Nothing Special   »   [go: up one dir, main page]

WO2024100947A1 - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
WO2024100947A1
WO2024100947A1 PCT/JP2023/029078 JP2023029078W WO2024100947A1 WO 2024100947 A1 WO2024100947 A1 WO 2024100947A1 JP 2023029078 W JP2023029078 W JP 2023029078W WO 2024100947 A1 WO2024100947 A1 WO 2024100947A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
passivation film
crystalline silicon
glass frit
Prior art date
Application number
PCT/JP2023/029078
Other languages
English (en)
French (fr)
Inventor
聖也 今野
秀雄 田辺
元希 齋藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2023/012085 external-priority patent/WO2023190282A1/ja
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024100947A1 publication Critical patent/WO2024100947A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • the present invention relates to a crystalline silicon solar cell that uses a crystalline silicon substrate.
  • Semiconductor devices such as crystalline silicon solar cells that use crystalline silicon, which is made by processing single crystal silicon or polycrystalline silicon into a flat plate, as a substrate generally have electrodes formed on the surface of the silicon substrate using a conductive paste for electrode formation in order to make electrical contact with the outside of the device.
  • electrodes are formed in this way, the production volume of crystalline silicon solar cells has increased significantly in recent years.
  • These solar cells have an impurity diffusion layer, an anti-reflective film (passivation film), and a light-incident surface electrode on one surface of the crystalline silicon substrate, and a back electrode on the other surface.
  • the light-incident surface electrode and back electrode allow the electricity generated by the crystalline silicon solar cell to be extracted to the outside.
  • Electrodes for crystalline silicon solar cells are formed using a conductive paste that contains conductive powder, glass frit, organic binder, solvent and other additives.
  • Silver particles are mainly used as the conductive powder.
  • Patent Document 1 describes a method for manufacturing a crystalline silicon solar cell.
  • Patent Document 1 describes the use of a conductive paste for forming electrodes that contains an inorganic material to form electrodes for crystalline silicon solar cells.
  • Patent Document 1 describes that the inorganic material is composed of conductive particles and glass frit.
  • Patent document 2 describes a process for improving the ohmic contact behavior between a contact grid and an emitter layer in a silicon solar cell. Specifically, the process described in patent document 2 involves applying a predetermined voltage in the forward and reverse directions of the silicon solar cell, guiding a point light source to the solar surface side of the silicon solar cell, thereby irradiating a cross section of a subsection on the solar surface side.
  • Patent Document 3 describes a conductive composition for forming an electrode for a solar cell, which contains silver powder, glass powder containing PbO, and a vehicle made of an organic substance.
  • the conductive composition is a conductive composition for forming an electrode that penetrates a silicon nitride layer and is conductive with an n-type semiconductor layer formed below the silicon nitride layer.
  • Patent Document 3 also describes that the basicity of the glass powder contained in the conductive composition is 0.6 to 0.8, and that the glass transition point is 300°C to 450°C.
  • FIG. 5 shows an example of a schematic cross-sectional view of a typical crystalline silicon solar cell.
  • the electrode pattern of the light-incident surface electrode 20 (surface electrode) is printed on the passivation film 2 that functions as the passivation film 2 using a conductive paste by screen printing or the like, the conductive paste is dried, and the light-incident surface electrode 20 is formed by baking at a predetermined temperature.
  • the conductive paste fires through the passivation film 2 during baking at this predetermined temperature. This fire-through allows the light-incident surface electrode 20 to be formed so as to be in contact with the impurity diffusion layer 4.
  • the fire-through refers to etching the passivation film 2, which is an insulating film, with glass frit or the like contained in the conductive paste to electrically connect the light-incident surface electrode 20 and the impurity diffusion layer 4.
  • the electrode pattern when the electrode pattern is baked, the electrode pattern fires through the passivation film 2, causing the passivation film 2 to disappear, and the light-incident surface electrode 20 and the impurity diffusion layer 4 are in contact.
  • a pn junction is formed at the interface between the n-type crystalline silicon substrate 1 and the impurity diffusion layer 4. Most of the light incident on the crystalline silicon solar cell passes through the passivation film 2 and the impurity diffusion layer 4 and enters the n-type crystalline silicon substrate 1.
  • FIG 2 shows an example of a schematic diagram of the light incident surface of a crystalline silicon solar cell.
  • a busbar electrode (light incident busbar electrode 20a) and a light incident finger electrode 20b (sometimes simply referred to as “finger electrode 20b") are arranged on the light incident surface of the crystalline silicon solar cell as the light incident surface electrode 20.
  • the electrons of the electron-hole pairs generated by the incident light entering the crystalline silicon solar cell are collected by the finger electrode 20b and are further collected by the light incident busbar electrode 20a.
  • a metal ribbon for interconnection, surrounded by solder, is soldered to the light incident busbar electrode 20a, and current is taken out to the outside by this metal ribbon.
  • the light-to-electricity conversion efficiency of a solar cell (sometimes simply called “conversion efficiency") is expressed as the product of the fill factor (FF), open circuit voltage (Voc), and short circuit current (Jsc). Essentially, there is a trade-off between the fill factor (FF) and the open circuit voltage (Voc), and it is difficult to simultaneously increase both the fill factor and the open circuit voltage.
  • the present invention aims to provide a highly efficient crystalline silicon solar cell with a high open circuit voltage (Voc) and fill factor (FF).
  • the present invention aims to provide a crystalline silicon solar cell in which the space between the electrode and the substrate has a predetermined structure in order to obtain a highly efficient crystalline silicon solar cell with a high open circuit voltage (Voc) and fill factor (FF).
  • the present invention has the following configuration.
  • a first aspect of the present invention provides a substrate including a crystalline silicon, the substrate including an impurity diffusion layer on at least one surface thereof; a passivation film disposed on at least a portion of the impurity diffusion layer of the substrate; an electrode comprising silver (Ag), the electrode being disposed on at least a portion of the passivation film; the solar cell further includes at least one AgSi region disposed at least partially between the electrode and the substrate; The AgSi region includes at least one AgSi region having a depth of 100 nm or more; In a scanning electron microscope photograph of a 5.7 ⁇ m ⁇ 3.9 ⁇ m cross section including the AgSi region of the solar cell, the remaining rate of the passivation film, which is the ratio of the length over which the passivation film remains, is 10 to 90%.
  • Configuration 2 is the solar cell of Configuration 1, in which the ratio Db/Da of the thickness Da of the passivation film immediately after deposition to the thickness Db of the passivation film in a scanning electron microscope photograph of a 5.7 ⁇ m ⁇ 3.9 ⁇ m cross section including the AgSi region of the solar cell completed by forming the electrodes on the surface of the solar cell is 15% to 85%.
  • Configuration 3 is the solar cell of Configuration 1 or 2, wherein the electrode further comprises 0.1 to 5.0 parts by weight of glass frit per 100 parts by weight of the silver (Ag) contained in the electrode.
  • Configuration 4 is the solar cell of Configuration 3, wherein the glass frit has a glass transition point of 250 to 600°C.
  • Configuration 5 is the solar cell of configuration 3 or 4, wherein the glass frit comprises at least one selected from SiO2, B2O3, V2O5, Bi2O3 , TeO2 , Li2O , and ZnO .
  • Configuration 6 is the solar cell of any one of Configurations 3 to 5, wherein the glass frit is substantially free of PbO.
  • a seventh aspect of the present invention is the solar cell of any one of claims 1 to 6, wherein the electrodes are substantially free of lead (Pb).
  • Configuration 8 is the solar cell of any of Configurations 1-7, wherein the electrode is substantially free of aluminum particles.
  • Aspect 9 is a crystalline silicon substrate of a first conductivity type; the impurity diffusion layer is a second conductivity type impurity diffusion layer,
  • the electrode is a light-incident surface electrode disposed on the light-incident surface,
  • the solar cell further includes a back electrode arranged to be electrically connected to a surface of the crystalline silicon substrate opposite to the light incident surface,
  • the solar cell of any of configurations 1 to 8, wherein the light incident side surface electrode is a light incident side surface electrode that has been treated to irradiate the light incident side surface of the solar cell with light from a point light source while applying a voltage between the back electrode and the light incident side surface electrode so that a current flows in a direction opposite to a forward current between the impurity diffusion layer of the second conductivity type and the crystalline silicon substrate of the first conductivity type.
  • the present invention it is possible to provide a highly efficient crystalline silicon solar cell having a high open circuit voltage (Voc) and fill factor (FF).
  • a crystalline silicon solar cell having a predetermined structure between the electrode and the substrate in order to obtain a highly efficient crystalline silicon solar cell having a high open circuit voltage (Voc) and fill factor (FF).
  • FIG. 1 is an example of a schematic cross-sectional view of a crystalline silicon solar cell according to an embodiment of the present invention.
  • 1 is a schematic diagram of an example of the light incident surface of a crystalline silicon solar cell.
  • 1 is an example of a schematic diagram of the back surface of a crystalline silicon solar cell.
  • 1 is an example of a schematic cross-sectional view of a bifacial crystalline silicon solar cell according to an embodiment of the present invention.
  • FIG. 1 is an example of a schematic cross-sectional view of a typical crystalline silicon solar cell near the light-incident surface electrode (finger electrode), showing that the anti-reflection film (passivation film) between the electrode and the impurity diffusion layer has disappeared due to fire-through.
  • FIG. 1 is an example of a schematic cross-sectional view of a typical crystalline silicon solar cell near the light-incident surface electrode (finger electrode), showing that the anti-reflection film (passivation film) between the electrode and the impurity
  • FIG. 11 is a cross-sectional SEM (scanning electron microscope) photograph (magnification: 20,000 times) of the crystalline silicon solar cell of Example 3 near the passivation film on the light-incident surface, illustrating the depth d of the AgSi region.
  • This is a cross-sectional SEM (scanning electron microscope) photograph (magnification: 20,000 times) of the crystalline silicon solar cell of Example 3 near the passivation film on the light-incident surface, and is a figure for explaining the passivation film residual rate Lp/(Lp+Le).
  • 1 is a cross-sectional SEM (scanning electron microscope) photograph (magnification: 20,000 times) of the crystalline silicon solar cell of Comparative Example 1 near the passivation film on the light incident surface.
  • the solar cell of this embodiment includes a substrate (crystalline silicon substrate 1) containing crystalline silicon, a passivation film 2, and an electrode (e.g., a light-incident surface electrode 20).
  • the solar cell of this embodiment further includes at least one AgSi region 30 disposed at least partially between the electrode and the substrate.
  • the solar cell of this embodiment includes a substrate.
  • the substrate of the solar cell of this embodiment is a crystalline silicon substrate 1. Therefore, the solar cell of this embodiment is a crystalline silicon solar cell.
  • crystalline silicon includes single crystal and polycrystalline silicon.
  • crystalline silicon substrate refers to a material in which crystalline silicon is formed into a shape suitable for forming elements, such as a flat plate, in order to form semiconductor devices such as electric or electronic elements. Any method may be used to manufacture crystalline silicon. For example, the Czochralski method can be used for single crystal silicon, and the casting method can be used for polycrystalline silicon. Other manufacturing methods, such as polycrystalline silicon ribbons manufactured by the ribbon pulling method, and polycrystalline silicon formed on a heterogeneous substrate such as glass, can also be used as the crystalline silicon substrate 1.
  • crystalline silicon solar cell refers to a solar cell manufactured using the crystalline silicon substrate 1. In this specification, the crystalline silicon substrate 1 may be simply referred to as the "substrate”.
  • crystalline silicon, silicon carbide, germanium, gallium arsenide, etc. can be used as the material for the semiconductor substrate of the solar cell. From the standpoint of safety and cost as a solar cell, it is preferable that the material for the semiconductor substrate is crystalline silicon (single crystal silicon, polycrystalline silicon, etc.).
  • the crystalline silicon substrate 1 of the solar cell of this embodiment is an n-type crystalline silicon substrate 1 or a p-type crystalline silicon substrate 1 containing n-type or p-type impurities.
  • n-type impurities contained in the n-type crystalline silicon substrate 1 include Group 13 elements such as boron (B), aluminum (Al), and gallium (Ga).
  • p-type impurities contained in the p-type crystalline silicon substrate 1 include Group 15 elements such as phosphorus (P), arsenic (As), and antimony (Sb).
  • the solar cell of this embodiment includes an impurity diffusion layer 4 on at least a portion of at least one surface of a crystalline silicon substrate 1.
  • the impurity diffusion layer 4 formed on the light-incident surface is a p-type or n-type impurity diffusion layer 4.
  • the portion of the substrate where the impurity diffusion layer 4 is not formed, as shown in FIG. 1, may be referred to as the "substrate body 6.”
  • the impurity diffusion layer 4 is of the second conductivity type.
  • the impurity diffusion layer 4 formed on at least one surface of the crystalline silicon substrate 1 is a p-type impurity diffusion layer 4.
  • the impurity diffusion layer 4 formed on at least one surface of the crystalline silicon substrate 1 is an n-type impurity diffusion layer 4.
  • the first conductivity type crystalline silicon substrate 1 of the solar cell of this embodiment is preferably an n-type crystalline silicon substrate 1.
  • the second conductivity type impurity diffusion layer 4 of the solar cell of this embodiment is preferably a p-type impurity diffusion layer 4.
  • the mobility of electrons, which are carriers in an n-type crystalline silicon substrate 1 is higher than the mobility of holes, which are carriers in a p-type crystalline silicon substrate 1. Therefore, in order to obtain a solar cell with high conversion efficiency, it is advantageous to use an n-type crystalline silicon substrate 1.
  • the sheet resistance of the impurity diffusion layer 4 is preferably 30 to 300 ⁇ / ⁇ (square), 40 to 160 ⁇ / ⁇ (square), and more preferably 45 to 120 ⁇ / ⁇ .
  • the depth to which the impurity diffusion layer 4 is formed can be 0.3 ⁇ m to 1.0 ⁇ m.
  • the depth of the impurity diffusion layer 4 refers to the depth from the surface of the impurity diffusion layer 4 to the pn junction.
  • the depth of the pn junction can be the depth from the surface of the impurity diffusion layer 4 to the point where the impurity concentration in the impurity diffusion layer 4 is approximately the same as the impurity concentration in the substrate body 6.
  • the impurity diffusion layer 4 of the crystalline silicon solar cell of this embodiment may be referred to as the "silicon emitter layer.”
  • the solar cell of this embodiment includes a passivation film 2.
  • the passivation film 2 is disposed on at least a portion of the impurity diffusion layer 4 of the substrate.
  • the passivation film 2 can function as an anti-reflection film.
  • the passivation film 2 formed on the light-incident surface of the crystalline silicon substrate 1 may be referred to as an anti-reflection film.
  • the passivation film 2 can be a film consisting of a single layer or multiple layers.
  • the passivation film 2 is a single layer, it is preferably a thin film (SiN film) made of silicon nitride (SiN) because it can effectively passivate the surface of the silicon substrate.
  • the passivation film 2 is a multiple layer, it can be a laminated film (SiN/SiO x film) of a thin film made of silicon nitride and a thin film made of silicon oxide.
  • the passivation film 2 is a SiN/SiO x film
  • the SiO x film can be a natural oxide film of the silicon substrate.
  • Figure 5 shows an example of a schematic cross-sectional view of a typical crystalline silicon solar cell.
  • a passivation film 2 anti-reflection film
  • an electrode pattern of the light-incident surface electrode 20 is printed on the passivation film 2 using a conductive paste by screen printing or the like, and the conductive paste is dried and baked at a predetermined temperature to form the light-incident surface electrode 20.
  • the conductive paste fires through the passivation film 2 during baking at this predetermined temperature.
  • this fire-through allows the light-incident surface electrode 20 to be formed so as to be in electrical contact with the impurity diffusion layer 4.
  • fire-through refers to etching the passivation film 2, which is an insulating film, with glass frit or the like contained in the conductive paste to electrically connect the light-incident surface electrode 20 and the impurity diffusion layer 4.
  • the electrode pattern fires through the passivation film 2, causing the passivation film 2 to disappear and expose the light-incident surface electrode 20 to the impurity diffusion layer 4.
  • the passivation film 2 (anti-reflection film) is present in most of the area between the light-incident surface electrode 20 and the impurity diffusion layer 4. Therefore, in the case of the crystalline silicon solar cell of this embodiment, the passivation film 2 in the portion in contact with the impurity diffusion layer 4 of the crystalline silicon substrate 1 can remain mostly intact in the portion other than the AgSi region 30 described below. The presence of the passivation film 2 can prevent an increase in the surface defect density that causes carrier recombination. As a result, the crystalline silicon solar cell of this embodiment can obtain a high open circuit voltage (Voc).
  • Voc open circuit voltage
  • the degree to which the passivation film 2 remains between the electrode and the crystalline silicon substrate 1 after firing to form the electrode is indicated as the remaining rate of the passivation film 2. The remaining rate of the passivation film 2 will be described later.
  • the solar cell of this embodiment includes an electrode.
  • the electrode of the solar cell of this embodiment is disposed on at least a portion of the passivation film 2.
  • the electrode of the solar cell of this embodiment includes silver (Ag).
  • finger electrodes 20b are arranged on the light incident surface of the crystalline silicon solar cell as light incident surface electrodes 20.
  • the holes of electron-hole pairs generated by incident light entering the crystalline silicon solar cell are collected in finger electrode 20b via impurity diffusion layer 4 (e.g., p-type impurity diffusion layer 4). Therefore, low contact resistance is required between finger electrode 20b and impurity diffusion layer 4.
  • a back electrode 15 is disposed on the back surface opposite to the light incident surface of the crystalline silicon solar cell shown in FIG. 1.
  • the light incident surface electrode 20 and the back electrode 15, which are electrodes for extracting current from the crystalline silicon solar cell to the outside, may be simply referred to as "electrodes”.
  • FIG. 4 shows an example of a cross-sectional schematic diagram of a bifacial crystalline silicon solar cell (bifacial power generation crystalline silicon solar cell) of this embodiment.
  • the crystalline silicon solar cell shown in FIG. 4 can generate power by receiving light from two surfaces (first and second light incident surfaces).
  • the electrodes of crystalline silicon solar cells can be formed by printing a conductive paste by a method such as screen printing and firing.
  • the conductive paste for forming the electrodes of the crystalline silicon solar cells of this embodiment may be referred to as a specified conductive paste.
  • the conductive paste contains conductive particles and an organic vehicle.
  • the conductive paste may further contain glass frit in addition to the conductive particles and the organic vehicle.
  • the electrodes of the solar cells of this embodiment contain silver (Ag). Therefore, the conductive particles contained in the specified conductive paste must contain silver (Ag).
  • the organic vehicle contained in the conductive paste is burned away during firing to form the electrodes. Therefore, the electrodes after firing contain components contained in the conductive paste other than the organic vehicle. Specifically, the electrodes after firing contain conductive components resulting from the conductive particles of the conductive paste. In addition, when the conductive paste contains glass frit, the electrodes after firing further contain components resulting from the glass frit of the conductive paste.
  • the conductive component contained in a specific electrode of the crystalline silicon solar cell of this embodiment consists of only silver. Note that a conductive component consisting of only silver may contain other metal elements as unavoidable impurities.
  • glass frit is made primarily of multiple types of oxides, such as metal oxides, and is generally used in the form of glass-like particles. When fired to form an electrode, the glass frit softens and the particles bond together.
  • the components (oxides) originating from the glass frit contained in the electrode are also simply referred to as "glass frit.”
  • the content of glass frit contained in the electrode is preferably 0.1 to 5.0 parts by weight, more preferably 0.2 to 4.0 parts by weight, even more preferably 0.3 to 3.0 parts by weight, and particularly preferably 0.4 to 2.7 parts by weight, per 100 parts by weight of silver (Ag) contained in the electrode.
  • the glass transition point of the glass frit contained in the electrode is preferably 250 to 600°C, more preferably 270 to 500°C, and even more preferably 300 to 400°C.
  • the glass transition point (Tg) of the glass frit 250°C or higher, it is possible to suppress reactivity with the passivation film 2.
  • the glass transition point (Tg) 600°C or lower it is possible to reduce the contact resistance between the resulting electrode (for example, the light-incident surface electrode 20) and the impurity diffusion layer 4.
  • the glass frit contained in the electrode preferably contains at least one selected from SiO 2 , B 2 O 3 , V 2 O 5 , Bi 2 O 3 , TeO 2 , BaO, CuO, Li 2 O and ZnO.
  • the glass frit contained in the electrode more preferably contains at least one selected from SiO 2 , B 2 O 3 , V 2 O 5 , Bi 2 O 3 , TeO 2 , Li 2 O and ZnO.
  • the solar cell of this embodiment may have a glass frit contained in the electrode that is substantially free of PbO.
  • the electrode of the solar cell of this embodiment may have a glass frit that is substantially free of lead (Pb).
  • lead-free glass frit means glass frit that is substantially free of lead (Pb). Since glass frit is manufactured using metal oxide as a raw material, lead-free glass frit means glass frit that is substantially free of lead oxide (PbO).
  • lead-free glass frit may contain a small amount of lead that is inevitably mixed in as an impurity. Specifically, the lead-free glass frit of this embodiment may contain 0.1 wt % or less of lead as an impurity relative to 100 wt % of glass frit.
  • a glass frit containing lead oxide (PbO) (lead-containing glass frit) is used as the glass frit contained in the conductive paste for forming the electrodes.
  • the conductive paste for forming the electrodes contains a lead-containing glass frit, which can reduce the contact resistance between the light-incident surface electrode 20 and the impurity diffusion layer 4.
  • lead has adverse effects on the human body.
  • a product is manufactured using a material containing lead, there is a risk that the lead will pollute the environment when the product is disposed of. Therefore, it is desirable to use lead-free materials that do not contain lead when manufacturing products.
  • lead-free glass frit in the manufacturing process of the solar cell.
  • a solar cell having an electrode that does not substantially contain lead (Pb) can be manufactured. Therefore, environmental pollution by lead can be suppressed.
  • the crystalline silicon solar cell of this embodiment can be made so that materials other than the electrodes also contain substantially no lead. In order to prevent environmental pollution by lead, it is preferable that the crystalline silicon solar cell of this embodiment is a lead-free solar cell.
  • the electrode of the solar cell of this embodiment may further contain an aluminum component resulting from aluminum particles.
  • the aluminum particles may be contained as particles separate from the (A) conductive particles. If the conductive paste for forming the electrode contains aluminum, the electrode will also contain aluminum.
  • aluminum has the properties of a p-type impurity.
  • the conductive paste printed on the crystalline silicon is fired, the aluminum in the conductive paste diffuses into the crystalline silicon and becomes a p-type impurity. Therefore, when forming an electrode on the surface of the p-type semiconductor layer of the crystalline silicon substrate 1, the conductive paste can contain aluminum particles, thereby making it possible to obtain low contact resistance between the electrode and the p-type semiconductor layer. Therefore, when forming an electrode on the surface of the p-type semiconductor layer of the crystalline silicon substrate 1, the conductive paste can contain aluminum particles.
  • the adhesion of the electrode to the p-type semiconductor layer may decrease, causing the electrode to easily peel off from the p-type semiconductor layer of the solar cell.
  • the conductive paste contains aluminum particles, the reliability of the electrode with respect to the p-type semiconductor layer will be significantly impaired.
  • metal ribbons for interconnection are soldered to the electrodes of the solar cells. If the conductive paste used to form the electrodes contains aluminum particles, there is a problem in that the soldering strength of the metal ribbon to the electrodes decreases.
  • the conductive paste of this embodiment contains no more than a specified amount of aluminum particles, or does not contain any aluminum particles.
  • the conductive paste of this embodiment further contains 0.5 parts by weight or less of aluminum particles per 100 parts by weight of (A) silver particles, or does not contain aluminum particles.
  • the upper limit of the content of aluminum particles in the conductive paste of this embodiment is preferably 0.3 parts by weight or less per 100 parts by weight of (A) silver particles, more preferably less than 0.3 parts by weight, and even more preferably 0.25 parts by weight or less.
  • the conductive paste of this embodiment can be a conductive paste that does not contain aluminum particles. Note that "does not contain aluminum particles” means that "aluminum particles" are not intentionally added, and does not exclude the inclusion of aluminum components as an unavoidable impurity.
  • At least one AgSi region is formed at least partially between the electrode and the substrate, so that when an electrode is formed on the surface of the p-type semiconductor layer of the crystalline silicon substrate 1, low contact resistance can be obtained between the electrode and the p-type semiconductor layer even if the electrode does not substantially contain aluminum.
  • the conductive paste used to form the electrodes contains aluminum, this can have an impact on reliability.
  • the electrodes of the crystalline silicon solar cell may include a light incident busbar electrode 20a and/or a back TAB electrode 15a.
  • the light incident busbar electrode 20a has a function of electrically connecting the finger electrode 20b for collecting the current generated by the solar cell and the metal ribbon for interconnection.
  • the back TAB electrode 15a has a function of electrically connecting the entire back electrode 15b for collecting the current generated by the solar cell and the metal ribbon for interconnection. If the finger electrode 20b comes into contact with the crystalline silicon substrate 1, the surface defect density of the surface (interface) of the crystalline silicon substrate 1 where the finger electrode 20b comes into contact increases, and the solar cell performance decreases.
  • the passivation film 2 (anti-reflection film) is not completely fired through when the finger electrode 20b is formed. Therefore, most of the passivation film 2 in the part in contact with the crystalline silicon substrate 1 can be kept in its original state, and an increase in the surface defect density that causes carrier recombination can be prevented. As a result, a crystalline silicon solar cell with a high open circuit voltage (Voc) can be obtained.
  • the crystalline silicon solar cell shown in FIG. 1 can have a back electrode 15 with the structure shown in FIG. 3.
  • the back electrode 15 is arranged so as to be electrically connected to the other surface of the semiconductor substrate of the first conductivity type.
  • the back electrode 15 can generally include a full back electrode 15b and a back TAB electrode 15a electrically connected to the full back electrode 15b.
  • the busbar electrodes of the crystalline silicon solar cell shown in FIG. 1 include the light incident side busbar electrode 20a shown in FIG. 2 and the backside TAB electrode 15a as shown in FIG. 3.
  • a metal ribbon for interconnection is soldered to the light incident side busbar electrode 20a and the backside TAB electrode 15a. This metal ribbon allows the current generated by the solar cell to be taken out of the crystalline silicon solar cell.
  • the bifacial crystalline silicon solar cell shown in FIG. 4 can also have the light incident side busbar electrode 20a and the backside TAB electrode 15a having the same shape as the light incident side busbar electrode 20a.
  • the width of the busbar electrodes (light incident side busbar electrode 20a and backside TAB electrode 15a) can be approximately the same as the width of the metal ribbon for interconnection. In order for the busbar electrodes to have low electrical resistance, the wider the width, the better. On the other hand, in order to increase the area of incidence of light on the light incident side surface, the narrower the width of the light incident side busbar electrode 20a is. Therefore, the busbar electrode width can be 0.05 to 5 mm, preferably 0.08 to 3 mm, more preferably 0.1 to 2 mm, and even more preferably 0.15 to 1 mm. In addition, the number of busbar electrodes can be determined according to the size of the crystalline silicon solar cell. The number of busbar electrodes is arbitrary.
  • the number of busbar electrodes can be three or four, or more.
  • the optimal number of busbar electrodes can be determined so as to maximize the conversion efficiency of the crystalline silicon solar cell by simulating the operation of the solar cell. Since the crystalline silicon solar cells are connected in series to each other by metal ribbons for interconnection, it is preferable that the number of light-incident side busbar electrodes 20a and the back TAB electrodes 15a are the same. For the same reason, it is preferable that the widths of the light-incident side busbar electrodes 20a and the back TAB electrodes 15a are the same.
  • the finger electrodes 20b on the light incident surface are as narrow as possible and that there are as few of them as possible.
  • the finger electrodes 20b are wide and there are many of them.
  • the finger electrodes 20b are wide.
  • the number of busbar electrodes can be determined according to the size of the crystalline silicon solar cell and the width of the busbar electrodes.
  • the optimal width and number of finger electrodes 20b (the spacing between the finger electrodes 20b) can be determined by simulating the operation of the solar cell so as to maximize the conversion efficiency of the crystalline silicon solar cell.
  • the width and number of back finger electrodes 15c of the back electrode 15 of the bifacial crystalline silicon solar cell shown in FIG. 4 can also be determined in a similar manner.
  • the solar cell of this embodiment includes at least one AgSi region 30.
  • the AgSi region 30 is disposed at least partially between the electrode and the substrate.
  • An example of the AgSi region 30 is shown in the SEM photograph of Fig. 6.
  • the AgSi region 30 may be disposed at least partially between the electrode and the substrate, and for example, the region indicated by the reference symbol 30 surrounded by a dotted line in the SEM photograph of Fig. 6 can also be the AgSi region 30.
  • the silver (Ag) contained in the electrode diffuses into the silicon (Si) of the substrate, thereby forming a region of an alloy of silver (Ag) and silicon (Si) at least partially between the electrode and the substrate.
  • the region of the alloy of silver (Ag) and silicon (Si) formed when manufacturing the solar cell of this embodiment is referred to as the "AgSi region 30."
  • the AgSi region 30 can be identified as a region where both Ag and Si are detected when a cross section of the solar cell of this embodiment is measured with an energy dispersive X-ray fluorescence spectrometer (hereinafter sometimes referred to as EDX).
  • One AgSi region 30 means an AgSi region 30 that is separated from other AgSi regions 30.
  • the SEM photograph in FIG. 6 shows one AgSi region 30.
  • the solar cell of this embodiment preferably has multiple spot-like AgSi regions 30 at least partially between the electrode and the substrate.
  • the AgSi region 30 contributes to electrical conduction between the electrode and the impurity diffusion layer 4 as a local conductive portion.
  • the portion in which the AgSi regions 30 exist is an extremely small portion of the area in which the electrode is formed.
  • the crystalline silicon solar cell of this embodiment includes at least one AgSi region 30 with a depth d of 100 nm or more.
  • the depth d of the AgSi region 30 refers to the length of the longest line segment (length d of the line segment connecting B1 and B2 in FIG. 6) among the line segments connecting any one point (B1 in FIG. 6) at the interface between the electrode and the AgSi region 30 to any one point (B2 in FIG. 6) at the interface between the substrate and the AgSi region 30 in an SEM photograph of a cross section of the AgSi region 30 observed with an SEM as shown in FIG. 6.
  • the depth d of the AgSi region 30 can be obtained by superimposing the AgSi region 30 determined in the EDX measurement on an SEM photograph of a cross section near the passivation film 2 observed with an SEM at a magnification of 20,000 times, determining the above-mentioned predetermined line segment, and measuring the length of the predetermined line segment.
  • the depth d of the AgSi region 30 is preferably 100 to 4000 nm, more preferably 120 to 3000 nm, even more preferably 130 to 2500 nm, and particularly preferably 150 to 2000 nm.
  • the AgSi region 30 is preferably formed by performing a laser treatment process.
  • the laser treatment process refers to a process in which light from a point light source is irradiated onto the light incident surface of the solar cell while applying a voltage between the back electrode 15b and the light incident surface electrode 20 so that a current flows in the opposite direction to the forward direction between the impurity diffusion layer 4 of the second conductivity type and the crystalline silicon substrate 1 of the first conductivity type with respect to the light incident surface electrode 20.
  • the solar cell further includes a back electrode 15b arranged so as to be electrically connected to the surface of the crystalline silicon substrate 1 opposite to the light incident surface.
  • the laser treatment process can form an appropriate AgSi region 30.
  • the laser treatment process will be described in more detail below.
  • Figure 4 shows an example of a cross-sectional schematic diagram of a bifacial crystalline silicon solar cell.
  • the bifacial crystalline silicon solar cell shown in Figure 4 has an impurity diffusion layer 4, a passivation film 2 (anti-reflection film), and a back surface passivation film 14.
  • the specified structure of the electrode including the AgSi region 30 can also be suitably applied as the structure of the back surface electrode 15 (back surface finger electrode 15c) of a bifacial crystalline silicon solar cell, as shown in Figure 4.
  • a specified AgSi region 30 can be formed both near the light incident side surface and near the back surface.
  • the extent to which the passivation film 2 exists between the electrode and the impurity diffusion layer 4 of the crystalline silicon substrate 1 after firing to form the electrode of the solar cell of this embodiment can be indicated as the remaining rate of the passivation film 2.
  • the passivation film 2 disappears in the portion where the AgSi region 30 is formed. Since the AgSi region 30 is not formed in the portion where the passivation film 2 exists, the remaining rate of the passivation film 2 is considered to be the proportion of the region in the vicinity of the AgSi region 30 where the AgSi region 30 is not formed.
  • the method for measuring the residual rate of the passivation film 2 will be described using an example of an SEM photograph of a cross section of a solar cell shown in Figure 7.
  • a SEM photograph is obtained by observing the cross section including the passivation film 2 and the AgSi region 30 with an SEM at a magnification of 20,000 times.
  • the horizontal length (horizontal to the substrate surface) of this SEM photograph is 5.7 ⁇ m, and the vertical length (perpendicular to the substrate surface) is 3.9 ⁇ m.
  • the total length Lp of the cross section of the passivation film 2 in this SEM photograph is measured.
  • the total length Lp of the cross section of the passivation film 2 in the SEM photograph is the total length of Lp1, Lp2, Lp3, and Lp4.
  • the length Le corresponds to the length of the passivation film 2 that has disappeared during the manufacturing process of the solar cell.
  • the total length Le of the cross section of the interface between the AgSi region 30 and the electrode in the portion where the AgSi region 30 is generated is the total length of Le1 and Le2.
  • the remaining rate of the passivation film 2 can be obtained as Lp/(Lp+Le).
  • the portion where the passivation film 2 has disappeared during the manufacturing process of the solar cell can be identified by measurement using EDX.
  • the length of Le1, etc. can be measured by approximating the passivation film 2, etc. as a straight line.
  • the remaining rate of the passivation film 2 is 10-90%, preferably 30% or more and less than 90%, more preferably 50% or more and less than 90%, and even more preferably 70% to 89%.
  • a highly efficient crystalline silicon solar cell with a high open circuit voltage (Voc) and fill factor (FF) can be obtained.
  • the film thickness ratio before and after firing of the passivation film 2 is the ratio (Db/Da) of the film thickness Da before firing for electrode formation of the passivation film 2 to the film thickness Db after firing for electrode formation (after the solar cell is completed).
  • the film thickness ratio before and after firing may be simply referred to as the "film thickness ratio (Db/Da)."
  • the film thickness ratio (Db/Da) is preferably 15% to 85%, more preferably 20% to 70%, and even more preferably 30% to 60%.
  • the pre-firing thickness Da of the passivation film 2 refers to the thickness of the passivation film 2 when the passivation film 2 is formed on a specified substrate.
  • the thickness Da immediately after film formation can be measured by SEM observation of the cross section near the passivation film 2 before forming the electrodes.
  • the film thickness Db after the solar cell is completed is the film thickness of the passivation film 2 in a scanning electron microscope photograph of a 5.7 ⁇ m ⁇ 3.9 ⁇ m cross section including the AgSi region 30 of a solar cell completed by forming electrodes on the surface of the solar cell by firing.
  • the film thickness Db of the passivation film 2 in a scanning electron microscope photograph of a 5.7 ⁇ m ⁇ 3.9 ⁇ m cross section including the AgSi region 30 of a solar cell completed by forming electrodes on the surface of the solar cell refers to the film thickness of the passivation film 2 near the AgSi region 30 of a solar cell completed by forming an electrode pattern using a predetermined conductive paste on the passivation film 2 formed on a predetermined substrate, and forming the electrodes and AgSi region 30 by performing a predetermined treatment such as a predetermined baking.
  • the film thickness Db is sometimes referred to as the "film thickness Db after the solar cell is completed.”
  • the film thickness Db after the solar cell is completed can be measured by SEM observation of the image range of 5.7 ⁇ m ⁇ 3.9 ⁇ m of the cross section including the passivation film 2 and AgSi region 30 of the solar cell completed by forming the electrodes and AgSi region 30.
  • the film thickness Db after the solar cell is completed is the film thickness Db of the passivation film 2 in a scanning electron microscope photograph of a 5.7 ⁇ m ⁇ 3.9 ⁇ m cross section including the AgSi region 30 of the completed solar cell.
  • the thickness Db of the passivation film 2 after the solar cell is completed can be obtained by observing the cross section including the passivation film 2 and the AgSi region 30 with an SEM at a magnification of 20,000 times to obtain an SEM photograph (SEM image area: 5.7 ⁇ m ⁇ 3.9 ⁇ m), dividing the SEM photograph vertically into six equal parts, measuring the thickness (five locations) of the passivation film 2 at the five boundaries of the six-part image, and averaging the thicknesses of the five locations.
  • the method for manufacturing a solar cell of this embodiment includes a step of printing a specific conductive paste on the surface of the passivation film 2 (anti-reflection film) on the semiconductor layer of the second conductivity type (impurity diffusion layer 4), drying, and baking to form an electrode (light incident surface electrode 20).
  • the specific conductive paste will be described later.
  • the method for manufacturing the solar cell of this embodiment includes a step of preparing a crystalline silicon substrate 1 of a first conductivity type (p-type or n-type).
  • a first conductivity type p-type or n-type
  • an n-type crystalline silicon substrate 1 or a p-type crystalline silicon substrate 1 can be used.
  • the surface of the crystalline silicon substrate 1 on the light incident side has a pyramidal texture structure.
  • the method for manufacturing a solar cell of this embodiment includes a step of forming a second conductivity type impurity diffusion layer 4 on one surface of the first conductivity type semiconductor substrate.
  • a p-type impurity diffusion layer 4 can be formed by diffusing a p-type impurity such as B (boron) as the impurity diffusion layer 4. It is also possible to manufacture a crystalline silicon solar cell using a p-type crystalline silicon substrate 1. In that case, an n-type impurity diffusion layer 4 can be formed by diffusing an n-type impurity such as P (phosphorus) as the impurity diffusion layer 4.
  • the impurity diffusion layer 4 When forming the impurity diffusion layer 4, it can be formed so that the sheet resistance of the impurity diffusion layer 4 is 30 to 300 ⁇ / ⁇ (square), preferably 40 to 150 ⁇ / ⁇ , and more preferably 45 to 120 ⁇ / ⁇ .
  • the depth to which the impurity diffusion layer 4 is formed can be 0.3 ⁇ m to 1.0 ⁇ m.
  • the sheet resistance and depth of the impurity diffusion layer 4 can be controlled by adjusting the conditions such as the concentration of the dopant applied to the crystalline silicon substrate 1 and the temperature and/or time for diffusing the impurity element.
  • the method for manufacturing a solar cell of this embodiment includes a step of forming a back electrode 15 so as to be electrically connected to the other surface of the first conductivity type semiconductor substrate (n-type crystalline silicon substrate 1).
  • the back electrode 15 can be formed either before or after the light-incident surface electrode 20 is formed. Furthermore, the firing for forming the back electrode 15 can be performed simultaneously with or separately from the firing for forming the light-incident surface electrode 20.
  • the manufacturing method of the crystalline silicon solar cell of this embodiment forms the back electrode 15 by printing and firing a conductive paste on the other surface (back surface) of the crystalline silicon substrate 1.
  • a second impurity diffusion layer 16 can be formed.
  • a back electrode 15 can be formed using a specified conductive paste (conductive composition), and the above-mentioned AgSi region 30 can be formed between the back electrode 15 and the crystalline silicon substrate 1. Therefore, in the case of a bifacial crystalline solar cell, it is preferable to form the back electrode 15 using a specified conductive paste. In this case, the back electrode 15 is a sintered body of the specified conductive paste.
  • the method for manufacturing a solar cell according to this embodiment includes forming a passivation film 2 so as to be in contact with the surface of the second conductive type semiconductor layer (impurity diffusion layer 4).
  • the passivation film 2 can function as an anti-reflection film.
  • an anti-reflection film that also functions as a passivation film 2 is formed on the surface of the impurity diffusion layer 4 formed in the above-mentioned process.
  • a silicon nitride film (SiN film) can be formed as the passivation film 2 (anti-reflection film).
  • the silicon nitride film layer also functions as the passivation film 2 on the light incident surface. Therefore, when a silicon nitride film is used as the passivation film 2, a high-performance crystalline silicon solar cell can be obtained.
  • the passivation film 2 is a silicon nitride film, it can exhibit an anti-reflection function against the incident light.
  • the silicon nitride film can be formed by a method such as PECVD (Plasma Enhanced Chemical Vapor Deposition).
  • the manufacturing method for the solar cell of this embodiment includes a step of forming a light incident surface electrode 20 on at least a portion of the surface of the passivation film 2 (anti-reflection film).
  • a specific conductive paste which will be described later, is used to form the light incident surface electrode 20. Therefore, the light incident surface electrode 20 is a sintered body of the specific conductive paste.
  • a specific conductive paste is printed on the surface of the passivation film 2 (anti-reflection film) and then fired to form the light incident surface electrode 20. Note that firing to form the back electrode 15 can be performed simultaneously with firing to form the light incident surface electrode 20.
  • the pattern of the light incident side surface electrode 20 printed using a specified conductive paste is dried for several minutes (e.g., 0.5 to 5 minutes) at a temperature of about 100 to 150°C.
  • the light incident side busbar electrode 20a and the light incident side finger electrode 20b of the light incident side surface electrode 20 can be formed using the specified conductive paste.
  • a conductive paste for forming the back electrode 15 is printed and dried.
  • a specific conductive paste can be preferably used to form the electrodes (light-incident surface electrode 20, and in some cases the back electrode 15) of solar cells such as crystalline silicon solar cells.
  • Firing conditions include a firing atmosphere in the atmosphere and a firing temperature of 500 to 1000°C, more preferably 600 to 1000°C, even more preferably 500 to 900°C, and particularly preferably 700 to 900°C. Firing is preferably carried out for a short period of time, and the temperature profile (temperature-time curve) during firing is preferably peak-shaped.
  • the in-out time of the firing furnace is preferably 10 to 100 seconds, more preferably 20 to 80 seconds, and even more preferably 40 to 60 seconds.
  • the method for manufacturing a solar cell of this embodiment includes a step of forming the above-mentioned AgSi region 30.
  • a laser treatment process can be performed to form the above-mentioned AgSi region 30.
  • the laser treatment process refers to a process in which light from a point light source is irradiated onto the light incident surface of the solar cell while applying a voltage to the back electrode 15 and the light incident surface electrode 20 so that a current flows in the opposite direction to the forward direction at the pn junction between the semiconductor layer of the second conductivity type and the semiconductor substrate of the first conductivity type.
  • Carriers electron-hole pairs
  • Carriers are generated inside the semiconductor substrate by the light from the point light source, and the application of a voltage makes it possible for the carriers to move, that is, for a current to flow.
  • the voltage is applied so that the direction of current flow at the pn junction is opposite to the forward direction.
  • the semiconductor substrate is an n-type semiconductor substrate and the semiconductor layer is a p-type semiconductor layer
  • a voltage is applied to the back electrode 15 and the light incident surface electrode 20 so that a current flows from the n-type semiconductor substrate to the p-type semiconductor layer.
  • the semiconductor substrate is a p-type semiconductor substrate and the semiconductor layer is an n-type semiconductor layer
  • a voltage is applied to the back electrode 15 and the light incident surface electrode 20 so that a current flows from the n-type semiconductor layer to the p-type semiconductor substrate.
  • the first conductivity type semiconductor substrate is an n-type crystalline silicon substrate 1 and the second conductivity type semiconductor layer is a p-type impurity diffusion layer 4 (sometimes simply referred to as “impurity diffusion layer 4") will be used as an example.
  • a passivation film 2 (anti-reflection film) is present in most of the area between the light-incident surface electrode 20 and the impurity diffusion layer 4.
  • the above-mentioned predetermined voltage is applied so that a current flows in the opposite direction to the forward direction in the pn junction, and light (e.g., laser light) is irradiated from a point light source, causing a current to flow in a small area between the light-incident surface electrode 20 and the impurity diffusion layer 4, resulting in local heating.
  • light e.g., laser light
  • a silver-silicon alloy area which is a local electrically conductive area (locally conductive area), is formed between the light-incident surface electrode 20 and the impurity diffusion layer 4.
  • the area of the silver (Ag) and silicon (Si) alloy formed by performing a laser treatment process or the like is referred to as the "AgSi area 30.”
  • the AgSi region 30 can be identified as a region where both Ag and Si are detected by measurement using an energy dispersive X-ray fluorescence spectrometer (hereinafter sometimes referred to as EDX). Furthermore, the passivation film 2 does not exist in the portion where the AgSi region 30 is formed.
  • the impurity diffusion layer 4 (silicon emitter layer of the second conductivity type) is electrically conductive with the light incident side surface electrode 20 via the AgSi region 30.
  • This locally formed AgSi region 30 is an electrically conductive portion (locally conductive portion), so good electrical conductivity is possible between the light incident side surface electrode 20 and the impurity diffusion layer 4.
  • FF fill factor
  • Voc open circuit voltage
  • the crystalline silicon solar cell of this embodiment can be manufactured.
  • the crystalline silicon solar cell of this embodiment obtained as described above can be electrically connected by a metal ribbon for interconnection, and laminated with a glass plate, a sealant, a protective sheet, etc., to manufacture a solar cell module.
  • a metal ribbon for interconnection a metal ribbon (e.g., a ribbon made of copper) covered with solder can be used.
  • solder a solder that is available on the market, such as one that contains tin as a main component, specifically a lead-containing leaded solder or a lead-free solder, can be used. To obtain a lead-free solar cell, it is preferable to use a lead-free solder as the solder.
  • This specific conductive paste is a conductive paste suitable for forming the above-mentioned AgSi region 30.
  • the specific conductive paste may be referred to as the conductive paste of this embodiment.
  • the conductive paste of this embodiment has a lower reactivity with the passivation film 2 (anti-reflective film) than conventional conductive pastes, and has a reactivity with the passivation film 2 (anti-reflective film) appropriate for the laser treatment process. Therefore, the conductive paste of this embodiment can be preferably used to form the light incident surface electrode 20 of a crystalline silicon solar cell using a laser treatment process.
  • the inventors have found that when a laser treatment process is applied to a solar cell in which a light-incident surface electrode 20 is formed using a conventional conductive paste, it adversely affects the passivation film 2 (anti-reflective film) and the impurity diffusion layer 4 (and substrate), reducing the conversion efficiency of the solar cell.
  • the inventors have also found that the cause is that the fire-through property (reactivity) of the conventional conductive paste with respect to the passivation film 2 (anti-reflective film) is too strong.
  • the conductive paste that can be used to form the light-incident surface electrode 20 by the laser processing process must have properties different from those of conventional conductive pastes (conductive pastes that can fire through the passivation film 2).
  • the inventors have found that by setting the basicity and content of the lead-free glass frit within an appropriate range, the reactivity of the glass frit with the passivation film 2 (anti-reflective film) can be made appropriate. Since lead-free glass frit is used as the glass frit, lead pollution due to lead discharge into the environment can be prevented, and even when lead-free glass frit is used, the contact resistance can be reduced to the same extent as that of lead-containing glass frit. Having obtained the above knowledge, the inventors have found a conductive paste that can be preferably used when manufacturing crystalline silicon using a laser treatment process.
  • the conductive paste of this embodiment can be preferably used to form the specified AgSi region 30 by a laser treatment process when manufacturing a crystalline silicon solar cell.
  • the conductive paste of the present embodiment contains (A) conductive particles.
  • metal particles or alloy particles can be used as the conductive particles.
  • metals contained in the metal particles or alloy particles include silver, gold, copper, nickel, zinc, and tin.
  • Silver particles (Ag particles) can be used as the metal particles.
  • the conductive paste of this embodiment can contain metals other than silver, such as gold, copper, nickel, zinc, and tin. From the viewpoint of obtaining low electrical resistance and high reliability, it is preferable that the conductive particles are silver particles made of silver. Note that silver particles made of silver can contain other metal elements as unavoidable impurities. Also, a large number of silver particles (Ag particles) may be referred to as silver powder (Ag powder). The same applies to other particles.
  • the particle shape and particle size (also called particle diameter) of the conductive particles are not particularly limited. For example, spherical and scaly particle shapes can be used.
  • the particle size of the conductive particles can be determined by the particle size (D50) of 50% of the total particle size. In this specification, D50 is also called the average particle size.
  • the average particle size (D50) can be determined from the results of particle size distribution measurement performed by the Microtrack method (laser diffraction scattering method).
  • the average particle diameter (D50) of the conductive particles is preferably 0.5 to 2.5 ⁇ m, and more preferably 0.8 to 2.2 ⁇ m.
  • the average particle diameter (D50) of the conductive particles within a specified range, the reactivity of the conductive paste with the passivation film 2 during firing of the conductive paste can be suppressed. Note that if the average particle diameter (D50) is larger than the above range, problems such as clogging may occur during screen printing.
  • the size of silver particles can be expressed as the BET specific surface area (also simply referred to as "specific surface area").
  • the BET specific surface area of silver particles is preferably 0.1 to 1.5 m 2 /g, and more preferably 0.2 to 1.2 m 2 /g.
  • the BET specific surface area can be measured, for example, using a fully automatic specific surface area measuring device Macsoeb (manufactured by MOUNTEC Corporation).
  • the conductive paste of the present embodiment contains (B) an organic vehicle.
  • the organic vehicle may contain an organic binder and a solvent.
  • the organic binder and the solvent serve to adjust the viscosity of the conductive paste, and are not particularly limited.
  • the organic binder may also be dissolved in a solvent before use.
  • the (B) organic vehicle contains at least one selected from ethyl cellulose, rosin ester, acrylic, and an organic solvent.
  • the (B) organic vehicle can be screen printed favorably, and the shape of the printed pattern can be made appropriate.
  • the organic binder can be selected from cellulose-based resins (e.g., ethyl cellulose, nitrocellulose, etc.) and (meth)acrylic resins (e.g., polymethyl acrylate, polymethyl methacrylate, etc.).
  • the organic vehicle contained in the conductive paste of this embodiment preferably contains at least one selected from ethyl cellulose, rosin ester, butyral, acrylic, and an organic solvent.
  • the amount of organic binder added is usually 0.1 to 30 parts by weight, and preferably 0.2 to 5 parts by weight, per 100 parts by weight of silver particles.
  • organic solvent one or more selected from alcohols (e.g., terpineol, ⁇ -terpineol, ⁇ -terpineol, etc.) and esters (e.g., hydroxyl group-containing esters, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, diethylene glycol monobutyl ether acetate (butyl carbitol acetate), etc.) can be used.
  • the amount of the solvent added is usually 0.5 to 30 parts by weight, and preferably 2 to 25 parts by weight, per 100 parts by weight of silver particles.
  • a specific example of the organic solvent is diethylene glycol monobutyl ether acetate (butyl carbitol acetate).
  • the conductive paste of the present embodiment contains (C) glass frit.
  • the product BGF ⁇ G of the basicity BGF of the (C) glass frit and the content G of the (C) glass frit in parts by weight in the conductive paste when the content of the (A) conductive particles in the conductive paste is 100 parts by weight is in the range of 0.25 to 1.45 , preferably in the range of 0.3 to 1.4, and more preferably in the range of 0.3 to 1.2.
  • the product BGF ⁇ G of the basicity BGF of the glass frit and the content G in an appropriate range, the reactivity of the glass frit with respect to the passivation film 2 (anti-reflection film) can be made appropriate. Therefore, the conductive paste of the embodiment can be preferably used when manufacturing crystalline silicon using a laser processing process.
  • the basicity of the glass frit can be calculated by the method described in Patent Document 3 (JP Patent Publication No. 2009-231826).
  • the basicity of the glass powder can be defined using the formula shown in "K. Morinaga, H. Yoshida and H. Takebe: J. Am Cerm. Soc., 77, 3113 (1994)". Specifically, it is as follows.
  • the bonding force between M i -O of the oxide M i O is expressed as the cation-oxygen ion attractive force Ai by the following formula.
  • Z i valence of cation, oxygen ion is 2
  • r i ionic radius of cation ( ⁇ )
  • the ionic radius r i of the oxygen ion is 1.40 nm.
  • BGF ⁇ n i ⁇ B i n i : cation fraction
  • the basicity ( BGF ) defined in this way represents the oxygen donating ability as described above, and the larger the value, the easier it is to donate oxygen and the easier it is to exchange oxygen with other metal oxides. In other words, it can be said that "basicity” represents the degree of dissolution in a glass melt.
  • the content G of the glass frit (C) is a dimensionless number because it is a ratio to the content G of the conductive particles (A).
  • the basicity ( BGF ) of the glass frit of this embodiment is preferably 0.10 to 1.5, more preferably 0.15 to 1.3, and even more preferably 0.20 to 1.1.
  • the reactivity of the glass frit with the passivation film 2 can be made appropriate by adjusting the amount of the glass frit added to the conductive paste.
  • the content G of the glass frit in the conductive paste of this embodiment is preferably 0.1 to 5.0 parts by weight, more preferably 0.2 to 4.0 parts by weight, even more preferably 0.3 to 3.0 parts by weight, and particularly preferably 0.4 to 2.7 parts by weight, relative to 100 parts by weight of the conductive particles.
  • the content of the glass frit is reduced from that of the conventional method, and the basicity of the glass frit is set to an appropriate range, thereby suppressing the reactivity with the passivation film 2 and improving Voc.
  • the glass transition point (Tg) of the glass frit (C) is preferably 250 to 600°C, more preferably 270 to 500°C, and even more preferably 300 to 400°C.
  • the glass transition point (Tg) of the glass frit (C) 250°C or higher, it is possible to suppress reactivity with the passivation film 2.
  • the glass transition point (Tg) 600°C or lower it is possible to reduce the contact resistance between the resulting electrode (e.g., the light-incident surface electrode 20) and the impurity diffusion layer 4.
  • the glass transition point (Tg) can be measured as follows. That is, a differential thermobalance (TG-DTA2000S, manufactured by Mac Science Co., Ltd.) is used, the sample glass powder and the reference substance are set on the differential thermobalance, and the temperature is raised from room temperature to 900°C at a heating rate of 10°C/min as the measurement conditions, and a curve (DTA curve) is obtained in which the temperature difference between the sample glass powder and the reference substance is plotted against temperature. The first inflection point of the DTA curve obtained in this way can be determined as the glass transition point Tg.
  • TG-DTA2000S manufactured by Mac Science Co., Ltd.
  • the shape of the glass frit particles is not particularly limited, and for example, spherical or amorphous shapes can be used.
  • the particle size is also not particularly limited. From the viewpoint of workability, etc., the average particle size (D50) of the particles is preferably in the range of 0.1 to 10 ⁇ m, and more preferably in the range of 0.5 to 5 ⁇ m.
  • glass frit contained in the conductive paste of this embodiment types of glass frits (first glass frit and second glass frit) having different compositions can be used independently.
  • the first glass frit contained in the conductive paste of the present embodiment preferably contains one or more selected from SiO 2 , B 2 O 3 , V 2 O 5 , Bi 2 O 3 , TeO 2 , BaO, CuO, Li 2 O, and ZnO.
  • the first glass frit contained in the conductive paste of the present embodiment more preferably contains one or more selected from SiO 2 , B 2 O 3 , V 2 O 5 , Bi 2 O 3 , TeO 2 , Li 2 O, and ZnO. By containing at least one of these oxides, the basicity of the first glass frit can be adjusted to an appropriate range.
  • the first glass frit preferably contains Bi 2 O 3.
  • the content of Bi 2 O 3 in the first glass frit (100 mol%) is preferably 10 to 80 mol%, more preferably 15 to 75 mol%, and further preferably 20 to 70 mol%.
  • the product CBi2O3 ⁇ G of the content of Bi2O3 in the first glass frit in mol % ( CBi2O3 ) and the content G of the first glass frit is preferably in the range of 10 to 200, more preferably in the range of 13 to 170, and even more preferably in the range of 15 to 150.
  • the first glass frit may contain SiO 2 to the extent that it does not adversely affect the conductive paste of the present embodiment.
  • the content of SiO 2 in the first glass frit (100 mol%) is preferably 10 to 60 mol%, and more preferably 15 to 40 mol%.
  • the first glass frit may contain B 2 O 3 to the extent that it does not adversely affect the conductive paste of the present embodiment.
  • the content of B 2 O 3 in the first glass frit (100 mol%) is preferably 3 to 60 mol%, and more preferably 4 to 50 mol%.
  • the first glass frit may contain V2O5 to the extent that it does not adversely affect the conductive paste of the present embodiment.
  • the content of V2O5 in the first glass frit (100 mol%) is preferably less than 8 mol%, and more preferably 5 mol% or less.
  • the basicity of the first glass frit can be reduced. Therefore, when the basicity of the first glass frit is high , the basicity of the first glass frit can be adjusted to an appropriate range by containing an appropriate content of V2O5 .
  • the first glass frit may contain TeO2 to the extent that it does not adversely affect the conductive paste of the present embodiment.
  • the content of TeO2 in the first glass frit (100 mol%) is preferably less than 80 mol%, more preferably 50 mol% or less.
  • the first glass frit may contain BaO to the extent that it does not adversely affect the conductive paste of this embodiment.
  • the content of BaO in the first glass frit (100 mol%) is preferably 3 to 20 mol%, and more preferably 5 to 10 mol%.
  • the first glass frit may contain CuO to the extent that it does not adversely affect the conductive paste of this embodiment.
  • the content of CuO in the first glass frit (100 mol%) is preferably 10 to 40 mol%, and more preferably 20 to 30 mol%.
  • the first glass frit may contain Li 2 O in a range that does not adversely affect the conductive paste of the present embodiment.
  • the content of Li 2 O in the first glass frit (100 mol%) is preferably 3 to 40 mol%, and more preferably 5 to 30 mol%.
  • the first glass frit contains an appropriate content of Li 2 O, the reactivity with the passivation film 2 can be adjusted to an appropriate range.
  • the first glass frit may contain ZnO to the extent that it does not adversely affect the conductive paste of this embodiment.
  • the content of ZnO in the first glass frit (100 mol%) is preferably 5 to 70 mol%, and more preferably 15 to 60 mol%.
  • the basicity of the first glass frit can be adjusted to an appropriate range.
  • the first glass frit contained in the conductive paste of this embodiment is preferably a lead-free glass frit.
  • the first glass frit contained in the conductive paste of this embodiment does not substantially contain lead (Pb).
  • the lead-free first glass frit used in this embodiment may contain a small amount of lead that is inevitably mixed in as an impurity.
  • the lead-free first glass frit used in this embodiment may contain 0.1 wt % or less of lead as an impurity.
  • the second glass frit is a glass frit containing PbO.
  • the second glass frit contained in the conductive paste of the present embodiment preferably contains one or more selected from PbO, SiO 2 , Al 2 O 3 , B 2 O 3 , ZnO, V 2 O 5 , WO 3 and Nb 2 O 3.
  • the second glass frit contained in the conductive paste of the present embodiment more preferably contains PbO, SiO 2 , Al 2 O 3 , B 2 O 3 and ZnO.
  • the second glass frit preferably contains at least one selected from ZnO, V 2 O 5 , WO 3 and Nb 2 O 3.
  • the basicity of the second glass frit can be adjusted to an appropriate range.
  • the second glass frit preferably contains PbO.
  • the content of PbO in the second glass frit (100 mol%) is preferably 25 to 60 mol%, more preferably 30 to 55 mol%, and even more preferably 40 to 55 mol%.
  • the second glass frit preferably contains SiO 2.
  • the content of SiO 2 in the second glass frit (100 mol%) is preferably 20 to 65 mol%, and more preferably 25 to 60 mol%.
  • the second glass frit preferably contains Al 2 O 3.
  • the content of Al 2 O 3 in the second glass frit (100 mol%) is preferably 3.0 to 6.8 mol%, and more preferably 3.5 to 6 mol%.
  • the second glass frit preferably contains B 2 O 3.
  • the content of B 2 O 3 in the second glass frit (100 mol %) is preferably 3.0 to 15 mol %, and more preferably 3.5 to 12 mol %.
  • the second glass frit preferably contains ZnO.
  • the content of ZnO in the second glass frit (100 mol%) is preferably 5 to 20 mol%, and more preferably 8 to 15 mol%.
  • the basicity of the second glass frit can be adjusted to an appropriate range.
  • the product C PbO ⁇ G of the content C PbO of PbO in the second glass frit in mol % and the content G of the second glass frit is preferably in the range of 20 to 139, more preferably in the range of 22 to 130, and even more preferably in the range of 26 to 105. If the product C PbO ⁇ G exceeds 139, the reactivity between the second glass frit and the passivation film 2 becomes too high. On the other hand, if the product C PbO ⁇ G is less than 20, the contact resistance between the obtained electrode and the impurity diffusion layer 4 becomes too high.
  • the glass frit particles can be one type of particle containing a predetermined amount of each of the required oxides. Also, particles made of a single oxide can be used as different particles for each of the required oxides. Also, multiple types of particles with different compositions of the required oxides can be used in combination. In order to obtain the synergistic effects of different types of oxides, it is preferable that the particles of the first and second glass frits are one type of particle containing a predetermined amount of each of the required oxides.
  • the conductive paste of the present embodiment may contain additives and other substances in addition to those mentioned above, provided that they do not adversely affect the solar cell characteristics of the resulting solar cell.
  • the conductive paste of this embodiment may further contain additives selected from plasticizers, defoamers, dispersants, leveling agents, stabilizers, and adhesion promoters, as necessary.
  • the plasticizer may be at least one selected from phthalates, glycolates, phosphates, sebacates, adipic acids, and citrates.
  • the conductive paste of this embodiment may contain additives other than those described above, as long as they do not adversely affect the solar cell characteristics of the resulting solar cell.
  • the conductive paste of this embodiment may further contain at least one additive selected from titanium resinate, titanium oxide, cobalt oxide, cerium oxide, silicon nitride, copper manganese tin, aluminosilicate, and aluminum silicate.
  • these additives may be in the form of particles (additive particles).
  • the amount of additive added per 100 parts by weight of silver particles is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight.
  • the additive is preferably copper manganese tin, aluminosilicate, or aluminum silicate.
  • the additive may contain both aluminosilicate and aluminum silicate.
  • the conductive paste of the present embodiment can be produced by adding silver particles, glass frit, and other additives and/or additives as necessary to an organic binder and a solvent, mixing them, and dispersing them.
  • Mixing can be performed, for example, with a planetary mixer.
  • Dispersion can be performed with a three-roll mill. Mixing and dispersion are not limited to these methods, and various known methods can be used.
  • Tables 1 and 2 show the amounts of (A) conductive particles and (C) glass frit in the conductive pastes of the examples and comparative examples.
  • the amounts shown in Tables 1 and 2 and the amounts of each component shown below are shown as parts by weight of each component when the amount of (A) conductive particles is 100 parts by weight.
  • the components contained in the conductive paste are as follows.
  • Silver particles Table 3 shows the product number, manufacturer, shape, average particle size (D50), TAP density, and BET specific surface area of silver particles A1 and A2 used in the conductive pastes of the examples and comparative examples.
  • Tables 1 and 2 show the blending amounts of silver particles A1 and A2 in the conductive pastes of the examples and comparative examples.
  • the average particle size (D50) was determined by measuring the particle size distribution using the microtrack method (laser diffraction scattering method) and obtaining the median diameter (D50) from the results of the particle size distribution measurement. The same applies to the average particle sizes (D50) of other components.
  • a fully automatic specific surface area measuring device Macsoeb manufactured by MOUNTEC was used to measure the BET specific surface area.
  • the BET specific surface area was measured by the BET one-point method using nitrogen gas adsorption after pre-drying at 100 ° C. and flowing nitrogen gas for 10 minutes.
  • (B) Organic Vehicle An organic binder and a solvent were used as the organic vehicle. Ethyl cellulose (0.4 parts by weight) with an ethoxy content of 48 to 49.5% by weight was used as the organic binder. Diethylene glycol monobutyl ether acetate (butyl carbitol acetate) (3 parts by weight) was used as the solvent.
  • (C) Glass Frit Table 4 shows the composition, basicity and glass transition point of glass frits GF1 to GF6 used in the conductive pastes of the Examples and Comparative Examples.
  • the average particle size (D50) of glass frits GF1 to GF6 was set to 2 ⁇ m.
  • Tables 1 and 2 show the type and content G (parts by weight) of (C) glass frit in the conductive pastes of the Examples and Comparative Examples.
  • the glass transition points of glass frits GF1 to GF6 were measured.
  • Table 4 shows the measured glass transition points of glass frits GF1 to GF6.
  • the glass transition points of the glass frits were measured as follows. That is, approximately 50 mg of glass frits GF1 to GF6 were placed in a platinum cell as a sample, and alumina powder was used as a standard sample.
  • a DTA curve was obtained in an air atmosphere using a differential thermal analyzer (TG-8120, manufactured by Rigaku Corporation) at a heating rate of 20°C/min from room temperature to 800°C. The starting point (extrapolated point) of the first endotherm in the DTA curve was taken as the glass transition point.
  • Glass frits GF1 to GF6 were manufactured as follows. First, the oxide powders were weighed, mixed, and placed in a crucible. The crucible was placed in a heated oven, and the contents of the crucible were heated to the melting temperature, and maintained at the melting temperature until the raw materials were sufficiently melted. Next, the crucible was removed from the oven, and the molten contents were stirred uniformly. Next, the contents of the crucible were quenched at room temperature using two stainless steel rolls to obtain a plate-shaped glass. Finally, the plate-shaped glass was crushed in a mortar while being uniformly dispersed, and sieved through a mesh sieve to obtain glass frit with the desired particle size.
  • a bifacial single crystal silicon solar cell was manufactured as shown in Fig. 4.
  • a P (phosphorus) doped n-type single crystal silicon substrate substrate thickness: 200 ⁇ m was used as the substrate.
  • a silicon oxide layer of approximately 20 ⁇ m was formed on the substrate by dry oxidation, and then the substrate was etched with a mixed solution of hydrogen fluoride, pure water, and ammonium fluoride to remove damage to the substrate surface.
  • heavy metals were cleaned with an aqueous solution containing hydrochloric acid and hydrogen peroxide.
  • a texture (bumpy shape) was formed on both sides of the substrate by wet etching. Specifically, a pyramidal texture structure was formed on both sides (the main light-incident surface and the back surface) by wet etching (sodium hydroxide solution). The substrate was then washed with an aqueous solution containing hydrochloric acid and hydrogen peroxide.
  • boron was injected into one of the textured surfaces (the light-incident surface) of the substrate to form a p-type diffusion layer to a depth of approximately 0.5 ⁇ m.
  • the sheet resistance of the p-type diffusion layer was 150 ⁇ / ⁇ .
  • phosphorus was injected into the other surface (back surface) of the substrate having the textured structure to form an n-type diffusion layer to a depth of approximately 0.5 ⁇ m.
  • the sheet resistance of the n-type diffusion layer was 20 ⁇ / ⁇ .
  • the boron and phosphorus were simultaneously injected by the thermal diffusion method.
  • a passivation film 2 was formed on the surface (light incident surface) of the substrate on which the p-type diffusion layer was formed, and on the surface (rear surface) of the substrate on which the n-type diffusion layer was formed.
  • a thin oxide film layer of 1 to 2 nm was first formed on the light incident surface and rear surface, and then a silicon nitride film was formed to a thickness of about 60 nm by plasma CVD using silane gas and ammonia gas.
  • a mixed gas of NH 3 /SiH 4 0.5 at 1 Torr (133 Pa) was glow discharge decomposed to form a silicon nitride film (anti-reflective film) with a film thickness of about 70 nm by plasma CVD.
  • the conductive paste used to form the electrodes on the surface (light incident surface) of the substrate on which the p-type diffusion layer was formed for the single crystal silicon solar cells of the examples and comparative examples was the one shown in Tables 1 and 2.
  • the conductive paste was printed by screen printing.
  • a pattern consisting of a 1.5 mm wide light incident side busbar electrode 20a and a 60 ⁇ m wide light incident side finger electrode 20b was printed on the passivation film 2 of the above-mentioned substrate so that the film thickness was approximately 20 ⁇ m, and then it was dried at 150°C for approximately 1 minute.
  • the same Ag paste was printed by screen printing to form the back electrode 15 (the electrode on the surface on which the n-type diffusion layer is formed).
  • the electrode pattern of the back electrode 15 has the same electrode pattern shape as the light-incident side surface electrode 20. It was then dried at 150°C for approximately 60 seconds. After drying, the conductive paste for the back electrode 15b had a film thickness of approximately 20 ⁇ m. It was then fired simultaneously on both sides using a belt furnace (firing furnace) CDF7210 manufactured by Despatch Industries, Inc., with a peak temperature of 720°C and an in-out time of the furnace of 50 seconds. In this manner, a single crystal silicon solar cell was produced.
  • the AgSi region 30 was formed by performing a laser treatment process on the light incident surface of the single crystal silicon solar cell of the above-mentioned Example and Comparative Example. That is, the light incident surface of the solar cell was irradiated with laser light while applying a negative voltage to the back electrode 15 and a positive voltage to the light incident surface electrode 20 of the pattern shown in Figure 2 formed on the light incident surface so that a current flows in the opposite direction to the forward direction between the p-type impurity diffusion layer 4 of the solar cell and the n-type crystalline silicon substrate 1.
  • the applied voltage during the laser treatment process was 20 V
  • the intensity of the irradiated laser light was 100 W/cm2
  • the voltage application and laser light irradiation time were 2 seconds.
  • the electrical characteristics of the single crystal silicon solar cell after the laser treatment process were measured as follows. That is, the current-voltage characteristics of the prototype solar cell were measured under irradiation of solar simulator light (energy density 100 mW/cm2) at 25°C and AM1.5 using a solar simulator SS-150XIL manufactured by Eiko Seiki Co., Ltd., and the fill factor (FF), open circuit voltage (Voc) and conversion efficiency (%) were calculated from the measurement results. Two single crystal silicon solar cells were produced under the same manufacturing conditions, and the measured values were calculated as the average value of the two. The electrical characteristics (fill factor (FF), open circuit voltage (Voc) and conversion efficiency (%)) of the solar cell after the laser treatment process were measured. Tables 1 and 2 show the measurement results.
  • the solar cells of Examples 1 to 7 which were fabricated using a specified conductive paste, had high electrical properties after the laser treatment process, with conversion efficiencies ranging from 21.3% to 24.4%, for example.
  • the solar cells fabricated using the conductive paste of Comparative Example 1 had low electrical properties after the laser treatment process, with conversion efficiencies ranging from 7.3 to 20.2, for example. It is therefore clear that the solar cells of Examples 1 to 7 of this embodiment, which have a specified AgSi region 30, have superior electrical properties after the laser treatment process compared to the solar cells of Comparative Examples 1 and 2.
  • the passivation film 2 (anti-reflection film) is present in most of the area between the light-incident surface electrode 20 and the impurity diffusion layer 4.
  • the above-mentioned predetermined voltage is applied so that a current flows in the opposite direction to the forward direction in the pn junction, and light (e.g., laser light) from a point light source is irradiated, so that a current flows in a small area between the light-incident surface electrode 20 and the impurity diffusion layer 4, causing local heating.
  • an AgSi region 30 (an alloy of silver and silicon), which is a local electrically conductive portion (local conductive portion), is formed between the light-incident surface electrode 20 and the impurity diffusion layer 4.
  • the local conductive portion contains an alloy of silver and silicon.
  • the impurity diffusion layer 4 (silicon emitter layer of the second conductivity type) is directly in contact with the light-incident surface electrode 20 without the passivation film 2 (anti-reflection film). This locally formed electrically conductive portion (locally conductive portion) enables good electrical conduction between the light incident surface electrode 20 and the impurity diffusion layer 4.
  • the specific conductive paste for manufacturing the solar cell of this embodiment has low reactivity with the passivation film 2 (anti-reflection film) and has appropriate reactivity with the passivation film 2 (anti-reflection film) for the laser treatment process. Therefore, the conductive paste of this embodiment can be preferably used to form the light incident surface electrode 20 of a crystalline silicon solar cell using a laser treatment process.
  • Figure 6 illustrates the depth d of the AgSi region 30.
  • the depth d of the AgSi region 30 was measured as the maximum length of the line segment (length d of the line segment connecting B1 and B2 in Figure 6) from an arbitrary point (B1 in Figure 6) on the interface between the electrode and the AgSi region 30 to an arbitrary point (B2 in Figure 6) on the interface between the substrate and the AgSi region 30 in an SEM photograph obtained by SEM observation of the cross section of the AgSi region 30.
  • the SEM photograph shown in Figure 6 was obtained by SEM observation of the cross section including the passivation film 2 and the AgSi region 30 of the completed solar cell at a magnification of 20,000 times.
  • a cross section including the passivation film 2 and the AgSi region 30 of the completed solar cell was observed with an SEM at a magnification of 20,000 times to obtain an SEM photograph (SEM image range: 5.7 ⁇ m ⁇ 3.9 ⁇ m).
  • the horizontal length (horizontal to the substrate surface) of this SEM photograph is 5.7 ⁇ m, and the vertical length (perpendicular to the substrate surface) is 3.9 ⁇ m.
  • the total length Lp of the cross section of the passivation film 2 in this SEM photograph was measured.
  • the total length Lp of the cross section of the passivation film 2 in the SEM photograph is the total length of Lp1, Lp2, Lp3, and Lp4.
  • the total length Le of the cross section of the interface between the AgSi region 30 and the electrode in the part where the AgSi region 30 was generated was measured.
  • the length Le corresponds to the length of the passivation film 2 that disappeared during the manufacturing process of the solar cell.
  • the total length Le of the cross section of the interface between the AgSi region 30 and the electrode in the portion where the passivation film 2 has disappeared is the total length of Le1 and Le2.
  • the remaining rate of the passivation film 2 can be obtained as Lp/(Lp+Le).
  • the lengths of Lp1, etc. were measured by approximating the passivation film 2, etc. as a straight line.
  • ⁇ Film thickness and film thickness ratio of passivation film 2 before and after firing The thickness Da of the passivation film 2 before firing and the thickness Db of the passivation film 2 after completion of the solar cell were measured for the solar cells of Examples 1 to 7 and Comparative Examples 1 and 2. The measurement results are shown in Tables 1 and 2. Tables 1 and 2 also show the thickness ratios of the passivation film 2 before and after firing.
  • the pre-firing thickness Da of the passivation film 2 was measured by SEM observation of the cross section of the passivation film 2 immediately after deposition. That is, the passivation film 2 was formed on the surface of a specified crystalline silicon substrate 1 under the same conditions as in the examples and comparative examples, and the cross section of the passivation film 2 was observed by SEM to obtain the pre-firing thickness Da of the passivation film 2 in the examples and comparative examples.
  • the thickness Db of the completed solar cell is the passivation film 2 of the completed solar cell after electrodes are formed on the surface of the solar cell and a specified laser processing process is performed as necessary. Specifically, first, a SEM photograph (SEM image area: 5.7 ⁇ m ⁇ 3.9 ⁇ m) was obtained by observing the cross section of the completed solar cell including the passivation film 2 and AgSi region 30 with an SEM at a magnification of 20,000 times. Next, the SEM photograph was divided into six equal parts vertically, and the thickness (five locations) of the passivation film 2 was measured at five boundaries of the six equal parts. The thickness Db of the completed solar cell was taken as the average thickness of the five locations of the passivation film 2.
  • the film thickness ratio before and after firing of the passivation film 2 is the ratio (Db/Da) of the film thickness Da of the passivation film 2 before firing measured as described above to the film thickness Db after the solar cell is completed.
  • the depth d of the AgSi region 30 determined from the SEM photograph of the cross section was in the range of 200 to 1800 nm.
  • the predetermined AgSi region 30 was formed in the solar cells of Examples 1 to 7.
  • the film thickness ratio before and after firing of the passivation film 2 of the solar cells of Examples 1 to 7 was in the range of 17 to 78%, and the remaining rate of the passivation film 2 was in the range of 10 to 90%. Therefore, it was confirmed that the predetermined passivation film 2 remained even after the solar cells of Examples 1 to 7 manufactured by performing the predetermined firing and laser treatment processes were manufactured.
  • the electrical characteristics after the laser treatment process of the solar cells of Examples 1 to 7 manufactured using the conductive paste containing the glass frits GF1 to 3, GF5, and GF6 were high, and for example, the conversion efficiency was in the range of 21.3% to 24.4%.
  • the open circuit voltage (Voc) was high and in the range of 0.69 to 0.72 V.
  • the fill factors (FF) of the solar cells of Examples 1 to 7 were in the range of 72.7 to 82.6%, which were favorable values.
  • the remaining rate of passivation film 2 of the solar cells of Examples 1 to 5 was in the range of 76 to 88%, and the conversion efficiency was in the range of 23.4% to 24.4%.
  • the conversion efficiency of the solar cells of Examples 1 to 5 was higher than that of the solar cell of Example 6 (remaining rate of passivation film 2 was 10%) and the solar cell of Example 7 (remaining rate of passivation film 2 was 90%). Therefore, it can be said that when the remaining rate of passivation film 2 is 30% or more and less than 90%, a solar cell with a higher conversion efficiency can be obtained.
  • the film thickness ratio before and after firing of the passivation film 2 of the solar cells of Examples 1 to 5 was in the range of 36 to 51%, and the conversion efficiency was in the range of 23.4% to 24.4%.
  • the conversion efficiency of the solar cells of Examples 1 to 5 was higher than that of the solar cell of Example 6 (film thickness ratio of 78%) and the solar cell of Example 7 (film thickness ratio of 17%). Therefore, it can be said that a solar cell with a higher conversion efficiency can be obtained when the film thickness ratio before and after firing of the passivation film 2 is 20 to 70%.
  • the solar cell of Comparative Example 1 the AgSi region 30 was not observed in the SEM photograph of the cross section.
  • the film thickness ratio before and after the firing of the passivation film 2 of the solar cell of Comparative Example 1 was 91%, and the remaining rate of the passivation film 2 was 100%. Therefore, in the solar cell of Comparative Example 1 manufactured by performing the specified firing and laser treatment process, it was confirmed that the specified passivation film 2 remained almost unchanged from immediately after the film formation, and that no AgSi region was formed.
  • the electrical characteristics of the solar cell manufactured using the conductive paste containing the GF4 glass frit after the laser treatment process were low, for example, the conversion efficiency was 7.3%.
  • the passivation film 2, which is an insulating film remained, so the fill factor (FF) was a low value of 35.7%.
  • the AgSi region 30 was observed in the SEM photograph of the cross section.
  • the depth d of the AgSi region 30 obtained from the SEM photograph of the cross section was 1200 nm.
  • the film thickness ratio before and after firing of the passivation film 2 of the solar cell of Comparative Example 2 was 5%, and the remaining rate of the passivation film 2 was 5%. Therefore, it was revealed that the solar cell of Comparative Example 2 manufactured by performing a predetermined firing and laser treatment process had less presence of the passivation film 2 compared to the solar cells of Examples 1 to 7.
  • the conversion efficiency after the laser treatment process of the solar cell of Comparative Example 2 manufactured using the conductive paste containing the glass frit of GF3 was 20.2%, which was lower than the solar cells of Examples 1 to 7.
  • the presence of the passivation film 2 was reduced and the passivation function was reduced, so the open circuit voltage (Voc) was 0.64 V, which was a low value.
  • the passivation film 2 was fired through when the electrode formed from the conductive paste containing the GF3 glass frit was fired.
  • the solar cells of Examples 1, 2, and 4 to 7 were manufactured using a conductive paste containing lead-free glass frit (glass frits GF1 to GF5), which prevents lead pollution of the environment when the solar cells are discarded.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

高い開放電圧(Voc)及び曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を提供する。不純物拡散層を含む結晶系シリコン基板(1)と、前記基板(1)の前記不純物拡散層の少なくとも一部の上に配置されたパッシベーション膜(2)と、銀(Ag)を含む電極(20)であって、前記パッシベーション膜(2)の少なくとも一部の上に配置された前記電極(20)とを含む太陽電池であって、前記太陽電池が、前記電極(20)と、前記基板(1)との間の少なくとも一部に配置された、少なくとも1つのAgSi領域(30)を更に含み、前記AgSi領域(30)が、深さが100nm以上のAgSi領域(30)を少なくとも1つ含み、前記太陽電池の前記AgSi領域(30)を含む5.7µmX3.9µmの断面の走査型電子顕微鏡写真において、前記パッシべーション膜(2)が残存している長さの割合である前記パッシベーション膜(2)の残存率が、10〜90%である、太陽電池である。

Description

太陽電池
 本発明は、結晶系シリコン基板を用いた結晶系シリコン太陽電池に関する。
 単結晶シリコン又は多結晶シリコンを平板状に加工した結晶系シリコンを基板に用いた結晶系シリコン太陽電池等の半導体デバイスは、デバイスの外部との電気的接触のために、シリコン基板表面に、電極形成用の導電性ペーストを用いて電極が形成されることが一般的である。そのようにして電極が形成される半導体デバイスの中で、結晶系シリコン太陽電池は、近年、その生産量が大幅に増加している。これらの太陽電池は、結晶系シリコン基板の一方の表面に、不純物拡散層、反射防止膜(パッシベーション膜)及び光入射側表面電極を有し、他方の表面に裏面電極を有する。光入射側表面電極及び裏面電極によって、結晶系シリコン太陽電池により発電した電力を外部に取り出すことができる。
 従来の結晶系シリコン太陽電池の電極形成には、導電性粉末、ガラスフリット、有機バインダ、溶剤及びその他の添加物を含む導電性ペーストが用いられている。導電性粉末としては、主に銀粒子(銀粉末)が用いられている。
 特許文献1には、結晶系シリコン太陽電池の製造方法が記載されている。特許文献1には、結晶系シリコン太陽電池の電極の形成のために、無機材料を含む電極形成用導電性ペーストを用いることが記載されている。特許文献1には、無機材料が、導電性粒子とガラスフリットとからなることが記載されている。
 特許文献2には、シリコンソーラセルにおけるコンタクトグリッドと、エミッタレイヤとの間のオーミックコンタクト挙動を改善するプロセスが記載されている。具体的には、特許文献2のプロセスとして、所定の電圧を、シリコンソーラセルの順方向と逆向きに印加し、点光源を、シリコンソーラセルの太陽面側にガイドして、それにより前記太陽面側のサブセクションの断面に照射することが記載されている。
 特許文献3には、太陽電池の電極を形成するための、銀粉末とPbOを含有するガラス粉末と有機物からなるビヒクルとを含む導電性組成物が記載されている。特許文献3には、導電性組成物が、窒化ケイ素層を貫通して前記窒化ケイ素層の下に形成されたn型半導体層と導通する電極を形成するための導電性組成物であることが記載されている。また、特許文献3には、導電性組成物に含まれるガラス粉末の塩基度が0.6以上0.8以下であって、ガラスの転移点が300℃~450℃であることが記載されている。
特開2011-86754号公報 特表2021-513218号公報 特開2009-231826号公報
 図5に、一般的な結晶系シリコン太陽電池の断面模式図の一例を示す。図5に示すように、一般的な結晶系シリコン太陽電池では、スクリーン印刷法などによって導電性ペーストを用いて光入射側表面電極20(表面電極)の電極パターンをパッシベーション膜2として機能するパッシベーション膜2の上に印刷し、導電性ペーストを乾燥し、所定の温度で焼成することによって光入射側表面電極20が形成される。一般的な結晶系シリコン太陽電池では、この所定の温度での焼成の際、導電性ペーストがパッシベーション膜2をファイアースルーする。このファイアースルーによって、光入射側表面電極20を、不純物拡散層4に接触するように形成することができる。なお、ファイアースルーとは、絶縁膜であるパッシベーション膜2を導電性ペーストに含まれるガラスフリット等でエッチングし、光入射側表面電極20と不純物拡散層4とを導通させることである。図5に示す例では、電極パターンの焼成の際に、電極パターンがパッシベーション膜2をファイアースルーしたことにより、パッシベーション膜2が消失して、光入射側表面電極20と、不純物拡散層4とが接している。n型結晶系シリコン基板1と不純物拡散層4との界面にはpn接合が形成されている。結晶系シリコン太陽電池に入射した入射光の大部分は、パッシベーション膜2及び不純物拡散層4を透過して、n型結晶系シリコン基板1に入射する。この過程でn型結晶系シリコン基板1において光が吸収され、電子-正孔対が発生する。これらの電子-正孔対は、pn接合による電界によって、電子はn型結晶系シリコン基板1から裏面電極15へ、正孔はp型不純物拡散層4から光入射側表面電極20へと分離される。電子及び正孔(キャリア)は、これらの電極を介して、電流として外部に取り出される。
 図2に、結晶系シリコン太陽電池の光入射側表面の模式図の一例を示す。図2に示すように、結晶系シリコン太陽電池の光入射側表面には、光入射側表面電極20として、バスバー電極(光入射側バスバー電極20a)及び光入射側フィンガー電極20b(単に、「フィンガー電極20b」という場合がある。)が配置されている。図5及び図2に示す例では、結晶系シリコン太陽電池に入射した入射光によって発生した電子-正孔対のうち電子はフィンガー電極20bに集められ、更に光入射側バスバー電極20aに集められる。光入射側バスバー電極20aには、はんだにより周囲を覆われたインターコネクト用の金属リボンがはんだ付けされ、この金属リボンにより電流は外部に取り出される。
 太陽電池の光-電気変換効率(単に「変換効率」という場合がある。)は、曲線因子(Fill Factor:FF)、開放電圧(Open Circuit Voltage:Voc)、及び短絡電流(Short Circuit Current:Jsc)の積で表される。基本的に、曲線因子(FF)と開放電圧(Voc)はトレードオフの関係になっており、曲線因子と開放電圧の両方を同時に高くすることは困難である。
 高い変換効率、特に高い曲線因子(FF)の結晶系シリコン太陽電池を得るために、光入射側表面電極20と不純物拡散層4との間の接触抵抗は、低いことが求められる。
 また、従来の結晶系シリコン太陽電池の場合、光入射側表面電極20を形成する際に、導電性ペーストの電極パターンが焼成されることにより、パッシベーション膜2をファイアースルーして、不純物拡散層4に接触する。このファイアースルーの際に、不純物拡散層4にダメージが生じ、結晶系シリコン太陽電池の性能(特に開放電圧(Voc))が低下するという問題がある。
 上述のように、曲線因子と開放電圧の両方を同時に高くすることは、一般的に困難である。一方、高い開放電圧(Voc)及び曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を得るために必要な、電極と、基板との間の構造が明らかになれば、高効率の結晶系シリコン太陽電池を製造するための指針を得ることができる。
 そこで、本発明は、高い開放電圧(Voc)及び曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を提供することを目的とする。特に、本発明は、高い開放電圧(Voc)及び曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を得るために、電極と、前記基板との間が所定の構造である結晶系シリコン太陽電池を提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
 構成1は、結晶系シリコンを含む基板であって、少なくとも一方の表面に不純物拡散層を含む前記基板と、
 前記基板の前記不純物拡散層の少なくとも一部の上に配置されたパッシベーション膜と、
 銀(Ag)を含む電極であって、前記パッシベーション膜の少なくとも一部の上に配置された前記電極と
を含む太陽電池であって、
 前記太陽電池が、前記電極と、前記基板との間の少なくとも一部に配置された、少なくとも1つのAgSi領域を更に含み、
 前記AgSi領域が、深さが100nm以上のAgSi領域を少なくとも1つ含み、
 前記太陽電池の前記AgSi領域を含む5.7μm×3.9μmの断面の走査型電子顕微鏡写真において、前記パッシベーション膜が残存している長さの割合である前記パッシベーション膜の残存率が、10~90%である、太陽電池である。
(構成2)
 構成2は、前記パッシベーション膜の成膜直後の膜厚Daと、前記太陽電池の表面に前記電極が形成されて完成した前記太陽電池の前記AgSi領域を含む5.7μm×3.9μmの断面の走査型電子顕微鏡写真における前記パッシベーション膜の膜厚Dbとの比Db/Daが、15%~85%である、構成1の太陽電池である。
(構成3)
 構成3は、前記電極が、前記電極に含まれる前記銀(Ag)の100重量部に対して0.1~5.0重量部のガラスフリットを更に含む、構成1又は2の太陽電池である。
(構成4)
 構成4は、前記ガラスフリットのガラス転移点が250~600℃である、構成3の太陽電池である。
(構成5)
 構成5は、前記ガラスフリットが、SiO、B、V、Bi、TeO、LiO及びZnOから選択される少なくとも1つを含む、構成3又は4の太陽電池である。
(構成6)
 構成6は、前記ガラスフリットが、PbOを実質的に含まない、構成3~5のいずれかの太陽電池である。
(構成7)
 構成7は、前記電極が鉛(Pb)を実質的に含まない、請求1~6のいずれかの太陽電池である。
(構成8)
 構成8は、前記電極がアルミニウム粒子を実質的に含まない、構成1~7のいずれかの太陽電池である。
(構成9)
 構成9は、前記基板が、第1の導電型の前記結晶系シリコン基板であり、
 前記不純物拡散層が、第2の導電型の不純物拡散層であり、
 前記電極が、光入射側表面に配置された光入射側表面電極であり、
 前記太陽電池が、前記結晶系シリコン基板の前記光入射側表面とは反対側の表面に対して電気的に接続するように配置された裏面電極を更に含み、
 前記光入射側表面電極が、前記第2の導電型の前記不純物拡散層と、前記第1の導電型の前記結晶系シリコン基板との間で順方向とは逆向きの電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の前記光入射側表面に照射する処理をした前記光入射側表面電極である、構成1~8のいずれかの太陽電池である。
 本発明によれば、高い開放電圧(Voc)及び曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を提供することができる。特に、本発明によれば、高い開放電圧(Voc)及び曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を得るために、電極と、前記基板との間が所定の構造である結晶系シリコン太陽電池を提供することができる。
本実施形態の結晶系シリコン太陽電池の断面模式図の一例である。 結晶系シリコン太陽電池の光入射側表面の模式図の一例である。 結晶系シリコン太陽電池の裏面の模式図の一例である。 本実施形態の両面受光型の結晶系シリコン太陽電池の断面模式図の一例である。 一般的な結晶系シリコン太陽電池の、光入射側表面電極(フィンガー電極)が存在する近傍の断面模式図の一例であり、電極と、不純物拡散層との間の反射防止膜(パッシベーション膜)がファイアースルーにより、消失している状態を示す断面模式図である。 実施例3の結晶系シリコン太陽電池の、光入射側表面のパッシベーション膜の近傍の断面SEM(走査型電子顕微鏡)写真(倍率:2万倍)であって、AgSi領域の深さdを説明するための図である。 実施例3の結晶系シリコン太陽電池の、光入射側表面のパッシベーション膜の近傍の断面SEM(走査型電子顕微鏡)写真(倍率:2万倍)であって、パッシベーション膜の残存率Lp/(Lp+Le)を説明するための図である。 比較例1の結晶系シリコン太陽電池の、光入射側表面のパッシベーション膜の近傍の断面SEM(走査型電子顕微鏡)写真(倍率:2万倍)である。
 以下、本発明の実施形態について、具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の形態であって、本発明をその範囲内に限定するものではない。
<太陽電池>
 図1に、本実施形態の太陽電池の断面模式図の一例を示す。本実施形態の太陽電池は、結晶系シリコンを含む基板(結晶系シリコン基板1)と、パッシベーション膜2と、電極(例えば、光入射側表面電極20)とを含む。また、本実施形態の太陽電池は、電極と、基板との間の少なくとも一部に配置された、少なくとも1つのAgSi領域30を更に含む。
<<基板>>
 本実施形態の太陽電池は、基板を含む。本実施形態の太陽電池の基板は、結晶系シリコン基板1である。したがって、本実施形態の太陽電池は、結晶系シリコン太陽電池である。
 本明細書では、「結晶系シリコン」は単結晶及び多結晶シリコンを包含する。また、「結晶系シリコン基板」とは、電気素子又は電子素子等の半導体デバイスの形成のために、結晶系シリコンを平板状など、素子形成に適した形状に成形した材料のことをいう。結晶系シリコンの製造方法は、どのような方法を用いても良い。例えば、単結晶シリコンの場合にはチョクラルスキー法、多結晶シリコンの場合にはキャスティング法を用いることができる。また、その他の製造方法、例えばリボン引き上げ法により作製された多結晶シリコンリボン、ガラス等の異種基板上に形成された多結晶シリコンなども結晶系シリコン基板1として用いることができる。また、「結晶系シリコン太陽電池」とは、結晶系シリコン基板1を用いて作製された太陽電池のことをいう。本明細書では、結晶系シリコン基板1のことを単に「基板」という場合がある。
 一般的な太陽電池では、太陽電池の半導体基板の材料として、結晶系シリコン、炭化シリコン、ゲルマニウム、ガリウムヒ素などを用いることができる。太陽電池としての安全性及びコストの点から、半導体基板の材料は、結晶系シリコン(単結晶シリコン及び多結晶シリコン等)であることが好ましい。
 本実施形態の太陽電池の結晶系シリコン基板1は、n型又はp型の不純物を含むn型結晶系シリコン基板1又はp型結晶系シリコン基板1である。n型結晶系シリコン基板1に含まれるn型不純物としては、ホウ素(B)、アルミニウム(Al)及びガリウム(Ga)等の13族元素を挙げることができる。p型結晶系シリコン基板1に含まれるp型不純物としては、リン(P)、ヒ素(As)及びアンチモン(Sb)等の15族元素を挙げることができる。
 図1に示すように、本実施形態の太陽電池は、結晶系シリコン基板1の少なくとも一方の表面の少なくとも一部に不純物拡散層4を含む。本実施形態の太陽電池の場合、光入射側表面に形成される不純物拡散層4は、p型又はn型の不純物拡散層4である。なお、本明細書では、図1に示すように、基板のうち、不純物拡散層4が形成されていない部分のことを「基板本体6」という場合がある。
 本明細書では、n型又はp型の不純物を含む結晶系シリコンにおいて、一方の導電型(n型又はp型)のことを第1の導電型といい、第1の導電型ではない他方の導電型(p型又はn型)のことを第2の導電型という。結晶系シリコン基板1が第1の導電型の場合、不純物拡散層4は第2の導電型の不純物拡散層4である。具体的には、結晶系シリコン基板1がn型の不純物を含むn型結晶系シリコン基板1の場合、結晶系シリコン基板1の少なくとも一方の表面に形成される不純物拡散層4は、p型不純物拡散層4である。また、結晶系シリコン基板1がp型の不純物を含むp型結晶系シリコン基板1の場合、結晶系シリコン基板1の少なくとも一方の表面に形成される不純物拡散層4は、n型不純物拡散層4である。このように第1及び第2の導電型を選択することにより、不純物拡散層4を形成した結晶系シリコン基板1の表面近傍に、pn接合を形成することができる。
 本実施形態の太陽電池の第1の導電型の結晶系シリコン基板1は、n型結晶系シリコン基板1であることが好ましい。また、本実施形態の太陽電池の第2の導電型の不純物拡散層4は、p型不純物拡散層4であることが好ましい。一般的に、n型結晶系シリコン基板1中のキャリアである電子の移動度は、p型結晶系シリコン基板1中のキャリアである正孔の移動度よりも高い。そのため、高い変換効率の太陽電池を得るためには、n型結晶系シリコン基板1を用いた方が有利である。
 不純物拡散層4のシート抵抗は、好ましくは30~300Ω/□(square)、40~160Ω/□(square)、より好ましくは45~120Ω/□である。また、不純物拡散層4を形成する深さは、0.3μm~1.0μmであることができる。なお、不純物拡散層4の深さとは、不純物拡散層4の表面からpn接合までの深さをいう。pn接合の深さは、不純物拡散層4の表面から、不純物拡散層4中の不純物濃度が、基板本体6の不純物濃度と同程度になるまでの深さとすることができる。
 なお、本明細書では、本実施形態の結晶系シリコン太陽電池の不純物拡散層4のことを、「シリコンエミッタ層」という場合がある。
<<パッシベーション膜2>>
 本実施形態の太陽電池は、パッシベーション膜2を含む。パッシベーション膜2は、基板の不純物拡散層4の少なくとも一部の上に配置される。
 パッシベーション膜2は、反射防止膜としての機能を有することができる。本明細書では、結晶系シリコン基板1の光入射側表面に形成されたパッシベーション膜2のことを、反射防止膜という場合がある。
 パッシベーション膜2は、単層又は複数層からなる膜であることができる。パッシベーション膜2が単層の場合には、シリコン基板の表面のパッシベーションを効果的に行うことができる点から、窒化ケイ素(SiN)を材料とする薄膜(SiN膜)であることが好ましい。また、パッシベーション膜2が複数層の場合には、窒化ケイ素を材料とする薄膜及び酸化シリコンを材料とする薄膜の積層膜(SiN/SiO膜)であることができる。なお、SiN/SiO膜がパッシベーション膜2の場合には、シリコン基板の表面のパッシベーションをより効果的に行うことができる点から、シリコン基板1にSiO膜が接するようにSiO膜を形成し、SiO膜の上にSiN膜を形成することが好ましい。SiO膜は、シリコン基板の自然酸化膜であることができる。
 図5に、一般的な結晶系シリコン太陽電池の断面模式図の一例を示す。図5に示すように、一般的な結晶系シリコン太陽電池では、不純物拡散層4の上には、パッシベーション膜2(反射防止膜)を形成する。更に、スクリーン印刷法などによって導電性ペーストを用いて光入射側表面電極20(表面電極)の電極パターンをパッシベーション膜2上に印刷し、導電性ペーストを乾燥し、所定の温度で焼成することによって光入射側表面電極20が形成される。一般的な結晶系シリコン太陽電池では、この所定の温度での焼成の際、導電性ペーストがパッシベーション膜2をファイアースルーする。一般的な結晶系シリコン太陽電池では、このファイアースルーによって、光入射側表面電極20を、不純物拡散層4に電気的に接触するように形成することができる。なお、ファイアースルーとは、絶縁膜であるパッシベーション膜2を導電性ペーストに含まれるガラスフリット等でエッチングし、光入射側表面電極20と不純物拡散層4とを導通させることである。図5に示す一般的な結晶系シリコン太陽電池の例では、電極パターンの焼成の際に、電極パターンがパッシベーション膜2をファイアースルーしたことにより、パッシベーション膜2が消失して、光入射側表面電極20と、不純物拡散層4とが接している。
 一方、図1に示すように、本実施形態の結晶系シリコン太陽電池の場合、光入射側表面電極20と、不純物拡散層4との間の大部分に、パッシベーション膜2(反射防止膜)が存在する。そのため、本実施形態の結晶系シリコン太陽電池の場合、結晶系シリコン基板1の不純物拡散層4に接する部分のパッシベーション膜2は、後述するAgSi領域30以外の部分において、パッシベーション膜2の大部分がそのまま存在することができる。パッシベーション膜2が存在することにより、キャリアの再結合の原因となる表面欠陥密度の増加を防止することができる。この結果、本実施形態の結晶系シリコン太陽電池は、高い開放電圧(Voc)を得ることができる。
 本実施形態の結晶系シリコン太陽電池の場合、電極を形成するための焼成の後も、電極と、不純物拡散層4との間のパッシベーション膜2の大部分は残存する。本明細書では、電極を形成するための焼成の後の、電極と、結晶系シリコン基板1との間のパッシベーション膜2の残存の程度を、パッシベーション膜2の残存率として示す。パッシベーション膜2の残存率については後述する。
<<電極>>
 本実施形態の太陽電池は、電極を含む。本実施形態の太陽電池の電極は、パッシベーション膜2の少なくとも一部の上に配置される。また、本実施形態の太陽電池の電極は、銀(Ag)を含む。
 図1に示すように、結晶系シリコン太陽電池の光入射側表面には、光入射側表面電極20として、フィンガー電極20bが配置されている。図1に示す例では、結晶系シリコン太陽電池に入射した入射光によって発生した電子-正孔対のうち正孔は、不純物拡散層4(例えば、p型の不純物拡散層4)を経て、フィンガー電極20bに集められる。したがって、フィンガー電極20bと、不純物拡散層4との間の接触抵抗は、低いことが求められる。
 なお、図1に示す結晶系シリコン太陽電池の光入射側表面とは反対側の裏面には、裏面電極15が配置される。本明細書において、結晶系シリコン太陽電池から電流を外部に取り出すための電極である光入射側表面電極20及び裏面電極15を、単に「電極」という場合がある。
 図4に、本実施形態の両面受光型の結晶系シリコン太陽電池(両面発電型結晶系シリコン太陽電池)の断面模式図の一例を示す。図4に示す結晶系シリコン太陽電池は、2つの表面(第1及び第2の光入射側表面)から光を入射して発電をすることができる。
 一般的に、結晶系シリコン太陽電池の電極は、導電性ペーストをスクリーン印刷法などの方法で印刷し、焼成することによって形成することができる。本明細書では、本実施形態の結晶系シリコン太陽電池の電極を形成するための導電性ペーストのことを、所定の導電性ペーストという場合がある。一般的に、導電性ペーストは、導電性粒子と、有機ビヒクルとを含む。また、導電性ペーストは、導電性粒子及び有機ビヒクルに加えて、更にガラスフリットを含むことができる。本実施形態の太陽電池の電極は、銀(Ag)を含む。したがって、所定の導電性ペーストに含まれる導電性粒子は銀(Ag)を含む必要がある。導電性ペーストに含まれる有機ビヒクルは、電極を形成するための焼成の際に焼失する。そのため、焼成後の電極は、有機ビヒクル以外の導電性ペーストに含まれる成分を含む。具体的には、焼成後の電極は、導電性ペーストの導電性粒子に起因する導電性成分を含む。また、導電性ペーストがガラスフリットを含む場合には、焼成後の電極は、更に導電性ペーストのガラスフリットに起因する成分を含む。
 低い電気抵抗及び高い信頼性を得る点から、本実施形態の結晶系シリコン太陽電池の所定の電極に含まれる導電性成分は銀のみからなることが好ましい。なお、銀のみからなる導電性成分は、不可避的に含まれる不純物としての他の金属元素を含有することができる。
 本明細書において、ガラスフリットとは、複数種類の酸化物、例えば金属酸化物を主材料とするものであり、一般的にガラス状の粒子の形態で用いるものである。電極を形成するための焼成の際に、ガラスフリットは軟化し、粒子が互いに結合する。本明細書では、電極に含まれるガラスフリットに起因した成分(酸化物)のことも、単に「ガラスフリット」という。
 本実施形態の太陽電池では、電極に含まれるガラスフリットの含有量が、電極に含まれる銀(Ag)の含有量100重量部に対して、0.1~5.0重量部であることが好ましく、0.2~4.0重量部であることがより好ましく、0.3~3.0重量部であることが更に好ましく、0.4~2.7重量部であることが特に好ましい。ガラスフリットの含有量を適切な範囲にすることにより、電極を形成するための焼成の際に、ガラスフリットによるパッシベーション膜2に対する反応性を適切なものにすることができる。
 本実施形態の太陽電池は、電極に含まれるガラスフリットのガラス転移点が250~600℃であることが好ましく、270~500℃であることがより好ましく、300~400℃であることが更に好ましい。ガラスフリットのガラス転移点(Tg)を250℃以上にすることによりパッシベーション膜2に対する反応性を抑制することができる。また、ガラス転移点(Tg)を600℃以下にすることにより、得られる電極(例えば光入射側表面電極20)と、不純物拡散層4との間の接触抵抗を低減することができる。
 本実施形態の太陽電池は、電極に含まれるガラスフリットが、SiO、B、V、Bi、TeO、BaO、CuO、LiO及びZnOから選択される少なくとも1つを含むことが好ましい。本実施形態の太陽電池は、電極に含まれるガラスフリットが、SiO、B、V、Bi、TeO、LiO及びZnOから選択される少なくとも1つを含むことがより好ましい。ガラスフリットがこれらの酸化物の少なくとも1つを含むことにより、ガラスフリットの塩基度を適切な範囲に調整することができる。ガラスフリットの塩基度を適切な範囲に調整することにより、電極を形成するための焼成の際に、ガラスフリットによるパッシベーション膜2に対する反応性を適切なものにすることができる。
 特に限定するものではないが、本実施形態の太陽電池は、電極に含まれるガラスフリットが、PbOを実質的に含まなくても良い。また、本実施形態の太陽電池の電極は、鉛(Pb)を実質的に含まなくても良い。本明細書において、鉛フリーガラスフリットとは、鉛(Pb)を実質的に含まないガラスフリットを意味する。ガラスフリットは、金属酸化物を原料として製造されるので、鉛フリーガラスフリットは、酸化鉛(PbO)を実質的に含まないガラスフリットを意味する。鉛フリーガラスフリットを製造する際に、鉛を含む材料(PbO)を意図的に用いない。ただし、鉛フリーガラスフリットは、不純物として不可避的に混入する微量の鉛を含むことができる。具体的には、本実施形態の鉛フリーガラスフリットは、ガラスフリット100重量%に対し不純物として0.1重量%以下の鉛を含むことができる。
 一般的な結晶系シリコン太陽電池の製造の際に、電極形成用の導電性ペーストに含まれるガラスフリットとして、酸化鉛(PbO)を含むガラスフリット(鉛含有ガラスフリット)を用いている。一般的な結晶系シリコン太陽電池の場合、電極形成用の導電性ペーストが、鉛含有ガラスフリットを含むことにより、光入射側表面電極20と不純物拡散層4との間の接触抵抗を低くすることができるためである。しかしながら、鉛は人体に対して悪影響を及ぼす。鉛を含む材料を用いて製品を製造した場合、製品の廃棄の際に、鉛が環境を汚染する恐れがある。そのため、製品を製造する際には、鉛を含まない鉛フリーの材料を用いることが望まれている。そのため、太陽電池の製造工程において、鉛フリーのガラスフリットを用いることが好ましい。鉛フリーのガラスフリットを用いることにより、鉛(Pb)を実質的に含まない電極を有する太陽電池を製造することができる。そのため、鉛による環境の汚染を抑制することができる。
 本実施形態は、また、本実施形態の結晶系シリコン太陽電池は、電極以外の材料も鉛を実質的に含まないようにすることができる。鉛による環境の汚染を防止するために、本実施形態の結晶系シリコン太陽電池は、鉛フリーの太陽電池であることが好ましい。
 本実施形態の太陽電池の電極は、アルミニウム粒子に起因するアルミニウム成分を更に含むことができる。アルミニウム粒子は、(A)導電性粒子とは別の粒子として含むことができる。電極を形成するための導電性ペーストがアルミニウムを含む場合には、電極もアルミニウムを含むことになる。
 結晶系シリコン基板1の中で、アルミニウムは、p型の不純物としての性質を有する。結晶系シリコンの上に印刷された導電性ペーストを焼成したときに、導電性ペースト中のアルミニウムは、結晶系シリコン中に拡散し、p型の不純物となる。したがって、結晶系シリコン基板1のp型半導体層の表面に電極を形成する場合には、導電性ペーストがアルミニウム粒子を含むことにより、電極と、p型半導体層との間に低い接触抵抗を得ることができる。したがって、結晶系シリコン基板1のp型半導体層の表面に電極を形成する場合には、導電性ペーストがアルミニウム粒子を含むことができる。
 一方、導電性ペーストがアルミニウム粒子を含むことにより、p型半導体層に対する電極の接着性が低下し、電極が太陽電池セルのp型半導体層から剥離しやすいという問題が生じることがある。すなわち、導電性ペーストがアルミニウム粒子を含むことにより、p型半導体層に対する電極の信頼性が大きく損なわれることになる。
 また、複数の太陽電池セルを電気的に接続するため、太陽電池の電極には、インターコネクト用の金属リボンがはんだ付けされる。電極形成用の導電性ペーストがアルミニウム粒子を含む場合、金属リボンの電極に対するはんだ付け強度が低下する問題がある。
 上述のことから、本実施形態の導電性ペーストは、アルミニウム粒子を所定量以下含むか、又はアルミニウム粒子を含まないことが好ましい。
 具体的には、アルミニウム粒子は、次の通りである。本実施形態の導電性ペーストは、(A)銀粒子100重量部に対して0.5重量部以下のアルミニウム粒子を更に含むか、又はアルミニウム粒子を含まない。また、本実施形態の導電性ペーストのアルミニウム粒子の含有量の上限は、(A)銀粒子の100重量部に対して0.3重量部以下であることが好ましく、0.3重量部未満であることがより好ましく、0.25重量部以下含むことが更に好ましい。本実施形態の導電性ペーストは、アルミニウム粒子を含まない導電性ペーストであることができる。なお、「アルミニウム粒子を含まない」とは、意図的に「アルミニウム粒子」を添加することを排除することを意味し、不可避的に混入する不純物としてのアルミニウム成分が含まれることを排除しない。
 また、本発明では、電極と基板との間の少なくとも一部に、少なくとも1つのAgSi領域が形成されることにより、結晶系シリコン基板1のp型半導体層の表面に電極を形成する場合に、電極にアルミニウムを実質的に含まなくても、電極と、p型半導体層との間に低い接触抵抗を得ることができる。
 一方、電極を形成するための導電性ペーストがアルミニウムを含む場合には、信頼性の観点で影響がある。
 図2及び3に示すように、結晶系シリコン太陽電池の電極としては、光入射側バスバー電極20a及び/又は裏面TAB電極15aを有することができる。光入射側バスバー電極20aは、太陽電池により発電された電流を集めるためのフィンガー電極20bと、インターコネクト用の金属リボンとを、電気的に接続するという機能を有する。同様に、裏面TAB電極15aは、太陽電池により発電された電流を集めるための裏面全面電極15bと、インターコネクト用の金属リボンとを、電気的に接続するという機能を有する。フィンガー電極20bが結晶系シリコン基板1に接してしまうと、フィンガー電極20bが接する部分の結晶系シリコン基板1の表面(界面)の表面欠陥密度が増加してしまい、太陽電池性能が低下してしまう。本実施形態の結晶系シリコン太陽電池では、フィンガー電極20bを形成する際に、パッシベーション膜2(反射防止膜)を完全にファイアースルーしない。そのため、結晶系シリコン基板1に接する部分のパッシベーション膜2の大部分は、そのままの状態を保つことができ、キャリアの再結合の原因となる表面欠陥密度の増加を防止することができる。その結果、高い開放電圧(Voc)の結晶系シリコン太陽電池を得ることができる。
 図1に示す結晶系シリコン太陽電池は、図3に示す構造の裏面電極15を有することができる。裏面電極15は、第1の導電型の半導体基板の他方の表面に対して電気的に接続するように配置される。図3に示すように、裏面電極15は、一般的に、裏面全面電極15bと、裏面全面電極15bに対して電気的に接続する裏面TAB電極15aとを含むことができる。
 図1に示す結晶系シリコン太陽電池のバスバー電極は、図2に示す光入射側バスバー電極20a及び図3に示すよう裏面TAB電極15aを含む。光入射側バスバー電極20a及び裏面TAB電極15aには、はんだにより周囲を覆われたインターコネクト用の金属リボンがはんだ付けされる。この金属リボンにより、太陽電池により発電された電流は、結晶系シリコン太陽電池セルの外部に取り出される。図4に示す両面受光型の結晶系シリコン太陽電池も、光入射側バスバー電極20a、及び光入射側バスバー電極20aと同様の形状の裏面TAB電極15aを有することができる。
 バスバー電極(光入射側バスバー電極20a及び裏面TAB電極15a)の幅は、インターコネクト用の金属リボンと同程度の幅であることができる。バスバー電極が低い電気抵抗であるためには、幅は広い方が好ましい。一方、光入射側表面に対する光の入射面積を大きくするために、光入射側バスバー電極20aの幅は狭い方が良い。そのため、バスバー電極幅は、0.05~5mm、好ましくは0.08~3mm、より好ましくは0.1~2mm、更に好ましくは、0.15~1mmとすることができる。また、バスバー電極の本数は、結晶系シリコン太陽電池の大きさに応じて決めることができる。バスバー電極の本数は任意である。具体的には、バスバー電極の本数は、3本又は4本、又はそれ以上とすることができる。最適なバスバー電極の本数は、太陽電池動作のシミュレーションによって、結晶系シリコン太陽電池の変換効率を最大にするように決定することができる。なお、インターコネクト用の金属リボンによって、結晶系シリコン太陽電池を相互に直列に接続することから、光入射側バスバー電極20a及び裏面TAB電極15aの本数は、同一であることが好ましい。同様の理由により、光入射側バスバー電極20a及び裏面TAB電極15aの幅は、同一であることが好ましい。
 結晶系シリコン太陽電池に対する光の入射面積を大きくするために、光入射側表面において光入射側表面電極20の占める面積は、なるべく小さい方が良い。そのため、光入射側表面のフィンガー電極20bはなるべく細い幅であり、少ない本数であることが好ましい。一方、電気的損失(オーミックロス)を低減する点から、フィンガー電極20bの幅は広く、本数は多い方が好ましい。また、フィンガー電極20bと、結晶系シリコン基板1(不純物拡散層4)との間の接触抵抗を小さくする点からもフィンガー電極20bの幅は広い方が好ましい。以上のことから、また、バスバー電極の本数は、結晶系シリコン太陽電池の大きさ、及びバスバー電極の幅に応じて決めることができる。最適なフィンガー電極20bの幅及び本数(フィンガー電極20bの間隔)は、太陽電池動作のシミュレーションによって、結晶系シリコン太陽電池の変換効率を最大にするように決定することができる。なお、図4に示す両面受光型の結晶系シリコン太陽電池の裏面電極15の裏面フィンガー電極15cの幅及び本数についても、同様に決定することができる。
<<AgSi領域30>>
 本実施形態の太陽電池は、少なくとも1つのAgSi領域30を含む。AgSi領域30は、電極と、基板との間の少なくとも一部に配置される。図6のSEM写真に、AgSi領域30の一例を示す。AgSi領域30は、電極と、基板との間の少なくとも一部に配置されていればよく、例えば図6のSEM写真における点線で囲まれた符号30で示す領域もAgSi領域30とすることができる。
 本実施形態の太陽電池を製造する際に、電極に含まれる銀(Ag)が、基板のケイ素(Si)に拡散することによって、電極と、基板との間の少なくとも一部に、銀(Ag)及びケイ素(Si)の合金の領域を形成することができる。本明細書において、本実施形態の太陽電池を製造する際に形成された銀(Ag)及びケイ素(Si)の合金の領域のことを、「AgSi領域30」という。AgSi領域30は、本実施形態の太陽電池の断面をエネルギー分散型蛍光X線分析装置(Energy Dispersive X-ray Fluorescence Spectrometer、以下、EDXという場合がある。)により測定したときに、Ag及びSiが両方とも検出される領域として特定することができる。
 1つのAgSi領域30とは、他のAgSi領域30から分離されたAgSi領域30のことを意味する。図6のSEM写真には、1つのAgSi領域30を示している。本実施形態の太陽電池は、好ましくは複数のスポット的なAgSi領域30を、電極と、基板との間の少なくとも一部に有する。AgSi領域30は、局所導通部として、電極と、不純物拡散層4との間の電気伝導に寄与する。
 本実施形態の結晶系シリコン太陽電池では、例えば、フィンガー電極の一部分である長さ1mmの断面をSEM観察したときに、スポット的なAgSi領域30が、1~3個程度、含まれる。したがって、AgSi領域30が存在する部分は、電極が形成された領域のうち、極めてわずかな部分であるといえる。
 本実施形態の結晶系シリコン太陽電池は、深さdが100nm以上のAgSi領域30を少なくとも1つ含む。
 本明細書において、AgSi領域30の深さdとは、図6に示すようなAgSi領域30の断面をSEM観察したSEM写真において、電極とAgSi領域30との界面の任意の1点(図6のB1)から、基板とAgSi領域30との界面までの任意の1点(図6のB2)までを結ぶ線分のうち、長さが最大になるような線分の長さ(図6のB1とB2とを結ぶ線分の長さd)のことをいう。具体的には、AgSi領域30の深さdは、パッシベーション膜2付近の断面を倍率2万倍でSEM観察したSEM写真に、EDX測定に決定されたAgSi領域30を重ね、上述の所定の線分を決定し、所定の線分の長さを測定することにより、得ることができる。
 AgSi領域30の深さdは、100~4000nmが好ましく、120~3000nmがより好ましく、130~2500nmが更に好ましく、150~2000nmが特に好ましい。AgSi領域30の深さdがこの範囲であることにより、接触抵抗が低減し、曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を得ることができる。
 本実施形態の太陽電池は、上述のAgSi領域30が、レーザー処理プロセスを行うことにより形成されたAgSi領域30であることが好ましい。レーザー処理プロセスとは、光入射側表面電極20に対して、第2の導電型の不純物拡散層4と、第1の導電型の結晶系シリコン基板1との間で順方向とは逆向きの電流が流れるように、裏面電極15bと、光入射側表面電極20との間に電圧を印加しながら、点光源からの光を太陽電池の光入射側表面に照射する処理をすることをいう。この場合、太陽電池は、結晶系シリコン基板1の光入射側表面とは反対側の表面に対して電気的に接続するように配置された裏面電極15bを更に含む。レーザー処理プロセスにより、適切なAgSi領域30を形成することができる。
 レーザー処理プロセスの詳細については後述する。
 図4に、両面受光型の結晶系シリコン太陽電池の断面模式図の一例を示す。図4に示す両面受光型の結晶系シリコン太陽電池は、不純物拡散層4、パッシベーション膜2(反射防止膜)及び裏面パッシベーション膜14を有している。AgSi領域30を含む電極の所定の構造は、図4のように、両面受光型の結晶系シリコン太陽電池の裏面電極15(裏面フィンガー電極15c)の構造としても好適に適用することができる。したがって、両面受光型の結晶系シリコン太陽電池では、光入射側表面の光入射側表面電極20(特に、フィンガー電極20b)、及び裏面電極15(裏面フィンガー電極15c)を形成するときに、光入射側表面近傍及び裏面近傍の両方に、所定のAgSi領域30を形成することができる。
<<パッシベーション膜2の残存率>>
 本明細書では、本実施形態の太陽電池の電極を形成するための焼成の後の、電極と、結晶系シリコン基板1の不純物拡散層4との間のパッシベーション膜2がどの程度存在しているかを、パッシベーション膜2の残存率として示すことができる。なお、AgSi領域30が形成された部分では、パッシベーション膜2が消失する。パッシベーション膜2が存在している部分には、AgSi領域30は形成されていないのであるから、パッシベーション膜2の残存率とは、AgSi領域30の近傍において、AgSi領域30が形成されていない領域の割合であると考えられる。
 図7に示す太陽電池の断面のSEM写真の例を用いて、パッシベーション膜2の残存率の測定方法を説明する。まず、パッシベーション膜2の残存率を得るために、まず、パッシベーション膜2及びAgSi領域30を含む断面を倍率2万倍でSEM観察することによりSEM写真を得る。なお、このSEM写真の横方向(基板表面と水平方向)の長さは5.7μmであり、縦方向(基板表面と垂直方向)の長さは3.9μmである。次に、このSEM写真におけるパッシベーション膜2の断面の合計長さLpを測定する。図7に示す例では、SEM写真におけるパッシベーション膜2の断面の合計長さLpは、Lp1、Lp2、Lp3及びLp4の合計の長さである。次に、このSEM写真において、AgSi領域30が生成された部分でのAgSi領域30と電極との界面の断面の合計長さLeを測定する。長さLeは、パッシベーション膜2が太陽電池の製造工程で消失した長さに相当する。図7に示す例では、AgSi領域30が生成された部分でのAgSi領域30と電極との界面の断面の合計長さLeは、Le1及びLe2の合計の長さである。パッシベーション膜2の残存率は、Lp/(Lp+Le)として得ることができる。なお、パッシベーション膜2が太陽電池の製造工程で消失した部分は、EDXによる測定により、特定することができる。また、Le1等の長さは、パッシベーション膜2などが直線であると近似して、測定することができる。
 本実施形態の結晶系シリコン太陽電池では、パッシベーション膜2の残存率が、10~90%であり、30%以上90%未満であることが好ましく、50%以上90%未満であることがより好ましく、70%~89%であることが更に好ましい。パッシベーション膜2の残存率が、適切な範囲であることにより、高い開放電圧(Voc)及び曲線因子(FF)を有する高効率の結晶系シリコン太陽電池を得ることができる。
<<パッシベーション膜2の焼成前後の膜厚比>>
 本明細書において、パッシベーション膜2の焼成前後の膜厚比とは、パッシベーション膜2の電極形成のための焼成前膜厚Daと、電極形成のための焼成後(太陽電池完成後)の膜厚Dbとの比(Db/Da)である。本明細書では、焼成前後の膜厚比のことを、単に「膜厚比(Db/Da)」という場合がある。
 本実施形態の太陽電池では、膜厚比(Db/Da)が、15%~85%であることが好ましく、20~70%であることがより好ましく、30~60%であることが更に好ましい。パッシベーション膜2の膜厚比(Db/Da)が所定の範囲であることにより、本実施形態の太陽電池が発電する際にキャリアの再結合の原因となる表面欠陥密度の増加を防止することができる。
 本明細書において、パッシベーション膜2の焼成前膜厚Daとは、所定の基板にパッシベーション膜2を形成したときのパッシベーション膜2の膜厚のことである。成膜直後の膜厚Daは、電極を形成する前に、パッシベーション膜2付近の断面のSEM観察により測定することができる。
 本明細書において、太陽電池完成後の膜厚Dbとは、太陽電池の表面に電極が焼成により形成されて完成した太陽電池のAgSi領域30を含む5.7μm×3.9μmの断面の走査型電子顕微鏡写真におけるパッシベーション膜2の膜厚である。
 本明細書において、太陽電池の表面に電極が形成されて完成した太陽電池のAgSi領域30を含む5.7μm×3.9μmの断面の走査型電子顕微鏡写真におけるパッシベーション膜2の膜厚Dbとは、所定の基板に形成されたパッシベーション膜2の上に所定に導電性ペーストを用いて電極パターンを形成し、所定の焼成などの所定の処理をして電極及びAgSi領域30を形成して完成した太陽電池の、AgSi領域30付近のパッシベーション膜2の膜厚のことである。膜厚Dbのことを、「太陽電池完成後の膜厚Db」という場合がある。太陽電池完成後の膜厚Dbは、電極及びAgSi領域30を形成して完成した太陽電池の、パッシベーション膜2及びAgSi領域30を含む断面の5.7μm×3.9μmの画像範囲をSEM観察することにより測定することができる。すなわち、太陽電池完成後の膜厚Dbは、完成した太陽電池のAgSi領域30を含む5.7μm×3.9μmの断面の走査型電子顕微鏡写真におけるパッシベーション膜2の膜厚Dbである。具体的には、パッシベーション膜2の太陽電池完成後の膜厚Dbは、パッシベーション膜2及びAgSi領域30を含む断面を倍率2万倍でSEM観察することによりSEM写真(SEM画像範囲:5.7μm×3.9μm)を得て、SEM写真を縦方向に6等分し、6等分した画像の5つの境界におけるパッシベーション膜2の膜厚(5カ所)を測定し、5カ所の膜厚の平均値として得ることができる。
<太陽電池の製造方法>
 次に、本実施形態の結晶系シリコン太陽電池の製造方法について説明する。
 本実施形態の太陽電池の製造方法は、所定の導電性ペーストを、第2の導電型の半導体層(不純物拡散層4)の上のパッシベーション膜2(反射防止膜)の表面に印刷し、乾燥し、及び焼成することによって電極(光入射側表面電極20)を形成する工程を含む。所定の導電性ペーストについては、後述する。
 本実施形態の太陽電池の製造方法は、第1の導電型(p型又はn型)の結晶系シリコン基板1を用意する工程を含む。第1の導電型の半導体基板としては、n型結晶系シリコン基板1又はp型結晶系シリコン基板1を用いることができる。本実施形態の太陽電池では、より高効率の太陽電池を得ることができる可能性があることから、n型結晶系シリコン基板1を用いることが好ましい。
 なお、高い変換効率を得るという観点から、結晶系シリコン基板1の光入射側の表面は、ピラミッド状のテクスチャ構造を有することが好ましい。
 次に、本実施形態の太陽電池の製造方法は、第1の導電型の半導体基板の一方の表面に第2の導電型の不純物拡散層4を形成する工程を含む。
 結晶系シリコン基板1として、n型結晶系シリコン基板1を用いる場合には、不純物拡散層4として、例えばp型不純物であるB(ホウ素)などを拡散したp型不純物拡散層4を形成することができる。なお、p型結晶系シリコン基板1を用いて結晶系シリコン太陽電池の製造することも可能である。その場合、不純物拡散層4として、n型不純物であるP(リン)などを拡散したn型不純物拡散層4を形成する。
 不純物拡散層4を形成する際には、不純物拡散層4のシート抵抗が30~300Ω/□(square)、好ましくは40~150Ω/□、より好ましくは45~120Ω/□となるように形成することができる。また、本実施形態の結晶系シリコン太陽電池の製造方法において、不純物拡散層4を形成する深さは、0.3μm~1.0μmとすることができる。不純物拡散層4のシート抵抗及び深さは、結晶系シリコン基板1に塗布するドーパントの濃度、及び不純物元素の拡散のための温度及び/又は時間などの条件を調節することにより、制御することができる。
 本実施形態の太陽電池の製造方法は、第1の導電型の半導体基板(n型結晶系シリコン基板1)の他方の表面に対して電気的に接続するように裏面電極15を形成する工程を含む。なお、裏面電極15は、光入射側表面電極20を形成する前、又は形成した後のいずれかであることができる。また、裏面電極15を形成するための焼成は、光入射側表面電極20を形成するための焼成と、同時に、又は別々に行うことができる。
 具体的には、本実施形態の結晶系シリコン太陽電池の製造方法は、結晶系シリコン基板1の他方の表面(裏面)に、導電性ペーストを印刷し、及び焼成することによって裏面電極15を形成する。
 なお、図4に示すような両面受光型の結晶系の太陽電池を製造する場合には、第2の不純物拡散層16を形成することができる。一方、所定の導電性ペースト(導電性組成物)を用いて裏面電極15を形成し、裏面電極15と、結晶系シリコン基板1との間に、上述のAgSi領域30を形成することができる。したがって、両面受光型の結晶系の太陽電池の場合には、所定の導電性ペーストを用いて裏面電極15を形成することが好ましい。この場合、裏面電極15は、所定の導電性ペーストの焼成体である。
 次に、本実施形態の太陽電池の製造方法は、第2の導電型の半導体層(不純物拡散層4)の表面に接するようにパッシベーション膜2を形成することを含む。パッシベーション膜2は、反射防止膜としての機能を有することができる。
 具体的には、本実施形態の結晶系シリコン太陽電池の製造方法は、上述の工程で形成した不純物拡散層4の表面に、パッシベーション膜2としての機能を兼ねる反射防止膜を形成する。パッシベーション膜2(反射防止膜)としては、窒化ケイ素膜(SiN膜)を形成することができる。窒化ケイ素膜をパッシベーション膜2として用いる場合には、窒化ケイ素膜の層が光入射側表面のパッシベーション膜2としての機能も有する。そのため、窒化ケイ素膜をパッシベーション膜2として用いる場合には、高性能の結晶系シリコン太陽電池を得ることができる。また、パッシベーション膜2が窒化ケイ素膜であることにより、入射した光に対して反射防止機能を発揮することができる。窒化ケイ素膜は、PECVD(Plasma Enhanced Chemical Vapor Deposition)法などにより、成膜することができる。
 本実施形態の太陽電池の製造方法は、パッシベーション膜2(反射防止膜)の表面の少なくとも一部に光入射側表面電極20を形成する工程を含む。本実施形態の製造方法では、光入射側表面電極20の形成のために、後述する所定の導電性ペーストを用いる。したがって、光入射側表面電極20は、所定の導電性ペーストの焼成体である。
 本実施形態の結晶系シリコン太陽電池の製造方法では、所定の導電性ペーストを、パッシベーション膜2(反射防止膜)の表面に印刷し、及び焼成することによって光入射側表面電極20を形成する。なお、光入射側表面電極20を形成するための焼成の際に、裏面電極15を形成するための焼成を同時に行うことができる。
 具体的には、まず、所定の導電性ペーストを用いて印刷した光入射側表面電極20のパターンを、100~150℃程度の温度で数分間(例えば0.5~5分間)乾燥する。なおこのときに、光入射側表面電極20の光入射側バスバー電極20a及び光入射側フィンガー電極20bを所定の導電性ペーストを用いて形成することができる。
 光入射側表面電極20のパターンの印刷・乾燥に続いて、裏面電極15の形成のための導電性ペーストを印刷し、乾燥する。所定の導電性ペーストは、結晶系のシリコン太陽電池などの太陽電池の電極(光入射側表面電極20、及び場合によっては裏面電極15)を形成するために、好ましく使用することができる。
 その後、印刷した導電性ペーストを乾燥したものを、管状炉などの焼成炉を用いて大気中で、所定の焼成条件で焼成する。焼成条件として、焼成雰囲気は大気中、焼成温度は、500~1000℃、より好ましくは600~1000℃、更に好ましくは500~900℃、特に好ましくは700~900℃である。焼成は短時間で行うことが好ましく、焼成の際の温度プロファイル(温度-時間曲線)は、ピーク状であることが好ましい。例えば、前記温度をピーク温度として、焼成炉のイン-アウト時間を10~100秒であることが好ましく、20~80秒で焼成することがより好ましく、40~60秒で焼成することが更に好ましい。
 焼成の際は、光入射側表面電極20及び裏面電極15を形成するための導電性ペーストを同時に焼成し、両電極を同時に形成することが好ましい。このように、所定の導電性ペーストを光入射側表面及び裏面に印刷し、同時に焼成することにより、電極形成のための焼成を1回のみにすることができる。そのため、結晶系シリコン太陽電池を、より低コストで製造することができる。
 本実施形態の太陽電池の製造方法は、上述のAgSi領域30を形成する工程を含む。本実施形態の太陽電池の製造方法では、上述のAgSi領域30を形成するために、例えば、レーザー処理プロセスを行うことができる。
 レーザー処理プロセスとは、第2の導電型の半導体層と、第1の導電型の半導体基板との間で、pn接合において順方向とは逆向きの電流が流れるように、裏面電極15及び光入射側表面電極20に電圧を印加しながら、点光源からの光を太陽電池の光入射側表面に照射する処理のことをいう。点光源からの光により、半導体基板の内部には、キャリア(電子-正孔対)が生じ、電圧の印加によりキャリアの移動、すなわち電流を流すことが可能になる。電圧は、pn接合において電流の流れる方向が順方向とは逆向きになるように印加する。したがって、半導体基板がn型半導体基板であり、半導体層がp型半導体層である場合には、電流が、n型半導体基板からp型半導体層へ流れるように、裏面電極15及び光入射側表面電極20に電圧を印加する。また、半導体基板がp型半導体基板であり、半導体層がn型半導体層である場合には、電流が、n型半導体層からp型半導体基板へ流れるように、裏面電極15及び光入射側表面電極20に電圧を印加する。
 以下の説明では、第1の導電型の半導体基板がn型結晶系シリコン基板1であり、第2の導電型の半導体層がp型不純物拡散層4(単に「不純物拡散層4」という場合がある。)である太陽電池を例にして説明する。
 図1に示すように、レーザー処理プロセスを用いた場合、光入射側表面電極20と、不純物拡散層4との間の大部分に、パッシベーション膜2(反射防止膜)が存在する。レーザー処理プロセスでは、上述の所定の電圧を、pn接合において順方向とは逆向きの電流が流れるように印加して、点光源からの光(例えばレーザー光)を照射することにより、光入射側表面電極20と不純物拡散層4との間のわずかな領域に電流が流れ、局所的に加熱される。この結果、図6及び7に示すように、光入射側表面電極20と不純物拡散層4との間に、局所的に電気的導通部分(局所導通部)である銀及びシリコンの合金の領域が形成される。本明細書において、レーザー処理プロセスなどを行うことにより形成された銀(Ag)と、ケイ素(Si)との合金の領域のことを、「AgSi領域30」という。AgSi領域30は、エネルギー分散型蛍光X線分析装置(Energy Dispersive X-ray Fluorescence Spectrometer、以下、EDXという場合がある。)による測定により、Ag及びSiが両方とも検出される領域として特定することができる。また、AgSi領域30が形成された部分には、パッシベーション膜2が存在しない。すなわち、AgSi領域30が形成された部分では、不純物拡散層4(第2の導電型のシリコンエミッタ層)が、AgSi領域30を介して光入射側表面電極20と電気的に導通している。この局所的に形成されたAgSi領域30は、電気的導通部分(局所導通部)であるので、光入射側表面電極20と不純物拡散層4との間の良好な電気的導通が可能になる。
 一般的に、レーザー処理プロセスを行うことにより、太陽電池特性の特性である開放電圧(Open Circuit Voltage:Voc)を低下させることなく、曲線因子(Fill Factor:FF)を向上させることができる。所定のAgSi領域30を形成することにより、より高い開放電圧(Voc)、及び、より高い曲線因子(FF)を得ることができる。
 上述のようにして、本実施形態の結晶系シリコン太陽電池を製造することができる。
 上述のようにして得られた本実施形態の結晶系シリコン太陽電池を、インターコネクト用の金属リボンによって電気的に接続し、ガラス板、封止材及び保護シート等によりラミネートすることで、太陽電池モジュールを製造することができる。インターコネクト用の金属リボンとしては、はんだにより周囲を覆われた金属リボン(例えば、銅を材料とするリボン)を用いることができる。はんだとして、スズを主成分とするもの、具体的には鉛を含有する有鉛はんだ又は鉛フリーはんだなど、市場で入手可能なはんだを用いることができる。鉛フリーの太陽電池を得るために、はんだとしては、鉛フリーはんだを用いることが好ましい。
<導電性ペースト>
 本実施形態の結晶系シリコン太陽電池の電極を形成するために用いることのできる所定の導電性ペーストについて説明する。この所定の導電性ペーストは、上述のAgSi領域30を形成するために適した導電性ペーストである。以下、所定の導電性ペーストのことを、本実施形態の導電性ペーストという場合がある。
 本実施形態の導電性ペーストは、従来の導電性ペーストと比べてパッシベーション膜2(反射防止膜)に対する反応性が低く、レーザー処理プロセスのために適切なパッシベーション膜2(反射防止膜)との反応性を有する。そのため、本実施形態の導電性ペーストは、レーザー処理プロセスを用いて結晶系シリコン太陽電池の光入射側表面電極20を形成するために、好ましく用いることができる。
 本発明者らは、従来の導電性ペーストを用いて光入射側表面電極20を形成した太陽電池に対してレーザー処理プロセスに適用した場合、パッシベーション膜2(反射防止膜)及び不純物拡散層4(及び基板)へ悪影響を及ぼし、太陽電池の変換効率が低下してしまうことを見出した。また、本発明者らは、その原因は、従来の導電性ペーストのパッシベーション膜2(反射防止膜)に対するファイアースルー性(反応性)が強すぎるためであることを見出した。
 レーザー処理プロセスによる光入射側表面電極20の形成に用いることのできる導電性ペーストは、従来の導電性ペースト(パッシベーション膜2をファイアースルーすることのできる導電性ペースト)とは異なる性質を有することが必要である。
 更に、本発明者らは、鉛フリーガラスフリットの塩基度及び含有量を適切な範囲にすることにより、ガラスフリットのパッシベーション膜2(反射防止膜)に対する反応性を適切なものとすることができることを見出した。ガラスフリットとして鉛フリーガラスフリットを用いるので、環境への鉛の排出による鉛汚染を防止でき、更に鉛フリーガラスフリットを用いた場合であっても、鉛含有ガラスフリットと同等程度に、接触抵抗を低減することができる。上述の知見を得た本発明者らは、レーザー処理プロセスを用いた結晶系シリコンの製造の際に、好ましく用いることのできる導電性ペーストを見出した。
 本実施形態の導電性ペーストを用いて結晶系シリコン太陽電池の電極を形成し、レーザー処理プロセスを行って、所定のAgSi領域30を形成することにより、パッシベーション膜2としての機能を損なわずに、電極と、太陽電池の不純物拡散層4との間に、低い接触抵抗を得ることができる。そのため、本実施形態の導電性ペーストを用いてレーザー処理プロセスを行って、所定のAgSi領域30を形成することにより、高い変換効率の結晶系シリコン太陽電池を得ることができる。本実施形態の導電性ペーストは、結晶系シリコン太陽電池を製造する際に、レーザー処理プロセスによって、所定のAgSi領域30を形成するために、好ましく用いることができる。
 本実施形態の導電性ペーストに含まれる成分について、具体的に説明する。
<<(A)導電性粒子>>
 本実施形態の導電性ペーストは、(A)導電性粒子を含む。
 本実施形態の導電性ペーストでは、導電性粒子としては、金属粒子又は合金粒子を用いることができる。金属粒子又は合金粒子に含まれる金属としては、銀、金、銅、ニッケル、亜鉛及びスズ等を挙げることができる。金属粒子として、銀粒子(Ag粒子)を用いることができる。なお、本実施形態の導電性ペーストには、銀以外の他の金属、例えば金、銅、ニッケル、亜鉛及びスズ等を含むことができる。低い電気抵抗及び高い信頼性を得る点から、導電性粒子は銀からなる銀粒子であることが好ましい。なお、銀からなる銀粒子には、不可避的に含まれる不純物としての他の金属元素を含有することができる。また、多数の銀粒子(Ag粒子)のことを銀粉末(Ag粉末)という場合がある。他の粒子についても同様である。
 導電性粒子の粒子形状及び粒子寸法(粒径又は粒子径ともいう)は、特に限定されない。粒子形状としては、例えば、球状及びリン片状等のものを用いることができる。導電性粒子の粒子寸法は、全粒子の積算値50%の粒子寸法(D50)により規定することができる。本明細書では、D50のことを平均粒子径ともいう。なお、平均粒子径(D50)は、マイクロトラック法(レーザー回折散乱法)にて粒度分布測定を行い、粒度分布測定の結果から求めることができる。
 導電性粒子の平均粒子径(D50)は、0.5~2.5μmであることが好ましく、0.8~2.2μmであることがより好ましい。導電性粒子の平均粒子径(D50)が所定の範囲であることにより、導電性ペーストの焼成中、パッシベーション膜2に対する導電性ペーストの反応性を抑制することができる。なお、平均粒子径(D50)が上記範囲より大きい場合には、スクリーン印刷の際に目詰まり等の問題が生じることがある。
 また、銀粒子の大きさを、BET比表面積(単に「比表面積」ともいう。)として表すことができる。銀粒子のBET比表面積は、好ましくは0.1~1.5m/g、より好ましくは0.2~1.2m/gである。BET比表面積は、例えば全自動比表面積測定装置Macsoeb(MOUNTEC社製)を用いて測定することができる。
<<(B)有機ビヒクル>>
 本実施形態の導電性ペーストは、(B)有機ビヒクルを含む。
 有機ビヒクルとしては、有機バインダ及び溶剤を含むことができる。有機バインダ及び溶剤は、導電性ペーストの粘度調整等の役割を担うものであり、いずれも特に限定されない。有機バインダを溶剤に溶解させて使用することもできる。
 本実施形態の導電性ペーストは、(B)有機ビヒクルが、エチルセルロース、ロジンエステル、アクリル及び有機溶剤から選択される少なくとも1つを含むことが好ましい。(B)有機ビヒクルが、エチルセルロース、ロジンエステル、アクリル及び有機溶剤から選択される少なくとも1つを含むことにより、導電性ペーストのスクリーン印刷を好適に行うことができ、印刷されるパターンの形状を適切な形状とすることができる。
 有機バインダとしては、セルロース系樹脂(例えばエチルセルロース、ニトロセルロース等)、(メタ)アクリル系樹脂(例えばポリメチルアクリレート、ポリメチルメタクリレート等)から選択して用いることができる。本実施形態の導電性ペーストに含まれる有機ビヒクルが、エチルセルロース、ロジンエステル、ブチラール、アクリル及び有機溶剤から選択される少なくとも1つを含むことが好ましい。有機バインダの添加量は、銀粒子100重量部に対し、通常0.1~30重量部であり、好ましくは0.2~5重量部である。
 有機溶剤としては、アルコール類(例えばターピネオール、α-ターピネオール、β-ターピネオール等)、エステル類(例えばヒドロキシ基含有エステル類、2,2,4―トリメチル-1,3-ペンタンジオールモノイソブチラート、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)等)から1種又は2種以上を選択して使用することができる。溶剤の添加量は、銀粒子100重量部に対し、通常0.5~30重量部であり、好ましくは2~25重量部である。有機溶剤の具体例としては、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)を挙げることができる。
<<(C)ガラスフリット>>
 本実施形態の導電性ペーストは、(C)ガラスフリットを含む。
 本実施形態の導電性ペーストは、(C)ガラスフリットの塩基度BGFと、導電性ペースト中の(A)導電性粒子の含有量を100重量部としたときの導電性ペースト中の重量部を単位とした(C)ガラスフリットの含有量Gとの積BGF・Gが、0.25~1.45の範囲であり、0.3~1.4の範囲が好ましく、0.3~1.2の範囲がより好ましい。ガラスフリットの塩基度BGFと含有量Gとの積BGF・Gを適切な範囲にすることにより、ガラスフリットのパッシベーション膜2(反射防止膜)に対する反応性を適切なものとすることができる。そのため、レーザー処理プロセスを用いた結晶系シリコンの製造の際に、実施形態の導電性ペーストを好ましく用いることができる。
 ガラスフリットの塩基度は、特許文献3(特開2009-231826号公報)に記載されている方法により、算出することができる。すなわち、「塩基度」は、「K.Morinaga, H.Yoshida And H.Takebe: J.AmCerm.Soc., 77, 3113 (1994)」に示される式を用いてガラス粉末の塩基度を規定することができる。具体的には、以下の通りである。
 酸化物MOのM-O間の結合力は、陽イオン-酸素イオン間引力Aiとして次式で与えられる。
 A=Z・Z02-/(r+r02-=Zi・2/(r+1.40)
  Z:陽イオンの価数、酸素イオンは2
  r:陽イオンのイオン半径(Å)
 酸素イオンのイオン半径rは1.40nmである。上記式のAの逆数B(=1/A)を単成分酸化物MOの酸素供与能力とする。
  B≡1/A
 このBをBCaO=1、BSiO2=0と規格化すると、各単成分酸化物のB-指標が与えられる。この各成分のB-指標を陽イオン分率により多成分系へ拡張すると、任意の組成のガラス酸化物(ガラスフリット)の融体の塩基度(=BGF)を算出することができる。
  BGF=Σn・B
  n:陽イオン分率
 このようにして規定された塩基度(BGF)は、上記のように酸素供与能力を表し、値が大きいほど酸素を供与し易く、他の金属酸化物との酸素の授受が起こり易い。すなわち、「塩基度」とはガラス融体中への溶解の程度を表すものということができる。
 (C)ガラスフリットの含有量Gは、(A)導電性粒子の含有量に対する比なので、無次元の数である。また、上述のように、Bは、BCaO=1、BSiO2=0と規格化した値なので、(C)ガラスフリットの塩基度BGF(=Σn・B)は、無次元の数である。したがって、(C)ガラスフリットの塩基度BGFと含有量Gとの積BGF・Gも無次元の数である。
 本実施形態のガラスフリットの塩基度(BGF)は、0.10~1.5であることが好ましく、0.15~1.3であることがより好ましく、0.20~1.1であることが更に好ましい。塩基度(BGF)がこのような範囲である場合には、導電性ペースト中のガラスフリットの添加量を調節することにより、ガラスフリットによるパッシベーション膜2に対する反応性を適当なものにすることができる。
 本実施形態の導電性ペースト中のガラスフリットの含有量Gは、導電性粒子100重量部に対して、0.1~5.0重量部であることが好ましく、0.2~4.0重量部であることがより好ましく、0.3~3.0重量部であることが更に好ましく、0.4~2.7重量部であることが特に好ましい。導電性ペースト中のガラスフリットの含有量Gを、塩基度(BGF)と共に、適切に調節することにより、ガラスフリットによるパッシベーション膜2に対する反応性を適切なものにすることができる。より具体的には、レーザー処理プロセスによる電極の形成に適した導電性ペーストとするために、従来よりもガラスフリットの含有量を低減し、かつガラスフリットの塩基度を適切な範囲にすることにより、パッシベーション膜2への反応性を抑制し、Vocを向上させることができる。
 本実施形態の導電性ペーストは、(C)ガラスフリットのガラス転移点(Tg)が250~600℃であることが好ましく、270~500℃であることがより好ましく、300~400℃であることが更に好ましい。(C)ガラスフリットのガラス転移点(Tg)を250℃以上にすることによりパッシベーション膜2に対する反応性を抑制することができる。また、ガラス転移点(Tg)を600℃以下にすることにより、得られる電極(例えば光入射側表面電極20)と、不純物拡散層4との間の接触抵抗を低減することができる。
 ガラス転移点(Tg)は、次のように測定することができる。すなわち、示差熱天秤(株式会社マックサイエンス社製 TG-DTA2000S)を用いて、この示差熱天秤に、試料となるガラス粉末と基準物質とをセットし、測定条件として昇温速度10℃/分にて室温から900℃まで昇温させ、試料であるガラス粉末と基準物質の温度差を温度に対してプロットした曲線(DTA曲線)を得る。このようにして得られたDTA曲線の第1の変曲点をガラス転移点Tgとすることができる。
 ガラスフリットの粒子の形状は特に限定されず、例えば球状、不定形等のものを用いることができる。また、粒子寸法も特に限定されない。作業性の点等から、粒子の平均粒子径(D50)は0.1~10μmの範囲が好ましく、0.5~5μmの範囲が更に好ましい。
 本実施形態の導電性ペーストに含まれるガラスフリットとしては、組成が異なる種類のガラスフリット(第1ガラスフリット及び第2ガラスフリット)を、それぞれ独立に用いることができる。
 まず、第1ガラスフリットについて、説明する。
 本実施形態の導電性ペーストに含まれる第1ガラスフリットは、SiO、B、V、Bi、TeO、BaO、CuO、LiO及びZnOから選択される1種以上を含むことが好ましい。本実施形態の導電性ペーストに含まれる第1ガラスフリットは、SiO、B、V、Bi、TeO、LiO及びZnOから選択される1種以上を含むことがより好ましい。第1ガラスフリットがこれらの酸化物の少なくとも1つを含むことにより、第1ガラスフリットの塩基度を適切な範囲に調整することができる。
 第1ガラスフリットは、Biを含むことが好ましい。第1ガラスフリット(100mol%)中のBiの含有量は、10~80mol%であることが好ましく、15~75mol%であることがより好ましく、20~70mol%であることが更に好ましい。第1ガラスフリットがBiを含むことにより、パッシベーション膜2への反応性を適切な範囲に調節するとともに、接触抵抗を低減することができる。
 本実施形態の導電性ペーストは、第1ガラスフリット中のmol%を単位としたBiの含有量(CBi2O3)と、第1ガラスフリットの含有量Gとの積CBi2O3・Gが10~200の範囲であることが好ましく、13~170の範囲であることがより好ましく、15~150の範囲であることが更に好ましい。ガラスフリットの含有量Gとの積CBi2O3・Gが上記範囲であることにより、パッシベーション膜への反応性を適切な範囲に調節するとともに、接触抵抗を低減することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でSiOを含むことができる。第1ガラスフリットがSiOを含む場合は、第1ガラスフリット(100mol%)中のSiOの含有量は、10~60mol%であることが好ましく、15~40mol%であることがより好ましい。第1ガラスフリットが適切な含有量のSiOを含むことにより、パッシベーション膜2への反応性を制御することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でBを含むことができる。第1ガラスフリットがBを含む場合は、第1ガラスフリット(100mol%)中のBの含有量は、3~60mol%であることが好ましく、4~50mol%であることがより好ましい。第1ガラスフリットが適切な含有量のBを含むことにより、パッシベーション膜2への反応性を制御することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でVを含むことができる。第1ガラスフリットがVを含む場合は、第1ガラスフリット(100mol%)中のVの含有量は、8mol%未満であることが好ましく、5mol%以下であることがより好ましい。第1ガラスフリットがVを含むことにより、第1ガラスフリットの塩基度を下げることができる。したがって、第1ガラスフリットの塩基度が高い場合には、適切な含有量のVを含むことにより、第1ガラスフリットの塩基度を適切な範囲に調節することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でTeOを含むことができる。第1ガラスフリットがTeOを含む場合は、第1ガラスフリット(100mol%)中のTeOの含有量は、80mol%未満であることが好ましく、50mol%以下であることがより好ましい。第1ガラスフリットがTeOを含むことにより、第1ガラスフリットの塩基度を下げることができる。したがって、第1ガラスフリットの塩基度が高い場合には、適切な含有量のTeOを含むことにより、第1ガラスフリットの塩基度を適切な範囲に調節することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でBaOを含むことができる。第1ガラスフリットがBaOを含む場合は、第1ガラスフリット(100mol%)中のBaOの含有量は、3~20mol%であることが好ましく、5~10mol%であることがより好ましい。第1ガラスフリットが適切な含有量のBaOを含むことにより、パッシベーション膜2への反応性を適切な範囲に調節することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でCuOを含むことができる。第1ガラスフリットがCuOを含む場合は、第1ガラスフリット(100mol%)中のCuOの含有量は、10~40mol%であることが好ましく、20~30mol%であることがより好ましい。第1ガラスフリットが適切な含有量のCuOを含むことにより、パッシベーション膜2への反応性を適切な範囲に調節することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でLiOを含むことができる。第1ガラスフリットがLiOを含む場合は、第1ガラスフリット(100mol%)中のLiOの含有量は、3~40mol%であることが好ましく、5~30mol%であることがより好ましい。第1ガラスフリットが適切な含有量のLiOを含むことにより、パッシベーション膜2への反応性を適切な範囲に調節することができる。
 第1ガラスフリットは、本実施形態の導電性ペーストに悪影響を与えない範囲でZnOを含むことができる。第1ガラスフリットがZnOを含む場合は、第1ガラスフリット(100mol%)中のZnOの含有量は、5~70mol%であることが好ましく、15~60mol%であることがより好ましい。第1ガラスフリットがZnOを含むことにより、第1ガラスフリットの塩基度を適切な範囲に調整することができる。
 本実施形態の導電性ペーストに含まれる第1ガラスフリットは、鉛フリーガラスフリットであることが好ましい。この場合、本実施形態の導電性ペーストに含まれる第1ガラスフリットは、鉛(Pb)を実質的に含まない。ただし、本実施形態に用いる鉛フリーの第1ガラスフリットは、不純物として不可避的に混入する微量の鉛を含むことができる。具体的には、本実施形態に用いる鉛フリーの第1ガラスフリットは、不純物として0.1重量%以下の鉛を含むことができる。鉛フリーの第1ガラスフリットを含む導電性ペーストを用いて太陽電池を製造することにより、太陽電池を廃棄される際に、環境に対する鉛汚染を防止できる。
 次に、第2ガラスフリットについて、説明する。第2ガラスフリットは、PbOを含むガラスフリットである。
 本実施形態の導電性ペーストに含まれる第2ガラスフリットは、PbO、SiO、Al、B、ZnO、V、WO及びNbから選択される1種以上を含むことが好ましい。本実施形態の導電性ペーストに含まれる第2ガラスフリットは、PbO、SiO、Al、B及びZnOを含むことがより好ましい。
 本実施形態の導電性ペーストは、第2ガラスフリットが、ZnO、V、WO及びNbから選択される少なくとも1つを含むことが好ましい。第2ガラスフリットがこれらの酸化物の少なくとも1つを含むことにより、第2ガラスフリットの塩基度を適切な範囲に調整することができる。
 第2ガラスフリットは、PbOを含むことが好ましい。第2ガラスフリット(100mol%)中のPbOの含有量は、25~60mol%であることが好ましく、30~55mol%であることがより好ましく、40~55mol%であることが更に好ましい。第2ガラスフリットがPbOを含むことにより、パッシベーション膜2への反応性を抑制するとともに、接触抵抗を低減することができる。
 第2ガラスフリットは、SiOを含むことが好ましい。第2ガラスフリット(100mol%)中のSiOの含有量は、20~65mol%であることが好ましく、25~60mol%であることがより好ましい。第2ガラスフリットがSiOを含むことにより、パッシベーション膜2への反応性を抑制することができる。
 第2ガラスフリットは、Alを含むことが好ましい。第2ガラスフリット(100mol%)中のAlの含有量は、3.0~6.8mol%であることが好ましく、3.5~6mol%であることがより好ましい。第2ガラスフリットがAlを含むことにより、パッシベーション膜2への反応性を抑制することができる。
 第2ガラスフリットは、Bを含むことが好ましい。第2ガラスフリット(100mol%)中のBの含有量は、3.0~15mol%であることが好ましく、3.5~12mol%であることがより好ましい。
 第2ガラスフリットは、ZnOを含むことが好ましい。第2ガラスフリット(100mol%)中のZnOの含有量は、5~20mol%であることが好ましく、8~15mol%であることがより好ましい。第2ガラスフリットがZnOを含むことにより、第2ガラスフリットの塩基度を適切な範囲に調整することができる。
 本実施形態の導電性ペーストは、第2ガラスフリット中のmol%を単位としたPbOの含有量CPbOと、第2ガラスフリットの含有量Gとの積CPbO・Gが20~139の範囲であることが好ましく、22~130の範囲であることがより好ましく、26~105の範囲であることが更に好ましい。積CPbO・Gが139を超える場合には、第2ガラスフリットと、パッシベーション膜2との反応性が高くなりすぎる。また、積CPbO・Gが20未満の場合には、得られる電極と、不純物拡散層4との間の接触抵抗が高くなりすぎる。
 第1及び第2ガラスフリットにおいて、ガラスフリットの粒子は、必要な複数の酸化物をそれぞれ所定量含む1種類の粒子を用いることができる。また、単一の酸化物からなる粒子を、必要な複数の酸化物ごとに異なった粒子として用いることもできる。また、必要な複数の酸化物の組成が異なる複数種類の粒子を組み合わせて用いることもできる。異なった種類の酸化物の効果を相乗的に得るために、第1及び第2ガラスフリットの粒子は、必要な複数の酸化物をそれぞれ所定量含む1種類の粒子であることが好ましい。
<その他の成分>
 本実施形態の導電性ペーストは、得られる太陽電池の太陽電池特性に対して悪影響を与えない範囲で、上述したもの以外の添加剤及び添加物を含むことができる。
 本実施形態の導電性ペーストには、添加剤として、可塑剤、消泡剤、分散剤、レベリング剤、安定剤及び密着促進剤などから選択したものを、必要に応じて更に配合することができる。これらのうち、可塑剤としては、フタル酸エステル類、グリコール酸エステル類、リン酸エステル類、セバチン酸エステル類、アジピン酸エステル類及びクエン酸エステル類などから選択した少なくとも1つを用いることができる。
 本実施形態の導電性ペーストは、得られる太陽電池の太陽電池特性に対して悪影響を与えない範囲で、上述したもの以外の添加物を含むことができる。例えば、本実施形態の導電性ペーストは、チタンレジネート、酸化チタン、酸化コバルト、酸化セリウム、窒化ケイ素、銅マンガン錫、アルミノケイ酸塩及びケイ酸アルミニウムから選択される少なくとも1つの添加物を更に含むことができる。これらの添加物を含むことにより、電極のパッシベーション膜2に対する接着強度を向上させることができる。これらの添加物は、粒子の形態(添加物粒子)であることができる。銀粒子100重量部に対する添加物の添加量は、好ましくは0.01~5重量部であり、より好ましくは0.05~2重量部である。より高い接着強度を得るために、添加物は、銅マンガン錫、アルミノケイ酸塩又はケイ酸アルミニウムであることが好ましい。添加物は、アルミノケイ酸塩及びケイ酸アルミニウムの両方を含むことができる。
<導電性ペーストの製造方法>
 次に、本実施形態の導電性ペーストの製造方法について説明する。本実施形態の導電性ペーストは、有機バインダ及び溶剤に対して、銀粒子、ガラスフリット、並びに必要に応じてその他の添加剤及び/又は添加物を添加し、混合し、分散することにより製造することができる。
 混合は、例えばプラネタリーミキサーで行うことができる。また、分散は、三本ロールミルによって行うことができる。混合及び分散は、これらの方法に限定されるものではなく、公知の様々な方法を使用することができる。
 以下、実施例により、本実施形態を具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1~7並びに比較例1及び2の太陽電池>
 実施例及び比較例では、単結晶シリコン太陽電池を作製して、単結晶シリコン太陽電池の電気的特性を測定することにより、実施例及び比較例の太陽電池の性能を評価した。
<<導電性ペーストの材料及び調製割合>>
 表1及び2に、実施例及び比較例の導電性ペーストの(A)導電性粒子及び(C)ガラスフリットの配合量を示す。表1及び2に示す配合量、及び下記の各成分の配合量は、(A)導電性粒子を100重量部としたときの各成分の重量部として示す。導電性ペーストに含まれる各成分は、下記の通りである。
(A)銀粒子
 表3に、実施例及び比較例の導電性ペーストに用いた銀粒子A1及びA2の品番、製造会社、形状、平均粒子径(D50)、TAP密度、及びBET比表面積を示す。表1及び2に、実施例及び比較例の導電性ペーストの銀粒子A1及びA2の配合量を示す。なお、平均粒子径(D50)は、マイクロトラック法(レーザー回折散乱法)にて粒度分布測定を行い、粒度分布測定の結果からメジアン径(D50)の値を得ることにより求めた。他の成分の平均粒子径(D50)についても同様である。また、BET比表面積の測定には、全自動比表面積測定装置Macsoeb(MOUNTEC社製)を用いた。BET比表面積は、100℃で予備乾燥し、10分間窒素ガスを流したのち、窒素ガス吸着によるBET1点法により測定した。
(B)有機ビヒクル
 有機ビヒクルとして、有機バインダ及び溶剤を用いた。有機バインダとして、エトキシ含有量48~49.5重量%のエチルセルロース(0.4重量部)を用いた。溶剤として、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)(3重量部)を用いた。
(C)ガラスフリット
 表4に、実施例及び比較例の導電性ペーストに用いたガラスフリットGF1~GF6の組成、塩基度及びガラス転移点を示す。なお、ガラスフリットGF1~GF6の平均粒径(D50)は2μmとした。表1及び2に、実施例及び比較例の導電性ペーストの(C)ガラスフリットの種類及び含有量G(重量部)を示す。
 ガラスフリットGF1~GF6のガラス転移点を測定した。表4にガラスフリットGF1~GF6のガラス転移点の測定値を示す。ガラスフリットのガラス転移点の測定は、次のようにして行った。すなわち、約50mgのガラスフリットGF1~GF6を試料として白金セルに入れ、アルミナ粉末を標準試料として、大気雰囲気下に、示差熱分析装置(株式会社リガク製、TG-8120)を用いて室温から800℃まで20℃/分の昇温速度でDTA曲線を得た。DTA曲線の第1の吸熱の開始点(外挿点)をガラス転移点とした。
 ガラスフリットGF1~GF6は、次のようにして製造した。すなわち、まず、原料となる酸化物の粉末を計量し、混合して、るつぼに投入した。このるつぼを、加熱したオーブンに入れ、るつぼの内容物を溶融温度(Melt temperature)まで昇温し、溶融温度で原料が充分に溶融するまで維持した。次に、るつぼをオーブンから取り出し、溶融した内容物を均一に撹拌した。次に、るつぼの内容物をステンレス製の2本ロールを用いて室温で急冷して、板状のガラスを得た。最後に板状のガラスを乳鉢で粉砕しながら均一に分散し、メッシュのふるいでふるい分けることによって所望の粒度を持ったガラスフリットを得ることができた。100メッシュのふるいを通過し200メッシュのふるい上に残るものにふるい分けることによって、平均粒子径(D50)が149μmのガラスフリットを得ることができる。このガラスフリットを更に粉砕することにより、平均粒子径(D50)が2μmのガラスフリットを得ることができた。
 次に、上述の所定の種類及び配合量の(A)導電性粒子、(B)有機ビヒクル及び(C)ガラスフリットを、プラネタリーミキサーで混合し、更に三本ロールミルで分散し、ペースト化することによって、実施例及び比較例の導電性ペーストを製造した。
<<単結晶シリコン太陽電池の製造>>
 図4に例示するような両面受光型の単結晶シリコン太陽電池を製造した。基板は、P(リン)ドープのn型単結晶シリコン基板(基板厚み200μm)を用いた。
 まず、上記基板に酸化ケイ素層約20μmをドライ酸化で形成後、フッ化水素、純水及びフッ化アンモニウムを混合した溶液でエッチングし、基板表面のダメージを除去した。更に、塩酸と過酸化水素を含む水溶液で重金属洗浄を行った。
 次に、この基板の両面にウェットエッチングによってテクスチャ(凸凹形状)を形成した。具体的にはウェットエッチング法(水酸化ナトリウム水溶液)によってピラミッド状のテクスチャ構造を両面(主たる光入射側表面及び裏面)に形成した。その後、塩酸及び過酸化水素を含む水溶液で洗浄した。
 次に、上記基板のテクスチャ構造を有する一方の表面(光入射側表面)にホウ素を注入して、p型拡散層を約0.5μmの深さに形成した。p型拡散層のシート抵抗は、150Ω/□だった。
 また、上記基板のテクスチャ構造を有する他方の表面(裏面)に、リンを注入して、n型拡散層を約0.5μmの深さに形成した。n型拡散層のシート抵抗は、20Ω/□だった。ホウ素及びリンの注入は同時に熱拡散法によって行った。
 次に、p型拡散層を形成した基板の表面(光入射側表面)、及びn型拡散層を形成した基板の表面(裏面)に、パッシベーション膜2を形成した。具体的には、まず、光入射側表面及び裏面に1~2nmの薄い酸化膜層を形成した後、プラズマCVD法によってシランガス及びアンモニアガスを用いて窒化ケイ素膜を約60nmの厚みに形成した。具体的には、NH/SiH=0.5の混合ガス1Torr(133Pa)をグロー放電分解することにより、プラズマCVD法によって膜厚約70nmの窒化ケイ素膜(反射防止膜)を形成した。
 実施例及び比較例の単結晶シリコン太陽電池の、p型拡散層を形成した基板の表面(光入射側表面)の電極形成用の導電性ペーストは、表1及び2に示す配合量のものを用いた。
 導電性ペーストの印刷は、スクリーン印刷法によって行った。上述の基板のパッシベーション膜2上に、膜厚が約20μmになるように、1.5mm幅の光入射側バスバー電極20aと、60μm幅の光入射側フィンガー電極20bからなるパターンで印刷し、その後、150℃で約1分間乾燥した。
 裏面電極15(n型拡散層を形成した表面の電極)として、同じAgペーストをスクリーン印刷法によって印刷した。なお、裏面電極15の電極パターンは、光入射側表面電極20と同様の電極パターン形状である。その後、150℃で約60秒間乾燥した。乾燥後の裏面電極15b用の導電性ペーストの膜厚は約20μmであった。その後、Despatch Industries, Inc.製のベルト炉(焼成炉)CDF7210を用いて、ピーク温度720℃、焼成炉のイン-アウト50秒で両面同時焼成した。以上のようにして、単結晶シリコン太陽電池を作製した。
<<レーザー処理プロセス>>
 上述の実施例及び比較例の単結晶シリコン太陽電池の光入射側表面に対してレーザー処理プロセスを行うことにより、AgSi領域30を形成した。すなわち、太陽電池セルのp型不純物拡散層4と、n型結晶系シリコン基板1との間で順方向とは逆向きの電流が流れるように、裏面電極15にマイナス、光入射側表面に形成された図2に示すパターンの光入射側表面電極20のプラスの電圧を印加しながら、レーザー光を太陽電池の光入射側表面に照射した。レーザー処理プロセスの際の印加電圧は20Vであり、照射したレーザー光強度は100W/cmであり、電圧の印加及びレーザー光の照射時間は2秒間とした。
 以上のようにして、実施例及び比較例の太陽電池を作製した。
<レーザー処理プロセス後の太陽電池の電気的特性の測定>
 レーザー処理プロセス後の単結晶シリコン太陽電池の電気的特性の測定は、次のように行った。すなわち、試作した太陽電池の電流-電圧特性を、英弘精機株式会社製のソーラーシミュレータSS-150XILを用いて、25℃、AM1.5の条件のソーラーシミュレータ光(エネルギー密度100mW/cm2)の照射下で測定し、測定結果から曲線因子(Fill Factor:FF)、開放電圧(Open Circuit Voltage:Voc)及び変換効率(%)を算出した。なお、同じ製造条件の単結晶シリコン太陽電池を2個作製し、測定値は2個の平均値として求めた。レーザー処理プロセス後の太陽電池の電気的特性(曲線因子(FF)、開放電圧(Voc)及び変換効率(%))を測定した。表1及び2に測定結果を示す。
 表1から明らかなように、所定の導電性ペーストを用いて作製した実施例1~7の太陽電池のレーザー処理プロセス後の電気的特性は高く、例えば変換効率は21.3%から24.4%の範囲だった。これに対して、比較例1の導電性ペーストを用いて作製した太陽電池のレーザー処理プロセス後の電気的特性は低く、例えば変換効率は7.3から20.2の範囲だった。したがって、所定のAgSi領域30を有する本実施形態の実施例1~7の太陽電池は、比較例1及び2の太陽電池と比べて、レーザー処理プロセス後の電気的特性が優れていることが明らかである。
<SEM写真>
 実施例及び比較例の太陽電池のパッシベーション膜2(反射防止膜)の近傍の断面を走査型電子顕微鏡(SEM)により観察した。図6及び7は、実施例3の太陽電池の断面SEM写真である。また、図8は、比較例1の太陽電池の断面SEM写真である。
 レーザー処理プロセスを用いた場合、光入射側表面電極20と、不純物拡散層4との間の大部分に、パッシベーション膜2(反射防止膜)が存在する。レーザー処理プロセスでは、上述の所定の電圧を、pn接合において順方向とは逆向きの電流が流れるように印加して、点光源からの光(例えばレーザー光)を照射することにより、光入射側表面電極20と不純物拡散層4との間のわずかな領域に電流が流れ、局所的に加熱される。この結果、図6及び7に示すように、光入射側表面電極20と不純物拡散層4との間に、局所的に電気的導通部分(局所導通部)であるAgSi領域30(銀及びシリコンの合金)が形成される。すなわち、局所導通部は、銀及びシリコンの合金を含む。また、局所導通部では、不純物拡散層4(第2の導電型のシリコンエミッタ層)が、パッシベーション膜2(反射防止膜)を介さずに光入射側表面電極20と直接、接している。この局所的に形成された電気的導通部分(局所導通部)により、光入射側表面電極20と不純物拡散層4との間の良好な電気的導通が可能になる。本実施形態の太陽電池を製造するための所定の導電性ペーストは、パッシベーション膜2(反射防止膜)に対する反応性が低く、レーザー処理プロセスのために適切なパッシベーション膜2(反射防止膜)との反応性を有する。そのため、本実施形態の導電性ペーストは、レーザー処理プロセスを用いて結晶系シリコン太陽電池の光入射側表面電極20を形成するために、好ましく用いることができる。
<AgSi領域30の深さd>
 実施例1~7並びに比較例1及び2の、AgSi領域30の深さdを次のようにして測定した。表1及び2に測定結果を示す。
 図6に、AgSi領域30の深さdを例示する。AgSi領域30の深さdは、AgSi領域30の断面をSEM観察したSEM写真において、電極とAgSi領域30との界面の任意の1点(図6のB1)から、基板とAgSi領域30との界面までの任意の1点(図6のB2)までを結ぶ線分のうち、長さが最大になるような線分の長さ(図6のB1とB2とを結ぶ線分の長さd)として測定した。完成した太陽電池のパッシベーション膜2及びAgSi領域30を含む断面を倍率2万倍でSEM観察することにより、図6に示すSEM写真を得た。
<パッシベーション膜2の残存率>
 実施例1~7並びに比較例1及び2の、パッシベーション膜2の残存率を次のようにして測定した。表1及び2に測定結果を示す。
 具体的には、まず、完成した太陽電池のパッシベーション膜2及びAgSi領域30を含む断面を倍率2万倍でSEM観察することによりSEM写真(SEM画像範囲:5.7μm×3.9μm)を得た。なお、このSEM写真の横方向(基板表面と水平方向)の長さは5.7μmであり、縦方向(基板表面と垂直方向)の長さは3.9μmである。次に、図7に例示するように、このSEM写真におけるパッシベーション膜2の断面の合計長さLpを測定した。図7に示す例では、SEM写真におけるパッシベーション膜2の断面の合計長さLpは、Lp1、Lp2、Lp3及びLp4の合計の長さである。次に、このSEM写真において、AgSi領域30が生成された部分でのAgSi領域30と電極との界面の断面の合計長さLeを測定した。長さLeは、パッシベーション膜2が太陽電池の製造工程で消失した長さに相当する。図7に示す例では、パッシベーション膜2が消失した部分でのAgSi領域30と電極との界面の断面の合計長さLeは、Le1及びLe2の合計の長さである。パッシベーション膜2の残存率は、Lp/(Lp+Le)として得ることができる。なお、Lp1等の長さは、パッシベーション膜2等が直線であると近似して、測定した。
<パッシベーション膜2の焼成前後の膜厚及び膜厚比>
 実施例1~7並びに比較例1及び2の太陽電池の、パッシベーション膜2の焼成前膜厚Daと太陽電池完成後の膜厚Dbを測定した。表1及び2に測定結果を示す。表1及び2にパッシベーション膜2の焼成前後の膜厚比を示す。
 パッシベーション膜2の焼成前膜厚Daは、成膜直後のパッシベーション膜2の断面のSEM観察により測定した。すなわち、実施例及び比較例と同じ条件でパッシベーション膜2を所定の結晶系シリコン基板1の表面に形成し、パッシベーション膜2の断面をSEM観察することにより、実施例及び比較例のパッシベーション膜2の焼成前膜厚Daを得た。
 太陽電池完成後の膜厚Dbは、太陽電池の表面に電極が形成され、必要に応じて所定のレーザー処理プロセスをした後の、完成した太陽電池のパッシベーション膜2である。具体的には、まず、完成した太陽電池のパッシベーション膜2及びAgSi領域30を含む断面を倍率2万倍でSEM観察することによりSEM写真(SEM画像範囲:5.7μm×3.9μm)を得た。次に、SEM写真を縦方向に6等分し、6等分した画像の5つの境界におけるパッシベーション膜2の膜厚(5カ所)を測定した。太陽電池完成後の膜厚Dbは、パッシベーション膜2の5カ所の膜厚の平均値とした。
 パッシベーション膜2の焼成前後の膜厚比とは、上述のようにして測定したパッシベーション膜2の焼成前膜厚Daと太陽電池完成後の膜厚Dbとの比(Db/Da)である。
<評価>
 表1及び2に示すように、実施例1~7の太陽電池では、断面のSEM写真から求めたAgSi領域30の深さdは、200~1800nmの範囲だった。また、実施例1~7の太陽電池では、所定のAgSi領域30が形成されたことを確認することができた。また、実施例1~7の太陽電池のパッシベーション膜2の焼成前後の膜厚比は17~78%の範囲であり、パッシベーション膜2の残存率は10~90%の範囲だった。したがって、所定の焼成及びレーザー処理プロセスを行うことにより製造した実施例1~7の太陽電池の製造後も、所定のパッシベーション膜2が残存していることを確認することができた。この結果、GF1~3、GF5及びGF6のガラスフリットを含む導電性ペーストを用いて作製した実施例1~7の太陽電池のレーザー処理プロセス後の電気的特性は高く、例えば変換効率は21.3%から24.4%の範囲だった。また、実施例1~7の太陽電池では、所定のパッシベーション機能を有するパッシベーション膜2が残存しているため、開放電圧(Voc)が高く、0.69~0.72Vの範囲だった。なお、実施例1~7の太陽電池の曲線因子(FF)は、72.7~82.6%の範囲であり、良好な値だった。
 なお、実施例1~5の太陽電池のパッシベーション膜2の残存率は76~88%の範囲であり、変換効率は23.4%から24.4%の範囲だった。すなわち、実施例1~5の太陽電池の変換効率は、実施例6の太陽電池(パッシベーション膜2の残存率が10%)及び実施例7の太陽電池(パッシベーション膜2の残存率が90%)の変換効率よりも高かった。したがって、パッシベーション膜2の残存率が30%以上90%未満である場合には、より高い変換効率の太陽電池を得ることができるといえる。
 また、実施例1~5の太陽電池のパッシベーション膜2の焼成前後の膜厚比は36~51%の範囲であり、変換効率は23.4%から24.4%の範囲だった。すなわち、実施例1~5の太陽電池の変換効率は、実施例6の太陽電池(膜厚比が78%)及び実施例7の太陽電池(膜厚比が17%)の変換効率よりも高かった。したがって、パッシベーション膜2の焼成前後の膜厚比が20~70%である場合には、より高い変換効率の太陽電池を得ることができるといえる。
 一方、表2に示すように、比較例1の太陽電池では、断面のSEM写真からは、AgSi領域30が観察されなかった。また、比較例1の太陽電池のパッシベーション膜2の焼成前後の膜厚比は91%であり、パッシベーション膜2の残存率は100%だった。したがって、所定の焼成及びレーザー処理プロセスを行うことにより製造した比較例1の太陽電池では、所定のパッシベーション膜2が、成膜直後とほぼ変わらずに残存しているとともに、AgSi領域が形成されないことを確認できた。このように、GF4のガラスフリットを含む導電性ペーストを用いて作製した太陽電池のレーザー処理プロセス後の電気的特性は低く、例えば変換効率は7.3%だった。特に、比較例1の太陽電池では、絶縁膜であるパッシベーション膜2が残存しているため、曲線因子(FF)が35.7%と低い値だった。
 比較例2の太陽電池では、断面のSEM写真にAgSi領域30が観察された。表2に示すように、比較例2の太陽電池では、断面のSEM写真から求めたAgSi領域30の深さdは、1200nmだった。なお、比較例2の太陽電池のパッシベーション膜2の焼成前後の膜厚比は5%であり、パッシベーション膜2の残存率は5%だった。したがって、所定の焼成及びレーザー処理プロセスを行うことにより製造した比較例2の太陽電池太陽電池は、実施例1~7の太陽電池と比べて、パッシベーション膜2の存在が少なくなったことが明らかになった。この結果、GF3のガラスフリットを含む導電性ペーストを用いて作製した比較例2の太陽電池のレーザー処理プロセス後の変換効率は20.2%であり、実施例1~7の太陽電池と比べて低かった。また、比較例2の太陽電池では、パッシベーション膜2の存在が少なくなり、パッシベーション機能が低下したため、開放電圧(Voc)は0.64Vであり、低い値だった。比較例2の太陽電池では、GF3のガラスフリットを含む導電性ペーストにより形成した電極を焼成する際に、パッシベーション膜2がファイアースルーされたものと考えられる。
 また、実施例1、2及び4~7の太陽電池は、鉛フリーのガラスフリット(GF1~5のガラスフリット)を含む導電性ペーストを用いて作製されたため、太陽電池が廃棄される際に、環境に対する鉛汚染を防止できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1 結晶系シリコン基板
 2 パッシベーション膜
 4 不純物拡散層
 6 基板本体
 14 裏面パッシベーション膜
 15 裏面電極
 15a 裏面TAB電極(裏面バスバー電極)
 15b 裏面全面電極
 15c 裏面フィンガー電極
 16 第2の不純物拡散層
 20 光入射側表面電極(表面電極)
 20a 光入射側バスバー電極
 20b 光入射側フィンガー電極
 30 AgSi領域

Claims (9)

  1.  結晶系シリコンを含む基板であって、少なくとも一方の表面に不純物拡散層を含む前記基板と、
     前記基板の前記不純物拡散層の少なくとも一部の上に配置されたパッシベーション膜と、
     銀(Ag)を含む電極であって、前記パッシベーション膜の少なくとも一部の上に配置された前記電極と
    を含む太陽電池であって、
     前記太陽電池が、前記電極と、前記基板との間の少なくとも一部に配置された、少なくとも1つのAgSi領域を更に含み、
     前記AgSi領域が、深さが100nm以上のAgSi領域を少なくとも1つ含み、
     前記太陽電池の前記AgSi領域を含む5.7μm×3.9μmの断面の走査型電子顕微鏡写真において、前記パッシベーション膜が残存している長さの割合である前記パッシベーション膜の残存率が、10~90%である、太陽電池。
  2.  前記パッシベーション膜の成膜直後の膜厚Daと、前記太陽電池の表面に前記電極が形成されて完成した前記太陽電池の前記AgSi領域を含む5.7μm×3.9μmの断面の走査型電子顕微鏡写真における前記パッシベーション膜の膜厚Dbとの比Db/Daが、15%~85%である、請求項1に記載の太陽電池。
  3.  前記電極が、前記電極に含まれる前記銀(Ag)の100重量部に対して0.1~5.0重量部のガラスフリットを更に含む、請求項1又は2に記載の太陽電池。
  4.  前記ガラスフリットのガラス転移点が250~600℃である、請求項3に記載の太陽電池。
  5.  前記ガラスフリットが、SiO、B、V、Bi、TeO、LiO及びZnOから選択される少なくとも1つを含む、請求項3又は4に記載の太陽電池。
  6.  前記ガラスフリットが、PbOを実質的に含まない、請求項3~5のいずれか1項に記載の太陽電池。
  7.  前記電極が鉛(Pb)を実質的に含まない、請求項1~6のいずれか1項に記載の太陽電池。
  8.  前記電極がアルミニウム粒子を実質的に含まない、請求項1~7のいずれか1項に記載の太陽電池。
  9.  前記基板が、第1の導電型の前記結晶系シリコン基板であり、
     前記不純物拡散層が、第2の導電型の不純物拡散層であり、
     前記電極が、光入射側表面に配置された光入射側表面電極であり、
     前記太陽電池が、前記結晶系シリコン基板の前記光入射側表面とは反対側の表面に対して電気的に接続するように配置された裏面電極を更に含み、
     前記光入射側表面電極が、前記第2の導電型の前記不純物拡散層と、前記第1の導電型の前記結晶系シリコン基板との間で順方向とは逆向きの電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の前記光入射側表面に照射する処理をした前記光入射側表面電極である、請求項1~8のいずれか1項に記載の太陽電池。
PCT/JP2023/029078 2022-11-07 2023-08-09 太陽電池 WO2024100947A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-178203 2022-11-07
JP2022178203 2022-11-07
JPPCT/JP2023/012085 2023-03-27
PCT/JP2023/012085 WO2023190282A1 (ja) 2022-03-28 2023-03-27 導電性ペースト、太陽電池及び太陽電池の製造方法
JP2023096794 2023-06-13
JP2023-096794 2023-06-13

Publications (1)

Publication Number Publication Date
WO2024100947A1 true WO2024100947A1 (ja) 2024-05-16

Family

ID=91032119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029078 WO2024100947A1 (ja) 2022-11-07 2023-08-09 太陽電池

Country Status (2)

Country Link
TW (1) TW202420608A (ja)
WO (1) WO2024100947A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278507A1 (en) * 2010-05-11 2011-11-17 E. I. Du Pont De Nemours And Company Thick film silver pastes containing iodonium and/or sulfonium salts and their use in photovoltaic cells
JP2014078594A (ja) * 2012-10-10 2014-05-01 Noritake Co Ltd ペースト組成物と太陽電池
JP2014150015A (ja) * 2013-02-04 2014-08-21 Namics Corp 太陽電池の電極形成用導電性ペースト
JP2015050277A (ja) * 2013-08-30 2015-03-16 シャープ株式会社 太陽電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278507A1 (en) * 2010-05-11 2011-11-17 E. I. Du Pont De Nemours And Company Thick film silver pastes containing iodonium and/or sulfonium salts and their use in photovoltaic cells
JP2014078594A (ja) * 2012-10-10 2014-05-01 Noritake Co Ltd ペースト組成物と太陽電池
JP2014150015A (ja) * 2013-02-04 2014-08-21 Namics Corp 太陽電池の電極形成用導電性ペースト
JP2015050277A (ja) * 2013-08-30 2015-03-16 シャープ株式会社 太陽電池およびその製造方法

Also Published As

Publication number Publication date
TW202420608A (zh) 2024-05-16

Similar Documents

Publication Publication Date Title
US7435361B2 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
JP5349738B2 (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP6714275B2 (ja) 導電性ペースト及び太陽電池
JP2006302891A (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP6375298B2 (ja) 結晶系シリコン太陽電池及びその製造方法
EP2193527A1 (en) Lead-free conductive compositions and processes for use in the manufacture of semiconductor devices: mg-containing additive
EP2193526A1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices: mg-containing additive
WO2009052474A1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices: flux materials
JP2011502345A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法:複数の母線
WO2017154612A1 (ja) 導電性ペースト及び太陽電池
WO2016203986A1 (ja) 導電性ペースト、太陽電池及び太陽電池の製造方法
WO2018003591A1 (ja) 導電性ペースト及び太陽電池
JP6137852B2 (ja) 太陽電池の電極形成用導電性ペースト
WO2009052356A2 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
WO2024100947A1 (ja) 太陽電池
WO2024101223A1 (ja) 導電性ペースト、太陽電池及び太陽電池の製造方法
WO2023190282A1 (ja) 導電性ペースト、太陽電池及び太陽電池の製造方法
TW202437277A (zh) 導電性膏、太陽能電池及太陽能電池的製造方法
CN118985049A (zh) 导电性糊剂、太阳能电池和太阳能电池的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888302

Country of ref document: EP

Kind code of ref document: A1