Nothing Special   »   [go: up one dir, main page]

WO2024109080A1 - Systems and methods for delivering location information in an internet protocol multimedia subsystem emergency session - Google Patents

Systems and methods for delivering location information in an internet protocol multimedia subsystem emergency session Download PDF

Info

Publication number
WO2024109080A1
WO2024109080A1 PCT/CN2023/104979 CN2023104979W WO2024109080A1 WO 2024109080 A1 WO2024109080 A1 WO 2024109080A1 CN 2023104979 W CN2023104979 W CN 2023104979W WO 2024109080 A1 WO2024109080 A1 WO 2024109080A1
Authority
WO
WIPO (PCT)
Prior art keywords
location information
data channel
wireless communication
communication device
location
Prior art date
Application number
PCT/CN2023/104979
Other languages
French (fr)
Inventor
Hao DONG
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2023/104979 priority Critical patent/WO2024109080A1/en
Publication of WO2024109080A1 publication Critical patent/WO2024109080A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]

Definitions

  • the disclosure relates generally to wireless communications, including but not limited to systems and methods for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session.
  • IP internet protocol
  • IMS multimedia subsystem
  • the standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) .
  • the 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) .
  • 5G-AN 5G Access Network
  • 5GC 5G Core Network
  • UE User Equipment
  • the elements of the 5GC also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
  • example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
  • a location server may communicate with a wireless communication device (e.g., a user equipment (UE) ) to establish a data channel (e.g., an application data channel) .
  • the location server may receive location information of the wireless communication device via the data channel from the wireless communication device.
  • This disclosure provides a new method for delivering location information of a UE.
  • a data channel can be established between a UE and a LS to transfer the location information. The method may not depend on a signaling message to transfer the location information.
  • the data channel can be to support an internet protocol (IP) multimedia subsystem (IMS) emergency session.
  • IP internet protocol
  • IMS internet multimedia subsystem
  • the location server may receive a message comprising a request or query for the location information of the wireless communication device from a location retrieving function (LRF) .
  • the method can be used in an IMS emergency session to transfer location information.
  • the location server may transmit the location information of the wireless communication device to the LRF.
  • the LRF may determine whether the location information is valid.
  • a call session control function may select a public safety answering point (PSAP) to serve the wireless communication device according to the location information.
  • the CSCF can be an Emergency CSCF (E-CSCF) .
  • E-CSCF may send an emergency session request to the selected PSAP.
  • the wireless communication device may establish the data channel with the location server (e.g., a UE may initiate an establishment of a data channel) .
  • the location server may determine whether the location information is available and valid. In response to /responsive to the location information being available and valid, the location server may transmit the location information to the location retrieving function (LRF) .
  • the location server may determine whether the data channel exists. In response to /responsive to the location information being not available or not valid, but the data channel exists, the location server may receive the location information via the data channel. In response to /responsive to the location information being not available or not valid, and the data channel does not exist, the location server may communicate with the wireless communication device to establish the data channel.
  • the location server may establish the data channel with the wireless communication device.
  • a wireless communication device e.g., a UE may communication with a location server (LS) to establish a data channel (e.g., an application data channel) .
  • the wireless communication device may send location information of the wireless communication device via the data channel to the location server.
  • FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure
  • FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments of the present disclosure
  • FIG. 4 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments of the present disclosure.
  • IP internet protocol
  • IMS multimedia subsystem
  • FIG. 5 illustrates a flow diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with an embodiment of the present disclosure.
  • IP internet protocol
  • IMS multimedia subsystem
  • FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100.
  • NB-IoT narrowband Internet of things
  • Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as wireless communication device) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101.
  • the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126.
  • Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
  • the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104.
  • the BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively.
  • Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128.
  • the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
  • FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution.
  • the system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
  • system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of FIG. 1, as described above.
  • the System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) .
  • the BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220.
  • the UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240.
  • the BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
  • system 200 may further include any number of modules other than the modules shown in FIG. 2.
  • modules other than the modules shown in FIG. 2.
  • the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof.
  • various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure
  • the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232.
  • a duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion.
  • the operations of the two transceiver modules 210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two transceivers 210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
  • the UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme.
  • the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • LTE Long Term Evolution
  • 5G 5G
  • the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example.
  • eNB evolved node B
  • the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc.
  • PDA personal digital assistant
  • the processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof.
  • the memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively.
  • the memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230.
  • the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively.
  • Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
  • the network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202.
  • network communication module 218 may be configured to support internet or WiMAX traffic.
  • network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network.
  • the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems.
  • the model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it.
  • the OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols.
  • the OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model.
  • a first layer may be a physical layer.
  • a second layer may be a Medium Access Control (MAC) layer.
  • MAC Medium Access Control
  • a third layer may be a Radio Link Control (RLC) layer.
  • a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer.
  • PDCP Packet Data Convergence Protocol
  • a fifth layer may be a Radio Resource Control (RRC) layer.
  • a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
  • NAS Non Access Stratum
  • IP Internet Protocol
  • IMS internet protocol
  • location information of a UE can be utilized for IMS network to determine which public safety answering point (PSAP) serves an area where the UE is currently located, and may route the emergency session to the PSAP.
  • PSAP public safety answering point
  • the PSAP may obtain/get accurate and updated location information of the UE during the emergency session.
  • the problem can described as how an IMS network can acquire accurate and updated location information of a UE in IMS emergency sessions or other types of sessions.
  • the current mechanisms for providing location information in IMS emergency sessions utilize session initiation protocol (SIP) header fields to convey location information and depend on the implementation of a UE and a network, which cannot guarantee to provide real-time precise location information.
  • a data channel may enhance the ability of IMS to handle interactions between UEs or between the UE and network elements in the network side.
  • the data channel can be highly flexible and can be used to carry any type of information.
  • the present disclosure provides a method for establishing a data channel between a UE and a location server in the network side and utilizing the data channel to transfer location information of the UE when the UE is involved in a communication session (e.g., an emergency session) .
  • the UE may initiate an emergency session through an IMS session establishment request with an emergency indication.
  • the UE may establish at least one data channel which includes a bootstrap data channel to download a UE resident application, and an application data channel to deliver location information of the UE.
  • the UE may deliver its location information to the location server (LS) .
  • the LS can be the network side entity responsible for obtaining the location of the UE.
  • the LS can be an enhanced 3GPP gateway mobile location center (GMLC) or secure user plane for location (SUPL) location platform (OMA SLP) .
  • GMLC enhanced 3GPP gateway mobile location center
  • SUPL secure user plane for location
  • OMA SLP secure user plane for location
  • the location information may be/include geographical location information or a location identifier.
  • the location identifier can be/indicate/identify a current location of the UE in the network (e.g. a global cell ID) .
  • E-CSCF emergency call session control function
  • the E-CSCF may interact with a location retrieving function (LRF) to query the location information of the UE.
  • the LRF may interact with the LS to query location information of the UE which is transferred through an application data channel between the LS and the UE.
  • the E-CSCF may route the emergency session to the appropriate PSAP serving the area where the UE is currently located.
  • the PSAP may send the request to the LRF.
  • the LRF may interact with the LS to query location information of the UE.
  • the LS may check the availability and validity of the location information. If the location information is available and valid, the location information can be delivered to the PSAP directly. If the location information is unavailable or outdated, the LS may interact with the UE to obtain updated location information through an application data channel if the application data channel exists. If the application data channel between the LS and the UE does not exist, the LS may establish an application data channel toward the UE. The location information of the UE may be transferred through the established application data channel.
  • the LS may send the location information to the LRF.
  • the LRF may forward the location information to the PSAP.
  • the LRF and the LS can be separately deployed or co-located based on different implementations. If the LRF and the LS are co-located, the interfaces and the interactions between the LRF and the LS may not be needed.
  • the location information of the UE can be transferred through/via a data channel so that the location information may not need to be carried through/in SIP header fields.
  • FIG. 3 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments of the present disclosure.
  • IP internet protocol
  • IMS multimedia subsystem
  • Step 1 A UE may initiate an emergency session with an emergency indication in an IMS session establishment request.
  • the session establishment request can be transferred by a proxy-CSCF (P-CSCF) to an emergency-CSCF (E-CSCF) .
  • P-CSCF proxy-CSCF
  • E-CSCF emergency-CSCF
  • Step 2 The UE may establish a bootstrap data channel and may download an application which is used to establish an application data channel to transfer location information of a UE.
  • Step 3 The UE may establish an application data channel with a location server (LS) .
  • LS location server
  • Step 4 The UE may report its location information to the LS through/via an application data channel.
  • Step 5 In order to determine the appropriate PSAP serving the UE, the E-CSCF may retrieve location information of the UE from a location retrieving function (LRF) .
  • LRF location retrieving function
  • Step 6 The LRF may interact with the LS to query the location information of the UE.
  • the location information can be delivered through the application data channel in Step 4.
  • Step 7 The LRF may validate the location information of the UE.
  • Step 8 The LRF may return the location information of the UE to the E-CSCF.
  • Step 9 Based on the location information of the UE, the E-CSCF may determine an appropriate PSAP serving the UE.
  • Step 10 The E-CSCF may forward the emergency session request to the PSAP selected in Step 9.
  • Step 11 The PSAP may continue the following emergency session.
  • FIG. 4 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments of the present disclosure.
  • IP internet protocol
  • IMS multimedia subsystem
  • Step 1 When processing the emergency session from a UE, a public safety answering point (PSAP) may request current location information of the UE.
  • PSAP public safety answering point
  • Step 2 If the PSAP determines/finds that the location information of the UE is out of date, the PSAP may send a location information request to a location retrieval function (LRF) .
  • LRF location retrieval function
  • Step 3 The LRF may interact with a location server (LS) to query location information of the UE.
  • LS location server
  • Step 4 The LS may check the availability and validity of the location information.
  • Step 5a Represents the scenario in which the location information is available and valid. Step 6 can be executed.
  • Step 5b Represents the scenario in which the location information is not available or invalid, and the application data channel between the LS and the UE exists.
  • Step 5b1 The LS may interact with the UE to acquire location information of the UE through/via the application data channel.
  • Step 5c Represents the scenario in which the location information is not available or invalid, and the application data channel between the LS and the UE does not exist.
  • Step 5c1 The LS may interact with the UE to establish a new application data channel.
  • Step 5c2 The UE may send its location information to the LS through/via the application data channel.
  • Step 6 The LS may send the location information of the UE to the LRF.
  • Step 7 The LRF may send the location information to the PSAP.
  • Step 8 The PSAP may continue the emergency session taking into account the received location information of the UE.
  • FIG. 5 illustrates a flow diagram of a method 500 for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session.
  • IP internet protocol
  • IMS internet multimedia subsystem
  • the method 500 may be implemented using any one or more of the components and devices detailed herein in conjunction with FIGs. 1–2.
  • the method 500 may be performed by a location server, in some embodiments. Additional, fewer, or different operations may be performed in the method 500 depending on the embodiment. At least one aspect of the operations is directed to a system, method, apparatus, or a (non-transitory) computer-readable medium.
  • a location server may communicate with a wireless communication device (e.g., a user equipment (UE) ) to establish a data channel (e.g., an application data channel) .
  • the location server may receive location information of the wireless communication device via the data channel from the wireless communication device.
  • This disclosure provides a new method for delivering location information of a UE.
  • a data channel can be established between a UE and a LS to transfer the location information. The method may not depend on a signaling message to transfer the location information.
  • the data channel can be (established/configured) to support an internet protocol (IP) multimedia subsystem (IMS) emergency session.
  • IP internet protocol
  • IMS internet multimedia subsystem
  • the location server may receive a message comprising a request or query for the location information of the wireless communication device from a location retrieving function (LRF) .
  • the method can be used in IMS emergency session to transfer location information.
  • the location server may transmit the location information of the wireless communication device to the LRF.
  • the LRF may determine whether the location information is valid.
  • a call session control function may select a public safety answering point (PSAP) to serve the wireless communication device according to the location information.
  • the CSCF can be an Emergency CSCF (E-CSCF) .
  • E-CSCF may send an emergency session request to the selected PSAP.
  • the wireless communication device may establish the data channel with the location server (e.g., a UE may initiate an establishment of a data channel) .
  • the location server may determine whether the location information is available and valid. In response to /responsive to the location information being available and valid, the location server may transmit the location information to the location retrieving function (LRF) .
  • the location server may determine whether the data channel exists. In response to /responsive to the location information being not available or not valid, but the data channel exists, the location server may receive the location information via the data channel. In response to /responsive to the location information being not available or not valid, and the data channel does not exist, the location server may communicate with the wireless communication device to establish the data channel.
  • the location server may establish the data channel with the wireless communication device.
  • a wireless communication device e.g., a UE may communication with a location server (LS) to establish a data channel (e.g., an application data channel) .
  • the wireless communication device may send location information of the wireless communication device via the data channel to the location server.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or any combination of these techniques.
  • firmware e.g., a digital implementation, an analog implementation, or a combination of the two
  • firmware various forms of program or design code incorporating instructions
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Presented are systems and methods for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session. A location server (LS) may communicate with a wireless communication device (e.g., a user equipment (UE) ) to establish a data channel (e.g., an application data channel). The location server receive location information of the wireless communication device via the data channel from the wireless communication device.

Description

SYSTEMS AND METHODS FOR DELIVERING LOCATION INFORMATION IN AN INTERNET PROTOCOL MULTIMEDIA SUBSYSTEM EMERGENCY SESSION TECHNICAL FIELD
The disclosure relates generally to wireless communications, including but not limited to systems and methods for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session.
BACKGROUND
The standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) . The 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) . In order to facilitate the enablement of different data services and requirements, the elements of the 5GC, also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
SUMMARY
The example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments, example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
At least one aspect is directed to a system, method, apparatus, or a computer-readable medium of the following. A location server (LS) may communicate with a wireless communication device (e.g., a user equipment (UE) ) to establish a data channel (e.g., an application data channel) . The location server may receive location information of the wireless communication device via the data channel from the wireless communication device. This disclosure provides a new method for delivering  location information of a UE. A data channel can be established between a UE and a LS to transfer the location information. The method may not depend on a signaling message to transfer the location information. The data channel can be to support an internet protocol (IP) multimedia subsystem (IMS) emergency session. The location server may receive a message comprising a request or query for the location information of the wireless communication device from a location retrieving function (LRF) . The method can be used in an IMS emergency session to transfer location information. The location server may transmit the location information of the wireless communication device to the LRF. The LRF may determine whether the location information is valid.
In some embodiments, a call session control function (CSCF) may select a public safety answering point (PSAP) to serve the wireless communication device according to the location information. The CSCF can be an Emergency CSCF (E-CSCF) . The E-CSCF may send an emergency session request to the selected PSAP.
In some embodiments, the wireless communication device may establish the data channel with the location server (e.g., a UE may initiate an establishment of a data channel) . The location server may determine whether the location information is available and valid. In response to /responsive to the location information being available and valid, the location server may transmit the location information to the location retrieving function (LRF) . The location server may determine whether the data channel exists. In response to /responsive to the location information being not available or not valid, but the data channel exists, the location server may receive the location information via the data channel. In response to /responsive to the location information being not available or not valid, and the data channel does not exist, the location server may communicate with the wireless communication device to establish the data channel. The location server may establish the data channel with the wireless communication device.
In some embodiments, a wireless communication device (e.g., a UE) may communication with a location server (LS) to establish a data channel (e.g., an application data channel) . The wireless communication device may send location information of the wireless communication device via the data channel to the location server.
BRIEF DESCRIPTION OF THE DRAWINGS
Various example embodiments of the present solution are described in detail below with reference to the following figures or drawings. The drawings are provided for purposes of illustration only and merely depict example embodiments of the present solution to facilitate the reader's understanding of the present solution. Therefore, the drawings should not be considered limiting of the breadth, scope, or applicability of the present solution. It should be noted that for clarity and ease of illustration, these drawings are not necessarily drawn to scale.
FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure;
FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure;
FIG. 3 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments of the present disclosure;
FIG. 4 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments of the present disclosure; and
FIG. 5 illustrates a flow diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
1. Mobile Communication Technology and Environment
FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure. In the following discussion, the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100. ” Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as wireless communication device) that can communicate with each other via  a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101. In FIG. 1, the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126. Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
For example, the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution. The system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one illustrative embodiment, system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of FIG. 1, as described above.
System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) . The BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220. The UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240. The BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 200 may further include any number of modules other than the modules shown in FIG. 2. Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure
In accordance with some embodiments, the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion. The operations of the two transceiver modules 210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two transceivers 210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
The UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation  scheme. In some illustrative embodiments, the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
In accordance with various embodiments, the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example. In some embodiments, the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc. The processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof. The memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard, memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively. The memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230. In some embodiments, the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be  executed by processor modules 210 and 230, respectively. Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
The network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202. For example, network communication module 218 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network. In this manner, the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for, ” “configured to” and conjugations thereof, as used herein with respect to a specified operation or function, refer to a device, component, circuit, structure, machine, signal, etc., that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
The Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems. The model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it. The OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols. The OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model. In some embodiments, a first layer may be a physical layer. In some embodiments, a second layer may be a Medium Access Control (MAC) layer. In some embodiments, a third layer may be a Radio Link Control (RLC) layer. In some embodiments, a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer. In some embodiments, a fifth layer may be a Radio Resource Control (RRC) layer. In some embodiments, a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
Various example embodiments of the present solution are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the present  solution. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the present solution. Thus, the present solution is not limited to the example embodiments and applications described and illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely example approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present solution. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present solution is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
2. Systems and Methods for Delivering Location Information
In internet protocol (IP) multimedia subsystem (IMS) emergency sessions for instance, location information of a UE can be utilized for IMS network to determine which public safety answering point (PSAP) serves an area where the UE is currently located, and may route the emergency session to the PSAP. The PSAP may obtain/get accurate and updated location information of the UE during the emergency session. The problem can described as how an IMS network can acquire accurate and updated location information of a UE in IMS emergency sessions or other types of sessions.
The current mechanisms for providing location information in IMS emergency sessions utilize session initiation protocol (SIP) header fields to convey location information and depend on the implementation of a UE and a network, which cannot guarantee to provide real-time precise location information. A data channel may enhance the ability of IMS to handle interactions between UEs or between the UE and network elements in the network side. The data channel can be highly flexible and can be used to carry any type of information. The present disclosure provides a method for establishing a data channel between a UE and a location server in the network side and utilizing the data channel to transfer location information of the UE when the UE is involved in a communication session (e.g., an emergency session) .
The UE may initiate an emergency session through an IMS session establishment request with an emergency indication. In order to deliver the location information of the UE, the UE may establish at least one data channel which includes a bootstrap data channel to download a UE resident  application, and an application data channel to deliver location information of the UE. When the UE finishes establishing the application data channel with the location server, the UE may deliver its location information to the location server (LS) . The LS can be the network side entity responsible for obtaining the location of the UE. The LS can be an enhanced 3GPP gateway mobile location center (GMLC) or secure user plane for location (SUPL) location platform (OMA SLP) .
The location information may be/include geographical location information or a location identifier. The location identifier can be/indicate/identify a current location of the UE in the network (e.g. a global cell ID) .
When an emergency call session control function (CSCF) (E-CSCF) receives an emergency session establishment request from a UE, the E-CSCF may interact with a location retrieving function (LRF) to query the location information of the UE. The LRF may interact with the LS to query location information of the UE which is transferred through an application data channel between the LS and the UE.Based on the location information, the E-CSCF may route the emergency session to the appropriate PSAP serving the area where the UE is currently located.
On the other hand, when the PSAP processes the emergency session, some information may need to be updated (e.g., current location information of the UE) . The PSAP may send the request to the LRF. The LRF may interact with the LS to query location information of the UE. The LS may check the availability and validity of the location information. If the location information is available and valid, the location information can be delivered to the PSAP directly. If the location information is unavailable or outdated, the LS may interact with the UE to obtain updated location information through an application data channel if the application data channel exists. If the application data channel between the LS and the UE does not exist, the LS may establish an application data channel toward the UE. The location information of the UE may be transferred through the established application data channel. The LS may send the location information to the LRF. The LRF may forward the location information to the PSAP.
The LRF and the LS can be separately deployed or co-located based on different implementations. If the LRF and the LS are co-located, the interfaces and the interactions between the LRF and the LS may not be needed. The location information of the UE can be transferred through/via a data channel so that the location information may not need to be carried through/in SIP header fields.
Implementation Example 1
FIG. 3 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments of the present disclosure. The procedures for location information of a UE transferred by a data channel (initiated by a UE) are shown in FIG. 3.
Step 1: A UE may initiate an emergency session with an emergency indication in an IMS session establishment request. The session establishment request can be transferred by a proxy-CSCF (P-CSCF) to an emergency-CSCF (E-CSCF) .
Step 2: The UE may establish a bootstrap data channel and may download an application which is used to establish an application data channel to transfer location information of a UE.
Step 3: The UE may establish an application data channel with a location server (LS) .
Step 4: The UE may report its location information to the LS through/via an application data channel.
Step 5: In order to determine the appropriate PSAP serving the UE, the E-CSCF may retrieve location information of the UE from a location retrieving function (LRF) .
Step 6: The LRF may interact with the LS to query the location information of the UE. The location information can be delivered through the application data channel in Step 4.
Step 7: The LRF may validate the location information of the UE.
Step 8: The LRF may return the location information of the UE to the E-CSCF.
Step 9: Based on the location information of the UE, the E-CSCF may determine an appropriate PSAP serving the UE.
Step 10: The E-CSCF may forward the emergency session request to the PSAP selected in Step 9.
Step 11: The PSAP may continue the following emergency session.
Implementation Example 2
FIG. 4 illustrates a sequence diagram for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session, in accordance with some embodiments  of the present disclosure. The procedures for location information of a UE transferred by a data channel (initiated by a location server (LS) ) are shown in FIG. 4.
Step 1: When processing the emergency session from a UE, a public safety answering point (PSAP) may request current location information of the UE.
Step 2: If the PSAP determines/finds that the location information of the UE is out of date, the PSAP may send a location information request to a location retrieval function (LRF) .
Step 3: The LRF may interact with a location server (LS) to query location information of the UE.
Step 4: The LS may check the availability and validity of the location information.
Step 5a: Represents the scenario in which the location information is available and valid. Step 6 can be executed.
Step 5b: Represents the scenario in which the location information is not available or invalid, and the application data channel between the LS and the UE exists.
Step 5b1: The LS may interact with the UE to acquire location information of the UE through/via the application data channel.
Step 5c: Represents the scenario in which the location information is not available or invalid, and the application data channel between the LS and the UE does not exist.
Step 5c1: The LS may interact with the UE to establish a new application data channel.
Step 5c2: The UE may send its location information to the LS through/via the application data channel.
Step 6: The LS may send the location information of the UE to the LRF.
Step 7: The LRF may send the location information to the PSAP.
Step 8: The PSAP may continue the emergency session taking into account the received location information of the UE.
It should be understood that one or more features from the above implementation examples are not exclusive to the specific implementation examples and/or embodiments, but can be combined in any manner (e.g., in any priority and/or order, concurrently or otherwise) .
FIG. 5 illustrates a flow diagram of a method 500 for delivering location information in an internet protocol (IP) multimedia subsystem (IMS) emergency session. The method 500 may be implemented using any one or more of the components and devices detailed herein in conjunction with FIGs. 1–2. In overview, the method 500 may be performed by a location server, in some embodiments. Additional, fewer, or different operations may be performed in the method 500 depending on the embodiment. At least one aspect of the operations is directed to a system, method, apparatus, or a (non-transitory) computer-readable medium.
A location server (LS) may communicate with a wireless communication device (e.g., a user equipment (UE) ) to establish a data channel (e.g., an application data channel) . The location server may receive location information of the wireless communication device via the data channel from the wireless communication device. This disclosure provides a new method for delivering location information of a UE.A data channel can be established between a UE and a LS to transfer the location information. The method may not depend on a signaling message to transfer the location information. The data channel can be (established/configured) to support an internet protocol (IP) multimedia subsystem (IMS) emergency session. The location server may receive a message comprising a request or query for the location information of the wireless communication device from a location retrieving function (LRF) . The method can be used in IMS emergency session to transfer location information. The location server may transmit the location information of the wireless communication device to the LRF. The LRF may determine whether the location information is valid.
In some embodiments, a call session control function (CSCF) may select a public safety answering point (PSAP) to serve the wireless communication device according to the location information. The CSCF can be an Emergency CSCF (E-CSCF) . The E-CSCF may send an emergency session request to the selected PSAP.
In some embodiments, the wireless communication device may establish the data channel with the location server (e.g., a UE may initiate an establishment of a data channel) . The location server may determine whether the location information is available and valid. In response to /responsive to the location information being available and valid, the location server may transmit the location information to the location retrieving function (LRF) . The location server may determine whether the data channel exists. In response to /responsive to the location information being not available or not valid, but the data channel exists, the location server may receive the location information via the data  channel. In response to /responsive to the location information being not available or not valid, and the data channel does not exist, the location server may communicate with the wireless communication device to establish the data channel. The location server may establish the data channel with the wireless communication device.
In some embodiments, a wireless communication device (e.g., a UE) may communication with a location server (LS) to establish a data channel (e.g., an application data channel) . The wireless communication device may send location information of the wireless communication device via the data channel to the location server.
While various embodiments of the present solution have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand example features and functions of the present solution. Such persons would understand, however, that the solution is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described illustrative embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or any combination of these techniques. To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic  disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present solution. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present solution with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the embodiments described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other embodiments without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (18)

  1. A method, comprising:
    communicating, by a location server, with a wireless communication device to establish a data channel; and
    receiving, by the location server from the wireless communication device, location information of the wireless communication device via the data channel.
  2. The method of claim 1, wherein the data channel is to support an internet protocol (IP) multimedia subsystem (IMS) emergency session.
  3. The method of claim 1, comprising:
    receiving, by the location server from a location retrieving function (LRF) , a message comprising a request or query for the location information of the wireless communication device.
  4. The method of claim 3, comprising:
    transmitting, by the location server, the location information of the wireless communication device to the LRF.
  5. The method of claim 4, wherein the LRF determines whether the location information is valid.
  6. The method of claim 1, wherein a call session control function (CSCF) selects a public safety answering point (PSAP) to serve the wireless communication device according to the location information.
  7. The method of claim 6, wherein the CSCF is an Emergency CSCF (E-CSCF) .
  8. The method of claim 7, wherein the E-CSCF sends an emergency session request to the selected PSAP.
  9. The method of claim 1, wherein the wireless communication device establishes the data channel with the location server.
  10. The method of claim 1, comprising:
    determining, by the location server, whether the location information is available and valid.
  11. The method of claim 10, comprising:
    responsive to the location information being available and valid, transmitting, by the location server, the location information to the location retrieving function (LRF) .
  12. The method of claim 11, comprising:
    determining, by the location server, whether the data channel exists.
  13. The method of claim 12, comprising:
    responsive to the location information being not available or not valid, but the data channel exists, receiving, by the location server, the location information via the data channel.
  14. The method of claim 12, comprising:
    responsive to the location information being not available or not valid, and the data channel does not exist, communicating, by the location server, with the wireless communication device to establish the data channel.
  15. The method of claim 1, comprising:
    establishing, by the location server, the data channel with the wireless communication device.
  16. A method comprising:
    communicating, by a wireless communication device, with a location server to establish a data channel; and
    sending, by the wireless communication device to the location server, location information of the wireless communication device via the data channel.
  17. A non-transitory computer readable medium storing instructions, which when executed by at least one processor, cause the at least one processor to perform the method of any one of claims 1-16.
  18. An apparatus comprising:
    at least one processor configured to perform the method of any one of claims 1-16.
PCT/CN2023/104979 2023-06-30 2023-06-30 Systems and methods for delivering location information in an internet protocol multimedia subsystem emergency session WO2024109080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/104979 WO2024109080A1 (en) 2023-06-30 2023-06-30 Systems and methods for delivering location information in an internet protocol multimedia subsystem emergency session

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/104979 WO2024109080A1 (en) 2023-06-30 2023-06-30 Systems and methods for delivering location information in an internet protocol multimedia subsystem emergency session

Publications (1)

Publication Number Publication Date
WO2024109080A1 true WO2024109080A1 (en) 2024-05-30

Family

ID=91195098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104979 WO2024109080A1 (en) 2023-06-30 2023-06-30 Systems and methods for delivering location information in an internet protocol multimedia subsystem emergency session

Country Status (1)

Country Link
WO (1) WO2024109080A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960818A (en) * 2008-01-04 2011-01-26 高通股份有限公司 Method and apparatus for extended call establishment and location support for IMS emergency calls
CN103812757A (en) * 2012-11-13 2014-05-21 中兴通讯股份有限公司 Method and system for browser emergency call in real-time communication and mobile device
US20180234811A1 (en) * 2017-02-10 2018-08-16 Harris Corporation Wireless ptt communication system with enhanced location reporting and related devices and methods
CN109196925A (en) * 2016-05-13 2019-01-11 高通股份有限公司 The method and/or system of positioning for mobile device
CN114651491A (en) * 2019-08-23 2022-06-21 高通股份有限公司 Ranging signaling in unlicensed bands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960818A (en) * 2008-01-04 2011-01-26 高通股份有限公司 Method and apparatus for extended call establishment and location support for IMS emergency calls
CN103812757A (en) * 2012-11-13 2014-05-21 中兴通讯股份有限公司 Method and system for browser emergency call in real-time communication and mobile device
CN109196925A (en) * 2016-05-13 2019-01-11 高通股份有限公司 The method and/or system of positioning for mobile device
US20180234811A1 (en) * 2017-02-10 2018-08-16 Harris Corporation Wireless ptt communication system with enhanced location reporting and related devices and methods
CN114651491A (en) * 2019-08-23 2022-06-21 高通股份有限公司 Ranging signaling in unlicensed bands

Similar Documents

Publication Publication Date Title
AU2018236614B2 (en) Method for receiving report, network device, method for performing report, and base station
CN104322120A (en) Ensuring positioning quality-of-service during cell changes
US11503533B2 (en) Method of registration with access and mobility management function re-allocation
US20240298222A1 (en) UE Capability Indication for Multi-Connectivity Handover
WO2021030946A1 (en) A method of registration with access and mobility management function re-allocation
CN115715473A (en) Method for SMF to efficiently perform redundant transmission by improving NWDAF functionality
WO2020068648A1 (en) Multi-connectivity using time division multiplexing
US20240188157A1 (en) Systems and methods for establishing shared n3 tunnel
WO2024109080A1 (en) Systems and methods for delivering location information in an internet protocol multimedia subsystem emergency session
US20240260027A1 (en) Uplink control information (uci) multiplexing for multi-transmission-reception point (m-trp) operations
CN117014809A (en) Communication method and related device
WO2021109480A1 (en) Configurations for resource-saving data transmissions in shared spectrum channel access
WO2024108786A1 (en) Systems and methods for core network based idle quality of experience configuration retrieve
WO2024026871A1 (en) Systems and methods for successful handover reporting
WO2024031470A1 (en) Systems and methods for user equipment location verification
WO2024050744A1 (en) Systems and methods for augmented reality communication based on data channel
US20240349108A1 (en) Systems and methods for alignment of radio access network (ran) visible quality of experience (qoe) and minimized drive test (mdt)
US20240188152A1 (en) Systems and methods for establishing shared n3 tunnel
WO2023130425A1 (en) Systems and methods for communicating reference signals for positioning
WO2024156135A1 (en) Systems and methods for session management function (smf) re-allocation
US20240284389A1 (en) Systems and methods for measurements on positioning reference signals
WO2024156159A1 (en) Systems and methods for multicast and broadcast services (mbs) session association
WO2024169004A1 (en) Systems and methods for reactivation of a protocol data unit (pdu) session for data network name (dnn) replacement
WO2024230037A1 (en) Systems and methods for session management
WO2024216823A1 (en) Systems and methods for handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893180

Country of ref document: EP

Kind code of ref document: A1