WO2024106544A1 - Respiration count measurement device, respiration count measurement method, program, and system - Google Patents
Respiration count measurement device, respiration count measurement method, program, and system Download PDFInfo
- Publication number
- WO2024106544A1 WO2024106544A1 PCT/JP2023/041548 JP2023041548W WO2024106544A1 WO 2024106544 A1 WO2024106544 A1 WO 2024106544A1 JP 2023041548 W JP2023041548 W JP 2023041548W WO 2024106544 A1 WO2024106544 A1 WO 2024106544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- subject
- data
- respiration rate
- noise
- Prior art date
Links
- 230000029058 respiratory gaseous exchange Effects 0.000 title claims abstract description 287
- 238000005259 measurement Methods 0.000 title claims abstract description 87
- 238000000691 measurement method Methods 0.000 title description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 452
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 226
- 238000001514 detection method Methods 0.000 claims description 132
- 230000036387 respiratory rate Effects 0.000 claims description 81
- 238000000034 method Methods 0.000 claims description 47
- 238000004891 communication Methods 0.000 claims description 27
- 230000001133 acceleration Effects 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 13
- 230000002612 cardiopulmonary effect Effects 0.000 claims description 11
- 239000001569 carbon dioxide Substances 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 description 24
- 206010011224 Cough Diseases 0.000 description 19
- 206010048232 Yawning Diseases 0.000 description 19
- 230000008569 process Effects 0.000 description 18
- 230000000241 respiratory effect Effects 0.000 description 17
- 241001282135 Poromitra oscitans Species 0.000 description 15
- 238000010586 diagram Methods 0.000 description 15
- 230000036541 health Effects 0.000 description 13
- 238000013500 data storage Methods 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 11
- 238000009531 respiratory rate measurement Methods 0.000 description 11
- 210000000214 mouth Anatomy 0.000 description 9
- 238000007726 management method Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 239000012855 volatile organic compound Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 206010041232 sneezing Diseases 0.000 description 5
- 208000031361 Hiccup Diseases 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 210000000115 thoracic cavity Anatomy 0.000 description 3
- 208000008784 apnea Diseases 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 208000037157 Azotemia Diseases 0.000 description 1
- 206010006102 Bradypnoea Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 206010006440 Bronchial obstruction Diseases 0.000 description 1
- 206010010082 Coma uraemic Diseases 0.000 description 1
- 208000002230 Diabetic coma Diseases 0.000 description 1
- 206010020850 Hyperthyroidism Diseases 0.000 description 1
- 206010021079 Hypopnoea Diseases 0.000 description 1
- 206010022773 Intracranial pressure increased Diseases 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 206010029333 Neurosis Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 208000024336 bradypnea Diseases 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 208000021760 high fever Diseases 0.000 description 1
- 208000000122 hyperventilation Diseases 0.000 description 1
- 230000000870 hyperventilation Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 208000015238 neurotic disease Diseases 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 210000003019 respiratory muscle Anatomy 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000008203 tachypnea Diseases 0.000 description 1
- 206010043089 tachypnoea Diseases 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
- 208000009852 uremia Diseases 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Definitions
- This disclosure relates to a respiratory rate measurement device, a respiratory rate measurement method, a program, and a system.
- Such biological information includes, for example, heart rate, body temperature, and SpO2 .
- respiratory status is also considered an important indicator in health management. Many elderly people, in particular, suffer from respiratory diseases such as pneumonia.
- Methods for monitoring respiratory status include a method that uses thoracic impedance in conjunction with an ECG (Electrocardiogram) and a method that measures respiratory rate by analyzing pulse waves.
- ECG Electrocardiogram
- these methods are easily affected by body movements such as turning over in bed, and require the patient to be at rest in order to achieve a certain level of accuracy in the measurements.
- capnometers that measure the CO2 concentration in exhaled air are widely used to monitor the respiratory condition.
- the detected data is an approximately rectangular wave, and a natural respiration waveform cannot be obtained, making it difficult to accurately grasp the respiratory condition of the subject.
- This disclosure provides a new technology for understanding respiratory status.
- respiration rate measuring device that measures respiration rate, comprising: a first sensor device that acquires fluctuation data of CO2 concentration in the subject's continuous exhaled breath; a second sensor device that detects noise-type body movement of the subject that occurs during a measurement period of the first sensor device; and a determination unit that determines the respiration rate based on the number of peaks in the fluctuation data, excluding a portion of the fluctuation data that corresponds to a time when the noise-type body movement occurs.
- a first sensor device that acquires fluctuation data of CO2 concentration can acquire fluctuation data for measuring the respiration rate during natural breathing.
- a second sensor device that detects noise-type body movements of the subject that occur during the measurement period of the first sensor device can detect noise-type body movements of the subject that may affect the measurement of the respiration rate.
- a determination unit that excludes a portion of the fluctuation data that corresponds to the occurrence time of the noise-type body movements and determines the respiration rate based on the number of peaks of the fluctuation data can more accurately measure the respiration rate using the fluctuation data of CO2 concentration.
- One aspect of the present disclosure is a respiration rate measurement method including: acquiring fluctuation data of CO2 concentration in a subject's continuous exhalation by the CO2 sensor in a respiration rate measurement device, generating frequency data by frequency-converting the fluctuation data, and regarding the fluctuation data of the CO2 concentration corresponding to a predetermined frequency band including the subject's natural breathing among the frequency data, determining the number of peaks of the CO2 concentration exceeding a predetermined threshold as the respiration rate. This allows the respiration rate to be measured more accurately by using the CO2 sensor used as a chip module.
- One aspect of the present disclosure is a program configured to be executed by at least one processor and including instructions for performing the method for measuring respiration rate, which allows for more accurate measurement of respiration rate using fluctuation data of CO2 concentration.
- One aspect of the present disclosure is a program that causes at least one processor to function as at least a communication unit and a determination unit, the communication unit being configured to be able to acquire fluctuation data of CO2 concentration in the exhaled breath of a subject and detection data related to noise-type body movements of the subject, and the determination unit being configured to be able to determine the respiratory rate of the subject based on the fluctuation data and the detection data. This allows for more accurate measurement of the respiratory rate using the fluctuation data of the CO2 concentration.
- One aspect of the present disclosure is a system including at least one processor and a program that causes the processor to function as at least a communication unit and a determination unit, the communication unit being configured to be able to acquire fluctuation data of CO2 concentration contained in the breath of a subject and detection data related to noise-type body movements of the subject, and the determination unit being configured to be able to determine the respiratory rate of the subject based on the fluctuation data and the detection data. This allows for more accurate measurement of the respiratory rate using the fluctuation data of the CO2 concentration.
- respiration rate can be measured using fluctuation data of CO2 concentration.
- FIG. 1 is a front view showing an example of a schematic configuration of a respiration rate measuring device according to an embodiment.
- FIG. 2 is a block diagram showing a schematic functional configuration of a respiration rate measuring device according to one embodiment.
- 1 is a flow chart illustrating one aspect of a process for measuring respiration rate by a respiration rate measurement device according to one embodiment.
- FIG. 13 is an illustration of the filter output normalized by the maximum CO2 concentration detected by the respiration rate measurement device according to one embodiment.
- 10 is a flow chart illustrating another aspect of a process for measuring respiration rate by a respiration rate measurement device according to one embodiment.
- 6 is an explanatory diagram showing an example of a respiration rate determination operation in the process of measuring the respiration rate shown in the flowchart of FIG. 5 .
- FIG. 5 is an explanatory diagram showing an example of a respiration rate determination operation in the process of measuring the respiration rate shown in the flowchart of FIG. 5 .
- FIG. 7 is an explanatory diagram showing another example of the respiration rate determination operation in the process of measuring the respiration rate shown in the flowchart of FIG. 5 .
- FIG. FIG. 11 is an explanatory diagram of the operation of determining the respiratory rate in yet another aspect of the process of measuring the respiratory rate by the respiratory rate measuring device according to one embodiment.
- FIG. 1 is an explanatory diagram showing one aspect of a respiration rate measuring device according to one embodiment.
- FIG. 11 is an explanatory diagram showing another aspect of the respiration rate measuring device according to one embodiment.
- 11A and 11B are explanatory diagrams showing a respiration rate measuring device according to one embodiment.
- 12A-12D are explanatory diagrams showing a respiration rate measuring device according to one embodiment of the present disclosure.
- FIG. 2 is a block diagram showing a functional configuration of a system according to an embodiment.
- FIG. 14A is a graph showing the results of detection of CO 2 concentration by the CO 2 sensor when the subject is at rest
- FIG. 14B is a graph showing the results of detection of CO 2 concentration by the CO 2 sensor when the subject is turning over in bed.
- FIG. 15A is a graph showing the results of acceleration detection by the acceleration sensor when the subject is at rest
- FIG. 15B is a graph showing the results of acceleration detection by the acceleration sensor when the subject is turning over in sleep.
- 16A-16F are diagrams illustrating example respiratory waveforms that may be detected by a system according to one embodiment.
- 17A-17C are diagrams illustrating example respiratory waveforms that may be detected by a system according to one embodiment.
- FIG. 1 is a front view showing an example of the schematic configuration of a respiration rate measuring device according to one embodiment of the present disclosure.
- the respiratory rate measuring device 100 can measure the respiratory rate, which is an indicator of the respiratory condition in the health management of the subject.
- Potential subjects include, for example, patients hospitalized at medical institutions, elderly people living in nursing homes or care facilities, elderly people in evacuation centers during disasters, injured people at emergency or disaster sites, elderly people receiving home care, and people with respiratory diseases, but subjects are not limited to these people.
- the respiration rate measuring device 100 includes a sensor body 105 and a microcomputer 130.
- the sensor body 105 includes a CO2 sensor 110 as a first sensor device and a noise detection sensor 120 as a second sensor device.
- the CO2 sensor 110 and the noise detection sensor 120 are provided at different positions, such as on the same side of the sensor body 105 or on opposite sides of the sensor body 105.
- the CO2 sensor 110 and the noise detection sensor 120 are connected to the microcomputer 130 via connection lines 140 (140a, 140b).
- the CO2 sensor 110 and the noise detection sensor 120 are provided in the sensor body 105 as shown in Fig. 1, but the arrangement of these sensors is not limited to this.
- the noise detection sensor 120 only needs to be able to measure the physical quantity of the measurement target according to its type. Therefore, the arrangement is not limited to a position within the sensor body 105, and it may be arranged at a position away from the sensor body 105.
- the sensor body 105 is provided with an attachment member 150 that is used by the subject to wear it.
- the subject uses an attachment.
- the attachment include head attachment and body attachment.
- Examples of the head attachment include a face shield that covers the area around the mouth and a sanitary mask.
- Examples of the body attachment include clothing and a neck-hanging member such as a necklace.
- the attachment member 150 is formed in a belt shape that extends from the left and right sides of the sensor body 105. This belt-shaped attachment member 150 can hold the various attachments mentioned above.
- the attachment member 150 can be formed in whole or in part from a resin molded body, fabric, stretchable fabric, rubber-like elastic body, or a combination thereof.
- the sensor body 105 may be configured so that an attachment member is attached to the ear like a eyeglass frame, and the sensor body 105 is positioned near the mouth.
- the respiration rate measuring device 100 may also be in the shape of a handheld rod like an interview microphone. In this case, a nurse uses the sensor body 105 by bringing it close to the area around the patient's mouth. In this way, the sensor body 105 does not have to be attached to the subject via an attachment member.
- the CO2 sensor 110 has a function as a first sensor device that detects fluctuations in the CO2 concentration contained in the breath of the subject.
- the CO2 sensor 110 is provided at a position of the sensor body 105 that faces the mouth periphery of the subject when the subject wears it in order to detect fluctuations in the CO2 concentration contained in the breath of the subject.
- a gas sensor can be used as the CO2 sensor 110.
- a metal oxide (MOX) gas sensor that detects volatile organic compounds (VOCs) contained in the breath can be used.
- the CO2 sensor 110 exemplified here can be one that uses an equivalent carbon dioxide method.
- the equivalent carbon dioxide method calculates an equivalent CO2 concentration ( eCO2 concentration) from the concentration value of the measured volatile organic compounds (VOCs).
- the calculation process is performed by a microcomputer 130 connected to the CO2 sensor 110.
- the measurement data of the CO2 sensor 110 is transmitted to the microcomputer 130 via a connection line 140a.
- FIG. 1 illustrates one connection line 140a, a configuration including a plurality of connection lines may be used.
- the noise detection sensor 120 functions as a second sensor device that detects noise-type body movements of the subject occurring during a measurement period of the CO2 sensor 110 for measuring the subject's respiratory rate.
- the noise detection sensor 120 is disposed in the sensor body 105 near the CO2 sensor 110.
- the noise detection sensor 120 detects noise-type body movements.
- the noise type body movement described in this specification and claims refers to the movement of the subject that affects the fluctuation of the CO2 concentration due to the natural breathing of the subject and causes the accuracy of the measurement of the respiratory rate of the subject to be reduced.
- the movement may include conscious and unconscious movements. More specifically, examples of noise type body movements include body movement changes such as the subject turning over in bed, coughing, sneezing, yawning, hiccups, talking, and other cardiopulmonary movements other than breathing of the subject, but are not limited to these.
- the noise detection sensor 120 obtains data on physical quantities for identifying the presence or absence of noise-type body movements that affect the fluctuation of the CO2 concentration due to factors other than breathing and reduce the accuracy of the measurement of the subject's breathing rate.
- the detection data on the noise-type body movements of the noise detection sensor 120 is transmitted to the microcomputer 130 via a connection line 140b. Although one connection line 140b is shown in FIG. 1, a configuration including multiple connection lines may be used.
- the noise detection sensor 120 may be at least one of a microphone element, an acceleration sensor, a humidity sensor, a pressure sensor, or a CO2 sensor, but is not limited thereto and may be other sensors.
- the microphone element as the noise detection sensor 120 detects the fluctuation of sound generated by noise-type body movements including body movement changes and the operation of the subject's cardiopulmonary function other than breathing, such as coughing, sneezing, yawning, hiccups, and talking.
- the acceleration sensor as the noise detection sensor 120 detects the fluctuation of vibration generated by noise-type body movements.
- the humidity sensor as the noise detection sensor 120 detects the fluctuation of humidity due to moisture contained in the exhaled air generated by the operation of the cardiopulmonary function other than breathing, such as coughing, sneezing, yawning, hiccups, and talking, as the noise-type body movements.
- the pressure sensor as the noise detection sensor 120 detects the fluctuation of the pressure of the exhaled air generated by the operation of the cardiopulmonary function other than breathing, such as the noise-type body movements.
- the CO2 sensor as the noise detection sensor 120 can be provided on the opposite side of the sensor body 105 to the side on which the CO2 sensor 110 as the first sensor device (also referred to as the "first CO2 sensor” in this disclosure) is provided in order to detect the fluctuation of the CO2 concentration in the external environment of the subject, but is not limited thereto, and can be provided around the subject's neck or other positions that are not affected by the subject's breathing.
- the CO2 sensor as the noise detection sensor 120 is, for example, an equivalent carbon dioxide type CO2 sensor, and detects the fluctuation of the CO2 concentration in the external environment that is not affected by the fluctuation of the CO2 concentration due to the subject's breathing during the operation of the cardiopulmonary function other than the breathing of the subject (changes in body movement, coughing, sneezing, yawning, hiccups, conversation, etc.) as the noise type body movement.
- the microphone element, acceleration sensor, humidity sensor, pressure sensor, or CO2 sensor measures a physical quantity that can be detected, and the occurrence of various noise-type body movements that may occur in the subject can be detected by using the measurement data.
- the noise detection sensor 120 can be configured by a combination of one or more sensors of the same or different types.
- the microcomputer 130 has a function of controlling the operation of each component of the respiration rate measuring device 100.
- the microcomputer 130 has a function of determining the respiration rate of the subject based on the detection data of the CO2 sensor 110 and the noise detection sensor 120. Details regarding the functions of the microcomputer 130 will be described later.
- FIG. 2 is a block diagram showing a schematic functional configuration of a respiration rate measuring device according to an embodiment of the present disclosure.
- the respiration rate measuring device 100 has a sensor body 105 equipped with a plurality of sensors.
- the plurality of sensors are a CO2 sensor 110 and a noise detection sensor 120.
- the sensor body 105 is provided with one CO2 sensor 110 and one noise detection sensor 120, but two or more may be provided.
- the noise detection sensor 120 two or more noise detection sensors 120 may be provided to detect different noise-type body movements, such as a combination of a microphone element and an acceleration sensor, or a combination of a microphone element and a second CO2 sensor, to remove noise data based on a wider variety of noise-type body movements and improve the measurement accuracy of the respiration rate.
- the respiration rate measuring device 100 may be configured such that the microcomputer 130 includes a control unit 131, a communication unit 132, an operation unit 133, a display unit 134, a ROM 135, and a RAM 136.
- the communication unit 132 functions as an interface when transmitting and receiving data to and from the outside via a network 2 (see FIG. 13).
- the communication method of the communication unit 132 may be wireless communication such as LTE (long term evolution), Wi-Fi (registered trademark), or Bluetooth (registered trademark).
- the operation unit 133 is composed of input buttons, a touch panel, etc., and has a function of inputting predetermined commands and data to the control unit 131.
- the display unit 134 has a function of outputting the results of calculations by the control unit 131 and the results of input by the operation unit 133 on a screen display, and is composed of, for example, an LCD screen, etc.
- the control unit 131 has a function of controlling the operation of each component of the respiratory rate measuring device 100 by executing various programs stored in the ROM 135.
- the control unit 131 also has a function of storing the necessary data, etc., in the RAM 136, which temporarily stores the necessary data, etc., as appropriate when executing these various processes. Therefore, the control operations by the control unit 131 can access the ROM 135 and RAM 136, display data on the display unit 134, operate the operation unit 133, and send and receive various information via the network 2 using the communication unit 132 as an interface when communicating with the outside.
- control unit 131 may have a function of receiving detection data (also referred to as “measurement data” or “variation data” in this specification and claims) from each of the CO2 sensor 110 and the noise detection sensor 120, judging the respiratory rate of the subject to be measured based on the detection data, and transmitting the judgment result to the outside.
- detection data also referred to as “measurement data” or “variation data” in this specification and claims
- the control unit 131 includes a receiving unit 131a, a judging unit 131b, and a transmitting unit 131c.
- the receiving unit 131a has a function of controlling reception of detection data from the CO2 sensor 110 and the noise detection sensor 120.
- the receiving unit 131a also has a function of controlling reception of various data from external devices.
- the determination unit 131b has a function of performing a determination operation required when performing various operations of the respiration rate measuring device 100. Specifically, the determination unit 131b has a function of determining whether various data is transmitted to and received from an external device via the communication unit 132 of the respiration rate measuring device 100. The determination unit 131b also has a function of performing arithmetic processing using detection data obtained from the CO2 sensor 110 and the noise detection sensor 120 to determine the respiration rate of the subject.
- the determination unit 131b uses FFT analysis, wavelet analysis, AI, etc. to calculate the subject's respiratory rate and respiratory pattern based on the detection data of the CO2 sensor 110 to determine the respiratory rate.
- the determination unit 131b also has a function of determining the subject's respiratory rate by using CO2 concentration data generated by noise-type body movement among the fluctuation data detected by the CO2 sensor 110 as noise data that is not counted as the subject's respiratory rate. Details of the operation of the determination unit 131b to determine the subject's respiratory rate will be described later.
- the transmission unit 131c has a function of controlling the transmission of various data to external devices.
- the transmission unit 131c controls the transmission of the detection data of the CO2 sensor 110 and the detection data related to the noise type body movement detected by the noise detection sensor 120 to, for example, the administrator terminal 30 (see FIG. 13) or the server device 10 (see FIG. 13).
- the transmission unit 131c controls the transmission of the judgment result of the judgment unit 131b to, for example, the administrator terminal 30 or the server device 10 (see FIG. 13).
- the transmitting unit 131c has a function of transmitting the measurement data of the CO2 sensor 110 and the detection data related to the noise-type body movement detected by the noise detection sensor 120 to an external device at a predetermined time interval.
- the predetermined time can be set, for example, at a fixed time interval (for example, every minute) or at an arbitrary time interval.
- the transmitting unit 131c may also vary the predetermined time depending on the remaining battery level. For example, if the remaining battery level exceeds 50%, the data may be transmitted every minute, and if the remaining battery level is 50% or less, the data may be transmitted every 10 minutes.
- the remaining battery level value and the transmission time can be set arbitrarily.
- the transmitting unit 131c may accumulate multiple pieces of detection data detected before transmitting data, and transmit the accumulated multiple pieces of detection data collectively at predetermined time intervals. This can reduce battery consumption.
- the detection data transmitted by the transmitting unit 131c may be any of (1) actual measurement data measured by each detection sensor, (2) processed data obtained by arithmetic processing of the actual measurement data, or (3) both the actual measurement data and the processed data.
- the form in which the sensor detection data is transmitted may be changed depending on the function of the determining unit 131b, the remaining battery power, etc.
- the respiration rate measuring device 100 is capable of determining the respiration rate of the subject wearing the respiration rate measuring device 100 based on the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 and the detection data related to the noise type body movement detected by the noise detection sensor 120.
- the respiration rate measuring device 100 is also capable of transmitting and receiving data of the respiration rate of the subject between the administrator terminal 30 (see FIG. 13) and the server device 10. Details of determining the respiration rate of the subject and managing the health condition using the respiration rate measuring device 100 of this embodiment will be described later.
- FIG. 3 is a flowchart showing the operation of measuring a respiratory rate using a respiratory rate measurement device according to an embodiment of the present disclosure.
- the method of measuring respiratory rate using the respiratory rate measuring device 100 is executed by a program that operates a computer included in a system 1 (see FIG. 13) that uses the respiratory rate measuring device 100.
- the program that executes the method of measuring respiratory rate using the respiratory rate measuring device 100 is a program that causes one or more processors (computer devices) connected to a network to measure the respiratory rate of the subject.
- the program that performs the method of measuring respiratory rate of this embodiment causes one or more processors (computer devices) connected to a network to execute the operation flow shown in FIG. 3.
- the CO2 sensor 110 detects the fluctuation of the CO2 concentration contained in the subject's breath (step S1).
- the data acquired here is fluctuation data of the CO2 concentration measured from consecutive breaths during a predetermined measurement time.
- the CO2 sensor 110 detects the equivalent CO2 concentration by calculating the equivalent CO2 concentration ( eCO2 concentration) from the concentration value of the volatile organic compounds (VOCs) contained in the detected breath of the subject.
- the detection data of the CO2 sensor 110 is transmitted to the microcomputer 130 (step S2).
- the determination unit 131b monitors the detection data of the CO2 sensor 110 and estimates the respiratory rate from the waveform of the fluctuation data of the CO2 concentration (step S3).
- the waveform of the fluctuation data of the CO2 concentration (referred to as the CO2 concentration waveform in this specification and claims) is a waveform expressed with time on the X-axis and CO2 concentration on the Y-axis.
- the peaks of the CO2 concentration that appear in the CO2 concentration waveform at regular regular intervals can be understood as one breath due to natural breathing.
- One breath is understood as a combination of one exhalation and one inhalation.
- the peak of the CO2 concentration is usually detected in the exhalation.
- the respiratory rate can be calculated by the following formula.
- R N ⁇ /T where R is the respiratory rate [bpm], N ⁇ is the number of detected respiratory rates, and T is the measurement time [min.].
- the breathing rate during natural breathing performed by a healthy person unconsciously is said to be about 12 to 23 breaths per minute.
- the breathing rate of the subject during natural breathing is 22.5 bpm.
- This breathing rate can be set to any desired rate.
- the breathing rate can be set, for example, according to the subject. It can also be set according to the subject's gender, physique, health condition, etc.
- the respiratory rate is 22.5 bpm
- a frequency band can be set in which the low frequency component is 0.275 Hz and the high frequency component is 0.475 Hz (band pass filter processing). And the number of peaks of the CO2 concentration waveform included in that frequency band is useful for counting the respiration rate due to natural breathing.
- a frequency band it is also useful to count the number of breaths of natural breathing more accurately. That is, natural breathing may include fluctuations in CO2 concentration due to factors other than breathing.
- By setting the frequency band as described above it becomes possible to eliminate noise appearing as a frequency component on the low frequency side and noise appearing as a frequency component on the high frequency side, and the number of breaths can be counted more accurately.
- An example of noise appearing as a frequency component on the low frequency side is slow breathing, such as multiple deep breaths.
- An example of noise appearing as a frequency component on the high frequency side is fast breathing, such as hyperventilation. By eliminating such breathing, the number of breaths due to natural breathing can be counted more accurately.
- the frequency band is set as described above, and the peak of the CO2 concentration whose maximum value exceeds a predetermined threshold value is counted as one breath for the fluctuation data of the CO2 concentration contained therein.
- the reason for setting the maximum threshold value here is to filter the data to be grasped as respiration by the value of the CO2 concentration (the " CO2 concentration value” includes a calculated value obtained by performing a predetermined calculation process on the value) to make only the data to be grasped as respiration the target data for the respiration rate count. This allows for more accurate measurement (estimation) of the respiration rate.
- the threshold value is set, for example, to 0.37 for the filter output (output of the band-pass filter process) normalized by the maximum value of the CO2 concentration, as shown in FIG. 4.
- the threshold value of the CO2 concentration set here can be set to any value.
- the threshold value can be set, for example, according to the subject. It can also be set according to the gender, physique, health condition, etc. of the subject.
- the threshold value is set by the absolute value of the CO2 concentration, for example, 60 to 70% of the peak value of the absolute value of the CO2 concentration is set as the threshold value.
- the respiration rate of the subject can be determined (estimated) from fluctuation data of the CO2 concentration.
- the respiration rate measurement device 100 and the above-mentioned respiration rate measurement method are measurement methods that are not easily affected by changes in body movement.
- the respiration rate measurement can be completed by the above steps.
- the measurement can be completed by pressing the measurement end button on the respiration rate measurement device 100.
- the following further processing can also be performed.
- step S4 it is determined whether or not noise-type body movement that is a factor in fluctuations in the CO 2 concentration caused by something other than the subject's breathing has been detected.
- the various sensors of the noise detection sensor 120 detect the following physical quantities and transmit the detection data to the microcomputer 130 (step S5).
- ⁇ Microphone element Sounds emitted when the subject's body movements change, or when they cough, yawn, talk, etc.
- ⁇ Acceleration sensor Vibrations emitted when the subject's body movements change, or when they cough, yawn, talk, etc.
- Humidity sensor Humidity of the breath when the subject coughs, sneezes, yawns, talks, etc.
- ⁇ Pressure sensor Pressure of the breath when the subject coughs, sneezes, yawns, talks, etc.
- the determination unit 131b When the microcomputer 130 receives the detection data from the noise detection sensor 120, the determination unit 131b performs noise removal (step S6), and then the determination unit 131b determines the respiratory rate using FFT analysis, wavelet analysis, AI, etc. (step S7). At this time, the method of determining the respiratory rate after performing noise removal differs depending on the mode of the noise detection sensor 120.
- the determination unit 131b regards the CO2 concentration fluctuation data detected by the CO2 sensor other than the period detected by the microphone or acceleration sensor as respiration, and determines the respiration rate using FFT analysis, wavelet analysis, AI, etc.In this way, when the noise detection sensor 120 is a microphone or an acceleration sensor, the determination unit 131b determines the respiration rate of the subject by using the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 during the period in which the noise type body movement is detected by the noise detection sensor 120 as noise data that is not counted.
- the noise detection sensor 120 is a humidity sensor or a pressure sensor
- the CO2 concentration fluctuation data detected by the CO2 sensor 110 is regarded as a respiration waveform to be used for measuring the respiration rate, and the respiration rate is measured.
- the waveform pattern of the detection data of the humidity sensor or pressure sensor is confirmed, and the respiration rate is estimated from the waveform pattern by FFT analysis, wavelet analysis, adaptive filter, AI, etc.
- the determination unit 131b determines the respiration rate by estimation based on the analysis result of the waveform pattern of the CO2 concentration fluctuation data detected by the CO2 sensor 110 and the waveform pattern of the detection data related to the noise-type body movement detected by the noise detection sensor 120.
- step S4 If no noise-type body movement of the subject is detected in step S4, the determining unit 131b determines in step S3 that the respiratory rate estimated based on the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 is the respiratory rate as it is.
- the respiratory rate of the subject is estimated from the detection data of the CO2 sensor 110. Then, when the noise type body movement of the subject occurring during the measurement period of the CO2 sensor 110 is detected, the CO2 concentration data generated by the noise type body movement among the detection data of the CO2 sensor 110 is used as noise data that is not counted as the respiratory rate, and the final respiratory rate of the subject P is determined.
- the noise type body movement occurs due to the change in the body movement of the subject P or the operation of the cardiopulmonary function other than the breathing of the subject, such as coughing, sneezing, yawning, and talking, the noise associated with the noise type body movement is removed before the respiratory rate of the subject is determined, so that the influence of the noise type body movement can be reduced and the respiratory rate can be grasped with high accuracy.
- the method of measuring the respiratory rate using the respiratory rate measuring device 100 according to this embodiment is not limited to the flowchart shown in FIG. 3, and can be performed, for example, as shown in the flowchart in FIG. 5.
- Measurement is started, for example, by pressing the measurement start button of the respiration rate measuring device 100 ("START" in FIG. 5). At the same time as the measurement starts, a timer that measures the measurement time is operated, and the CO2 sensor 110 detects the fluctuation of the CO2 concentration contained in the subject's breath (step S11). The fluctuation data of the CO2 concentration detected by the CO2 sensor 110 is continuously transmitted to the microcomputer 130 (step S12).
- the determination unit 131b of the microcomputer 130 continues to detect whether the received fluctuation data of the CO2 concentration includes data indicating noise-type body movement (step S13). If the determination unit 131b determines that no noise-type body movement is detected, it determines the respiratory rate from the fluctuation data of the CO2 sensor 110 (step S14). Here, "determining the respiratory rate" means that one or more breaths can be counted.
- step S13 if a noise-type body movement of the subject is detected in step S13, the process returns to step S11 and repeats the above steps. Then, the measurement of the respiratory rate based on the fluctuation data of the CO2 concentration is continued until the respiratory rate can be determined based on the fluctuation data without the detection of the noise-type body movement. Note that, when the noise-type body movement of the subject is detected in step S14 and the process returns to step S1, the timer may be reset.
- the respiration rate is determined from the fluctuation data of the CO2 sensor 110 in step S14, it is then determined whether or not to continue measuring the respiration rate (step S15).
- the criteria for determining whether or not to continue the measurement can be set in various ways, and the following are examples.
- a "certain number of breaths” e.g. 100
- a “specific measurement time” e.g., 1 minute, 1 hour, 1 day, 1 week, unlimited
- a “specific operation” is performed on the respiration rate measuring device 100 (for example, when the measurement end button of the respiration rate measuring device 100 is pressed, when the respiration rate measuring device 100 is turned off, etc.)
- step S15 If the measurement end criterion is reached in step S15, the respiratory rate measurement ends ("END" in Figure 5). If the measurement end criterion is not reached in step S15, the process returns to step S11 and the above steps are repeated. The measurement is repeated until the measurement end criterion is reached in step S15.
- the determination unit 131b determines the respiration rate by counting the number of peaks of the fluctuation data of the CO2 concentration detected by the CO2 sensor only when there is no noise-type body movement. Therefore, it is not necessary to perform FFT analysis or wavelet analysis on the detection data related to the noise-type body movement, or to remove noise, so that the respiration rate of the subject can be easily measured with fewer steps.
- various respiratory rate measurements can be performed depending on the measurement termination criteria set in step S15.
- a "specific measurement time" is selected as the measurement termination criterion and set to "one minute,” it is possible to measure the one-minute respiratory rate during normal breathing. This is considered to be an appropriate measurement for grasping the respiratory rate from a clinical perspective, and is suitable for grasping the one-minute respiratory rate more accurately, for example, in emergency and disaster sites where facilities are inadequate, and in evacuation shelters during disasters.
- the respiration rate can be measured continuously. This is suitable, for example, for continuously measuring the respiration rate of patients recuperating in hospitals or at home, and for finding signs of abnormalities in their physical condition.
- step S14 an example of the respiration rate determination operation (step S14) in the flowchart for measuring the respiration rate using the respiration rate measurement device shown in Figure 5 will be explained using Figures 6 and 7 as examples.
- One is a method in which the current time is used as the reference time to measure the number of breaths occurring from the present time, as shown in Figure 6.
- the other is a method in which the current time is used as the reference time to measure the number of breaths going back to the past, as shown in Figure 7.
- the following will explain an example in which the respiratory rate is measured for 60 seconds (one minute) during normal breathing.
- the origin “0" at the left end of the number lines in Figures 6A, 6B, and 6C is the start of measurement.
- the respiratory rate measured during the first 60-second measurement period T1 from the start of measurement is determined as the subject's respiratory rate as is. Then, the subject's respiratory rate is measured in the same manner during the next 60-second measurement period T2.
- the respiration rate is measured for 60 seconds from the end of the noise-type body movement occurrence period Tn, as shown in Figure 6B, and if no noise-type body movement is detected during that time, the respiration rate measured in the 60-second measurement period T1 from the end of the noise-type body movement is determined to be the subject's respiration rate.
- n noise occurrence time
- the respiration rate measured in the 60-second measurement period T1 from the end of the noise-type body movement is determined to be the subject's respiration rate.
- the subject's respiration rate may be determined from the measurement data of the respiration rate for a period of 60 seconds plus 15 seconds, which is the noise occurrence time n(s) during which the noise-type body movement was detected, as shown in Fig. 6C.
- the sum of the time T1a from the start of measurement until the noise-type body movement occurs and the time T1b from the end of the noise-type body movement until the measurement of the respiration rate ends is T1, that is, one minute (60 seconds).
- the respiration rate for one minute is measured after removing the section in which the noise-type body movement was detected.
- the origin "0" at the right end of the number lines in Figures 7A, 7B, and 7C is the current time.
- the current time is set as the reference time for measuring the respiration rate, and the respiration rate is measured by tracing back from the current time to past respiration rate measurement data. For example, by looking at the respiration rate measurement data for the past one minute (60 seconds) from the current time, if no noise-type body movement of the subject, such as coughing, yawning, or talking, is detected during the measurement period, the respiration rate measured during the past measurement period T1, the first 60 seconds from the current time, which is the measurement reference time, is determined to be the subject's respiration rate as is, as shown in Figure 7A.
- the breathing rate is measured for 60 seconds from the point at which the noise-type body movement detection ends, as shown in Figure 7B, and if no noise-type body movement is detected during that time, the breathing rate measured during the 60-second measurement period T1 from the point at which the noise-type body movement ends is determined to be the breathing rate of the subject.
- the breathing rate of normal breathing can be measured for one continuous minute without interruption.
- the period in which the noise-type body movement occurs can be identified, it is also possible to confirm what happened to the patient at that time.
- the respiration rate of the subject may be determined from the measurement data of the respiration rate of the past time, which is 60 seconds plus 15 seconds, which is the noise occurrence time n(s) when the noise-type body movement was detected, as shown in Fig. 7C.
- the sum of the time T1a from the start of measurement to the occurrence of the noise-type body movement and the time T1b from the end of the noise-type body movement to the end of the measurement of the respiration rate is 1 minute (60 seconds).
- the respiration rate is measured for 1 minute after removing the section in which the noise-type body movement was detected.
- the respiration rate can be easily determined by counting the respiration rate from the present time, which is the measurement reference time, to a predetermined time in the future or past (60 seconds). That is, the determination unit 131b can accurately determine the respiration rate by counting the number of peaks of the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 only when no noise-type body movement occurs within a predetermined time in the future or past from the measurement reference time.
- the noise detection sensor 120 detects CO 2 Example of measuring respiration rate when using a sensor ( Figure 8)
- a method of measuring the respiration rate by the respiration rate measuring device 100 when the noise detection sensor 120 is a noise-detecting CO2 sensor will be described with reference to FIG.
- the CO2 sensor 110 and the noise detection sensor 120 which is a CO2 sensor, each acquire fluctuation data of the CO2 concentration.
- a microphone element or the like is used as the noise detection sensor 120, a noise type fluctuation is detected by a physical quantity different from the fluctuation data of the CO2 concentration detected by the CO2 sensor 110.
- the example of Fig. 8 is an example in which a noise type fluctuation is detected by measuring the same physical quantity ( CO2 concentration).
- the fluctuation data is input to the determination unit 131b via the data processing unit 137.
- the data processing unit 137 has a function of canceling (offsetting) artifacts contained in the detection data of both sensors 110 and 120.
- the data processing unit 137 can hold statistical properties such as the average value and variance value of each artifact, and the correlation value between both artifacts as data. Then, by using this to offset both artifacts, the artifacts contained in the detection data of the CO 2 sensor 110 are removed, and clean CO 2 concentration fluctuation data for measuring the respiration rate is obtained and output to the determination unit 131b.
- the data processing unit 137 can be configured with an adaptive filter or AI that offsets both artifacts. Note that a bandpass filter may be provided between both sensors 110 and 120 and the data processing unit 137 to extract frequency components for measuring the respiration rate from the detection data.
- the artifact is a change in CO2 that varies due to factors other than respiration.
- the CO2 concentration variation data on which the measurement data of the respiration rate is based includes artifact A, which is CO2 that varies due to factors other than respiration
- the detection data of the noise detection sensor 120 includes artifact B, which is CO2 that varies due to factors other than respiration.
- This artifact B is data as noise-type body movement.
- the artifacts A and B may be CO2 detected due to the same factor other than respiration, or CO2 detected due to different factors.
- the artifacts A and B depend on the placement locations of the sensors 110 and 120.
- the data processing unit 137 can transmit fluctuation data of the substantial CO2 concentration contained in the subject's breath to the determination unit 131b by removing artifact A, which is a change in CO2 that fluctuates due to factors other than breathing, from the detection data of the CO2 sensor 110 based on the correlation between artifacts A and B contained in the detection data of these sensors 110 and 120.
- the determination unit 131b determines the respiration rate of the subject based on the fluctuation data of the substantial CO2 concentration of the CO2 sensor 110 obtained by canceling the artifacts contained in the detection data of both sensors 110 and 120 in the data processing unit 137. That is, the data processing unit 137 performs data processing to cancel the artifact A contained in the detection data of the CO2 sensor 110, which is the CO2 sensor for measuring respiration rate, by an adaptive filter or AI based on the data of the artifact B contained in the fluctuation data of the CO2 concentration of the external environment in the noise detection sensor 120, and then extracts the fluctuation data of the substantial CO2 concentration used to measure the respiration rate of the subject.
- the determination unit 131b determines the respiration rate of the subject based on the output data processed by the data processing unit 137. Therefore, even if the occurrence of noise-type body movement is detected from fluctuation data of CO2 concentration in the external environment, the subject's respiratory rate can be accurately determined by performing data processing to cancel artifacts contained in the detection data of both sensors 110, 120.
- FIG. 9 is an explanatory diagram showing one aspect of the respiratory rate measuring device 100 according to this embodiment
- FIG. 10, FIG. 11, and FIG. 12 are explanatory diagrams showing other aspects of the respiratory rate measuring device 100 according to this embodiment.
- the respiration rate measuring device 100 uses a low-power, high-sampling-grade equivalent carbon dioxide sensor as the CO2 sensor 110.
- the respiration rate measuring device 100 uses the CO2 sensor 110 as a wearable sensor that can be attached to an appliance located around the oral cavity of the subject P.
- the respiration rate measuring device 100 is attached to the inside of a sanitary mask M1 as a "gear" or "head gear” worn by the subject P, with the sensor body 105 attached via an attachment member 150.
- the sensor body 105 including the CO2 sensor 110 to the inside of the sanitary mask M1
- measurement data of the concentration of CO2 contained in the breath of the subject P measured by the CO2 sensor 110 is transmitted to the microcomputer 130.
- the microcomputer 130 executes a process of determining the respiration rate of the subject P based on the detection data of the CO2 sensor 110 and the detection data of the noise detection sensor 120.
- the respiration rate measuring device 100 can also be used by attaching the sensor body 105 to the inside of a medical oxygen mask M2 as a "bracing" or "head bracing" worn by the subject P in a medical field with an attachment member 150.
- the microcomputer 130 similarly executes a process of determining the respiration rate of the subject P based on the measurement data of the CO2 sensor 110 and the detection data detected by the noise detection sensor 120.
- the mounting member for mounting the sensor body 105 including the CO2 sensor 110 and the noise detection sensor 120 may be a hook 151 that can be engaged with the tube M3a.
- the hook 151 as the mounting member for mounting the sensor body 105 in this way, as shown in Fig. 11B, the sensor body 105 can be mounted to the tube M3a near the nasal cavity of a heated humidifier (example of the product name is "Nasal High Flow") M3 by the hook 151. Therefore, by measuring the CO2 concentration contained in the exhaled air near the nasal cavity of the subject P with the CO2 sensor 110, the microcomputer 130 similarly executes the process of determining the respiration rate of the subject P.
- the respiration rate measuring device 102 can be configured such that the attachment member for attaching the sensor body 105 is a necklace member 152 as an "orthosis" or "body orthosis” that is hung around the neck of the subject P.
- the necklace member 152 may be configured to have a plurality of sensor bodies 105 attached at a predetermined interval.
- the CO 2 sensor 110 of the sensor body 105 can measure the concentration of CO 2 contained in the breath of the subject P during natural breathing, whether the subject P is sleeping as shown in FIG. 12B, standing and facing forward as shown in FIG. 12C, or standing and facing sideways as shown in FIG. 12D. Therefore, in the same manner, the microcomputer 130 can execute the process of determining the respiration rate of the subject P.
- the respiration rate measuring devices 100, 101, and 102 use a small equivalent carbon dioxide type sensor as the CO2 sensor 110 that continuously measures the fluctuations in the concentration of CO2 contained in the breath of the subject P. Therefore, by easily attaching it to various tools and devices that the subject P covers around the oral cavity, it is possible to accurately detect the fluctuations in the concentration of CO2 with low power consumption and high sampling grade.
- FIG. 13 is a block diagram showing the functional configuration of a system according to an embodiment of the present disclosure. Note that FIG. 13 focuses only on the server device 10, data storage unit 20, administrator terminal 30, and respiratory rate measurement device 100 provided in system 1, and describes in detail the functions of each component.
- a server device 10 is connected to a data storage unit 20, an administrator terminal 30, a subject terminal 40, and a respiration rate measuring device 100 via a network 2.
- the server device 10 stores in the data storage unit 20 a database of fluctuation data of the CO2 concentration contained in the exhaled breath received from the respiration rate measuring device 100 worn by the subject P and detection data related to noise-type body movements that are fluctuation factors of the CO2 concentration caused by factors other than the subject's breathing, while allowing an administrator using the administrator terminal 30 to manage the health condition of each subject.
- the server device 10 includes a communication unit 11, an operation unit 12, a display unit 13, a control unit 14, a ROM 15, and a RAM 16.
- the server device 10 configures a "respiratory rate management server" having multiple functional units by the control unit 14 executing a "program,” and performs information processing using the multiple functional units.
- the communication unit 11 has a function as an interface for transmitting and receiving data to and from the outside via the network 2.
- the communication unit 11 is configured to be able to acquire fluctuation data of the CO2 concentration contained in the subject's breath and detection data related to the noise-type body movement of the subject.
- the operation unit 12 has a function of inputting a predetermined command to the control unit 14, which is a data input device such as a keyboard, mouse, or touch panel, to operate the server device 10 as appropriate.
- the display unit 13 has a function of outputting the calculation results by the control unit 14 and information from the data storage unit 20, which is a database, on a screen display, and is composed of, for example, a liquid crystal screen.
- the display unit 13 is also capable of displaying a graph showing the fluctuation of the concentration of CO2 contained in the breath of a subject wearing the respiration rate measuring device 100 and a trend of noise data.
- the control unit 14 has a function of controlling the operation of each component of the server device 10 by one or more processors executing various programs stored in the ROM 15.
- the control unit 14 also has a function of storing the necessary data, etc., in the RAM 16, which temporarily stores the necessary data, etc., as appropriate when executing these various processes. Therefore, the control operations by the control unit 14 can access the ROM 15, RAM 16, and data storage unit 20, display data on the display unit 13, operate the operation unit 12, and send and receive various information via the network 2 using the communication unit 11 as an interface when communicating with the outside world.
- the control unit 14 includes a receiving unit 14a, a determining unit 14b, a transmitting unit 14c, and a generating unit 14d.
- the receiving unit 14a has a function of controlling reception of various data from the data storage unit 20, the administrator terminal 30, and the respiration rate measuring device 100 via the communication unit 11.
- the receiving unit 14a is controlled to receive fluctuation data of the CO2 concentration contained in the detected exhaled breath of the subject P and detection data related to the noise type body movement of the subject, which are transmitted from the respiration rate measuring device 100 to the server device 10 at predetermined time intervals.
- the determination unit 14b has a function of performing a determination operation required when executing various operations of the server device 10. For example, the determination unit 14b determines whether various data is transmitted/received between the administrator terminal 30 and the respiration rate measuring device 100 via the communication unit 11 of the server device 10. In this embodiment, the determination unit 14b has a function of determining the respiration rate of the subject P based on fluctuation data of the CO2 concentration contained in the exhaled breath of the subject P measured by the CO2 sensor 110 of the respiration rate measuring device 100 and detection data related to noise-type body movement detected by the noise detection sensor 120.
- the transmission unit 14c has a function of controlling the transmission of various data to the data storage unit 20, the administrator terminal 30, and the respiratory rate measurement device 100 via the communication unit 11.
- the transmission unit 14c has a function of transmitting the judgment result of the judgment unit 14b to the administrator terminal 30.
- the generating unit 14d has a function of performing arithmetic processing on various data to generate data.
- the generating unit 14d can generate display data.
- Examples of the display data include a trend graph of fluctuation data of the CO2 concentration contained in the breath of the subject detected by the respiration rate measuring device 100 and a trend graph of fluctuation of detection data related to the noise-type body movement of the subject detected by the noise detection sensor 120.
- the display data generated by the generating unit 14d can be transmitted to an external device such as the administrator terminal 30 through the communication unit 11. In the external device, the display data can be displayed on a display unit such as a display screen.
- the data storage unit 20 is an external storage device capable of storing various data.
- the data storage unit 20 functions as a database for storing, for each subject, detection data including fluctuation data of the CO2 concentration contained in the breath of the subject P measured by the CO2 sensor 110 of the respiration rate measuring device 100, and detection data related to noise-type body movement detected by the noise detection sensor 120.
- the data storage unit 20 is updated every time the detection data of the CO2 sensor 110 and the detection data related to noise-type body movement are updated.
- the administrator terminal 30 is a terminal device used by the administrator, and includes a communication unit 31, an operation unit 32, a display unit 33, a control unit 34, and a storage unit 35, as shown in Fig. 13, so as to perform necessary operations such as transmission and reception of various information and calculation processing.
- the administrator terminal 30 is configured to access the server device 10, so as to display on the display unit 33 data for display related to detection data, such as fluctuation data of the CO2 concentration contained in the exhaled breath of the subject P wearing the respiration rate measuring device 100 and a trend graph of the fluctuation data.
- the server device 10 is connected to the data storage unit 20, the administrator terminal 30, and the respiratory rate measuring device 100 via the network 2.
- the server device 10 determines the respiratory rate of each subject based on the detection data received from the subjects and the detection data related to noise-type body movements, and controls the execution of a health management application service that manages the health condition of each subject.
- the server device 10 can comprehensively manage the physical condition of the subject wearing the respiratory rate measuring device 100 who is the subject of health management.
- the server device 10 of the system 1 may be realized by software or by hardware. When realized by software, various functions can be realized by the control unit 14, which serves as a CPU, executing a program that operates the system 1.
- the program of this embodiment may be stored in the ROM 15 built into the server device 10, or may be stored in a non-transitory computer-readable recording medium.
- the server device 10 of the system 1 may also be realized by reading out a program stored in a storage device serving as an external storage device, using so-called cloud computing.
- the CO2 concentration fluctuation data obtained from the CO2 sensor 110 of the respiration rate measuring device 100 and the detection data related to noise-type body movements obtained from the noise detection sensor 120 may be stored in the server device 10 on the cloud, and data analysis may be performed using time series analysis, cluster analysis, artificial intelligence, etc.
- the peak of the CO2 concentration can be detected in the same manner for the fluctuation of the CO2 concentration contained in the breath of the subject detected by the CO2 sensor at rest as shown in Fig. 14A and the fluctuation of the CO2 concentration at the time of body movement as shown in Fig. 14B.
- the peak of the acceleration fluctuation of the subject detected by the acceleration sensor can be detected at rest as shown in Fig. 15A, whereas the peak of the acceleration fluctuation varies during body movement as shown in Fig. 15B. Therefore, during body movement, the fluctuation of the acceleration of the subject detected by the acceleration sensor is significantly different from that at rest, and the peak of the CO2 concentration cannot be detected in the same manner as during rest.
- the inventors conducted extensive research to solve the problem of measuring respiratory rate without being affected by changes in body movement. They focused on the fluctuations in the CO2 concentration in the subject's breath and discovered the possibility of continuously monitoring respiratory status by monitoring changes in CO2 concentration using a small wearable sensor.
- the inventors of the present invention have conducted extensive research to solve the above-mentioned problems, and have found that the respiration rate estimated based on the number of times that the output data obtained by processing the measurement data related to the fluctuation of the CO2 concentration of the equivalent carbon dioxide type CO2 sensor with a bandpass filter exceeds a predetermined threshold has a correlation with the actual respiration rate of the subject. For this reason, in this embodiment, the equivalent carbon dioxide type CO2 sensor 110 is used as a small wearable sensor. Then, by counting the number of times that the output data obtained by processing the measurement data of the equivalent carbon dioxide type CO2 sensor 110 with a bandpass filter exceeds a predetermined threshold, the respiration rate of the subject can be easily estimated with high accuracy.
- the respiration rate measuring device 100 can determine the respiration waveform pattern of the subject by monitoring the fluctuation data of the CO2 concentration contained in the subject's breath. Therefore, not only the respiration rate of the subject but also biological information related to respiration such as respiration depth (amplitude) and respiration interval can be grasped, so that the health condition or disease state of the subject can be grasped from the respiration waveform pattern of the subject.
- bradypnea slow breathing
- this may indicate an association with increased intracranial pressure or bronchial obstruction in the subject.
- the respiration rate measuring device 100 can detect respiration waveform patterns. Therefore, for example, as shown in FIG. 17A, when a Cheyne-Stokes type respiration waveform pattern is detected, in which the depth and rate of breathing gradually increase, then gradually decrease, and finally apnea occurs, this may suggest that the subject is in the final stages of brain disease, uremia, heart disease, poisoning, or various other diseases.
- a Kussmaul-type respiratory waveform pattern is detected, which is a periodic waveform with sustained, extremely loud breathing and high-pitched noise, this may indicate that the subject is in a diabetic or uremic coma.
- Related techniques for monitoring respiratory status include, for example, a method using thoracic impedance in combination with an ECG (Electrocardiogram) and a method for measuring respiratory rate by analyzing pulse waves.
- ECG Electrocardiogram
- the method using thoracic impedance in combination with an ECG and the method using pulse waves are significantly affected by changes in body movement, and the subject needs to be in a resting state to measure the respiratory rate.
- capnometers that measure the CO2 concentration in exhaled air are widely used to monitor respiratory status, but due to their lack of portability, they are difficult to apply to continuous monitoring of elderly people in evacuation shelters, etc.
- the respiration rate measuring device 100 determines the respiration rate from the detection data of the CO2 sensor 110, in order to reduce the influence of CO2 concentration changes caused by factors other than respiration, the detection data of the CO2 sensor 110 is subjected to bandpass filter processing.
- the CO2 concentration changes caused by coughing, yawning, talking, etc. may have frequency components close to respiration.
- the respiration rate measuring device 100 is provided with a noise detection sensor 120 near the CO2 sensor 110 to detect noise-type body movements that are a factor in fluctuations in the CO2 concentration caused by factors other than the subject's breathing.
- the respiration rate measuring device 100 determines the subject's respiration rate after removing the respiration rate accompanied by coughing, yawning, talking, etc. as noise data. This makes it possible to more accurately determine the subject's respiration rate by removing the effects of cardiopulmonary functions other than breathing, such as coughing, yawning, and talking, in addition to changes in the subject's body movements.
- the respiration rate measuring device 100 performs noise removal from the fluctuation data of the CO2 concentration detected by the CO2 sensor 110, and then determines the respiration rate after not counting, as the respiration rate, detection data during a period in which noise-type body movement is detected by the noise detection sensor 120.
- the respiration rate measuring device 100 can reduce erroneous detection of the respiration rate due to the influence of cardiopulmonary actions other than breathing, such as coughing, yawning, and talking.
- the respiration rate measuring device 100 determines the respiration rate after estimation based on the analysis results of the waveform pattern of the measurement data of the CO2 sensor 110 and the waveform pattern of the detection data related to the noise-type body movement detected by the noise detection sensor 120. By operating in this manner, the respiration rate measuring device 100 can similarly reduce erroneous detection of the respiration rate due to the influence of cardiopulmonary movements other than breathing, such as coughing, yawning, and talking.
- the respiration rate measuring device 100 uses a small CO2 sensor of the equivalent carbon dioxide type as a means for detecting fluctuation data of the CO2 concentration contained in the subject's breath. Therefore, the CO2 sensor can be easily attached to a sanitary mask or face shield that covers the subject's mouth area, or various medical devices such as an oxygen mask that are used around the subject's mouth area, making it possible to measure the subject's respiration rate in a wearable and versatile manner.
- the respiration rate measuring device 100 uses a small wearable sensor as the CO2 sensor 110 that detects the variation of the CO2 concentration contained in the breath of the subject. Therefore, for example, in order to respond to a sudden change in the condition of the elderly or the like in an evacuation shelter during a disaster, the sensor body 105 including the CO2 sensor 110 can be attached to the sanitary mask or face shield of the elderly or the like who will be the subject, and the respiration rate of the subject can be easily determined and the health condition of each subject can be managed.
- a wide range of vital information related to breathing such as the subject's respiration rate, respiration rhythm, depth, and respiration pattern, can be remotely monitored by using a wearable sensor that can be easily attached, making it possible to appropriately manage the health condition of subjects such as the elderly.
- the above embodiment is an example of one aspect of the present disclosure.
- the above embodiment can also be implemented as the following exemplary modified examples.
- the respiration rate measuring device 100 is exemplified as including a sensor body 105 and a microcomputer 130.
- a sensor module including a microcomputer can be used as the sensor body 105.
- the microcomputer 130 can be integrated with the sensor body 105. That is, the sensor body 105 can be integrated with the microcomputer 130 that processes the measured data.
- the connection line 140 can be omitted.
- the microcomputer 130 is exemplified as having an operation unit 133 and a display unit 134.
- these are not essential components of the microcomputer 130 and can be omitted.
- the functions corresponding to the operation unit 133 and the display unit 134 may be provided in a computing device such as a smartphone or tablet.
- the microcomputer 130 does not necessarily have to be configured as a single hardware device. Therefore, the microcomputer 130 can be configured as one or more hardware devices.
- respiration rate measuring device is not limited to those described in one embodiment of the present disclosure, and various modifications are possible.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Pulmonology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Provided is a respiration count measurement device (100), comprising: a first sensor device (100) which detects a variation in the concentration of CO2 included in the exhalation of a subject; a second sensor device (120) which detects a noise type body motion of the subject generated in a measurement period of the first sensor device (110); and a determination unit (131b) which determines the respiration count of the subject on the basis of variation data of CO2 concentration detected in the first sensor device (110). In addition, the determination unit (131b) uses, among the variation data, CO2 concentration data generated by the noise type body motion as noise data that is not counted as the respiration count to determine the respiration count.
Description
本開示は、呼吸数測定装置、呼吸数測定方法、プログラム及びシステムに関する。
This disclosure relates to a respiratory rate measurement device, a respiratory rate measurement method, a program, and a system.
生体測定技術の発達により、ウェアラブルデバイスで被検者の生体情報を取得し、モニタリングすることが可能となっている。その生体情報は、例えば、心拍数、体温、SpO2である。しかしながら、健康管理においては、呼吸の状態も重要な指標とされている。特に高齢者においては、肺炎などの呼吸器系の疾患を患っている人が多い。
With the development of biometric technology, it is now possible to obtain and monitor the biological information of subjects using wearable devices. Such biological information includes, for example, heart rate, body temperature, and SpO2 . However, respiratory status is also considered an important indicator in health management. Many elderly people, in particular, suffer from respiratory diseases such as pneumonia.
呼吸状態をモニタリングする手法としては、ECG(Electrocardiogram)と併用した胸郭インピーダンスによる手法や、脈波を解析して呼吸数を計測する手法がある。しかしながら、これらの手法は、寝返りなどの体動の影響を受けやすく、測定にある程度の正確性を求めるには、安静状態を要する。
Methods for monitoring respiratory status include a method that uses thoracic impedance in conjunction with an ECG (Electrocardiogram) and a method that measures respiratory rate by analyzing pulse waves. However, these methods are easily affected by body movements such as turning over in bed, and require the patient to be at rest in order to achieve a certain level of accuracy in the measurements.
また、臨床においては、呼気中のCO2濃度を測定するカプノメータが、呼吸状態の監視に広く用いられている。しかしながら、人工呼吸回路に接続されるようなカプノメータでは、検出データが略矩形波であり、自然呼吸波形が得られないので、被検者の呼吸状態を正確に把握することが難しい。
In addition, in clinical practice, capnometers that measure the CO2 concentration in exhaled air are widely used to monitor the respiratory condition. However, with capnometers connected to artificial ventilation circuits, the detected data is an approximately rectangular wave, and a natural respiration waveform cannot be obtained, making it difficult to accurately grasp the respiratory condition of the subject.
本開示は、呼吸状態を把握するための新たな技術を提供する。
This disclosure provides a new technology for understanding respiratory status.
本開示の一態様は、呼吸数を測定する呼吸数測定装置において、被検者の連続する呼気中のCO2濃度の変動データを取得する第1のセンサデバイスと、前記第1のセンサデバイスの測定期間中に生じた前記被検者のノイズ型体動を検出する第2のセンサデバイスと、前記変動データのうち前記ノイズ型体動の発生時間に対応する前記変動データの部分を除き、前記変動データのピーク数に基づき前記呼吸数の判定を行う判定部と、を備える、呼吸数測定装置である。
One aspect of the present disclosure is a respiration rate measuring device that measures respiration rate, comprising: a first sensor device that acquires fluctuation data of CO2 concentration in the subject's continuous exhaled breath; a second sensor device that detects noise-type body movement of the subject that occurs during a measurement period of the first sensor device; and a determination unit that determines the respiration rate based on the number of peaks in the fluctuation data, excluding a portion of the fluctuation data that corresponds to a time when the noise-type body movement occurs.
CO2濃度の変動データを取得する第1のセンサデバイスによれば、自然呼吸での呼吸数を測定するための変動データを取得できる。前記第1のセンサデバイスの測定期間中に生じた前記被検者のノイズ型体動を検出する第2のセンサデバイスによれば、呼吸数の測定に影響を与え得る被検者のノイズ型体動を検出できる。前記変動データのうち前記ノイズ型体動の発生時間に対応する前記変動データの部分を除き、前記変動データのピーク数に基づき前記呼吸数の判定を行う判定部によれば、CO2濃度の変動データを利用する呼吸数の測定をより正確に行うことができる。
A first sensor device that acquires fluctuation data of CO2 concentration can acquire fluctuation data for measuring the respiration rate during natural breathing. A second sensor device that detects noise-type body movements of the subject that occur during the measurement period of the first sensor device can detect noise-type body movements of the subject that may affect the measurement of the respiration rate. A determination unit that excludes a portion of the fluctuation data that corresponds to the occurrence time of the noise-type body movements and determines the respiration rate based on the number of peaks of the fluctuation data can more accurately measure the respiration rate using the fluctuation data of CO2 concentration.
本開示の一態様は、CO2センサを備える呼吸数測定装置において、前記CO2センサにより被検者の連続する呼気中のCO2濃度の変動データを取得することと、前記変動データを周波数変換した周波数データを生成することと、前記周波数データのうち、前記被検者の自然呼吸を含む所定の周波数帯域に対応する前記CO2濃度の前記変動データについて、所定の閾値を超える前記CO2濃度のピーク数を呼吸数とすることと、を含む、呼吸数測定方法である。これによれば、チップモジュールとして利用されているCO2センサを利用して呼吸数の測定をより正確に行うことができる。
One aspect of the present disclosure is a respiration rate measurement method including: acquiring fluctuation data of CO2 concentration in a subject's continuous exhalation by the CO2 sensor in a respiration rate measurement device, generating frequency data by frequency-converting the fluctuation data, and regarding the fluctuation data of the CO2 concentration corresponding to a predetermined frequency band including the subject's natural breathing among the frequency data, determining the number of peaks of the CO2 concentration exceeding a predetermined threshold as the respiration rate. This allows the respiration rate to be measured more accurately by using the CO2 sensor used as a chip module.
本開示の一態様は、少なくとも1つのプロセッサにより実行されるように構成されたプログラムであって、前記呼吸数測定方法を実行する命令を含む、プログラムである。これによれば、CO2濃度の変動データを利用する呼吸数の測定をより正確に行うことができる。
One aspect of the present disclosure is a program configured to be executed by at least one processor and including instructions for performing the method for measuring respiration rate, which allows for more accurate measurement of respiration rate using fluctuation data of CO2 concentration.
本開示の一態様は、少なくとも1つのプロセッサを、少なくとも通信部、判定部として機能させるプログラムであって、前記通信部は、被検者の呼気中のCO2濃度の変動データと前記被検者のノイズ型体動に関する検出データとを取得可能に構成され、前記判定部は、前記変動データと前記検出データに基づいて前記被検者の呼吸数を判定可能に構成される、プログラムである。これによれば、CO2濃度の変動データを利用する呼吸数の測定をより正確に行うことができる。
One aspect of the present disclosure is a program that causes at least one processor to function as at least a communication unit and a determination unit, the communication unit being configured to be able to acquire fluctuation data of CO2 concentration in the exhaled breath of a subject and detection data related to noise-type body movements of the subject, and the determination unit being configured to be able to determine the respiratory rate of the subject based on the fluctuation data and the detection data. This allows for more accurate measurement of the respiratory rate using the fluctuation data of the CO2 concentration.
本開示の一態様は、少なくとも1つのプロセッサと、前記プロセッサを少なくとも通信部、判定部として機能させるプログラムと、を備えるシステムであって、前記通信部は、被検者の呼気に含まれるCO2濃度の変動データと前記被検者のノイズ型体動に関する検出データとを取得可能に構成され、前記判定部は、前記変動データと前記検出データに基づいて前記被検者の呼吸数を判定可能に構成される、システムである。これによれば、CO2濃度の変動データを利用する呼吸数の測定をより正確に行うことができる。
One aspect of the present disclosure is a system including at least one processor and a program that causes the processor to function as at least a communication unit and a determination unit, the communication unit being configured to be able to acquire fluctuation data of CO2 concentration contained in the breath of a subject and detection data related to noise-type body movements of the subject, and the determination unit being configured to be able to determine the respiratory rate of the subject based on the fluctuation data and the detection data. This allows for more accurate measurement of the respiratory rate using the fluctuation data of the CO2 concentration.
本開示によれば、CO2濃度の変動データを利用する呼吸数の測定を行うことができる。
According to the present disclosure, respiration rate can be measured using fluctuation data of CO2 concentration.
以下、本開示の好適な実施の形態について詳細に説明する。以下に説明する本実施形態は、特許請求の範囲に記載された本開示の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本開示の解決手段として必須であるとは限らない。
Below, a preferred embodiment of the present disclosure is described in detail. The embodiment described below does not unduly limit the content of the present disclosure described in the claims, and not all of the configurations described in the embodiment are necessarily essential as a solution for the present disclosure.
以下の説明で「上」、「下」、「左」、「右」の方向を示す用語は、説明の便宜のために使用するものであり、使用方法、使用態様を限定するものではない。本明細書及び特許請求の範囲に記載する「第1」と「第1」に続く「第n」(nは整数)などの用語は、異なる要素を区別するための識別用語として使用するものであり、特定の順序や優劣などを示すものではない。
In the following explanation, terms indicating directions such as "up," "down," "left," and "right" are used for convenience of explanation and do not limit the method or manner of use. Terms such as "first" and "nth" (n is an integer) following "first" in this specification and claims are used as identification terms to distinguish between different elements and do not indicate a particular order or superiority/inferiority.
以下の説明で使用される用語は、特定の実施形態を説明することのみを目的とし、本開示の範囲を限定することを意図するものではない。本明細書及び特許請求の範囲に記載する一態様による構成要素は、単数形又は複数形であることを文脈上明確に記載しない限り、複数形も含むことが意図される。
The terminology used in the following description is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present disclosure. Elements according to one aspect described in the present specification and claims are intended to include the plural, unless the context clearly dictates otherwise: singular or plural.
用語「及び/又は」は、関連する列挙された要素のうちの1つ以上のいずれか及び全ての考えられる組み合わせを指し、かつこれを含むことが意図される。例えば、「A又はB」は「A、B、又はAとBの両方」を意味する。「A」、「B」、「AとBの両方」は、いずれもそれぞれが「A又はB」を満たす。
The term "and/or" is intended to refer to and include any and all possible combinations of one or more of the associated listed elements. For example, "A or B" means "A, B, or both A and B." "A," "B," and "both A and B" all each satisfy "A or B."
本明細書及び特許請求の範囲に記載する用語「含む(includes)」、「含む(including)」、「含む、備える(comprises)」、及び/又は「含む、備える(comprising)」は、特徴、動作、要素、ステップの存在を特定するものである。しかしながら、1つ以上の他の特徴、動作、要素、ステップ及び/又はそれらのグループの存在又は追加を除外するものではない用語として用いられている。
The terms "includes," "including," "comprises," and/or "comprising" used in this specification and in the claims are intended to specify the presence of certain features, operations, elements, or steps, but are not intended to exclude the presence or addition of one or more other features, operations, elements, steps, and/or groups thereof.
本開示に含む全ての実施形態及び選択可能な実施形態は、互いに組み合わせて新たな実施形態を形成してもよい。また、本開示に含む全ての技術的特徴及び選択可能な技術的特徴は、互いに組み合わせることにより新たな技術的特徴を形成できる。
All embodiments and optional embodiments included in this disclosure may be combined with each other to form new embodiments. In addition, all technical features and optional technical features included in this disclosure may be combined with each other to form new technical features.
呼吸数測定装置100の概略構成Schematic configuration of respiration rate measuring device 100
本開示の一実施形態に係る呼吸数測定装置の概略構成について、図面を使用しながら説明する。図1は、本開示の一実施形態に係る呼吸数測定装置の概略構成の一例を示す正面図である。
The schematic configuration of a respiration rate measuring device according to one embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a front view showing an example of the schematic configuration of a respiration rate measuring device according to one embodiment of the present disclosure.
呼吸数測定装置100は、誰もが「被検者」としてそれを使用し得る。それは、継続的な健康管理を要する人にとって特に有用である。呼吸数測定装置100は、被検者の健康管理において、呼吸状態の指標となる呼吸数を測定できる。その被検者となり得る人は、例えば、医療機関に入院している患者、老人ホームや介護施設に入居している高齢者、災害時の避難所における高齢者、救急現場や災害現場での傷病者、在宅介護を受けている高齢者、呼吸器系の疾病患者などが挙げられるが、被検者の対象はそれらの人々に限定されない。
Anyone can use the respiratory rate measuring device 100 as a "subject." It is particularly useful for people who require continuous health management. The respiratory rate measuring device 100 can measure the respiratory rate, which is an indicator of the respiratory condition in the health management of the subject. Potential subjects include, for example, patients hospitalized at medical institutions, elderly people living in nursing homes or care facilities, elderly people in evacuation centers during disasters, injured people at emergency or disaster sites, elderly people receiving home care, and people with respiratory diseases, but subjects are not limited to these people.
呼吸数測定装置100は、図1に示すように、センサ本体105と、マイクロコンピュータ130とを備える。センサ本体105は、第1のセンサデバイスとしてのCO2センサ110と、第2のセンサデバイスとしてのノイズ検出センサ120とを備える。CO2センサ110とノイズ検出センサ120は、センサ本体105に対して同じ側の面、又は互いに反対側の面等の異なる位置に設けられる。CO2センサ110とノイズ検出センサ120は、それぞれ接続線140(140a、140b)を介して、マイクロコンピュータ130に接続されている。
As shown in Fig. 1, the respiration rate measuring device 100 includes a sensor body 105 and a microcomputer 130. The sensor body 105 includes a CO2 sensor 110 as a first sensor device and a noise detection sensor 120 as a second sensor device. The CO2 sensor 110 and the noise detection sensor 120 are provided at different positions, such as on the same side of the sensor body 105 or on opposite sides of the sensor body 105. The CO2 sensor 110 and the noise detection sensor 120 are connected to the microcomputer 130 via connection lines 140 (140a, 140b).
CO2センサ110とノイズ検出センサ120は、図1に示すように、センサ本体105内に設けられているが、これらのセンサの配置は、これに限定されない。ノイズ検出センサ120は、その種類に応じた測定対象の物理量を測定できればよい。従って、その配置は、センサ本体105内での位置に限定されず、センサ本体105から離れた位置に配置するものでもよい。
The CO2 sensor 110 and the noise detection sensor 120 are provided in the sensor body 105 as shown in Fig. 1, but the arrangement of these sensors is not limited to this. The noise detection sensor 120 only needs to be able to measure the physical quantity of the measurement target according to its type. Therefore, the arrangement is not limited to a position within the sensor body 105, and it may be arranged at a position away from the sensor body 105.
センサ本体105には、被検者がそれを装着するために用いる取付部材150が設けられている。被検者は、装具を使用する。装具は、例えば、頭部用装具、身体用装具を例示できる。頭部用装具は、例えば、口腔周辺を覆うフェイスシールドや衛生用マスク等を例示できる。身体用装具は、被服、ネックレス部材のような首掛け部材等を例示できる。取付部材150は、センサ本体105の左右の側面から伸長するベルト状に形成されている。このベルト状の取付部材150は、前述の各種の装具を保持することができる。取付部材150は、例えば、その全部又は一部を樹脂成形体、布地、伸縮性布地、ゴム状弾性体又はそれらの組み合わせなどにより形成できる。
The sensor body 105 is provided with an attachment member 150 that is used by the subject to wear it. The subject uses an attachment. Examples of the attachment include head attachment and body attachment. Examples of the head attachment include a face shield that covers the area around the mouth and a sanitary mask. Examples of the body attachment include clothing and a neck-hanging member such as a necklace. The attachment member 150 is formed in a belt shape that extends from the left and right sides of the sensor body 105. This belt-shaped attachment member 150 can hold the various attachments mentioned above. For example, the attachment member 150 can be formed in whole or in part from a resin molded body, fabric, stretchable fabric, rubber-like elastic body, or a combination thereof.
センサ本体105を被検者に装着する取付態様は、上述したものに限定されない。例えば、眼鏡のフレームのように耳に取付部材を係止して、口元にセンサ本体105が配置されるように構成されたものとしてもよい。また、呼吸数測定装置100は、インタビューマイクのような手持ち可能な棒形状としてもよい。この場合、看護師がセンサ本体105を患者の口腔周辺に近づけて使用する。このように、センサ本体105 は、取付部材を介して被検者に装着する態様でなくてもよい。
The manner in which the sensor body 105 is attached to the subject is not limited to the above. For example, the sensor body 105 may be configured so that an attachment member is attached to the ear like a eyeglass frame, and the sensor body 105 is positioned near the mouth. The respiration rate measuring device 100 may also be in the shape of a handheld rod like an interview microphone. In this case, a nurse uses the sensor body 105 by bringing it close to the area around the patient's mouth. In this way, the sensor body 105 does not have to be attached to the subject via an attachment member.
CO2センサ110は、被検者の呼気に含まれるCO2濃度の変動を検出する第1のセンサデバイスとしての機能を有する。CO2センサ110は、被検者の呼気に含まれるCO2濃度の変動を検出するために、被検者が装着時にセンサ本体105の被検者の口腔周辺と対向する配置となる部位に設けられる。CO2センサ110としては、ガスセンサを使用できる。具体的には、例えば、呼気に含まれる揮発性有機化合物(Volatile Organic Compounds:VOC)を検出する金属酸化物(MOX)ガスセンサを使用し得る。ここで例示するCO2センサ110は、等価二酸化炭素方式のものを使用し得る。等価二酸化炭素方式は、測定した揮発性有機化合物(VOC)の濃度の値から等価のCO2濃度(eCO2濃度)を算出するものである。その算出処理は、CO2センサ110に接続されたマイクロコンピュータ130が行う。CO2センサ110の測定データは、接続線140aを介してマイクロコンピュータ130に送信される。なお、図1では、1本の接続線140aが記載されているが、複数本の接続線を含む構成としてもよい。
The CO2 sensor 110 has a function as a first sensor device that detects fluctuations in the CO2 concentration contained in the breath of the subject. The CO2 sensor 110 is provided at a position of the sensor body 105 that faces the mouth periphery of the subject when the subject wears it in order to detect fluctuations in the CO2 concentration contained in the breath of the subject. A gas sensor can be used as the CO2 sensor 110. Specifically, for example, a metal oxide (MOX) gas sensor that detects volatile organic compounds (VOCs) contained in the breath can be used. The CO2 sensor 110 exemplified here can be one that uses an equivalent carbon dioxide method. The equivalent carbon dioxide method calculates an equivalent CO2 concentration ( eCO2 concentration) from the concentration value of the measured volatile organic compounds (VOCs). The calculation process is performed by a microcomputer 130 connected to the CO2 sensor 110. The measurement data of the CO2 sensor 110 is transmitted to the microcomputer 130 via a connection line 140a. Although FIG. 1 illustrates one connection line 140a, a configuration including a plurality of connection lines may be used.
ノイズ検出センサ120は、被検者の呼吸数を測定するためのCO2センサ110の測定期間中に生じた被検者のノイズ型体動を検出する第2のセンサデバイスとしての機能を有している。ノイズ検出センサ120は、センサ本体105において、CO2センサ110の近傍に配置されている。ノイズ検出センサ120は、ノイズ型体動を検出する。
The noise detection sensor 120 functions as a second sensor device that detects noise-type body movements of the subject occurring during a measurement period of the CO2 sensor 110 for measuring the subject's respiratory rate. The noise detection sensor 120 is disposed in the sensor body 105 near the CO2 sensor 110. The noise detection sensor 120 detects noise-type body movements.
本明細書及び特許請求の範囲に記載するノイズ型体動は、被検者の自然呼吸によるCO2濃度の変動に影響を与えて、被検者の呼吸数の測定の精度を低下させる要因となる被検者の動作を意味する。その動作は、意識下の動作と無意識下の動作とを含み得る。より具体的には、被検者の寝返り等の体動変化、咳、くしゃみ、欠伸、しゃっくり、会話等の被検者の呼吸以外の心肺機能の動作などをノイズ型体動として例示できるが、それらに限定されない。
The noise type body movement described in this specification and claims refers to the movement of the subject that affects the fluctuation of the CO2 concentration due to the natural breathing of the subject and causes the accuracy of the measurement of the respiratory rate of the subject to be reduced. The movement may include conscious and unconscious movements. More specifically, examples of noise type body movements include body movement changes such as the subject turning over in bed, coughing, sneezing, yawning, hiccups, talking, and other cardiopulmonary movements other than breathing of the subject, but are not limited to these.
ノイズ検出センサ120は、そのような呼吸以外に起因するCO2濃度の変動に影響を与えて、被検者の呼吸数の測定の精度を低下させる要因となるノイズ型体動の有無を特定するための物理量に関するデータを取得する。ノイズ検出センサ120のノイズ型体動に関する検出データは、接続線140bを介してマイクロコンピュータ130に送信される。なお、図1では、1本の接続線140bが記載されているが、複数本の接続線を含む構成としてもよい。
The noise detection sensor 120 obtains data on physical quantities for identifying the presence or absence of noise-type body movements that affect the fluctuation of the CO2 concentration due to factors other than breathing and reduce the accuracy of the measurement of the subject's breathing rate. The detection data on the noise-type body movements of the noise detection sensor 120 is transmitted to the microcomputer 130 via a connection line 140b. Although one connection line 140b is shown in FIG. 1, a configuration including multiple connection lines may be used.
ノイズ検出センサ120は、具体的には、マイク素子、加速度センサ、湿度センサ、圧力センサ又はCO2センサの少なくとも何れかとし得るが、それらに限定されず、その他のセンサでもよい。ノイズ検出センサ120としてのマイク素子は、体動変化や咳、くしゃみ、欠伸、しゃっくり、会話等の被検者の呼吸以外の心肺機能の動作を含むノイズ型体動により発生する音の変動を検出する。ノイズ検出センサ120としての加速度センサは、ノイズ型体動により発生する振動の変動を検出する。ノイズ検出センサ120としての湿度センサは、ノイズ型体動として、特に、咳、くしゃみ、欠伸、しゃっくり、会話等の被検者の呼吸以外の心肺機能の動作により発生する呼気に含まれる湿気による湿度の変動を検出する。ノイズ検出センサ120としての圧力センサは、ノイズ型体動として、特に、前述した被検者の呼吸以外の心肺機能の動作により発生する呼気の圧力の変動を検出する。
Specifically, the noise detection sensor 120 may be at least one of a microphone element, an acceleration sensor, a humidity sensor, a pressure sensor, or a CO2 sensor, but is not limited thereto and may be other sensors. The microphone element as the noise detection sensor 120 detects the fluctuation of sound generated by noise-type body movements including body movement changes and the operation of the subject's cardiopulmonary function other than breathing, such as coughing, sneezing, yawning, hiccups, and talking. The acceleration sensor as the noise detection sensor 120 detects the fluctuation of vibration generated by noise-type body movements. The humidity sensor as the noise detection sensor 120 detects the fluctuation of humidity due to moisture contained in the exhaled air generated by the operation of the cardiopulmonary function other than breathing, such as coughing, sneezing, yawning, hiccups, and talking, as the noise-type body movements. The pressure sensor as the noise detection sensor 120 detects the fluctuation of the pressure of the exhaled air generated by the operation of the cardiopulmonary function other than breathing, such as the noise-type body movements.
ノイズ検出センサ120としてのCO2センサ(本開示にて「第2のCO2センサ」とも言う。)は、被検者の外部環境のCO2濃度の変動を検出するために、センサ本体105において、第1のセンサデバイスとしてのCO2センサ110(本開示にて「第1のCO2センサ」とも言う。)が設置される面と反対側の面に設けることができるが、これに限定されず、被検者の呼吸の影響を受けない被検者の首回りやその他の位置に設けることができる。そして、ノイズ検出センサ120としてのCO2センサは、例えば、等価二酸化炭素方式のCO2センサが用いられ、ノイズ型体動として、被検者の呼吸以外の心肺機能の動作時(体動変化、咳、くしゃみ、欠伸、しゃっくり、会話等)において、被検者の呼吸によるCO2濃度の変動の影響を受けない外部環境のCO2濃度の変動を検出する。
The CO2 sensor as the noise detection sensor 120 (also referred to as the "second CO2 sensor" in this disclosure) can be provided on the opposite side of the sensor body 105 to the side on which the CO2 sensor 110 as the first sensor device (also referred to as the "first CO2 sensor" in this disclosure) is provided in order to detect the fluctuation of the CO2 concentration in the external environment of the subject, but is not limited thereto, and can be provided around the subject's neck or other positions that are not affected by the subject's breathing. The CO2 sensor as the noise detection sensor 120 is, for example, an equivalent carbon dioxide type CO2 sensor, and detects the fluctuation of the CO2 concentration in the external environment that is not affected by the fluctuation of the CO2 concentration due to the subject's breathing during the operation of the cardiopulmonary function other than the breathing of the subject (changes in body movement, coughing, sneezing, yawning, hiccups, conversation, etc.) as the noise type body movement.
このようにマイク素子、加速度センサ、湿度センサ、圧力センサ又はCO2センサは、それぞれが検出可能な物理量を測定し、被検者に生じ得る様々なノイズ型体動の発生は、その測定データを利用することにより検出し得る。ノイズ検出センサ120は、それらの同一種類又は異種類の1又は複数のセンサの組み合わせにより構成することができる。
In this way, the microphone element, acceleration sensor, humidity sensor, pressure sensor, or CO2 sensor measures a physical quantity that can be detected, and the occurrence of various noise-type body movements that may occur in the subject can be detected by using the measurement data. The noise detection sensor 120 can be configured by a combination of one or more sensors of the same or different types.
マイクロコンピュータ130は、呼吸数測定装置100に備わる各構成要素の動作を制御する機能を有する。マイクロコンピュータ130は、CO2センサ110とノイズ検出センサ120の検出データに基づいて、被検者の呼吸数を判定する機能を有する。マイクロコンピュータ130の機能に関する詳細については、後述する。
The microcomputer 130 has a function of controlling the operation of each component of the respiration rate measuring device 100. The microcomputer 130 has a function of determining the respiration rate of the subject based on the detection data of the CO2 sensor 110 and the noise detection sensor 120. Details regarding the functions of the microcomputer 130 will be described later.
呼吸数測定装置100の機能構成Functional configuration of the respiration rate measuring device 100
次に、本開示の一実施形態に係る呼吸数測定装置の機能構成について、図面を使用しながら説明する。図2は、本開示の一実施形態に係る呼吸数測定装置の機能の概略構成を示すブロック図である。
Next, the functional configuration of a respiration rate measuring device according to an embodiment of the present disclosure will be described with reference to the drawings. FIG. 2 is a block diagram showing a schematic functional configuration of a respiration rate measuring device according to an embodiment of the present disclosure.
呼吸数測定装置100は、前述したように、センサ本体105が複数のセンサを備える。複数のセンサは、CO2センサ110とノイズ検出センサ120である。センサ本体105には、CO2センサ110とノイズ検出センサ120がそれぞれ1つずつ設けられているが、2つ以上を設けるようにしてもよい。例えば、ノイズ検出センサ120として、一例として、マイク素子と加速度センサとの組み合わせ、マイク素子と第2のCO2センサとの組み合わせのように、異なるノイズ型体動を検出可能とするために、2つ以上のノイズ検出センサ120を設けて、より多様なノイズ型体動に基づくノイズデータを除去して、呼吸数の測定精度を向上させるようにしてもよい。
As described above, the respiration rate measuring device 100 has a sensor body 105 equipped with a plurality of sensors. The plurality of sensors are a CO2 sensor 110 and a noise detection sensor 120. The sensor body 105 is provided with one CO2 sensor 110 and one noise detection sensor 120, but two or more may be provided. For example, as the noise detection sensor 120, two or more noise detection sensors 120 may be provided to detect different noise-type body movements, such as a combination of a microphone element and an acceleration sensor, or a combination of a microphone element and a second CO2 sensor, to remove noise data based on a wider variety of noise-type body movements and improve the measurement accuracy of the respiration rate.
呼吸数測定装置100は、図2に示すように、マイクロコンピュータ130が制御部131と、通信部132と、操作部133と、表示部134と、ROM135と、RAM136とを備えるように構成し得る。通信部132は、ネットワーク2(図13参照)を介して、外部とのデータの送受信をする際のインターフェースとしての機能を有する。通信部132の通信方式は、例えば、LTE(long term evolution)、Wi-Fi(登録商標)、Bluetooth(登録商標)等の無線通信を用いることができる。操作部133は、入力ボタンやタッチパネル等で構成され、制御部131に所定の命令やデータの入力を行う機能を有する。表示部134は、制御部131による演算結果や操作部133の入力結果等を画面表示で出力する機能を有し、例えば、液晶画面等から構成される。
As shown in FIG. 2, the respiration rate measuring device 100 may be configured such that the microcomputer 130 includes a control unit 131, a communication unit 132, an operation unit 133, a display unit 134, a ROM 135, and a RAM 136. The communication unit 132 functions as an interface when transmitting and receiving data to and from the outside via a network 2 (see FIG. 13). The communication method of the communication unit 132 may be wireless communication such as LTE (long term evolution), Wi-Fi (registered trademark), or Bluetooth (registered trademark). The operation unit 133 is composed of input buttons, a touch panel, etc., and has a function of inputting predetermined commands and data to the control unit 131. The display unit 134 has a function of outputting the results of calculations by the control unit 131 and the results of input by the operation unit 133 on a screen display, and is composed of, for example, an LCD screen, etc.
制御部131は、ROM135に記憶されている各種プログラムを実行することによって、呼吸数測定装置100に備わる各構成要素の動作を制御する機能を有する。また、制御部131は、これら各種処理を実行する際に、必要なデータ等を一時的に記憶するRAM136に適宜記憶させる機能を有する。このため、制御部131による制御動作によって、ROM135、RAM136へのアクセス、表示部134に対するデータの画面表示動作、操作部133に対する操作動作、外部と通信する際に通信部132をインターフェースとしてネットワーク2を介した各種情報の送受信動作等を行えるようになる。
The control unit 131 has a function of controlling the operation of each component of the respiratory rate measuring device 100 by executing various programs stored in the ROM 135. The control unit 131 also has a function of storing the necessary data, etc., in the RAM 136, which temporarily stores the necessary data, etc., as appropriate when executing these various processes. Therefore, the control operations by the control unit 131 can access the ROM 135 and RAM 136, display data on the display unit 134, operate the operation unit 133, and send and receive various information via the network 2 using the communication unit 132 as an interface when communicating with the outside.
さらに、制御部131は、CO2センサ110とノイズ検出センサ120の各センサからの検出データ(本明細書及び特許請求の範囲において「測定データ」、「変動データ」とも言う。)を受信して、その検出データに基づいて、測定対象となる被検者の呼吸数を判定して、その判定結果を外部に送信する機能を有するようにしてもよい。制御部131は、図2に示すように、受信部131aと、判定部131bと、送信部131cとを備える。
Furthermore, the control unit 131 may have a function of receiving detection data (also referred to as "measurement data" or "variation data" in this specification and claims) from each of the CO2 sensor 110 and the noise detection sensor 120, judging the respiratory rate of the subject to be measured based on the detection data, and transmitting the judgment result to the outside. As shown in Figure 2, the control unit 131 includes a receiving unit 131a, a judging unit 131b, and a transmitting unit 131c.
受信部131aは、CO2センサ110とノイズ検出センサ120からの検出データの受信を制御する機能を有する。また、受信部131aは、外部機器からの各種データの受信を制御する機能を有する。
The receiving unit 131a has a function of controlling reception of detection data from the CO2 sensor 110 and the noise detection sensor 120. The receiving unit 131a also has a function of controlling reception of various data from external devices.
判定部131bは、呼吸数測定装置100の各種動作を実行する際に必要となる判定動作を行う機能を有する。具体的には、判定部131bは、呼吸数測定装置100の通信部132を介して外部機器との各種データの送受信の有無を判定する機能を有する。また、判定部131bは、CO2センサ110とノイズ検出センサ120とから得られた検出データを利用して演算処理を行い、被検者の呼吸数を判定する機能を有する。
The determination unit 131b has a function of performing a determination operation required when performing various operations of the respiration rate measuring device 100. Specifically, the determination unit 131b has a function of determining whether various data is transmitted to and received from an external device via the communication unit 132 of the respiration rate measuring device 100. The determination unit 131b also has a function of performing arithmetic processing using detection data obtained from the CO2 sensor 110 and the noise detection sensor 120 to determine the respiration rate of the subject.
具体的には、判定部131bは、CO2センサ110の検出データに基づいて、FFT解析やウェーブレット解析、AI等を用いて、被検者の呼吸数や呼吸パターンを演算処理して、呼吸数を判定する。また、判定部131bは、CO2センサ110の検出した変動データのうち、ノイズ型体動により発生したCO2濃度データを被検者の呼吸数としてカウントしないノイズデータとして用いて、被検者の呼吸数を判定する機能を有する。なお、判定部131bによる被検者の呼吸数の判定の動作の詳細については、後述する。
Specifically, the determination unit 131b uses FFT analysis, wavelet analysis, AI, etc. to calculate the subject's respiratory rate and respiratory pattern based on the detection data of the CO2 sensor 110 to determine the respiratory rate. The determination unit 131b also has a function of determining the subject's respiratory rate by using CO2 concentration data generated by noise-type body movement among the fluctuation data detected by the CO2 sensor 110 as noise data that is not counted as the subject's respiratory rate. Details of the operation of the determination unit 131b to determine the subject's respiratory rate will be described later.
送信部131cは、外部機器への各種データの送信を制御する機能を有する。本実施形態では、送信部131cは、CO2センサ110の検出データとノイズ検出センサ120で検出されたノイズ型体動に関する検出データを、例えば、管理者端末30(図13参照)やサーバ装置10(図13参照)に送信するように制御している。また、送信部131cは、判定部131bの判定結果を、例えば、管理者端末30やサーバ装置10(図13参照)に送信するように制御している。
The transmission unit 131c has a function of controlling the transmission of various data to external devices. In this embodiment, the transmission unit 131c controls the transmission of the detection data of the CO2 sensor 110 and the detection data related to the noise type body movement detected by the noise detection sensor 120 to, for example, the administrator terminal 30 (see FIG. 13) or the server device 10 (see FIG. 13). In addition, the transmission unit 131c controls the transmission of the judgment result of the judgment unit 131b to, for example, the administrator terminal 30 or the server device 10 (see FIG. 13).
送信部131cは、CO2センサ110の測定データとノイズ検出センサ120で検出されたノイズ型体動に関する検出データを、所定時間毎に外部機器に送信する機能を有する。その所定時間は、例えば一定の時間間隔毎(例えば1分毎)、任意長の時間間隔毎に設定することができる。また、送信部131cは、バッテリ残量に応じて、その所定時間を可変としてもよい。例えばバッテリ残量が50%を超える場合は1分毎に送信し、50%以下の場合は10分毎に送信してもよい。そのバッテリ残量の数値と送信時間は任意に設定できる。
The transmitting unit 131c has a function of transmitting the measurement data of the CO2 sensor 110 and the detection data related to the noise-type body movement detected by the noise detection sensor 120 to an external device at a predetermined time interval. The predetermined time can be set, for example, at a fixed time interval (for example, every minute) or at an arbitrary time interval. The transmitting unit 131c may also vary the predetermined time depending on the remaining battery level. For example, if the remaining battery level exceeds 50%, the data may be transmitted every minute, and if the remaining battery level is 50% or less, the data may be transmitted every 10 minutes. The remaining battery level value and the transmission time can be set arbitrarily.
さらに、送信部131cは、データを送信するまでの間に検知した複数の検知データを蓄積しておき、蓄積した複数の検知データを所定時間毎に一括して送信してもよい。これによればバッテリ消費を低減できる。送信部131cが送信する検知データは、(1)各検知用のセンサが測定した実測データ、(2)実測データを演算処理した処理済みデータ、(3)実測データと処理済みデータの双方、の何れとしてもよい。どの形態でセンサの検知データを送信するかは、判定部131bの機能やバッテリ残量等に応じて変えてもよい。
Furthermore, the transmitting unit 131c may accumulate multiple pieces of detection data detected before transmitting data, and transmit the accumulated multiple pieces of detection data collectively at predetermined time intervals. This can reduce battery consumption. The detection data transmitted by the transmitting unit 131c may be any of (1) actual measurement data measured by each detection sensor, (2) processed data obtained by arithmetic processing of the actual measurement data, or (3) both the actual measurement data and the processed data. The form in which the sensor detection data is transmitted may be changed depending on the function of the determining unit 131b, the remaining battery power, etc.
このように呼吸数測定装置100は、CO2センサ110の検出したCO2濃度の変動データとノイズ検出センサ120で検出されたノイズ型体動に関する検出データに基づいて、呼吸数測定装置100を装着した被検者の呼吸数を判定できるようになっている。また、呼吸数測定装置100は、管理者端末30(図13参照)やサーバ装置10との間で、被検者の呼吸数のデータを送受信できるようになっている。なお、本実施形態の呼吸数測定装置100を用いた被検者の呼吸数の判定や健康状態を管理する詳細は、後述する。
In this way, the respiration rate measuring device 100 is capable of determining the respiration rate of the subject wearing the respiration rate measuring device 100 based on the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 and the detection data related to the noise type body movement detected by the noise detection sensor 120. The respiration rate measuring device 100 is also capable of transmitting and receiving data of the respiration rate of the subject between the administrator terminal 30 (see FIG. 13) and the server device 10. Details of determining the respiration rate of the subject and managing the health condition using the respiration rate measuring device 100 of this embodiment will be described later.
呼吸数測定装置100による呼吸数の測定フローFlow of measuring respiration rate by the respiration rate measuring device 100
第1のフロー(図3)First flow (Figure 3)
次に、本開示の一実施形態に係る呼吸数測定装置による呼吸数の測定方法について、図面を使用しながら説明する。図3は、本開示の一実施形態に係る呼吸数測定装置による呼吸数の測定動作を示すフローチャートである。
Next, a method for measuring a respiratory rate using a respiratory rate measurement device according to an embodiment of the present disclosure will be described with reference to the drawings. FIG. 3 is a flowchart showing the operation of measuring a respiratory rate using a respiratory rate measurement device according to an embodiment of the present disclosure.
呼吸数測定装置100による呼吸数の測定方法は、呼吸数測定装置100を使用したシステム1(図13参照)に含まれるコンピュータを動作させるプログラムにより実行される。呼吸数測定装置100による呼吸数の測定方法を実行するプログラムは、ネットワークに接続された1又は複数のプロセッサ(コンピュータ装置)に対して、被検者の呼吸数の測定を実行させるためのプログラムである。本実施形態の呼吸数測定方法を行うプログラムは、図3に示す動作フローをネットワークに接続された1又は複数のプロセッサ(コンピュータ装置)に実行させる。
The method of measuring respiratory rate using the respiratory rate measuring device 100 is executed by a program that operates a computer included in a system 1 (see FIG. 13) that uses the respiratory rate measuring device 100. The program that executes the method of measuring respiratory rate using the respiratory rate measuring device 100 is a program that causes one or more processors (computer devices) connected to a network to measure the respiratory rate of the subject. The program that performs the method of measuring respiratory rate of this embodiment causes one or more processors (computer devices) connected to a network to execute the operation flow shown in FIG. 3.
測定は、一例として、呼吸数測定装置100の測定開始ボタンを押すことをトリガーとすることにより、スタートする。まず、CO2センサ110は、被検者の呼気に含まれるCO2濃度の変動を検出する(ステップS1)。ここで取得するデータは、所定の測定時間の間に連続する呼気から測定されるCO2濃度の変動データである。本実施形態では、CO2センサ110は、検出した被検者の呼気に含まれる揮発性有機化合物(VOC)の濃度の値から等価のCO2濃度(eCO2濃度)を算出することによって、等価的なCO2濃度を検出する。CO2センサ110の検出データは、マイクロコンピュータ130に送信される(ステップS2)。
Measurement is started by, for example, pressing the measurement start button of the respiration rate measuring device 100 as a trigger. First, the CO2 sensor 110 detects the fluctuation of the CO2 concentration contained in the subject's breath (step S1). The data acquired here is fluctuation data of the CO2 concentration measured from consecutive breaths during a predetermined measurement time. In this embodiment, the CO2 sensor 110 detects the equivalent CO2 concentration by calculating the equivalent CO2 concentration ( eCO2 concentration) from the concentration value of the volatile organic compounds (VOCs) contained in the detected breath of the subject. The detection data of the CO2 sensor 110 is transmitted to the microcomputer 130 (step S2).
マイクロコンピュータ130にCO2センサ110の検出したCO2濃度の変動データが送信されると、判定部131bがCO2センサ110の検出データをモニタリングして、そのCO2濃度の変動データの波形から呼吸数を推定する(ステップS3)。
When the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 is transmitted to the microcomputer 130, the determination unit 131b monitors the detection data of the CO2 sensor 110 and estimates the respiratory rate from the waveform of the fluctuation data of the CO2 concentration (step S3).
ここで、CO2濃度の変動データの波形(本明細書及び特許請求の範囲においてCO2濃度波形という。)は、X軸を時間とし、Y軸をCO2濃度として表現される波形となる。通常、そのCO2濃度波形に規則的な一定の周期で表れるCO2濃度のピークは、それぞれ自然呼吸による1回の呼吸として把握することができる。1回の呼吸は、1回の呼気と1回の吸気との組み合わせにより把握される。CO2濃度のピークは、通常、呼気において検出される。呼吸数は次式により求めることができる。
Here, the waveform of the fluctuation data of the CO2 concentration (referred to as the CO2 concentration waveform in this specification and claims) is a waveform expressed with time on the X-axis and CO2 concentration on the Y-axis. Usually, the peaks of the CO2 concentration that appear in the CO2 concentration waveform at regular regular intervals can be understood as one breath due to natural breathing. One breath is understood as a combination of one exhalation and one inhalation. The peak of the CO2 concentration is usually detected in the exhalation. The respiratory rate can be calculated by the following formula.
R=Nγ/T
但し、Rは呼吸数[bpm]、Nγは検出された呼吸回数、Tは測定時間[min.]である。 R = Nγ/T
where R is the respiratory rate [bpm], Nγ is the number of detected respiratory rates, and T is the measurement time [min.].
但し、Rは呼吸数[bpm]、Nγは検出された呼吸回数、Tは測定時間[min.]である。 R = Nγ/T
where R is the respiratory rate [bpm], Nγ is the number of detected respiratory rates, and T is the measurement time [min.].
無意識下で健常者が行う自然呼吸による呼吸数は、約12~23回/分と言われている。ここでは仮に、被検者の自然呼吸時の呼吸数を22.5bpmとする。この呼吸数は任意の呼吸数を設定することができる。呼吸数は、例えば、被検者に応じて設定することができる。また、被検者の性別、体格、健康状態等に応じて設定することもできる。
The breathing rate during natural breathing performed by a healthy person unconsciously is said to be about 12 to 23 breaths per minute. Here, we will assume that the breathing rate of the subject during natural breathing is 22.5 bpm. This breathing rate can be set to any desired rate. The breathing rate can be set, for example, according to the subject. It can also be set according to the subject's gender, physique, health condition, etc.
そして、呼吸数を22.5bpmとする場合、その自然呼吸のCO2濃度波形の変動データを周波数変換することにより周波数データを生成すると、主要な周波数成分は、0.375Hz(=22.5bpm)となる。よって、0.375Hzに対応して測定されるCO2濃度のピークは、呼吸が行われたものと推定することができ、呼吸数としてカウントし得る。しかしながら、人体が常に自然呼吸において正確無比な時間間隔で呼吸することは稀である。
In the case where the respiratory rate is 22.5 bpm, when the fluctuation data of the CO2 concentration waveform of natural breathing is frequency converted to generate frequency data, the main frequency component is 0.375 Hz (=22.5 bpm). Therefore, the peak of the CO2 concentration measured corresponding to 0.375 Hz can be estimated as the time when breathing has taken place, and can be counted as the respiratory rate. However, it is rare for the human body to always breathe at exactly the same time intervals in natural breathing.
そのため、自然呼吸の呼吸として把握すべきCO2濃度波形の周波数成分は、一つの特定の周波数成分ではなく、周波数帯域として把握するのがより正確である。そこで、ここでは一例として、低周波側の周波数成分を0.275Hz、高周波側の周波数成分を0.475Hzとする周波数帯域を設定することができる(バンドパスフィルタ処理)。そして、その周波数帯域に含まれるCO2濃度波形のピーク数は、自然呼吸による呼吸数としてカウントする上で有用である。
Therefore, it is more accurate to grasp the frequency component of the CO2 concentration waveform that should be grasped as the respiration of natural breathing as a frequency band, not as one specific frequency component. Therefore, as an example, a frequency band can be set in which the low frequency component is 0.275 Hz and the high frequency component is 0.475 Hz (band pass filter processing). And the number of peaks of the CO2 concentration waveform included in that frequency band is useful for counting the respiration rate due to natural breathing.
さらに、そのような周波数帯域を設定することで、自然呼吸の呼吸数のカウントをより正確に行う点でも有用である。即ち、自然呼吸の中には、呼吸以外に起因するCO2濃度の変動が含まれることがある。前述のような周波数帯域を設定することで、低周波側の周波数成分として表れるノイズを排除し、高周波側の周波数成分として表れるノイズを排除することができるようになり、呼吸数のカウントをより正確に測定することができる。低周波側の周波数成分として表れるノイズとしては、例えば複数回の深呼吸のようなゆっくりした呼吸である。高周波数側の周波数成分として表れるノイズは、例えば過呼吸のような早い呼吸である。こうした呼吸を排除することで、自然呼吸による呼吸数のカウントがより正確になる。
Furthermore, by setting such a frequency band, it is also useful to count the number of breaths of natural breathing more accurately. That is, natural breathing may include fluctuations in CO2 concentration due to factors other than breathing. By setting the frequency band as described above, it becomes possible to eliminate noise appearing as a frequency component on the low frequency side and noise appearing as a frequency component on the high frequency side, and the number of breaths can be counted more accurately. An example of noise appearing as a frequency component on the low frequency side is slow breathing, such as multiple deep breaths. An example of noise appearing as a frequency component on the high frequency side is fast breathing, such as hyperventilation. By eliminating such breathing, the number of breaths due to natural breathing can be counted more accurately.
以上のような周波数帯域を設定し、そこに含まれるCO2濃度の変動データについて、最大値が所定の閾値を超えているCO2濃度のピークを1回の呼吸としてカウントする。ここで最大値の閾値を設定するのは、CO2濃度の値(「CO2濃度の値」には、その値に所定の演算処理を行って得られる演算値を含む。)によりフィルタリングをすることにより、呼吸として把握すべきデータのみを呼吸数カウントの対象データとするためである。これによって、より正確な呼吸数の測定(推定)を行うことができる。前述の呼吸数の設定値を前提とする場合、その閾値は、図4で示すように、CO2濃度の最大値で正規化されたフィルタ出力(バンドパスフィルタ処理の出力)に対して例えば0.37として設定する。しかしながら、ここで設定するCO2濃度の閾値は、任意の値を設定することができる。閾値は、例えば、被検者に応じて設定することができる。また、被検者の性別、体格、健康状態等に応じて設定することもできる。閾値をCO2濃度の絶対値で設定する場合には、CO2濃度の絶対値のピーク値の例えば60~70%を閾値として設定する。
The frequency band is set as described above, and the peak of the CO2 concentration whose maximum value exceeds a predetermined threshold value is counted as one breath for the fluctuation data of the CO2 concentration contained therein. The reason for setting the maximum threshold value here is to filter the data to be grasped as respiration by the value of the CO2 concentration (the " CO2 concentration value" includes a calculated value obtained by performing a predetermined calculation process on the value) to make only the data to be grasped as respiration the target data for the respiration rate count. This allows for more accurate measurement (estimation) of the respiration rate. If the above-mentioned set value of the respiration rate is assumed, the threshold value is set, for example, to 0.37 for the filter output (output of the band-pass filter process) normalized by the maximum value of the CO2 concentration, as shown in FIG. 4. However, the threshold value of the CO2 concentration set here can be set to any value. The threshold value can be set, for example, according to the subject. It can also be set according to the gender, physique, health condition, etc. of the subject. When the threshold value is set by the absolute value of the CO2 concentration, for example, 60 to 70% of the peak value of the absolute value of the CO2 concentration is set as the threshold value.
以上のような呼吸数測定方法により、CO2濃度の変動データから被検者の呼吸数を判定する(推定する)ことができる。
By using the above-described method for measuring respiration rate, the respiration rate of the subject can be determined (estimated) from fluctuation data of the CO2 concentration.
本発明者らの実験によれば、以上の方法により測定期間中、安静にして測定されたCO2濃度の変動データと、測定期間中に体動を模した寝返りを行って測定されたCO2濃度の変動データとでは、CO2濃度波形と、前述のバンドパスフィルタ処理を行った後に最大値で正規化した出力波形とを比較しても、呼吸数の測定精度に大きな差異がないことを確認している。即ち、呼吸数測定装置100と前述の呼吸数測定方法は、体動の変化の影響を受けにくい測定方法であることが分かる。
According to the experiments of the present inventors, it has been confirmed that there is no significant difference in the measurement accuracy of the respiration rate between the CO2 concentration fluctuation data measured at rest during the measurement period by the above-mentioned method and the CO2 concentration fluctuation data measured by turning over in bed to imitate body movement during the measurement period, even when comparing the CO2 concentration waveform and the output waveform normalized by the maximum value after the above-mentioned band pass filter processing. In other words, it can be seen that the respiration rate measurement device 100 and the above-mentioned respiration rate measurement method are measurement methods that are not easily affected by changes in body movement.
以上のステップにより呼吸数の測定を終了することができる。測定は、一例として、呼吸数測定装置100の測定終了ボタンを押すことにより終了される。しかしながら、より一層の正確性を期すために、さらに以下のような処理を行うこともできる。
The respiration rate measurement can be completed by the above steps. As an example, the measurement can be completed by pressing the measurement end button on the respiration rate measurement device 100. However, to ensure even greater accuracy, the following further processing can also be performed.
即ち、被検者の呼吸以外に起因するCO2濃度の変動要因となるノイズ型体動の検出の有無を判定する(ステップS4)。
That is, it is determined whether or not noise-type body movement that is a factor in fluctuations in the CO 2 concentration caused by something other than the subject's breathing has been detected (step S4).
ノイズ検出センサ120の各種センサは、次の物理量を検出し、その検出データをマイクロコンピュータ130に送信する(ステップS5)。
・マイク素子:被検者の体動変化や咳、欠伸、会話等の際に発する音
・加速度センサ:被検者の体動変化や咳、欠伸、会話等の際に発する振動
・湿度センサ:被検者の咳やくしゃみ、欠伸、会話等をした際の呼気の湿度
・圧力センサ:被検者の咳やくしゃみ、欠伸、会話等をした際の呼気の圧力 The various sensors of thenoise detection sensor 120 detect the following physical quantities and transmit the detection data to the microcomputer 130 (step S5).
・Microphone element: Sounds emitted when the subject's body movements change, or when they cough, yawn, talk, etc. ・Acceleration sensor: Vibrations emitted when the subject's body movements change, or when they cough, yawn, talk, etc. ・Humidity sensor: Humidity of the breath when the subject coughs, sneezes, yawns, talks, etc. ・Pressure sensor: Pressure of the breath when the subject coughs, sneezes, yawns, talks, etc.
・マイク素子:被検者の体動変化や咳、欠伸、会話等の際に発する音
・加速度センサ:被検者の体動変化や咳、欠伸、会話等の際に発する振動
・湿度センサ:被検者の咳やくしゃみ、欠伸、会話等をした際の呼気の湿度
・圧力センサ:被検者の咳やくしゃみ、欠伸、会話等をした際の呼気の圧力 The various sensors of the
・Microphone element: Sounds emitted when the subject's body movements change, or when they cough, yawn, talk, etc. ・Acceleration sensor: Vibrations emitted when the subject's body movements change, or when they cough, yawn, talk, etc. ・Humidity sensor: Humidity of the breath when the subject coughs, sneezes, yawns, talks, etc. ・Pressure sensor: Pressure of the breath when the subject coughs, sneezes, yawns, talks, etc.
マイクロコンピュータ130は、ノイズ検出センサ120の検出データを受信すると、判定部131bがノイズ除去を実行してから(ステップS6)、判定部131bがFFT解析やウェーブレット解析、AI等を用いて呼吸数を判定する(ステップS7)。このとき、ノイズ除去を実行してから、呼吸数を判定する方法は、ノイズ検出センサ120の態様により異なっている。
When the microcomputer 130 receives the detection data from the noise detection sensor 120, the determination unit 131b performs noise removal (step S6), and then the determination unit 131b determines the respiratory rate using FFT analysis, wavelet analysis, AI, etc. (step S7). At this time, the method of determining the respiratory rate after performing noise removal differs depending on the mode of the noise detection sensor 120.
すなわち、ノイズ検出センサ120がマイクや加速度センサの場合では、ノイズ型体動となる音や振動が検出されたら、その間のCO2センサにより検出されたCO2濃度データの呼吸波形を呼吸数としてカウントしないことによって、ノイズを除去する。そして、判定部131bは、CO2センサにより検出されたCO2濃度の変動データのうち、マイクや加速度センサが検知した期間以外を呼吸とみなして、FFT解析やウェーブレット解析、AI等を用いて呼吸数を判定する。このように、ノイズ検出センサ120がマイクや加速度センサの場合では、判定部131bは、CO2センサ110の検出したCO2濃度の変動データからノイズ検出センサ120でノイズ型体動が検出された期間の変動データをカウントしないノイズデータとして用いることによって、被検者の呼吸数を判定する。
That is, when the noise detection sensor 120 is a microphone or an acceleration sensor, if a sound or vibration that is a noise type body movement is detected, the respiration waveform of the CO2 concentration data detected by the CO2 sensor during that time is not counted as the respiration rate, thereby removing the noise.Then, the determination unit 131b regards the CO2 concentration fluctuation data detected by the CO2 sensor other than the period detected by the microphone or acceleration sensor as respiration, and determines the respiration rate using FFT analysis, wavelet analysis, AI, etc.In this way, when the noise detection sensor 120 is a microphone or an acceleration sensor, the determination unit 131b determines the respiration rate of the subject by using the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 during the period in which the noise type body movement is detected by the noise detection sensor 120 as noise data that is not counted.
一方、ノイズ検出センサ120が湿度センサや圧力センサの場合では、ノイズデータとなる湿度や圧力が検出されても、一旦、CO2センサ110の検出したCO2濃度の変動データが呼吸数を測定するのに使用する呼吸波形とみなされて、呼吸数を測定する。そして、湿度センサや圧力センサの検出データの波形パターンを確認して、その波形パターンからFFT解析、ウェーブレット解析、適応フィルタ、AI等による呼吸数の推定を行う。このように、ノイズ検出センサ120が湿度センサや圧力センサの場合では、判定部131bは、CO2センサ110の検出したCO2濃度の変動データの波形パターンと、ノイズ検出センサ120の検出したノイズ型体動に関する検出データの波形パターンとの解析結果に基づく推定によって、呼吸数を判定する。
On the other hand, when the noise detection sensor 120 is a humidity sensor or a pressure sensor, even if the humidity or pressure that becomes noise data is detected, the CO2 concentration fluctuation data detected by the CO2 sensor 110 is regarded as a respiration waveform to be used for measuring the respiration rate, and the respiration rate is measured. Then, the waveform pattern of the detection data of the humidity sensor or pressure sensor is confirmed, and the respiration rate is estimated from the waveform pattern by FFT analysis, wavelet analysis, adaptive filter, AI, etc. In this way, when the noise detection sensor 120 is a humidity sensor or a pressure sensor, the determination unit 131b determines the respiration rate by estimation based on the analysis result of the waveform pattern of the CO2 concentration fluctuation data detected by the CO2 sensor 110 and the waveform pattern of the detection data related to the noise-type body movement detected by the noise detection sensor 120.
ステップS4で被検者のノイズ型体動が検出されなければ、ステップS3で判定部131bがCO2センサ110の検出したCO2濃度の変動データに基づいて推定した呼吸数をそのまま呼吸数として判定する。
If no noise-type body movement of the subject is detected in step S4, the determining unit 131b determines in step S3 that the respiratory rate estimated based on the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 is the respiratory rate as it is.
このようにして、本実施形態では、CO2センサ110の検出データから被検者の呼吸数を推定する。そして、CO2センサ110の測定期間中に生じた被検者のノイズ型体動を検出したら、CO2センサ110の検出データのうち、ノイズ型体動により発生したCO2濃度データを呼吸数としてカウントしないノイズデータとして用いて、最終的な被検者Pの呼吸数を判定する。このため、被検者Pの体動変化や咳、くしゃみ、欠伸、会話等の被検者の呼吸以外の心肺機能の動作によるノイズ型体動が発生しても、ノイズ型体動に伴うノイズ除去を行ってから被検者の呼吸数を判定するので、ノイズ型体動の影響を低減させて、精度よく呼吸数を把握できるようになる。
In this manner, in this embodiment, the respiratory rate of the subject is estimated from the detection data of the CO2 sensor 110. Then, when the noise type body movement of the subject occurring during the measurement period of the CO2 sensor 110 is detected, the CO2 concentration data generated by the noise type body movement among the detection data of the CO2 sensor 110 is used as noise data that is not counted as the respiratory rate, and the final respiratory rate of the subject P is determined. Therefore, even if the noise type body movement occurs due to the change in the body movement of the subject P or the operation of the cardiopulmonary function other than the breathing of the subject, such as coughing, sneezing, yawning, and talking, the noise associated with the noise type body movement is removed before the respiratory rate of the subject is determined, so that the influence of the noise type body movement can be reduced and the respiratory rate can be grasped with high accuracy.
第2のフロー(図5)Second flow (Figure 5)
本実施形態に係る呼吸数測定装置100による呼吸数の測定方法は、前述した図3に示すフローチャートに限定されず、例えば、図5に示すフローチャートのように実行し得る。
The method of measuring the respiratory rate using the respiratory rate measuring device 100 according to this embodiment is not limited to the flowchart shown in FIG. 3, and can be performed, for example, as shown in the flowchart in FIG. 5.
測定は、一例として、呼吸数測定装置100の測定開始ボタンを押すことにより開始される(図5の「START」)。測定の開始と同時に測定時間を計時するタイマーが作動し、CO2センサ110が被検者の呼気に含まれるCO2濃度の変動を検出する(ステップS11)。CO2センサ110で検出されたCO2濃度の変動データは、継続的にマイクロコンピュータ130に送信される(ステップS12)。
Measurement is started, for example, by pressing the measurement start button of the respiration rate measuring device 100 ("START" in FIG. 5). At the same time as the measurement starts, a timer that measures the measurement time is operated, and the CO2 sensor 110 detects the fluctuation of the CO2 concentration contained in the subject's breath (step S11). The fluctuation data of the CO2 concentration detected by the CO2 sensor 110 is continuously transmitted to the microcomputer 130 (step S12).
マイクロコンピュータ130の判定部131bは、受信するCO2濃度の変動データにノイズ型体動を示すデータが含まれるかを検出し続ける(ステップS13)。そして、判定部131bは、ノイズ型体動の検出が無いと判定した場合に、CO2センサ110の変動データから呼吸数を判定する(ステップS14)。ここで「呼吸数を判定する」とは、1又は複数回の呼吸をカウントできることを意味する。
The determination unit 131b of the microcomputer 130 continues to detect whether the received fluctuation data of the CO2 concentration includes data indicating noise-type body movement (step S13). If the determination unit 131b determines that no noise-type body movement is detected, it determines the respiratory rate from the fluctuation data of the CO2 sensor 110 (step S14). Here, "determining the respiratory rate" means that one or more breaths can be counted.
他方、ステップS13で被検者のノイズ型体動が検出された場合には、ステップS11に戻ってから前述のステップを繰り返す。そして、ノイズ型体動の検出が無い変動データに基づいて呼吸数を判定できるまで、CO2濃度の変動データに基づく呼吸数の測定が継続される。なお、ステップS14で被検者のノイズ型体動が検出されてステップS1に戻る際には、タイマーの計時がリセットされるようにしてもよい。
On the other hand, if a noise-type body movement of the subject is detected in step S13, the process returns to step S11 and repeats the above steps. Then, the measurement of the respiratory rate based on the fluctuation data of the CO2 concentration is continued until the respiratory rate can be determined based on the fluctuation data without the detection of the noise-type body movement. Note that, when the noise-type body movement of the subject is detected in step S14 and the process returns to step S1, the timer may be reset.
ステップS14でCO2センサ110の変動データから呼吸数を判定したら、その後、呼吸数の測定を継続するか否かを判定する(ステップS15)。測定を継続するか否かの判定基準(測定終了基準)は、様々に設定し得るものであり、以下がその例示である。
・「特定の呼吸回数」に到達した場合(例えば、100回)
・「特定の測定時間」に到達した場合(例えば、1分間、1時間、1日間、1週間、無制限)
・呼吸数測定装置100で「特定の動作」が行われた場合(例えば、呼吸数測定装置100の測定終了ボタンが押された場合、呼吸数測定装置100が電源オフになった場合など) After the respiration rate is determined from the fluctuation data of the CO2sensor 110 in step S14, it is then determined whether or not to continue measuring the respiration rate (step S15). The criteria for determining whether or not to continue the measurement (measurement termination criteria) can be set in various ways, and the following are examples.
When a "certain number of breaths" is reached (e.g. 100)
When a "specific measurement time" is reached (e.g., 1 minute, 1 hour, 1 day, 1 week, unlimited)
When a "specific operation" is performed on the respiration rate measuring device 100 (for example, when the measurement end button of the respirationrate measuring device 100 is pressed, when the respiration rate measuring device 100 is turned off, etc.)
・「特定の呼吸回数」に到達した場合(例えば、100回)
・「特定の測定時間」に到達した場合(例えば、1分間、1時間、1日間、1週間、無制限)
・呼吸数測定装置100で「特定の動作」が行われた場合(例えば、呼吸数測定装置100の測定終了ボタンが押された場合、呼吸数測定装置100が電源オフになった場合など) After the respiration rate is determined from the fluctuation data of the CO2
When a "certain number of breaths" is reached (e.g. 100)
When a "specific measurement time" is reached (e.g., 1 minute, 1 hour, 1 day, 1 week, unlimited)
When a "specific operation" is performed on the respiration rate measuring device 100 (for example, when the measurement end button of the respiration
ステップS15で測定終了基準に到達したら、呼吸数の測定を終了する(図5の「END」)。ステップS15で測定終了基準に到達していない場合には、ステップS11に戻ってから前述のステップが繰り返される。測定は、ステップS15で測定終了基準に到達するまで繰り返される。
If the measurement end criterion is reached in step S15, the respiratory rate measurement ends ("END" in Figure 5). If the measurement end criterion is not reached in step S15, the process returns to step S11 and the above steps are repeated. The measurement is repeated until the measurement end criterion is reached in step S15.
このように、図5に示す実施形態では、判定部131bがCO2センサにより検出されたCO2濃度の変動データのうち、ノイズ型体動の発生がない場合のみにおける変動データのピーク数をカウントすることによって、呼吸数を判定する。このため、ノイズ型体動に関する検出データをFFT解析やウェーブレット解析したり、ノイズを除去する工程を必要としないので、より少ない工程数で容易に被検者の呼吸数を測定することができる。
5, the determination unit 131b determines the respiration rate by counting the number of peaks of the fluctuation data of the CO2 concentration detected by the CO2 sensor only when there is no noise-type body movement. Therefore, it is not necessary to perform FFT analysis or wavelet analysis on the detection data related to the noise-type body movement, or to remove noise, so that the respiration rate of the subject can be easily measured with fewer steps.
また、ステップS15で設定される測定終了基準によって様々な呼吸数の測定が行える。一例として、測定終了基準として「特定の測定時間」を選択し、それを「1分間」に設定した場合、正常呼吸時での1分間呼吸数の測定が可能である。これは、臨床の観点においても呼吸数を把握するのに適正な測定とされており、例えば、設備が不十分な救急現場、災害現場、被災時の避難所などで、1分間呼吸数をより正確に把握するのに適している。
Also, various respiratory rate measurements can be performed depending on the measurement termination criteria set in step S15. As an example, if a "specific measurement time" is selected as the measurement termination criterion and set to "one minute," it is possible to measure the one-minute respiratory rate during normal breathing. This is considered to be an appropriate measurement for grasping the respiratory rate from a clinical perspective, and is suitable for grasping the one-minute respiratory rate more accurately, for example, in emergency and disaster sites where facilities are inadequate, and in evacuation shelters during disasters.
また、「特定の動作」を選択し、それを「呼吸数測定装置100の測定終了ボタンが押された場合」に設定した場合は、継続的な呼吸数の測定が可能である。これは、例えば、病院や自宅療養する患者の呼吸数を継続的に測定し、体調に異変が発生する兆候を知るのに適している。
Furthermore, if "specific action" is selected and set to "when the measurement end button of the respiration rate measuring device 100 is pressed," the respiration rate can be measured continuously. This is suitable, for example, for continuously measuring the respiration rate of patients recuperating in hospitals or at home, and for finding signs of abnormalities in their physical condition.
次に、図5に示す呼吸数測定装置による呼吸数の測定のフローチャートにおける呼吸数の判定動作(ステップS14)の例を、図6,7を例示して説明する。
Next, an example of the respiration rate determination operation (step S14) in the flowchart for measuring the respiration rate using the respiration rate measurement device shown in Figure 5 will be explained using Figures 6 and 7 as examples.
ここでは、呼吸数の測定方法として、2つの例を説明する。その1つは、図6で示すような、現時点を判定基準時として現時点から発生する呼吸回数を測定する方法である。他の1つは、図7で示すように、現時点を判定基準時として過去に遡及して呼吸回数を測定する方法である。また、以下では、説明の便宜のため、正常な呼吸時の60秒間(1分間)の呼吸数を測定する場合を例示して説明する。
Here, two examples of methods for measuring respiratory rate will be explained. One is a method in which the current time is used as the reference time to measure the number of breaths occurring from the present time, as shown in Figure 6. The other is a method in which the current time is used as the reference time to measure the number of breaths going back to the past, as shown in Figure 7. For ease of explanation, the following will explain an example in which the respiratory rate is measured for 60 seconds (one minute) during normal breathing.
第1の呼吸数の測定例(図6)First example of respiratory rate measurement (Figure 6)
図6A、6B、6Cの数直線の左端の原点「0」は、測定開始時である。図6Aで示すように、被検者の咳や欠伸、会話等のノイズ型体動が検出されなければ、測定開始してから最初の60秒間の測定期間T1で計測された呼吸数がそのまま被検者の呼吸数として判定される。そして、次の60秒間となる測定期間T2における被検者の呼吸数の測定を同様にして行う。
The origin "0" at the left end of the number lines in Figures 6A, 6B, and 6C is the start of measurement. As shown in Figure 6A, if no noise-type body movement of the subject, such as coughing, yawning, or talking, is detected, the respiratory rate measured during the first 60-second measurement period T1 from the start of measurement is determined as the subject's respiratory rate as is. Then, the subject's respiratory rate is measured in the same manner during the next 60-second measurement period T2.
一方、測定を開始してから1分以内にノイズ発生時間n(s)(例えば、15秒間)のノイズ型体動が検出された場合には、図6Bに示すように、ノイズ型体動発生区間Tnが終わった時点から60秒間の呼吸数の測定を行って、その間にノイズ型体動の検出が無ければ、当該ノイズ型体動が終わった時点からの60秒間の測定期間T1で測定された呼吸数を被検者の呼吸数と判定する。この測定方法では、途切れなく連続する1分間の正常呼吸による呼吸数を測定することができる。また、ノイズ型体動の発生区間を特定できるため、そのときに患者に何が起こったのかを確認することも可能である。
On the other hand, if noise-type body movement is detected for a noise occurrence time n (s) (e.g., 15 seconds) within one minute of starting measurement, the respiration rate is measured for 60 seconds from the end of the noise-type body movement occurrence period Tn, as shown in Figure 6B, and if no noise-type body movement is detected during that time, the respiration rate measured in the 60-second measurement period T1 from the end of the noise-type body movement is determined to be the subject's respiration rate. With this measurement method, it is possible to measure the respiration rate of normal breathing over one continuous minute. In addition, because the period in which noise-type body movement occurs can be identified, it is also possible to confirm what happened to the patient at that time.
また、測定を開始してから1分以内にノイズ発生時間n(s)(例えば、15秒間)のノイズ型体動が検出された場合には、図6Cに示すように、60秒にノイズ型体動が検出されたノイズ発生時間n(s)となる15秒を加えた時間の呼吸数の測定データから被検者の呼吸数を判定してもよい。この場合では、測定を開始してからノイズ型体動が発生するまでの時間T1aとノイズ型体動が終わってから呼吸数の計測が終わるまでの時間T1bとの合計がT1、すなわち1分間(60秒間)となる。この測定方法では、ノイズ型体動の検出区間を除去した1分間の呼吸数が測定されることとなる。
Also, if a noise-type body movement is detected within one minute after the start of measurement for a noise occurrence time n(s) (for example, 15 seconds), the subject's respiration rate may be determined from the measurement data of the respiration rate for a period of 60 seconds plus 15 seconds, which is the noise occurrence time n(s) during which the noise-type body movement was detected, as shown in Fig. 6C. In this case, the sum of the time T1a from the start of measurement until the noise-type body movement occurs and the time T1b from the end of the noise-type body movement until the measurement of the respiration rate ends is T1, that is, one minute (60 seconds). In this measurement method, the respiration rate for one minute is measured after removing the section in which the noise-type body movement was detected.
第2の呼吸数の測定例(図7)Second example of respiratory rate measurement (Figure 7)
図7A、7B、7Cの数直線の右端の原点「0」は、現時点である。この例では、現時点を呼吸数の測定基準時とし、現時点から過去の呼吸数の測定データを遡及することにより呼吸数を測定する。例えば、現時点から過去の1分間(60秒間)の呼吸数の測定データを見て、測定期間中に被検者の咳や欠伸、会話等のノイズ型体動が検出されなければ、図7Aに示すように、測定基準時である現時点から最初の60秒間の過去の測定期間T1で計測された呼吸数がそのまま被検者の呼吸数として判定される。
The origin "0" at the right end of the number lines in Figures 7A, 7B, and 7C is the current time. In this example, the current time is set as the reference time for measuring the respiration rate, and the respiration rate is measured by tracing back from the current time to past respiration rate measurement data. For example, by looking at the respiration rate measurement data for the past one minute (60 seconds) from the current time, if no noise-type body movement of the subject, such as coughing, yawning, or talking, is detected during the measurement period, the respiration rate measured during the past measurement period T1, the first 60 seconds from the current time, which is the measurement reference time, is determined to be the subject's respiration rate as is, as shown in Figure 7A.
一方、現時点から最初の過去1分以内にノイズ発生時間n(s)(例えば、15秒間)のノイズ型体動が検出された場合には、図7Bに示すように、ノイズ型体動の検出が終わった時点から60秒間の過去の呼吸数の測定を行って、その間にノイズ型体動の検出が無ければ、当該終わった時点からの60秒間の測定期間T1で測定された呼吸数を被検者の呼吸数と判定する。この測定方法では、途切れなく連続する1分間の正常呼吸による呼吸数を測定することができる。また、ノイズ型体動の発生区間を特定できるため、そのときに患者に何が起こったのかを確認することも可能である。
On the other hand, if noise-type body movement is detected for a noise occurrence time n(s) (e.g., 15 seconds) within the first minute from the current time, the breathing rate is measured for 60 seconds from the point at which the noise-type body movement detection ends, as shown in Figure 7B, and if no noise-type body movement is detected during that time, the breathing rate measured during the 60-second measurement period T1 from the point at which the noise-type body movement ends is determined to be the breathing rate of the subject. With this measurement method, the breathing rate of normal breathing can be measured for one continuous minute without interruption. In addition, because the period in which the noise-type body movement occurs can be identified, it is also possible to confirm what happened to the patient at that time.
また、現時点から最初の過去1分以内にノイズ発生時間n(s)(例えば、15秒間)のノイズ型体動が検出された場合には、図7Cに示すように、60秒にノイズ型体動が検出されたノイズ発生時間n(s)となる15秒を加えた過去の時間の呼吸数の測定データから被検者の呼吸数を判定してもよい。この場合では、測定を開始してからノイズ型体動が発生するまでの時間T1aとノイズ型体動が終わってから呼吸数の計測が終わるまでの時間T1bとの合計が1分間(60秒間)となる。この測定方法では、ノイズ型体動の検出区間を除去した1分間の呼吸数が測定されることとなる。
Also, if a noise-type body movement of a noise occurrence time n(s) (for example, 15 seconds) is detected within the first minute from the current time, the respiration rate of the subject may be determined from the measurement data of the respiration rate of the past time, which is 60 seconds plus 15 seconds, which is the noise occurrence time n(s) when the noise-type body movement was detected, as shown in Fig. 7C. In this case, the sum of the time T1a from the start of measurement to the occurrence of the noise-type body movement and the time T1b from the end of the noise-type body movement to the end of the measurement of the respiration rate is 1 minute (60 seconds). In this measurement method, the respiration rate is measured for 1 minute after removing the section in which the noise-type body movement was detected.
このようにして、本実施形態では、測定基準時となる現時点から未来又は過去の所定の時間(60秒間)の呼吸数をカウントすることによって、呼吸数を容易に判定できるようになる。すなわち、判定部131bは、CO2センサ110により検出されたCO2濃度の変動データのうち、測定基準時から未来又は過去の所定の時間内にノイズ型体動の発生がない場合のみにおける変動データのピーク数をカウントすることによって、呼吸数を精度良く判定できる。
In this manner, in this embodiment, the respiration rate can be easily determined by counting the respiration rate from the present time, which is the measurement reference time, to a predetermined time in the future or past (60 seconds). That is, the determination unit 131b can accurately determine the respiration rate by counting the number of peaks of the fluctuation data of the CO2 concentration detected by the CO2 sensor 110 only when no noise-type body movement occurs within a predetermined time in the future or past from the measurement reference time.
ノイズ検出センサ120がCOThe noise detection sensor 120 detects CO
22
センサである場合の呼吸数の測定例(図8)Example of measuring respiration rate when using a sensor (Figure 8)
ノイズ検出センサ120がノイズ検出用CO2センサである場合の呼吸数測定装置100による呼吸数の測定動作方法について、図8を参照しつつ説明する。
A method of measuring the respiration rate by the respiration rate measuring device 100 when the noise detection sensor 120 is a noise-detecting CO2 sensor will be described with reference to FIG.
本実施形態では、図8に示すように、CO2センサ110と、CO2センサであるノイズ検出センサ120とが、それぞれCO2濃度の変動データを取得する。ノイズ検出センサ120としてマイク素子等を使用する場合は、CO2センサ110で検出されるCO2濃度の変動データに、それとは異なる物理量によってノイズ型変動を検出するものである。他方、図8の例は、同一の物理量(CO2濃度)を測定することによってノイズ型変動を検出する例である。その変動データは、データ処理部137を介して、判定部131bに入力される。
In this embodiment, as shown in Fig. 8, the CO2 sensor 110 and the noise detection sensor 120, which is a CO2 sensor, each acquire fluctuation data of the CO2 concentration. When a microphone element or the like is used as the noise detection sensor 120, a noise type fluctuation is detected by a physical quantity different from the fluctuation data of the CO2 concentration detected by the CO2 sensor 110. On the other hand, the example of Fig. 8 is an example in which a noise type fluctuation is detected by measuring the same physical quantity ( CO2 concentration). The fluctuation data is input to the determination unit 131b via the data processing unit 137.
データ処理部137は、双方のセンサ110、120のそれぞれの検出データに含まれるアーティファクトをキャンセレーションする機能(相殺する機能)を有する。このためにデータ処理部137は、各アーティファクトの平均値や分散値、双方のアーティファクトどうしの相関値等の統計的な性質をデータとして保有することができる。そして、それを利用して、双方のアーティファクトを相殺することによって、CO2センサ110の検出データに含まれるアーティファクトを取り除き、呼吸数を測定するための綺麗なCO2濃度の変動データを得て、それを判定部131bに出力する。この場合、データ処理部137は、双方のアーティファクトを相殺処理するアダプティブフィルタ又はAIにより構成できる。なお、双方のセンサ110,120とデータ処理部137との間には、検出データから呼吸数を測定するための周波数成分を取り出すために、バンドパスフィルタを設けてもよい。
The data processing unit 137 has a function of canceling (offsetting) artifacts contained in the detection data of both sensors 110 and 120. For this purpose, the data processing unit 137 can hold statistical properties such as the average value and variance value of each artifact, and the correlation value between both artifacts as data. Then, by using this to offset both artifacts, the artifacts contained in the detection data of the CO 2 sensor 110 are removed, and clean CO 2 concentration fluctuation data for measuring the respiration rate is obtained and output to the determination unit 131b. In this case, the data processing unit 137 can be configured with an adaptive filter or AI that offsets both artifacts. Note that a bandpass filter may be provided between both sensors 110 and 120 and the data processing unit 137 to extract frequency components for measuring the respiration rate from the detection data.
ここでアーティファクトは、呼吸以外の要因で変動するCO2の変化である。具体的には、呼吸数の測定データの根拠となるCO2濃度の変動データには、呼吸以外の要因で変動するCO2であるアーティファクトAが含まれており、ノイズ検出センサ120の検出データには、呼吸以外の要因で変動するCO2であるアーティファクトBが含まれている。このアーティファクトBは、ノイズ型体動としてのデータである。アーティファクトA、Bは、呼吸以外の同一の要因により検出されるCO2でも、異なる要因により検出されるCO2でもよい。アーティファクトA、Bは、センサ110、120の配置場所に依存性がある。アーティファクトA、Bが異なる要因に基づき検出されるCO2の場合、これらのアーティファクトA、Bは、センサ110、120の配置場所が互いに近いと、相関性が大きいものとなる。このため、データ処理部137は、これらのセンサ110、120の検出データに含まれるアーティファクトA、Bの相関性に基づいて、CO2センサ110での検出データから呼吸以外の要因で変動するCO2の変化であるアーティファクトAを除去することによって、被検者の呼吸に含まれる実質的なCO2濃度の変動データを判定部131bに送信できるようになる。他方、アーティファクトA、Bが同一の要因に基づき検出されるCO2の場合、データ処理部137を差動増幅器として機能させることにより、CO2センサ110の検出データに含まれるアーティファクトAを取り除くことが可能である。そして、判定部131bは、その変動データに基づいて被検者の呼吸数を算出する。
Here, the artifact is a change in CO2 that varies due to factors other than respiration. Specifically, the CO2 concentration variation data on which the measurement data of the respiration rate is based includes artifact A, which is CO2 that varies due to factors other than respiration, and the detection data of the noise detection sensor 120 includes artifact B, which is CO2 that varies due to factors other than respiration. This artifact B is data as noise-type body movement. The artifacts A and B may be CO2 detected due to the same factor other than respiration, or CO2 detected due to different factors. The artifacts A and B depend on the placement locations of the sensors 110 and 120. When the artifacts A and B are CO2 detected based on different factors, the correlation between these artifacts A and B becomes large when the placement locations of the sensors 110 and 120 are close to each other. Therefore, the data processing unit 137 can transmit fluctuation data of the substantial CO2 concentration contained in the subject's breath to the determination unit 131b by removing artifact A, which is a change in CO2 that fluctuates due to factors other than breathing, from the detection data of the CO2 sensor 110 based on the correlation between artifacts A and B contained in the detection data of these sensors 110 and 120. On the other hand, when artifacts A and B are CO2 detected based on the same factor, it is possible to remove artifact A contained in the detection data of the CO2 sensor 110 by making the data processing unit 137 function as a differential amplifier. Then, the determination unit 131b calculates the subject's breathing rate based on the fluctuation data.
このようにして、本実施形態では、判定部131bは、データ処理部137で双方のセンサ110、120の検出データに含まれるアーティファクトを相殺して得られたCO2センサ110の実質的なCO2濃度の変動データに基づいて、被検者の呼吸数を判定する。すなわち、データ処理部137は、ノイズ検出センサ120で外部環境のCO2濃度の変動データに含まれるアーティファクトBのデータに基づき、呼吸数測定用CO2センサとなるCO2センサ110での検出データに含まれるアーティファクトAをアダプティブフィルタ又はAIによりキャンセレーションするデータ処理をしてから、被検者の呼吸数の測定に用いる実質的なCO2濃度の変動データを抽出する。そして、判定部131bは、データ処理部137でデータ処理された出力データに基づいて、被検者の呼吸数を判定する。このため、ノイズ型体動の発生を外部環境のCO2濃度の変動データから検出した場合でも、双方のセンサ110、120の検出データに含まれるアーティファクトをキャンセレーションするデータ処理することによって、被検者の呼吸数を精度よく判定できるようになる。
In this manner, in this embodiment, the determination unit 131b determines the respiration rate of the subject based on the fluctuation data of the substantial CO2 concentration of the CO2 sensor 110 obtained by canceling the artifacts contained in the detection data of both sensors 110 and 120 in the data processing unit 137. That is, the data processing unit 137 performs data processing to cancel the artifact A contained in the detection data of the CO2 sensor 110, which is the CO2 sensor for measuring respiration rate, by an adaptive filter or AI based on the data of the artifact B contained in the fluctuation data of the CO2 concentration of the external environment in the noise detection sensor 120, and then extracts the fluctuation data of the substantial CO2 concentration used to measure the respiration rate of the subject. Then, the determination unit 131b determines the respiration rate of the subject based on the output data processed by the data processing unit 137. Therefore, even if the occurrence of noise-type body movement is detected from fluctuation data of CO2 concentration in the external environment, the subject's respiratory rate can be accurately determined by performing data processing to cancel artifacts contained in the detection data of both sensors 110, 120.
呼吸数測定装置100の適用例Application examples of the respiration rate measuring device 100
次に、本実施形態の呼吸数測定装置100の適用例について、図面を使用しながら説明する。図9は、本実施形態に係る呼吸数測定装置100の一態様を示す説明図であり、図10、図11及び図12は、それぞれ本実施形態に係る呼吸数測定装置100の他の一態様を示す説明図である。
Next, an application example of the respiratory rate measuring device 100 of this embodiment will be described with reference to the drawings. FIG. 9 is an explanatory diagram showing one aspect of the respiratory rate measuring device 100 according to this embodiment, and FIG. 10, FIG. 11, and FIG. 12 are explanatory diagrams showing other aspects of the respiratory rate measuring device 100 according to this embodiment.
呼吸数測定装置100は、装置の小型化とリアルタイム性を踏まえて、低消費電力でサンプリンググレードの高い等価二酸化炭素方式のセンサをCO2センサ110として使用している。呼吸数測定装置100は、被検者Pの呼気に含まれるCO2の濃度の変動を継続的に測定するために、CO2センサ110が被検者Pの口腔周辺にある装具に装着可能なウェアラブルセンサとなっている。
Considering the miniaturization and real-time nature of the device, the respiration rate measuring device 100 uses a low-power, high-sampling-grade equivalent carbon dioxide sensor as the CO2 sensor 110. In order to continuously measure the fluctuations in the concentration of CO2 contained in the breath of the subject P, the respiration rate measuring device 100 uses the CO2 sensor 110 as a wearable sensor that can be attached to an appliance located around the oral cavity of the subject P.
例えば、呼吸数測定装置100は、図9に示すように、被検者Pが着用する「装具」、「頭部用装具」としての衛生用マスクM1の内側に、センサ本体105が取付部材150を介して装着される。このように、衛生用マスクM1の内側にCO2センサ110を含むセンサ本体105が取り付けられることによって、CO2センサ110が測定した被検者Pの呼気に含まれるCO2の濃度の測定データがマイクロコンピュータ130に送信される。そして、マイクロコンピュータ130は、CO2センサ110の検出データとノイズ検出センサ120の検出データに基づいて、被検者Pの呼吸数の判定処理を実行する。
For example, as shown in Fig. 9, the respiration rate measuring device 100 is attached to the inside of a sanitary mask M1 as a "gear" or "head gear" worn by the subject P, with the sensor body 105 attached via an attachment member 150. In this way, by attaching the sensor body 105 including the CO2 sensor 110 to the inside of the sanitary mask M1, measurement data of the concentration of CO2 contained in the breath of the subject P measured by the CO2 sensor 110 is transmitted to the microcomputer 130. Then, the microcomputer 130 executes a process of determining the respiration rate of the subject P based on the detection data of the CO2 sensor 110 and the detection data of the noise detection sensor 120.
また、呼吸数測定装置100は、図10に示すように、被検者Pが医療現場で着用する「装具」、「頭部用装具」としての医療用の酸素マスクM2の内側にセンサ本体105を取付部材150で取り付けて使用することもできる。このように、被検者Pとなる患者の口腔を覆う酸素マスクM2の内側にセンサ本体105を取り付けることによって、被検者Pの呼気に含まれるCO2濃度をCO2センサ110で測定できる。このため、同様にして、マイクロコンピュータ130がCO2センサ110の測定データとノイズ検出センサ120の検出した検出データに基づいて、被検者Pの呼吸数の判定処理を実行する。
10, the respiration rate measuring device 100 can also be used by attaching the sensor body 105 to the inside of a medical oxygen mask M2 as a "bracing" or "head bracing" worn by the subject P in a medical field with an attachment member 150. In this way, by attaching the sensor body 105 to the inside of the oxygen mask M2 covering the oral cavity of the patient who is the subject P, the CO2 concentration contained in the breath of the subject P can be measured by the CO2 sensor 110. For this reason, the microcomputer 130 similarly executes a process of determining the respiration rate of the subject P based on the measurement data of the CO2 sensor 110 and the detection data detected by the noise detection sensor 120.
さらに、呼吸数測定装置101は、図11Aに示すように、CO2センサ110とノイズ検出センサ120とを含むセンサ本体105を取り付ける取付部材をチューブM3aに係止可能なフック151としてもよい。このように、センサ本体105を取り付ける取付部材をフック151とすることよって、図11Bに示すように、加熱式加湿器(商品名の例「ネーザルハイフロー」)M3の鼻腔近傍のチューブM3aにセンサ本体105をフック151で取り付けられるようになる。このため、被検者Pの鼻腔近傍の呼気に含まれるCO2濃度をCO2センサ110で測定することによって、同様にして、マイクロコンピュータ130が被検者Pの呼吸数の判定処理を実行する。
Furthermore, in the respiration rate measuring device 101, as shown in Fig. 11A, the mounting member for mounting the sensor body 105 including the CO2 sensor 110 and the noise detection sensor 120 may be a hook 151 that can be engaged with the tube M3a. By using the hook 151 as the mounting member for mounting the sensor body 105 in this way, as shown in Fig. 11B, the sensor body 105 can be mounted to the tube M3a near the nasal cavity of a heated humidifier (example of the product name is "Nasal High Flow") M3 by the hook 151. Therefore, by measuring the CO2 concentration contained in the exhaled air near the nasal cavity of the subject P with the CO2 sensor 110, the microcomputer 130 similarly executes the process of determining the respiration rate of the subject P.
また、呼吸数測定装置102は、図12Aに示すように、センサ本体105を取り付ける取付部材を、被検者Pの首に掛ける「装具」、「身体用装具」としてのネックレス部材152とすることができる。ネックレス部材152には、複数のセンサ本体105を所定の間隔で取り付ける構成としてもよい。呼吸数測定装置102をこのような構成にすることよって、図12Bに示すように、被検者Pが寝ている間でも、図12Cに示すように、被検者Pが立って正面を向いている間でも、図12Dに示すように、被検者Pが立って横を向いている間でも、センサ本体105のCO2センサ110が被検者Pの自然呼吸時の呼気に含まれるCO2の濃度を測定できるようになる。このため、同様にして、マイクロコンピュータ130が被検者Pの呼吸数の判定処理を実行できるようになる。
In addition, as shown in FIG. 12A, the respiration rate measuring device 102 can be configured such that the attachment member for attaching the sensor body 105 is a necklace member 152 as an "orthosis" or "body orthosis" that is hung around the neck of the subject P. The necklace member 152 may be configured to have a plurality of sensor bodies 105 attached at a predetermined interval. By configuring the respiration rate measuring device 102 in this way, the CO 2 sensor 110 of the sensor body 105 can measure the concentration of CO 2 contained in the breath of the subject P during natural breathing, whether the subject P is sleeping as shown in FIG. 12B, standing and facing forward as shown in FIG. 12C, or standing and facing sideways as shown in FIG. 12D. Therefore, in the same manner, the microcomputer 130 can execute the process of determining the respiration rate of the subject P.
このように、呼吸数測定装置100、101、102は、被検者Pの呼気に含まれるCO2の濃度の変動を継続的に測定するCO2センサ110として、小型の等価二酸化炭素方式のセンサを使用している。このため、被検者Pが口腔周辺を覆う各種ツールや装置に容易に取り付けることによって、低消費電力でサンプリンググレードの高いCO2の濃度の変動を精度よく検出できるようになっている。
In this way, the respiration rate measuring devices 100, 101, and 102 use a small equivalent carbon dioxide type sensor as the CO2 sensor 110 that continuously measures the fluctuations in the concentration of CO2 contained in the breath of the subject P. Therefore, by easily attaching it to various tools and devices that the subject P covers around the oral cavity, it is possible to accurately detect the fluctuations in the concentration of CO2 with low power consumption and high sampling grade.
呼吸数測定装置を使用したシステムの機能構成Functional configuration of a system using a respiration rate measuring device
次に、呼吸数測定装置を使用したシステム1の機能構成について、図面を使用しながら説明する。図13は、本開示の一実施形態に係るシステムの機能構成を示すブロック図である。なお、図13では、システム1に備わるサーバ装置10、データ記憶部20、管理者端末30、及び呼吸数測定装置100のみを取り上げ、各構成要素の機能を詳細に説明している。
Next, the functional configuration of system 1 using a respiratory rate measurement device will be described with reference to the drawings. FIG. 13 is a block diagram showing the functional configuration of a system according to an embodiment of the present disclosure. Note that FIG. 13 focuses only on the server device 10, data storage unit 20, administrator terminal 30, and respiratory rate measurement device 100 provided in system 1, and describes in detail the functions of each component.
本実施形態のシステム1では、サーバ装置10がネットワーク2を介してデータ記憶部20、管理者端末30、対象者端末40、及び呼吸数測定装置100と接続されている。これによって、サーバ装置10は、被検者Pが装着した呼吸数測定装置100から受信した呼気に含まれるCO2濃度の変動データと、被検者の呼吸以外に起因するCO2濃度の変動要因となるノイズ型体動に関する検出データとをデータベース化してデータ記憶部20で管理しながら、管理者端末30を使用する管理者に対しては、各被検者の健康状態を管理できるようにしている。
In the system 1 of this embodiment, a server device 10 is connected to a data storage unit 20, an administrator terminal 30, a subject terminal 40, and a respiration rate measuring device 100 via a network 2. As a result, the server device 10 stores in the data storage unit 20 a database of fluctuation data of the CO2 concentration contained in the exhaled breath received from the respiration rate measuring device 100 worn by the subject P and detection data related to noise-type body movements that are fluctuation factors of the CO2 concentration caused by factors other than the subject's breathing, while allowing an administrator using the administrator terminal 30 to manage the health condition of each subject.
サーバ装置10は、図13に示すように、通信部11と、操作部12と、表示部13と、制御部14と、ROM15と、RAM16とを備える。サーバ装置10は、制御部14が「プログラム」を実行することで複数の機能部を有する「呼吸数管理サーバ」を構成し、複数の機能部によって情報処理を行う。
As shown in FIG. 13, the server device 10 includes a communication unit 11, an operation unit 12, a display unit 13, a control unit 14, a ROM 15, and a RAM 16. The server device 10 configures a "respiratory rate management server" having multiple functional units by the control unit 14 executing a "program," and performs information processing using the multiple functional units.
通信部11は、ネットワーク2を介して外部とのデータの送受信をする際のインターフェースとしての機能を有する。本実施形態では、通信部11は、被検者の呼気に含まれるCO2濃度の変動データと被検者のノイズ型体動に関する検出データとを取得可能に構成されている。
The communication unit 11 has a function as an interface for transmitting and receiving data to and from the outside via the network 2. In this embodiment, the communication unit 11 is configured to be able to acquire fluctuation data of the CO2 concentration contained in the subject's breath and detection data related to the noise-type body movement of the subject.
操作部12は、サーバ装置10を動作させる際に、データの入力装置となるキーボードやマウス、タッチパネル等の制御部14に所定の指令を入力して適宜操作する機能を有する。表示部13は、制御部14による演算結果やデータベースとなるデータ記憶部20の情報等を画面表示で出力する機能を有し、例えば、液晶画面等から構成される。また、表示部13は、呼吸数測定装置100を装着した被検者の呼気に含まれるCO2の濃度の変動やノイズデータの推移グラフを表示できるようになっている。
The operation unit 12 has a function of inputting a predetermined command to the control unit 14, which is a data input device such as a keyboard, mouse, or touch panel, to operate the server device 10 as appropriate. The display unit 13 has a function of outputting the calculation results by the control unit 14 and information from the data storage unit 20, which is a database, on a screen display, and is composed of, for example, a liquid crystal screen. The display unit 13 is also capable of displaying a graph showing the fluctuation of the concentration of CO2 contained in the breath of a subject wearing the respiration rate measuring device 100 and a trend of noise data.
制御部14は、1又は複数のプロセッサがROM15に記憶されている各種プログラムを実行することによって、サーバ装置10に備わる各構成要素の動作を制御する機能を有する。また、制御部14は、これら各種処理を実行する際に、必要なデータ等を一時的に記憶するRAM16に適宜記憶させる機能を有する。このため、制御部14による制御動作によって、ROM15、RAM16、データ記憶部20へのアクセス、表示部13に対するデータの画面表示動作、操作部12に対する操作動作、外部と通信する際に通信部11をインターフェースとしてネットワーク2を介した各種情報の送受信動作等を行えるようになる。
The control unit 14 has a function of controlling the operation of each component of the server device 10 by one or more processors executing various programs stored in the ROM 15. The control unit 14 also has a function of storing the necessary data, etc., in the RAM 16, which temporarily stores the necessary data, etc., as appropriate when executing these various processes. Therefore, the control operations by the control unit 14 can access the ROM 15, RAM 16, and data storage unit 20, display data on the display unit 13, operate the operation unit 12, and send and receive various information via the network 2 using the communication unit 11 as an interface when communicating with the outside world.
制御部14は、図13に示すように、受信部14aと、判定部14bと、送信部14cと、生成部14dとを備える。受信部14aは、通信部11を介したデータ記憶部20、管理者端末30及び呼吸数測定装置100からの各種データの受信を制御する機能を有する。受信部14aは、呼吸数測定装置100から所定時間毎にサーバ装置10に送信される被検者Pの検出された被検者の呼気に含まれるCO2濃度の変動データと被検者のノイズ型体動に関する検出データを受信するように制御されている。
13, the control unit 14 includes a receiving unit 14a, a determining unit 14b, a transmitting unit 14c, and a generating unit 14d. The receiving unit 14a has a function of controlling reception of various data from the data storage unit 20, the administrator terminal 30, and the respiration rate measuring device 100 via the communication unit 11. The receiving unit 14a is controlled to receive fluctuation data of the CO2 concentration contained in the detected exhaled breath of the subject P and detection data related to the noise type body movement of the subject, which are transmitted from the respiration rate measuring device 100 to the server device 10 at predetermined time intervals.
判定部14bは、サーバ装置10の各種動作を実行する際に必要となる判定動作をする機能を有する。例えば、判定部14bは、サーバ装置10の通信部11を介して管理者端末30及び呼吸数測定装置100との各種データの送受信の有無を判定する。本実施形態では、判定部14bは、呼吸数測定装置100のCO2センサ110で測定された被検者Pの呼気に含まれるCO2濃度の変動データと、ノイズ検出センサ120で検出されたノイズ型体動に関する検出データに基づいて、被検者Pの呼吸数を判定する機能を有する。
The determination unit 14b has a function of performing a determination operation required when executing various operations of the server device 10. For example, the determination unit 14b determines whether various data is transmitted/received between the administrator terminal 30 and the respiration rate measuring device 100 via the communication unit 11 of the server device 10. In this embodiment, the determination unit 14b has a function of determining the respiration rate of the subject P based on fluctuation data of the CO2 concentration contained in the exhaled breath of the subject P measured by the CO2 sensor 110 of the respiration rate measuring device 100 and detection data related to noise-type body movement detected by the noise detection sensor 120.
送信部14cは、通信部11を介したデータ記憶部20、管理者端末30、及び呼吸数測定装置100への各種データの送信を制御する機能を有する。送信部14cは、判定部14bでの判定結果を管理者端末30に送信する機能を有する。
The transmission unit 14c has a function of controlling the transmission of various data to the data storage unit 20, the administrator terminal 30, and the respiratory rate measurement device 100 via the communication unit 11. The transmission unit 14c has a function of transmitting the judgment result of the judgment unit 14b to the administrator terminal 30.
生成部14dは、各種データを演算処理して、データを生成する機能を有する。例えば生成部14dは、表示用データを生成できる。表示用データとしては、例えば、呼吸数測定装置100で検出された被検者の呼気に含まれるCO2濃度の変動データの推移グラフと、ノイズ検出センサ120が検出した被検者のノイズ型体動に関する検出データの変動の推移グラフとを列挙することができる。そして、生成部14dが生成した表示用のデータは、通信部11を通じて管理者端末30等の外部機器に送信することができる。外部機器では、ディスプレイ等の表示部でその表示用データを、例えば表示画面として表示することができる。
The generating unit 14d has a function of performing arithmetic processing on various data to generate data. For example, the generating unit 14d can generate display data. Examples of the display data include a trend graph of fluctuation data of the CO2 concentration contained in the breath of the subject detected by the respiration rate measuring device 100 and a trend graph of fluctuation of detection data related to the noise-type body movement of the subject detected by the noise detection sensor 120. The display data generated by the generating unit 14d can be transmitted to an external device such as the administrator terminal 30 through the communication unit 11. In the external device, the display data can be displayed on a display unit such as a display screen.
データ記憶部20は、各種データを記憶可能な外部記憶装置である。本実施形態では、データ記憶部20は、被検者ごとに、呼吸数測定装置100のCO2センサ110で測定された被検者Pの呼気に含まれるCO2濃度の変動データを含む検出データと、ノイズ検出センサ120で検出されたノイズ型体動に関する検出データとを記憶するデータベースとして機能する。また、データ記憶部20は、これらのCO2センサ110の検出データとノイズ型体動に関する検出データがアップデートする度に更新されるようになっている。
The data storage unit 20 is an external storage device capable of storing various data. In this embodiment, the data storage unit 20 functions as a database for storing, for each subject, detection data including fluctuation data of the CO2 concentration contained in the breath of the subject P measured by the CO2 sensor 110 of the respiration rate measuring device 100, and detection data related to noise-type body movement detected by the noise detection sensor 120. In addition, the data storage unit 20 is updated every time the detection data of the CO2 sensor 110 and the detection data related to noise-type body movement are updated.
管理者端末30は、管理者が使用する端末装置であり、各種情報の送受信や演算処理等の必要動作が行えるように、図13に示すように、通信部31と、操作部32と、表示部33と、制御部34と、記憶部35と、を備える。管理者端末30は、サーバ装置10にアクセスすることによって、呼吸数測定装置100を装着した被検者Pの呼気に含まれるCO2濃度の変動データや変動データの推移グラフ等の検出データに関する表示用のデータを表示部33に表示できるようになっている。
The administrator terminal 30 is a terminal device used by the administrator, and includes a communication unit 31, an operation unit 32, a display unit 33, a control unit 34, and a storage unit 35, as shown in Fig. 13, so as to perform necessary operations such as transmission and reception of various information and calculation processing. The administrator terminal 30 is configured to access the server device 10, so as to display on the display unit 33 data for display related to detection data, such as fluctuation data of the CO2 concentration contained in the exhaled breath of the subject P wearing the respiration rate measuring device 100 and a trend graph of the fluctuation data.
このように本実施形態のシステム1は、サーバ装置10がネットワーク2を介してデータ記憶部20、管理者端末30及び呼吸数測定装置100と接続されている。そして、サーバ装置10は、複数の被検者から受信した検出データとノイズ型体動に関する検出データに基づいて、各被検者の呼吸数を判定して、各被検者の健康状態を管理する健康管理アプリケーションサービスの実行を制御している。このため、サーバ装置10では、健康管理の対象となる呼吸数測定装置100を装着した被検者の体調を総括的に管理できるようになる。
In this way, in the system 1 of this embodiment, the server device 10 is connected to the data storage unit 20, the administrator terminal 30, and the respiratory rate measuring device 100 via the network 2. The server device 10 determines the respiratory rate of each subject based on the detection data received from the subjects and the detection data related to noise-type body movements, and controls the execution of a health management application service that manages the health condition of each subject. As a result, the server device 10 can comprehensively manage the physical condition of the subject wearing the respiratory rate measuring device 100 who is the subject of health management.
なお、システム1のサーバ装置10は、ソフトウェアによって実現してもよく、ハードウェアによって実現してもよい。ソフトウェアによって実現する場合、CPUとなる制御部14がシステム1を作動させるプログラムを実行することによって各種機能を実現することができる。本実施形態のプログラムは、サーバ装置10に内蔵のROM15に格納してもよく、コンピュータ読み取り可能な非一時的な記録媒体に格納してもよい。
The server device 10 of the system 1 may be realized by software or by hardware. When realized by software, various functions can be realized by the control unit 14, which serves as a CPU, executing a program that operates the system 1. The program of this embodiment may be stored in the ROM 15 built into the server device 10, or may be stored in a non-transitory computer-readable recording medium.
また、システム1のサーバ装置10は、外部の記憶装置となるストレージデバイスに格納されたプログラムを読み出し、いわゆるクラウドコンピューティングにより実現してもよい。その際に、呼吸数測定装置100のCO2センサ110から得られるCO2濃度の変動データと、ノイズ検出センサ120から得られるノイズ型体動に関する検出データをクラウド上のサーバ装置10に蓄積し、時系列分析、クラスタ分析、人工知能等によりデータ解析が行われるようにしてもよい。
The server device 10 of the system 1 may also be realized by reading out a program stored in a storage device serving as an external storage device, using so-called cloud computing. In this case, the CO2 concentration fluctuation data obtained from the CO2 sensor 110 of the respiration rate measuring device 100 and the detection data related to noise-type body movements obtained from the noise detection sensor 120 may be stored in the server device 10 on the cloud, and data analysis may be performed using time series analysis, cluster analysis, artificial intelligence, etc.
実施形態の作用及び効果Functions and Effects of the Embodiments
次に、本実施形態に係る呼吸数測定装置100及びシステム1の作用及び効果について説明する。
Next, the operation and effects of the respiratory rate measuring device 100 and system 1 according to this embodiment will be described.
(1) 図14Aに示される安静時におけるCO2センサにより検出された被検者の呼気に含まれるCO2濃度の変動と、図14Bに示される体動時における当該CO2濃度の変動に関しては、共に同様にしてCO2濃度のピークを検出できる。これに対して、加速度センサにより検出された被検者の加速度の変動に関しては、安静時では、図15Aに示すように、呼吸に伴う加速度の変動のピークが検出できるのに対して、体動時では、図15Bに示すように、加速度の変動のピークの現れ方にバラツキがある。このため、体動時では、加速度センサが検出した被検者の加速度の変動に関しては、安静時と大幅に異なるので、安静時と同様にしてCO2濃度のピークを検出できない。
(1) The peak of the CO2 concentration can be detected in the same manner for the fluctuation of the CO2 concentration contained in the breath of the subject detected by the CO2 sensor at rest as shown in Fig. 14A and the fluctuation of the CO2 concentration at the time of body movement as shown in Fig. 14B. In contrast, the peak of the acceleration fluctuation of the subject detected by the acceleration sensor can be detected at rest as shown in Fig. 15A, whereas the peak of the acceleration fluctuation varies during body movement as shown in Fig. 15B. Therefore, during body movement, the fluctuation of the acceleration of the subject detected by the acceleration sensor is significantly different from that at rest, and the peak of the CO2 concentration cannot be detected in the same manner as during rest.
そこで、本発明者らは、体動変化の影響を受けずに呼吸数を測定すると言う課題を解決するために鋭意検討したところ、被検者の呼気に含まれるCO2濃度の変動に着目し,小型のウェアラブルセンサを用いてCO2濃度変化をモニタリングすることによって呼吸状態の連続的モニタリングの可能性を見出すに至った。
Therefore, the inventors conducted extensive research to solve the problem of measuring respiratory rate without being affected by changes in body movement. They focused on the fluctuations in the CO2 concentration in the subject's breath and discovered the possibility of continuously monitoring respiratory status by monitoring changes in CO2 concentration using a small wearable sensor.
(2) 本発明者らは、前述した課題を解決するために鋭意検討したところ、等価二酸化炭素方式のCO2センサのCO2濃度の変動に係る測定データをバンドパスフィルタで処理した出力データについて、所定の閾値を超えた回数に基づいて呼吸数を推定した値が被検者の実際の呼吸回数と相関性があることを見出した。このため、本実施形態では、小型のウェアラブルセンサとして、等価二酸化炭素方式のCO2センサ110を用いている。そして、等価二酸化炭素方式のCO2センサ110の測定データをバンドパスフィルタで処理した出力データが所定の閾値を超えた回数をカウントすることによって、容易に被検者の呼吸数を精度よく推定できるようになっている。
(2) The inventors of the present invention have conducted extensive research to solve the above-mentioned problems, and have found that the respiration rate estimated based on the number of times that the output data obtained by processing the measurement data related to the fluctuation of the CO2 concentration of the equivalent carbon dioxide type CO2 sensor with a bandpass filter exceeds a predetermined threshold has a correlation with the actual respiration rate of the subject. For this reason, in this embodiment, the equivalent carbon dioxide type CO2 sensor 110 is used as a small wearable sensor. Then, by counting the number of times that the output data obtained by processing the measurement data of the equivalent carbon dioxide type CO2 sensor 110 with a bandpass filter exceeds a predetermined threshold, the respiration rate of the subject can be easily estimated with high accuracy.
(3) 呼吸数測定装置100は、被検者の呼気に含まれるCO2濃度の変動データをモニタリングすることによって、被検者の呼吸波形パターンを判定できるようになる。このため、被検者の呼吸数のみでなく、呼吸の深さ(振幅)や呼吸間隔等の呼吸に関する生体情報も把握できるので、被検者の呼吸波形パターンから、被検者の健康状態や疾患状態を把握することができるようになる。
(3) The respiration rate measuring device 100 can determine the respiration waveform pattern of the subject by monitoring the fluctuation data of the CO2 concentration contained in the subject's breath. Therefore, not only the respiration rate of the subject but also biological information related to respiration such as respiration depth (amplitude) and respiration interval can be grasped, so that the health condition or disease state of the subject can be grasped from the respiration waveform pattern of the subject.
例えば、図16Aに示す正常時の呼吸波形パターンを16~20回/分に仮定すると、図16Bに示す25回以上/分の頻呼吸時の呼吸波形パターンを検出した場合、それは被検者の発熱や興奮状態との関連を示唆し得る。
For example, assuming that the normal breathing waveform pattern shown in Figure 16A is 16 to 20 breaths per minute, if a breathing waveform pattern during tachypnea of 25 or more breaths per minute as shown in Figure 16B is detected, this may suggest a connection to the subject's fever or excited state.
図16Cに示すように、呼吸数が正常時と変わらないが呼吸波形の振幅が大きく、呼吸の深さが深い呼吸波形パターンを検出した場合、それは被検者の貧血や甲状腺機能亢進症との関連を示唆し得る。
As shown in Figure 16C, if a respiratory waveform pattern is detected in which the respiratory rate is the same as normal but the amplitude of the respiratory waveform is large and the depth of breathing is deep, this may suggest an association with anemia or hyperthyroidism in the subject.
図16Dに示すように、呼吸数が正常時と変わらないが呼吸波形の振幅が小さく、呼吸の深さが浅い呼吸波形パターンを検出した場合、それは被検者の呼吸筋の麻痺時や睡眠薬・モルヒネ中毒との関連を示唆し得る。
As shown in Figure 16D, if a breathing waveform pattern is detected in which the breathing rate is normal but the amplitude of the breathing waveform is small and the breathing depth is shallow, this may suggest an association with paralysis of the subject's respiratory muscles or intoxication with sleeping pills or morphine.
図16Eに示すように、9回以下/分の徐呼吸(遅呼吸)の呼吸波形パターンを検出した場合、それは被検者の脳圧亢進時や気管支閉塞との関連を示唆し得る。
As shown in Figure 16E, when a bradypnea (slow breathing) pattern of 9 breaths/min or less is detected, this may indicate an association with increased intracranial pressure or bronchial obstruction in the subject.
図16Fに示すように、正常時よりも呼吸数も呼吸の深さも増加している呼吸波形パターンを検出した場合、それは被検者が運動時、高熱時、神経症との関連を示唆し得る。
As shown in Figure 16F, if a respiratory waveform pattern is detected in which the respiratory rate and depth are increased compared to normal, this may suggest that the subject is exercising, has a high fever, or is suffering from neurosis.
呼吸数測定装置100は、呼吸波形パターンを検出できる。そのため、例えば、図17Aに示すように、呼吸の深さや数が次第に増加してから次第に減少して最後に無呼吸となるような周期波形を繰り返すチェーン・ストークス型の呼吸波形パターンを検出した場合、それは、被検者が脳疾患、尿毒症、心疾患、中毒や各種疾患の末期であることとの関係を示唆し得る。
The respiration rate measuring device 100 can detect respiration waveform patterns. Therefore, for example, as shown in FIG. 17A, when a Cheyne-Stokes type respiration waveform pattern is detected, in which the depth and rate of breathing gradually increase, then gradually decrease, and finally apnea occurs, this may suggest that the subject is in the final stages of brain disease, uremia, heart disease, poisoning, or various other diseases.
図17Bに示すように、同じ深さの浅い呼吸が4~5回続いて、次に無呼吸となり、これを繰り返すような周期波形のビオー型の呼吸波形パターンを検出した場合、それは被検者が脳腫瘍、髄膜炎、延髄損傷時こととの関係を示唆し得る。
As shown in Figure 17B, if a Biot-type respiratory waveform pattern is detected in which the same shallow breathing is repeated four or five times, followed by apnea, and this cycle is repeated, this may suggest that the subject has a brain tumor, meningitis, or spinal cord injury.
図17Cに示すように、極端に大きい呼吸が持続的に発生して、高い雑音を伴うような周期波形のクスマウル型の呼吸波形パターンを検出した場合、それは被検者が糖尿小生昏睡時、尿毒症性昏睡時であることとの関係を示唆し得る。
As shown in Figure 17C, if a Kussmaul-type respiratory waveform pattern is detected, which is a periodic waveform with sustained, extremely loud breathing and high-pitched noise, this may indicate that the subject is in a diabetic or uremic coma.
(4) 呼吸状態をモニタリングする関連技術となる手法として、例えば、ECG(Electrocardiogram)と併用した胸郭インピーダンスによるものや、脈波を解析して呼吸数を計測する手法がある。しかしながら、ECGと併用した胸郭インピーダンスによる手法や脈波を解析する手法では、体動変化による影響が大きく、呼吸数を測定するには、被検者を安静状態にする必要がある。また、臨床の現場においては、呼気中のCO2濃度を測定するカプノメータが呼吸状態の監視に広く使用されているが、携帯性に欠けることから、避難所等における高齢者の連続的モニタリングに適用するのが困難である。
(4) Related techniques for monitoring respiratory status include, for example, a method using thoracic impedance in combination with an ECG (Electrocardiogram) and a method for measuring respiratory rate by analyzing pulse waves. However, the method using thoracic impedance in combination with an ECG and the method using pulse waves are significantly affected by changes in body movement, and the subject needs to be in a resting state to measure the respiratory rate. In addition, in clinical settings, capnometers that measure the CO2 concentration in exhaled air are widely used to monitor respiratory status, but due to their lack of portability, they are difficult to apply to continuous monitoring of elderly people in evacuation shelters, etc.
また、呼吸数測定装置100は、CO2センサ110の検出データから呼吸数を判定する際に、呼吸以外に起因するCO2濃度変化の影響を軽減するために、バンドパスフィルタ処理をCO2センサ110の検出データに施している。しかしながら、被検者が咳や欠伸、会話等を伴う状態で呼吸した場合では、咳や欠伸、会話等によって発生するCO2濃度変化が呼吸に近い周波数成分を有することがある。このため、CO2センサ110の検出データに対してバンドパスフィルタ処理を行っても、被検者の呼吸数を正確に判定するのに妨げになるノイズ型体動となる咳や欠伸、会話等が伴う呼吸が除去されないので、被検者の呼吸数を適正な回数に判定できないことがある。
In addition, when the respiration rate measuring device 100 determines the respiration rate from the detection data of the CO2 sensor 110, in order to reduce the influence of CO2 concentration changes caused by factors other than respiration, the detection data of the CO2 sensor 110 is subjected to bandpass filter processing. However, when the subject breathes while coughing, yawning, talking, etc., the CO2 concentration changes caused by coughing, yawning, talking, etc. may have frequency components close to respiration. Therefore, even if bandpass filter processing is performed on the detection data of the CO2 sensor 110, breathing accompanied by coughing, yawning, talking, etc., which is a noise type body movement that hinders accurate determination of the subject's respiration rate, is not removed, so the subject's respiration rate may not be determined to be an appropriate number.
このため、呼吸数測定装置100は、CO2センサ110の近傍に被検者の呼吸以外に起因するCO2濃度の変動要因となるノイズ型体動を検出するノイズ検出センサ120を設けている。呼吸数測定装置100は、このようにノイズ検出センサ120を設けることによって、咳や欠伸、会話等を伴う呼吸数をノイズデータとして除去してから、被検者の呼吸数を判定するようにしている。これによって、被検者の体動変化に加えて、咳や欠伸、会話等の呼吸以外の心肺機能の動作による影響も除去して、より精度よく被検者の呼吸数を判定できるようになる。
For this reason, the respiration rate measuring device 100 is provided with a noise detection sensor 120 near the CO2 sensor 110 to detect noise-type body movements that are a factor in fluctuations in the CO2 concentration caused by factors other than the subject's breathing. By providing the noise detection sensor 120 in this way, the respiration rate measuring device 100 determines the subject's respiration rate after removing the respiration rate accompanied by coughing, yawning, talking, etc. as noise data. This makes it possible to more accurately determine the subject's respiration rate by removing the effects of cardiopulmonary functions other than breathing, such as coughing, yawning, and talking, in addition to changes in the subject's body movements.
特に、呼吸数測定装置100は、ノイズ検出センサ120として、マイクや加速度センサを使用した場合に、CO2センサ110の検出したCO2濃度の変動データからノイズ検出センサ120でノイズ型体動が検出された期間の検出データを呼吸数としてカウントしないノイズ除去を行った後に呼吸数を判定する。呼吸数測定装置100は、このように動作することによって、咳や欠伸、会話等の呼吸以外の心肺機能の動作の影響による呼吸数の誤検知を低減することができる。
In particular, when a microphone or an acceleration sensor is used as the noise detection sensor 120, the respiration rate measuring device 100 performs noise removal from the fluctuation data of the CO2 concentration detected by the CO2 sensor 110, and then determines the respiration rate after not counting, as the respiration rate, detection data during a period in which noise-type body movement is detected by the noise detection sensor 120. By operating in this manner, the respiration rate measuring device 100 can reduce erroneous detection of the respiration rate due to the influence of cardiopulmonary actions other than breathing, such as coughing, yawning, and talking.
また、呼吸数測定装置100は、ノイズ検出センサ120として、湿度センサや圧力センサを使用した場合に、CO2センサ110の測定データの波形パターンと、ノイズ検出センサ120が検出したノイズ型体動に関する検出データの波形パターンとの解析結果に基づく推定後に呼吸数を判定する。呼吸数測定装置100は、このように動作することによって、同様にして咳や欠伸、会話等の呼吸以外の心肺機能の動作の影響による呼吸数の誤検知を低減することができる。
Furthermore, when a humidity sensor or a pressure sensor is used as the noise detection sensor 120, the respiration rate measuring device 100 determines the respiration rate after estimation based on the analysis results of the waveform pattern of the measurement data of the CO2 sensor 110 and the waveform pattern of the detection data related to the noise-type body movement detected by the noise detection sensor 120. By operating in this manner, the respiration rate measuring device 100 can similarly reduce erroneous detection of the respiration rate due to the influence of cardiopulmonary movements other than breathing, such as coughing, yawning, and talking.
このように、本実施形態の呼吸数測定装置100、システム1及びプログラムを適用することによって、被検者の体動変化や咳、欠伸、会話等の呼吸以外の心肺機能の動作と言ったノイズ型体動の影響を受けずに、被検者の呼吸数を精度よく判定できるようになる。特に、呼吸数測定装置100は、被検者の呼気に含まれるCO2濃度の変動データの検出手段として、小型な等価二酸化炭素方式のCO2センサを使用している。このため、被検者の口腔周辺を覆う衛生用マスクやフェイスシールド等の装着品や、酸素マスク等の被検者の口腔周辺で使用する各種医療機器にCO2センサを容易に取り付けられるので、ウェアラブルで汎用性の高い被検者の呼吸数の測定が可能となる。
In this way, by applying the respiration rate measuring device 100, the system 1, and the program of this embodiment, the respiration rate of the subject can be accurately determined without being affected by noise-type body movements such as changes in the subject's body movements and cardiopulmonary functions other than breathing, such as coughing, yawning, and talking. In particular, the respiration rate measuring device 100 uses a small CO2 sensor of the equivalent carbon dioxide type as a means for detecting fluctuation data of the CO2 concentration contained in the subject's breath. Therefore, the CO2 sensor can be easily attached to a sanitary mask or face shield that covers the subject's mouth area, or various medical devices such as an oxygen mask that are used around the subject's mouth area, making it possible to measure the subject's respiration rate in a wearable and versatile manner.
(5) 呼吸数測定装置100は、被検者の呼気に含まれるCO2濃度の変動を検出するCO2センサ110として、小型なウェアラブルセンサを使用している。このため、例えば、災害時の避難所等で高齢者等の容態急変に対応するために、被検者となる高齢者等の衛生用マスクやフェイスシールド等にCO2センサ110を含むセンサ本体105を取り付けることによって、簡便に被検者の呼吸数を判定して、各被検者の健康状態を管理できるようになる。特に、医療者のリソースが十分でない過疎地における避難所でも、簡易に装着可能なウェアラブルセンサを用いることによって、遠隔にて被検者の呼吸数や呼吸リズム、深さ、呼吸パターン等の呼吸に関する広範なバイタル情報をモニタリングできるので、高齢者等の被検者の健康状態を適切に管理することが可能になる。
(5) The respiration rate measuring device 100 uses a small wearable sensor as the CO2 sensor 110 that detects the variation of the CO2 concentration contained in the breath of the subject. Therefore, for example, in order to respond to a sudden change in the condition of the elderly or the like in an evacuation shelter during a disaster, the sensor body 105 including the CO2 sensor 110 can be attached to the sanitary mask or face shield of the elderly or the like who will be the subject, and the respiration rate of the subject can be easily determined and the health condition of each subject can be managed. In particular, even in an evacuation shelter in a depopulated area where medical resources are insufficient, a wide range of vital information related to breathing, such as the subject's respiration rate, respiration rhythm, depth, and respiration pattern, can be remotely monitored by using a wearable sensor that can be easily attached, making it possible to appropriately manage the health condition of subjects such as the elderly.
変形例Variations
前記実施形態は本開示の一態様の例示である。前記実施形態は以下のような例示する変形例として実施することも可能である。
The above embodiment is an example of one aspect of the present disclosure. The above embodiment can also be implemented as the following exemplary modified examples.
前記実施形態では、呼吸数測定装置100がセンサ本体105とマイクロコンピュータ130とを備える構成を例示した。しかしながら、センサ本体105として、マイクロコンピュータを備えるセンサモジュールを使用することができる。この場合、マイクロコンピュータ130は、センサ本体105と一体化し得る。即ち、センサ本体105は、測定したデータを演算処理するマイクロコンピュータ130を一体に備えるものを使用し得る。この場合、接続線140は、その使用を省略し得る。
In the above embodiment, the respiration rate measuring device 100 is exemplified as including a sensor body 105 and a microcomputer 130. However, a sensor module including a microcomputer can be used as the sensor body 105. In this case, the microcomputer 130 can be integrated with the sensor body 105. That is, the sensor body 105 can be integrated with the microcomputer 130 that processes the measured data. In this case, the connection line 140 can be omitted.
前記実施形態では、マイクロコンピュータ130が、操作部133と表示部134とを備える構成を例示した。しかしながら、それらはマイクロコンピュータ130の必須の構成ではなく、省略することができる。この場合、操作部133と表示部134に対応する機能は、例えばスマートフォンやタブレット等のコンピュータ装置が備える構成としてもよい。このことは、即ち、マイクロコンピュータ130は、単一のハードウェア装置で構成することが必須ではないことを意味する。したがって、マイクロコンピュータ130は、1又は複数のハードウェア装置により構成し得る。
In the above embodiment, the microcomputer 130 is exemplified as having an operation unit 133 and a display unit 134. However, these are not essential components of the microcomputer 130 and can be omitted. In this case, the functions corresponding to the operation unit 133 and the display unit 134 may be provided in a computing device such as a smartphone or tablet. This means that the microcomputer 130 does not necessarily have to be configured as a single hardware device. Therefore, the microcomputer 130 can be configured as one or more hardware devices.
本開示の各実施形態について詳細に説明したが、本開示の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本開示の範囲に含まれるものとする。
Although each embodiment of the present disclosure has been described in detail, it will be readily apparent to those skilled in the art that many modifications are possible that do not substantially depart from the novelties and effects of the present disclosure. Therefore, all such modifications are intended to be included within the scope of the present disclosure.
例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、呼吸数測定装置の構成、動作も本開示の一実施形態で説明したものに限定されず、種々の変形実施が可能である。
For example, a term that is described at least once in the specification or drawings together with a different term having a broader or synonymous meaning may be replaced with that different term anywhere in the specification or drawings. In addition, the configuration and operation of the respiration rate measuring device are not limited to those described in one embodiment of the present disclosure, and various modifications are possible.
1 システム
2 ネットワーク
10 サーバ装置
11、31 通信部
12、32 操作部
13、33 表示部
14、34 制御部
14a 受信部
14b 判定部
14c 送信部
14d 生成部
15 ROM
16 RAM
20 データ記憶部
30 管理者端末
35 記憶部
100 呼吸数測定装置
105 センサ本体
110 CO2センサ(第1のセンサデバイス)
120 ノイズ検出センサ(第2のセンサデバイス)
130 マイクロコンピュータ
131 制御部
131a 受信部
131b 判定部
131c 送信部
132 通信部
133 操作部
134 表示部
135 ROM
136 RAM
137 データ処理部
140 接続線
140a 接続線
140b 接続線
150 接続部材
151 フック
152 ネックレス部材(ウェアラブル装具、身体用装具)
M1 衛生用マスク(ウェアラブル装具、頭部用装具)
M2 酸素マスク(ウェアラブル装具、頭部用装具)
M3 加熱式加湿器(ウェアラブル装具、頭部用装具)
M3a チューブ Reference Signs List 1System 2 Network 10 Server device 11, 31 Communication unit 12, 32 Operation unit 13, 33 Display unit 14, 34 Control unit 14a Receiving unit 14b Determination unit 14c Transmitting unit 14d Generation unit 15 ROM
16 RAM
20Data storage unit 30 Administrator terminal 35 Storage unit 100 Respiration rate measuring device 105 Sensor body 110 CO2 sensor (first sensor device)
120 Noise detection sensor (second sensor device)
130Microcomputer 131 Control section 131a Receiving section 131b Determination section 131c Transmitting section 132 Communication section 133 Operation section 134 Display section 135 ROM
136 RAM
137Data processing unit 140 Connection line 140a Connection line 140b Connection line 150 Connection member 151 Hook 152 Necklace member (wearable equipment, body equipment)
M1 Hygienic mask (wearable device, head device)
M2 Oxygen Mask (Wearable Equipment, Headgear)
M3 Heated Humidifier (Wearable Device, Head Device)
M3a Tube
2 ネットワーク
10 サーバ装置
11、31 通信部
12、32 操作部
13、33 表示部
14、34 制御部
14a 受信部
14b 判定部
14c 送信部
14d 生成部
15 ROM
16 RAM
20 データ記憶部
30 管理者端末
35 記憶部
100 呼吸数測定装置
105 センサ本体
110 CO2センサ(第1のセンサデバイス)
120 ノイズ検出センサ(第2のセンサデバイス)
130 マイクロコンピュータ
131 制御部
131a 受信部
131b 判定部
131c 送信部
132 通信部
133 操作部
134 表示部
135 ROM
136 RAM
137 データ処理部
140 接続線
140a 接続線
140b 接続線
150 接続部材
151 フック
152 ネックレス部材(ウェアラブル装具、身体用装具)
M1 衛生用マスク(ウェアラブル装具、頭部用装具)
M2 酸素マスク(ウェアラブル装具、頭部用装具)
M3 加熱式加湿器(ウェアラブル装具、頭部用装具)
M3a チューブ Reference Signs List 1
16 RAM
20
120 Noise detection sensor (second sensor device)
130
136 RAM
137
M1 Hygienic mask (wearable device, head device)
M2 Oxygen Mask (Wearable Equipment, Headgear)
M3 Heated Humidifier (Wearable Device, Head Device)
M3a Tube
Claims (15)
- 呼吸数を測定する呼吸数測定装置において、
被検者の連続する呼気中のCO2濃度の変動データを取得する第1のセンサデバイスと、
前記第1のセンサデバイスの測定期間中に生じた前記被検者のノイズ型体動を検出する第2のセンサデバイスと、
前記変動データのうち前記ノイズ型体動の発生時間に対応する前記変動データの部分を除き、前記変動データのピーク数に基づき前記呼吸数の判定を行う判定部と、を備える、
呼吸数測定装置。 In a respiration rate measuring device for measuring respiration rate,
A first sensor device for acquiring fluctuation data of CO2 concentration in the subject's continuous exhaled breath;
a second sensor device that detects noise-type body movements of the subject occurring during a measurement period of the first sensor device;
and a determination unit that excludes a portion of the variation data corresponding to an occurrence time of the noise-type body movement from the variation data and determines the respiratory rate based on a number of peaks in the variation data.
Respiratory rate measuring device. - 前記判定部は、前記変動データを周波数変換し、前記被検者の自然呼吸を含む所定の周波数帯域に対応する前記変動データが、所定の閾値を超えた回数に基づいて前記呼吸数を測定する、
請求項1記載の呼吸数測定装置。 the determining unit performs frequency conversion on the variation data, and measures the respiratory rate based on the number of times that the variation data corresponding to a predetermined frequency band including the natural breathing of the subject exceeds a predetermined threshold.
2. The respiration rate measuring device according to claim 1. - 前記判定部は、前記変動データのうち前記ノイズ型体動の発生時間に対応する前記変動データの部分を除いた前記変動データのピーク数をカウントすることにより前記呼吸数を判定する、
請求項1記載の呼吸数測定装置。 the determination unit determines the respiratory rate by counting the number of peaks in the variation data excluding a portion of the variation data corresponding to an occurrence time of the noise-type body movement.
2. The respiration rate measuring device according to claim 1. - 前記判定部は、前記変動データの波形パターンと、前記第2のセンサデバイスの前記ノイズ型体動の検出データの波形パターンとの解析結果に基づく推定によって前記呼吸数を判定する、
請求項1記載の呼吸数測定装置。 the determination unit determines the respiratory rate by estimation based on an analysis result of a waveform pattern of the variation data and a waveform pattern of the detection data of the noise-type body movement of the second sensor device.
2. The respiration rate measuring device according to claim 1. - 前記判定部は、前記変動データのうち所定の時間内に前記ノイズ型体動の発生がない場合における前記変動データのピーク数をカウントすることにより前記呼吸数を判定する、
請求項1記載の呼吸数測定装置。 the determination unit determines the respiratory rate by counting the number of peaks in the variation data when the noise-type body movement does not occur within a predetermined time period.
2. The respiration rate measuring device according to claim 1. - 前記第2のセンサデバイスは、マイク素子、加速度センサ、湿度センサ、圧力センサ又はCO2センサの少なくとも何れかである、
請求項1記載の呼吸数測定装置。 The second sensor device is at least one of a microphone element, an acceleration sensor, a humidity sensor, a pressure sensor, and a CO2 sensor.
2. The respiration rate measuring device according to claim 1. - さらに、前記呼吸数測定装置は、前記変動データと前記ノイズ型体動の検出データとを送信する通信部を備える、
請求項1記載の呼吸数測定装置。 Further, the respiration rate measuring device includes a communication unit that transmits the variation data and the detection data of the noise-type body movement.
2. The respiration rate measuring device according to claim 1. - 前記ノイズ型体動は、前記被検者の体動変化又は前記被検者の呼吸以外の心肺機能の動作の少なくとも何れかである、
請求項1記載の呼吸数測定装置。 The noise type body movement is at least one of a change in the body movement of the subject or a cardiopulmonary function other than breathing of the subject.
2. The respiration rate measuring device according to claim 1. - 前記第1のセンサデバイスは、等価二酸化炭素方式のCO2センサである、
請求項1記載の呼吸数測定装置。 The first sensor device is a CO2 sensor of the equivalent carbon dioxide type;
2. The respiration rate measuring device according to claim 1. - 前記第1のセンサデバイスは、前記被検者に装着可能なウェアラブルセンサである、
請求項1記載の呼吸数測定装置。 The first sensor device is a wearable sensor that can be worn by the subject.
2. The respiration rate measuring device according to claim 1. - さらに、前記呼吸数測定装置は、前記被検者が装着する頭部用装具、身体用装具の少なくとも何れかの装具に取り付ける取付部材を備える、
請求項1記載の呼吸数測定装置。 Furthermore, the respiration rate measuring device includes an attachment member for attaching to at least one of a head attachment and a body attachment worn by the subject.
2. The respiration rate measuring device according to claim 1. - CO2センサを備える呼吸数測定装置において、
前記CO2センサにより被検者の連続する呼気中のCO2濃度の変動データを取得することと、
前記変動データを周波数変換した周波数データを生成することと、
前記周波数データのうち、前記被検者の自然呼吸を含む所定の周波数帯域に対応する前記CO2濃度の前記変動データについて、所定の閾値を超える前記CO2濃度のピーク数を呼吸数とすることと、を含む、
呼吸数測定方法。 In a respiration rate measuring device equipped with a CO2 sensor,
Obtaining fluctuation data of CO2 concentration in the subject's continuous exhaled breath by the CO2 sensor;
generating frequency data by frequency-converting the fluctuation data;
The method includes: determining, as a respiration rate, a number of peaks of the CO2 concentration exceeding a predetermined threshold value for the fluctuation data of the CO2 concentration corresponding to a predetermined frequency band including the natural respiration of the subject, among the frequency data;
How to measure respiratory rate. - 少なくとも1つのプロセッサにより実行されるように構成されたプログラムであって、
請求項12に記載の呼吸数測定方法を実行する命令を含む、
プログラム。 A program configured to be executed by at least one processor, comprising:
comprising instructions for carrying out the method of claim 12,
program. - 少なくとも1つのプロセッサを、少なくとも通信部、判定部として機能させるプログラムであって、
前記通信部は、被検者の呼気中のCO2濃度の変動データと前記被検者のノイズ型体動に関する検出データとを取得可能に構成され、
前記判定部は、前記変動データと前記検出データに基づいて前記被検者の呼吸数を判定可能に構成される、
プログラム。 A program for causing at least one processor to function as at least a communication unit and a determination unit,
The communication unit is configured to be able to acquire fluctuation data of a CO2 concentration in the breath of the subject and detection data related to noise-type body movements of the subject;
The determination unit is configured to be able to determine the respiratory rate of the subject based on the variation data and the detection data.
program. - 少なくとも1つのプロセッサと、
前記プロセッサを少なくとも通信部、判定部として機能させるプログラムと、を備えるシステムであって、
前記通信部は、被検者の呼気に含まれるCO2濃度の変動データと前記被検者のノイズ型体動に関する検出データとを取得可能に構成され、
前記判定部は、前記変動データと前記検出データに基づいて前記被検者の呼吸数を判定可能に構成される、
システム。 At least one processor;
A system including: a program that causes the processor to function as at least a communication unit and a determination unit;
The communication unit is configured to be able to acquire fluctuation data of a CO2 concentration contained in the subject's exhaled breath and detection data related to noise-type body movements of the subject;
The determination unit is configured to be able to determine the respiratory rate of the subject based on the variation data and the detection data.
system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-184426 | 2022-11-17 | ||
JP2022184426 | 2022-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024106544A1 true WO2024106544A1 (en) | 2024-05-23 |
Family
ID=91084589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/041548 WO2024106544A1 (en) | 2022-11-17 | 2023-11-17 | Respiration count measurement device, respiration count measurement method, program, and system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024106544A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS552429A (en) * | 1978-06-22 | 1980-01-09 | Tokyo Shibaura Electric Co | Apparatus for monitoring respiration of new born baby |
JPH10288615A (en) * | 1997-04-14 | 1998-10-27 | Matsushita Electric Ind Co Ltd | Exhalation metabolism measuring device |
JP2003532442A (en) * | 1999-06-08 | 2003-11-05 | オリディオン メディカル リミティド | Waveform interpreter for respiratory analysis |
JP2010233611A (en) * | 2009-03-30 | 2010-10-21 | Nippon Koden Corp | Respiratory waveform analyzer |
-
2023
- 2023-11-17 WO PCT/JP2023/041548 patent/WO2024106544A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS552429A (en) * | 1978-06-22 | 1980-01-09 | Tokyo Shibaura Electric Co | Apparatus for monitoring respiration of new born baby |
JPH10288615A (en) * | 1997-04-14 | 1998-10-27 | Matsushita Electric Ind Co Ltd | Exhalation metabolism measuring device |
JP2003532442A (en) * | 1999-06-08 | 2003-11-05 | オリディオン メディカル リミティド | Waveform interpreter for respiratory analysis |
JP2010233611A (en) * | 2009-03-30 | 2010-10-21 | Nippon Koden Corp | Respiratory waveform analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200359934A1 (en) | Body-worn monitor for measuring respiration rate | |
CN108289639B (en) | Biometric information monitoring system | |
JP5859979B2 (en) | Health indicators based on multivariate residuals for human health monitoring | |
EP2395911B1 (en) | Detecting sleep disorders using heart activity | |
CA3103625A1 (en) | Apparatus and method for detection of physiological events | |
CN107743373B (en) | System for increasing patient compliance with upper respiratory tract disease-related therapy | |
US12089949B2 (en) | Sleep status detection for apnea-hypopnea index calculation | |
Yüzer et al. | A novel wearable real-time sleep apnea detection system based on the acceleration sensor | |
US20120101399A1 (en) | Respiratory Monitoring System | |
Qiu et al. | A wearable bioimpedance chest patch for real-time ambulatory respiratory monitoring | |
Whitlock et al. | A-spiro: Towards continuous respiration monitoring | |
KR20140003867A (en) | System and method for monitoring sleep apnea and stage of sleep | |
US20220015667A1 (en) | Systems and methods for obtaining and monitoring respiration, cardiac function, and other health data from physical input | |
CA3100475C (en) | Apparatus and a method for monitoring a patient during his sleep | |
WO2018165634A1 (en) | Systems, devices, and methods for monitoring and modulation of therapeutic procedures | |
JP7296671B2 (en) | Biological monitoring system and its program | |
WO2024106544A1 (en) | Respiration count measurement device, respiration count measurement method, program, and system | |
JP6716888B2 (en) | Respiratory analysis device, respiratory analysis method and program | |
JP7090350B2 (en) | Biological monitoring system and its program | |
CN108814607A (en) | A kind of clinic device for detecting respiratory and method | |
US20240315661A1 (en) | Systems, devices, and methods for performing active auscultation and detecting acoustic signals and/or sonic energy measurements | |
US20240099592A1 (en) | Monitoring of breathing and heart function | |
KR20190032577A (en) | Improved Breathing Monitor and System | |
CA3175250A1 (en) | Systems and methods for obtaining and monitoring respiration, cardiac function, and other health data from physical input | |
JP2017158635A (en) | Body motion wave analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23891689 Country of ref document: EP Kind code of ref document: A1 |