Nothing Special   »   [go: up one dir, main page]

WO2024195768A1 - Image projection device - Google Patents

Image projection device Download PDF

Info

Publication number
WO2024195768A1
WO2024195768A1 PCT/JP2024/010533 JP2024010533W WO2024195768A1 WO 2024195768 A1 WO2024195768 A1 WO 2024195768A1 JP 2024010533 W JP2024010533 W JP 2024010533W WO 2024195768 A1 WO2024195768 A1 WO 2024195768A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
mirror
light
image projection
projection device
Prior art date
Application number
PCT/JP2024/010533
Other languages
French (fr)
Japanese (ja)
Inventor
匡紘 堀
一臣 村上
憂士 森本
貴智 藤吉
秀樹 原
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023047417A external-priority patent/JP2024136331A/en
Priority claimed from JP2023047419A external-priority patent/JP2024136333A/en
Priority claimed from JP2023047418A external-priority patent/JP2024136332A/en
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2024195768A1 publication Critical patent/WO2024195768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to an image projection device.
  • dashboards that light up icons have been used as devices to display various types of information inside vehicles. As the amount of information to be displayed increases, it has also been proposed to embed an image display device in the dashboard or to configure the entire dashboard from an image display device.
  • HUDs head-up displays
  • the image projection unit projects light containing an image, which is then reflected by a free-form mirror or the like, and the light reaches the passenger's viewpoint so that the image is formed in space via a display unit such as a windshield. This allows the passenger to perceive the image as being displayed at the imaging position in the depth direction due to the light incident on the viewpoint.
  • Such image projection devices are often housed in the dashboard, below the windshield of the vehicle. In addition, they are usually placed in front of the driver's seat, as they project a virtual image toward the driver's viewpoint. However, the steering wheel and instruments are located between the driver's seat and the windshield, making it difficult to secure space to house the image projection device.
  • the present invention has been developed in consideration of the above-mentioned problems with the conventional technology, and aims to provide an image projection device that can be made compact by making effective use of space.
  • an image projection device is an image projection device that projects a projection image onto a display unit, and is characterized in that it includes an image irradiation unit that irradiates image light onto the display unit, a first mirror that reflects the image light irradiated from the image irradiation unit, and a second mirror that reflects the image light reflected by the first mirror, the area connecting both ends of the opposing first and second mirrors is an inter-mirror area, the image irradiation unit is biased to one side in the width direction of the inter-mirror area, and at least a portion of it is located within the inter-mirror area.
  • At least a portion of the image irradiation section is located within the inter-mirror area connecting both ends of the opposing first and second mirrors, making it possible to effectively utilize space and achieve miniaturization.
  • an image projection device is an image projection device that projects a projection image onto a display unit, and is characterized in that it includes an image irradiation unit that irradiates image light onto the display unit, a first mirror that reflects the image light irradiated from the image irradiation unit, a second mirror that reflects the image light reflected by the first mirror, and a control board that controls the image irradiation unit, and the first mirror is disposed between the control board and the image irradiation unit.
  • the first mirror is disposed between the control board and the image projection unit, making it possible to effectively utilize the space and achieve miniaturization.
  • an image projection device that projects a projection image onto a display unit, and includes an image irradiation unit that irradiates image light onto the display unit, a first mirror that reflects the image light irradiated from the image irradiation unit, a second mirror that reflects the image light reflected by the first mirror, and a light-shielding wall disposed between the first mirror and the second mirror, the light-shielding wall having an image light passing portion with a portion cut out, and the image light passing through the image light passing portion.
  • a light-shielding wall is disposed between the first and second mirrors, and image light passes through an image light passage provided in the light-shielding wall, making it possible to effectively utilize space and achieve miniaturization.
  • the present invention provides an image projection device that can be made compact by making effective use of space.
  • FIG. 1A is a diagram for explaining an image projection device 10 according to the first, third and fifth embodiments, and is a schematic diagram showing projection of a virtual image using the image projection device 10.
  • FIG. 1B is a schematic plan view showing an overview of the image projection device 10 shown in FIG. 1A.
  • FIG. 2A is a schematic top view showing an example of the structure of the image projection device 10 according to the first and third embodiments.
  • FIG. 2B is a schematic perspective view of the image projection device 10 shown in FIG. 2A.
  • FIG. 3A is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the first and third embodiments with the upper cover 110 removed.
  • FIG. 3B is a schematic top view showing an example of the internal structure of the image projection device 10 according to the first embodiment with the upper cover 110 removed.
  • FIG. 3C is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the first embodiment, with a part of the lower housing 100 cut away.
  • FIG. 4A is a side view seen from the rear side of the first mirror 12, showing the arrangement of the various members inside the image projection device 10 according to the first embodiment.
  • FIG. 4B is a perspective view of the first mirror 12 viewed obliquely from above, showing the arrangement of the various members inside the image projection device 10 shown in FIG. 4A.
  • FIG. 4A is a side view seen from the rear side of the first mirror 12, showing the arrangement of the various members inside the image projection device 10 according to the first embodiment.
  • FIG. 4B is a perspective view of the first mirror 12 viewed obliquely from above, showing the arrangement of the various members inside the image projection device 10 shown in FIG. 4A.
  • FIG. 5A is a schematic top view showing a passing area of the image light irradiated from the image irradiating unit 11 according to the first and fifth embodiments.
  • FIG. 5B is a side view seen from the rear surface side of the first mirror 12, showing a passing area of the image light irradiated from the image irradiating unit 11 shown in FIG. 5A.
  • FIG. 6 is a schematic perspective view showing the relationship between the image light passing area and the image light passing portion 113 in a state in which the upper cover 110 according to the first embodiment is assembled.
  • FIG. 7 is a schematic diagram illustrating the heights of the reflecting surfaces of the first mirror 12 and the second mirror 13 in the image projection device 10 according to the second embodiment.
  • FIG. 8A is a schematic top view showing an example of the internal structure of the image projection device 10 according to the third embodiment with the upper cover 110 removed.
  • FIG. 8B is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the third embodiment, with a part of the lower housing 100 cut away.
  • FIG. 9A is a side view seen from the rear side of the first mirror 12, showing the arrangement of the various members inside the image projection device 10 according to the third embodiment.
  • FIG. 9B is a perspective view of the first mirror 12 from diagonally above, showing the arrangement of the various members inside the image projection device 10 shown in FIG. 9A.
  • FIG. 10A is a schematic cross-sectional view showing the arrangement of the wiring cable 16 that connects between the image projection unit 11 and the control board 15 according to the third embodiment.
  • FIG. 10B is a schematic top view showing the arrangement of the distribution cables 16 shown in FIG. 10A.
  • FIG. 11 is a schematic top view showing an example of the structure of an image projection device 10 according to the fifth embodiment.
  • FIG. 12A is a schematic perspective view illustrating an example of the internal structure of the image projection device 10 according to the fifth embodiment with the upper cover 110 removed.
  • FIG. 12B is a schematic top view showing an example of the internal structure of the image projection device 10 shown in FIG. 12A with the upper cover 110 removed.
  • FIG. 13 is a schematic perspective view showing the relationship between the image light passing area and the image light passing portion 113 in a state in which the upper cover 110 is assembled in the fifth embodiment.
  • FIG. 14A is a schematic diagram showing an example of an image light passing portion 113 formed in a light-shielding wall 112 according to the sixth embodiment, the image light passing portion 113 having an arc shape.
  • FIG. 14B is a schematic diagram showing an example of the image light passing portion 113 formed in the light-shielding wall 112 according to the sixth embodiment, the image light passing portion 113 having a trapezoidal shape.
  • FIG. 14C is a schematic diagram showing an example of the image light passing portion 113 formed in the light blocking wall 112 according to the sixth embodiment, the image light passing portion 113 having a triangular shape.
  • Figures 1A and 1B are diagrams for explaining an image projection device 10 according to this embodiment, where Figure 1A is a schematic diagram showing the projection of a virtual image using the image projection device 10, and Figure 1B is a schematic plan view showing an overview of the image projection device 10.
  • the solid lines shown in Figures 1A and 1B indicate the optical path of image light.
  • the dashed and dotted lines shown in Figure 1B indicate the area through which light passes.
  • the direction perpendicular to the paper surface is the X-axis direction, which corresponds to the left-right direction of the vehicle
  • the left-right direction of the paper surface is the Y-axis direction, which corresponds to the front-rear direction of vehicle 1
  • the up-down direction of the paper surface is the Z-axis direction, which corresponds to the up-down direction of vehicle 1.
  • the direction perpendicular to the paper surface is the Z-axis direction, which corresponds to the up-down direction of vehicle 1
  • the left-right direction of the paper surface is the Y-axis direction, which corresponds to the front-rear direction of vehicle 1
  • the up-down direction of the paper surface is the X-axis direction, which corresponds to the left-right direction of vehicle 1.
  • the image projection device 10 is mounted on a vehicle 1, and the image light projected from the image projection device 10 is reflected by the windshield (display unit) WS and irradiated to the driver's viewpoint.
  • the driver visually recognizes a virtual image P formed on an extension of the optical path along which the image light is incident.
  • the image projection device 10 includes an image projection unit 11, a first mirror 12, and a second mirror 13.
  • each part is controlled using a control unit that is connected to each part so that information can be communicated.
  • the configuration of the control unit is not limited, but one example includes a CPU (Central Processing Unit) for information processing, a memory device, a recording medium, an information communication device, etc.
  • the control unit controls the operation of each part according to a predetermined program, and sends information including an image (image information) to the image projection unit 11.
  • the image irradiation unit 11 is a part that irradiates the first mirror 12 with light containing an image as image light based on image information from the control unit.
  • the configuration of the image irradiation unit 11 is not limited, and may include a combination of a backlight and an image display unit.
  • the backlight is a part that irradiates the image display unit with irradiation light, and for example, a device that irradiates light using a light-emitting diode (LED) can be used.
  • the image display unit is a part that displays a projected image in response to an image signal from the control unit.
  • the projection image displayed on the image display unit is irradiated with irradiation light from the backlight, and image light is irradiated from the image display unit.
  • the specific configuration of the image display unit is not limited, and for example, a liquid crystal display device or the like can be used.
  • the first mirror 12 is an optical member that reflects the image light arriving from the image irradiation unit 11 toward the second mirror 13.
  • the concave shape of the first mirror 12 is a free-form mirror or the like in which the curvature of the concave surface is not constant.
  • the second mirror 13 is an optical member that reflects the image light arriving from the first mirror 12 in the direction of the windshield WS.
  • the second mirror 13 corresponds to the exit mirror in the present invention, since it projects the image light onto the windshield WS, which is the display unit.
  • the second mirror 13 is a free-form mirror with a concave shape that has been optically designed to project the image light as a virtual image P.
  • the second mirror 13 is rotatable around a predetermined rotation axis, and the reflection direction of the image light in the height direction is variable. Therefore, the second mirror 13 is capable of adjusting the angle and position of incidence of the image light with respect to the windshield WS.
  • the reflective surfaces of the first mirror 12 and the second mirror 13 are designed to expand the light diameter in the driver's viewpoint direction in order to project the image light as a virtual image P through the windshield WS. Therefore, the combination of the first mirror 12 and the second mirror 13 corresponds to the projection optical unit in this invention.
  • the expansion of the light diameter in the viewpoint direction includes not only the case where the light diameter consistently expands after reflection, but also the case where the light diameter shrinks and expands after forming an image at an intermediate point.
  • the windshield WS is a part that is provided in front of the driver's seat of the vehicle 1 and transmits visible light.
  • the windshield WS corresponds to the display unit in the present invention because the windshield WS reflects the image light incident from the image projection device 10 toward the viewpoint on the inside surface of the vehicle 1 and transmits light from outside the vehicle 1 toward the viewpoint.
  • the windshield WS is composed of a free-form surface, so its curvature changes and is not constant in the height direction.
  • a combiner may be provided as a display unit separate from the windshield WS and reflect light from the image projection device 10 toward the viewpoint.
  • the display unit is not limited to being located in front of the vehicle 1, and may be located to the side or rear as long as it projects an image toward the passenger's viewpoint.
  • the virtual image P is an image that appears as if it is formed in space when the image light reflected by the windshield WS reaches the passenger's viewpoint (eyebox).
  • the position where the virtual image P is formed is determined by the composite focal length of the projection optical unit included in the image projection device 10 and the windshield WS.
  • the optical path at the center position of the image light is drawn as a single straight line by a solid line.
  • the actual image light is displayed with a predetermined area in the image projection unit 11, and has a predetermined area in the direction perpendicular to the traveling direction.
  • the dashed line in FIG. 1B the area through which the image light with area passes is reflected by the first mirror 12 and travels while the light diameter in the width direction (X-axis direction) is reduced, and an intermediate image is formed between the first mirror 12 and the second mirror 13, and reaches the second mirror 13.
  • the image light reflected by the first mirror 12 reaches the second mirror 13 without forming an intermediate image.
  • the area indicated by the dashed line in Figure 1B is the inter-mirror area connecting the upper and lower ends of the opposing first mirror 12 and second mirror 13.
  • the image projection unit 11 is positioned offset to one side in the width direction of the inter-mirror area and is located within the inter-mirror area.
  • the area indicated by the dashed dotted line in Figure 1B is the light passage area through which the image light passes, and an intermediate image is formed in the width direction, so that even if the image projection unit 11 is located in the inter-mirror area, the image light is not blocked by the image projection unit 11.
  • the optical path at the center position of the image light is such that an acute angle is formed between the image projection unit 11 and the first mirror 12, and between the first mirror 12 and the second mirror 13, as shown by the solid line in Figure 1B.
  • FIGS. 2A and 2B are diagrams showing an example of the structure of the image projection device 10 according to this embodiment, with FIG. 2A being a schematic top view and FIG. 2B being a schematic perspective view.
  • the image projection device 10 includes a lower housing 100, an upper cover 110, and an actuator 120.
  • the lower housing 100 is a member that forms the lower part of the housing that constitutes the external shape of the image projection device 10.
  • the lower housing 100 has a bottom surface and side walls, and each part of the image projection device 10 is housed in the space formed by the bottom surface and the side walls.
  • multiple mounting parts are provided on the side walls of the lower housing 100, making it possible to fix the image projection device 10 to an installation position on the vehicle side using fastening members or the like.
  • an actuator 120 is attached to the outside of the lower housing 100.
  • the upper cover 110 is a member that forms the upper part of the housing that constitutes the external shape of the image projection device 10.
  • the upper cover 110 has a top surface and a peripheral portion, and the external shape of the peripheral portion corresponds to the side wall of the lower housing 100.
  • the lower housing 100 and the upper cover 110 are combined to constitute the external shape of the image projection device 10, and house the image irradiation unit 11, the first mirror 12, the second mirror 13, and each part described below, shown in FIG. 1B.
  • FIG. 2B an example of an uneven shape that reflects the shapes of each part housed inside is shown as the shape of the top surface of the upper cover 110, but a flat top surface or a curved top surface may also be used.
  • the upper cover 110 is also provided with an opening 111, a light-shielding wall 112, and an image light passing part 113.
  • the opening 111 is an opening provided on the top surface of the upper cover 110. As shown in FIG. 2A, the reflective surface of the second mirror 13 and the light-shielding wall 112 are visible from the opening 111. Therefore, the image light reflected by the second mirror 13 is irradiated to the outside of the image projection device 10 through the opening 111. Since the opening 111 is a portion for irradiating the image light, the opening 111 may be covered with a translucent cover member.
  • the light-shielding wall 112 is a wall for blocking light provided from the opening 111 of the upper cover 110 toward the lower housing 100.
  • FIG. 2A shows an example in which the light-shielding wall 112 is provided at an angle from one side of the opening 111 close to the first mirror 12 toward the center. A part of the light-shielding wall 112 is cut out to provide an image light passing section 113.
  • the image light passing section 113 is a cutout provided in a part of the light-shielding wall 112, and is an area through which the image light can pass.
  • the specific shape of the image light passing section 113 is not limited, but the space through which the image light passes, taking into account three-dimensional considerations, has been removed from the light-shielding wall 112.
  • the image light passing section 113 is disposed at the intermediate image-forming position of the image light, and an example is shown in which it has a distorted trapezoidal shape.
  • the actuator 120 is a part that supplies power to rotate the second mirror 13.
  • the actuator 120 is attached to the lower housing 100, and the movable part is inserted into the lower housing 100 through a through hole provided in the lower housing 100.
  • the specific configuration of the actuator 120 is not limited, but a configuration that uses an electric motor and rack gear, etc., to reciprocate the movable part based on power and control signals shared from the outside can be used.
  • Figures 3A to 3C are diagrams showing an example of the internal structure of the image projection device 10 according to this embodiment, with Figure 3A being a schematic perspective view showing the state with the upper cover 110 removed, Figure 3B being a schematic top view showing the state with the upper cover 110 removed, and Figure 3C being a schematic perspective view showing a part of the lower housing 100 broken away.
  • the lower housing 100 in addition to the image irradiation unit 11, first mirror 12, and second mirror 13, the lower housing 100 also contains a pivot arm 14 and a control board 15. Also, a light-shielding member 101 is disposed on the bottom surface of the lower housing 100.
  • the rotating arm 14 is connected to one end of the second mirror 13 and is a member for rotating the second mirror 13 around the rotation axis.
  • a movable part of the actuator 120 is connected to one end of the rotating arm 14.
  • the other end of the rotating arm 14 is supported so that it can rotate around the rotation axis.
  • the control board 15 is a part on which a wiring pattern is formed and on which electronic components and terminals are mounted, and which controls the driving of the image projection unit 11 and the actuator 120.
  • the specific configuration of the control board 15 is not limited, but a printed wiring board or the like can be used in which wiring is patterned on the surface of a flat board made of glass epoxy.
  • the control board 15 is equipped with a terminal section to which a wiring cable is connected, enabling the transmission of power and control signals between the image projection device 10 and the outside.
  • wiring cables or the like are connected between the image projection unit 11 and the actuator 120 and the control board 15, enabling the transmission of power and control signals.
  • the light-shielding member 101 is made of a light-shielding material and is a generally plate-shaped member that is provided along the bottom surface of the lower housing 100. One side of the light-shielding member 101 is extended to form a light-shielding inclined surface portion 102 and a light-shielding lower surface portion 103, and a part of the light-shielding member 101 is erected to form a mirror front light-shielding portion 104 and a light-shielding wall portion 105.
  • the first mirror 12 is disposed on the light-shielding member 101
  • the second mirror 13 is disposed on the light-shielding lower surface portion 103.
  • the light-shielding member 101 is shown to have a shape that follows the bottom surface of the lower housing 100, but the shape is not limited as long as a predetermined space can be provided between the bottom surface and the light-shielding member 101.
  • the light-shielding inclined surface portion 102 is made of a light-shielding material and is formed integrally with the light-shielding member 101, and is a portion that slopes downward from the first mirror 12 side toward the second mirror 13 side.
  • the light-shielding lower surface portion 103 is formed by extending from the end of the light-shielding inclined surface portion 102 on the second mirror 13 side.
  • the light-shielding lower surface portion 103 is made of a light-shielding material and is formed by extending from the light-shielding inclined surface portion 102, and is provided below the second mirror 13. Since the light-shielding lower surface portion 103 extends from the lowest position of the light-shielding inclined surface portion 102, it is disposed with a step between it and the surface of the light-shielding member 101 on which the first mirror 12 is mounted. Although an example in which the light-shielding lower surface portion 103 has a flat shape is shown in FIG. 3A and FIG. 3B, the specific shape is not limited.
  • the light-shielding member 101 is provided with the light-shielding inclined surface portion 102, and the light-shielding lower surface portion 103 is formed by extending from the light-shielding inclined surface portion 102, so that the light-shielding lower surface portion 103 can be provided at a position lower than the first mirror 12, and a space for the second mirror 13 to rotate can be secured.
  • the pre-mirror light shielding portion 104 is a portion made of a light-shielding material and erected on the light shielding member 101.
  • the pre-mirror light shielding portion 104 is provided between the image irradiation portion 11 and the lower portion of the first mirror 12, and limits the area where the image light is incident on the first mirror 12.
  • the shape of the pre-mirror light shielding portion 104 may be shaped to fit the lower portion of the first mirror 12, to support the positioning and holding of the first mirror 12.
  • the light-shielding wall 105 is a part made of a light-shielding material and erected on the light-shielding member 101.
  • the light-shielding wall 105 prevents stray light, which is unintended light, from entering the first mirror 12 or the second mirror 13.
  • a part extending in the horizontal direction is provided at the top of the light-shielding wall 105.
  • the light-shielding wall 105 is provided on the opposite side of the image irradiation unit 11 between the first mirror 12 and the second mirror 13, generally along the inter-mirror region.
  • the light-shielding wall 105 is preferably provided in a position where light can easily enter from the outside, and one example is the periphery of the position where the movable part of the actuator 120 is inserted.
  • the light-shielding wall 105 is erected from the light-shielding member 101, but it may be extended downward from the upper cover 110.
  • FIGS. 4A and 4B show the arrangement of each component inside image projection device 10, with FIG. 4A being a side view from the rear side of first mirror 12 and FIG. 4B being a perspective view from diagonally above first mirror 12.
  • Actuator 120 has movable part 121, the tip of which is connected to the tip of pivot arm 14. Note that for simplicity, illustrations of light-shielding member 101, light-shielding inclined surface portion 102, light-shielding bottom surface portion 103, mirror front light-shielding portion 104 and light-shielding wall portion 105 are omitted in FIGS. 4A and 4B.
  • the image projection unit 11, first mirror 12, second mirror 13, and control board 15 are arranged on the XY plane (horizontal direction) in FIG. 1B.
  • the inter-mirror area forms a three-dimensional space connecting the four corners of the opposing first mirror 12 and second mirror 13.
  • the image projection unit 11 is positioned offset to the right in the width direction (horizontal direction) of the three-dimensional inter-mirror area, and at least a portion of it is located within the inter-mirror area.
  • an example is shown in which the image projection unit 11 is positioned offset to the right, but the arrangement of each part may be reversed left to right.
  • the first mirror 12 is a free-form mirror whose curvature varies depending on the position on the reflective surface, and the curvature in the width direction and the curvature in the height direction at each position also vary. Furthermore, the height of the first mirror 12 is not constant, being lower on the side closer to the image irradiation unit 11 and higher on the side farther from the image irradiation unit 11.
  • the second mirror 13 is also a free-form mirror whose curvature varies depending on the position on the reflective surface. Since the second mirror 13 reflects image light onto the windshield WS, it is preferable to make the height approximately constant in order to reduce distortion of the image light.
  • FIG. 5A and 5B are diagrams showing the passing area of the image light irradiated from the image irradiation unit 11, where FIG. 5A is a schematic top view and FIG. 5B is a side view from the back side of the first mirror 12.
  • the area shown by the two-dot chain line in FIG. 5A and FIG. 5B shows the passing area of the image light.
  • the image light irradiated from the image irradiation unit 11 is reflected by the reflective surface of the first mirror 12 and reaches the reflective surface of the second mirror 13.
  • the image light is reflected by the second mirror 13 and irradiated in the direction of the windshield WS, but is not shown in FIG. 5A and FIG. 5B for simplicity.
  • the image light from the image irradiation unit 11 is irradiated to the first mirror 12 with its light diameter expanding in the height direction and the width direction.
  • the image light irradiated from the image display unit of the image irradiation unit 11 is rectangular and is irradiated obliquely to the first mirror 12. Therefore, the irradiation area of the image light on the reflection surface of the first mirror 12 is approximately trapezoidal as shown in FIG. 5B.
  • the four corners are points A, B, C, and D, respectively.
  • point A is located at the upper left
  • point B is located at the lower left
  • point C is located at the lower right
  • point D is located at the upper right on the reflection surface of the first mirror 12.
  • the reflection surface of the first mirror 12 satisfies the relationship Hn ⁇ Hf, where Hn is the height (distance between points C and D) on the side closer to the image irradiation unit 11 and Hf is the height (distance between points A and B) on the side farther from the image irradiation unit 11.
  • the image light reflected by the first mirror 12 forms an intermediate image at an intermediate image position in the horizontal direction, but reaches the second mirror 13 without forming an intermediate image in the vertical direction. Therefore, the irradiation area of the image light on the reflecting surface of the second mirror 13 is swapped in the left-right direction as shown in Figure 5A. Therefore, on the reflecting surface of the first mirror 12, point A is located at the upper right, point B is located at the lower right, point C is located at the lower left, and point D is located at the upper left.
  • the area through which the image light passes has the smallest horizontal cross-sectional area (light diameter) at the intermediate imaging position, and the light diameter expands toward the second mirror 13. Therefore, even if part of the image projection unit 11 is located in the area between the mirrors, the area through which the image light passes and the image projection unit 11 do not overlap, and the image light is not blocked by the image projection unit 11. This makes it possible to effectively utilize the space within the image projection device 10 and to miniaturize the image projection device.
  • the optical path of the image light from the image projection unit 11 to the first mirror 12 and the optical path of the image light from the first mirror 12 to the second mirror 13 can be reflected at an acute angle. This reduces distortion of the projection area of the image light on the reflecting surface of the first mirror 12, making the optical design easier.
  • the image projection unit 11 is arranged offset to one side in the horizontal direction, and the image light is intermediately imaged in the horizontal direction by the first mirror 12, so that the incidence angle and reflection angle of the image light in the horizontal direction are different at each position.
  • the reflecting surface of the first mirror 12 satisfies the relationship Rn ⁇ Rf, where Rn is the radius of curvature on the side closer to the image projection unit 11 in the width direction, and Rf is the radius of curvature on the side farther from the image projection unit 11.
  • the radius of curvature in the horizontal direction of point D is smaller than the radius of curvature in the horizontal direction of point A
  • the radius of curvature in the horizontal direction of point C is smaller than the radius of curvature in the horizontal direction of point B.
  • the image light irradiated from the image irradiation unit 11 is irradiated to the first mirror 12 while expanding in the height direction.
  • the image light irradiated from the image irradiation unit 11 is irradiated to the first mirror 12 at an elevation angle with respect to the center position, the incidence angle and reflection angle of the image light in the horizontal direction differ at each position.
  • the reflection surface of the first mirror 12 satisfies the relationship Ru>Rb, where the radius of curvature in the horizontal direction on the upper side is Ru and the radius of curvature in the horizontal direction on the lower side is Rb.
  • the radius of curvature at point B is smaller than the radius of curvature at point A, and the radius of curvature at point C is smaller than the radius of curvature at point D.
  • FIG. 6 is a schematic perspective view showing the relationship between the image light passing area and the image light passing section 113 when the upper cover 110 is assembled.
  • a light-shielding wall 112 is provided between the first mirror 12 and the second mirror 13 within the opening 111 of the upper cover 110.
  • the light-shielding wall 112 is provided at a downward incline, and the image light passes through the image light passing section 113 to reach the second mirror 13.
  • the light-shielding walls 112 are located on both sides of the intermediate image position in the horizontal direction of the image light, and the intermediate image position is located near the image light passing section 113.
  • the cross-sectional area of the image light at the intermediate image position can be reduced, and the area of the image light passing section 113 can be reduced. This increases the area that can be blocked by the light-shielding wall 112, and reduces the amount of external light that reaches the image irradiation section 11.
  • the light-shielding wall 112 is formed integrally with the upper cover 110, it becomes easier to align the light-shielding wall 112 and the image light passing section 113.
  • the image irradiation unit 11 is located within the inter-mirror area connecting both ends of the opposing first mirror 12 and second mirror 13, making it possible to effectively utilize space and achieve miniaturization.
  • FIG. 7 is a schematic diagram for explaining the heights of the reflection surface of the first mirror 12 and the reflection surface of the second mirror 13 in the image projection device 10 according to this embodiment.
  • the area shown by the two-dot chain line in FIG. 7 indicates the irradiation area where the image light is irradiated on the first mirror 12.
  • the irradiation area of the image light on the first mirror 12 is trapezoidal, and the height on the side farther from the image irradiation unit 11 is larger than the closer side.
  • the maximum height H1max on the reflection surface of the first mirror 12 is the height on the side farther from the image irradiation unit 11.
  • the curved shape of the first mirror 12 and the angle of incidence of the image light cause the illuminated area to have curved top and bottom sides.
  • the outline of the reflecting surface of the first mirror 12 (the illuminated area of the image light) is drawn as straight lines in Figure 7, but the outline of the illuminated area may also be curved.
  • the maximum height of the reflecting surface of the first mirror 12 is defined as H1max.
  • the maximum height of the reflecting surface of the second mirror 13 is defined as H2max.
  • the ratio of H1max to H2max is preferably in the range of 0.5 ⁇ H1max/H2max ⁇ 1.5.
  • the ratio of H1max to H2max is preferably in the range of 0.5 ⁇ H1max/H2max ⁇ 1.5.
  • Figures 8A and 8B are diagrams showing an example of the internal structure of the image projection device 10 according to the third embodiment, in which Figure 8A is a schematic top view showing a state in which the upper cover 110 is removed, and Figure 8B is a schematic perspective view showing a part of the lower housing 100 broken away.
  • the lower housing 100 of the image projection device 10 according to the third embodiment contains the image irradiation unit 11, the first mirror 12, and the second mirror 13, as well as the rotating arm 14, the control board 15, and the wiring cable 16.
  • FIG. 9A is a side view from the rear side of the first mirror 12, showing the arrangement of each component inside the image projection device 10 according to the third embodiment.
  • FIG. 9B is a perspective view from diagonally above the first mirror 12, showing the arrangement of each component inside the image projection device 10 shown in FIG. 9A.
  • the control board 15 is equipped with a terminal portion 15a, and a wiring cable 16 is connected to the terminal portion 15a, enabling the transmission of power and control signals between the image projection device 10 and the outside.
  • a wiring cable 16 is connected between the image irradiation unit 11 and the actuator 120, and the control board 15, enabling the transmission of power and control signals.
  • the wiring cable 16 is a part that electrically connects multiple electronic circuits to transmit power and control signals. As shown in Figures 8B, 9A, and 9B, one end of the wiring cable 16 is connected to the terminal portion 15a of the control board 15, and the other end is connected to the image projection unit 11.
  • the specific configuration of the wiring cable 16 is not limited, but a cable made up of multiple coated copper wires or a flexible cable in which a wiring layer is formed on a flexible board can be used.
  • the image projection unit 11, the first mirror 12, the second mirror 13, and the control board 15 are arranged on the bottom surface of the lower housing 100.
  • the first mirror 12 is arranged between the control board 15 and the image projection unit 11.
  • the first mirror 12 is arranged on the light shielding member 101 along the mirror front light shielding unit 104.
  • the control board 15 is arranged on the opposite side (back side) of the reflection surface of the first mirror 12, between the side wall of the lower housing 100 and the first mirror 12, facing the image projection unit 11.
  • the control board 15 and the first mirror 12 are both erected on the bottom surface of the lower housing 100.
  • FIGS. 10A and 10B are schematic diagrams showing the arrangement of the wiring cable 16 connecting the image projection unit 11 and the control board 15 according to the third embodiment, with FIG. 10A being a schematic cross-sectional view and FIG. 10B being a schematic top view. Note that in FIG. 10B, the light-shielding member 101 and the member that holds the light-shielding member 101 are omitted for simplicity.
  • the image projection unit 11, the first mirror 12, and the control board 15 are disposed on the bottom surface 100a of the lower housing 100.
  • the first mirror 12 may be disposed on the light shielding member 101.
  • the light shielding member 101 is held at a position a predetermined distance from the bottom surface 100a by a holding member (not shown), and a space 100b is secured between the bottom surface 100a and the first mirror 12, and between the bottom surface 100a and the light shielding member 101.
  • a wiring cable 16 is disposed in the space 100b, and electrically connects the terminal portion 15a of the control board 15 and the terminal portion 11a of the image projection unit 11.
  • the wiring cable 16 electrically connects the opposing image projection unit 11 and the control board 15, and the first mirror 12 is arranged with a space 100b between it and the bottom surface 100a, and is located above the wiring cable 16.
  • the control board 15 is erected and faces the image projection unit 11, so that the wiring cable 16 can be connected in a straight line. This reduces the space occupied by the wiring cable 16, making it possible to effectively utilize the space and reduce the size of the image projection device 10.
  • the wiring cable 16 is accommodated in the space 100b provided between the bottom surface 100a of the lower housing 100, the first mirror 12, and the light shielding member 101. This effectively prevents the wiring cable 16 from interfering with the area through which the image light passes and hindering the irradiation of the image light.
  • the image projection unit 11, the first mirror 12, and the control board 15 are arranged on the bottom surface 100a of the lower housing 100 is shown, but these members may be arranged on other members.
  • any or all of the image projection unit 11, the first mirror 12, and the control board 15 may be arranged on the light-shielding member 101.
  • the wiring cable 16 is arranged in the space 100b provided between the bottom surface 100a of the lower housing 100 and the first mirror 12 and the light-shielding member 101 to connect the image projection unit 11 and the control board 15.
  • Fig. 11 is a schematic top view showing a structural example of an image projection device 10 according to the fifth embodiment.
  • the light-shielding member 101 of the image projection device 10 according to the fifth embodiment is extended to have a light-shielding inclined surface portion 102 and a light-shielding lower surface portion 103.
  • the upper cover 110 is provided with an opening 111, a light-shielding wall 112, and an image light passing portion 113.
  • FIG. 12A is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the fifth embodiment with the top cover 110 removed.
  • FIG. 12B is a schematic top view showing an example of the internal structure of the image projection device 10 shown in FIG. 12A with the top cover 110 removed.
  • the light-shielding wall portion 105 is a portion made of a light-shielding material and erected on the light-shielding member 101.
  • the light-shielding wall portion 105 prevents stray light, which is unintended light, from entering the first mirror 12 or the second mirror 13. Therefore, the light-shielding wall portion 105 is a light-shielding member separate from the light-shielding wall 112. In the example shown in FIGS.
  • the light-shielding wall portion 105 has a wall portion 105a extending vertically and a horizontal portion 105b extending horizontally from the upper portion of the wall portion 105a.
  • the light-shielding wall 105 is provided on the side opposite the image irradiation unit 11 between the first mirror 12 and the second mirror 13, generally along the inter-mirror region.
  • the light-shielding wall 105 is preferably provided in a position where light can easily enter from the outside, such as around the position where the movable part of the actuator 120 is inserted.
  • an example is shown in which the light-shielding wall 105 is erected from the light-shielding member 101, but it may also be extended downward from the upper cover 110.
  • the image projection unit 11, the first mirror 12, the second mirror 13, and the control board 15 are arranged on the bottom surface of the lower housing 100.
  • the first mirror 12 is arranged between the control board 15 and the image projection unit 11.
  • the first mirror 12 is arranged along the pre-mirror light shielding portion 104 on the light shielding member 101.
  • the control board 15 is arranged on the opposite side (back side) to the reflective surface of the first mirror 12, between the side wall of the lower housing 100 and the first mirror 12, facing the image projection unit 11.
  • the control board 15 and the first mirror 12 are both erected on the bottom surface of the lower housing 100.
  • FIG. 13 is a schematic perspective view showing the relationship between the image light passing area and the image light passing section 113 in the state where the upper cover 110 is assembled in the fifth embodiment.
  • the image light passing section 113 in the fifth embodiment is trapezoidal with oblique sides 113a and 113b so that the width increases downward. This is because the light-shielding wall 112 is inclined downward toward the second mirror 13.
  • the image light passing area is minimized in the width direction at the intermediate imaging position due to intermediate imaging as shown in FIG. 5A and FIG. 13, and there is no intermediate imaging in the height direction. Therefore, by forming the image light passing section 113 so that the oblique sides 113a and 113b are located slightly outside the image light passing area in FIG. 13, it is possible to prevent stray light and block external light while minimizing the area of the image light passing section 113.
  • the image light reflected by the second mirror 13 travels diagonally upward through the opening 111, by tilting the light-shielding wall 112 downward toward the second mirror 13, it is possible to prevent the light-shielding wall 112 from interfering with the image light and to block external light over the widest area.
  • a light-shielding wall 112 is disposed between the first mirror 12 and the second mirror 13, and image light passes through an image light passing section 113 provided in the light-shielding wall 112, making it possible to effectively utilize space and achieve miniaturization.
  • Fig. 14A is an example of the image light passing portion 113 formed on the light-shielding wall 112, and is a schematic diagram showing the image light passing portion 113 in an arc shape.
  • Fig. 14B is an example of the image light passing portion 113 formed on the light-shielding wall 112, and is a schematic diagram showing the image light passing portion 113 in a trapezoid shape.
  • Fig. 14C is an example of the image light passing portion 113 formed on the light-shielding wall 112, and is a schematic diagram showing the image light passing portion 113 in a triangular shape.
  • the image light passing portion 113 may have arc-shaped oblique sides 113a, 113b. This makes it possible to accommodate cases where the outer shape of the passing area of the image light reflected by the first mirror 12 is curved. Also, by ensuring a margin between the passing area of the image light and the image light passing portion 113, it is possible to prevent the image light from interfering with the light-shielding wall 112.
  • the image light passing portion 113 may be trapezoidal having oblique sides 113a and 113b and an apex 113c.
  • the apex 113c By providing the apex 113c, the light shielding wall 112 and the image light passing portion 113 can be positioned slightly different from the intermediate imaging position, improving the degree of freedom in design.
  • the image light passing portion 113 may be triangular in shape having hypotenuses 113a and 113b. Since the hypotenuses 113a and 113b intersect at a vertex angle, the intermediate imaging position and the vertex angle of the image light passing portion 113 can be made to coincide, thereby minimizing the area of the image light passing portion 113.
  • An image projection device that projects a projection image onto a display unit, an image irradiating unit that irradiates the display unit with image light;
  • a first mirror that reflects the image light irradiated from the image irradiating unit;
  • a second mirror that reflects the image light reflected by the first mirror, an area connecting both ends of the first mirror and the second mirror facing each other is defined as an inter-mirror area;
  • the image projection device wherein the image projection unit is arranged biased to one side in a width direction of the inter-mirror area, and at least a portion of the image projection unit is located within the inter-mirror area.
  • (Item 2) 2. The image projection device according to item 1, wherein the first mirror forms an intermediate image of the image light in a width direction in the inter-mirror region and causes the image light to reach the second mirror without forming an intermediate image in a height direction.
  • (Item 3) The image projection device according to claim 1, wherein the reflective surface of the first mirror has a radius of curvature Rn on a side closer to the image irradiation unit in the width direction and a radius of curvature Rf on a side farther from the image irradiation unit, such that Rn ⁇ Rf.
  • (Item 4) 4. The image projection device according to item 3, wherein the reflective surface of the first mirror satisfies a relationship of Ru>Rb, where Ru is a radius of curvature in the horizontal direction on the upper side and Rb is a radius of curvature in the horizontal direction on the lower side.
  • An image projection device that projects a projection image onto a display unit, an image irradiating unit that irradiates the display unit with image light; A first mirror that reflects the image light irradiated from the image irradiating unit; a second mirror that reflects the image light reflected by the first mirror; A control board for controlling the image irradiation unit is provided, The first mirror is disposed between the control board and the image projection unit.
  • an area connecting both ends of the first mirror and the second mirror facing each other is defined as an inter-mirror area; 8.
  • the image irradiation unit is arranged offset to one side in the width direction of the inter-mirror area, and at least a portion of the image irradiation unit is located within the inter-mirror area.
  • the image projection unit, the first mirror, the second mirror, and the control board are disposed on a bottom surface of a housing, 9.
  • the control board and the first mirror are provided upright relative to the bottom surface.
  • (Item 11) a wiring cable electrically connecting the image projection unit and the control board; Item 11.
  • An image projection device that projects a projection image onto a display unit, an image irradiating unit that irradiates the display unit with image light; A first mirror that reflects the image light irradiated from the image irradiating unit; a second mirror that reflects the image light reflected by the first mirror; a light blocking wall disposed between the first mirror and the second mirror, the light-shielding wall has an image light passing portion that is partially cut out, The image projection device, wherein the image light passes through the image light passing portion.
  • the first mirror forms an intermediate image of the image light at an intermediate image-forming position in the width direction and does not form an intermediate image in the height direction; Item 14.
  • (Item 15) a lower housing that houses the image irradiation unit, the first mirror, and the second mirror; an upper cover that covers the lower housing, Item 15.
  • the upper cover has an opening through which the image light reflected by the second mirror passes; Item 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Projection Apparatus (AREA)

Abstract

Provided is an image projection device that projects a projection image onto a display part (WS), the image projection device being characterized by comprising an image irradiation part (11) that radiates image light to the display part (WS), a first mirror (12) that reflects the image light radiated from the image irradiation part, and a second mirror (13) that reflects the image light reflected by the first mirror (12), the image irradiation part being disposed so as to be biased to one side in the width direction of an inter-mirror region, the inter-mirror region being a region connecting both ends of the first mirror (12) and the second mirror (13) facing each other, and at least a portion of the image irradiation part being positioned within the inter-mirror region.

Description

画像投影装置Image Projection Device
 本発明は、画像投影装置に関する。 The present invention relates to an image projection device.
 従来から、車両内に各種情報を表示する装置として、アイコンを点灯表示する計器盤が用いられている。また、表示する情報量の増加とともに、計器盤に画像表示装置を埋め込むことや、計器盤全体を画像表示装置で構成することも提案されている。 Traditionally, dashboards that light up icons have been used as devices to display various types of information inside vehicles. As the amount of information to be displayed increases, it has also been proposed to embed an image display device in the dashboard or to configure the entire dashboard from an image display device.
 しかし、計器盤は車両のフロントガラス(ウィンドシールド)より下方に位置しているため、計器盤に表示された情報を運転者等の搭乗者が視認するには、運転中に視線を下方に移動させる必要があり好ましくない。そこで、フロントガラスに画像を投影して、搭乗者が車両の前方を視認したときに情報を読み取れるようにするヘッドアップディスプレイ(以下HUD:Head Up Display)のような画像投影装置が提案されている(例えば、特許文献1,2を参照)。 However, because the instrument panel is located below the vehicle's windshield, in order for the driver or other passengers to see the information displayed on the instrument panel, they must move their gaze downward while driving, which is undesirable. As a result, image projection devices such as head-up displays (hereinafter referred to as HUDs) have been proposed that project images onto the windshield so that passengers can read information when they look ahead of the vehicle (see, for example, Patent Documents 1 and 2).
 従来の画像投影装置は、画像照射部が画像を含んだ照射光を照射し、自由曲面ミラー等で照射光を反射させて、ウィンドシールド等の表示部を介して空間中に画像が結像するように搭乗者の視点の位置に到達させる。これにより、搭乗者は視点に入射した照射光によって、奥行き方向における結像位置に画像が表示されているように認識することができる。 In conventional image projection devices, the image projection unit projects light containing an image, which is then reflected by a free-form mirror or the like, and the light reaches the passenger's viewpoint so that the image is formed in space via a display unit such as a windshield. This allows the passenger to perceive the image as being displayed at the imaging position in the depth direction due to the light incident on the viewpoint.
日本国特開2019-119248号公報Japanese Patent Application Publication No. 2019-119248 日本国特開2019-119262号公報Japanese Patent Application Publication No. 2019-119262
 このような画像投影装置は、車両のウィンドシールド下方において、ダッシュボード内に収容されることが多い。また、運転者の視点位置に対して虚像を投影するため、運転席の前方に配置されることが通常である。しかし、運転席とウィンドシールドの間には、ステアリングや計器類が配置されており、画像投影装置を収容するための空間を確保することが困難であった。 Such image projection devices are often housed in the dashboard, below the windshield of the vehicle. In addition, they are usually placed in front of the driver's seat, as they project a virtual image toward the driver's viewpoint. However, the steering wheel and instruments are located between the driver's seat and the windshield, making it difficult to secure space to house the image projection device.
 そこで本発明は、上記従来の問題点に鑑みなされたものであり、空間を有効に活用して小型化を図ることが可能な画像投影装置を提供することを目的とする。 The present invention has been developed in consideration of the above-mentioned problems with the conventional technology, and aims to provide an image projection device that can be made compact by making effective use of space.
 上記目的を達成するために、本発明の一側面に係る画像投影装置は、表示部に対して投影画像を投影する画像投影装置であって、前記表示部に対して画像光を照射する画像照射部と、前記画像照射部から照射された前記画像光を反射する第1ミラーと、前記第1ミラーで反射された前記画像光を反射する第2ミラーを備え、対向する前記第1ミラーと前記第2ミラーの両端同士を結んだ領域をミラー間領域とし、前記画像照射部は、前記ミラー間領域の幅方向における一方に偏って配置されており、少なくとも一部が前記ミラー間領域内に位置していることを特徴とする。 In order to achieve the above object, an image projection device according to one aspect of the present invention is an image projection device that projects a projection image onto a display unit, and is characterized in that it includes an image irradiation unit that irradiates image light onto the display unit, a first mirror that reflects the image light irradiated from the image irradiation unit, and a second mirror that reflects the image light reflected by the first mirror, the area connecting both ends of the opposing first and second mirrors is an inter-mirror area, the image irradiation unit is biased to one side in the width direction of the inter-mirror area, and at least a portion of it is located within the inter-mirror area.
 このような本発明の画像投影装置では、画像照射部の少なくとも一部が、対向する第1ミラーと第2ミラーの両端同士を結んだミラー間領域内に位置しているため、空間を有効に活用して小型化を図ることが可能となる。 In the image projection device of the present invention, at least a portion of the image irradiation section is located within the inter-mirror area connecting both ends of the opposing first and second mirrors, making it possible to effectively utilize space and achieve miniaturization.
 また、上記目的を達成するために、本発明の一側面に係る画像投影装置は、表示部に対して投影画像を投影する画像投影装置であって、前記表示部に対して画像光を照射する画像照射部と、前記画像照射部から照射された前記画像光を反射する第1ミラーと、前記第1ミラーで反射された前記画像光を反射する第2ミラーと、前記画像照射部を制御する制御基板を備え、前記第1ミラーは、前記制御基板と前記画像照射部の間に配置されていることを特徴とする。 In order to achieve the above object, an image projection device according to one aspect of the present invention is an image projection device that projects a projection image onto a display unit, and is characterized in that it includes an image irradiation unit that irradiates image light onto the display unit, a first mirror that reflects the image light irradiated from the image irradiation unit, a second mirror that reflects the image light reflected by the first mirror, and a control board that controls the image irradiation unit, and the first mirror is disposed between the control board and the image irradiation unit.
 このような本発明の画像投影装置では、制御基板と画像照射部の間に第1ミラーが配置されているため、空間を有効に活用して小型化を図ることが可能となる。 In the image projection device of the present invention, the first mirror is disposed between the control board and the image projection unit, making it possible to effectively utilize the space and achieve miniaturization.
 また、上記目的を達成するために、本発明の一側面に係る画像投影装置は、表示部に対して投影画像を投影する画像投影装置であって、前記表示部に対して画像光を照射する画像照射部と、前記画像照射部から照射された前記画像光を反射する第1ミラーと、前記第1ミラーで反射された前記画像光を反射する第2ミラーと、前記第1ミラーと前記第2ミラーの間に配置された遮光壁とを備え、前記遮光壁は、一部が切り欠かれた画像光通過部を有しており、前記画像光は、前記画像光通過部内を通過することを特徴とする。 In order to achieve the above object, an image projection device according to one aspect of the present invention is an image projection device that projects a projection image onto a display unit, and includes an image irradiation unit that irradiates image light onto the display unit, a first mirror that reflects the image light irradiated from the image irradiation unit, a second mirror that reflects the image light reflected by the first mirror, and a light-shielding wall disposed between the first mirror and the second mirror, the light-shielding wall having an image light passing portion with a portion cut out, and the image light passing through the image light passing portion.
 このような本発明の画像投影装置では、第1ミラーと第2ミラーの間に遮光壁が配置され、遮光壁に設けられた画像光通過部を画像光が通過するため、空間を有効に活用して小型化を図ることが可能となる。 In the image projection device of the present invention, a light-shielding wall is disposed between the first and second mirrors, and image light passes through an image light passage provided in the light-shielding wall, making it possible to effectively utilize space and achieve miniaturization.
 本発明では、空間を有効に活用して小型化を図ることが可能な画像投影装置を提供することができる。 The present invention provides an image projection device that can be made compact by making effective use of space.
図1Aは、第1実施形態第3実施形態および第5実施形態に係る画像投影装置10について説明する図であり、画像投影装置10を用いた虚像の投影を示す模式図である。FIG. 1A is a diagram for explaining an image projection device 10 according to the first, third and fifth embodiments, and is a schematic diagram showing projection of a virtual image using the image projection device 10. FIG. 図1Bは、図1Aに示す画像投影装置10の概要を示す模式平面図である。FIG. 1B is a schematic plan view showing an overview of the image projection device 10 shown in FIG. 1A. 図2Aは、第1実施形態および第3実施形態に係る画像投影装置10の構造例を示す模式上面図である。FIG. 2A is a schematic top view showing an example of the structure of the image projection device 10 according to the first and third embodiments. 図2Bは、図2Aに示す画像投影装置10の模式斜視図である。FIG. 2B is a schematic perspective view of the image projection device 10 shown in FIG. 2A. 図3Aは、第1実施形態および第3実施形態に係る画像投影装置10の内部構造例を示す、上部カバー110を外した状態を示す模式斜視図である。FIG. 3A is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the first and third embodiments with the upper cover 110 removed. 図3Bは、第1実施形態に係る画像投影装置10の内部構造例を示す、上部カバー110を外した状態を示す模式上面図である。FIG. 3B is a schematic top view showing an example of the internal structure of the image projection device 10 according to the first embodiment with the upper cover 110 removed. 図3Cは、第1実施形態に係る画像投影装置10の内部構造例を示す、下部筐体100の一部を破断して示す模式斜視図である。FIG. 3C is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the first embodiment, with a part of the lower housing 100 cut away. 図4Aは、第1実施形態に係る画像投影装置10の内部における各部材の配置を示す、第1ミラー12の背面側からの側面視図である。FIG. 4A is a side view seen from the rear side of the first mirror 12, showing the arrangement of the various members inside the image projection device 10 according to the first embodiment. 図4Bは、図4Aに示す画像投影装置10の内部における各部材の配置を示す、第1ミラー12の斜め上からの斜視図である。FIG. 4B is a perspective view of the first mirror 12 viewed obliquely from above, showing the arrangement of the various members inside the image projection device 10 shown in FIG. 4A. 図5Aは、第1実施形態および第5実施形態に係る画像照射部11から照射された画像光の通過領域を示す模式上面図である。FIG. 5A is a schematic top view showing a passing area of the image light irradiated from the image irradiating unit 11 according to the first and fifth embodiments. 図5Bは、図5Aに示す画像照射部11から照射された画像光の通過領域を示す、第1ミラー12背面側からの側面視図である。FIG. 5B is a side view seen from the rear surface side of the first mirror 12, showing a passing area of the image light irradiated from the image irradiating unit 11 shown in FIG. 5A. 図6は、第1実施形態に係る上部カバー110を組み合わせた状態における画像光の通過領域と画像光通過部113の関係を示す模式斜視図である。FIG. 6 is a schematic perspective view showing the relationship between the image light passing area and the image light passing portion 113 in a state in which the upper cover 110 according to the first embodiment is assembled. 図7は、第2実施形態に係る画像投影装置10における、第1ミラー12での反射面と第2ミラー13での反射面における高さについて説明する模式図である。FIG. 7 is a schematic diagram illustrating the heights of the reflecting surfaces of the first mirror 12 and the second mirror 13 in the image projection device 10 according to the second embodiment. 図8Aは、第3実施形態に係る画像投影装置10の内部構造例を示す、上部カバー110を外した状態を示す模式上面図である。FIG. 8A is a schematic top view showing an example of the internal structure of the image projection device 10 according to the third embodiment with the upper cover 110 removed. 図8Bは、第3実施形態に係る画像投影装置10の内部構造例を示す、下部筐体100の一部を破断して示す模式斜視図である。FIG. 8B is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the third embodiment, with a part of the lower housing 100 cut away. 図9Aは、第3実施形態に係る画像投影装置10の内部における各部材の配置を示す、第1ミラー12の背面側からの側面視図である。FIG. 9A is a side view seen from the rear side of the first mirror 12, showing the arrangement of the various members inside the image projection device 10 according to the third embodiment. 図9Bは、図9Aに示す画像投影装置10の内部における各部材の配置を示す、第1ミラー12の斜め上からの斜視図である。FIG. 9B is a perspective view of the first mirror 12 from diagonally above, showing the arrangement of the various members inside the image projection device 10 shown in FIG. 9A. 図10Aは、第3実施形態に係る画像照射部11と制御基板15の間を接続する配線ケーブル16の配置を示す模式断面図である。FIG. 10A is a schematic cross-sectional view showing the arrangement of the wiring cable 16 that connects between the image projection unit 11 and the control board 15 according to the third embodiment. 図10Bは、図10Aに示す配線ケーブル16の配置を示す模式上面図である。FIG. 10B is a schematic top view showing the arrangement of the distribution cables 16 shown in FIG. 10A. 図11は、第5実施形態に係る画像投影装置10の構造例を示す模式上面図である。FIG. 11 is a schematic top view showing an example of the structure of an image projection device 10 according to the fifth embodiment. 図12Aは、第5実施形態に係る画像投影装置10の内部構造例を示す、上部カバー110を外した状態を示す模式斜視図である。FIG. 12A is a schematic perspective view illustrating an example of the internal structure of the image projection device 10 according to the fifth embodiment with the upper cover 110 removed. 図12Bは、図12Aに示す画像投影装置10の内部構造例を示す、上部カバー110を外した状態を示す模式上面図である。FIG. 12B is a schematic top view showing an example of the internal structure of the image projection device 10 shown in FIG. 12A with the upper cover 110 removed. 図13は、第5実施形態において上部カバー110を組み合わせた状態における画像光の通過領域と画像光通過部113の関係を示す模式斜視図である。FIG. 13 is a schematic perspective view showing the relationship between the image light passing area and the image light passing portion 113 in a state in which the upper cover 110 is assembled in the fifth embodiment. 図14Aは、第6実施形態に係る遮光壁112に形成された画像光通過部113の例であって、円弧状の画像光通過部113を示す模式図である。FIG. 14A is a schematic diagram showing an example of an image light passing portion 113 formed in a light-shielding wall 112 according to the sixth embodiment, the image light passing portion 113 having an arc shape. 図14Bは、第6実施形態に係る遮光壁112に形成された画像光通過部113の例であって、台形状の画像光通過部113を示す模式図である。FIG. 14B is a schematic diagram showing an example of the image light passing portion 113 formed in the light-shielding wall 112 according to the sixth embodiment, the image light passing portion 113 having a trapezoidal shape. 図14Cは、第6実施形態に係る遮光壁112に形成された画像光通過部113の例であって、三角形状の画像光通過部113を示す模式図である。FIG. 14C is a schematic diagram showing an example of the image light passing portion 113 formed in the light blocking wall 112 according to the sixth embodiment, the image light passing portion 113 having a triangular shape.
 (第1実施形態)
 以下、本発明の実施形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1Aおよび図1Bは、本実施形態に係る画像投影装置10について説明する図であり、図1Aは画像投影装置10を用いた虚像の投影を示す模式図であり、図1Bは画像投影装置10の概要を示す模式平面図である。図1Aおよび図1B中に示した実線は、画像光の光路を示している。図1Bに示した一点鎖線は、光が通過する領域を示している。
First Embodiment
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The same or equivalent components, members, and processes shown in each drawing are given the same reference numerals, and duplicated descriptions are omitted as appropriate. Figures 1A and 1B are diagrams for explaining an image projection device 10 according to this embodiment, where Figure 1A is a schematic diagram showing the projection of a virtual image using the image projection device 10, and Figure 1B is a schematic plan view showing an overview of the image projection device 10. The solid lines shown in Figures 1A and 1B indicate the optical path of image light. The dashed and dotted lines shown in Figure 1B indicate the area through which light passes.
 図1Aにおいて、紙面に対して垂直方向はX軸方向であり車両の左右方向に対応し、紙面の左右方向はY軸方向であり車両1の前後方向に対応し、紙面の上下方向はZ軸方向であり車両1の上下方向に対応している。また、図1Bにおいて、紙面に対して垂直方向はZ軸方向であり車両1の上下方向に対応し、紙面の左右方向はY軸方向であり車両1の前後方向に対応し、紙面の上下方向はX軸方向であり車両1の左右方向に対応している。 In Figure 1A, the direction perpendicular to the paper surface is the X-axis direction, which corresponds to the left-right direction of the vehicle, the left-right direction of the paper surface is the Y-axis direction, which corresponds to the front-rear direction of vehicle 1, and the up-down direction of the paper surface is the Z-axis direction, which corresponds to the up-down direction of vehicle 1. Also, in Figure 1B, the direction perpendicular to the paper surface is the Z-axis direction, which corresponds to the up-down direction of vehicle 1, the left-right direction of the paper surface is the Y-axis direction, which corresponds to the front-rear direction of vehicle 1, and the up-down direction of the paper surface is the X-axis direction, which corresponds to the left-right direction of vehicle 1.
 図1Aに示すように、画像投影装置10は車両1に搭載され、画像投影装置10から投影された画像光は、ウィンドシールド(表示部)WSで反射されて運転者の視点位置に照射される。運転者は、画像光が入射してきた光路の延長上に結像された虚像Pを視認する。 As shown in FIG. 1A, the image projection device 10 is mounted on a vehicle 1, and the image light projected from the image projection device 10 is reflected by the windshield (display unit) WS and irradiated to the driver's viewpoint. The driver visually recognizes a virtual image P formed on an extension of the optical path along which the image light is incident.
 また、図1Bに示すように画像投影装置10は、画像照射部11と、第1ミラー12と、第2ミラー13を備えている。画像投影装置10では、各部と情報通信可能に接続された制御部を用いて各部を制御している。制御部の構成は限定されないが、一例として情報処理を行うためのCPU(Central Processing Unit)や、メモリ装置、記録媒体、情報通信装置等を備えるものが挙げられる。制御部は、予め定められたプログラムに従って各部の動作を制御し、画像を含んだ情報(画像情報)を画像照射部11に送出する。 As shown in FIG. 1B, the image projection device 10 includes an image projection unit 11, a first mirror 12, and a second mirror 13. In the image projection device 10, each part is controlled using a control unit that is connected to each part so that information can be communicated. The configuration of the control unit is not limited, but one example includes a CPU (Central Processing Unit) for information processing, a memory device, a recording medium, an information communication device, etc. The control unit controls the operation of each part according to a predetermined program, and sends information including an image (image information) to the image projection unit 11.
 画像照射部11は、制御部からの画像情報に基づいて、画像を含んだ光を画像光として第1ミラー12に対して照射する部分である。画像照射部11の構成は限定されず、バックライト、画像表示部の組み合わせを備えるとしてもよい。バックライトは、画像表示部に対して照射光を照射する部分であり、例えば発光ダイオード(LED:Light Emitting Diode)により光を照射するものを用いることができる。画像表示部は、制御部からの画像信号に応じて投影画像を表示する部分である。画像表示部に表示された投影画像に対して、バックライトからの照射光が照射されることで、画像表示部から画像光が照射される。画像表示部の具体的構成は限定されず、例えば液晶表示装置等を用いることができる。 The image irradiation unit 11 is a part that irradiates the first mirror 12 with light containing an image as image light based on image information from the control unit. The configuration of the image irradiation unit 11 is not limited, and may include a combination of a backlight and an image display unit. The backlight is a part that irradiates the image display unit with irradiation light, and for example, a device that irradiates light using a light-emitting diode (LED) can be used. The image display unit is a part that displays a projected image in response to an image signal from the control unit. The projection image displayed on the image display unit is irradiated with irradiation light from the backlight, and image light is irradiated from the image display unit. The specific configuration of the image display unit is not limited, and for example, a liquid crystal display device or the like can be used.
 第1ミラー12は、画像照射部11から到達した画像光を第2ミラー13方向に反射する光学部材である。図1Bに示した例では第1ミラー12の凹面形状として、凹面の曲率が一定ではない自由曲面ミラー等を用いている。 The first mirror 12 is an optical member that reflects the image light arriving from the image irradiation unit 11 toward the second mirror 13. In the example shown in FIG. 1B, the concave shape of the first mirror 12 is a free-form mirror or the like in which the curvature of the concave surface is not constant.
 第2ミラー13は、第1ミラー12から到達した画像光をウィンドシールドWS方向に反射する光学部材である。第2ミラー13は、表示部であるウィンドシールドWSに対して画像光を投影するため、本発明における出射ミラーに相当している。図1に示した例では、第2ミラー13として画像光を虚像Pとして投影するために必要な光学設計された凹面形状の自由曲面ミラーを示している。後述するように、第2ミラー13は所定の回転軸を中心として回動可能にされており、高さ方向への画像光の反射方向を可変とされている。したがって、第2ミラー13は、ウィンドシールドWSに対する画像光の入射角度と入射位置を調整可能とされている。 The second mirror 13 is an optical member that reflects the image light arriving from the first mirror 12 in the direction of the windshield WS. The second mirror 13 corresponds to the exit mirror in the present invention, since it projects the image light onto the windshield WS, which is the display unit. In the example shown in FIG. 1, the second mirror 13 is a free-form mirror with a concave shape that has been optically designed to project the image light as a virtual image P. As will be described later, the second mirror 13 is rotatable around a predetermined rotation axis, and the reflection direction of the image light in the height direction is variable. Therefore, the second mirror 13 is capable of adjusting the angle and position of incidence of the image light with respect to the windshield WS.
 第1ミラー12および第2ミラー13の反射面は、ウィンドシールドWSを介して画像光を虚像Pとして投影するために、運転者の視点方向に光径が拡大するように設計されている。したがって、第1ミラー12および第2ミラー13の組み合わせは、本発明における投影光学部に相当している。ここで、視点方向に光径が拡大するとは、反射後に光径が一貫して拡大する場合だけでなく、光径が縮小して中間地点において結像した後に拡大する場合も含む。 The reflective surfaces of the first mirror 12 and the second mirror 13 are designed to expand the light diameter in the driver's viewpoint direction in order to project the image light as a virtual image P through the windshield WS. Therefore, the combination of the first mirror 12 and the second mirror 13 corresponds to the projection optical unit in this invention. Here, the expansion of the light diameter in the viewpoint direction includes not only the case where the light diameter consistently expands after reflection, but also the case where the light diameter shrinks and expands after forming an image at an intermediate point.
 ウィンドシールドWSは、車両1の運転席前方に設けられて可視光を透過する部分である。ウィンドシールドWSは、車両1の内側面では画像投影装置10から入射した画像光を視点方向に対して反射し、車両1の外部からの光を視点方向に対して透過するため、本発明における表示部に相当している。図1Aに示したように、ウィンドシールドWSは自由曲面で構成されているため、高さ方向において曲率が変化し一定ではない。ここでは表示部としてウィンドシールドWSを用いた例を示したが、ウィンドシールドWSとは別に表示部としてコンバイナーを用意し、画像投影装置10からの光を視点方向に反射するとしてもよい。また、車両1の前方に位置するものに限定されず、搭乗者の視点に対して画像を投影するものであれば側方や後方に配置するとしてもよい。 The windshield WS is a part that is provided in front of the driver's seat of the vehicle 1 and transmits visible light. The windshield WS corresponds to the display unit in the present invention because the windshield WS reflects the image light incident from the image projection device 10 toward the viewpoint on the inside surface of the vehicle 1 and transmits light from outside the vehicle 1 toward the viewpoint. As shown in FIG. 1A, the windshield WS is composed of a free-form surface, so its curvature changes and is not constant in the height direction. Here, an example is shown in which the windshield WS is used as the display unit, but a combiner may be provided as a display unit separate from the windshield WS and reflect light from the image projection device 10 toward the viewpoint. In addition, the display unit is not limited to being located in front of the vehicle 1, and may be located to the side or rear as long as it projects an image toward the passenger's viewpoint.
 虚像Pは、ウィンドシールドWSで反射された画像光が搭乗者の視点位置(アイボックス)に到達した際に、空間中に結像されたように表示される画像である。虚像Pが結像される位置は、画像投影装置10に含まれる投影光学部とウィンドシールドWSの合成焦点距離によって決まる。 The virtual image P is an image that appears as if it is formed in space when the image light reflected by the windshield WS reaches the passenger's viewpoint (eyebox). The position where the virtual image P is formed is determined by the composite focal length of the projection optical unit included in the image projection device 10 and the windshield WS.
 また図1Aおよび図1Bでは、画像光の中心位置における光路を一本の直線として実線で描いている。しかし、実際の画像光は、画像照射部11において所定の面積で表示されたものであり、進行方向に垂直な方向に所定の面積をもっている。図1Bに一点鎖線で示したように、面積を持った画像光の通過する領域は、第1ミラー12で反射されて横幅方向(X軸方向)の光径が縮小されながら進行し、第1ミラー12と第2ミラー13の間において中間結像され、第2ミラー13まで到達する。それに対して、高さ方向(Z軸方向)においては、第1ミラー12で反射された画像光は、中間結像せずに第2ミラー13まで到達する。 1A and 1B, the optical path at the center position of the image light is drawn as a single straight line by a solid line. However, the actual image light is displayed with a predetermined area in the image projection unit 11, and has a predetermined area in the direction perpendicular to the traveling direction. As shown by the dashed line in FIG. 1B, the area through which the image light with area passes is reflected by the first mirror 12 and travels while the light diameter in the width direction (X-axis direction) is reduced, and an intermediate image is formed between the first mirror 12 and the second mirror 13, and reaches the second mirror 13. On the other hand, in the height direction (Z-axis direction), the image light reflected by the first mirror 12 reaches the second mirror 13 without forming an intermediate image.
 図1Bにおいて破線で示した領域は、対向する第1ミラー12と第2ミラー13の上下の両端同士を結んだミラー間領域である。本実施形態の画像投影装置10では、画像照射部11は、少なくとも一部がミラー間領域の幅方向における一方に偏って配置されており、ミラー間領域内に位置している。ここで、図1Bに一点鎖線で示した領域が、画像光の通過する光通過領域であり、幅方向において中間結像させているため、画像照射部11がミラー間領域に位置しても、画像照射部11によって画像光が遮られることはない。 The area indicated by the dashed line in Figure 1B is the inter-mirror area connecting the upper and lower ends of the opposing first mirror 12 and second mirror 13. In the image projection device 10 of this embodiment, at least a portion of the image projection unit 11 is positioned offset to one side in the width direction of the inter-mirror area and is located within the inter-mirror area. Here, the area indicated by the dashed dotted line in Figure 1B is the light passage area through which the image light passes, and an intermediate image is formed in the width direction, so that even if the image projection unit 11 is located in the inter-mirror area, the image light is not blocked by the image projection unit 11.
 また、画像照射部11がミラー間領域に配置されているため、画像光の中心位置における光路は、図1Bに実線で示したように、画像照射部11から第1ミラー12までと、第1ミラー12から第2ミラー13までとが鋭角とされている。 In addition, since the image projection unit 11 is disposed in the area between the mirrors, the optical path at the center position of the image light is such that an acute angle is formed between the image projection unit 11 and the first mirror 12, and between the first mirror 12 and the second mirror 13, as shown by the solid line in Figure 1B.
 図2Aおよび図2Bは、本実施形態に係る画像投影装置10の構造例を示す図であり、図2Aは模式上面図であり、図2Bは模式斜視図である。図2Aおよび図2Bに示すように、画像投影装置10は、下部筐体100と、上部カバー110と、アクチュエータ120とを備えている。 2A and 2B are diagrams showing an example of the structure of the image projection device 10 according to this embodiment, with FIG. 2A being a schematic top view and FIG. 2B being a schematic perspective view. As shown in FIGS. 2A and 2B, the image projection device 10 includes a lower housing 100, an upper cover 110, and an actuator 120.
 下部筐体100は、画像投影装置10の外形を構成する筐体の下方部分を成す部材である。下部筐体100は底面と側壁を有しており、底面と側面で構成された空間内に、画像投影装置10に含まれる各部が収容される。また、下部筐体100の側壁には複数の取り付け部が設けられており、車両側の取り付け位置に締結部材等を用いて画像投影装置10を固定することが可能となっている。また、下部筐体100の外側にはアクチュエータ120が取り付けられている。 The lower housing 100 is a member that forms the lower part of the housing that constitutes the external shape of the image projection device 10. The lower housing 100 has a bottom surface and side walls, and each part of the image projection device 10 is housed in the space formed by the bottom surface and the side walls. In addition, multiple mounting parts are provided on the side walls of the lower housing 100, making it possible to fix the image projection device 10 to an installation position on the vehicle side using fastening members or the like. In addition, an actuator 120 is attached to the outside of the lower housing 100.
 上部カバー110は、画像投影装置10の外形を構成する筐体の上方部分を成す部材である。上部カバー110は天面と周縁部を有しており、周縁部の外形は下部筐体100の側壁と対応した形状となっている。下部筐体100と上部カバー110は組み合わされて画像投影装置10の外形を構成しており、内部に図1Bに示した画像照射部11、第1ミラー12、第2ミラー13と後述する各部を収容している。図2Bでは、上部カバー110の天面の形状として、内部に収容した各部の形状が反映された凹凸形状の例を示しているが、平坦な天面や曲面の天面等を用いるとしてもよい。また上部カバー110には、開口部111と、遮光壁112と、画像光通過部113が設けられている。 The upper cover 110 is a member that forms the upper part of the housing that constitutes the external shape of the image projection device 10. The upper cover 110 has a top surface and a peripheral portion, and the external shape of the peripheral portion corresponds to the side wall of the lower housing 100. The lower housing 100 and the upper cover 110 are combined to constitute the external shape of the image projection device 10, and house the image irradiation unit 11, the first mirror 12, the second mirror 13, and each part described below, shown in FIG. 1B. In FIG. 2B, an example of an uneven shape that reflects the shapes of each part housed inside is shown as the shape of the top surface of the upper cover 110, but a flat top surface or a curved top surface may also be used. The upper cover 110 is also provided with an opening 111, a light-shielding wall 112, and an image light passing part 113.
 開口部111は、上部カバー110の天面に設けられた開口である。図2Aに示したように、開口部111からは第2ミラー13の反射面と、遮光壁112を視認可能である。したがって、第2ミラー13で反射された画像光は、開口部111を介して画像投影装置10の外部に照射される。開口部111は、画像光を照射するための部分であるため、透光性のカバー部材で開口部111を覆うとしてもよい。 The opening 111 is an opening provided on the top surface of the upper cover 110. As shown in FIG. 2A, the reflective surface of the second mirror 13 and the light-shielding wall 112 are visible from the opening 111. Therefore, the image light reflected by the second mirror 13 is irradiated to the outside of the image projection device 10 through the opening 111. Since the opening 111 is a portion for irradiating the image light, the opening 111 may be covered with a translucent cover member.
 遮光壁112は、上部カバー110の開口部111から下部筐体100方向に設けられた光を遮るための壁である。図2Aでは、第1ミラー12に近い開口部111の一辺から、中央に向けて傾斜した遮光壁112を設けた例を示している。遮光壁112の一部は切り欠かれて画像光通過部113が設けられている。 The light-shielding wall 112 is a wall for blocking light provided from the opening 111 of the upper cover 110 toward the lower housing 100. FIG. 2A shows an example in which the light-shielding wall 112 is provided at an angle from one side of the opening 111 close to the first mirror 12 toward the center. A part of the light-shielding wall 112 is cut out to provide an image light passing section 113.
 画像光通過部113は、遮光壁112の一部に設けられた切り欠きであり、画像光が通過できる領域である。画像光通過部113の具体的な形状は限定されないが、立体的に考慮した画像光の通過する空間を遮光壁112から取り除いたものである。本実施形態では、第1ミラー12によって画像光が幅方向で中間結像され、高さ方向では中間結像されないため、画像光通過部113は画像光の中間結像位置に配置され、歪んだ台形形状である例を示している。 The image light passing section 113 is a cutout provided in a part of the light-shielding wall 112, and is an area through which the image light can pass. The specific shape of the image light passing section 113 is not limited, but the space through which the image light passes, taking into account three-dimensional considerations, has been removed from the light-shielding wall 112. In this embodiment, since the image light is intermediately imaged in the width direction by the first mirror 12 and not intermediately imaged in the height direction, the image light passing section 113 is disposed at the intermediate image-forming position of the image light, and an example is shown in which it has a distorted trapezoidal shape.
 アクチュエータ120は、第2ミラー13を回転駆動するための動力を供給する部分である。また、アクチュエータ120は下部筐体100に取り付けられるとともに、可動部が下部筐体100に設けられた貫通孔を介して下部筐体100内にまで挿入されている。アクチュエータ120の具体的な構成は限定されないが、電動モータとラックギヤ等を用いて、外部から共有された電力と制御信号に基づいて、可動部を往復運動させる構成等を用いることができる。 The actuator 120 is a part that supplies power to rotate the second mirror 13. The actuator 120 is attached to the lower housing 100, and the movable part is inserted into the lower housing 100 through a through hole provided in the lower housing 100. The specific configuration of the actuator 120 is not limited, but a configuration that uses an electric motor and rack gear, etc., to reciprocate the movable part based on power and control signals shared from the outside can be used.
 図3Aから図3Cは、本実施形態に係る画像投影装置10の内部構造例を示す図であり、図3Aは上部カバー110を外した状態を示す模式斜視図であり、図3Bは上部カバー110を外した状態を示す模式上面図であり、図3Cは下部筐体100の一部を破断して示す模式斜視図である。図3Aに示したように、下部筐体100内には、画像照射部11と、第1ミラー12と、第2ミラー13の他に、回動アーム14と、制御基板15が収容されている。また、下部筐体100の底面上には、遮光部材101が配置されている。 Figures 3A to 3C are diagrams showing an example of the internal structure of the image projection device 10 according to this embodiment, with Figure 3A being a schematic perspective view showing the state with the upper cover 110 removed, Figure 3B being a schematic top view showing the state with the upper cover 110 removed, and Figure 3C being a schematic perspective view showing a part of the lower housing 100 broken away. As shown in Figure 3A, in addition to the image irradiation unit 11, first mirror 12, and second mirror 13, the lower housing 100 also contains a pivot arm 14 and a control board 15. Also, a light-shielding member 101 is disposed on the bottom surface of the lower housing 100.
 回動アーム14は、第2ミラー13の一方の端部に接続されて、回転軸を中心に第2ミラー13を回動するための部材である。また、回動アーム14の一端には、アクチュエータ120の可動部が連結されている。また、回動アーム14の他端は回転軸を中心に回動可能に軸支されている。これにより、アクチュエータ120が制御信号に応じて可動部を上下方向に移動させると、可動部の先端が回動アーム14の先端を上下移動させ、回動アーム14および第2ミラー13が回転軸を中心に回動する。 The rotating arm 14 is connected to one end of the second mirror 13 and is a member for rotating the second mirror 13 around the rotation axis. A movable part of the actuator 120 is connected to one end of the rotating arm 14. The other end of the rotating arm 14 is supported so that it can rotate around the rotation axis. As a result, when the actuator 120 moves the movable part up and down in response to a control signal, the tip of the movable part moves the tip of the rotating arm 14 up and down, and the rotating arm 14 and the second mirror 13 rotate around the rotation axis.
 制御基板15は、配線パターンが形成されるとともに、電子部品や端子が搭載され、画像照射部11およびアクチュエータ120の駆動を制御する部分である。制御基板15の具体的な構成は限定されないが、ガラスエポキシで構成された平板状の基板表面に配線がパターニングされたプリント配線基板等を用いることができる。図3Aから図3Cでは図示を省略しているが、制御基板15には端子部が搭載されており、端子部には配線ケーブルが接続されて、画像投影装置10の外部との間で電力および制御信号の伝達が可能となっている。また、画像照射部11およびアクチュエータ120と制御基板15との間も、配線ケーブル等が接続されて、電力と制御信号の伝達が可能となっている。 The control board 15 is a part on which a wiring pattern is formed and on which electronic components and terminals are mounted, and which controls the driving of the image projection unit 11 and the actuator 120. The specific configuration of the control board 15 is not limited, but a printed wiring board or the like can be used in which wiring is patterned on the surface of a flat board made of glass epoxy. Although not shown in Figures 3A to 3C, the control board 15 is equipped with a terminal section to which a wiring cable is connected, enabling the transmission of power and control signals between the image projection device 10 and the outside. In addition, wiring cables or the like are connected between the image projection unit 11 and the actuator 120 and the control board 15, enabling the transmission of power and control signals.
 遮光部材101は、光を遮る材料で構成されて、下部筐体100の底面に沿って設けられる略板状の部材である。遮光部材101は、一方の辺が延伸されて遮光傾斜面部102と、遮光低面部103が形成され、遮光部材101の一部は立設されてミラー前遮光部104と、遮光壁部105が形成されている。また、第1ミラー12は遮光部材101上に配置され、第2ミラー13は、遮光低面部103上に配置されている。ここでは遮光部材101として下部筐体100の底面に沿った形状を示したが、底面と遮光部材101の間に所定の空間を設けることができれば、形状は限定されない。 The light-shielding member 101 is made of a light-shielding material and is a generally plate-shaped member that is provided along the bottom surface of the lower housing 100. One side of the light-shielding member 101 is extended to form a light-shielding inclined surface portion 102 and a light-shielding lower surface portion 103, and a part of the light-shielding member 101 is erected to form a mirror front light-shielding portion 104 and a light-shielding wall portion 105. The first mirror 12 is disposed on the light-shielding member 101, and the second mirror 13 is disposed on the light-shielding lower surface portion 103. Here, the light-shielding member 101 is shown to have a shape that follows the bottom surface of the lower housing 100, but the shape is not limited as long as a predetermined space can be provided between the bottom surface and the light-shielding member 101.
 遮光傾斜面部102は、光を遮る材料で構成されて遮光部材101と一体に形成され、第1ミラー12側から第2ミラー13側に向かって下方に傾斜した部分である。また、遮光傾斜面部102の第2ミラー13側での端部には、遮光低面部103が延伸して形成されている。図3Aおよび図3Bでは、遮光傾斜面部102を曲面形状とした例を示しているが、具体的な形状は限定されない。 The light-shielding inclined surface portion 102 is made of a light-shielding material and is formed integrally with the light-shielding member 101, and is a portion that slopes downward from the first mirror 12 side toward the second mirror 13 side. In addition, the light-shielding lower surface portion 103 is formed by extending from the end of the light-shielding inclined surface portion 102 on the second mirror 13 side. Although Figs. 3A and 3B show an example in which the light-shielding inclined surface portion 102 has a curved shape, the specific shape is not limited.
 遮光低面部103は、光を遮る材料で構成されて遮光傾斜面部102から延伸して形成され、第2ミラー13の下方まで設けられた部分である。遮光低面部103は遮光傾斜面部102の最も低い位置から延伸されているため、遮光部材101の第1ミラー12を搭載する面との間で段差をもって配置される。図3Aおよび図3Bでは、遮光低面部103を平面形状とした例を示しているが、具体的な形状は限定されない。遮光部材101に遮光傾斜面部102が設けられ、遮光傾斜面部102から延伸して遮光低面部103が形成されていることで、遮光低面部103を第1ミラー12よりも低い位置に設けて、第2ミラー13が回動する空間を確保することができる。 The light-shielding lower surface portion 103 is made of a light-shielding material and is formed by extending from the light-shielding inclined surface portion 102, and is provided below the second mirror 13. Since the light-shielding lower surface portion 103 extends from the lowest position of the light-shielding inclined surface portion 102, it is disposed with a step between it and the surface of the light-shielding member 101 on which the first mirror 12 is mounted. Although an example in which the light-shielding lower surface portion 103 has a flat shape is shown in FIG. 3A and FIG. 3B, the specific shape is not limited. The light-shielding member 101 is provided with the light-shielding inclined surface portion 102, and the light-shielding lower surface portion 103 is formed by extending from the light-shielding inclined surface portion 102, so that the light-shielding lower surface portion 103 can be provided at a position lower than the first mirror 12, and a space for the second mirror 13 to rotate can be secured.
 ミラー前遮光部104は、光を遮る材料で構成されて遮光部材101上に立設された部分である。図3Aに示した例では、ミラー前遮光部104は第1ミラー12の下部において画像照射部11との間に設けられており、画像光が第1ミラー12に入射する領域を限定している。また、ミラー前遮光部104の形状を第1ミラー12の下部に沿った形状として、第1ミラー12の位置決めおよび保持をサポートするとしてもよい。 The pre-mirror light shielding portion 104 is a portion made of a light-shielding material and erected on the light shielding member 101. In the example shown in FIG. 3A, the pre-mirror light shielding portion 104 is provided between the image irradiation portion 11 and the lower portion of the first mirror 12, and limits the area where the image light is incident on the first mirror 12. The shape of the pre-mirror light shielding portion 104 may be shaped to fit the lower portion of the first mirror 12, to support the positioning and holding of the first mirror 12.
 遮光壁部105は、光を遮る材料で構成されて遮光部材101上に立設された部分である。遮光壁部105は、第1ミラー12や第2ミラー13に、意図しない光である迷光が入射することを防止する。図3Aおよび図3Bに示した例では、遮光壁部105の上部には水平方向に延伸された部分が設けられている。また図3Aおよび図3Bに示した例では、遮光壁部105は第1ミラー12と第2ミラー13の間の画像照射部11とは反対側において、概ねミラー間領域に沿って設けられている。遮光壁部105は迷光を防止するため、外部から光が侵入しやすい位置に設けられることが好ましく、一例としてはアクチュエータ120の可動部が挿入されている位置の周辺が挙げられる。ここでは遮光壁部105を遮光部材101から立設した例を示したが、上部カバー110から下方に延伸させるとしてもよい。 The light-shielding wall 105 is a part made of a light-shielding material and erected on the light-shielding member 101. The light-shielding wall 105 prevents stray light, which is unintended light, from entering the first mirror 12 or the second mirror 13. In the example shown in FIG. 3A and FIG. 3B, a part extending in the horizontal direction is provided at the top of the light-shielding wall 105. In the example shown in FIG. 3A and FIG. 3B, the light-shielding wall 105 is provided on the opposite side of the image irradiation unit 11 between the first mirror 12 and the second mirror 13, generally along the inter-mirror region. In order to prevent stray light, the light-shielding wall 105 is preferably provided in a position where light can easily enter from the outside, and one example is the periphery of the position where the movable part of the actuator 120 is inserted. Here, an example is shown in which the light-shielding wall 105 is erected from the light-shielding member 101, but it may be extended downward from the upper cover 110.
 図4Aおよび図4Bは、画像投影装置10の内部における各部材の配置を示す図であり、図4Aは第1ミラー12の背面側からの側面視図であり、図4Bは第1ミラー12の斜め上からの斜視図である。アクチュエータ120は可動部121を備えており、その先端が回動アーム14の先端に連結されている。なお、図4Aおよび図4Bでは、簡便のために遮光部材101、遮光傾斜面部102、遮光低面部103、ミラー前遮光部104および遮光壁部105の図示を省略している。 FIGS. 4A and 4B show the arrangement of each component inside image projection device 10, with FIG. 4A being a side view from the rear side of first mirror 12 and FIG. 4B being a perspective view from diagonally above first mirror 12. Actuator 120 has movable part 121, the tip of which is connected to the tip of pivot arm 14. Note that for simplicity, illustrations of light-shielding member 101, light-shielding inclined surface portion 102, light-shielding bottom surface portion 103, mirror front light-shielding portion 104 and light-shielding wall portion 105 are omitted in FIGS. 4A and 4B.
 図4Aに示すように、画像照射部11と第1ミラー12と第2ミラー13と制御基板15は、図1BにおけるXY平面(水平方向)に配列されている。また、ミラー間領域は、対向する第1ミラー12と第2ミラー13の四隅同士を結んだ立体的な空間を構成している。図4Aに示した例では、画像照射部11は、立体的なミラー間領域の幅方向(横方向)において右方向に偏って配置されており、少なくとも一部がミラー間領域内に位置している。ここでは画像照射部11が右方向に偏って配置された例を示したが、各部の配置を左右反転させるとしてもよい。 As shown in FIG. 4A, the image projection unit 11, first mirror 12, second mirror 13, and control board 15 are arranged on the XY plane (horizontal direction) in FIG. 1B. The inter-mirror area forms a three-dimensional space connecting the four corners of the opposing first mirror 12 and second mirror 13. In the example shown in FIG. 4A, the image projection unit 11 is positioned offset to the right in the width direction (horizontal direction) of the three-dimensional inter-mirror area, and at least a portion of it is located within the inter-mirror area. Here, an example is shown in which the image projection unit 11 is positioned offset to the right, but the arrangement of each part may be reversed left to right.
 図4Aおよび図4Bに示したように、第1ミラー12は自由曲面ミラーであり、反射面の位置によって曲率が異なり、各位置における幅方向の曲率と高さ方向の曲率も異なっている。また、第1ミラー12の高さは一定ではなく、画像照射部11に近い側が低く、画像照射部11から遠い側が高くなっている。第2ミラー13も自由曲面ミラーであり、反射面の位置によって曲率が異なっている。第2ミラー13は、ウィンドシールドWSに対して画像光を反射するため、画像光の歪みを小さくするために、高さを略一定とすることが好ましい。 As shown in Figures 4A and 4B, the first mirror 12 is a free-form mirror whose curvature varies depending on the position on the reflective surface, and the curvature in the width direction and the curvature in the height direction at each position also vary. Furthermore, the height of the first mirror 12 is not constant, being lower on the side closer to the image irradiation unit 11 and higher on the side farther from the image irradiation unit 11. The second mirror 13 is also a free-form mirror whose curvature varies depending on the position on the reflective surface. Since the second mirror 13 reflects image light onto the windshield WS, it is preferable to make the height approximately constant in order to reduce distortion of the image light.
 図5Aおよび図5Bは、画像照射部11から照射された画像光の通過領域を示す図であり、図5Aは模式上面図であり、図5Bは第1ミラー12背面側からの側面視図である。図5Aおよび図5Bにおいて二点鎖線で示された領域が、画像光の通過領域を示している。画像照射部11から照射された画像光は、第1ミラー12の反射面で反射されて第2ミラー13の反射面に到達する。画像光は第2ミラー13で反射されてウィンドシールドWS方向に照射されるが、図5Aおよび図5Bにおいては簡便のために図示を省略している。画像照射部11からの画像光は、高さ方向および横方向に光径が拡大して第1ミラー12に照射される。 5A and 5B are diagrams showing the passing area of the image light irradiated from the image irradiation unit 11, where FIG. 5A is a schematic top view and FIG. 5B is a side view from the back side of the first mirror 12. The area shown by the two-dot chain line in FIG. 5A and FIG. 5B shows the passing area of the image light. The image light irradiated from the image irradiation unit 11 is reflected by the reflective surface of the first mirror 12 and reaches the reflective surface of the second mirror 13. The image light is reflected by the second mirror 13 and irradiated in the direction of the windshield WS, but is not shown in FIG. 5A and FIG. 5B for simplicity. The image light from the image irradiation unit 11 is irradiated to the first mirror 12 with its light diameter expanding in the height direction and the width direction.
 画像照射部11の画像表示部から照射された画像光は矩形状であり、第1ミラー12に対して斜めに照射される。したがって、第1ミラー12の反射面における画像光の照射領域は、図5Bに示すように略台形状となっている。第1ミラー12の反射面における画像光の照射領域において、四隅をそれぞれA点、B点、C点、D点とする。図5Bに示した例では、第1ミラー12の反射面においてA点は左上に位置し、B点は左下に位置し、C点は右下に位置し、D点は右上に位置している。図5Bに示したように、第1ミラー12の反射面は、画像照射部11に近い側の高さ(C点とD点の距離)をHnとし、画像照射部11から遠い側の高さ(A点とB点の距離)をHfとしたとき、Hn<Hfの関係を満たしている。 The image light irradiated from the image display unit of the image irradiation unit 11 is rectangular and is irradiated obliquely to the first mirror 12. Therefore, the irradiation area of the image light on the reflection surface of the first mirror 12 is approximately trapezoidal as shown in FIG. 5B. In the irradiation area of the image light on the reflection surface of the first mirror 12, the four corners are points A, B, C, and D, respectively. In the example shown in FIG. 5B, point A is located at the upper left, point B is located at the lower left, point C is located at the lower right, and point D is located at the upper right on the reflection surface of the first mirror 12. As shown in FIG. 5B, the reflection surface of the first mirror 12 satisfies the relationship Hn<Hf, where Hn is the height (distance between points C and D) on the side closer to the image irradiation unit 11 and Hf is the height (distance between points A and B) on the side farther from the image irradiation unit 11.
 第1ミラー12で反射された画像光は、横方向に関しては中間結像位置で中間結像され、高さ方向に関しては中間結像されずに第2ミラー13に到達する。したがって、第2ミラー13の反射面での画像光の照射領域は図5Aに示すように画像光における左右方向が入れ替わる。したがって、第1ミラー12の反射面においてA点は右上に位置し、B点は右下に位置し、C点は左下に位置し、D点は左上に位置している。 The image light reflected by the first mirror 12 forms an intermediate image at an intermediate image position in the horizontal direction, but reaches the second mirror 13 without forming an intermediate image in the vertical direction. Therefore, the irradiation area of the image light on the reflecting surface of the second mirror 13 is swapped in the left-right direction as shown in Figure 5A. Therefore, on the reflecting surface of the first mirror 12, point A is located at the upper right, point B is located at the lower right, point C is located at the lower left, and point D is located at the upper left.
 図5Aに示したように、画像光の通過領域は、中間結像位置において横方向断面積(光径)が最も小さくなっており、第2ミラー13に向かって光径が拡大する。したがって、画像照射部11の一部がミラー間領域に位置しても、画像光の通過領域と画像照射部11が重ならず、画像光が画像照射部11によって遮られることがない。これにより、画像投影装置10内の空間を有効に活用して、画像投影装置の小型化を図ることが可能となる。 As shown in FIG. 5A, the area through which the image light passes has the smallest horizontal cross-sectional area (light diameter) at the intermediate imaging position, and the light diameter expands toward the second mirror 13. Therefore, even if part of the image projection unit 11 is located in the area between the mirrors, the area through which the image light passes and the image projection unit 11 do not overlap, and the image light is not blocked by the image projection unit 11. This makes it possible to effectively utilize the space within the image projection device 10 and to miniaturize the image projection device.
 また、画像照射部11の一部をミラー間領域に位置させることで、画像照射部11から第1ミラー12までの画像光の光路と、第1ミラー12から第2ミラー13までの画像光の光路を鋭角に反射させることができる。これにより、第1ミラー12の反射面における画像光の照射領域の歪みを小さくし、光学設計を容易にすることができる。 In addition, by positioning a part of the image projection unit 11 in the region between the mirrors, the optical path of the image light from the image projection unit 11 to the first mirror 12 and the optical path of the image light from the first mirror 12 to the second mirror 13 can be reflected at an acute angle. This reduces distortion of the projection area of the image light on the reflecting surface of the first mirror 12, making the optical design easier.
 本実施形態では、画像照射部11を横方向の一方に偏らせて配置するとともに、第1ミラー12で画像光を横方向で中間結像させているため、画像光の横方向での入射角と反射角が各位置で異なる。また、第1ミラー12の反射面は、幅方向において、画像照射部11に近い側の曲率半径をRnとし、画像照射部11から遠い側の曲率半径をRfとしたとき、Rn<Rfの関係を満たしている。より具体的には、A点の横方向での曲率半径よりもD点の横方向での曲率半径が小さく、B点の横方向での曲率半径よりもC点の横方向での曲率半径が小さい。これにより、第1ミラー12での横方向における画像光の入射角度と反射角度の違いを適切に補正して、第2ミラー13に照射される画像光の歪みを小さくすることができる。また、画像照射部11から遠い側での曲率半径を大きくすることで、画像光の結像倍率を揃えることができる。 In this embodiment, the image projection unit 11 is arranged offset to one side in the horizontal direction, and the image light is intermediately imaged in the horizontal direction by the first mirror 12, so that the incidence angle and reflection angle of the image light in the horizontal direction are different at each position. In addition, the reflecting surface of the first mirror 12 satisfies the relationship Rn<Rf, where Rn is the radius of curvature on the side closer to the image projection unit 11 in the width direction, and Rf is the radius of curvature on the side farther from the image projection unit 11. More specifically, the radius of curvature in the horizontal direction of point D is smaller than the radius of curvature in the horizontal direction of point A, and the radius of curvature in the horizontal direction of point C is smaller than the radius of curvature in the horizontal direction of point B. This makes it possible to appropriately correct the difference between the incidence angle and reflection angle of the image light in the horizontal direction at the first mirror 12, and to reduce the distortion of the image light irradiated to the second mirror 13. In addition, by increasing the radius of curvature on the side farther from the image projection unit 11, the imaging magnification of the image light can be made uniform.
 また、本実施形態の画像投影装置10では、画像照射部11から照射された画像光が高さ方向にも拡大しながら第1ミラー12に対して照射される。また、画像照射部11から照射された画像光は、中心位置が第1ミラー12に対して仰角で照射されているため、画像光の横方向での入射角と反射角が各位置で異なる。また、第1ミラー12の反射面は、上側の横方向の曲率半径をRuとし、下側の横方向の曲率半径をRbとしたときに、Ru>Rbの関係を満たしている。より具体的には、A点の曲率半径よりもB点の曲率半径が小さく、D点の曲率半径よりもC点の曲率半径が小さい。これにより、第1ミラー12での高さ方向における画像光の入射角度と反射角度の違いを適切に補正して、第2ミラー13に照射される画像光の歪みを小さくすることができる。 In the image projection device 10 of this embodiment, the image light irradiated from the image irradiation unit 11 is irradiated to the first mirror 12 while expanding in the height direction. In addition, since the image light irradiated from the image irradiation unit 11 is irradiated to the first mirror 12 at an elevation angle with respect to the center position, the incidence angle and reflection angle of the image light in the horizontal direction differ at each position. In addition, the reflection surface of the first mirror 12 satisfies the relationship Ru>Rb, where the radius of curvature in the horizontal direction on the upper side is Ru and the radius of curvature in the horizontal direction on the lower side is Rb. More specifically, the radius of curvature at point B is smaller than the radius of curvature at point A, and the radius of curvature at point C is smaller than the radius of curvature at point D. This makes it possible to appropriately correct the difference between the incidence angle and reflection angle of the image light in the height direction on the first mirror 12, and to reduce the distortion of the image light irradiated to the second mirror 13.
 図6は、上部カバー110を組み合わせた状態における画像光の通過領域と画像光通過部113の関係を示す模式斜視図である。図6に示したように、上部カバー110の開口部111内には、第1ミラー12と第2ミラー13の間に遮光壁112が設けられている。また、遮光壁112は下方に傾斜して設けられており、画像光は画像光通過部113内を通過して第2ミラー13に到達する。また、遮光壁112は画像光の横方向での中間結像位置の両側に位置しており、中間結像位置は画像光通過部113近傍に位置している。 FIG. 6 is a schematic perspective view showing the relationship between the image light passing area and the image light passing section 113 when the upper cover 110 is assembled. As shown in FIG. 6, a light-shielding wall 112 is provided between the first mirror 12 and the second mirror 13 within the opening 111 of the upper cover 110. The light-shielding wall 112 is provided at a downward incline, and the image light passes through the image light passing section 113 to reach the second mirror 13. The light-shielding walls 112 are located on both sides of the intermediate image position in the horizontal direction of the image light, and the intermediate image position is located near the image light passing section 113.
 第1ミラー12が画像光を横方向で中間結像させているため、中間結像位置における画像光の断面積を小さくすることができ、画像光通過部113の面積を小さくすることができる。これにより、遮光壁112で遮光可能な面積を大きくして、画像照射部11まで到達する外光を低減することができる。また、遮光壁112を上部カバー110と一体に形成しているため、遮光壁112と画像光通過部113の位置合わせが容易になる。 Because the first mirror 12 forms an intermediate image of the image light in the horizontal direction, the cross-sectional area of the image light at the intermediate image position can be reduced, and the area of the image light passing section 113 can be reduced. This increases the area that can be blocked by the light-shielding wall 112, and reduces the amount of external light that reaches the image irradiation section 11. In addition, because the light-shielding wall 112 is formed integrally with the upper cover 110, it becomes easier to align the light-shielding wall 112 and the image light passing section 113.
 上述したように、本実施形態の画像投影装置10では、画像照射部11の少なくとも一部が、対向する第1ミラー12と第2ミラー13の両端同士を結んだミラー間領域内に位置しているため、空間を有効に活用して小型化を図ることが可能となる。 As described above, in the image projection device 10 of this embodiment, at least a portion of the image irradiation unit 11 is located within the inter-mirror area connecting both ends of the opposing first mirror 12 and second mirror 13, making it possible to effectively utilize space and achieve miniaturization.
 (第2実施形態)
 次に、本発明の第2実施形態について図7を用いて説明する。第1実施形態と重複する内容は説明を省略する。図7は、本実施形態に係る画像投影装置10における、第1ミラー12での反射面と第2ミラー13での反射面における高さについて説明する模式図である。図7において二点鎖線で示した領域が、第1ミラー12において画像光が照射される照射領域を示している。図5Aに示した第1実施形態では、第1ミラー12での画像光の照射領域が台形形状の場合であり、画像照射部11から遠い側での高さが近い側よりも大きかった。換言すると、第1ミラー12の反射面における最大の高さH1maxは、画像照射部11から遠い側での高さであった。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. 7. The description of the contents overlapping with the first embodiment will be omitted. FIG. 7 is a schematic diagram for explaining the heights of the reflection surface of the first mirror 12 and the reflection surface of the second mirror 13 in the image projection device 10 according to this embodiment. The area shown by the two-dot chain line in FIG. 7 indicates the irradiation area where the image light is irradiated on the first mirror 12. In the first embodiment shown in FIG. 5A, the irradiation area of the image light on the first mirror 12 is trapezoidal, and the height on the side farther from the image irradiation unit 11 is larger than the closer side. In other words, the maximum height H1max on the reflection surface of the first mirror 12 is the height on the side farther from the image irradiation unit 11.
 図7に示したように、本実施形態では、第1ミラー12の曲面形状と画像光の入射角度によって、照射領域は上下の辺が曲がった形状である。図7では簡便のために第1ミラー12の反射面(画像光の照射領域)について外形を直線で描いているが、照射領域の外形は曲線であってもよい。図7に示したように、第1ミラー12の反射面における最大の高さをH1maxとする。また、第2ミラー13の反射面における最大の高さをH2maxとする。 As shown in Figure 7, in this embodiment, the curved shape of the first mirror 12 and the angle of incidence of the image light cause the illuminated area to have curved top and bottom sides. For simplicity, the outline of the reflecting surface of the first mirror 12 (the illuminated area of the image light) is drawn as straight lines in Figure 7, but the outline of the illuminated area may also be curved. As shown in Figure 7, the maximum height of the reflecting surface of the first mirror 12 is defined as H1max. Also, the maximum height of the reflecting surface of the second mirror 13 is defined as H2max.
 H1maxとH2maxの比率は、0.5≦H1max/H2max≦1.5の範囲であることが好ましい。H1maxとH2maxの比率をこの範囲とすることで、第1ミラー12での高さ方向における光学的パワーを小さくすることができる。これにより、第2ミラー13に対して画像光を照射するための光学設計が容易になり、高さ方向における画像光の歪みを抑制することができる。H1max/H2maxの比率がこの範囲から外れると、第1ミラー12または第2ミラー13の高さが大きくなり、画像投影装置10の小型化が困難になる。 The ratio of H1max to H2max is preferably in the range of 0.5≦H1max/H2max≦1.5. By setting the ratio of H1max to H2max in this range, the optical power in the height direction of the first mirror 12 can be reduced. This makes it easier to design the optical system for irradiating the second mirror 13 with image light, and makes it possible to suppress distortion of the image light in the height direction. If the ratio of H1max/H2max is outside this range, the height of the first mirror 12 or the second mirror 13 will be large, making it difficult to miniaturize the image projection device 10.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. The technical scope of the present invention also includes embodiments obtained by appropriately combining the technical means disclosed in the different embodiments.
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。第1実施形態と重複する内容は説明を省略する。図8Aおよび図8Bは、第3実施形態に係る画像投影装置10の内部構造例を示す図であり、図8Aは、上部カバー110を外した状態を示す模式上面図であり、図8Bは、下部筐体100の一部を破断して示す模式斜視図である。図8Aに示すように、第3実施形態に係る画像投影装置10の下部筐体100には、画像照射部11と、第1ミラー12と、第2ミラー13の他に、回動アーム14と、制御基板15と、配線ケーブル16が収容されている。
Third Embodiment
Next, a third embodiment of the present invention will be described. The description of the contents overlapping with the first embodiment will be omitted. Figures 8A and 8B are diagrams showing an example of the internal structure of the image projection device 10 according to the third embodiment, in which Figure 8A is a schematic top view showing a state in which the upper cover 110 is removed, and Figure 8B is a schematic perspective view showing a part of the lower housing 100 broken away. As shown in Figure 8A, the lower housing 100 of the image projection device 10 according to the third embodiment contains the image irradiation unit 11, the first mirror 12, and the second mirror 13, as well as the rotating arm 14, the control board 15, and the wiring cable 16.
 図9Aは、第3実施形態に係る画像投影装置10の内部における各部材の配置を示す、第1ミラー12の背面側からの側面視図である。図9Bは、図9Aに示す画像投影装置10の内部における各部材の配置を示す、第1ミラー12の斜め上からの斜視図である。図8B、図9Aおよび図9Bに示したように、制御基板15には端子部15aが搭載されており、端子部15aには配線ケーブル16が接続されて、画像投影装置10の外部との間で電力および制御信号の伝達が可能となっている。また、画像照射部11およびアクチュエータ120と制御基板15との間も、配線ケーブル16が接続されて、電力と制御信号の伝達が可能となっている。 FIG. 9A is a side view from the rear side of the first mirror 12, showing the arrangement of each component inside the image projection device 10 according to the third embodiment. FIG. 9B is a perspective view from diagonally above the first mirror 12, showing the arrangement of each component inside the image projection device 10 shown in FIG. 9A. As shown in FIGS. 8B, 9A, and 9B, the control board 15 is equipped with a terminal portion 15a, and a wiring cable 16 is connected to the terminal portion 15a, enabling the transmission of power and control signals between the image projection device 10 and the outside. In addition, a wiring cable 16 is connected between the image irradiation unit 11 and the actuator 120, and the control board 15, enabling the transmission of power and control signals.
 配線ケーブル16は、複数の電子回路間を電気的に接続して、電力や制御信号を伝達する部分である。図8B、図9Aおよび図9Bに示したように、配線ケーブル16の一端は制御基板15の端子部15aに接続され、他方は画像照射部11に接続されている。配線ケーブル16の具体的な構成は限定されないが、複数の被覆銅線をまとめたケーブルや、可撓性を有する基板に配線層を形成したフレキシブルケーブル等を用いることができる。 The wiring cable 16 is a part that electrically connects multiple electronic circuits to transmit power and control signals. As shown in Figures 8B, 9A, and 9B, one end of the wiring cable 16 is connected to the terminal portion 15a of the control board 15, and the other end is connected to the image projection unit 11. The specific configuration of the wiring cable 16 is not limited, but a cable made up of multiple coated copper wires or a flexible cable in which a wiring layer is formed on a flexible board can be used.
 また、図8Aおよび図8Bに示すように、第3実施形態の画像投影装置10では、画像照射部11、第1ミラー12、第2ミラー13および制御基板15は下部筐体100の底面上に配置されている。また第1ミラー12は、制御基板15と画像照射部11の間に配置されている。また第1ミラー12は、遮光部材101上において、ミラー前遮光部104に沿って配置されている。また、制御基板15は第1ミラー12の反射面とは反対側(裏面側)において、下部筐体100の側壁と第1ミラー12の間に、画像照射部11に対向して配置されている。また、制御基板15と第1ミラー12は、ともに下部筐体100の底面に対して立設されている。制御基板15を下部筐体100の底面に立設させるとともに、第1ミラー12と下部筐体の側壁との間に配置することで、空間を有効に活用して画像投影装置10の小型化を図ることが可能となる。 As shown in Figs. 8A and 8B, in the image projection device 10 of the third embodiment, the image projection unit 11, the first mirror 12, the second mirror 13, and the control board 15 are arranged on the bottom surface of the lower housing 100. The first mirror 12 is arranged between the control board 15 and the image projection unit 11. The first mirror 12 is arranged on the light shielding member 101 along the mirror front light shielding unit 104. The control board 15 is arranged on the opposite side (back side) of the reflection surface of the first mirror 12, between the side wall of the lower housing 100 and the first mirror 12, facing the image projection unit 11. The control board 15 and the first mirror 12 are both erected on the bottom surface of the lower housing 100. By erecting the control board 15 on the bottom surface of the lower housing 100 and arranging it between the first mirror 12 and the side wall of the lower housing, it is possible to effectively utilize the space and reduce the size of the image projection device 10.
 図10Aおよび図10Bは、第3実施形態に係る画像照射部11と制御基板15の間を接続する配線ケーブル16の配置を示す模式図であり、図10Aは模式断面図であり、図10Bは模式上面図である。なお、図10Bでは、簡便のために遮光部材101および遮光部材101を保持する部材の図示を省略している。 10A and 10B are schematic diagrams showing the arrangement of the wiring cable 16 connecting the image projection unit 11 and the control board 15 according to the third embodiment, with FIG. 10A being a schematic cross-sectional view and FIG. 10B being a schematic top view. Note that in FIG. 10B, the light-shielding member 101 and the member that holds the light-shielding member 101 are omitted for simplicity.
 図10Aに示したように、下部筐体100の底面100a上に画像照射部11と第1ミラー12と制御基板15が配置されている。ここでは、第1ミラー12を底面上に配置した例を示しているが、遮光部材101上に第1ミラー12を配置するとしてもよい。遮光部材101は、図示しない保持部材によって底面100aから所定距離を空けた位置に保持されており、底面100aと第1ミラー12との間、および底面100aと遮光部材101との間には空間100bが確保されている。また、空間100bには配線ケーブル16が配置されており、制御基板15の端子部15aと、画像照射部11の端子部11aとの間を電気的に接続している。 As shown in FIG. 10A, the image projection unit 11, the first mirror 12, and the control board 15 are disposed on the bottom surface 100a of the lower housing 100. Here, an example in which the first mirror 12 is disposed on the bottom surface is shown, but the first mirror 12 may be disposed on the light shielding member 101. The light shielding member 101 is held at a position a predetermined distance from the bottom surface 100a by a holding member (not shown), and a space 100b is secured between the bottom surface 100a and the first mirror 12, and between the bottom surface 100a and the light shielding member 101. A wiring cable 16 is disposed in the space 100b, and electrically connects the terminal portion 15a of the control board 15 and the terminal portion 11a of the image projection unit 11.
 図8Aから図10Bに示したように、配線ケーブル16は、対向する画像照射部11と制御基板15の間を電気的に接続しており、第1ミラー12は底面100aとの間に空間100bを確保して配置されており、配線ケーブル16の上方に位置している。第3実施形態では、制御基板15を立設させて画像照射部11と対向させているため、配線ケーブル16を直線状に接続することができる。これにより、配線ケーブル16が占める空間を小さくして、空間を有効に活用して画像投影装置10の小型化を図ることが可能となる。また、配線ケーブル16は、下部筐体100の底面100aと第1ミラー12、遮光部材101の間に設けられた空間100bに収容されている。これにより、配線ケーブル16が、画像光が通過する領域内に干渉して、画像光の照射が妨げられることを効果的に防止できる。 8A to 10B, the wiring cable 16 electrically connects the opposing image projection unit 11 and the control board 15, and the first mirror 12 is arranged with a space 100b between it and the bottom surface 100a, and is located above the wiring cable 16. In the third embodiment, the control board 15 is erected and faces the image projection unit 11, so that the wiring cable 16 can be connected in a straight line. This reduces the space occupied by the wiring cable 16, making it possible to effectively utilize the space and reduce the size of the image projection device 10. In addition, the wiring cable 16 is accommodated in the space 100b provided between the bottom surface 100a of the lower housing 100, the first mirror 12, and the light shielding member 101. This effectively prevents the wiring cable 16 from interfering with the area through which the image light passes and hindering the irradiation of the image light.
 (第4実施形態)
 次に、本発明の第4実施形態について説明する。第3実施形態と重複する内容は説明を省略する。第3実施形態では、画像照射部11、第1ミラー12および制御基板15を下部筐体100の底面100a上に配置した例を示したが、これらの部材を他の部材上に配置するとしてもよい。一例としては、画像照射部11、第1ミラー12、制御基板15の何れかまたは全てを、遮光部材101上に配置するとしてもよい。この場合にも、配線ケーブル16は、下部筐体100の底面100aと第1ミラー12、遮光部材101の間に設けられた空間100b内に配置して、画像照射部11と制御基板15を接続することが好ましい。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described. The description of the contents overlapping with the third embodiment will be omitted. In the third embodiment, an example in which the image projection unit 11, the first mirror 12, and the control board 15 are arranged on the bottom surface 100a of the lower housing 100 is shown, but these members may be arranged on other members. As an example, any or all of the image projection unit 11, the first mirror 12, and the control board 15 may be arranged on the light-shielding member 101. In this case, it is preferable that the wiring cable 16 is arranged in the space 100b provided between the bottom surface 100a of the lower housing 100 and the first mirror 12 and the light-shielding member 101 to connect the image projection unit 11 and the control board 15.
 (第5実施形態)
 次に、本発明の第5実施形態について説明する。第1実施形態または第3実施形態と重複する内容は説明を省略する。図11は、第5実施形態に係る画像投影装置10の構造例を示す模式上面図である。図11に示すように、第5実施形態に係る画像投影装置10の遮光部材101は延長されて遮光傾斜面部102と遮光低面部103を有している。また上部カバー110には、開口部111と、遮光壁112と、画像光通過部113が設けられている。
Fifth Embodiment
Next, a fifth embodiment of the present invention will be described. Descriptions of contents overlapping with the first or third embodiment will be omitted. Fig. 11 is a schematic top view showing a structural example of an image projection device 10 according to the fifth embodiment. As shown in Fig. 11, the light-shielding member 101 of the image projection device 10 according to the fifth embodiment is extended to have a light-shielding inclined surface portion 102 and a light-shielding lower surface portion 103. In addition, the upper cover 110 is provided with an opening 111, a light-shielding wall 112, and an image light passing portion 113.
 図12Aは、第5実施形態に係る画像投影装置10の内部構造例を示す、上部カバー110を外した状態を示す模式斜視図である。図12Bは、図12Aに示す画像投影装置10の内部構造例を示す、上部カバー110を外した状態を示す模式上面図である。遮光壁部105は、光を遮る材料で構成されて遮光部材101上に立設された部分である。遮光壁部105は、第1ミラー12や第2ミラー13に、意図しない光である迷光が入射することを防止する。したがって遮光壁部105は遮光壁112とは別体の遮光部材である。図12Aおよび図12Bに示した例では、遮光壁部105は鉛直方向に延びる壁部105aと、壁部105aの上部から水平方向に延びる水平部105bを有している。また、図12Aおよび図12Bに示した例では、遮光壁部105は第1ミラー12と第2ミラー13の間の画像照射部11とは反対側において、概ねミラー間領域に沿って設けられている。遮光壁部105は迷光を防止するため、外部から光が侵入しやすい位置に設けられることが好ましく、一例としてはアクチュエータ120の可動部が挿入されている位置の周辺が挙げられる。ここでは遮光壁部105を遮光部材101から立設した例を示したが、上部カバー110から下方に延伸させるとしてもよい。 12A is a schematic perspective view showing an example of the internal structure of the image projection device 10 according to the fifth embodiment with the top cover 110 removed. FIG. 12B is a schematic top view showing an example of the internal structure of the image projection device 10 shown in FIG. 12A with the top cover 110 removed. The light-shielding wall portion 105 is a portion made of a light-shielding material and erected on the light-shielding member 101. The light-shielding wall portion 105 prevents stray light, which is unintended light, from entering the first mirror 12 or the second mirror 13. Therefore, the light-shielding wall portion 105 is a light-shielding member separate from the light-shielding wall 112. In the example shown in FIGS. 12A and 12B, the light-shielding wall portion 105 has a wall portion 105a extending vertically and a horizontal portion 105b extending horizontally from the upper portion of the wall portion 105a. 12A and 12B, the light-shielding wall 105 is provided on the side opposite the image irradiation unit 11 between the first mirror 12 and the second mirror 13, generally along the inter-mirror region. To prevent stray light, the light-shielding wall 105 is preferably provided in a position where light can easily enter from the outside, such as around the position where the movable part of the actuator 120 is inserted. Here, an example is shown in which the light-shielding wall 105 is erected from the light-shielding member 101, but it may also be extended downward from the upper cover 110.
 図12Aおよび図12Bに示すように、第5実施形態の画像投影装置10では、画像照射部11、第1ミラー12、第2ミラー13および制御基板15は下部筐体100の底面上に配置されている。また第1ミラー12は、制御基板15と画像照射部11の間に配置されている。また第1ミラー12は、遮光部材101上において、ミラー前遮光部104に沿って配置されている。また、制御基板15は第1ミラー12の反射面とは反対側(裏面側)において、下部筐体100の側壁と第1ミラー12の間に、画像照射部11に対向して配置されている。また、制御基板15と第1ミラー12は、ともに下部筐体100の底面に対して立設されている。 As shown in Figures 12A and 12B, in the image projection device 10 of the fifth embodiment, the image projection unit 11, the first mirror 12, the second mirror 13, and the control board 15 are arranged on the bottom surface of the lower housing 100. The first mirror 12 is arranged between the control board 15 and the image projection unit 11. The first mirror 12 is arranged along the pre-mirror light shielding portion 104 on the light shielding member 101. The control board 15 is arranged on the opposite side (back side) to the reflective surface of the first mirror 12, between the side wall of the lower housing 100 and the first mirror 12, facing the image projection unit 11. The control board 15 and the first mirror 12 are both erected on the bottom surface of the lower housing 100.
 図13は、第5実施形態において上部カバー110を組み合わせた状態における画像光の通過領域と画像光通過部113の関係を示す模式斜視図である。図13に示したように、第5実施形態の画像光通過部113は、下方に向かって幅が広がるように、斜辺113a、113bを有する台形状を成している。これは、遮光壁112が第2ミラー13方向に向かって下方に傾斜しているためである。画像光の通過領域は、図5Aおよび図13に示したように中間結像位置において幅方向が中間結像して最小となり、高さ方向は中間結像していない。よって、図13において画像光の通過領域の僅かに外側に斜辺113a、113bが位置するように、画像光通過部113を形成することで、画像光通過部113の面積を最小化しつつ迷光防止と外光の遮断を行うことができる。 13 is a schematic perspective view showing the relationship between the image light passing area and the image light passing section 113 in the state where the upper cover 110 is assembled in the fifth embodiment. As shown in FIG. 13, the image light passing section 113 in the fifth embodiment is trapezoidal with oblique sides 113a and 113b so that the width increases downward. This is because the light-shielding wall 112 is inclined downward toward the second mirror 13. The image light passing area is minimized in the width direction at the intermediate imaging position due to intermediate imaging as shown in FIG. 5A and FIG. 13, and there is no intermediate imaging in the height direction. Therefore, by forming the image light passing section 113 so that the oblique sides 113a and 113b are located slightly outside the image light passing area in FIG. 13, it is possible to prevent stray light and block external light while minimizing the area of the image light passing section 113.
 また、第2ミラー13で反射された画像光は、開口部111内を斜め上方に進行していくため、遮光壁112を第2ミラー13方向に向かって下方に傾斜させることで、遮光壁112の画像光への干渉を防止するとともに、最も広い面積で外光を遮ることができる。 In addition, since the image light reflected by the second mirror 13 travels diagonally upward through the opening 111, by tilting the light-shielding wall 112 downward toward the second mirror 13, it is possible to prevent the light-shielding wall 112 from interfering with the image light and to block external light over the widest area.
 上述したように第5実施形態の画像投影装置10では、第1ミラー12と第2ミラー13の間に遮光壁112が配置され、遮光壁112に設けられた画像光通過部113を画像光が通過するため、空間を有効に活用して小型化を図ることが可能となる。 As described above, in the fifth embodiment of the image projection device 10, a light-shielding wall 112 is disposed between the first mirror 12 and the second mirror 13, and image light passes through an image light passing section 113 provided in the light-shielding wall 112, making it possible to effectively utilize space and achieve miniaturization.
 (第6実施形態)
 次に、本発明の第6実施形態について図14Aから図14Cを用いて説明する。第5実施形態と重複する内容は説明を省略する。図14Aは、遮光壁112に形成された画像光通過部113の例であって、円弧状の画像光通過部113を示す模式図である。図14Bは、遮光壁112に形成された画像光通過部113の例であって、台形状の画像光通過部113を示す模式図である。図14Cは、遮光壁112に形成された画像光通過部113の例であって、三角形状の画像光通過部113を示す模式図である。
Sixth Embodiment
Next, a sixth embodiment of the present invention will be described with reference to Figs. 14A to 14C. Descriptions of contents overlapping with those of the fifth embodiment will be omitted. Fig. 14A is an example of the image light passing portion 113 formed on the light-shielding wall 112, and is a schematic diagram showing the image light passing portion 113 in an arc shape. Fig. 14B is an example of the image light passing portion 113 formed on the light-shielding wall 112, and is a schematic diagram showing the image light passing portion 113 in a trapezoid shape. Fig. 14C is an example of the image light passing portion 113 formed on the light-shielding wall 112, and is a schematic diagram showing the image light passing portion 113 in a triangular shape.
 図14Aに示したように、画像光通過部113は斜辺113a,113bを円弧状としてもよい。これにより、第1ミラー12で反射された画像光の通過領域の外形が曲線である場合にも対応することができる。また、画像光の通過領域と画像光通過部113の間にマージンを確保して、画像光が遮光壁112と干渉することを防止できる。 As shown in FIG. 14A, the image light passing portion 113 may have arc-shaped oblique sides 113a, 113b. This makes it possible to accommodate cases where the outer shape of the passing area of the image light reflected by the first mirror 12 is curved. Also, by ensuring a margin between the passing area of the image light and the image light passing portion 113, it is possible to prevent the image light from interfering with the light-shielding wall 112.
 図14Bに示したように、画像光通過部113は斜辺113a,113bおよび頂辺113cを有する台形状としてもよい。頂辺113cを設けることで、遮光壁112および画像光通過部113を中間結像位置とは少し異なる位置に配置することができ、設計自由度を向上させることができる。 As shown in FIG. 14B, the image light passing portion 113 may be trapezoidal having oblique sides 113a and 113b and an apex 113c. By providing the apex 113c, the light shielding wall 112 and the image light passing portion 113 can be positioned slightly different from the intermediate imaging position, improving the degree of freedom in design.
 図14Cに示したように、画像光通過部113は斜辺113a,113bを有する三角形状としてもよい。斜辺113a,113bが頂角で交わるため、中間結像位置と画像光通過部113の頂角を一致させて、画像光通過部113の面積を最小化することができる。 As shown in FIG. 14C, the image light passing portion 113 may be triangular in shape having hypotenuses 113a and 113b. Since the hypotenuses 113a and 113b intersect at a vertex angle, the intermediate imaging position and the vertex angle of the image light passing portion 113 can be made to coincide, thereby minimizing the area of the image light passing portion 113.
 また、図14Aから図14Cでは、斜辺113a,113bが同じ曲率または傾斜角度であり、画像光通過部113が左右対称となっている例を示したが、左右非対称であってもよい。特に図5Aに示したように、画像照射部11が第1ミラー12と第2ミラー13の間において横方向の一方に偏らせて配置され、画像光を横方向で中間結像させている場合には、画像光の通過領域が左右対称になるとは限らない。したがって、画像光通過部113を左右非対称とすることで、画像光通過部113の面積を最小化して画像光の通過領域との干渉を避けることができる。 In addition, although an example in which the oblique sides 113a, 113b have the same curvature or inclination angle and the image light passing portion 113 is symmetrical is shown in Figures 14A to 14C, it may be asymmetrical. In particular, as shown in Figure 5A, when the image irradiation portion 11 is positioned offset to one side in the horizontal direction between the first mirror 12 and the second mirror 13 and the image light is intermediately imaged in the horizontal direction, the passing area of the image light is not necessarily symmetrical. Therefore, by making the image light passing portion 113 asymmetrical, it is possible to minimize the area of the image light passing portion 113 and avoid interference with the passing area of the image light.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. The technical scope of the present invention also includes embodiments obtained by appropriately combining the technical means disclosed in the different embodiments.
 本出願は、2023年3月23日出願の日本特許出願2023-47417号、2023年3月23日出願の日本特許出願2023-47418号および2023年3月23日出願の日本特許出願2023-47419号に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2023-47417 filed on March 23, 2023, Japanese Patent Application No. 2023-47418 filed on March 23, 2023, and Japanese Patent Application No. 2023-47419 filed on March 23, 2023, the contents of which are incorporated herein by reference.
[付記]
 本開示の実施形態に係る内容を列記すると以下の通りである。
[Additional Notes]
The contents relating to the embodiments of the present disclosure are listed as follows.
(項目1)
 表示部に対して投影画像を投影する画像投影装置であって、
 前記表示部に対して画像光を照射する画像照射部と、
 前記画像照射部から照射された前記画像光を反射する第1ミラーと、
 前記第1ミラーで反射された前記画像光を反射する第2ミラーを備え、
 対向する前記第1ミラーと前記第2ミラーの両端同士を結んだ領域をミラー間領域とし、
 前記画像照射部は、前記ミラー間領域の幅方向における一方に偏って配置されており、少なくとも一部が前記ミラー間領域内に位置している、画像投影装置。
(Item 1)
An image projection device that projects a projection image onto a display unit,
an image irradiating unit that irradiates the display unit with image light;
A first mirror that reflects the image light irradiated from the image irradiating unit;
a second mirror that reflects the image light reflected by the first mirror,
an area connecting both ends of the first mirror and the second mirror facing each other is defined as an inter-mirror area;
The image projection device, wherein the image projection unit is arranged biased to one side in a width direction of the inter-mirror area, and at least a portion of the image projection unit is located within the inter-mirror area.
(項目2)
 前記第1ミラーは、前記ミラー間領域において前記画像光を幅方向に中間結像させ、高さ方向に中間結像させず、前記第2ミラーに到達させる、項目1に記載の画像投影装置。
(Item 2)
2. The image projection device according to item 1, wherein the first mirror forms an intermediate image of the image light in a width direction in the inter-mirror region and causes the image light to reach the second mirror without forming an intermediate image in a height direction.
(項目3)
 前記第1ミラーの反射面は、幅方向において、前記画像照射部に近い側の曲率半径をRnとし、前記画像照射部から遠い側の曲率半径をRfとしたとき、Rn<Rfの関係を満たす、項目1または項目2に記載の画像投影装置。
(Item 3)
3. The image projection device according to claim 1, wherein the reflective surface of the first mirror has a radius of curvature Rn on a side closer to the image irradiation unit in the width direction and a radius of curvature Rf on a side farther from the image irradiation unit, such that Rn<Rf.
(項目4)
 前記第1ミラーの反射面は、上側の横方向の曲率半径をRuとし、下側の横方向の曲率半径をRbとしたときに、Ru>Rbの関係を満たす、項目3に記載の画像投影装置。
(Item 4)
4. The image projection device according to item 3, wherein the reflective surface of the first mirror satisfies a relationship of Ru>Rb, where Ru is a radius of curvature in the horizontal direction on the upper side and Rb is a radius of curvature in the horizontal direction on the lower side.
(項目5)
 前記第1ミラーの反射面は、前記画像照射部に近い側の高さをHnとし、前記画像照射部から遠い側の高さをHfとしたとき、Hn<Hfの関係を満たす、項目1から項目4の何れか一つに記載の画像投影装置。
(Item 5)
5. The image projection device according to any one of items 1 to 4, wherein the reflective surface of the first mirror satisfies a relationship of Hn<Hf, where Hn is a height on a side closer to the image irradiation unit and Hf is a height on a side farther from the image irradiation unit.
(項目6)
 前記第1ミラーの反射面における最大の高さをH1maxとし、
 前記第2ミラーの反射面における最大の高さをH2maxとしたとき、
 0.5≦H1max/H2max≦1.5の範囲である、項目1から項目5の何れか一つに記載の画像投影装置。
(Item 6)
The maximum height of the reflecting surface of the first mirror is H1max,
When the maximum height of the reflecting surface of the second mirror is H2max,
6. The image projection device according to any one of items 1 to 5, wherein H1max/H2max is in the range of 0.5≦H1max/H2max≦1.5.
(項目7)
 表示部に対して投影画像を投影する画像投影装置であって、
 前記表示部に対して画像光を照射する画像照射部と、
 前記画像照射部から照射された前記画像光を反射する第1ミラーと、
 前記第1ミラーで反射された前記画像光を反射する第2ミラーと、
 前記画像照射部を制御する制御基板を備え、
 前記第1ミラーは、前記制御基板と前記画像照射部の間に配置されている、画像投影装置。
(Item 7)
An image projection device that projects a projection image onto a display unit,
an image irradiating unit that irradiates the display unit with image light;
A first mirror that reflects the image light irradiated from the image irradiating unit;
a second mirror that reflects the image light reflected by the first mirror;
A control board for controlling the image irradiation unit is provided,
The first mirror is disposed between the control board and the image projection unit.
(項目8)
 対向する前記第1ミラーと前記第2ミラーの両端同士を結んだ領域をミラー間領域とし、
 前記画像照射部は、前記ミラー間領域の幅方向における一方に偏って配置されており、少なくとも一部が前記ミラー間領域内に位置している、項目7に記載の画像投影装置。
(Item 8)
an area connecting both ends of the first mirror and the second mirror facing each other is defined as an inter-mirror area;
8. The image projection device according to item 7, wherein the image irradiation unit is arranged offset to one side in the width direction of the inter-mirror area, and at least a portion of the image irradiation unit is located within the inter-mirror area.
(項目9)
 前記画像照射部、前記第1ミラー、前記第2ミラーおよび前記制御基板は、筐体の底面上に配置されており、
 前記制御基板および前記第1ミラーは前記底面に対して立設されている、項目7または項目8に記載の画像投影装置。
(Item 9)
the image projection unit, the first mirror, the second mirror, and the control board are disposed on a bottom surface of a housing,
9. The image projection device according to claim 7, wherein the control board and the first mirror are provided upright relative to the bottom surface.
(項目10)
 前記底面上には前記第1ミラーおよび光を遮る遮光部材が配置されている、項目9に記載の画像投影装置。
(Item 10)
Item 10. The image projection device according to item 9, wherein the first mirror and a light blocking member that blocks light are disposed on the bottom surface.
(項目11)
 前記画像照射部と前記制御基板を電気的に接続する配線ケーブルを備え、
 前記底面と前記第1ミラーの間に設けられた空間に前記配線ケーブルが収容されている、項目10に記載の画像投影装置。
(Item 11)
a wiring cable electrically connecting the image projection unit and the control board;
Item 11. The image projection device according to item 10, wherein the distribution cable is housed in a space provided between the bottom surface and the first mirror.
(項目12)
 前記配線ケーブルは、前記制御基板と前記画像照射部の間を直線状に接続する、項目11に記載の画像投影装置。
(Item 12)
Item 12. The image projection device according to item 11, wherein the wiring cable connects the control board and the image projection unit in a straight line.
(項目13)
 表示部に対して投影画像を投影する画像投影装置であって、
 前記表示部に対して画像光を照射する画像照射部と、
 前記画像照射部から照射された前記画像光を反射する第1ミラーと、
 前記第1ミラーで反射された前記画像光を反射する第2ミラーと、
 前記第1ミラーと前記第2ミラーの間に配置された遮光壁とを備え、
 前記遮光壁は、一部が切り欠かれた画像光通過部を有しており、
 前記画像光は、前記画像光通過部内を通過する、画像投影装置。
(Item 13)
An image projection device that projects a projection image onto a display unit,
an image irradiating unit that irradiates the display unit with image light;
A first mirror that reflects the image light irradiated from the image irradiating unit;
a second mirror that reflects the image light reflected by the first mirror;
a light blocking wall disposed between the first mirror and the second mirror,
the light-shielding wall has an image light passing portion that is partially cut out,
The image projection device, wherein the image light passes through the image light passing portion.
(項目14)
 前記第1ミラーは、前記画像光を幅方向を中間結像位置で中間結像させ、高さ方向を中間結像させず、
 前記画像光通過部は、前記中間結像位置に配置されている、項目13に記載の画像投影装置。
(Item 14)
the first mirror forms an intermediate image of the image light at an intermediate image-forming position in the width direction and does not form an intermediate image in the height direction;
Item 14. The image projection device according to item 13, wherein the image light passing portion is disposed at the intermediate image forming position.
(項目15)
 前記画像照射部、前記第1ミラーおよび前記第2ミラーを収容する下部筐体と、
 前記下部筐体を覆う上部カバーとを備え、
 前記遮光壁は、前記上部カバーと一体に形成されている、項目13または項目14に記載の画像投影装置。
(Item 15)
a lower housing that houses the image irradiation unit, the first mirror, and the second mirror;
an upper cover that covers the lower housing,
Item 15. The image projection device according to item 13 or 14, wherein the light blocking wall is integrally formed with the upper cover.
(項目16)
 前記上部カバーは、前記第2ミラーで反射された前記画像光が通過する開口部を備え、
 前記遮光壁は、前記開口部から前記下部筐体に向かって延伸して形成されている、項目15に記載の画像投影装置。
(Item 16)
the upper cover has an opening through which the image light reflected by the second mirror passes;
Item 16. The image projection device according to item 15, wherein the light blocking wall is formed to extend from the opening toward the lower housing.
(項目17)
 前記遮光壁は、前記開口部から前記第2ミラー側に傾斜して設けられている、項目16に記載の画像投影装置。
(Item 17)
Item 17. The image projection device according to item 16, wherein the light blocking wall is provided at an angle from the opening toward the second mirror.
(項目18)
 前記下部筐体には、前記遮光壁とは別体の遮光部材が配置されている、項目15に記載の画像投影装置。
(Item 18)
Item 16. The image projection device according to item 15, wherein a light-shielding member separate from the light-shielding wall is disposed in the lower housing.
(項目19)
 前記第2ミラーは、高さ方向への前記画像光の反射方向を可変とされている、項目1から項目18の何れか一つに記載の画像投影装置。
(Item 19)
19. The image projection device according to any one of items 1 to 18, wherein the second mirror is configured to change a reflection direction of the image light in a height direction.

Claims (19)

  1.  表示部に対して投影画像を投影する画像投影装置であって、
     前記表示部に対して画像光を照射する画像照射部と、
     前記画像照射部から照射された前記画像光を反射する第1ミラーと、
     前記第1ミラーで反射された前記画像光を反射する第2ミラーを備え、
     対向する前記第1ミラーと前記第2ミラーの両端同士を結んだ領域をミラー間領域とし、
     前記画像照射部は、前記ミラー間領域の幅方向における一方に偏って配置されており、少なくとも一部が前記ミラー間領域内に位置している、画像投影装置。
    An image projection device that projects a projection image onto a display unit,
    an image irradiating unit that irradiates the display unit with image light;
    A first mirror that reflects the image light irradiated from the image irradiating unit;
    a second mirror that reflects the image light reflected by the first mirror,
    an area connecting both ends of the first mirror and the second mirror facing each other is defined as an inter-mirror area;
    The image projection device, wherein the image projection unit is arranged biased to one side in a width direction of the inter-mirror area, and at least a portion of the image projection unit is located within the inter-mirror area.
  2.  前記第1ミラーは、前記ミラー間領域において前記画像光を幅方向に中間結像させ、高さ方向に中間結像させず、前記第2ミラーに到達させる、請求項1に記載の画像投影装置。 The image projection device according to claim 1, wherein the first mirror forms an intermediate image of the image light in the width direction in the region between the mirrors, and allows the image light to reach the second mirror without forming an intermediate image in the height direction.
  3.  前記第1ミラーの反射面は、幅方向において、前記画像照射部に近い側の曲率半径をRnとし、前記画像照射部から遠い側の曲率半径をRfとしたとき、Rn<Rfの関係を満たす、請求項1に記載の画像投影装置。 The image projection device of claim 1, wherein the reflecting surface of the first mirror has a radius of curvature Rn on the side closer to the image projection unit in the width direction and a radius of curvature Rf on the side farther from the image projection unit, such that Rn<Rf.
  4.  前記第1ミラーの反射面は、上側の横方向の曲率半径をRuとし、下側の横方向の曲率半径をRbとしたときに、Ru>Rbの関係を満たす、請求項3に記載の画像投影装置。 The image projection device of claim 3, wherein the reflective surface of the first mirror satisfies the relationship Ru>Rb, where Ru is the radius of curvature in the horizontal direction on the upper side and Rb is the radius of curvature in the horizontal direction on the lower side.
  5.  前記第1ミラーの反射面は、前記画像照射部に近い側の高さをHnとし、前記画像照射部から遠い側の高さをHfとしたとき、Hn<Hfの関係を満たす、請求項1に記載の画像投影装置。 The image projection device of claim 1, wherein the reflecting surface of the first mirror satisfies the relationship Hn<Hf, where Hn is the height of the side closer to the image projection unit and Hf is the height of the side farther from the image projection unit.
  6.  前記第1ミラーの反射面における最大の高さをH1maxとし、
     前記第2ミラーの反射面における最大の高さをH2maxとしたとき、
     0.5≦H1max/H2max≦1.5の範囲である、請求項1に記載の画像投影装置。
    The maximum height of the reflecting surface of the first mirror is H1max,
    When the maximum height of the reflecting surface of the second mirror is H2max,
    2. The image projection device according to claim 1, wherein H1max/H2max is in the range of 0.5≦H1max/H2max≦1.5.
  7.  表示部に対して投影画像を投影する画像投影装置であって、
     前記表示部に対して画像光を照射する画像照射部と、
     前記画像照射部から照射された前記画像光を反射する第1ミラーと、
     前記第1ミラーで反射された前記画像光を反射する第2ミラーと、
     前記画像照射部を制御する制御基板を備え、
     前記第1ミラーは、前記制御基板と前記画像照射部の間に配置されている、画像投影装置。
    An image projection device that projects a projection image onto a display unit,
    an image irradiating unit that irradiates the display unit with image light;
    A first mirror that reflects the image light irradiated from the image irradiating unit;
    a second mirror that reflects the image light reflected by the first mirror;
    A control board for controlling the image irradiation unit is provided,
    The first mirror is disposed between the control board and the image projection unit.
  8.  対向する前記第1ミラーと前記第2ミラーの両端同士を結んだ領域をミラー間領域とし、
     前記画像照射部は、前記ミラー間領域の幅方向における一方に偏って配置されており、少なくとも一部が前記ミラー間領域内に位置している、請求項7に記載の画像投影装置。
    an area connecting both ends of the first mirror and the second mirror facing each other is defined as an inter-mirror area;
    The image projection device according to claim 7 , wherein the image irradiation section is disposed offset to one side in a width direction of the inter-mirror area, and at least a portion of the image irradiation section is located within the inter-mirror area.
  9.  前記画像照射部、前記第1ミラー、前記第2ミラーおよび前記制御基板は、筐体の底面上に配置されており、
     前記制御基板および前記第1ミラーは前記底面に対して立設されている、請求項7に記載の画像投影装置。
    the image projection unit, the first mirror, the second mirror, and the control board are disposed on a bottom surface of a housing,
    The image projection device according to claim 7 , wherein the control board and the first mirror are provided upright on the bottom surface.
  10.  前記底面上には前記第1ミラーおよび光を遮る遮光部材が配置されている、請求項9に記載の画像投影装置。 The image projection device according to claim 9, wherein the first mirror and a light-blocking member that blocks light are disposed on the bottom surface.
  11.  前記画像照射部と前記制御基板を電気的に接続する配線ケーブルを備え、
     前記底面と前記第1ミラーの間に設けられた空間に前記配線ケーブルが収容されている、請求項10に記載の画像投影装置。
    a wiring cable electrically connecting the image projection unit and the control board;
    The image projection device according to claim 10 , wherein the wiring cable is accommodated in a space provided between the bottom surface and the first mirror.
  12.  前記配線ケーブルは、前記制御基板と前記画像照射部の間を直線状に接続する、請求項11に記載の画像投影装置。 The image projection device according to claim 11, wherein the wiring cable connects the control board and the image projection unit in a straight line.
  13.  表示部に対して投影画像を投影する画像投影装置であって、
     前記表示部に対して画像光を照射する画像照射部と、
     前記画像照射部から照射された前記画像光を反射する第1ミラーと、
     前記第1ミラーで反射された前記画像光を反射する第2ミラーと、
     前記第1ミラーと前記第2ミラーの間に配置された遮光壁とを備え、
     前記遮光壁は、一部が切り欠かれた画像光通過部を有しており、
     前記画像光は、前記画像光通過部内を通過する、画像投影装置。
    An image projection device that projects a projection image onto a display unit,
    an image irradiating unit that irradiates the display unit with image light;
    A first mirror that reflects the image light irradiated from the image irradiating unit;
    a second mirror that reflects the image light reflected by the first mirror;
    a light blocking wall disposed between the first mirror and the second mirror,
    the light-shielding wall has an image light passing portion that is partially cut out,
    The image projection device, wherein the image light passes through the image light passing portion.
  14.  前記第1ミラーは、前記画像光を幅方向を中間結像位置で中間結像させ、高さ方向を中間結像させず、
     前記画像光通過部は、前記中間結像位置に配置されている、請求項13に記載の画像投影装置。
    the first mirror forms an intermediate image of the image light at an intermediate image-forming position in the width direction and does not form an intermediate image in the height direction;
    The image projection device according to claim 13 , wherein the image light passing portion is disposed at the intermediate image forming position.
  15.  前記画像照射部、前記第1ミラーおよび前記第2ミラーを収容する下部筐体と、
     前記下部筐体を覆う上部カバーとを備え、
     前記遮光壁は、前記上部カバーと一体に形成されている、請求項13に記載の画像投影装置。
    a lower housing that houses the image irradiation unit, the first mirror, and the second mirror;
    an upper cover that covers the lower housing,
    The image projection device according to claim 13 , wherein the light blocking wall is formed integrally with the upper cover.
  16.  前記上部カバーは、前記第2ミラーで反射された前記画像光が通過する開口部を備え、
     前記遮光壁は、前記開口部から前記下部筐体に向かって延伸して形成されている、請求項15に記載の画像投影装置。
    the upper cover has an opening through which the image light reflected by the second mirror passes;
    The image projection device according to claim 15 , wherein the light blocking wall is formed to extend from the opening toward the lower housing.
  17.  前記遮光壁は、前記開口部から前記第2ミラー側に傾斜して設けられている、請求項16に記載の画像投影装置。 The image projection device according to claim 16, wherein the light-shielding wall is inclined from the opening toward the second mirror.
  18.  前記下部筐体には、前記遮光壁とは別体の遮光部材が配置されている、請求項15に記載の画像投影装置。 The image projection device according to claim 15, wherein a light-shielding member separate from the light-shielding wall is disposed in the lower housing.
  19.  前記第2ミラーは、高さ方向への前記画像光の反射方向を可変とされている、請求項1から18の何れか一つに記載の画像投影装置。 The image projection device according to any one of claims 1 to 18, wherein the second mirror is capable of varying the reflection direction of the image light in the height direction.
PCT/JP2024/010533 2023-03-23 2024-03-18 Image projection device WO2024195768A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2023047417A JP2024136331A (en) 2023-03-23 2023-03-23 Image Projection Device
JP2023-047419 2023-03-23
JP2023047419A JP2024136333A (en) 2023-03-23 2023-03-23 Image Projection Device
JP2023047418A JP2024136332A (en) 2023-03-23 2023-03-23 Image Projection Device
JP2023-047417 2023-03-23
JP2023-047418 2023-03-23

Publications (1)

Publication Number Publication Date
WO2024195768A1 true WO2024195768A1 (en) 2024-09-26

Family

ID=92841753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010533 WO2024195768A1 (en) 2023-03-23 2024-03-18 Image projection device

Country Status (1)

Country Link
WO (1) WO2024195768A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082019A (en) * 2013-10-22 2015-04-27 日本精機株式会社 Head-up display device
WO2016076342A1 (en) * 2014-11-12 2016-05-19 日本精機株式会社 Head up display device
WO2018061745A1 (en) * 2016-09-30 2018-04-05 日本精機株式会社 Head-up display device
WO2019202864A1 (en) * 2018-04-18 2019-10-24 マクセル株式会社 Head-up display
CN212125017U (en) * 2020-03-18 2020-12-11 浙江零跑科技有限公司 AR-HUD device
WO2021241497A1 (en) * 2020-05-26 2021-12-02 日本精機株式会社 Head-up display device
WO2022209792A1 (en) * 2021-03-31 2022-10-06 株式会社小糸製作所 Image generation device, image irradiation device equipped with said image generation device, and image irradiation device
JP2022156070A (en) * 2021-03-31 2022-10-14 株式会社小糸製作所 image projection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082019A (en) * 2013-10-22 2015-04-27 日本精機株式会社 Head-up display device
WO2016076342A1 (en) * 2014-11-12 2016-05-19 日本精機株式会社 Head up display device
WO2018061745A1 (en) * 2016-09-30 2018-04-05 日本精機株式会社 Head-up display device
WO2019202864A1 (en) * 2018-04-18 2019-10-24 マクセル株式会社 Head-up display
CN212125017U (en) * 2020-03-18 2020-12-11 浙江零跑科技有限公司 AR-HUD device
WO2021241497A1 (en) * 2020-05-26 2021-12-02 日本精機株式会社 Head-up display device
WO2022209792A1 (en) * 2021-03-31 2022-10-06 株式会社小糸製作所 Image generation device, image irradiation device equipped with said image generation device, and image irradiation device
JP2022156070A (en) * 2021-03-31 2022-10-14 株式会社小糸製作所 image projection device

Similar Documents

Publication Publication Date Title
JPH0472734B2 (en)
JPH0497193A (en) Display device for vehicle
JP7456968B2 (en) In-vehicle display device
JP2020144306A (en) Head-up display device
US11919391B2 (en) On-vehicle display apparatus
JP2001018682A (en) Display device for vehicle
JP2006062501A (en) Head up display
WO2024195768A1 (en) Image projection device
CN117806000A (en) Display device for vehicle
JP2022156070A (en) image projection device
US7671822B2 (en) Optical unit for a head-up display
JP2006065092A (en) Head-up display
JP2024136333A (en) Image Projection Device
JP2024136331A (en) Image Projection Device
US20240184125A1 (en) Image generation device, image irradiation device equipped with said image generation device, and image irradiation device
JP2024136332A (en) Image Projection Device
WO2021010227A1 (en) Windshield display device
JPH10278629A (en) Head-up display device for vehicle
JP3712757B2 (en) Head-up display device for vehicle
JP2004098834A (en) Vehicular head-up display
EP3683615A1 (en) A head-up display device for a vehicle and vehicle
JP7146862B2 (en) vehicle display
JP2006065091A (en) Head-up display
WO2021010228A1 (en) Windshield display device
JP7435337B2 (en) cover member