WO2024198792A1 - 通信方法、装置及系统 - Google Patents
通信方法、装置及系统 Download PDFInfo
- Publication number
- WO2024198792A1 WO2024198792A1 PCT/CN2024/078366 CN2024078366W WO2024198792A1 WO 2024198792 A1 WO2024198792 A1 WO 2024198792A1 CN 2024078366 W CN2024078366 W CN 2024078366W WO 2024198792 A1 WO2024198792 A1 WO 2024198792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sfu
- message
- mfu
- optical
- link
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 150
- 238000004891 communication Methods 0.000 title claims abstract description 78
- 230000003287 optical effect Effects 0.000 claims abstract description 197
- 238000004590 computer program Methods 0.000 claims description 22
- 230000004044 response Effects 0.000 claims description 19
- 238000012423 maintenance Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 abstract description 29
- 239000000835 fiber Substances 0.000 abstract description 7
- 238000012545 processing Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 21
- 239000013307 optical fiber Substances 0.000 description 14
- 230000003993 interaction Effects 0.000 description 11
- 238000007726 management method Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000013475 authorization Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
- H04B10/85—Protection from unauthorised access, e.g. eavesdrop protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
Definitions
- the present application relates to the field of optical communications, and in particular to a communication method, device and system.
- Fiber to the room is a new coverage mode for home networks in the gigabit era. It is based on fiber to the building (FTTB) and fiber to the home (FTTH). It lays optical fiber to every room, interconnects with the home gateway by deploying optical networking terminals, and combines dual-band wireless fidelity (WiFi), WiFi6 and other technologies to ensure full-house network coverage.
- FTTR networks are interconnected through P2MP optical links. In traditional optical links, PON protocols can be used for communication. At present, in the PON optical link authentication and online process, regardless of whether there is a new ONT access in the network, the optical link will periodically reserve the uplink time slot to feedback the SN number to the ONT and complete the subsequent interaction.
- the WiFi link After the optical link communication is interrupted, the WiFi link needs to be authenticated and online before the FTTR network end-to-end communication can be restored. This will cause a waste of resources, large communication delay, and insufficient security. For example, it provides entry conditions for intrusion devices, which seriously affects the user experience.
- the present application provides a communication method, device and system, which can improve user experience.
- a communication method comprising:
- a first message is sent to a master optical unit MFU via a wireless fidelity WiFi link, wherein the first message includes a sequence number SN; and a second message is received via an optical link, wherein the second message is used for synchronization and/or ranging.
- the SFU feeds back the SN number to the MFU through the WiFi link.
- the MFU no longer needs to periodically reserve the uplink time slot, which reduces the communication delay and avoids the risk of rogue devices intruding from the reserved time slot, thereby improving communication security and thus improving the user experience.
- third information is received through the WiFi link, the third information includes an optical network terminal ONT identifier, and the ONT identifier uniquely corresponds to the SN.
- the MFU allocates a unique ONT_ID to the optical network terminal and indicates it to the SFU, which further facilitates the overall management of the optical network terminal.
- the second message includes at least one of the following: a downlink frame, a physical layer operation maintenance management PLOAM configuration message, or a ranging request message, wherein the downlink frame includes at least one of a delimiter, optical power, and a pre-allocated delay, and the PLOAM configuration message includes an uplink designated window configuration parameter.
- the ranging request response message is sent over an optical link.
- the first message further includes message type information, payload size information, optical network unit ONT identification information, and a reserved bit.
- the format of the first message can be applicable to the message format sent by the MFU to the SFU, and can also be applicable to the message format sent by the SFU to the MFU.
- a communication method may include: receiving a first message from a slave optical unit SFU via a WiFi link, wherein the first message includes a sequence number SN; and sending a second message via an optical link, wherein the second message is used for synchronization and/or ranging.
- the method before receiving the second message through the optical link, the method further includes: determining an ONT identifier according to the SN, the ONT identifier uniquely corresponding to the SN; and sending third information through the optical link, the third information including the ONT identifier.
- the second message includes at least one of the following: a downlink frame, a physical layer operation maintenance management PLOAM configuration message, or a ranging request message, wherein the downlink frame includes at least one of a delimiter, optical power, and a pre-allocated delay, and the PLOAM configuration message includes an uplink designated window configuration parameter.
- the ranging request response message is received over an optical link.
- the first message further includes message type information, payload size information, ONT identification information, and a reserved bit.
- the second aspect is a solution on the MFU side corresponding to the first aspect.
- the explanation, supplement and description of the beneficial effects of the first aspect are also applicable to the second aspect and will not be repeated here.
- a communication method is provided, which can be applied to a fiber-to-the-room FTTR network, wherein the FTTR network includes an MFU and Q slave optical units SFU, where Q is an integer greater than or equal to 1, and the Q SFUs include a first SFU and a second SFU, wherein the first SFU is connected to the second SFU via a WiFi link, the MFU is connected to the first SFU via a first optical link, and the MFU is connected to the second SFU via a second optical link.
- the method may include: the first SFU sets the WiFi cascade state to a virtual connection; the first SFU sends or receives data through the first optical link; when the first optical link and/or the second optical link fails, the first SFU switches the WiFi cascade state to a real connection; the first SFU sends or receives data through the WiFi link.
- the first SFU it is optional for the first SFU to send or receive data through the first optical link.
- the method when the second optical link fails, the method further includes: receiving a fourth message from the MFU, where the fourth message is used to indicate that the second optical link fails.
- the MFU notifies the first SFU that a failure occurs in the optical link between the second SFU and the MFU.
- the first SFU scans W SFUs to obtain W received signal strength indications RSSIs, where the W RSSIs are RSSIs corresponding to the W SFUs respectively, and W is a positive integer less than Q; the first SFU determines that the SFU corresponding to the largest RSSI among the W RSSIs is the second SFU; and the first SFU establishes the WiFi link with the second SFU.
- the first SFU selects the SFU with the largest RSSI as the second SFU, which can further improve the communication quality between the first SFU and the second SFU.
- the first SFU establishing the WiFi link with the second SFU includes: the first SFU sending a fifth message through the first optical link, the fifth message being used to establish the WiFi link with the second SFU, the fifth message including at least one of the following:
- Message type Message type, payload size, authentication request message, association request message, or key exchange message.
- WiFi cascade interaction information between the MFU and the SFU may also adopt the same format as the fifth message.
- a communication method is provided, which can be applied to an FTTR network, wherein the FTTR network includes an MFU and Q SFUs, where Q is an integer greater than or equal to 1, and the Q SFUs include a first SFU and a second SFU, wherein the first SFU is connected to the second SFU via a WiFi link, the MFU is connected to the first SFU via a first optical link, and the MFU is connected to the second SFU via a second optical link.
- the method may include: the second SFU sets the WiFi cascade state to a virtual connection; the second SFU sends or receives data through the second optical link; when the first optical link and/or the second optical link fails, the second SFU switches the WiFi cascade state to a real connection; the second SFU sends or receives data through the WiFi link.
- the second SFU sending or receiving data through the second optical link is optional.
- the method when the first optical link fails, the method further includes: the second SFU receiving a sixth message from the MFU through a second optical link, the sixth message being used to indicate that the first optical link fails.
- the method further includes: the second SFU receiving a fifth message through the second optical link, the fifth message being used to establish the WiFi link with the first SFU, the fifth message including at least one of the following:
- the fourth aspect is an implementation method of the second SFU side corresponding to the third aspect.
- the supplement, explanation and beneficial effects of the third aspect are also applicable to the fourth aspect and will not be repeated here.
- a communication device is provided.
- the device is used to execute the method provided in any one of the first to fourth aspects.
- the communication device may include a unit and/or module, such as a processing unit and an acquisition unit, for executing the method provided in any one of the first to fourth aspects or the first to fourth aspects.
- the device is an SFU (such as a first SFU or a second SFU).
- the acquisition unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
- the transceiver may be a transceiver circuit.
- the input/output interface may be a processor.
- the port can be an input/output circuit.
- the device is a chip, a chip system or a circuit in a SFU (such as a first SFU or a second SFU).
- the acquisition unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit;
- the processing unit may be at least one processor, a processing circuit or a logic circuit.
- the device is an MFU.
- the acquisition unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
- the transceiver may be a transceiver circuit.
- the input/output interface may be an input/output circuit.
- the device is a chip, a chip system or a circuit in the MFU.
- the acquisition unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit;
- the processing unit may be at least one processor, a processing circuit or a logic circuit.
- a processor for executing the methods provided in the above aspects.
- a computer-readable storage medium stores program codes for execution by a device, wherein the program codes include a method for executing the method provided by any one of the first to fourth aspects or the first to fourth aspects.
- a computer program product comprising instructions is provided.
- the computer program product is run on a computer, the computer is caused to execute the method provided in any one of the implementations of the first to fourth aspects or the first to fourth aspects.
- a chip which includes a processor and a communication interface.
- the processor reads instructions stored in a memory through the communication interface to execute the method provided by any one of the implementation methods of the first to fourth aspects or the first to fourth aspects.
- the chip also includes a memory, in which a computer program or instructions are stored, and the processor is used to execute the computer program or instructions stored in the memory.
- the processor is used to execute the method provided by any one of the implementation methods of the first to fourth aspects or the first to fourth aspects mentioned above.
- a communication system comprising the communication device described in the fifth aspect.
- a communication method which may include: the SFU sends a first message to the main light unit MFU via a wireless fidelity WiFi link, the first message includes a serial number SN, and the MFU sends a second message to the SFU via an optical link, the second message is used for synchronization and/or ranging.
- a communication method which may include: a first SFU sets a WiFi cascade state to a virtual connection; the first SFU sends or receives data to an MFU through the first optical link; when the first optical link and/or the second optical link fails, the first SFU switches the WiFi cascade state to a real connection; the first SFU sends or receives data to a second SFU through the WiFi link.
- FIG1 is a schematic diagram of a passive optical network (PON) application scenario according to an embodiment of the present application.
- PON passive optical network
- FIG. 2 is a schematic diagram of an FTTR application scenario of an embodiment of the present application.
- FIG3 is a schematic diagram of an interaction process for communicating using a PON protocol in an FTTR network according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of a WiFi authentication and online process according to an embodiment of the present application.
- FIG5 is a schematic diagram of a communication method according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of a flow chart of interaction between an SFU and an MFU according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of another communication method according to an embodiment of the present application.
- FIG. 8 is a schematic diagram of a WiFi cascade state switching process provided in an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of another communication device provided in an embodiment of the present application.
- FIG11 is a schematic diagram of the structure of an MFU or SFU provided in an embodiment of the present application.
- the technical solution of the embodiment of the present application can be applied to various passive optical network (PON) systems, for example, Next-generation PON (NG-PON), NG-PON1, NG-PON2, gigabit-capable PON (GPON), 10 gigabit per second PON (XG-PON), 10-gigabit-capable symmetric passive optical network (XGS-PON), Ethernet PON (EPON), 10 gigabit per second EPON (10G-EPON), next-generation EPON (NG-EPON), wavelength-division multiplexing (WDM) PON, time-and wavelength-division multiplexing (TWDM) PON, point-to-point (P2P) WDM PON (P2P-WDM PON), asynchronous transfer mode PON (asynchronous transfer mode It can be used for 25G-PON, 25G-PON, 50G-PON, 100G-PON, 25G-EPON, 50G-EPON, 50G-EPON, 100G-EPON, and GP
- FIG. 1 is a schematic diagram of a passive optical network (PON) system.
- the passive optical network (PON) includes an optical line terminal (OLT) 110, an optical distribution network (ODN) 120, and an optical network unit (ONU) 130.
- the optical line terminal 110 is connected to a plurality of optical network units 130 in a point-to-multipoint manner through the optical distribution network 120.
- the optical line terminal 110 and the optical network unit 130 can communicate with each other using a time division multiplexing (TDM) mechanism, a wavelength division multiplexing (WDM) mechanism, or a TDM/WDM hybrid mechanism.
- TDM time division multiplexing
- WDM wavelength division multiplexing
- the direction from the optical line terminal 110 to the optical network unit 130 is defined as a downlink direction
- the direction from the optical network unit 130 to the optical line terminal 110 is an uplink direction.
- the passive optical network system can be a communication network that does not require any active devices to achieve data distribution between the optical line terminal 110 and the optical network unit 130, wherein the data distribution between the optical line terminal 110 and the optical network unit 130 can be achieved through passive optical devices (such as splitters) in the optical distribution network 120.
- passive optical devices such as splitters
- the optical line terminal 110 which can also be called a central office device, can uniformly manage the multiple optical network units 130.
- the optical line terminal 110 can act as a medium between the optical network unit 130 and the upper network (i.e., the convergence layer), forwarding the data received from the upper network as downlink data to the optical network unit 130, and forwarding the uplink data received from the optical network unit 130 to the upper network.
- the upper network i.e., the convergence layer
- the optical distribution network 120 may be a data distribution system, which may include optical fibers, optical couplers, optical combiners/demultiplexers, optical splitters and/or other devices.
- the optical distribution network 120 may specifically extend from the optical line terminal 110 to multiple optical network units 130, but may also be configured into any other point-to-multipoint structure.
- the optical network unit 130 can be distributedly arranged at the user side location (such as the user's premises).
- the optical network unit 130 can be a network device for communicating with the optical line terminal 110 and the user, and can provide broadband voice, data or video services for the user.
- the optical network unit 130 can act as a medium between the optical line terminal 110 and the user.
- the optical network unit 130 can forward the downlink data received from the optical line terminal 110 to the user, and forward the data received from the user as uplink data to the optical line terminal 110.
- the optical network unit 130 also provides a user port function, such as providing an Ethernet user port or a plain old telephone service (POTS) user port, which is called an ONT or an optical modem.
- POTS plain old telephone service
- Both ONU and ONT are connected optical fibers, and the optical signal is connected from the operator to the user's home, and then the optical signal of the optical fiber is converted into a network electrical signal through optical signal conversion.
- the optical signal is connected from the operator to the user's home, and then the optical signal of the optical fiber is converted into a network electrical signal through optical signal conversion.
- they are regarded as the same concept and are not distinguished.
- FIG2 is a schematic diagram of the FTTR application scenario of an embodiment of the present application.
- the FTTR network consists of four parts: a master ONT, a slave ONT (or edge ONT), a home optical network (or home ODN), and a cloud management platform.
- the master ONT is located between the central office OLT and the slave ONT, and is connected to the central office OLT through XGPON or 10G EPON, supports Gigabit access to homes, and provides a fiber optic interface to connect the slave ONT.
- the master ONT can achieve unified management and configuration of all slave ONTs.
- the slave ONT is a distributed Wi-Fi access device for the home, distributed to each room of the home, connected to the FTTR master ONT through a home optical cable, and provides Wi-Fi 6 and GE ports to access various home Internet terminals.
- the slave ONT is a networking device distributed in each room in the FTTR solution. It is connected to the main ONT via optical fiber and provides gigabit Ethernet (GE) interface and Wi-Fi 6 access capabilities. It is the main access device for home terminals.
- the slave ONT works in bridging mode.
- the FTTR main ONT uniformly allocates management IP and the IP of other devices connected to the slave ONT, so that the entire home network constitutes a unified and interoperable LAN.
- Each device connected to the slave ONT can achieve LAN inter-access operations such as screen projection and file sharing under ultra-gigabit bandwidth.
- the home optical network is composed of optical cables, optical cable panels and other necessary optical network components deployed using special tools and auxiliary materials.
- the home optical cable infrastructure consists of the following.
- the cloud management platform acts as the FTTR master ONT agent to manage the slave ONTs, uniformly collects home network information and reports it to the cloud management platform to achieve the operation and maintenance of the home network.
- the optical network is further extended to each slave ONT, and the FTTR master ONT plays a role of "bridging the gap", extending the "optical in, copper out” policy to each room. It can achieve a unified name for Wi-Fi in the whole house, dual-band integration, automatic control of roaming switching, and improve user experience.
- the optical fiber in this article is an example of an optical transmission channel, which can also be called a transmission medium, or a dispersive medium with the same dispersion value as the optical fiber.
- FTTR extends optical fiber further to every room, allowing every room in the home to enjoy high-speed Internet experience.
- the slave FTTR device located in each room converts the optical signal reaching the room into Wi-Fi, enabling the terminal device to connect to the Internet.
- the FTTR network between the above-mentioned master and slave devices is interconnected through a P2MP optical link. Once the P2MP optical link fails, the FTTR network devices (such as between the master fiber unit (MFU) and the slave fiber unit (SFU)) switch to WiFi cascading to perform WiFi authentication and online procedures.
- MFU master fiber unit
- SFU slave fiber unit
- FIG. 3 is a schematic diagram of the interactive process of using the PON protocol for communication in an FTTR network. The specific steps are as follows:
- the SFU monitors the downlink frames sent by the MFU and implements physical layer synchronization and SF synchronization based on the delimiter, optical power, pre-allocated delay and other parameters carried in the downlink frames. This stage is called O1.
- MFU periodically sends Profile PLOAM messages, and SFU starts to learn the uplink specified Burst Profile parameters. This stage is called O2.
- MFU periodically sends serial number (SN) authorization information. After receiving the authorization information, SFU reports SN in the reserved uplink sending window. This stage is called O3.
- MFU SFU After receiving the SN message reported by SFU, MFU determines that the SN number is legal, allocates a unique ONT_ID to SFU, and at the same time sends a ranging request to the SFU with the newly allocated ONT_ID; after receiving the ranging request, SFU responds with a ranging confirmation message. This stage is called O4.
- the MFU generates an EqD message based on the ranging response message and sends it to the SFU.
- the ranging is now completed and the operation state O5 is entered.
- the PON protocol usually uses five steps from O1 to O5 to complete the authentication and online process.
- the OLT periodically reserves an uplink contention time slot (such as 250us in a 5s period) for new ONU access. In the reserved uplink contention time slot, all ONTs cannot send uplink data.
- FIG. 4 is a schematic diagram of the WiFi authentication and online process.
- the two FTTR devices corresponding to the cascade are equivalent to the access point (AP) and station (STA) of the traditional WiFi network.
- the process is as follows:
- STA sends a probe request message to AP.
- STA sends an authentication request message to AP.
- STA sends an association request message to AP.
- the STA and AP complete a four-way handshake interaction and complete the key negotiation.
- One-key pairing may take the following forms:
- the WiFi cascade FTTR devices are close to each other. When the distance is less than a certain threshold, the indicator light of the FTTR device in the AP role flashes. Press its one-key pairing button to automatically implement the WiFi cascade authentication and online process of the FTTR device in the STA role;
- uplink contention time slots are periodically reserved, and other ONTs cannot send uplink data, which will cause a waste of resources and cause the uplink delay to become periodic, affecting communication performance.
- entry conditions are provided for intrusion devices, and communication security cannot be guaranteed.
- the FTTR network equipment (such as between MFU and SFU) can automatically switch to WiFi cascading. After the optical link communication is interrupted, the WiFi link needs to be authenticated and online before it can start to restore end-to-end communication in the FTTR network. The WiFi link authentication and online process may take seconds, which will cause the entire FTTR network communication recovery time to take seconds, seriously affecting the user experience.
- the present application proposes a communication method that can avoid resource waste and improve communication performance.
- FIG5 shows a communication method, which may include the following steps:
- the SFU sends a first message to the MFU through the WiFi link, and correspondingly, the MFU receives the first message.
- the first message includes a SN.
- the SN is used to identify the optical device.
- the MFU may allocate an ONT_ID to the SN, and the ONT_ID uniquely corresponds to the SN.
- the MFU binds the SN to the SFU that sent the SN.
- the SFU establishes a WiFi link with the MFU.
- SFU should also complete one-key code pairing with MFU.
- the SFU is brought close to the MFU and powered on to complete the one-key pairing.
- the one-key pairing can refer to the above description, which will not be repeated here.
- the first message may further include message type information, payload size information, optical network unit ONU identification information and a reserved bit.
- message type information e.g., a message type of the first message
- payload size information e.g., a packet size information
- optical network unit ONU identification information e.g., a packet size information
- reserved bit e.g., a reserved bit
- the Message type field can occupy 8 bits
- the Payload Size field can occupy 8 bits
- the SN field can occupy 4 bytes
- the ONU_ID can occupy 4 bytes.
- the MFU sends a second message to the SFU through the optical link, and correspondingly, the SFU receives the second message.
- the optical link may be established by connecting the MFU and the SFU via an optical fiber.
- optical fiber is only an example of an optical transmission channel and can also be referred to as a transmission medium.
- the transmission medium can also be a dispersive medium having the same dispersion value as the optical fiber.
- the second information is used for synchronization and/or ranging.
- the second information includes at least one of the following: a downlink frame, a physical layer operation administration and maintenance (PLOAM) configuration message, or a ranging request message.
- PLOAM physical layer operation administration and maintenance
- the PLOAM configuration message includes the uplink specified window configuration (Burst Profile) parameters.
- the downlink frame includes at least one of a delimiter, optical power, and a pre-allocated delay.
- the ranging request message is Ranging_Request.
- the MFU interacts with the SFU in the traditional optical link authentication and online process. Since the SFU has already fed back the SN number in S510 and the MFU has allocated the ONT_ID, the MFU does not need to periodically reserve the uplink time slot, which is equivalent to not executing the O3 interaction process mentioned above in S520, and directly interacting with the O1/O2/O4/O5 process.
- the method may further include:
- the MFU sends a third message to the SFU through the WiFi link, and correspondingly, the SFU receives the third message.
- the third information includes an optical network terminal ONT identifier, and the ONT identifier uniquely corresponds to the SN.
- the MFU allocates an ONT_ID to the SN and sends the ONT_ID to the SFU.
- the format of the first message can be applicable to the message format sent by MFU to SFU, or to the message format sent by SFU to MFU. That is, the interaction between MFU and SFU can share a frame format, that is, the first message and the third message share the same frame format.
- the content not indicated in the message format may not be filled or filled with 0 or filled with special symbols.
- the MFU sends the frame format to the SFU, the position used to indicate the SN is not filled.
- the frame format (of the third message) sent by the MFU to the SFU is different from the frame format (of the first message) sent by the SFU to the MFU.
- the frame format sent by SFU to MFU is as follows:
- the frame format sent by MFU to SFU is as follows:
- the SFU sends a ranging request response message to the MFU through the optical link, and correspondingly, the MFU receives the ranging request response message.
- the ranging request response message is a reply message of the ranging request message sent by the MFU to the SFU.
- FIG6 shows a schematic diagram of a flow chart of the interaction between SFU and MFU, including the following steps:
- the SFU sends a SN to the MFU via a WiFi link, and correspondingly, the MFU receives the SN.
- the SN is the serial number of the optical device. For details, please refer to the description in S510.
- the MFU sends the ONT_ID to the SFU through the WiFi link, and correspondingly, the SFU receives the ONT_ID.
- the ONT_ID is uniquely allocated by the MFU to the SN. For details, please refer to the description in S510.
- MFU sends downlink valid synchronization frame information (DS frame with valid Psync) to SFU through the optical link, and correspondingly, SFU receives the downlink valid synchronization frame information message.
- DS frame with valid Psync downlink valid synchronization frame information
- the downlink valid synchronization frame information message may be used to implement physical layer synchronization.
- the start position of a frame may be determined according to the downlink valid synchronization frame information message.
- MFU sends an uplink overhead PLOAM message (Upsteam_Overhead PLOAM) to SFU through the optical link, and correspondingly, SFU receives the uplink overhead PLOAM message.
- Upsteam_Overhead PLOAM Uplink_Overhead PLOAM
- the format of the PLOAM message may refer to the format description of the third message in S530, which will not be described in detail.
- the MFU sends a ranging request (Ranging_Request) to the SFU through the optical link, and correspondingly, the SFU receives the ranging request.
- a ranging request (Ranging_Request)
- SFU sends a registration PLOAM message (Registration PLOAM) to MFU through the optical link, and correspondingly, MFU receives the registration PLOAM message.
- Registration PLOAM Registration PLOAM
- the MFU sends an equalization delay (EqD) message to the SFU through the optical link, and correspondingly, the SFU receives the EqD message.
- EqD equalization delay
- the EqD message indicates the balanced delay. Since different ONUs are at different distances from the OLT and have different delays, the balanced delay can be compensated through ranging.
- the SFU feeds back the SN number to the MFU via the WiFi link, and the MFU allocates a unique ONT_ID.
- the MFU no longer needs to periodically reserve uplink time slots, which reduces communication latency and avoids the risk of rogue devices intruding from the reserved time slots, improving communication security and thus improving user experience.
- the present application also proposes a communication method, which can further shorten the communication delay and improve the user experience.
- FIG7 shows a communication method, which can be applied to an FTTR network, wherein the FTTR network includes an MFU and Q SFUs, where Q is an integer greater than or equal to 1, and the Q SFUs include a first SFU and a second SFU, wherein the first SFU and the second SFU are connected via a WiFi link, the MFU and the first SFU are connected via a first optical link, and the MFU and the second SFU are connected via a second optical link.
- the method may include the following steps:
- the first SFU sets the WiFi cascade state to a virtual connection.
- the virtual connection can be understood as the WiFi cascade state between the first SFU and the second SFU is connected, but there is no data exchange on the air interface. In other words, the first SFU and the second SFU do not exchange data through the WiFi link.
- the first SFU sends or receives data through the first optical link.
- the first optical link is an optical link between the first SFU and the MFU.
- the first SFU can send data to the MFU through the first optical link, and can also receive data from the MFU through the first optical link.
- This S720 is optional. That is, the first optical link can be used for the first SFU to send or receive data, but the first SFU does not necessarily send or receive data on the first optical link.
- the first SFU can switch the WiFi cascade state to a real connection.
- the real connection and the virtual connection have opposite meanings.
- the real connection can be understood as the first SFU and the second SFU exchanging data via the WiFi link.
- the first SFU may detect whether a fault occurs in the first optical link, and the first SFU switches the WiFi cascade state according to the fault detected by the first SFU.
- the second SFU can detect whether a fault occurs in the second optical link.
- the second SFU switches the WiFi cascade state according to the fault detected by itself.
- the MFU may notify the first SFU that the optical link between the second SFU and the MFU (i.e., the second optical link) has failed. For example, the MFU sends an indication message (i.e., the fourth message) to the first SFU via the first optical link, and the indication message indicates that the second optical link has failed.
- the first SFU may switch the WiFi cascade state according to the indication message.
- the MFU may notify the second SFU that the optical link between the first SFU and the MFU (i.e., the first optical link) has failed. For example, the MFU sends an indication message (i.e., the sixth message) to the second SFU via the second optical link, indicating that the first optical link has failed.
- the second SFU can switch the WiFi cascade state according to the indication information.
- the first SFU and the second SFU can switch the WiFi cascade state according to the failure of their own or the other party's optical link.
- the WiFi cascade state is switched from a virtual connection to a real connection.
- FIG8 shows a schematic diagram of a switching process of a WiFi cascade state.
- SFU#1 is used as an example of the first SFU
- SFU#2 is used as an example of the second SFU
- optical fiber #1 is used as an example of the first optical link
- optical fiber #2 is used as an example of the second optical link.
- the WiFi cascade states of SFU#1 and SFU#2 can refer to the above description.
- the second SFU may be determined by the first SFU.
- the first SFU scans W SFUs to obtain W received signal strength indicators (RSSIs), where the W RSSIs are RSSIs corresponding to the W SFUs respectively, and W is a positive integer less than Q.
- the first SFU determines that the SFU corresponding to the largest RSSI among the W RSSIs is the second SFU.
- the second SFU may also be predefined, preconfigured, or configured.
- the first SFU determines the second SFU, it establishes a WiFi link with the second SFU.
- the first SFU sends a fifth message through the first optical link
- the fifth message is used to establish a WiFi link with the second SFU
- the MFU receives the fifth message through the first optical link, and then forwards it to the second SFU through the second optical link.
- the fifth message includes at least one of the following:
- Message type Message type, payload size, authentication request message, association request message, or key exchange message.
- Message Type is the message type information
- Payload Size is the payload size
- Auth Request is the authentication request message
- Auth Response is the authentication response message
- Assoc Request is the association request message
- Assoc Response is the association response message
- EAPoL1—EAPoL5 are key interaction messages (also called handshake process).
- the above-mentioned fifth message takes the sending of the first SFU to the second SFU as an example, but the present application is not limited to this.
- the second SFU may also use the same format as the fifth message when sending a message to the first SFU.
- the WiFi cascade interaction information between the MFU and the SFU may also use the same format as the fifth message. The difference is that the content of the message varies with the sending end of the message.
- the unindicated fields may not be filled, may be filled with 0, or may be filled with special symbols.
- the meanings of filling with 0 and filling with special symbols should be known to the sender and receiver, such as the meaning is predefined, preconfigured, or configured.
- this embodiment is described by taking the first SFU as an example of the execution subject, and the method is also applicable to the second SFU. In other words, it can be applied to any SFU in the FTTR network.
- the WiFi link can be quickly online after the FTTR optical link is disconnected, which shortens the delay of the WiFi link online, thereby reducing the communication delay and improving the user experience.
- Fig. 9 is a schematic block diagram of a communication device 900 provided in an embodiment of the present application.
- the device 900 includes a receiving module 901, which can be used to implement a corresponding receiving function.
- the receiving module 901 can also be called a receiving unit.
- the device 900 further includes a processing module 902, which can be used to implement corresponding processing functions.
- the device 900 further includes a sending module 903 , which can be used to implement a corresponding sending function.
- the sending module 903 can also be called a sending unit.
- the device 900 also includes a storage unit, which can be used to store instructions and/or data.
- the processing unit 902 can read the instructions and/or data in the storage unit so that the device implements the actions of the relevant devices in the aforementioned method embodiments.
- the device 900 can be used to execute the actions performed by the SFU (such as the first SFU or the second SFU) in the above method embodiment.
- the device 900 can be a component of the SFU
- the receiving module 901 is used to execute the reception-related operations of the SFU in the above method embodiment
- the processing module 902 is used to execute the processing-related operations of the SFU in the above method embodiment 800
- the sending module 903 is used to execute the sending-related operations of the SFU in the above method embodiment.
- the receiving module 801, the processing module 802 and the sending module 803 in the device can also implement other operations or functions of the slave ONT in the above method, which will not be described in detail here.
- the communication device 900 may be a device including an SFU.
- the device 900 may be a component configured in the SFU, for example, a chip in the SFU.
- the receiving module 901 and the sending module 903 may be interface circuits, pins, etc.
- the interface circuit may include an input circuit and an output circuit, wherein the receiving module 901 may include an input circuit, the sending module 903 may include an output circuit, and the processing module 902 may include a processing circuit.
- Fig. 10 is a schematic block diagram of a communication device 1000 provided in an embodiment of the present application.
- the device 1000 includes a receiving module 1001, which can be used to implement a corresponding receiving function.
- the receiving module 1001 can also be called a receiving unit.
- the device 1000 further includes a processing module 1002 , which can be used to implement corresponding processing functions.
- the device 1000 further includes a sending module 1003 , which can be used to implement a corresponding sending function.
- the sending module 1003 can also be referred to as a sending unit.
- the device 1000 also includes a storage unit, which can be used to store instructions and/or data.
- the processing unit 1002 can read the instructions and/or data in the storage unit so that the device implements the actions of the relevant devices in the aforementioned method embodiments.
- the device 1000 can be used to execute the actions performed by the MFU in the above method embodiment.
- the device 1000 can be a component of the MFU
- the receiving module 1001 is used to execute the reception-related operations of the MFU in the above method embodiment
- the processing module 1002 is used to execute the processing-related operations of the MFU in the above method embodiment 800
- the sending module 1003 is used to execute the sending-related operations of the MFU in the above method embodiment 800.
- the receiving module 1001, the processing module 1002 and the sending module 1003 in the device can also implement other operations or functions of the MFU in the above method, which will not be repeated here.
- the apparatus 1000 may be a device including an MFU.
- the apparatus 1000 may be a component configured in the MFU, for example, a chip in the MFU.
- the receiving module 1001 and the sending module 1003 may be interface circuits, pins, etc.
- the interface circuit may include an input circuit and an output circuit, wherein the receiving module 1001 may include an input circuit, the sending module 1003 may include an output circuit, and the processing module 1002 may include a processing circuit.
- FIG11 is a schematic structural diagram of another communication device 1100 provided in an embodiment of the present application.
- the communication device 1100 includes a processor 1101.
- the communication device 1100 may also include at least one memory 1102 for storing computer programs or instructions or and/or data.
- the memory 1102 is coupled to the processor 1101, and the processor 1101 is used to execute the computer program or instructions and/or data stored in the memory 1102, so that the method 800 in the above method embodiment is executed.
- the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, for information exchange between devices, units or modules.
- the processor 1101 may operate in conjunction with the memory 1102. At least one of the at least one memory 1102 may be included in the processor 1101.
- the communication device 1100 includes one or more processors 1101.
- the memory 1102 may be integrated with the processor 1101 or provided separately.
- the communication device 1100 may also include a transceiver 1103 for forwarding service messages with other devices via a transmission medium, so that the device can communicate with other devices.
- the transceiver 1103 may be an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
- the device in the transceiver 1103 for implementing the receiving function may be regarded as a receiving module
- the device in the transceiver 1103 for implementing the sending function may be regarded as a sending module, that is, the transceiver 1103 includes a receiver and a transmitter.
- the specific connection medium between the processor 1101, the memory 1102 and the transceiver 1103 is not limited in the embodiment of the present application.
- the processor 1101, the memory 1102 and the transceiver 1103 are connected via a bus 1104, which is represented by a bold line in FIG11 .
- the connection between other components is only for schematic illustration and is not intended to be limiting.
- the bus can be divided into an address bus, a data bus, a control bus, etc.
- FIG. 11 only uses one thick line, but this does not mean that there is only one bus or one type of bus.
- the communication device 1100 may further include a transceiver 1103 and/or a communication interface, and the transceiver 1103 and/or the communication interface are used to receive and/or send signals.
- the processor 1101 is used to control the transceiver 1103 and/or the communication interface to receive and/or send data.
- a transceiver may also be sometimes referred to as a transceiver, a transceiver module, or a transceiver circuit, etc.
- a receiver may also be sometimes referred to as a receiver, a receiving module, or a receiving circuit, etc.
- a transmitter may also be sometimes referred to as a transmitter, a transmitter, a transmitting module, or a transmitting circuit, etc.
- the processor 1101 is configured to perform other operations or functions of the slave ONT or a chip of the slave ONT.
- the device 1103 is used to implement the forwarding of service messages between the device for forwarding service messages and the main ONT or terminal equipment.
- the processor 1101 is configured to perform other operations or functions of the master ONT or a chip of the master ONT.
- the transceiver 1103 is used to implement the forwarding of service messages between the device for forwarding service messages and the slave ONT or server.
- One or more of the above modules or units can be implemented by software, hardware or a combination of the two.
- the software exists in the form of computer program instructions and is stored in a memory, and the processor can be used to execute the program instructions and implement the above method flow.
- the processor may include but is not limited to at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a microcontroller (MCU), or an artificial intelligence processor and other types of computing devices that run software, each of which may include one or more cores for executing software instructions for calculation or processing.
- the processor may be built into an SoC (system on chip) or an application specific integrated circuit (ASIC), or it may be an independent semiconductor chip.
- processors In addition to the core used to execute software instructions for calculation or processing in the processor, it may further include necessary hardware accelerators, such as a field programmable gate array (FPGA), a PLD (programmable logic device), or a logic circuit that implements a dedicated logic operation.
- FPGA field programmable gate array
- PLD programmable logic device
- logic circuit that implements a dedicated logic operation.
- the hardware can be any one or any combination of a CPU, a microprocessor, a DSP, an MCU, an artificial intelligence processor, an ASIC, a SoC, an FPGA, a PLD, a dedicated digital circuit, a hardware accelerator or a non-integrated discrete device, which can run the necessary software or not rely on the software to execute the above method flow.
- the above modules or units When the above modules or units are implemented using software, they can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the process or function described in the embodiment of the present invention is generated in whole or in part.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions may be transmitted from one website, computer, server, or data center to another website, computer, server, or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
- the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated.
- the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
- the present application also provides a computer program product, which includes: computer program code, when the computer program code is run on a computer, the computer executes the SFU method in the aforementioned method embodiment.
- the present application also provides a computer program product, which includes: computer program code, when the computer program code is run on a computer, the computer executes the MFU method in the aforementioned method embodiment.
- the present application also provides a computer program product, which includes: computer program code, when the computer program code runs on a computer, the computer executes the method of the first SFU or the second SFU in the aforementioned method embodiment.
- the present application also provides a computer-readable medium, which stores a program code.
- the program code runs on a computer, the computer executes the SFU method in the aforementioned method embodiment.
- the present application also provides a computer-readable medium, which stores a program code.
- the program code runs on a computer, the computer executes the MFU method in the aforementioned method embodiment.
- the present application also provides a computer-readable medium, which stores a program code.
- the program code runs on a computer, the computer executes the method of the first SFU or the second SFU in the aforementioned method embodiment.
- An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is used to execute the communication method in any of the above method embodiments.
- An embodiment of the present application also provides a communication system, which includes the MFU in the above embodiment, at least one SFU and at least one terminal device.
- a component can be, but is not limited to, a process running on a processor, a processor, Object, executable file, execution thread, program and/or computer.
- a component can be, but is not limited to, a process running on a processor, a processor, Object, executable file, execution thread, program and/or computer.
- the application and the computing device running on the computing device can be a component.
- One or more components can reside in a process and/or execution thread, and the component can be located on a computer and/or distributed between 2 or more computers.
- these components can be executed from various computer-readable media having various data structures stored thereon.
- Components can communicate, for example, through local and/or remote processes according to signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
- signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
- At least one in the embodiments of the present application refers to one or more, and “plurality” refers to two or more.
- “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
- a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
- the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
- At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
- At least one of a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a, b and c.
- a, b and c can be single or multiple, respectively.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Small-Scale Networks (AREA)
Abstract
本申请提供了通信方法、装置及系统,该通信方法能够适用于FTTR场景。该方法包括:SFU通过无线保真WiFi链路向主光单元MFU发送第一消息,所述第一消息包括序列号SN,MFU通过光链路向SFU发送第二消息,所述第二消息用于同步和/或测距。在该方法中,SFU通过WiFi链路向MFU反馈SN号,并且MFU分配了唯一的ONT_ID。在SFU与MFU通过光链路进行认证和上线流程时,MFU无需再周期预留上行时隙,降低了通信时延,并且避免了流氓设备从预留时隙侵入的风险,提升了通信安全性,从而提升了用户体验。
Description
本申请要求于2023年3月31日提交中国专利局、申请号为202310369748.8、申请名称为“通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光通信领域。尤其涉及一种通信方法、装置及系统。
光纤到房间(fiber to the room,FTTR)是千兆时代下家庭网络的新型覆盖模式,是在光纤到楼(fiber to the building,FTTB)和光纤到户(fiber to the home,FTTH)的基础上,将光纤铺设至每一个房间,通过部署光组网终端,实现与家庭网关互连,结合双频无线保真(wireless fidelity,WiFi)、WiFi6等技术,保障全屋网络覆盖的组网技术。FTTR网络通过P2MP光链路进行互联,在传统光链路中,可以采用PON协议进行通信。目前在PON光链路认证和上线流程中,无论网络中是否有新ONT接入,光链路会周期预留上行时隙给ONT反馈SN号,并完成后续交互。在光链路通信中断后,WiFi链路需要先认证和上线,才开始恢复FTTR的网络端到端通信。这会造成资源浪费,并且通信时延较大,安全性不足,比如给侵入设备提供了入口条件,严重影响用户体验。
发明内容
本申请提供一种通信方法、装置及系统,能够提升用户体验。
第一方面,提供了一种通信方法,该方法包括:
通过无线保真WiFi链路向主光单元MFU发送第一消息,所述第一消息包括序列号SN;通过光链路接收第二消息,所述第二消息用于同步和/或测距。
在该方法中,SFU通过WiFi链路向MFU反馈SN号,在SFU与MFU通过光链路进行认证和上线流程时,MFU无需再周期预留上行时隙,降低了通信时延,并且避免了流氓设备从预留时隙侵入的风险,提升了通信安全性,从而提升了用户体验。
在某些实现方式中,在所述通过光链路接收第二消息之前,通过所述WiFi链路接收第三信息,所述第三信息包括光网络终端ONT标识,所述ONT标识与所述SN唯一对应。
该方式中红,MFU为光网络终端分配了唯一的ONT_ID,并且指示给SFU,进一步便于统筹管理光网络终端。
在某些实现方式中,所述第二消息包括以下中的至少一项:下行帧、物理层操作维护管理PLOAM配置消息或者测距请求消息,其中,所述下行帧包括定界符、光功率、预分配时延中的至少一项,所述PLOAM配置消息包括上行指定窗口配置参数。
在某些实现方式中,通过光链路发送测距请求响应消息。
在某些实现方式中,所述第一消息还包括消息类型信息、有效载荷大小信息、光网络单元ONT标识信息和预留位。
应理解,该第一消息的格式可以适用于MFU发送给SFU的消息格式,也可以适用于SFU发送给MFU的消息格式。
第二方面,提供一种通信方法,该方法可以包括:通过WiFi链路接收来自从光单元SFU的第一消息,所述第一消息包括序列号SN;通过光链路发送第二消息,所述第二消息用于同步和/或测距。
在某些实现方式中,在所述通过光链路接收第二消息之前,所述方法还包括:根据所述SN确定ONT标识,所述ONT标识与所述SN唯一对应;通过光链路发送第三信息,所述第三信息包括所述ONT标识。
在某些实现方式中,所述第二消息包括以下中的至少一项:下行帧、物理层操作维护管理PLOAM配置消息或者测距请求消息,其中,所述下行帧包括定界符、光功率、预分配时延中的至少一项,所述PLOAM配置消息包括上行指定窗口配置参数。
在某些实现方式中,通过光链路接收测距请求响应消息。
在某些实现方式中,所述第一消息还包括消息类型信息、有效载荷大小信息、ONT标识信息和预留位。
应理解,第二方面是与第一方面对应的MFU侧的方案,关于第一方面的解释、补充以及有益效果的描述,同样适用于第二方面,这里不再赘述。
第三方面,提供一种通信方法,该方法可以应用于光纤到房间FTTR网络,所述FTTR网络包括MFU和Q个从光单元SFU,Q为大于或等于1的整数,所述Q个SFU包括第一SFU和第二SFU,所述第一SFU与所述第二SFU之间通过WiFi链路连接,所述MFU与所述第一SFU通过第一光链路连接,所述MFU和所述第二SFU通过第二光链路连接,
该方法可以包括:所述第一SFU将WiFi级联状态设置为虚拟连接;所述第一SFU通过所述第一光链路发送或者接收数据;当所述第一光链路和/或所述第二光链路发生故障时,所述第一SFU将所述WiFi级联状态切换为真实连接;所述第一SFU通过所述WiFi链路发送或者接收数据。
其中,第一SFU通过第一光链路发送或者接收数据为可选的。
该方法中,通过预先虚拟链接,实现了FTTR光链路掉线后WiFi链路快速上线的功能,缩短了WiFi链路上线的时延,进而降低了通信时延,提升了用户体验。
在某些实现方式中,当所述第二光链路发生故障时,所述方法还包括:接收来自所述MFU的第四消息,所述第四消息用于指示所述第二光链路发生故障。
即,MFU向第一SFU通知,第二SFU与MFU的光链路发生了故障。
在某些实现方式中,所述第一SFU扫描W个SFU,以获取W个接收信号强度指示RSSI,所述W个RSSI为所述W个SFU分别对应的RSSI,所述W为小于Q的正整数;所述第一SFU确定所述W个RSSI中最大的RSSI对应的SFU为所述第二SFU;所述第一SFU与所述第二SFU建立所述WiFi链路。
该方式中,第一SFU选择RSSI最大的SFU作为第二SFU,能够进一步提升第一SFU与第二SFU之间的通信质量。
在某些实现方式中,所述第一SFU与所述第二SFU建立所述WiFi链路包括:所述第一SFU通过所述第一光链路发送第五消息,所述第五消息用于与所述第二SFU建立所述WiFi链路,所述第五消息包括以下中的至少一项:
消息类型、有效载荷大小、认证请求消息、关联请求消息或者密钥交互消息。
应理解,MFU与SFU之间的WiFi级联交互信息也可以采用与第五消息相同的格式。
第四方面,提供一种通信方法,该方法能够应用于FTTR网络,所述FTTR网络包括MFU和Q个SFU,Q为大于或等于1的整数,所述Q个SFU包括第一SFU和第二SFU,所述第一SFU与所述第二SFU之间通过WiFi链路连接,所述MFU与所述第一SFU通过第一光链路连接,所述MFU和所述第二SFU通过第二光链路连接,
该方法可以包括:所述第二SFU将WiFi级联状态设置为虚拟连接;所述第二SFU通过所述第二光链路发送或者接收数据;当所述第一光链路和/或所述第二光链路发生故障时,所述第二SFU将所述WiFi级联状态切换为真实连接;所述第二SFU通过所述WiFi链路发送或者接收数据。
其中,第二SFU通过所述第二光链路发送或者接收数据是可选的。
在某些实现方式中,当所述第一光链路发生故障时,所述方法还包括:所述第二SFU通过第二光链路接收来自所述MFU的第六消息,所述第六消息用于指示所述第一光链路发生故障。
在某些实现方式中,所述方法还包括:所述第二SFU通过所述第二光链路接收第五消息,所述第五消息用于与所述第一SFU建立所述WiFi链路,所述第五消息包括以下中的至少一项:
消息类型、有效载荷大小、认证请求响应消息、关联请求响应消息或者密钥交互消息。
应理解,第四方面是与第三方面对应的第二SFU侧的实现方式,关于第三方面的补充、解释和有益效果的说明,第四方面同样适用,不再赘述。
第五方面,提供了一种通信装置。该装置用于执行上述第一方面至第四方面中任一方面提供的方法。具体地,该通信装置可以包括用于执行第一方面至第四方面或第一方面至第四方面中的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。
在一种实现方式中,该装置为SFU(比如第一SFU或第二SFU)。获取单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接
口可以为输入/输出电路。
在另一种实现方式中,该装置为SFU(比如第一SFU或第二SFU)中的芯片、芯片系统或电路。获取单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
在一种实现方式中,该装置为MFU。获取单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为MFU中的芯片、芯片系统或电路。获取单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供了一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第七方面,提供了一种计算机可读存储介质。该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第四方面或第一方面至第四方面任意一种实现方式提供的方法。
第八方面,提供了一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第四方面或第一方面至第四方面任意一种实现方式提供的方法。
第九方面,提供了一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面至第四方面或第一方面至第四方面任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面至第四方面或第一方面至第四方面任意一种实现方式提供的方法。
第十方面,提供了一种通信系统,包括第五方面所述的通信的装置。
第十一方面,提供了一种通信方法,该方法可以包括:SFU通过无线保真WiFi链路向主光单元MFU发送第一消息,所述第一消息包括序列号SN,MFU通过光链路向SFU发送第二消息,所述第二消息用于同步和/或测距。
第十二方面,提供了一种通信方法,该方法可以包括:第一SFU将WiFi级联状态设置为虚拟连接;所述第一SFU通过所述第一光链路向MFU发送或者接收数据;当所述第一光链路和/或所述第二光链路发生故障时,所述第一SFU将所述WiFi级联状态切换为真实连接;所述第一SFU通过所述WiFi链路向第二SFU发送或者接收数据。
上述第五方面至第十二方面带来的有益效果具体可以参考第一方面或者第三方面中有益效果的描述,此处不再赘述。
图1是本申请实施例的无源光网络(PON)应用场景示意图。
图2是本申请实施例的FTTR应用场景示意图。
图3是本申请实施例的一种FTTR网络中采用PON协议进行通信的交互流程示意图。
图4是本申请实施例的一种WiFi认证和上线流程的示意图。
图5是本申请实施例的一种通信方法的示意图。
图6是本申请实施例的一种SFU与MFU交互的流程示意图。
图7是本申请实施例的又一种通信方法的示意图。
图8是本申请实施例提供的一种WiFi级联状态的切换流程示意图。
图9是本申请实施例提供的一种通信装置的示意性结构图。
图10是本申请实施例提供的又一种通信装置的示意性结构图。
图11是本申请实施例提供的一例MFU或者SFU的结构示意图。
本申请实施例的技术方案可以应用于各种无源光网络(passive optical network,PON)系统,例如,
下一代PON(next-generation PON,NG-PON)、NG-PON1、NG-PON2、千兆比特PON(gigabit-capable PON,GPON)、10吉比特每秒PON(10gigabit per second PON,XG-PON)、对称10吉比特无源光网络(10-gigabit-capable symmetric passive optical network,XGS-PON)、以太网PON(Ethernet PON,EPON)、10吉比特每秒EPON(10gigabit per second EPON,10G-EPON)、下一代EPON(next-generation EPON,NG-EPON)、波分复用(wavelength-division multiplexing,WDM)PON、时分波分堆叠复用(time-and wavelength-division multiplexing,TWDM)PON、点对点(point-to-point,P2P)WDM PON(P2P-WDM PON)、异步传输模式PON(asynchronous transfer mode PON,APON)、宽带PON(broadband PON,BPON),等等,以及25吉比特每秒PON(25gigabit per second PON,25G-PON)、50吉比特每秒PON(50gigabit per second PON,50G-PON)、100吉比特每秒PON(100gigabit per second PON,100G-PON)、25吉比特每秒EPON(25gigabit per second EPON,25G-EPON)、50吉比特每秒EPON(50gigabit per second EPON,50G-EPON)、100吉比特每秒EPON(100gigabit per second EPON,100G-EPON),以及其他速率的GPON、EPON等。还可以用于光传送网系统(optical transport network,OTN)等光网络。
图1是无源光网络(PON)系统的示意图。如图1所示,无源光网络(PON)中包括光线路终端(optical line termination,OLT)110、光分配网络(optical distribution network,ODN)120以及光网络单元(optical network unit,ONU)130。光线路终端110通过光分配网络120以点到多点的形式连接到多个光网络单元130。光线路终端110和光网络单元130之间可以采用时分复用(time division multiplexing,TDM)机制、波分复用(wavelength division multiplexing,WDM)机制或者TDM/WDM混合机制进行通信。其中,从光线路终端110到光网络单元130的方向定义为下行方向,而从光网络单元130到光线路终端110的方向为上行方向。
无源光网络系统可以是不需要任何有源器件来实现光线路终端110与光网络单元130之间的数据分发的通信网络,其中,光线路终端110与光网络单元130之间的数据分发可以通过光分配网络120中的无源光器件(比如分光器)来实现。
光线路终端110,又可以称为局端设备,其可以统一管理该多个光网络单元130。光线路终端110可以充当光网络单元130与上层网络(即汇聚层)之间的媒介,将从上层网络接收到的数据作为下行数据转发到光网络单元130,以及将从光网络单元130接收到的上行数据转发到上层网络。
光分配网络120可以是一个数据分发系统,其可以包括光纤、光耦合器、光合波/分波器、光分路器和/或其他设备。在如图1所示的分支结构中,光分配网络120具体可以从光线路终端110延伸到多个光网络单元130,但也可以配置成其他任何点到多点的结构。
光网络单元130可以分布式地设置在用户侧位置(比如用户驻地)。光网络单元130可以为用于与光线路终端110和用户进行通信的网络设备,其可以为用户提供宽带语音、数据或视频等业务。具体而言,光网络单元130可以充当光线路终端110与用户之间的媒介,例如,光网络单元130可以将从光线路终端110接收到的下行数据转发到用户,以及将从用户接收到的数据作为上行数据转发到光线路终端110。某些场景下,光网络单元130同时提供用户端口功能,如提供以太网Ethernet用户端口或者传统电话业务(plain old telephone service,POTS)用户端口,则称为ONT或者光调制解调器(optical modem)。ONU和ONT都是连接的光纤,并将光信号从运营商接入用户家中,然后通过光线信号转换,把光纤的光信号,转换成网络电信号,在本申请中作为同一概念,不作区别。
图2是本申请实施例的FTTR应用场景示意图。如图2所示,FTTR组网由主ONT、从ONT(或称为边沿ONT,即edge ONT)、家庭光网络(或称为家庭ODN)、云端管理平台四部分组成。其中,主ONT位于局端OLT与从ONT之间,向上通过XGPON或10G EPON连接局端OLT,支持千兆入户,同时提供光纤接口连接从ONT。主ONT作为家庭网络中心,可以实现对所有从ONT的统一管理和配置。从ONT为家庭分布式Wi-Fi接入设备,分布到家庭各个房间,通过家庭光缆连接FTTR主ONT,同时提供Wi-Fi 6和GE口接入各种家庭上网终端。
从ONT是FTTR解决方案中分布式部署在各房间的组网设备,通过光纤连接到主ONT,并提供千兆以太网(gigabit ethernet,GE)接口和Wi-Fi 6接入能力,是家庭终端的主要接入设备。从ONT工作在桥接模式,由FTTR主ONT统一分配管理IP以及从ONT所连接的其他设备的IP,使整个家庭网络构成统一的、可互通的局域网,各个从ONT下接入的设备相互可以在超千兆带宽下实现投屏、文件分享等局域网互访操作。家庭光网络是使用专用的工具和辅料部署的由光缆、光缆面板以及其它必要的光网络部件
等构成的家庭光缆基础设施。云端管理平台作为FTTR主ONT代理管理从ONT,统一采集家庭网络信息上报到云端管理平台,实现对家庭网络的运营和维护。
因此,在FTTR架构下,光网络的进一步下沉到每个从ONT,FTTR主ONT起到“承上启下”的作用,将“光进铜退”延伸到各个房间。能够实现全屋Wi-Fi统一名称,双频合一,自动控制漫游切换,提升用户体验。
其中,本文中的光纤为光传输通道的一种示例,也可以称为传输媒介,还可以是与光纤拥有同等色散值的色散媒介。
也就是说,FTTR将光纤进一步延伸到每个房间,让家庭的每个房间都享受高速上网体验。位于每个房间的从FTTR设备将到达房间的光信号转换成Wi-Fi,实现终端设备联网。
上述主从设备之间的FTTR网络通过P2MP光链路进行互联,一旦P2MP光链路出现故障,FTTR网络设备(如主光单元(master fiber unit,MFU)和从光单元(slave fiber unit,SFU)之间)切换到WiFi级联,进行WiFi认证和上线流程。
图3是一种FTTR网络中采用PON协议进行通信的交互流程示意图。具体步骤如下:
1)SFU监听MFU发送的下行帧,根据下行帧中携带的定界符、光功率、预分配时延等参数实现物理层同步和SF同步,该阶段被称为O1。
2)MFU周期下发Profile PLOAM消息,SFU开始学习上行指定Burst Profile参数,该阶段被称为O2。
3)MFU周期发送序列号(serial number,SN)权限信息,SFU接收到该授权信息后,在预留的上行发送窗口上报SN,该阶段被称为O3。
4)MFU SFU,MFU收到SFU上报的SN消息后,判断该SN号合法后,分配一个具有唯一性的ONT_ID给SFU,并同时向新分配ONT_ID的SFU发送测距请求;SFU收到测距请求后,响应测距确认消息,该阶段被称为O4。
5)MFU根据测距响应消息生成EqD消息,发送给SFU,到此完成测距,进入操作状态O5。
PON协议通常采用O1~O5五个步骤完成认证和上线过程。在O3过程中,OLT周期预留上行竞争时隙(如5s周期预留250us)给新ONU接入,该预留的上行竞争时隙内,所有ONT都不能发送上行数据。
图4是一种WiFi认证和上线流程的示意图。在FTTR采用WiFi级联场景中,级联对应的两个FTTR设备相当于传统WiFi网络的接入点(access point,AP)和站点(station,STA)。过程如下:
1)STA发送探测请求消息给AP。
2)AP回复探测响应消息。
3)STA发送认证请求消息给AP。
4)AP回复认证响应消息。
5)STA发送关联请求消息给AP。
6)AP回复关联响应消息。
7)STA与AP之间完成四次握手交互,完成秘钥协商。
8)AP与STA之间进行正常的数据交互。
另外,为了提升网络安全,防止外部设备侵入网络,FTTR设备之间通过WiFi级联的时候,往往采用一键对码的方式实现。一键对码可能存在如下多种形式:
1)WiFi级联FTTR设备相互靠近,当距离小于一定阈值后,AP角色的FTTR设备指示灯闪烁,按下其一键对码按钮,自动实现STA角色的FTTR设备WiFi级联的认证和上线流程;
2)通过APP,WiFi级联FTTR设备相互靠近,APP弹窗,通过在APP上手动确认的方式,自动实现STA角色的FTTR设备WiFi级联的认证和上线流程;
3)通过FTTR设备的二维码,使用APP的扫描功能,获取STA角色FTTR设备的二维码,自动实现STA角色的FTTR设备WiFi级联的认证和上线流程。
上述采用PON协议进行通信的交互流程中,周期性预留上行竞争时隙,并且其他ONT都不能发送上行数据,这会造成资源浪费,并且导致上行时延周期性变大,影响通信性能。此外,还给侵入设备提供了入口条件,通信安全性得不到保障。一旦P2MP光链路出现故障,FTTR网络设备(如MFU和SFU之间)可以自动切换到WiFi级联。在光链路通信中断后,WiFi链路需要先认证和上线,才能开始恢复FTTR网络中的端到端通信。WiFi链路认证和上线流程可能需要秒级时间,会导致整个FTTR网络通信恢复时间需要秒级,严重影响用户体验。
有鉴于此,本申请提出一种通信方法,能够避免资源浪费,提升通信性能。
图5示出了一种通信方法,该方法可以包括下述步骤:
S510,SFU通过WiFi链路向MFU发送第一消息,对应地,MFU接收第一消息。
该第一消息包括SN。该SN用于标识光设备。
MFU可以为该SN分配ONT_ID,该ONT_ID与该SN唯一对应。
可选地,MFU将该SN与发送该SN的SFU绑定。
应理解,在S510前,SFU与MFU建立WiFi链路。
此外,SFU还应与MFU完成一键对码。
示例地,将SFU靠近MFU,上电完成一键对码。具体地,一键对码可以参考前文说明,这里不再赘述。
可选地,第一消息还可以包括消息类型(message type)信息、有效载荷大小(payload size)信息、光网络单元ONU标识信息和预留位。下面给出一种第一消息的示例。
其中,字段Message type可以占用8比特,字段Payload Size可以占用8比特,SN字段可以占用4个字节,ONU_ID可以占用4个字节。
S520,MFU通过光链路向SFU发送第二消息,对应地,SFU接收该第二消息。
该光链路可以是MFU与SFU通过光纤连接建立的。
应理解,光纤仅作为光传输通道的一种示例,也可以称为传输媒介。传输媒介还可以是与光纤拥有同等色散值的色散媒介。
该第二信息用于同步和/或测距。
示例地,第二信息包括以下中的至少一项:下行帧、物理层操作维护管理(physical layer operation administration and maintenance,PLOAM)配置消息或者测距请求消息。
其中,PLOAM配置消息包括上行指定窗口配置(Burst Profile)参数。
所述下行帧包括定界符、光功率、预分配时延中的至少一项。
测距请求消息即Ranging_Request。
换句话说,MFU与SFU交互传统光链路认证和上线流程,由于在S510中SFU已经反馈过SN号,以及MFU已经分配了ONT_ID,所以MFU不需要再周期预留上行时隙,相当于S520中不再执行前文中的O3交互流程,直接交互O1/O2/O4/O5流程。
可选地,该方法还可以包括:
S530,MFU通过WiFi链路向SFU发送第三消息,对应地,SFU接收该第三消息。
该第三信息包括光网络终端ONT标识,该ONT标识与SN唯一对应。
即,MFU为SN分配ONT_ID,将ONT_ID发送给SFU。
一种可能的方式,该第一消息的格式可以适用于MFU发送给SFU的消息格式,也可以适用于SFU发送给MFU的消息格式。即MFU与SFU的交互可以共用一个帧格式,也就是第一消息和第三消息共用相同的帧格式。
当MFU向SFU发送该消息时,该消息格式中未指示的内容可以不填充或者填充为0或者填充为特殊符号。比如。当MFU向SFU发送该帧格式时,用于指示SN的位置不填充。
又一种可能的方式,MFU向SFU发送的(第三消息的)帧格式,与SFU向MFU发送的(第一消息的)帧格式不同。
比如,SFU向MFU发送的帧格式如下:
MFU向SFU发送的帧格式如下:
S540,SFU通过光链路向MFU发送测距请求响应消息,对应地,MFU接收测距请求响应消息。
该测距请求响应消息为MFU发送给SFU的测距请求消息的回复消息。
为了更清楚了解本申请的技术方案,下面给出一种SFU与MFU的交互流程示意图。
图6示出了一种SFU与MFU交互的流程示意图。包括下述步骤:
S610,SFU通过WiFi链路向MFU发送SN,对应地,MFU接收该SN。
该SN为光设备的序列号。具体地,请参考S510中的说明。
S620,MFU通过WiFi链路向SFU发送ONT_ID,对应地,SFU接收该ONT_ID。
该ONT_ID是MFU为SN唯一分配的。具体地,可以参考S510中的说明。
S630,MFU通过光链路向SFU发送下行有效同步帧信息(DS frame with valid Psync),对应地,SFU接收该下行有效同步帧信息消息。
该下行有效同步帧信息消息可以用于实现物理层同步,比如,可以根据该下行有效同步帧信息消息确定帧开始的位置。
S640,MFU通过光链路向SFU发送上行开销PLOAM消息(Upsteam_Overhead PLOAM),对应地,SFU接收该上行开销PLOAM消息。
该PLOAM消息的格式可以参考S530中的第三消息的格式说明,不再赘述。
S650,MFU通过光链路向SFU发送测距请求(Ranging_Request),对应地,SFU接收该测距请求。
S660,SFU通过光链路向MFU发送注册PLOAM消息(Registration PLOAM),对应地,MFU接收该注册PLOAM消息。
该PLOAM消息的格式
S670,MFU通过光链路向SFU发送均衡时延(equalization delay,EqD)消息,对应地,SFU接收该EqD消息。
该EqD消息指示均衡时延。由于不同ONU距离OLT远近不同,时延不同,通过测距能够补偿该均衡时延。
在该方法中,SFU通过WiFi链路向MFU反馈SN号,并且MFU分配了唯一的ONT_ID。在SFU与MFU通过光链路进行认证和上线流程时,MFU无需再周期预留上行时隙,降低了通信时延,并且避免了流氓设备从预留时隙侵入的风险,提升了通信安全性,从而提升了用户体验。
本申请还提出一种通信方法,该通信方法能够进一步缩短通信时延,提升用户体验。
图7示出了一种通信方法,该方法可以应用于FTTR网络,FTTR网络包括MFU和Q个SFU,Q为大于或等于1的整数,Q个SFU包括第一SFU和第二SFU,第一SFU与第二SFU之间通过WiFi链路连接,MFU与第一SFU通过第一光链路连接,MFU和第二SFU通过第二光链路连接,该方法可以包括下述步骤:
S710,第一SFU将WiFi级联状态设置为虚拟连接。
其中,虚拟连接可以理解为第一SFU与第二SFU之间的WiFi级联状态是连接,但是空口上没有数据交互。也就是说,第一SFU与第二SFU不通过WiFi链路交互数据。
S720,第一SFU通过第一光链路发送或者接收数据。
其中,第一光链路是第一SFU与MFU之间的光链路,第一SFU可以通过第一光链路向MFU发送数据,也可以通过第一光链路接收来自MFU的数据。
该S720为可选的。也就是说,第一光链路可以用于第一SFU发送或者接收数据,但是第一SFU不一定在第一光链路上发送或者接收数据。
S730,当第一光链路或第二光链路发生故障时,第一SFU将WiFi级联状态切换为真实连接。
也就是说,无论是第一SFU与MFU之间的光链路,还是第二SFU与MFU之间的光链路出现故障,第一SFU都可以将WiFi级联状态切换为真实连接。
真实连接与虚拟连接的含义相对,真实连接可以理解为,第一SFU与第二SFU通过WiFi链路交互数据。
可选地,第一SFU可以检测第一光链路是否发生故障,第一SFU根据自己检测到的故障来切换WiFi级联状态。
第二SFU可以检测第二光链路是否发生故障。第二SFU根据自己检测到的故障来切换WiFi级联状态。
又或者,MFU可以通知第一SFU,第二SFU与MFU的光链路(即第二光链路)发生了故障。示例地,MFU通过第一光链路向第一SFU发送指示信息(即第四消息),该指示信息指示第二光链路发生了故障。第一SFU可以根据该指示信息切换WiFi级联状态。
又或者,MFU可以通知第二SFU,第一SFU与MFU的光链路(即第一光链路)发生了故障。示例地,MFU通过第二光链路向第二SFU发送指示信息(即第六消息),该指示信息指示第一光链路发生了
故障。第二SFU可以根据该指示信息切换WiFi级联状态。
总结来说,第一SFU和第二SFU都可以根据自身或者对方的光链路发生故障,而切换WiFi级联状态。比如,将WiFi级联状态从虚拟连接切换为真实连接。
具体地,图8示出了一种WiFi级联状态的切换流程示意图。其中SFU#1作为第一SFU的示例,SFU#2作为第二SFU的示例,光纤#1作为第一光链路的示例,光纤#2作为第二光链路的示例。SFU#1、SFU#2的WiFi级联状态可以参考上述说明。
可选地,上述第二SFU可以是第一SFU确定的。
示例地,第一SFU扫描W个SFU,以获取W个接收信号强度指示(received signal strength indicator,RSSI),W个RSSI为W个SFU分别对应的RSSI,W为小于Q的正整数。一种可能的方式,第一SFU确定W个RSSI中最大的RSSI对应的SFU为第二SFU。
可选地,第二SFU也可以是预定义的,可以是预配置的,可以是配置的。
第一SFU确定了第二SFU后,与第二SFU建立WiFi链路。
示例地,第一SFU通过第一光链路发送第五消息,第五消息用于与第二SFU建立WiFi链路,MFU通过第一光链路接收该第五消息,再通过第二光链路转发给第二SFU。
第五消息包括以下中的至少一项:
消息类型、有效载荷大小、认证请求消息、关联请求消息或者密钥交互消息。
下面给出一种第五消息的格式示例。
其中,Message Type为消息类型信息,Payload Size为有效载荷大小,Auth Request为认证请求消息,Auth Response为认证响应消息,Assoc Request为关联请求消息,Assoc Response为关联响应消息,EAPoL1—EAPoL5为密钥交互消息(也称握手流程)。
应理解,上述第五消息以第一SFU发送给第二SFU为例,但本申请不限于此。比如,第二SFU向第一SFU发送消息时也可以采用与第五消息相同的格式。再者,MFU与SFU之间的WiFi级联交互信息也可以采用与第五消息相同的格式。不同的是,随着消息的发送端的不同,消息内容有所区别,在不指示的字段中可以不填充,也可以填充为0,也可以填充为特殊符号。但是,填充为0与填充为特殊符号所表示的含义,收发双方应该是共知的,比如该含义是预定义,预配置,或者配置的。
应理解,该实施例以第一SFU作为执行主体的示例进行说明,该方法对第二SFU同样适用。或者说,对FTTR网络中的任一SFU都可以适用。
该方法中,通过预先虚拟链接,实现FTTR光链路掉线后WiFi链路快速上线的功能,缩短了WiFi链路上线的时延,进而降低了通信时延,提升了用户体验。
图9是本申请实施例提供的一种通信装置900的示意性框图。该装置900包括接收模块901,接收模块901可以用于实现相应的接收功能。接收模块901还可以称为接收单元。
该装置900还包括处理模块902,处理模块902可以用于实现相应的处理功能。
该装置900还包括发送模块903,发送模块903可以用于实现相应的发送功能,发送模块903还可以称为发送单元。
可选地,该装置900还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元902可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的相关装置的动作。
该装置900可以用于执行上文方法实施例中的SFU(比如第一SFU或者第二SFU)所执行的动作,这时,该装置900可以为SFU的组成部件,接收模块901用于执行上文方法实施例中SFU的接收相关的操作,处理模块902用于执行上文方法实施例800中SFU的处理相关的操作,发送模块903用于执行上文方法实施例中SFU的发送相关的操作。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
此外,该装置中的接收模块801、处理模块802和发送模块803还可实现上述方法中从ONT的其他操作或功能,此处不再赘述。
可选地,该通信装置900可以为包括SFU的设备。或者,该装置900可以为配置在SFU中的部件,例如,SFU中的芯片。这种情况下,接收模块901和发送模块903可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,其中,接收模块901可以包括输入电路、发送模块903可以包括输出电路,处理模块902可以包括处理电路。
图10是本申请实施例提供的一种通信装置1000的示意性框图。该装置1000包括接收模块1001,接收模块1001可以用于实现相应的接收功能。接收模块1001还可以称为接收单元。
该装置1000还包括处理模块1002,处理模块1002可以用于实现相应的处理功能。
该装置1000还包括发送模块1003,发送模块1003可以用于实现相应的发送功能,发送模块1003还可以称为发送单元。
可选地,该装置1000还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1002可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的相关装置的动作。
该装置1000可以用于执行上文方法实施例中的MFU所执行的动作,这时,该装置1000可以为MFU的组成部件,接收模块1001用于执行上文方法实施例中MFU的接收相关的操作,处理模块1002用于执行上文方法实施例800中MFU的处理相关的操作,发送模块1003用于执行上文方法实施例800中MFU的发送相关的操作。
此外,该装置中的接收模块1001、处理模块1002和发送模块1003还可实现上述方法中MFU的其他操作或功能,此处不再赘述。
可选地,该装置1000可以为包括MFU的设备。或者,该装置1000可以为配置在MFU中的部件,例如,MFU中的芯片。这种情况下,接收模块1001和发送模块1003可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,其中,接收模块1001可以包括输入电路、发送模块1003可以包括输出电路,处理模块1002可以包括处理电路。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图11为本申请实施例提供的另一种通信装置1100的示意性结构图。该通信装置1100包括处理器1101,如图11所示,该通信装置1100还可以包括至少一个存储器1102,用于存储计算机程序或指令或者和/或数据。存储器1102和处理器1101耦合,处理器1101用于执行存储器1102存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法800被执行。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1101可能和存储器1102协同操作。至少一个存储器中1102的至少一个可以包括于处理器1101中。
可选地,该通信装置1100包括的处理器1101为一个或多个。
可选地,该存储器1102可以与该处理器1101集成在一起,或者分离设置。
该通信装置1100还可以包括收发器1103,用于通过传输介质和其它设备进行业务报文的转发,从而用于装置可以和其它设备进行通信。可选地,收发器1103可以是接口、总线、电路或者能够实现收发功能的装置。
可选地,可以将收发器1103中用于实现接收功能的器件视为接收模块,将收发器1103中用于实现发送功能的器件视为发送模块,即收发器1103包括接收器和发送器。
本申请实施例中不限定上述处理器1101、存储器1102以及收发器1103之间的具体连接介质。本申请实施例在图11中以处理器1101、存储器1102以及收发器1103之间通过总线1104连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。
应理解,为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选地,如图11所示,该通信装置1100还可以包括收发器1103和/或通信接口,收发器1103和/或通信接口用于信号的接收和/或发送。例如,处理器1101用于控制收发器1103和/或通信接口进行数据的接收和/或发送。
收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射器、发射模块或者发射电路等。
例如,在一个实施例中,处理器1101被配置为从ONT或者从ONT的芯片的其他操作或功能。收发
器1103用于实现该转发业务报文的装置与主ONT或者终端设备之间业务报文的转发。
在另一个实施例中,处理器1101被配置为主ONT或者主ONT的芯片的其他操作或功能。收发器1103用于实现该转发业务报文的装置与从ONT或者服务器之间业务报文的转发。
以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。所述处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以内置于SoC(片上系统)或专用集成电路(application specific integrated circuit,ASIC),也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、DSP、MCU、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
当以上模块或单元使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述方法实施例中SFU的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述方法实施例中MFU的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述方法实施例中第一SFU或者第二SFU的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述方法实施例中SFU的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述方法实施例中MFU的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述方法实施例中第一SFU或者第二SFU的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的通信方法。
本申请实施例还提供了一种通信系统,该系统包括上述实施例中的MFU、至少一个SFU和至少一个终端设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、
对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种示例的单元、说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应理解,本申请实施例中的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (21)
- 一种通信方法,其特征在于,包括:通过无线保真WiFi链路向主光单元MFU发送第一消息,所述第一消息包括序列号SN;通过光链路接收第二消息,所述第二消息用于同步和/或测距。
- 根据权利要求1所述的方法,其特征在于,在所述通过光链路接收第二消息之前,所述方法还包括:通过所述WiFi链路接收第三信息,所述第三信息包括光网络终端ONT标识,所述ONT标识与所述SN唯一对应。
- 根据权利要求1或2所述的方法,其特征在于,所述第二消息包括以下中的至少一项:下行帧、物理层操作维护管理PLOAM配置消息或者测距请求消息,其中,所述下行帧包括定界符、光功率、预分配时延中的至少一项,所述PLOAM配置消息包括上行指定窗口配置参数。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:通过光链路发送测距请求响应消息。
- 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一消息还包括消息类型信息、有效载荷大小信息、光网络单元ONT标识信息和预留位。
- 一种通信方法,其特征在于,包括:通过WiFi链路接收来自从光单元SFU的第一消息,所述第一消息包括序列号SN;通过光链路发送第二消息,所述第二消息用于同步和/或测距。
- 根据权利要求6所述的方法,其特征在于,在所述通过光链路接收第二消息之前,所述方法还包括:根据所述SN确定ONT标识,所述ONT标识与所述SN唯一对应;通过光链路发送第三信息,所述第三信息包括所述ONT标识。
- 根据权利要求6或7所述的方法,其特征在于,所述第二消息包括以下中的至少一项:下行帧、物理层操作维护管理PLOAM配置消息或者测距请求消息,其中,所述下行帧包括定界符、光功率、预分配时延中的至少一项,所述PLOAM配置消息包括上行指定窗口配置参数。
- 根据权利要求8所述的方法,其特征在于,所述方法还包括:通过光链路接收测距请求响应消息。
- 根据权利要求6至9中任一项所述的方法,其特征在于,所述第一消息还包括消息类型信息、有效载荷大小信息、ONT标识信息和预留位。
- 一种通信方法,应用于光纤到房间FTTR网络,所述FTTR网络包括MFU和Q个从光单元SFU,Q为大于或等于1的整数,所述Q个SFU包括第一SFU和第二SFU,所述第一SFU与所述第二SFU之间通过WiFi链路连接,所述MFU与所述第一SFU通过第一光链路连接,所述MFU和所述第二SFU通过第二光链路连接,其特征在于,包括:所述第一SFU将WiFi级联状态设置为虚拟连接;所述第一SFU通过所述第一光链路发送或者接收数据;当所述第一光链路和/或所述第二光链路发生故障时,所述第一SFU将所述WiFi级联状态切换为真实连接;所述第一SFU通过所述WiFi链路发送或者接收数据。
- 根据权利要求11所述的方法,其特征在于,当所述第二光链路发生故障时,所述方法还包括:接收来自所述MFU的第四消息,所述第四消息用于指示所述第二光链路发生故障。
- 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:所述第一SFU扫描W个SFU,以获取W个接收信号强度指示RSSI,所述W个RSSI为所述W个SFU分别对应的RSSI,所述W为小于Q的正整数;所述第一SFU确定所述W个RSSI中最大的RSSI对应的SFU为所述第二SFU;所述第一SFU与所述第二SFU建立所述WiFi链路。
- 根据权利要求13所述的方法,其特征在于,所述第一SFU与所述第二SFU建立所述WiFi链路包括:所述第一SFU通过所述第一光链路发送第五消息,所述第五消息用于与所述第二SFU建立所述WiFi链路,所述第五消息包括以下中的至少一项:消息类型、有效载荷大小、认证请求消息、关联请求消息或者密钥交互消息。
- 一种通信方法,应用于FTTR网络,所述FTTR网络包括MFU和Q个SFU,Q为大于或等于1的整数,所述Q个SFU包括第一SFU和第二SFU,所述第一SFU与所述第二SFU之间通过WiFi链路连接,所述MFU与所述第一SFU通过第一光链路连接,所述MFU和所述第二SFU通过第二光链路连接,其特征在于,包括:所述第二SFU将WiFi级联状态设置为虚拟连接;所述第二SFU通过所述第二光链路发送或者接收数据;当所述第一光链路和/或所述第二光链路发生故障时,所述第二SFU将所述WiFi级联状态切换为真实连接;所述第二SFU通过所述WiFi链路发送或者接收数据。
- 根据权利要求15所述的方法,其特征在于,当所述第一光链路发生故障时,所述方法还包括:所述第二SFU通过第二光链路接收来自所述MFU的第六消息,所述第六消息用于指示所述第一光链路发生故障。
- 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:所述第二SFU通过所述第二光链路接收第五消息,所述第五消息用于与所述第一SFU建立所述WiFi链路,所述第五消息包括以下中的至少一项:消息类型、有效载荷大小、认证请求响应消息、关联请求响应消息或者密钥交互消息。
- 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求1至5,或者如权利要求11至14中任一项所述方法的模块或单元。
- 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求6至10,或者如权利要求15至17中任一项所述方法的模块或单元。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在通信装置上运行时,使得所述通信装置执行如权利要求1至17中任一项所述的方法。
- 一种通信系统,其特征在于,包括至少一个如权利要求18和/或至少一个如权利要求19所述的通信装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310369748.8 | 2023-03-31 | ||
CN202310369748.8A CN118740271A (zh) | 2023-03-31 | 2023-03-31 | 通信方法、装置及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024198792A1 true WO2024198792A1 (zh) | 2024-10-03 |
Family
ID=92862841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/078366 WO2024198792A1 (zh) | 2023-03-31 | 2024-02-23 | 通信方法、装置及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118740271A (zh) |
WO (1) | WO2024198792A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004274329A (ja) * | 2003-03-07 | 2004-09-30 | Nippon Telegr & Teleph Corp <Ntt> | 受動光ネットワーク、シリアル番号取得方法及び受動光ネットワークに用いられる端末装置 |
US20090269063A1 (en) * | 2008-04-25 | 2009-10-29 | Tellabs Vienna, Inc. | Method and apparatus for enabling activation of services via an Optical Network Terminal (ONT) |
CN113993011A (zh) * | 2021-10-28 | 2022-01-28 | 中国电信股份有限公司 | 无源光网络的网络单元上线方法、系统、设备及存储介质 |
CN115148013A (zh) * | 2022-06-27 | 2022-10-04 | 中国电信股份有限公司 | 光纤传感监测方法及装置、系统、电子设备及存储介质 |
CN115209250A (zh) * | 2022-07-19 | 2022-10-18 | 烽火通信科技股份有限公司 | 一种olt通过多通道管理边缘ont的方法和装置 |
CN115701138A (zh) * | 2021-07-29 | 2023-02-07 | 华为技术有限公司 | 一种级联ont的处理方法、装置和系统 |
-
2023
- 2023-03-31 CN CN202310369748.8A patent/CN118740271A/zh active Pending
-
2024
- 2024-02-23 WO PCT/CN2024/078366 patent/WO2024198792A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004274329A (ja) * | 2003-03-07 | 2004-09-30 | Nippon Telegr & Teleph Corp <Ntt> | 受動光ネットワーク、シリアル番号取得方法及び受動光ネットワークに用いられる端末装置 |
US20090269063A1 (en) * | 2008-04-25 | 2009-10-29 | Tellabs Vienna, Inc. | Method and apparatus for enabling activation of services via an Optical Network Terminal (ONT) |
CN115701138A (zh) * | 2021-07-29 | 2023-02-07 | 华为技术有限公司 | 一种级联ont的处理方法、装置和系统 |
CN113993011A (zh) * | 2021-10-28 | 2022-01-28 | 中国电信股份有限公司 | 无源光网络的网络单元上线方法、系统、设备及存储介质 |
CN115148013A (zh) * | 2022-06-27 | 2022-10-04 | 中国电信股份有限公司 | 光纤传感监测方法及装置、系统、电子设备及存储介质 |
CN115209250A (zh) * | 2022-07-19 | 2022-10-18 | 烽火通信科技股份有限公司 | 一种olt通过多通道管理边缘ont的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118740271A (zh) | 2024-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7675936B2 (en) | Passive optical network (PON) system | |
JP5114268B2 (ja) | 受動光網システムおよびその運用方法 | |
JP5094675B2 (ja) | 光受動網を用いた通信システムおよび光受動網 | |
US10091566B2 (en) | Method and apparatus for virtualizing passive optical network, and passive optical network virtualization system | |
US9793993B2 (en) | Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network | |
TWI725274B (zh) | 資料通信系統、光線路終端及基帶單元 | |
US9112612B2 (en) | Relay device, station-side optical communication device, communication system, and bandwidth allocation method | |
JP2017516406A (ja) | 波長切り換えのための方法、装置、及びシステム | |
US8837945B2 (en) | Connection management server, OLT, ONU/ONT and the system and method for providing ethernet-based PTL-PON | |
US20130343761A1 (en) | Access Equipment that Runs Ethernet Passive Optical Network (PON) or Ethernet PON Over Coax Network | |
WO2012090323A1 (ja) | 論理リンク管理方法および通信装置 | |
AU2018403910B2 (en) | Communication network and related devices | |
CN110073672B (zh) | 一种管理光网络单元onu的方法、装置及系统 | |
US9615153B2 (en) | System and method for applying an extended multipoint protocol to wireless access systems | |
WO2016188184A1 (zh) | 一种数据传输方法和装置 | |
CN114449377A (zh) | 无源光网络的组网方法和装置 | |
JP6459588B2 (ja) | アクセス制御システム、アクセス制御方法、親局装置及び子局装置 | |
US9137195B2 (en) | Method, network device and user equipment for switching media access control address | |
WO2024198792A1 (zh) | 通信方法、装置及系统 | |
WO2024179242A1 (zh) | 光通信方法、通信装置和系统 | |
WO2024221722A1 (zh) | 一种消息传输方法,主设备、olt和光通信系统 | |
RU2809182C1 (ru) | Способ передачи служебных данных, соответствующее устройство и микросхема цифровой обработки | |
WO2023131138A1 (zh) | 一种数据流的传输方法,光通信系统以及相关装置 | |
KR100713526B1 (ko) | 기가 비트 이더넷에서 다중 링크 시스템 및 방법 |