WO2024198256A1 - 用于拱形环状薄壁工件加工的镜像铣削装置及加工方法 - Google Patents
用于拱形环状薄壁工件加工的镜像铣削装置及加工方法 Download PDFInfo
- Publication number
- WO2024198256A1 WO2024198256A1 PCT/CN2023/119578 CN2023119578W WO2024198256A1 WO 2024198256 A1 WO2024198256 A1 WO 2024198256A1 CN 2023119578 W CN2023119578 W CN 2023119578W WO 2024198256 A1 WO2024198256 A1 WO 2024198256A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- workpiece
- support
- milling
- machining
- Prior art date
Links
- 238000003801 milling Methods 0.000 title claims abstract description 87
- 238000003754 machining Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000013461 design Methods 0.000 claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims description 55
- 230000033001 locomotion Effects 0.000 claims description 42
- 230000005540 biological transmission Effects 0.000 claims description 35
- 230000007246 mechanism Effects 0.000 claims description 23
- 239000000523 sample Substances 0.000 claims description 15
- 238000003701 mechanical milling Methods 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 9
- 238000003672 processing method Methods 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 6
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 238000013519 translation Methods 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 5
- 230000008676 import Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C3/00—Milling particular work; Special milling operations; Machines therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C9/00—Details or accessories so far as specially adapted to milling machines or cutter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/02—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
- B23Q3/06—Work-clamping means
- B23Q3/062—Work-clamping means adapted for holding workpieces having a special form or being made from a special material
- B23Q3/065—Work-clamping means adapted for holding workpieces having a special form or being made from a special material for holding workpieces being specially deformable, e.g. made from thin-walled or elastic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- Arched annular thin-walled workpieces are large in size, weak in rigidity, and extremely easy to deform, which makes it difficult to control their wall thickness accuracy and contour accuracy.
- Conventional mechanical milling cannot be used for this process.
- the chemical milling process is mainly used, which has low precision, heavy pollution, and high energy consumption.
- Patent document CN107344251A (application number: CN201710571555.5) discloses a mirror milling method and system for skin processing, which arranges a processing tool on the processing surface; arranges a group of floating support devices, a skin shape laser scanning device, and a group of skin wall thickness real-time measurement devices in the symmetrical area of the skin processing surface.
- the skin shape laser scanning device is first used to obtain the actual skin profile, and the processing path is adaptively adjusted according to the actual profile. Then, during the skin processing, the processing tool and the floating support device in the symmetrical area of the processing surface and the skin wall thickness real-time measurement device move in coordination.
- the floating support provides flexible support for the skin workpiece processing area, and the skin wall thickness real-time measurement device obtains the thickness of the processing area.
- the processing tool adaptively adjusts the cutting depth according to the measured actual workpiece thickness to achieve skin wall thickness control.
- the equipment described in this patent document is mainly aimed at the processing of skin workpieces and has good adaptability to skin workpieces, but is not suitable for arched annular thin-walled workpieces; the support side of the patent adopts an AB double swing head structure, which is complex in structure and large in size for arched annular thin-walled workpieces, and there is interference during the processing.
- the present invention adopts the swing of the A2 axis of the support probe combined with the rotation of the C2 axis of the bottom rotary table, which has good adaptability to arched annular thin-walled workpieces.
- the addition of the X2 axis can adapt to the deformation of the workpiece in the roundness direction (such as local concave and convex deformation of the workpiece);
- the workpiece of the patent is clamped vertically and fixed with a flexible clamping arm, which is complicated to clamp for arched annular thin-walled workpieces, and the clamping point is not easy to determine and is prone to insufficient rigidity;
- the workpiece of the present invention is clamped with the large end facing down, and a vise or a pressure plate is used to clamp and fix along the circumferential direction of the workpiece.
- the clamping points are evenly distributed, the clamping operation is simple and the rigidity is better.
- this patent cannot solve the current technical problems, nor can it meet the needs of the present invention.
- the present invention designs and manufactures a mirror milling device based on the structural characteristics of the arched annular thin-walled workpiece, which has better economic applicability and promotion value.
- the object of the present invention is to provide a mirror milling device and a processing method for processing an arched annular thin-walled workpiece.
- the mirror milling device for machining an arched annular thin-walled workpiece comprises: an external vertical gantry milling head assembly, an internal support measuring head assembly, a clamping fixture and a workbench;
- the external vertical gantry milling head assembly is located outside the workpiece to achieve external milling of the workpiece;
- the internal support measuring head assembly is located inside the workpiece to achieve internal support and measurement of the workpiece;
- the external vertical gantry milling head assembly and the internal support measuring head assembly are in a vertically relative positional relationship;
- the clamping fixture is located between the external vertical gantry milling head assembly and the internal support measuring head assembly to achieve positioning, clamping and fixing of the workpiece;
- the workbench is located below the clamping tooling and plays a supporting and fixing role for the clamping tooling.
- the external vertical gantry milling head assembly and the internal support measuring head assembly adopt an upper and lower relative layout structure to form an internal and external synchronous motion relationship relative to the workpiece, and the stroke covers the entire workpiece processing area to achieve real-time milling and follow-up support measurement.
- the clamping tool is fixed by different clamping methods according to the different edge states of the workpiece, including positioning vise clamping or pressure plate clamping.
- the clamping range of the clamping tool is adjustable and different sizes can be replaced to adapt to the clamping of workpieces of different specifications.
- the clamping tool is an annular structure.
- the workbench is an annular structure, and clamping fixtures of different specifications are clamped/separated from the workbench through zero-point positioning and guided by guide pins, which play a role in protecting the zero-point positioning.
- the external vertical gantry milling head assembly comprises: a base, a slide, a crossbeam, a saddle, a ram, a double-fork swing head, a milling head and a tool;
- the external vertical gantry milling head assembly includes at least 5 degrees of freedom, controls the movement of the tool within a spatial range, and the stroke covers the processing of any point on the outer surface of the workpiece;
- the base is fixed on the ground and is distributed symmetrically on the left and right sides;
- the slide is distributed in mirror symmetry on the left and right sides, and is connected to the base through at least one set of linear guide rails on each side, and transmission is achieved through a transmission mechanism;
- the saddle is connected to the crossbeam through at least two sets of linear guide rails, and the transmission is realized through a transmission mechanism;
- the ram is connected to the saddle via at least two sets of linear guide rails, and the transmission is achieved via a transmission mechanism;
- the double-fork swing head is installed at the end of the ram;
- the milling head is installed in the middle of the double-fork swing head
- the tool is installed at the front end of the milling head.
- the external vertical gantry milling head assembly comprises 6 axes, namely axes X1, Y1, Z1, A1, C1, and W1, wherein X1, Y1, Z1, and W1 are translation axes, and A1 and C1 are rotation axes;
- the forward and backward movement of the slide and the beam relative to the base is the X1 axis
- the left and right movement of the saddle on the crossbeam is the Y1 axis, and the Y1 axis is perpendicular to the X1 axis;
- the up and down movement of the ram on the saddle is the Z1 axis, which is perpendicular to the X1 and Y1 axes respectively, and is equipped with a balancing device for balancing and counterweighting to improve the dynamic response of the Z1 axis;
- the rotation of the double-forked swing head relative to its own center line is the C1 axis, the rotation axis of the C1 axis is parallel to the axis of the Z1 axis, and the C1 axis realizes ⁇ 360° rotation;
- the rotation of the milling head relative to the axis of the connection with the double-fork swing head is the A1 axis, and the rotation axis of the A1 axis moves in the plane where the X1 axis and the Y1 axis are located.
- the C1 axis is at different rotation angles, it is parallel to the X1 axis or the Y1 axis at a certain moment, and the A1 axis realizes a swing of ⁇ 110°;
- the forward and backward movement of the tool relative to the milling head is the W1 axis, and the W1 axis realizes normal rapid feeding.
- the internal support measuring head assembly comprises: a fixed base, a rotating table, a support column, a support saddle, a support swing head, a support measuring head and a follow-up support measuring assembly;
- the internal support measuring head assembly includes at least 5 degrees of freedom, controls the movement of the follow-up support measuring assembly within a spatial range, and the travel covers the support and measurement of the inner surface of the workpiece;
- the fixed base is fixed to the ground to provide overall support
- the rotating platform is connected to the fixed base through a shaft ring, and the transmission is realized through a transmission mechanism;
- the support column is connected to the rotating table through at least two sets of linear guide rails, and the transmission is realized through a transmission mechanism;
- the supporting saddle is connected to the supporting column through at least two sets of linear guide rails, and the transmission is realized through a transmission mechanism;
- the supporting swing head is connected to the supporting slide saddle through at least two sets of linear guide rails, and the transmission is realized through a transmission mechanism;
- the follow-up support measurement component is installed at the front end of the support probe.
- the internal support measuring head assembly comprises 6 axes, namely axes X2, Y2, Z2, A2, C2, and W2, wherein X2, Y2, Z2, and W2 are translation axes, and A2 and C2 are rotation axes;
- the rotation of the rotating table on the fixed base is the C2 axis, and the C2 axis rotates around the center line of the rotating table and the fixed base, and the rotation range of the C2 axis is -120° to 600°;
- the forward and backward movement of the support column on the rotating table is the Y2 axis
- the up and down movement of the support saddle on the support column is the Z2 axis, which is perpendicular to the Y2 axis and is equipped with a balancing device for balancing and counterweighting to improve the dynamic response of the Z2 axis;
- the forward and backward movement of the supporting swing head above the supporting slide saddle is the X2 axis, and the X2 axis, the Y2 axis, and the Z2 axis are perpendicular to each other in space;
- the rotation of the support probe relative to the axis of the connection with the support swing head is A2 axis, and the swing range of A2 axis is -10° to 100°;
- the forward and backward movement of the follow-up support measurement component relative to the support probe is the W2 axis, and the W2 axis realizes normal rapid feeding.
- the fixed base is an annular structure.
- a processing method of a mirror milling device for processing an arched annular thin-walled workpiece includes:
- Design surface calculation steps select the center point on the design surface, then draw parallel curves with equal geodesic distances outward from the center point, assume that the XOY plane passes through the center point, and divide the design surface into two parts equally, and use the intersection of the XOY plane and the parallel curve as the reference point to divide the parallel curve into multiple line segments of equal length;
- the reverse surface calculation steps are as follows: select the center point on the reverse surface, and then draw parallel curves with equal geodesic distances outward from the center point. Assume that the XOY plane passes through the center point and divide the design surface into two parts. Take the intersection of the XOY plane and the parallel curve as the reference point and divide the parallel curve into multiple line segments of equal length.
- Coordinate compensation step triangulate the endpoints of the line segments on the design surface, and calculate the area coordinates of the position points on the processing path in the corresponding triangular mesh, and then calculate the corresponding position points on the reverse surface through the area coordinates and the index of the corresponding triangular mesh;
- Processing steps Import the results of the coordinate compensation step into the CNC system, support the swing head to approach the workpiece, obtain the thickness value, the milling head enters the cutting, the tool axis is compensated in real time to obtain the target thickness, and the mechanical milling movement is synchronously mirrored on both sides to obtain the thickness thinning feature; replace the support parts, and perform the mechanical milling movement synchronously mirrored on both sides to complete the hole making and clean edge features.
- the design surface calculation step includes:
- Vertex determination step determine the vertex on the design surface, create a circle with the vertex as the center, and the length of the arc from any point on the circle to the vertex is d;
- Parallel curve covering steps using the circle as a reference, draw parallel curves on the design surface, with the parallel distance being the geodesic distance and the length being d, and continue to draw parallel curves until the entire design surface is covered;
- Arc acquisition steps Using the intersection point as a reference, divide the circle into arcs of equal length. The arc length is d. If the circumference of the circle cannot divide d, fine-tune the arc length to ensure that the length of each arc on the circumference is the same.
- Arc numbering step number the endpoints of the arc, which are referred to as matching points in the following text.
- the numbering is performed using a two-dimensional array (m, n), where m represents the index of the parallel curve and n represents the index of the split point on the parallel curve.
- Steps for recording the number of segments record the number of segments that each parallel curve is bisected into.
- the reverse surface calculation step includes:
- Reference point acquisition step executing the vertex determination step, the parallel curve covering step and the intersection calculation step on the reverse surface to obtain the parallel line segmentation reference point on the reverse surface;
- Split point numbering step according to the number of segments of the arc obtained in the segment number recording step, the parallel curves on the reverse surface are equally divided, and the split points are numbered using the same two-digit group numbering method.
- the coordinate compensation step includes:
- Triangulation step triangulate the matching points on the design surface
- Projection step Project the position points of the machining path on the design surface onto the nearest triangular mesh, and calculate the area coordinates of the projection points on the triangular mesh, assuming that the vertex indexes of the triangular mesh are (m1, n1), (m2, n2), (m3, n3);
- Coordinate value calculation steps select three points with index values (m1, n1), (m2, n2), and (m3, n3) from the matching points on the reverse surface, and form a triangle with them, and calculate the corresponding coordinate values through area coordinates;
- Compensation steps Project the obtained coordinate values onto the reverse surface to obtain the compensated coordinate point position.
- Processing steps import the compensated program code into the CNC system to obtain the executable file and start real-time data collection; execute the CNC program, support the swing head to approach the workpiece, obtain the stable thickness value, the milling head enters the cutting, the cutter axis is compensated in real time to obtain the target thickness, and the mechanical milling movement is synchronously mirrored on both sides to obtain the thickness thinning feature; replace the support components, and the mechanical milling movement is synchronously mirrored on both sides to complete the hole making and clean edge features; output the real-time measurement data and obtain the inspection report.
- the present invention has the following beneficial effects:
- the present invention adopts the internal and external equipment layout structure, and through reasonable degree of freedom configuration, can realize external milling and internal support measurement of any processing point along the normal direction of the workpiece processing area, realize the overall mechanical mirror milling of the workpiece, replace the original workpiece segmentation milling and welding process, and realize green and environmentally friendly processing of the workpiece;
- the present invention can quickly adapt to the deformation of the workpiece in the roundness direction (such as local concave-convex deformation of the workpiece) by increasing the forward and backward freedom of movement of the support swing head above the support slide saddle X2 axis, thereby improving the rapid response of the equipment and ensuring the processing Accuracy, improve processing efficiency;
- the present invention ensures the wall thickness accuracy and contour accuracy of the workpiece through the synchronous mirror milling processing of "milling and measurement integration", thereby improving the processing accuracy and processing efficiency.
- FIG1 is an overall structural diagram of a mirror image milling device for machining an arched annular thin-walled workpiece according to the present invention
- FIG2 is an overall structural diagram of an external vertical gantry milling head assembly and an internal support measuring head assembly
- FIG3 is an overall structural diagram of an external vertical gantry milling head assembly and an internal support measuring head assembly
- Figure 4 is a structural diagram of the external milling head and the internal measuring head
- FIG5 is a flow chart of a machining path compensation method
- FIG6 is a flow chart of the processing steps
- FIG7 is a schematic diagram of the creation of a reference circle
- FIG8 is a schematic diagram of parallel curve coverage
- FIG9 is a schematic diagram of generation and numbering of matching points
- FIG10 is a schematic diagram of the area coordinates of the projection points of the points to be compensated on the surface
- external vertical gantry milling head assembly 1 internal support measuring head assembly 2, clamping fixture 3, workbench 4, workpiece 5; base 101, slide 102, crossbeam 103, saddle 104, ram 105, double-fork swing head 106, milling head 107, tool 108; fixed base 201, rotating table 202, support column 203, support saddle 204, support swing head 205, support probe 206, follow-up support measuring assembly 207.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the present invention provides a mirror milling device for processing an arched annular thin-walled workpiece, comprising an external vertical gantry milling head assembly 1, an internal support measuring head assembly 2, a clamping fixture 3 and a workbench 4.
- the external vertical gantry milling head assembly 1 is located outside the workpiece 5, and can realize the external milling of the workpiece 5;
- the internal support measuring head assembly 2 is located outside the workpiece 5, and the internal support measuring head assembly 2 is located outside the workpiece 5.
- the clamping fixture 3 is located between the external vertical gantry milling head assembly 1 and the internal support measuring head assembly 2, so as to realize the positioning, clamping and fixing of the workpiece 5.
- the clamping range of the clamping fixture 3 is adjustable, and different sizes can be replaced at the same time to adapt to the clamping of workpieces 5 of different specifications; the workbench 4 is located below the clamping fixture 3, which supports and fixes the clamping fixture 3. Clamping fixtures 3 of different specifications and the workbench 4 are quickly clamped/separated through zero-point positioning, which improves equipment processing efficiency and is guided by guide pins, which play a role in protecting zero-point positioning.
- the external vertical gantry milling head assembly 1 includes: a base 101, a slide 102, a crossbeam 103, a saddle 104, a ram 105, a double fork swing head 106, a milling head 107, and a tool 108.
- the external vertical gantry milling head assembly 1 includes at least 5 degrees of freedom, which can control the movement of the tool 108 within a spatial range, and the stroke can cover the processing of any point on the outer surface of the workpiece 5.
- the preferred embodiment of the present invention has 6 axes, namely, axes X1, Y1, Z1, A1, C1, and W1, wherein X1, Y1, Z1, and W1 are translation axes, and A1 and C1 are rotation axes.
- the base 101 is fixed on the ground and is symmetrically distributed on the left and right sides;
- the slide 102 is symmetrically distributed on the left and right sides, and is connected to the base 101 through at least one set of linear guide rails on one side, and can be driven by a transmission mechanism such as a gear rack or a lead screw nut.
- the crossbeam 103 is fixed to the slide 102 by screws, and the forward and backward movement of the slide 102 and the crossbeam 103 relative to the base 101 is the X1 axis;
- the slide saddle 104 is connected to the crossbeam 103 through at least two sets of linear guide rails, and can be driven by a transmission mechanism such as a gear rack or a lead screw nut.
- the left and right movement of the slide saddle 104 on the crossbeam 103 is the Y1 axis, and the Y1 axis is perpendicular to the X1 axis.
- the ram 105 is connected to the saddle 104 through at least two sets of linear guides, and can be driven by a transmission mechanism such as a gear rack or a lead screw nut.
- the up and down movement of the ram 105 on the saddle 104 is the Z1 axis, which is perpendicular to the X1/Y1 axis, and can be equipped with a balancing device for balancing and counterweighting to improve the dynamic response of the Z1 axis.
- the double-fork swing head 106 is installed at the end of the ram.
- the rotation of the double-fork swing head 106 relative to its own center line is the C1 axis.
- the rotation axis of the C1 axis is parallel to the axis of the Z1 axis.
- the C1 axis can achieve ⁇ 360° rotation;
- the milling head 107 is installed in the middle of the double-fork swing head 106.
- the rotation of the milling head 107 relative to the axis of the connection with the double-fork swing head 106 is the A1 axis.
- the rotation axis of the A1 axis moves in the plane where the X1 axis and the Y1 axis are located.
- the C1 axis can be parallel to the X1 axis or the Y1 axis at a certain moment.
- the A1 axis can achieve a swing of ⁇ 110°;
- the tool 108 is installed at the front end of the milling head 107.
- the forward and backward movement of the tool 108 relative to the milling head 107 is the W1 axis.
- the W1 axis can achieve normal rapid feeding to improve the rapid response of the machine tool.
- the internal support measuring head assembly 2 includes: a fixed base 201, a rotating table 202, a support column 203, a support Saddle 204, support swing head 205, support probe 206, follow-up support measurement assembly 207.
- the internal support measurement head assembly 2 includes at least 5 degrees of freedom, which can control the movement of the follow-up support measurement assembly 207 within the space range, and the travel can cover the support and measurement of the inner surface of the workpiece 5;
- the preferred embodiment of the present invention has 6 axes, namely, axes X2, Y2, Z2, A2, C2, and W2, of which X2/Y2/Z2/W2 are translation axes, and A2/C2 are rotation axes;
- the fixed base 201 is fixed to the ground and plays an integral supporting role.
- the fixed base 201 is preferably an annular structure.
- the rotating platform 202 is connected to the fixed base 201 through a shaft ring, and can be driven through a transmission mechanism such as a roller gear ring or a gear gear ring.
- the rotation of the rotating platform 202 on the fixed base 201 is the C2 axis, and the C2 axis rotates around the center line of the rotating platform 202 and the fixed base 201.
- the rotation range of the C2 axis is -120° to 600°;
- the support column 203 is connected to the rotating table 202 through at least two sets of linear guide rails, and can be driven by a transmission mechanism such as a lead screw nut.
- the forward and backward movement of the support column 203 on the rotating table 202 is the Y2 axis.
- the support saddle 204 is connected to the support column 203 through at least two sets of linear guide rails, and can be driven by a transmission mechanism such as a lead screw nut.
- the up and down movement of the support saddle 204 on the support column 203 is the Z2 axis, which is perpendicular to the Y2 axis.
- a balancing device can be equipped to balance the weight to improve the dynamic response of the Z2 axis.
- the support swing head 205 is connected to the support slide saddle 204 through at least two sets of linear guide rails, and can be driven by a transmission mechanism such as a screw nut.
- the front and rear movement of the support swing head 205 above the support slide saddle is the X2 axis, and the X2 axis, the Y2 axis, and the Z2 axis are perpendicular to each other in space.
- the support probe 206 is installed on the side of the support swing head 205.
- the rotation of the support probe 206 relative to the axis of the connection with the support swing head 205 is A2 axis, and the swing range of A2 axis is -10° to 100°.
- the follow-up support measurement component 207 is installed at the front end of the support probe 206.
- the forward and backward movement of the follow-up support measurement component 207 relative to the support probe 206 is the W2 axis.
- the W2 axis can realize normal rapid feeding and improve the rapid response of the machine tool.
- the external vertical gantry milling head assembly 1 and the internal support measuring head assembly 2 adopt a layout structure in which they are arranged relative to each other from top to bottom, forming an internal and external synchronous motion relationship relative to the workpiece.
- the stroke covers the entire processing area of the workpiece, and can realize real-time milling and follow-up support measurement, effectively reducing vibration during the processing and improving processing accuracy.
- the clamping fixture 3 can realize the rapid clamping and fixing of the workpiece 5. According to the different edge states of the workpiece, different clamping methods such as positioning vise clamping or pressing plate clamping are adopted for fixing.
- the clamping range of the clamping fixture 3 is adjustable, and different sizes can be replaced at the same time, so as to adapt to the clamping of more workpieces 5 of different specifications.
- the clamping fixture 3 is preferably a ring structure;
- the workbench 4 is located below the clamping fixture 3.
- the workbench 4 supports and fixes the clamping fixture 3.
- the preferred structural form of the workbench 4 is a ring structure.
- the clamping fixtures 3 of different specifications are connected to the workbench 4 through a certain mechanism such as the preferred The zero-point positioning mechanism can realize quick clamping/separation and improve the processing efficiency of the equipment.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the workpiece is a spherical curved surface, which is large in size and thin in thickness. Therefore, deformation is very likely to occur during the process of raw material forming or clamping, resulting in a large deviation between the actual shape of the raw material and the designed shape. Therefore, the mirror milling device for processing an arched annular thin-walled workpiece provided in Example 1 must compensate and correct the processing path in order to process a qualified workpiece.
- the present invention assumes that the actual shape of the workpiece has been obtained by measuring and reconstructing a three-dimensional model.
- the main problem solved by the present invention is how to compensate the processing path on the sphere from the design surface to the actual surface obtained by inverse.
- the center point of the theoretical sphere is selected, and then a parallel curve with equal geodesic distance is made outward with this point as the center.
- the XOY plane passes through the center point and divides the sphere into two parts. Taking the intersection of the XOY plane and the curve as the reference point, the curve is divided into several line segments of equal length.
- Vertex determination steps determine the vertex of the spherical surface on the design model, and then create a circle on the surface with the vertex as the center. The length of the arc from any point on the circle to the vertex is d, as shown in Figure 7.
- Parallel curve covering steps Using the circle as a reference, draw parallel curves on the spherical surface. The parallel distance is the geodesic distance, and the length is d. Continue to draw parallel curves until the entire sphere is covered, as shown in Figure 8.
- Intersection calculation steps Calculate the intersection of the reference plane XOZ and the parallel curve. There are two intersection points, and the intersection point in the +X direction is taken here.
- Arc acquisition steps Using the intersection point in the previous step as a reference, divide the circle into arcs of equal length, with the arc length being d. If the circumference of the circle cannot divide d evenly, fine-tune the arc length to ensure that the length of each arc on the circumference is the same.
- Arc numbering step Number the endpoints of the arc, which are referred to as matching points in the following. The numbering is performed using a two-dimensional array (m, n), where m represents the index of the parallel curve and n represents the index of the split point on the parallel curve, as shown in Figure 9.
- Steps for recording the number of segments record the number of segments that each of the above parallel curves is bisected into, such as N1, N2, N3,...
- Reference point acquisition step executing the vertex determination step, parallel curve covering step and intersection calculation step on the reverse surface to obtain the parallel line segmentation reference point on the reverse surface.
- Step of segmentation point numbering According to the number of segments N1, N2, N3, ... obtained in the step of segment number recording, reverse The parallel curves on the surface are divided equally and the dividing points are numbered using the same two-digit group numbering method.
- Triangulation step Triangulate the matching points on the design model surface.
- Projection step Project the position points of the machining path on the surface onto the nearest triangular mesh, and calculate the area coordinates of the projection points on the triangular mesh. Assume that the vertex indexes of the triangular mesh are (m1, n1), (m2, n2), (m3, n3), as shown in Figure 10.
- Coordinate value calculation steps Select three points with index values (m1, n1), (m2, n2), and (m3, n3) from the matching points on the inverse surface and form a triangle. Calculate the corresponding coordinate values through area coordinates.
- Compensation steps Project the coordinate values obtained in the previous step onto the inverse surface to obtain the compensated coordinate point position.
- the processing steps can be entered according to the processing method shown in Figure 6: import the compensated program code into the CNC system to obtain an executable file and start real-time data acquisition; execute the CNC program, support the swing head to approach the workpiece, obtain a stable thickness value, the milling head enters the cutting, the tool axis is compensated in real time to obtain the target thickness, and the bilateral synchronous mirror mechanical milling movement is performed to obtain the thickness thinning feature; replace the support components, and the bilateral synchronous mirror mechanical milling movement is performed to complete the hole making and clean edge features; output real-time measurement data to obtain a test report.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Machine Tool Units (AREA)
- Numerical Control (AREA)
Abstract
本发明提供了一种用于拱形环状薄壁工件加工的镜像铣削装置及加工方法,装置包括:外部立式龙门铣头组件、内部支撑测量头组件、装夹工装和工作台。本发明采用内外设备布局结构形式,实现了对工件加工区域沿法向任意加工点的外部铣削及内部支撑测量,实现了工件的绿色环保加工。方法包括:对理论面、逆向面的平行曲线进行分割,将理论面的分割点进行三角网格化,以三个点的索引作为三角形的索引,计算加工路径的位置点在三角网格中的面积坐标,将逆向面上对应索引的点组成三角形,用面积坐标反求坐标点,将球面上的加工路径由设计曲面补偿到逆向得到的实际曲面。
Description
本发明涉及镜像铣削装置技术领域,具体地,涉及一种用于拱形环状薄壁工件加工的镜像铣削装置及加工方法。
拱形环状薄壁工件具有大尺寸、弱刚性、极易变形的特点,导致其壁厚精度和轮廓精度难以控制,无法采用常规机械铣削加工,目前主要采用化铣工艺,精度低、污染重、能耗高。
专利文献CN107344251A(申请号:CN201710571555.5)公开了一种蒙皮加工的镜像铣削方法与系统,其在加工表面布置一个加工刀具;在蒙皮的加工表面对称区域布置一组浮动支撑装置、一个蒙皮外形激光扫描装置、一组蒙皮壁厚实时测量装置。蒙皮加工前首先利用蒙皮外形激光扫描装置获取蒙皮实际型面,根据实际型面自适应调整加工路径。然后,蒙皮加工过程中加工刀具与加工表面对称区域的浮动支撑装置、蒙皮壁厚实时测量装置协同运动,加工过程中浮动支撑提供蒙皮工件加工区域柔性支撑,蒙皮壁厚实时测量装置获得加工区域厚度,加工刀具根据测量的实际工件厚度进行自适应调整切削深度,实现蒙皮的壁厚控制。该专利文献所述装备主要针对蒙皮类工件加工,对蒙皮类工件具有很好的适应性,但对拱形环状薄壁工件不适用;该专利支撑侧采用AB双摆头结构,对拱形环状薄壁类工件来说结构复杂,体积大,在加工过程中存在干涉,本发明采用支撑测头A2轴摆动结合底部旋转台C2轴的旋转,对拱形环状薄壁工件具有很好的适应性,同时增加X2轴可以适应工件在圆度方向的变形(如工件局部凹凸变形);该专利工件采用竖向装夹并利用柔性夹持臂固定,对拱形环状薄壁工件来说装夹复杂,夹持点不易确定且易出现刚性不足问题;本发明工件大端向下平放装夹,采用虎钳或压板沿工件圆周方向进行装夹固定,夹持点分布均匀,装夹操作简单且刚性更好。综上,该专利无法解决目前存在的技术问题,也无法满足本发明的需求,本发明针对拱形环状薄壁工件的结构特点,设计制造的镜像铣装置,具有更好的经济适用性及推广价值。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种用于拱形环状薄壁工件加工的镜像铣削装置及加工方法。
根据本发明提供的用于拱形环状薄壁工件加工的镜像铣削装置,包括:外部立式龙门铣头组件、内部支撑测量头组件、装夹工装和工作台;
所述外部立式龙门铣头组件位于工件外侧,实现工件的外部铣削;
所述内部支撑测量头组件位于工件内侧,实现工件的内部支撑及测量;
所述外部立式龙门铣头组件与内部支撑测量头组件处于上下相对的位置关系;
所述装夹工装位于外部立式龙门铣头组件与内部支撑测量头组件之间,实现工件的定位装夹固定;
所述工作台位于装夹工装的下方,对装夹工装起到支撑固定作用。
优选的,所述外部立式龙门铣头组件与内部支撑测量头组件采用上下相对的布局结构形式,构成相对于工件的内外同步运动关系,行程覆盖工件加工全区域,实现实时铣削及随动支撑测量。
优选的,所述装夹工装根据工件边缘状态的不同,采用不同夹紧方式进行固定,包括定位虎钳夹紧或者压板压紧的方式,装夹工装的夹持范围可调,同时可更换不同规格大小,从而适应不同规格工件的装夹。
优选的,所述装夹工装为环形结构。
优选的,所述工作台为环形结构,不同规格的装夹工装与工作台通过零点定位进行装夹/分离,通过导向销进行导向,导向销起到保护零点定位的作用。
优选的,所述外部立式龙门铣头组件包括:底座、滑座、横梁、滑鞍、滑枕、双叉摆头、铣削头和刀具;
所述外部立式龙门铣头组件包含至少5个自由度,控制刀具在空间范围内的移动,行程覆盖工件外表面任意点的加工;
所述底座固定在地面,分左右两侧镜像对称分布;
所述滑座分左右两侧镜像对称分布,分别与底座通过单边至少1组直线导轨相连接,并通过传动机构实现传动;
所述横梁与滑座通过螺钉固定在一起;
所述滑鞍通过至少2组直线导轨与横梁相连,并通过传动机构实现传动;
所述滑枕通过至少2组直线导轨与滑鞍相连,并通过传动机构实现传动;
所述双叉摆头安装于滑枕端部;
所述铣削头安装于双叉摆头中间;
所述刀具安装于铣削头前端。
优选的,所述外部立式龙门铣头组件包含6轴,分别为轴X1、Y1、Z1、A1、C1、W1,其中X1、Y1、Z1、W1为平移轴,A1、C1为旋转轴;
所述滑座及横梁相对于底座的前后移动为X1轴;
所述滑鞍在横梁上的左右移动为Y1轴,Y1轴相对于X1轴垂直;
所述滑枕在滑鞍上的上下移动为Z1轴,Z1轴相对于X1、Y1轴分别垂直,同时配备平衡装置进行平衡配重,提高Z1轴的动态响应;
所述双叉摆头相对于自身中心线的旋转为C1轴,C1轴的旋转轴线与Z1轴的轴线平行,C1轴实现±360°旋转;
所述铣削头相对于与双叉摆头连接处轴线的旋转为A1轴,A1轴的旋转轴线在X1轴与Y1轴的所在平面内移动,在C1轴的处于不同旋转角度时在某一时刻与X1轴或者Y1轴平行,A1轴实现±110°的摆动;
所述刀具相对铣削头的前后移动为W1轴,W1轴实现法向快速进给。
优选的,所述内部支撑测量头组件包括:固定底座、旋转台、支撑立柱、支撑滑鞍、支撑摆头、支撑测头和随动支撑测量组件;
所述内部支撑测量头组件包含至少5个自由度,控制随动支撑测量组件在空间范围内的移动,行程覆盖工件内表面的支撑及测量;
所述固定底座固定在地面,起整体支撑作用;
所述旋转台通过轴环与固定底座连接,并通过传动机构实现传动;
所述支撑立柱通过至少2组直线导轨与旋转台相连,并通过传动机构实现传动;
所述支撑滑鞍通过至少2组直线导轨与支撑立柱相连,并通过传动机构实现传动;
所述支撑摆头通过至少2组直线导轨与支撑滑鞍相连,并通过传动机构实现传动;
所述支撑测头安装于支撑摆头侧面;
所述随动支撑测量组件安装于支撑测头前端。
优选的,所述内部支撑测量头组件包含6轴,分别为轴X2、Y2、Z2、A2、C2、W2,其中X2、Y2、Z2、W2为平移轴,A2、C2为旋转轴;
所述旋转台在固定底座上的旋转为C2轴,C2轴绕旋转台与固定底座的中心线旋转,C2轴旋转范围为-120°~600°;
所述支撑立柱在旋转台上的前后移动为Y2轴;
所述支撑滑鞍在支撑立柱的上下移动为Z2轴,Z2轴与Y2轴垂直,同时配备平衡装置进行平衡配重,提高Z2轴的动态响应;
所述支撑摆头在支撑滑鞍上方的前后移动为X2轴,X2轴、Y2轴、Z2轴在空间上互为垂直关系;
所述支撑测头相对于与支撑摆头连接处轴线的旋转为A2轴,A2轴摆动范围为-10°~100°;
所述随动支撑测量组件相对支撑测头的前后移动为W2轴,W2轴实现法向快速进给。
优选的,所述固定底座为环形结构。
根据本发明提供的一种用于拱形环状薄壁工件加工的镜像铣削装置的加工方法,包括:
设计面计算步骤:选定设计面上的中心点,然后以该中心点为中心,向外做等测地线距离的平行曲线,假设XOY平面穿过该中心点,并将设计面平均分成两个部分,以XOY平面与平行曲线的交点为参考点,将平行曲线划分为多个等长度的线段;
逆向面计算步骤:选定逆向面上的中心点,然后以该中心点为中心,向外做等测地线距离的平行曲线,假设XOY平面穿过该中心点,并将设计面平均分成两个部分,以XOY平面与平行曲线的交点为参考点,将平行曲线划分为多个等长度的线段;
坐标补偿步骤:对设计面上线段的端点进行三角网格化,并计算加工路径上的位置点在对应的三角网格中的面积坐标,再通过该面积坐标和对应三角网格的索引,在逆向面上计算出相应的位置点;
加工步骤:将坐标补偿步骤的结果导入数控系统,支撑摆头接近工件,获取厚度值,铣削头进入切削,刀轴实时补偿得到目标厚度,双侧同步镜像机械铣削运动,得到厚度减薄特征;更换支撑部件,双侧同步镜像机械铣削运动,完成制孔和净边特征。
进一步的,所述设计面计算步骤包括:
顶点确定步骤:在设计面确定顶点,以该顶点为中心,创建一个圆,该圆上任意一点到顶点的弧线长度为d;
平行曲线覆盖步骤:以该圆为参考,做设计面上的平行曲线,平行距离为测地距离,长度为d,不断做平行曲线,直至覆盖整个设计面;
交点计算步骤:计算参考平面XOZ与平行曲线的交点,交点有两个,取+X方向上
的交点;
圆弧获取步骤:以所取的交点为参考,将圆划分为等长度的圆弧,圆弧长度为d,如果圆的周长不能够整除d,则微调圆弧长度,保证圆周上每个圆弧的长度是相同的;
圆弧编号步骤:对圆弧的端点进行编号,后面将圆弧的端点称为匹配点,编号采用二维数组(m,n)进行编号,其中m表示平行曲线的索引,n表示平行曲线上分割点的索引;
段数记录步骤:记录每一条平行曲线被平分的段数。
进一步的,所述逆向面计算步骤包括:
参考点获取步骤:在逆向面上执行顶点确定步骤、平行曲线覆盖步骤和交点计算步骤的过程,获取逆向面上的平行线分割参考点;
分割点编号步骤:根据段数记录步骤中得到的圆弧分割的段数,将逆向面上的平行曲线进行均分,并采用相同二位数组编号的方式对分割点进行编号。
进一步的,所述坐标补偿步骤包括:
三角网格化步骤:对设计面上的匹配点进行三角网格化;
投影步骤:将设计面上加工路径的位置点投影到最近的三角网格上,并计算投影点在三角网格上的面积坐标,假设该三角网格的顶点索引分别是(m1,n1),(m2,n2),(m3,n3);
坐标值计算步骤:在逆向面上的匹配点中取索引值为(m1,n1),(m2,n2),(m3,n3)的三个点,并将其组成一个三角形,通过面积坐标计算对应的坐标值;
补偿步骤:将得到的坐标值投影到逆向面上,得到补偿后的坐标点位置。
加工步骤:将补偿后的程序代码,导入数控系统,得到可执行文件,开启数据实时采集;执行数控程序,支撑摆头接近工件,获取稳定厚度值,铣削头进入切削,刀轴实时补偿得到目标厚度,双侧同步镜像机械铣削运动,得到厚度减薄特征;更换支撑部件,双侧同步镜像机械铣削运动,完成制孔和净边特征;输出实时测量数据,得到检测报告。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明针对拱形环状工件拱高大、曲率大、壁厚薄的特点,采用内外设备布局结构形式,通过合理的自由度构型,可以实现对工件加工区域沿法向任意加工点的外部铣削及内部支撑测量,实现工件整体机械镜像铣削加工,替代原工件分片化铣及拼焊工艺,实现工件的绿色环保加工;
(2)本发明通过增加支撑摆头在支撑滑鞍上方的前后移动自由度X2轴,可以快速适应工件在圆度方向的变形(如工件局部凹凸变形),提高设备的快速响应,保证加工
精度,提高加工效率;
(3)本发明通过“铣削测量一体化”的同步镜像铣削加工,保证工件壁厚精度、轮廓精度,提高加工精度及加工效率。
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明用于拱形环状薄壁工件加工的镜像铣削装置的整体结构图;
图2为外部立式龙门铣头组件与内部支撑测量头组件的整体结构图;
图3为外部立式龙门铣头组件与内部支撑测量头组件的整体结构图;
图4为外部铣头与内部测量头结构图;
图5为加工路径补偿方法的流程图;
图6为加工步骤流程图;
图7为基准圆创建的示意图;
图8为平行曲线覆盖的示意图;
图9为匹配点的生成和编号示意图;
图10为面上待补偿点的投影点的面积坐标示意图;
图中:外部立式龙门铣头组件1、内部支撑测量头组件2、装夹工装3、工作台4、工件5;底座101、滑座102、横梁103、滑鞍104、滑枕105、双叉摆头106、铣削头107、刀具108;固定底座201、旋转台202、支撑立柱203、支撑滑鞍204、支撑摆头205、支撑测头206、随动支撑测量组件207。
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1:
如图1-图4,本发明提供了一种用于拱形环状薄壁工件加工的镜像铣削装置,包括外部立式龙门铣头组件1、内部支撑测量头组件2、装夹工装3及工作台4。外部立式龙门铣头组件1位于工件5外侧,可以实现工件5的外部铣削;内部支撑测量头组件2位
于工件5内侧,可以实现工件5的内部支撑及测量;外部铣头及内部支撑测量头处于上下相对的位置关系;装夹工装3位于外部立式龙门铣头组件1与内部支撑测量头组件2之间,可以实现工件5的定位装夹固定,装夹工装3的夹持范围可调,同时可更换不同规格大小,从而适应不同规格工件5的装夹;工作台4位于装夹工装3的下方,对装夹工装3起到支撑固定作用,不同规格的装夹工装3与工作台4通过零点定位进行快速装夹/分离,提供设备加工效率,通过导向销进行导向,导向销起到保护零点定位的作用。
所述外部立式龙门铣头组件1包括:底座101、滑座102、横梁103、滑鞍104、滑枕105、双叉摆头106、铣削头107、刀具108。外部立式龙门铣头组件1包含至少5个自由度,可以控制刀具108在空间范围内的移动,行程可覆盖工件5外表面任意点的加工。本发明优选实施方案有6轴,分别为轴X1、Y1、Z1、A1、C1、W1,其中X1、Y1、Z1、W1为平移轴,A1、C1为旋转轴。
在本发明的优选实施形式中,底座101固定在地面,分左右两侧镜像对称分布;滑座102分左右两侧镜像对称分布,分别与底座101通过单边至少1组直线导轨相连接,并可通过传动机构如齿轮齿条或丝杠螺母实现传动,横梁103与滑座102通过螺钉固定在一起,滑座102及横梁103相对于底座101的前后移动为X1轴;
所述滑鞍104通过至少2组直线导轨与横梁103相连,并可通过传动机构如齿轮齿条或丝杠螺母实现传动,滑鞍104在横梁103上的左右移动为Y1轴,Y1轴相对于X1轴垂直;
所述滑枕105通过至少2组直线导轨与滑鞍104相连,并可通过传动机构如齿轮齿条或丝杠螺母实现传动,滑枕105在滑鞍104上的上下移动为Z1轴,Z1轴相对于X1/Y1轴分别垂直,同时可以配备平衡装置进行平衡配重,提高Z1轴的动态响应;
所述双叉摆头106安装于滑枕端部,双叉摆头106相对于自身中心线的旋转为C1轴,C1轴的旋转轴线与Z1轴的轴线平行,C1轴可实现±360°旋转;
所述铣削头107安装于双叉摆头106中间,铣削头107相对于与双叉摆头106连接处轴线的旋转为A1轴,A1轴的旋转轴线在X1轴与Y1轴的所在平面内移动,在C1轴的处于不同旋转角度时可在某一时刻与X1轴或者Y1轴平行,A1轴可以实现±110°的摆动;
所述刀具108安装于铣削头107前端,刀具108相对铣削头107的前后移动为W1轴,W1轴可以实现法向快速进给,提高机床的快速响应。
所述内部支撑测量头组件2包括:固定底座201、旋转台202、支撑立柱203、支撑
滑鞍204、支撑摆头205、支撑测头206、随动支撑测量组件207。内部支撑测量头组件2包含至少5个自由度,可以控制随动支撑测量组件207在空间范围内的移动,行程可覆盖工件5内表面的支撑及测量;本发明优选实施方案有6轴,分别为轴X2、Y2、Z2、A2、C2、W2,其中X2/Y2/Z2/W2为平移轴,A2/C2为旋转轴;
在本发明的优选实施形式中,固定底座201固定在地面,起整体支撑作用,固定底座201优选为环形结构。旋转台202通过轴环与固定底座201连接,并可通过传动机构如滚轮齿圈或齿轮齿圈实现传动,旋转台202在固定底座201上的旋转为C2轴,C2轴绕旋转台202与固定底座201的中心线旋转,C2轴旋转范围为-120°~600°;
所述支撑立柱203通过至少2组直线导轨与旋转台202相连,并可通过传动机构如丝杠螺母实现传动,支撑立柱203在旋转台202上的前后移动为Y2轴;
所述支撑滑鞍204通过至少2组直线导轨与支撑立柱203相连,并可通过传动机构如丝杠螺母实现传动,支撑滑鞍204在支撑立柱203的上下移动为Z2轴,Z2轴与Y2轴垂直,同时可以配备平衡装置进行平衡配重,提高Z2轴的动态响应;
所述支撑摆头205通过至少2组直线导轨与支撑滑鞍204相连,并可通过传动机构如丝杠螺母实现传动,支撑摆头205在支撑滑鞍上方的前后移动为X2轴,X2轴、Y2轴、Z2轴在空间上互为垂直关系;
所述支撑测头206安装于支撑摆头205侧面,支撑测头206相对于与支撑摆头205连接处轴线的旋转为A2轴,A2轴摆动范围为-10°~100°;
所述随动支撑测量组件207安装于支撑测头206前端,随动支撑测量组件207相对支撑测头206的前后移动为W2轴,W2轴可以实现法向快速进给,提高机床的快速响应。
所述外部立式龙门铣头组件1与内部支撑测量头组件2采用上下相对的布局结构形式,构成相对于工件的内外同步运动关系,行程覆盖工件加工全区域,可以实现实时的铣削及随动支撑测量,有效减少加工过程的振动,提高加工精度;
装夹工装3可以实现工件5的快速装夹固定,根据工件边缘状态的不同,采用不同夹紧方式如定位虎钳夹紧或者压板压紧的方式进行固定,装夹工装3的夹持范围可调,同时可更换不同规格大小,从而适应更多不同规格工件5的装夹,装夹工装3优选为环形结构;
工作台4位于装夹工装3的下方,工作台4对装夹工装3起到支撑固定作用,工作台4优选结构形式为环形结构,不同规格的装夹工装3与工作台4通过一定机构如优选
零点定位机构可以实现进行快速装夹/分离,提升设备加工效率。
实施例2:
工件是一种球形曲面,该零件尺寸大,厚度薄。因此无论是在毛料成型还是装夹等过程中都极易产生变形,致使毛料的实际形状与设计形状存在较大的偏差。因此,实施例1提供的用于拱形环状薄壁工件加工的镜像铣削装置必须要对的加工路径进行补偿修正,才能够加工出合格的工件。
如图5至图10所示,本发明假设已经通过三维模型测量重构的方式获取到了工件的实际形状。本发明主要解决的问题是如何将球面上的加工路径由设计曲面补偿到逆向得到的实际曲面上去。首先选定理论球面上的中心点,然后以该点为中心,向外做等测地线距离的平行曲线。假设XOY平面穿过该中心点,并将球面平均分成两个部分。以XOY平面与曲线的交点为参考点,将该曲线划分为若干等长度的线段。然后在实际的曲面上进行相同的操作,通过此方式得到了设计曲面上与实际曲面上一一匹配的点。最后,将理论模型上的匹配点进行三角网格化,并计算加工路径上的位置点在其对应的三角网格中的面积坐标,再通过该面积坐标和对应三角网格的索引,在实际曲面上计算出相应的位置点。如图5所示,具体的,步骤如下:
顶点确定步骤:在设计模型上确定球形曲面的顶点,然后以该顶点为中心,创建一个曲面上的圆,该圆上任意一点到顶点的弧线长度为d,见图7。
平行曲线覆盖步骤:以圆为参考,做球形面上的平行曲线,平行距离为测地距离,长度为d,不断平行曲线,直至覆盖整个球面,见图8。
交点计算步骤:计算参考平面XOZ与平行曲线的交点,交点有两个,此处取+X方向上的交点。
圆弧获取步骤:以上一步中的交点为参考,将圆划分为等长度的圆弧,圆弧长度为d。如果圆的周长不能够整除d,则微调圆弧长度,保证圆周上每个圆弧的长度是相同的。
圆弧编号步骤:对圆弧的端点进行编号,后面将圆弧的端点称为匹配点。编号采用二维数组(m,n)进行编号,其中m表示平行曲线的索引,n表示平行曲线上分割点的索引,见图9。
段数记录步骤:记录上述每一条平行曲线被平分的段数,如N1,N2,N3,...。
参考点获取步骤:在逆向曲面上执行顶点确定步骤、平行曲线覆盖步骤和交点计算步骤的过程,获取逆向曲面上的平行线分割参考点。
分割点编号步骤:根据段数记录步骤中得到的圆弧分割的段数N1,N2,N3,...,将逆向
面上的平行曲线进行均分,并采用相同二位数组编号的方式对分割点进行编号。
三角网格化步骤:对设计模型曲面上的匹配点进行三角网格化。
投影步骤:将曲面上加工路径的位置点投影到最近的三角网格上,并计算投影点在三角网格上的面积坐标。假设该三角网格的顶点索引分别是(m1,n1),(m2,n2),(m3,n3),见图10。
坐标值计算步骤:在逆向曲面上的匹配点中取索引值为(m1,n1),(m2,n2),(m3,n3)的三个点,并将其组成一个三角形。通过面积坐标计算对应的坐标值。
补偿步骤:将上一步得到的坐标值投影到逆向曲面上,就得到了补偿后的坐标点位置。
通过球形曲面上的加工路径补偿方法,完成了设计曲面到逆向曲面的匹配和加工路路径的补偿,解决了变形后的球面无法加工的问题,达到了零件切削加工的要求。
补偿完成后,即可按照图6所示的加工方法进入加工步骤:将补偿后的程序代码,导入数控系统,得到可执行文件,开启数据实时采集;执行数控程序,支撑摆头接近工件,获取稳定厚度值,铣削头进入切削,刀轴实时补偿得到目标厚度,双侧同步镜像机械铣削运动,得到厚度减薄特征;更换支撑部件,双侧同步镜像机械铣削运动,完成制孔和净边特征;输出实时测量数据,得到检测报告。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
Claims (14)
- 一种用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,包括:外部立式龙门铣头组件(1)、内部支撑测量头组件(2)、装夹工装(3)和工作台(4);所述外部立式龙门铣头组件(1)位于工件(5)外侧,实现工件(5)的外部铣削;所述内部支撑测量头组件(2)位于工件(5)内侧,实现工件(5)的内部支撑及测量;所述外部立式龙门铣头组件(1)与内部支撑测量头组件(2)处于上下相对的位置关系;所述装夹工装(3)位于外部立式龙门铣头组件(1)与内部支撑测量头组件(2)之间,实现工件(5)的定位装夹固定;所述工作台(4)位于装夹工装(3)的下方,对装夹工装(3)起到支撑固定作用。
- 根据权利要求1所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述外部立式龙门铣头组件(1)与内部支撑测量头组件(2)采用上下相对的布局结构形式,构成相对于工件(5)的内外同步运动关系,行程覆盖工件加工全区域,实现实时铣削及随动支撑测量。
- 根据权利要求1所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述装夹工装(3)根据工件(5)边缘状态的不同,采用不同夹紧方式进行固定,包括定位虎钳夹紧或者压板压紧的方式,装夹工装(3)的夹持范围可调,同时可更换不同规格大小,从而适应不同规格工件(5)的装夹。
- 根据权利要求1所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述装夹工装(3)为环形结构。
- 根据权利要求1所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述工作台(4)为环形结构,不同规格的装夹工装(3)与工作台(4)通过零点定位进行装夹/分离,通过导向销进行导向,导向销起到保护零点定位的作用。
- 根据权利要求1所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述外部立式龙门铣头组件(1)包括:底座(101)、滑座(102)、横梁(103)、滑鞍(104)、滑枕(105)、双叉摆头(106)、铣削头(107)和刀具(108);所述外部立式龙门铣头组件(1)包含至少5个自由度,控制刀具(108)在空间范围内的移动,行程覆盖工件(5)外表面任意点的加工;所述底座(101)固定在地面,分左右两侧镜像对称分布;所述滑座(102)分左右两侧镜像对称分布,分别与底座(101)通过单边至少1组直线导轨相连接,并通过传动机构实现传动;所述横梁(103)与滑座(102)通过螺钉固定在一起;所述滑鞍(104)通过至少2组直线导轨与横梁(103)相连,并通过传动机构实现传动;所述滑枕(105)通过至少2组直线导轨与滑鞍(104)相连,并通过传动机构实现传动;所述双叉摆头(106)安装于滑枕端部;所述铣削头(107)安装于双叉摆头(106)中间;所述刀具(108)安装于铣削头(107)前端。
- 根据权利要求6所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述外部立式龙门铣头组件(1)包含6轴,分别为轴X1、Y1、Z1、A1、C1、W1,其中X1、Y1、Z1、W1为平移轴,A1、C1为旋转轴;所述滑座(102)及横梁(103)相对于底座(101)的前后移动为X1轴;所述滑鞍(104)在横梁(103)上的左右移动为Y1轴,Y1轴相对于X1轴垂直;所述滑枕(105)在滑鞍(104)上的上下移动为Z1轴,Z1轴相对于X1、Y1轴分别垂直,同时配备平衡装置进行平衡配重,提高Z1轴的动态响应;所述双叉摆头(106)相对于自身中心线的旋转为C1轴,C1轴的旋转轴线与Z1轴的轴线平行,C1轴实现±360°旋转;所述铣削头(107)相对于与双叉摆头(106)连接处轴线的旋转为A1轴,A1轴的旋转轴线在X1轴与Y1轴的所在平面内移动,在C1轴的处于不同旋转角度时在某一时刻与X1轴或者Y1轴平行,A1轴实现±110°的摆动;所述刀具(108)相对铣削头(107)的前后移动为W1轴,W1轴实现法向快速进给。
- 根据权利要求1所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述内部支撑测量头组件(2)包括:固定底座(201)、旋转台(202)、支撑立柱(203)、支撑滑鞍(204)、支撑摆头(205)、支撑测头(206)和随动支撑测量组件(207);所述内部支撑测量头组件(2)包含至少5个自由度,控制随动支撑测量组件(207)在空间范围内的移动,行程覆盖工件(5)内表面的支撑及测量;所述固定底座(201)固定在地面,起整体支撑作用;所述旋转台(202)通过轴环与固定底座(201)连接,并通过传动机构实现传动;所述支撑立柱(203)通过至少2组直线导轨与旋转台(202)相连,并通过传动机构实现传动;所述支撑滑鞍(204)通过至少2组直线导轨与支撑立柱(203)相连,并通过传动机构实现传动;所述支撑摆头(205)通过至少2组直线导轨与支撑滑鞍(204)相连,并通过传动机构实现传动;所述支撑测头(206)安装于支撑摆头(205)侧面;所述随动支撑测量组件(207)安装于支撑测头(206)前端。
- 根据权利要求8所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述内部支撑测量头组件(2)包含6轴,分别为轴X2、Y2、Z2、A2、C2、W2,其中X2、Y2、Z2、W2为平移轴,A2、C2为旋转轴;所述旋转台(202)在固定底座(201)上的旋转为C2轴,C2轴绕旋转台(202)与固定底座(201)的中心线旋转,C2轴旋转范围为-120°~600°;所述支撑立柱(203)在旋转台(202)上的前后移动为Y2轴;所述支撑滑鞍(204)在支撑立柱(203)的上下移动为Z2轴,Z2轴与Y2轴垂直,同时配备平衡装置进行平衡配重,提高Z2轴的动态响应;所述支撑摆头(205)在支撑滑鞍上方的前后移动为X2轴,X2轴、Y2轴、Z2轴在空间上互为垂直关系;所述支撑测头(206)相对于与支撑摆头(205)连接处轴线的旋转为A2轴,A2轴摆动范围为-10°~100°;所述随动支撑测量组件(207)相对支撑测头(206)的前后移动为W2轴,W2轴实现法向快速进给。
- 根据权利要求8所述的用于拱形环状薄壁工件加工的镜像铣削装置,其特征在于,所述固定底座(201)为环形结构。
- 一种权利要求1所述的用于拱形环状薄壁工件加工的镜像铣削装置的加工方法,其特征在于,包括:设计面计算步骤:选定设计面上的中心点,然后以该中心点为中心,向外做等测地线距离的平行曲线,假设XOY平面穿过该中心点,并将设计面平均分成两个部分,以 XOY平面与平行曲线的交点为参考点,将平行曲线划分为多个等长度的线段;逆向面计算步骤:选定逆向面上的中心点,然后以该中心点为中心,向外做等测地线距离的平行曲线,假设XOY平面穿过该中心点,并将设计面平均分成两个部分,以XOY平面与平行曲线的交点为参考点,将平行曲线划分为多个等长度的线段;坐标补偿步骤:对设计面上线段的端点进行三角网格化,并计算加工路径上的位置点在对应的三角网格中的面积坐标,再通过该面积坐标和对应三角网格的索引,在逆向面上计算出相应的位置点;加工步骤:将坐标补偿步骤的结果导入数控系统,支撑摆头接近工件,获取厚度值,铣削头进入切削,刀轴实时补偿得到目标厚度,双侧同步镜像机械铣削运动,得到厚度减薄特征;更换支撑部件,双侧同步镜像机械铣削运动,完成制孔和净边特征。
- 根据权利要求11所述的用于拱形环状薄壁工件加工的镜像铣削装置的加工方法,其特征在于,所述设计面计算步骤包括:顶点确定步骤:在设计面确定顶点,以该顶点为中心,创建一个圆,该圆上任意一点到顶点的弧线长度为d;平行曲线覆盖步骤:以该圆为参考,做设计面上的平行曲线,平行距离为测地距离,长度为d,不断做平行曲线,直至覆盖整个设计面;交点计算步骤:计算参考平面XOZ与平行曲线的交点,交点有两个,取+X方向上的交点;圆弧获取步骤:以所取的交点为参考,将圆划分为等长度的圆弧,圆弧长度为d,如果圆的周长不能够整除d,则微调圆弧长度,保证圆周上每个圆弧的长度是相同的;圆弧编号步骤:对圆弧的端点进行编号,后面将圆弧的端点称为匹配点,编号采用二维数组(m,n)进行编号,其中m表示平行曲线的索引,n表示平行曲线上分割点的索引;段数记录步骤:记录每一条平行曲线被平分的段数。
- 根据权利要求12所述的用于拱形环状薄壁工件加工的镜像铣削装置的加工方法,其特征在于,所述逆向面计算步骤包括:参考点获取步骤:在逆向面上执行顶点确定步骤、平行曲线覆盖步骤和交点计算步骤的过程,获取逆向面上的平行线分割参考点;分割点编号步骤:根据段数记录步骤中得到的圆弧分割的段数,将逆向面上的平行曲线进行均分,并采用相同二位数组编号的方式对分割点进行编号。
- 根据权利要求13所述的用于拱形环状薄壁工件加工的镜像铣削装置的加工方法,其特征在于,所述坐标补偿步骤包括:三角网格化步骤:对设计面上的匹配点进行三角网格化;投影步骤:将设计面上加工路径的位置点投影到最近的三角网格上,并计算投影点在三角网格上的面积坐标,假设该三角网格的顶点索引分别是(m1,n1),(m2,n2),(m3,n3);坐标值计算步骤:在逆向面上的匹配点中取索引值为(m1,n1),(m2,n2),(m3,n3)的三个点,并将其组成一个三角形,通过面积坐标计算对应的坐标值;补偿步骤:将得到的坐标值投影到逆向面上,得到补偿后的坐标点位置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/644,135 US20240316659A1 (en) | 2023-03-24 | 2024-04-24 | Mirror milling device for machining arched annular thin-walled workpiece and machining method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310306147.2A CN116422950B (zh) | 2023-03-24 | 2023-03-24 | 用于拱形环状薄壁工件加工的镜像铣削装置 |
CN202310306147.2 | 2023-03-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/644,135 Continuation US20240316659A1 (en) | 2023-03-24 | 2024-04-24 | Mirror milling device for machining arched annular thin-walled workpiece and machining method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024198256A1 true WO2024198256A1 (zh) | 2024-10-03 |
Family
ID=87091870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/119578 WO2024198256A1 (zh) | 2023-03-24 | 2023-09-19 | 用于拱形环状薄壁工件加工的镜像铣削装置及加工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116422950B (zh) |
WO (1) | WO2024198256A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116422950B (zh) * | 2023-03-24 | 2024-03-26 | 上海拓璞数控科技股份有限公司 | 用于拱形环状薄壁工件加工的镜像铣削装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002166319A (ja) * | 2000-12-01 | 2002-06-11 | Canon Inc | 切削工具及びその固定用スペーサ |
CN107344251A (zh) * | 2017-07-13 | 2017-11-14 | 上海拓璞数控科技股份有限公司 | 蒙皮加工的镜像铣削方法与系统 |
CN110480075A (zh) * | 2019-08-26 | 2019-11-22 | 上海拓璞数控科技股份有限公司 | 基于点云数据的工件曲面轮廓补偿系统及方法及介质 |
CN114406326A (zh) * | 2022-03-28 | 2022-04-29 | 西安兴航航空科技股份有限公司 | 一种飞机蒙皮的新型加工工艺 |
CN115408784A (zh) * | 2022-07-12 | 2022-11-29 | 上海拓璞数控科技股份有限公司 | 基于平行曲线的曲面匹配方法及系统 |
CN116422950A (zh) * | 2023-03-24 | 2023-07-14 | 上海拓璞数控科技股份有限公司 | 用于拱形环状薄壁工件加工的镜像铣削装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4643075B2 (ja) * | 2001-08-30 | 2011-03-02 | 東芝機械株式会社 | 立旋盤 |
DE10234707B4 (de) * | 2002-07-30 | 2007-08-02 | Erwin Junker Maschinenfabrik Gmbh | Verfahren und Vorrichtung zum Schleifen eines rotationssymmetrischen Maschinenbauteils |
CN104360636B (zh) * | 2014-11-24 | 2016-08-24 | 首都航天机械公司 | 一种面向镜像铣削的双通道协调运动控制方法 |
KR101868559B1 (ko) * | 2017-03-31 | 2018-06-20 | (주)유지인트 | 좌우 대칭형 공작 모듈을 갖는 머시닝 센터 |
CN107976955B (zh) * | 2017-11-07 | 2019-11-08 | 大连理工大学 | 一种大型薄壁零件复杂曲面镜像加工方法 |
CN108127424B (zh) * | 2017-11-21 | 2019-09-24 | 西北工业大学 | 一种薄壁件镜像铣削随动顶撑装置及方法 |
CN109323987A (zh) * | 2018-10-17 | 2019-02-12 | 广州超音速自动化科技股份有限公司 | 一种视觉检测系统的调节装置 |
-
2023
- 2023-03-24 CN CN202310306147.2A patent/CN116422950B/zh active Active
- 2023-09-19 WO PCT/CN2023/119578 patent/WO2024198256A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002166319A (ja) * | 2000-12-01 | 2002-06-11 | Canon Inc | 切削工具及びその固定用スペーサ |
CN107344251A (zh) * | 2017-07-13 | 2017-11-14 | 上海拓璞数控科技股份有限公司 | 蒙皮加工的镜像铣削方法与系统 |
CN110480075A (zh) * | 2019-08-26 | 2019-11-22 | 上海拓璞数控科技股份有限公司 | 基于点云数据的工件曲面轮廓补偿系统及方法及介质 |
CN114406326A (zh) * | 2022-03-28 | 2022-04-29 | 西安兴航航空科技股份有限公司 | 一种飞机蒙皮的新型加工工艺 |
CN115408784A (zh) * | 2022-07-12 | 2022-11-29 | 上海拓璞数控科技股份有限公司 | 基于平行曲线的曲面匹配方法及系统 |
CN116422950A (zh) * | 2023-03-24 | 2023-07-14 | 上海拓璞数控科技股份有限公司 | 用于拱形环状薄壁工件加工的镜像铣削装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116422950B (zh) | 2024-03-26 |
CN116422950A (zh) | 2023-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111195830B (zh) | 一种大型薄壁筒件数字化减薄加工方法 | |
CN103307984B (zh) | 一种用于可调桨叶片的激光测量装置、系统及方法 | |
CN107775065B (zh) | 双机器人镜像铣削等壁厚加工的协调运动同步控制方法 | |
CN101482397B (zh) | 形状测量方法 | |
CN107344251A (zh) | 蒙皮加工的镜像铣削方法与系统 | |
CN105806251A (zh) | 基于线激光传感器的四轴测量系统及其测量方法 | |
WO2024198256A1 (zh) | 用于拱形环状薄壁工件加工的镜像铣削装置及加工方法 | |
CN204893581U (zh) | 一种五轴联动机床旋转轴的几何误差连续测量装置 | |
CN107238352A (zh) | 一种基于数控车床的回转类结构特征零件轮廓激光在机测量装置与方法 | |
CN107270820A (zh) | 一种大型薄壁构件壁厚在位测量系统和方法 | |
CN111940843A (zh) | 基于非接触测量的大型结构件智能切削系统及方法 | |
CN114611248A (zh) | 飞机雷达罩加工毛坯件三维重建方法、装置、介质及设备 | |
CN110497088B (zh) | 基于曲面映射的柔性共形天线激光加工误差控制方法 | |
CN105290915B (zh) | 一种大口径超精密磨床集成系统 | |
CN109108695B (zh) | 一种三轴加工中心加工斜面孔的夹具 | |
CN107984177A (zh) | 对开机匣模拟件加工方法 | |
CN115365891A (zh) | 一种异形壳体内形面在线测量-误差修正装置及方法 | |
CN110006339A (zh) | 一种天线反射器复材模具型面精度在位测量方法及系统 | |
CN114200891A (zh) | 无模型筒形铸件内腔铣削加工系统及轨迹规划方法 | |
CN117516438B (zh) | 一种增材制造设备的制备精度评价方法及系统 | |
US20240316659A1 (en) | Mirror milling device for machining arched annular thin-walled workpiece and machining method thereof | |
CN117232432A (zh) | 一种叶片三维轮廓检测系统及其检测方法 | |
CN111351435A (zh) | 一种五轴三维测量机 | |
CN112964211B (zh) | 一种球壳零件厚度及面形的检测方法及装置 | |
Fuwen | Location issues of thin shell parts in the reconfigurable fixture for trimming operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23929830 Country of ref document: EP Kind code of ref document: A1 |