titanium oxide powder, and the particle size of the sunscreen is 50 nm to 3 ⁇ m.
  • the silane coupling agent is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane or 3-aminopropylmethyldiethoxysilane;
  • the dispersant is water;
  • the binder is polyvinylidene fluoride powder, polytetrafluoroethylene powder, cellulose acetate powder, starch or water glass with a mass solid content of 20 to 30%.
  • the thermal conductivity of the aerogel thermal insulation material prepared by the present invention increases by 0.001 to 0.003 W/(m ⁇ K) at 25°C, decreases by 0.001 to 0.003 W/(m ⁇ K) at 300°C, decreases by 0.005 to 0.01 W/(m ⁇ K) at 500°C, and decreases by 0.01 to 0.015 W/(m ⁇ K) at 800°C.
  • the present invention also provides a method for preparing the above-mentioned aerogel thermal insulation material, and the specific steps are as follows:
  • S1 100 parts of sunscreen agent, 1 to 25 parts of silane coupling agent, 30 to 70 parts of dispersant and 5 to 15 parts of binder are mixed uniformly by weight to obtain sunscreen agent slurry;
  • step S3 Repeat step S2 according to the coating thickness requirement to obtain an aerogel thermal insulation material with a 0.1-0.9 mm sunscreen coating on the surface.
  • the coating operation mode in step S2 is scraping, rolling or spraying.
  • the thermal insulation performance of the aerogel thermal insulation material at high temperatures can be effectively improved.
  • the high-temperature thermal conductivity of the aerogel thermal insulation material with a sunscreen coating on the surface can be significantly reduced, but the thermal conductivity at room temperature is not significantly improved.
  • This technology can achieve sunscreen modification by adding a subsequent sunscreen slurry coating process without changing the original production process and flow of aerogel insulation materials.
  • the process is simple and controllable, low-cost, and suitable for large-scale industrial production. It is suitable for aerogel composite materials with different substrates (such as silica-based, alumina-based, etc.) and different types (such as rolled insulation felt, small-sized insulation sheets, special-shaped parts, etc.).
  • FIG. 1 is a photograph of an aerogel thermal insulation material with a sunscreen coating on the surface prepared in Example 1.
  • FIG2 is a photograph of the aerogel thermal insulation material with a sunscreen coating on the surface prepared in Example 1 after being put into service in a mechanical-thermal coupling environment.
  • sunscreen slurry 100 parts of silicon carbide powder with a particle size of 500 nm, 10 parts of 3-aminopropyltrimethoxysilane, 30 parts of water and 5 parts of water glass with a solid content of 20-30% (purchased from Quecheng Silicon Chemical Co., Ltd.) are mixed uniformly by weight to obtain a sunscreen slurry; the sunscreen slurry is scraped onto a ceramic fiber with a thermal conductivity of 0.017 W/(m ⁇ K) at 25°C, 0.028 W/(m ⁇ K) at 300°C, 0.05 W/(m ⁇ K) at 500°C, 0.08 W/(m ⁇ K) at 800°C, and a thickness of 3 mm.
  • the surface of the paper composite silica aerogel material (Jiangsu Anjia AMST-1000 aerogel ultra-thin insulation felt, hydrophobicity 99.8%) was dried at 20°C for 2 hours and at 150°C for 0.5 hours to obtain a 0.1 mm thick sunscreen coating of ceramic fiber paper composite silica aerogel insulation material, whose thermal conductivity at 25°C was 0.018 W/(m ⁇ K), at 300°C was 0.027 W/(m ⁇ K), at 500°C was 0.045 W/(m ⁇ K), and at 800°C was 0.07 W/(m ⁇ K).
  • FIG1 is a ceramic fiber paper composite silica aerogel thermal insulation material with a sunscreen coating on the surface obtained in Example 1, which has a complete appearance and a uniform surface coating.
  • Figure 2 is a photograph of the high-temperature side (a) and the low-temperature side (b) of the ceramic fiber paper composite silica aerogel insulation material of Example 1 with a sunscreen coating on the surface after service in a force-heat coupling environment (1000°C, 1MPa). It can be seen that: the sample has good temperature resistance and thermal insulation effect, the surface of the high-temperature side of the sample is intact and the coating has no cracks; the low-temperature side of the sample also has no obvious thermal damage, and the dents seen are caused by the sample being compressed by external force.
  • a sunscreen slurry 100 parts of titanium oxide powder with a particle size of 1 ⁇ m, 1 part of 3-aminopropyltriethoxysilane, 40 parts of water and 10 parts of polyvinylidene fluoride powder are mixed uniformly by weight to obtain a sunscreen slurry; the sunscreen slurry is roller-coated on a glass fiber composite silica gas with a thermal conductivity of 0.018 W/(m ⁇ K) at 25°C, a thermal conductivity of 0.033 W/(m ⁇ K) at 300°C, a thermal conductivity of 0.06 W/(m ⁇ K) at 500°C, a thermal conductivity of 0.095 W/(m ⁇ K) at 800°C and a thickness of 6 mm
  • the surface of the gel material (Jiangsu Anjia AMS-650 aerogel insulation felt, hydrophilic) was dried at 50°C for 0.5 hours and at 90°C for 2 hours to obtain a glass fiber composite silica aerogel insulation material with a sunscreen coating thickness of
  • boron carbide powder with a particle size of 200 nm, 15 parts of 3-aminopropylmethyldimethoxysilane, 60 parts of water and 10 parts of cellulose acetate powder were mixed uniformly by weight to obtain a sunscreen slurry; the sunscreen slurry was sprayed on a ceramic fiber composite silica aerogel material (Jiangsu Anjia) with a thermal conductivity of 0.023 W/(m ⁇ K) at 25°C, a thermal conductivity of 0.034 W/(m ⁇ K) at 300°C, a thermal conductivity of 0.052 W/(m ⁇ K) at 500°C, a thermal conductivity of 0.088 W/(m ⁇ K) at 800°C and a thickness of 1 mm AMST-1000 aerogel ultra-thin insulation felt, hydrophobicity 99.8%) surface; then dried at 30°C for 1 hour, dried at 110°C for 1 hour, and then repeated the above spraying and drying process once again to obtain a 0.1mm thick sunscreen coating
  • boron nitride powder with a particle size of 3 ⁇ m, 10 parts of 3-aminopropylmethyldiethoxysilane, 50 parts of water and 5 parts of starch were mixed uniformly by weight to obtain a sunscreen slurry, and the sunscreen slurry was scraped onto a glass fiber composite silica aerogel material (Jiangsu Anjia AMS- 380 type aerogel insulation felt, water repellency 99.5%) surface; then dried at 40°C for 0.5 hours, and at 100°C for 2 hours.
  • a sunscreen slurry 10 parts of titanium oxide with a particle size of 50 nm, 10 parts of titanium oxide with a particle size of 200 nm, 30 parts of boron carbide with a particle size of 500 nm, 40 parts of silicon carbide with a particle size of 1 ⁇ m, 10 parts of boron nitride with a particle size of 3 ⁇ m, 25 parts of 3-aminopropyltriethoxysilane, 50 parts of water and 10 parts of polyvinylidene fluoride powder are mixed uniformly by weight to obtain a sunscreen slurry; the sunscreen slurry is sprayed on a ceramic fiber composite with a thermal conductivity of 0.02 W/(m ⁇ K) at 25°C, a thermal conductivity of 0.029 W/(m ⁇ K) at 300°C, a thermal conductivity of 0.048 W/(m ⁇ K) at 500°C, a thermal conductivity of 0.078 W/(m ⁇ K) at 800°C and a thickness of 10 mm
  • sunscreen slurry 20 parts of 200 nm silicon carbide, 30 parts of 500 nm silicon carbide, 40 parts of 1 ⁇ m silicon carbide, 10 parts of 3 ⁇ m silicon carbide, 15 parts of 3-aminopropyltrimethoxysilane, 60 parts of water and 15 parts of polyvinylidene fluoride powder were mixed uniformly by weight to obtain a sunscreen slurry; the sunscreen slurry was scraped on a ceramic plate with a thermal conductivity of 0.017 W/(m ⁇ K) at 25°C, a thermal conductivity of 0.028 W/(m ⁇ K) at 300°C, a thermal conductivity of 0.05 W/(m ⁇ K) at 500°C, a thermal conductivity of 0.081 W/(m ⁇ K) at 800°C and a thickness of 4 mm.
  • the surface of a ceramic fiber composite silica aerogel material (Jiangsu Anjia AMST-1000 aerogel insulation felt, hydrophobicity 99.8%) was coated on the surface of the material; then dried at 50°C for 2 hours and at 150°C for 1 hour; the above-mentioned scraping and drying process was repeated once to obtain a ceramic fiber composite silica aerogel insulation material with a sunscreen coating thickness of 0.6 mm, and its thermal conductivity at 25°C was 0.02 W/(m ⁇ K), at 300°C was 0.025 W/(m ⁇ K), at 500°C was 0.04 W/(m ⁇ K), and at 800°C was 0.066 W/(m ⁇ K).
  • a sunscreen slurry 10 parts of titanium oxide with a particle size of 20 nm, 40 parts of boron carbide with a particle size of 1 ⁇ m, 50 parts of silicon carbide with a particle size of 3 ⁇ m, 25 parts of 3-aminopropyltrimethoxysilane, 70 parts of water and 15 parts of starch are mixed uniformly by weight to obtain a sunscreen slurry; the sunscreen slurry is sprayed on a ceramic fiber composite silicon oxide-alumina gas with a thermal conductivity of 0.022 W/(m ⁇ K) at 25°C, a thermal conductivity of 0.034 W/(m ⁇ K) at 300°C, a thermal conductivity of 0.050 W/(m ⁇ K) at 500°C, a thermal conductivity of 0.085 W/(m ⁇ K) at 800°C and a thickness of 10 mm.
  • the surface of the aerogel material (Jiangsu Anjia AMAS-1100 aerogel insulation felt, hydrophilic) was sprayed on the surface of the aerogel material; then dried at 20°C for 0.5 hour and at 110°C for 0.5 hour; the above spraying and drying process was repeated twice to obtain a 0.9 mm thick sunscreen coating of a ceramic fiber composite silica-alumina aerogel insulation material, whose thermal conductivity at 25°C was 0.023 W/(m ⁇ K), at 300°C was 0.033 W/(m ⁇ K), at 500°C was 0.045 W/(m ⁇ K), and at 800°C was 0.075 W/(m ⁇ K).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Thermal Insulation (AREA)

Abstract

本发明属于绝热材料技术领域,公开了一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法,其特征在于气凝胶复合材料表面有遮光剂涂层;其中遮光剂涂层的原料组分及各组分的重量份分别为:100份遮光剂、1~25份硅烷偶联剂、30~70份分散剂和5~15份粘结剂。表面带遮光剂涂层的气凝胶隔热材料的通过将遮光剂浆料涂布在气凝胶隔热材料表面实现,可以有效提升气凝胶隔热材料在高温的隔热性能。该技术可在不改变气凝胶隔热材料原有生产工艺和流程的情况下,通过增加后续遮光剂浆料涂布工艺实现其遮光剂改性,工艺简单可控、成本低、适合大规模工业化生产,适用于不同基体、不同种类的气凝胶隔热材料。

Description

一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法 技术领域
本发明属于绝热材料技术领域,涉及一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法。
背景技术
气凝胶复合材料具有优异的隔热性能,在工业节能、航空航天、重大装备、新能源汽车等领域有广泛应用。气凝胶的结构特性使其可以有效抑制热传导和对流传热,但高下的传热主要取决于热辐射,因而气凝胶复合材料在高温下的热导率会明显增加,隔热性能会随温度衰减。为了提升气凝胶复合材料高温下的隔热性能,一般通过在气凝胶复合材料中添加遮光剂粉体的方式对气凝胶复合材料进行改性,提升其高温下抑制热辐射的能力。这种遮光剂的添加一般通过如下方式实现:首先将遮光剂分散在气凝胶的前驱体溶液(溶胶)中,然后通过浸渍方式将溶胶与纤维增强体复合。然而,较大尺寸的遮光剂粉体分散在溶胶中与纤维增强体复合时容易被纤维过滤截留,无法达到纤维内部或者无法在纤维增强体中均匀分布。而较小尺寸的遮光剂粉体又容易团聚。CN201680010607.5公开的《含二氧化硅气凝胶的毡及其制备方法》采用浸渍方式将遮光剂引入氧化硅气凝胶复合材料中,发现采用浸渍法掺杂遮光剂时,遮光剂的平均粒径优选300~600nm,较小尺寸的遮光剂颗粒因自身团聚不易在溶胶中分散,较大粒径的遮光剂又难以通过溶胶浸渍的方式复合在纤维增强体中。专利CN202210668753.4《一种耐高温气凝胶复合材料的制备方法及其复合材料》为了克服浸渍法的缺点采用化学气相沉积方法将遮光剂预先负载在纤维增强体上,然后再与氧化硅溶胶浸渍复合,但该方法采用的化学气相沉积需要专门设备,且效率相对较低。为了避免在原生气凝胶中添加纤维而出现的上述问题,如专利CN201711316915.3公开的《一种气凝胶复合绝热板及其制备方法》,采用气凝胶粉体、遮光剂粉体、粘结剂和散纤维混合后成型的方式制备气凝胶板材是另外一种选择,但该方法所得产品一般为硬质板。
发明内容
本发明的目的是为了弥补现有气凝胶复合材料高温下隔热性能不足,以及气凝胶复合材料通过溶胶掺杂遮光剂粉体进行遮光剂改性的不足,提供了一种表面带遮光剂涂层的气凝胶隔热材料,本发明的另一目的是提供上述气凝胶复合材料的制备方法。
本发明目的技术方案为:一种表面带遮光剂涂层的气凝胶隔热材料,其特征在于,气凝胶复合材料表面有遮光剂涂层;其中遮光剂涂层的原料组分及各组分的重量份分别为:100份遮光剂、1~25份硅烷偶联剂、30~70份分散剂和5~15份粘结剂。
优选所述气凝胶复合材料为玻璃纤维复合氧化硅气凝胶材料、陶瓷纤维复合氧化硅气凝胶材料、陶瓷纤维复合氧化硅-氧化铝气凝胶材料或表面带高分子涂层的氧化硅气凝胶复合材料;其厚度为1~10mm。
优选遮光剂涂层的厚度为0.1~0.9mm。
优选所述的遮光剂为氮化硼、碳化硼、碳化硅或氧化钛粉体,遮光剂的粒径为50nm~3μm。
优选所述硅烷偶联剂为3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、3-氨丙基甲基二甲氧基硅烷或3-氨丙基甲基二乙氧基硅烷;所述分散剂为水;所述粘结剂为聚偏氟乙烯粉末、聚四氟乙烯粉末、醋酸纤维素粉末、淀粉或质量固含量20~30%的水玻璃。
本发明所制备得到的气凝胶隔热材料与不带遮光剂涂层的气凝胶隔热材料相比,25℃热导率增加0.001~0.003W/(m·K),300℃热导率减少0.001~0.003W/(m·K),500℃热导率减少0.005~0.01W/(m·K),800℃热导率减少0.01~0.015W/(m·K)。
本发明还提供了一种制备上述的气凝胶隔热材料的方法,其具体步骤如下:
S1:按重量将100份遮光剂、1~25份硅烷偶联剂、30~70份分散剂和5~15份粘结剂混合均匀得到遮光剂浆料;
S2:将遮光剂浆料涂布在气凝胶复合材料表面,然后在20~50℃下干燥0.5~2小时,90~150℃下干燥0.5~2小时;
S3:根据涂层厚度要求重复步骤S2得到表面带0.1~0.9mm遮光剂涂层的气凝胶隔热材料。
优选步骤S2所述涂布的操作方式为刮涂、辊涂或喷涂。
有益效果:
(1)通过将遮光剂涂料涂布在气凝胶复合材料表面,可以有效提升气凝胶隔热材料在高温的隔热性能,所得的表面带遮光剂涂层的气凝胶隔热材料的高温热导率可明显降低,但常温下热导率无明显提升。
(2)该技术可在不改变气凝胶隔热材料原有生产工艺和流程的情况下,通过增加后续遮光剂浆料涂布工艺实现其遮光剂改性,工艺简单可控、成本低、适合大规模工业化生产,适用于不同基体(如氧化硅基、氧化铝基等)、不同种类(如成卷的隔热毡、小尺寸隔热片、异形件等)的气凝胶复合材料。
附图说明
图1为实例1制得的表面带遮光剂涂层的气凝胶隔热材料的照片。
图2为实例1制得的表面带遮光剂涂层的气凝胶隔热材料在力-热耦合环境下服役后的照片。
具体实施实例
实例1
按重量将100份粒径500nm的碳化硅粉体,10份3-氨丙基三甲氧基硅烷、30份水和5份固含量20~30%的水玻璃(购自确成硅化学股份有限公司产品)混合均匀得到遮光剂浆料;将遮光剂浆料刮涂在25℃热导率0.017W/(m·K)、300℃热导率0.028W/(m·K)、500℃热导率0.05W/(m·K)、800℃热导率0.08W/(m·K)、厚度3mm的陶瓷纤维纸复合氧化硅气凝胶材料(江苏安珈AMST-1000气凝胶超薄绝热毡,憎水率99.8%)表面;然后在20℃下干燥2小时,150℃下干燥0.5小时,得到遮光剂涂层0.1mm厚的陶瓷纤维纸复合氧化硅气凝胶隔热材料,其25℃热导率0.018W/(m·K),300℃热导率0.027W/(m·K),500℃热导率0.045W/(m·K),800℃热导率0.07W/(m·K)。
参见附图,图1为实例1得到的表面带遮光剂涂层的陶瓷纤维纸复合氧化硅气凝胶隔热材料,外观完整,表面涂层均匀。
参见附图,图2为实例1表面带遮光剂涂层的陶瓷纤维纸复合氧化硅气凝胶隔热材料在力-热耦合环境(1000℃,1MPa)下服役后样品靠高温面(a)和背温面(b)的照片,可以看出:该样品具有良好的耐温性和隔热效果,样品靠高温面表面完整、涂层无裂纹;样品背温面同样无明显热破坏,所见凹痕为样品受外力压缩所致。
实例2
按重量将100份粒径1μm的氧化钛粉体、1份3-氨丙基三乙氧基硅烷、40份水和10份聚偏氟乙烯粉末混合均匀得到遮光剂浆料;将遮光剂浆料辊涂在25℃热导率0.018W/(m·K)、300℃热导率0.033W/(m·K)、500℃热导率0.06W/(m·K)、800℃热导率0.095W/(m·K)、厚度6mm的玻璃纤维复合氧化硅气凝胶材料(江苏安珈AMS-650型气凝胶绝热毡,亲水)表面;然后在50℃下干燥0.5小时,90℃下干燥2小时,得到遮光剂涂层0.3mm厚的玻璃纤维复合氧化硅气凝胶隔热材料,其25℃热导率0.021W/(m·K),300℃热导率0.030W/(m·K),500℃热导率0.05W/(m·K),800℃热导率0.085W/(m·K)。
实例3
按重量将100份粒径200nm的碳化硼粉体、15份3-氨丙基甲基二甲氧基硅烷、60份水和10份醋酸纤维素粉末混合均匀得到遮光剂浆料;将遮光剂浆料喷涂在25℃热导率0.023W/(m·K)、300℃热导率0.034W/(m·K)、500℃热导率0.052W/(m·K)、800℃热导率0.088W/(m·K)、厚度1mm的陶瓷纤维复合氧化硅气凝胶材料(江苏安珈AMST-1000气凝胶超薄绝热毡,憎水率99.8%)表面;然后在30℃下干燥1小时,110℃下干燥1小时后再次重复上述喷涂和干燥工艺1次得到遮光剂涂层0.1mm厚的陶瓷纤维复合氧化硅气凝胶隔热材料,其25℃热导率0.024W/(m·K),300℃热导率0.031W/(m·K),500℃热导率0.046W/(m·K),800℃热导率0.073W/(m·K)。
实例4
按重量将100份粒径3μm的氮化硼粉体、10份3-氨丙基甲基二乙氧基硅烷、50份水和5份淀粉混合均匀得到遮光剂浆料,将遮光剂浆料刮涂在25℃热导率0.02W/(m·K)、300℃热导率0.031W/(m·K)、500℃热导率0.085W/(m·K)、800℃热导率0.105W/(m·K)、厚度3mm的玻璃纤维复合氧化硅气凝胶材料(江苏安珈AMS-380型气凝胶绝热毡,憎水率99.5%)表面;然后在40℃下干燥0.5小时,100℃下干燥2小时厚再次重复上述刮涂和干燥工艺1次得到遮光剂涂层0.4mm厚的玻璃纤维复合氧化硅气凝胶隔热材料,其25℃热导率0.022W/(m·K),300℃热导率0.030W/(m·K),500℃热导率0.075W/(m·K),800℃热导率0.09W/(m·K)。实例5
按重量将10份粒径50nm氧化钛、10份粒径200nm氧化钛、30份粒径500nm碳化硼、40份粒径1μm碳化硅、10份粒径3μm氮化硼、25份3-氨丙基三乙氧基硅烷、50份水和10份聚偏氟乙烯粉末混合均匀得到遮光剂浆料;将遮光剂浆料喷涂在25℃热导率0.02W/(m·K)、300℃热导率0.029W/(m·K)、500℃热导率0.048W/(m·K)、800℃热导率0.078W/(m·K)、厚度10mm的陶瓷纤维复合氧化硅气凝胶材料(购自南京工业大学专利CN202010962539.0公开的表面带高分子涂层的陶瓷纤维复合氧化硅气凝胶材料)表面;然后在40℃下干燥2小时,130℃下干燥1小时;重复上述喷涂和干燥工艺1次得到遮光剂涂层0.3mm厚的陶瓷纤维复合氧化硅气凝胶隔热材料其25℃热导率0.022W/(m·K),300℃热导率0.027W/(m·K),500℃热导率0.042W/(m·K),800℃热导率0.068W/(m·K)。
实例6
按重量将20份粒径200nm碳化硅、30份粒径500nm碳化硅、40份粒径1μm碳化硅、10份粒径3μm碳化硅、15份3-氨丙基三甲氧基硅烷、60份水和15份聚偏氟乙烯粉末混合均匀得到遮光剂浆料;将遮光剂浆料刮涂在25℃热导率0.017W/(m·K)、300℃热导率0.028W/(m·K)、500℃热导率0.05W/(m·K)、800℃热导率0.081W/(m·K)、厚度4mm的陶瓷纤维复合氧化硅气凝胶材料(江苏安珈AMST-1000气凝胶绝热毡,憎水率99.8%)表面;然后在50℃下干燥2小时,150℃下干燥1小时;重复上述刮涂和干燥工艺1次得到遮光剂涂层0.6mm厚的陶瓷纤维复合氧化硅气凝胶隔热材料,其25℃热导率0.02W/(m·K),300℃热导率0.025W/(m·K),500℃热导率0.04W/(m·K),800℃热导率0.066W/(m·K)。
实例7
按重量将10份粒径20nm氧化钛、40份粒径1μm碳化硼、50份粒径3μm碳化硅、25份3-氨丙基三甲氧基硅烷、70份水和15份淀粉混合均匀得到遮光剂浆料;将遮光剂浆料喷涂在25℃热导率0.022W/(m·K)、300℃热导率0.034W/(m·K)、500℃热导率0.050W/(m·K)、800℃热导率0.085W/(m·K)、厚度10mm的陶瓷纤维复合氧化硅-氧化铝气凝胶材料(江苏安珈AMAS-1100型气凝胶绝热毡,亲水)表面;然后在20℃下干燥0.5小时,110℃下干燥0.5小时;重复上述喷涂和干燥工艺2次得到遮光剂涂层0.9mm厚的陶瓷纤维复合氧化硅-氧化铝气凝胶隔热材料,其25℃热导率0.023W/(m·K),300℃热导率0.033W/(m·K),500℃热导率0.045W/(m·K),800℃热导率0.075W/(m·K)。

Claims (8)

  1. 一种表面带遮光剂涂层的气凝胶隔热材料,其特征在于,气凝胶复合材料表面有遮光剂涂层;其中遮光剂涂层的原料组分及各组分的重量份分别为:100份遮光剂、1~25份硅烷偶联剂、30~70份分散剂和5~15份粘结剂。
  2. 根据权利要求1所述的气凝胶隔热材料,其特征在于所述气凝胶复合材料为玻璃纤维复合氧化硅气凝胶材料、陶瓷纤维复合氧化硅气凝胶材料、陶瓷纤维复合氧化硅-氧化铝气凝胶材料或表面带高分子涂层的氧化硅气凝胶复合材料;其厚度为1~10mm。
  3. 根据权利要求1所述的气凝胶隔热材料,其特征在于遮光剂涂层的厚度为0.1~0.9mm。
  4. 根据权利要求1所述的气凝胶隔热材料,其特征在于所述的遮光剂为氮化硼、碳化硼、碳化硅或氧化钛粉体,遮光剂的粒径为50nm~3μm。
  5. 根据权利要求1所述的气凝胶隔热材料,其特征在于所述硅烷偶联剂为3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、3-氨丙基甲基二甲氧基硅烷或3-氨丙基甲基二乙氧基硅烷;所述分散剂为水;所述粘结剂为聚偏氟乙烯粉末、聚四氟乙烯粉末、醋酸纤维素粉末、淀粉或质量固含量20~30%的水玻璃。
  6. 根据权利要求1所述的气凝胶隔热材料,其特征在于气凝胶隔热材料与不带遮光剂涂层的气凝胶隔热材料相比,25℃热导率增加0.001~0.003W/(m·K),300℃热导率减少0.001~0.003W/(m·K),500℃热导率减少0.005~0.01W/(m·K),800℃热导率减少0.01~0.015W/(m·K)。
  7. 一种制备如权利要求1所述的气凝胶隔热材料的方法,其具体步骤如下:
    S1:按重量将100份遮光剂、1~25份硅烷偶联剂、30~70份分散剂和5~15份粘结剂混合均匀得到遮光剂浆料;
    S2:将遮光剂浆料涂布在气凝胶复合材料表面,然后在20~50℃下干燥0.5~2小时,90~150℃下干燥0.5~2小时;
    S3:根据涂层厚度要求重复步骤S2得到表面带0.1~0.9mm遮光剂涂层的气凝胶隔热材料。
  8. 根据权利要求7所述的方法,其特征在于,步骤S2所述涂布的操作方式为刮涂、辊涂或喷涂。
PCT/CN2023/119365 2022-11-21 2023-09-18 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法 WO2024109289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211454394.9 2022-11-21
CN202211454394.9A CN115819017A (zh) 2022-11-21 2022-11-21 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024109289A1 true WO2024109289A1 (zh) 2024-05-30

Family

ID=85529546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119365 WO2024109289A1 (zh) 2022-11-21 2023-09-18 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115819017A (zh)
WO (1) WO2024109289A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819017A (zh) * 2022-11-21 2023-03-21 江苏安珈新材料科技有限公司 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539950B1 (ko) * 2015-01-19 2015-07-29 주식회사 대원솔라 실리카 에어로겔과 유리섬유가 적층된 단열매트의 제조방법 및 이로부터 제조된 단열매트
WO2017043721A1 (ko) * 2015-09-10 2017-03-16 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓 및 이의 제조방법
CN109369129A (zh) * 2018-11-06 2019-02-22 航天材料及工艺研究所 纤维增强氧化铝气凝胶隔热材料及其制备方法
CN111040547A (zh) * 2019-12-27 2020-04-21 苏州晟德亿节能环保科技有限公司 一种隔热保温的气凝胶涂层及其制备方法
US20200215791A1 (en) * 2017-11-28 2020-07-09 Lg Chem, Ltd. Composite thermal insulation sheet including aerogel
CN115819017A (zh) * 2022-11-21 2023-03-21 江苏安珈新材料科技有限公司 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007635A (zh) * 2015-03-24 2016-10-12 金承黎 一种表面无尘处理的气凝胶复合材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539950B1 (ko) * 2015-01-19 2015-07-29 주식회사 대원솔라 실리카 에어로겔과 유리섬유가 적층된 단열매트의 제조방법 및 이로부터 제조된 단열매트
WO2017043721A1 (ko) * 2015-09-10 2017-03-16 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓 및 이의 제조방법
US20200215791A1 (en) * 2017-11-28 2020-07-09 Lg Chem, Ltd. Composite thermal insulation sheet including aerogel
CN109369129A (zh) * 2018-11-06 2019-02-22 航天材料及工艺研究所 纤维增强氧化铝气凝胶隔热材料及其制备方法
CN111040547A (zh) * 2019-12-27 2020-04-21 苏州晟德亿节能环保科技有限公司 一种隔热保温的气凝胶涂层及其制备方法
CN115819017A (zh) * 2022-11-21 2023-03-21 江苏安珈新材料科技有限公司 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法

Also Published As

Publication number Publication date
CN115819017A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN106946579B (zh) 耐1500℃轻质刚性陶瓷纤维隔热瓦的制备方法
JP2533025B2 (ja) 無機繊維を基材とする絶縁製品及びその製造方法
CN106747540B (zh) 一种气凝胶纤维复合材料的制备方法
CN101671157B (zh) 一种高温管道用高效隔热材料及其制备方法
AU2014403693B2 (en) Preparation method for high-density hexagonal boron nitride ceramic material
WO2024109289A1 (zh) 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法
CN1749214A (zh) 一种气凝胶绝热复合材料及其制备方法
CN101671158A (zh) 一种二氧化硅绝热体及其制备方法
CN110304932B (zh) 一种具有HfB2界面的Cf/SiC复合材料的制备方法
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
CN111825423A (zh) 一种高效隔热片及其制备方法
KR102145611B1 (ko) 박막형 시트용 에어로겔 단열 조성물 및 이를 포함하는 박막형 에어로겔 시트
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN110483081A (zh) 一种耐高温纳米隔热材料及其制备方法
CN108439964B (zh) 一种纳米孔陶瓷绝热卷材及其制备方法
CN116715528B (zh) 高韧性陶瓷研磨介质的制备方法
CN108298995B (zh) 一种低维SiO2高强度轻质保温材料及其制备方法
CN116553941A (zh) 一种耐高温陶瓷纤维板及其制备方法
CN110284318B (zh) 低热导的TiO2/SiC-Al2O3气凝胶-SiO2纤维毡复合材料的制备方法
CN109180141B (zh) 氧化铝气凝胶绝热软毡及其成型工艺
CN113816771A (zh) 一种多孔氮化硅陶瓷表面涂层的结构及制备方法
CN115464942B (zh) 一种抗辐射的耐高温隔热材料及其制备方法
CN110409171A (zh) 一种在碳纤维表面制备抗氧化涂层的方法
CN114892415B (zh) 一种保温隔热卷材及其制备方法
CN110355373B (zh) Al2O3增韧ZrO2/Zr/不锈钢复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893382

Country of ref document: EP

Kind code of ref document: A1