WO2024195548A1 - Conveyance assistance device - Google Patents
Conveyance assistance device Download PDFInfo
- Publication number
- WO2024195548A1 WO2024195548A1 PCT/JP2024/008581 JP2024008581W WO2024195548A1 WO 2024195548 A1 WO2024195548 A1 WO 2024195548A1 JP 2024008581 W JP2024008581 W JP 2024008581W WO 2024195548 A1 WO2024195548 A1 WO 2024195548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- controller
- bed
- control
- speed
- acceleration
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 116
- 238000001514 detection method Methods 0.000 claims description 29
- 230000001174 ascending effect Effects 0.000 claims description 9
- 230000006698 induction Effects 0.000 abstract 2
- 238000000034 method Methods 0.000 description 34
- 230000008569 process Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 18
- 230000009194 climbing Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 238000012937 correction Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 238000013016 damping Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/08—Apparatus for transporting beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B19/00—Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
Definitions
- This disclosure relates to a transport assistance device.
- Patent Document 1 discloses an auxiliary propulsion system that uses Mecanum wheels in the drive section.
- This auxiliary propulsion system includes a pair of Mecanum wheels connected to a chassis, a motor that drives each Mecanum wheel, and a control system that detects changes in the rotational speed of each motor.
- Patent Document 1 when the chassis moves in a certain direction, a force in the same direction is applied by the operator. When each Mecanum wheel rotates due to the applied force, the associated change in rotation speed is reported to the control system. Based on this report, the control system starts the electric rotation of the motor. This electric rotation assists the movement of the chassis.
- the technology disclosed here was developed in consideration of these points, and its purpose is to make the object easier to press when assisting in its movement.
- the first aspect of the present disclosure relates to a transport assist device for assisting the movement of an object caused by an external force.
- This transport assist device includes a wheel attached to the object, a motor drivingly connected to the wheel, a current sensor that detects an induced current flowing through the motor when the wheel rotates, and a controller that controls the motor, and the controller estimates the acceleration of the object based on the detection signal of the current sensor, executes a first control that sets a command rotation speed of the motor based on the acceleration so as to follow the movement of the object, and executes a second control that increases the command rotation speed set in the first control when the absolute value of the acceleration is equal to or greater than a predetermined value.
- the torque that caused the induced current (the torque that tries to rotate the wheel).
- the acceleration of the object This acceleration increases according to the external force applied by the operator, so by determining whether the absolute value of the acceleration is equal to or greater than a predetermined value, it is possible to determine whether the object has been pushed.
- the second control when the absolute value of the acceleration is equal to or greater than a predetermined value, in other words, when the object is pressed, it is possible to synchronize the timing when the transporter presses the object with the timing when the object becomes easier to press. This makes it possible to provide the transporter with a feeling of assistance that is neither too much nor too little. Also, by configuring the second control to be executed on the condition that the object is pressed, it is possible to avoid a situation in which the transport assistance device unintentionally starts to move on its own as a result of executing the second control when the object is not being pressed.
- the transport assist device may include a rotation sensor that detects the rotation speed of the motor, and when the controller increases the command rotation speed, the greater the rotation speed detected by the rotation sensor, the greater the increase in the command rotation speed.
- the harder the transporter pushes the object the higher the detected rotation speed will be.
- the harder the transporter pushes the object the stronger the thrust is used to assist the movement of the object. This makes it possible to provide assistance according to the magnitude of the external force, which is advantageous in making the object easier to press.
- the controller may be configured to reduce the command rotation speed after the second control when the absolute value of the acceleration falls below the predetermined value.
- the transporter when the transporter pushes the object lightly or releases the object, the movement of the object is assisted with a weaker thrust. This makes it possible to realize assistance according to the magnitude of the external force, giving the transporter a feeling of assistance that is just right and preventing unintended self-propulsion of the transport assistance device.
- the transport assistance device may include a rotation sensor that detects the number of rotations of the motor, and the controller may allow the wheel to be driven on the condition that the number of rotations reaches or exceeds a predetermined value based on the detection signal of the rotation sensor.
- the drive of the wheel is limited. This makes it possible to execute the first control and the second control only when the object is actually being transported. This contributes to improving the usability of the transport assistance device.
- the transport assistance device includes a rotation sensor that detects the number of rotations of the wheel and an inclination sensor that detects the inclination angle of the transport surface along which the object moves, and the controller determines whether the transport surface is a slope based on the detection signal of the inclination sensor, and if the controller determines that the transport surface is not a slope, executes both the first control and the second control based on the acceleration obtained by the current sensor, while if the controller determines that the transport surface is a slope, it determines whether the object is ascending along the slope based on the detection signals of the rotation sensor and the inclination sensor, and if it determines that the object is ascending, it increases the acceleration obtained by the current sensor, executes the first control based on the increased acceleration, and does not execute the second control.
- the acceleration referenced in the first control is increased, and the first control is executed based on the increased acceleration.
- Increasing the acceleration is equivalent to overestimating the external force acting on the object than the actual external force. Overestimating the external force achieves assistance that exerts a thrust force greater than that required to follow the movement of the bed. This process is performed as long as the slope continues, so that a good sense of assistance can be continuously exerted while climbing a slope.
- the transport assistance device may include a rotation sensor that detects the number of rotations of the wheel, and an inclination sensor that detects the inclination angle of the transport surface along which the object is transported, and the controller may determine whether the transport surface is a slope based on the detection signal of the inclination sensor, and if the controller determines that the transport surface is not a slope, execute both the first control and the second control based on the acceleration obtained by the current sensor, while if the controller determines that the transport surface is a slope, determine whether the object is descending along the slope based on the detection signals of the rotation sensor and the inclination sensor, and if the controller determines that the object is descending, execute the first control based on the acceleration obtained by the current sensor and do not execute the second control.
- the object may be accelerated more than necessary, causing it to fall out of the carrier's hands. Therefore, according to the sixth aspect, when it is determined that the object is going downhill, only the first control is performed without increasing the acceleration, and the second control is not performed. This makes it possible to provide a sense of assistance that is appropriate when going downhill.
- the controller may maintain the value of the command speed when the command speed is less than a predetermined threshold, and change the command speed to the threshold when the command speed is equal to or greater than the threshold.
- the command rotation speed value can be maintained below the threshold value. This makes it possible to further improve the safety of the transport assistance device compared to conventional methods.
- the object may be a bed with casters, and the wheels may be attached to the bottom of the bed with casters.
- the object is a bed with casters. Even when assisting in the movement of a heavy object such as a bed with casters, the comfort of pushing the object by the carrier can be reduced.
- the present disclosure makes it possible to reduce the pressure felt by the transporter when assisting in the movement of an object.
- FIG. 1 is a side view illustrating an example of the overall configuration of a transport assistance device and a bed with casters. 1 is a bottom view illustrating an example of the overall configuration of a transport assistance device and a bed with casters.
- FIG. FIG. 2 is a perspective view illustrating a configuration of a transport auxiliary device.
- FIG. 2 is a plan view illustrating a configuration of a transport auxiliary device.
- FIG. 2 is a side view illustrating a configuration of a transport auxiliary device.
- 4 is a block diagram illustrating a configuration of a control system of the transport assist device.
- FIG. 11A and 11B are diagrams for explaining the operation of the first and second Mecanum wheels.
- FIG. 1 is a diagram for explaining a detection target of a six-axis sensor; 4 is a flowchart illustrating main processing performed by a controller.
- 11 is a flowchart illustrating a process related to determination of a moving direction.
- FIG. 2 is a control block diagram illustrating a configuration of compliance control.
- FIG. 1 is a conceptual diagram for explaining a basic concept of compliance control.
- FIG. 13 is a diagram illustrating an example of a change in speed increase amount relative to the number of rotations.
- 11 is a diagram illustrating an example of a command rotation speed obtained by speed increase control.
- FIG. 11 is a flowchart illustrating a compliance control and a speed increase control.
- 10 is a flowchart illustrating a process relating to ascending/descending a slope.
- 4 is a flowchart illustrating a safety limit control.
- FIG. 1 is a side view illustrating the overall configuration of the transport assistance device 1 and the bed with casters 10
- FIG. 2 is a bottom view illustrating the overall configuration of the transport assistance device 1 and the bed with casters 10.
- FIG. 3 is a perspective view illustrating the configuration of the transport assistance device 1
- FIG. 4 is a plan view illustrating the configuration of the transport assistance device 1
- FIG. 5 is a side view illustrating the configuration of the transport assistance device 1.
- FIG. 6 is a block diagram illustrating the configuration of the control system of the transport auxiliary device 1
- FIG. 7 is a diagram for explaining the operation of the first and second Mecanum wheels 21R, 21L.
- FIG. 8 is a diagram for explaining the detection target of the 6-axis sensor SW5.
- the transport assistance device 1 is attached to a specific object.
- This transport assistance device 1 is a device for assisting the movement of an object by an external force (e.g., an external force applied by the transporter 100).
- the object of this embodiment is a bed with casters (hereinafter simply referred to as "bed") 10.
- This bed 10 is equipped with multiple casters 14 including front wheels 14F and rear wheels 14B, and is intended to be used, for example, as a medical bed.
- the longitudinal direction of the bed 10, i.e., the direction in which a person lies on the bed 10, will be referred to as the "front-to-back direction” or “longitudinal direction”
- the direction toward the feet along the front-to-back direction will be referred to as the "front”
- the direction toward the pillow will be referred to as the "rear”.
- the short side of the bed 10 that is, the direction perpendicular to the front-to-rear direction on a horizontal plane
- the direction perpendicular to the front-to-rear direction on a horizontal plane is defined as the "left-to-right direction” or “lateral direction”
- the direction toward the depth of the paper in FIG. 1 along that left-to-right direction is defined as the "right”
- the direction toward the front of the paper in FIG. 1 is defined as the "left” (see FIG. 2 for details).
- the "left-to-right direction” here refers to the left-to-right direction when viewed from the rear to the front.
- lateral movement refers to movement along this left-to-right direction.
- the left-to-right direction (lateral direction) can also be defined as the direction perpendicular to the front-to-rear direction and extending along the transport surface F (the floor surface along which the bed 10 travels).
- the bed 10 is supported by the carrier 100.
- the bed 10 is supported at one end (e.g., the rear end) in the front-to-rear direction.
- the transport assistance device 1 operates to assist the manual movement of the bed 10 supported by the carrier 100.
- the bed 10 comprises a bed body 11 on which a mattress (not shown) is placed, a frame 12 that supports the bed body 11 from below, a lifting section 13 that raises and lowers the bed body 11 relative to the frame 12, and a number of casters 14 (four in the illustrated example) arranged on the underside of the bed 10.
- the bed 10 weighs, for example, between 60 kg and 300 kg.
- the bed body 11 has a headboard 11h arranged at the rear end side of the bed 10, a footboard 11f arranged at the front end side located opposite the rear end side in the front-to-rear direction, and side rails 11s arranged on both the left and right sides of the bed 10.
- the headboard 11h is supported from the rear by the carrier 100 in order to manually move the bed 10.
- the headboard 11h functions as a support part to which force is applied by the carrier 100.
- the footboard 11f, side rails 11s, etc. may also be supported.
- the frame 12 is configured in a rectangular frame shape, with the four sides being made up of a front frame 12F, a right frame 12R, a left frame 12L, and a rear frame 12B.
- the front frame 12F is located at the front of the bed 10 and extends in the left-right direction.
- the right frame 12R is located on the right side of the bed 10 and extends in the front-to-rear direction.
- the left frame 12L is located on the left side of the bed 10 and extends in the front-to-rear direction.
- the rear frame 12B is located at the rear of the bed 10 and extends in the left-to-right direction.
- the front wheels 14F and rear wheels 14B that make up the multiple casters 14 are arranged at the four corners of the underside of the bed 10. Two front wheels 14F and two rear wheels 14B are provided along the left-right direction.
- the multiple casters 14 support the frame 12, the lifting section 13, and the bed body 11 on the transport surface F.
- Each caster 14 is a so-called free caster, and has an attachment part 14a fixed to the underside of the bed 10, a fork part 14b that can rotate around a rotation axis Oc relative to the attachment part 14a, and a wheel 14c that is rotatably supported by the fork part 14b.
- the rotation axis Oc of each fork part 14b extends in the vertical direction (the height direction of the bed 10).
- the rotation axis of each wheel 14c extends along the horizontal plane. This rotation axis is tilted in the left-right direction by rotating the fork part 14b relative to the attachment part 14a.
- the transport assistance device 1 is positioned to bridge the midpoint of the right frame 12R in the fore-and-aft direction and the midpoint of the left frame L in the fore-and-aft direction.
- the transport assistance device 1 is positioned between the front wheels 14F and rear wheels 14B in the fore-and-aft direction, and is positioned in the center of the bed 10 in the left-and-right direction.
- the transport auxiliary device 1 includes a storage box 6, a mounting fixture 7, first and second Mecanum wheels 21R, 21L as wheels, first and second motors 22R, 22L, a controller 4, first and second current sensors SW1, SW2 as current sensors, first and second rotation sensors SW3, SW4 as rotation sensors, and a six-axis sensor SW5 as a tilt sensor (the first and second motors 22R, 22L and the sensors SW1 to SW5 are only shown in Figure 6).
- the first Mecanum wheel 21R, 21L is assumed to be located on the right side, and the second Mecanum wheel 21L is assumed to be located on the left side.
- controller 4 and the 6-axis sensor SW5 are housed in the housing box 6, while the mounting fixture 7, the first and second Mecanum wheels 21R, 21L, the first and second motors 22R, 22L, the first and second current sensors SW1, SW2, and the first and second rotation sensors SW3, SW4 are located outside the housing box 6.
- the storage box 6 houses the controller 4 as described above.
- the storage box 6 is disposed between the first Mecanum wheel 21R and the second Mecanum wheel 21L in the left-right direction.
- the storage box 6 is attached to the mounting fixture 7 together with the first and second Mecanum wheels 21R, 21L, and is attached to the bottom of the bed 10 via this mounting fixture 7.
- the mounting fixture 7 is detachable from the bottom of the bed 10.
- the transport assistance device 1 according to this embodiment can be retrofitted to the bed 10 and can be removed as necessary.
- the mounting fixture 7 has a front rail member 71f, a rear rail member 71b, and first and second arm members 72R and 72L that rotatably support the first and second Mecanum wheels 21R and 21L, respectively.
- the front rail member 71f and the rear rail member 71b are spaced apart in the front-to-rear direction, and each spans the front-to-rear center of the right frame 12R and the front-to-rear center of the left frame 12L.
- the front rail member 71f and the rear rail member 71b are detachable from the right frame 12R and the left frame 12L.
- the first and second Mecanum wheels 21R, 21L and the storage box 6 are arranged between the front rail member 71f and the rear rail member 71b in the front-to-rear direction.
- the first arm member 72R located on the right side in Figs. 3 and 4 is supported by the rear rail member 71b so that it can swing.
- the front end of the first arm member 72R rotatably supports the first Mecanum wheel 21R.
- the first arm member 72R is arranged to be positioned between the first Mecanum wheel 21R and the storage box 6 in the left-right direction.
- first tension spring 75R is attached to the upper end of the first arm member 72R.
- the other end of this first tension spring 75R is attached to a first bracket 76R fixed to the front rail member 71f.
- the second arm member 72L located on the left side in Figures 3 and 4, is supported by the rear rail member 71b so as to be able to swing, just like the first arm member 72R.
- the front end of the second arm member 72L rotatably supports the second Mecanum wheel 21L.
- the second arm member 72L is also arranged to be positioned between the second Mecanum wheel 21L and the storage box 6 in the left-right direction.
- a second tension spring 75L is attached to the upper end of the second arm member 72L.
- the other end of this second tension spring 75L is attached to a second bracket 76L fixed to the front rail member 71f (see also Figure 5).
- the first and second Mecanum wheels 21R, 21L are attached to the lower part (bottom) of the bed 10, as shown in Figures 1 and 2.
- the first and second Mecanum wheels 21R, 21L are in contact with the transport surface F of the bed 10.
- the transport surface F is only shown in Figure 1.
- the first and second Mecanum wheels 21R, 21L are also disposed rearward of the front wheels 14F and in front of the rear wheels 14B.
- the first and second Mecanum wheels 21R, 21L are disposed so as to be aligned in the left-right direction, which is the short side direction, as shown in Figure 2.
- the first Mecanum wheel 21R has a first wheel body 211R that rotates around a first rotation axis Oy1, and a number of first barrel-shaped rollers 212R that are arranged along the outer periphery of the first wheel body 211R and each rotate around a first inclined axis Or that is inclined with respect to the first rotation axis Oy1.
- the second Mecanum wheel 21L has a second wheel body 211L that rotates around a second rotation axis Oy2, and a number of second barrel-shaped rollers 212L that are arranged along the outer periphery of the second wheel body 211L and each rotate around a second inclined axis Ol that is inclined in a direction different from the first inclined axis Or with respect to the second rotation axis Oy2.
- the first and second rotation axes Oy1, Oy2 both extend in the left-right direction.
- the first tilt axis Or is tilted relative to the second tilt axis Ol so as to be linearly symmetrical with respect to the front-to-rear direction (see the axis of symmetry Os in FIG. 4).
- the first tilt axis Or and the second tilt axis Ol extend so as to be mirror-symmetrical with respect to the mirror plane.
- the first and second tilt axes Or, Ol each extend from the rear to the front along the fore-and-aft direction, and from the inside to the outside in the left-right direction (from the center in the left-right direction to the right or left).
- the inclination angle ⁇ r of the first inclined axis Or relative to the first rotation axis Oy1 is set to 45° in plan view.
- the inclination angle ⁇ l of the second inclined axis Ol relative to the second rotation axis Oy2 is also set to 45° in plan view.
- the inclination direction and inclination angle of each barrel-shaped roller 212R, 212L are not limited to these examples.
- the entire transport auxiliary device 1 may be rearranged from the state illustrated in FIG. 2 to a state rotated a predetermined angle around the z-axis extending in the vertical direction.
- the first and second Mecanum wheels 21R, 21L are connected to each other via the front rail member 71f and the rear rail member 71b shown in FIG. 3, etc. Therefore, the first and second Mecanum wheels 21R, 21L move together in the front-rear and left-right directions, and rotate together around a rotation axis perpendicular to the horizontal plane.
- the first and second motors 22R, 22L are drivingly connected to the first and second Mecanum wheels 21R, 21L, respectively.
- the first and second motors 22R, 22L are each configured as a so-called three-phase DC brushless motor. Both the first and second motors 22R, 22L are electrically connected to the controller 4 and are controlled by the controller 4.
- the first and second motors 22R, 22L are supplied with a motor current corresponding to the torque load when they rotate.
- the motor current can be used to switch the rotation speed of the first and second motors 22R, 22L and between forward and reverse rotation.
- the first motor 22R is connected to the first Mecanum wheel 21R so as to transmit a driving force (torque).
- the second motor 22L is connected to the second Mecanum wheel 21L so as to transmit a driving force (torque).
- the first Mecanum wheel 21R rotates forward when the first motor 22R rotates in the forward direction, and the first Mecanum wheel 21R rotates backward when the first motor 22R rotates in the reverse direction.
- the second Mecanum wheel 21L rotates forward when the second motor 22L rotates in the forward direction, and the second Mecanum wheel 21L rotates backward when the second motor 22L rotates in the reverse direction.
- the first motor 22R is built into the first Mecanum wheel 21R
- the second motor 22L is built into the second Mecanum wheel 21L.
- the first current sensor SW1 also detects the induced current that flows through the first motor 22R when the first mecanum wheel 21R rotates. In other words, when the first mecanum wheel 21R rotates due to an external force, the rotor and stator in the first motor 22R rotate relative to each other, generating an induced current.
- the induced current detected by the first current sensor SW1 corresponds to the q-axis current.
- the magnitude of the induced current is proportional to the torque acting on the first Mecanum wheel 21R when it rotates in response to an external force.
- the magnitude of this torque is related to the magnitude of the external force received by the bed 10, and thus to the amount of speed change of the bed 10 caused by the external force.
- the sign of the induced current is related to the direction of rotation of the first Mecanum wheel 21R when it rotates in response to an external force.
- the sign of the induced current is the opposite sign to the motor current that flows when the first motor 22R is driven.
- the second current sensor SW2 detects the induced current flowing through the second motor 22L when the second mecanum wheel 21L rotates. In other words, when the second mecanum wheel 21L rotates due to an external force, the rotor and stator in the second motor 22L rotate relative to each other, generating an induced current.
- the induced current detected by the second current sensor SW2 corresponds to the q-axis current.
- the magnitude of the induced current is proportional to the torque acting on the second mecanum wheel 21L when the second mecanum wheel 21L rotates in response to an external force.
- the magnitude of this torque is related to the magnitude of the external force received by the bed 10, and thus to the amount of speed change of the bed 10 caused by the external force.
- the sign of the induced current is related to the direction of rotation of the second mecanum wheel 21L when the second mecanum wheel 21L rotates in response to an external force.
- the sign of the induced current is the opposite sign to the motor current that flows when the second motor 22L is driven.
- the first current sensor SW1 will detect an induced current with the same sign as when the first motor 22R is rotated in the reverse direction.
- the second current sensor SW2 will detect an induced current with the same sign as when the second motor 22L is rotated in the forward direction.
- the controller 4 is configured to perform assistance in the forward direction, i.e., in the direction of action of the external force, by feeding back the torque related to the induced current (more specifically, by rotating the first and second motors 22R, 22L at a command rotation speed corresponding to the torque).
- first and second rotation sensors SW3 and SW4 detect the rotation speeds of the first and second motors 22R and 22L, respectively.
- the first and second rotation sensors SW3 and SW4 are each configured with an encoder.
- the second rotation sensor SW4 which also functions as an encoder, detects the rotation speed and rotation angle of the second motor 22L.
- the six-axis sensor SW5 which serves as an inclination sensor, detects the inclination angle of the transport surface F along which the bed 10 moves.
- the six-axis sensor SW5 is configured to be capable of detecting at least the angular velocity of the rotation angle (the so-called pitch angle ⁇ ) around the y-axis extending in the left-right direction.
- the six-axis sensor SW5 can detect not only the angular velocity of the pitch angle ⁇ , but also the acceleration in three directions along the x-axis extending in the forward/backward direction, the y-axis extending in the left/right direction, and the z-axis extending in the up/down direction, the angular velocity of the rotation angle around the x-axis (the so-called roll angle ⁇ ), and the angular velocity of the rotation angle around the z-axis (the so-called yaw angle ⁇ ).
- the detection signal of the six-axis sensor SW5 is input to the controller 4.
- the controller 4 controls the first and second motors 22R, 22L based on electrical signals input from the various sensors SW1 to SW5.
- This controller 4 has a CPU, memory, and an input/output bus, and is configured, for example, by a control board.
- the controller 4 sets the command rotation speeds of the first and second motors 22R, 22L based on the detection signals input from the various sensors SW1 to SW5.
- the controller 4 inputs motor currents corresponding to the set command rotation speeds to the first and second motors 22R, 22L.
- the first and second motors 22R, 22L each rotate at the command rotation speeds set by the controller 4.
- the first Mecanum wheel 21R rotates at the same rotation speed as the first motor 22R
- the second Mecanum wheel 21L rotates at the same rotation speed as the second motor 22L.
- setting the command rotation speeds of the first and second motors 22R and 22L is equivalent to setting the command rotation speeds of the first and second Mecanum wheels 21R and 21L.
- the rotation direction of the first motor 22R and the second motor 22L can be changed individually.
- the rotation direction of each motor 22R, 22L the corresponding Mecanum wheels 21R, 21L can be switched between forward and backward rotation.
- a thrust force can be applied to the transport assistance device 1 and the bed 10 in a diagonal forward left direction (see arrow A11 in FIG. 7).
- the transport assistance device 1 can apply a thrust force to the bed 10 in a diagonal forward right direction (see arrow A12 in FIG. 7).
- a thrust force can be applied to the transport assistance device 1 and the bed 10 in a diagonally rearward right direction (see arrow A21 in FIG. 7).
- the transport assistance device 1 can apply a thrust force to the bed 10 in a diagonally rearward left direction (see arrow A22 in FIG. 7).
- the transport assistance device 1 applies a thrust force in the left-right direction to the bed 10.
- the transport assistance device 1 applies a diagonal thrust to the bed 10.
- the transport assistance device 1 is configured to operate the first and second motors 22R, 22L based on the detection signals of the various sensors SW1 to SW5, thereby assisting the transporter 100 in transporting the bed 10 through the thrust applied as described above.
- the controller 4 determines the direction in which the external force acts (hereinafter simply referred to as the "direction of action") based on the detection signals of the various sensors SW1 to SW5, and operates the first and second motors 22R, 22L to exert a thrust along that direction of action.
- the controller 4 rotates both the first and second motors 22R, 22L in the forward direction, thereby rotating both the first and second Mecanum wheels 21R, 21L forward. This makes it possible to assist the forward movement of the bed 10, as shown in the upper left of FIG. 7.
- first and second Mecanum wheels 21R, 21L are allowed to rotate forward and backward even when the corresponding motors 22R, 22L are not driven. This reduces wobbling when the bed 10 is pushed by hand, and allows for stable transportation of the bed 10.
- FIG. 9 is a flowchart illustrating the main processing performed by the controller 4.
- FIG. 10 is a flowchart illustrating processing related to determining the direction of movement.
- FIG. 11 is a control block diagram that illustrates the configuration of compliance control.
- FIG. 12 is a conceptual diagram for explaining the basic concept of compliance control.
- FIG. 13 is a diagram illustrating the change in the speed increase amount relative to the rotation speed.
- FIG. 14 is a diagram illustrating the command rotation speed obtained by speed increase control.
- FIG. 15 is a flowchart illustrating compliance control and speed increase control.
- FIG. 16 is a flowchart illustrating processing related to going uphill and downhill.
- FIG. 17 is a flowchart illustrating safety limit control.
- step S1 of FIG. 9 the controller 4 reads the detection signals of the five sensors SW1 to SW5 mentioned above.
- the controller 4 estimates the acceleration of each of the first and second Mecanum wheels 21R, 21L individually based on the detection signals of the first and second current sensors SW1, SW2.
- first acceleration the acceleration of the first Mecanum wheel 21R
- second acceleration the acceleration of the second Mecanum wheel 21L
- Both the first and second accelerations are the time derivatives of the translational velocity, that is, so-called tangential accelerations.
- the magnitude of the induced current detected by the first and second current sensors SW1, SW2, respectively, is proportional to the torque (particularly the torque caused by the reaction force) acting on the first and second Mecanum wheels 21R, 21L when they rotate. Based on this proportional relationship, the controller 4 estimates the first torque acting on the first Mecanum wheel 21R and the second torque acting on the second Mecanum wheel 21L separately. In this case, the proportionality coefficient for converting the induced current to torque can be one that is pre-stored in the controller 4.
- the controller 4 assists the movement of the bed 10 by driving the first and second motors 22R and 22L against the reaction forces corresponding to the first and second torques.
- the controller 4 estimates a first acceleration corresponding to the first torque and a second acceleration corresponding to the second torque based on the following equations (1) and (2).
- T r [Nm] is the first torque
- T l [Nm] is the second torque
- a r [m/s 2 ] is the first torque
- a l [m/s 2 ] is a first acceleration corresponding to the second torque
- a l [m/s 2 ] is a second acceleration corresponding to the second torque.
- R [m] is the tire radius of each of the first and second Mecanum wheels 21R, 21L
- m [kg] is the mass of each of the first and second Mecanum wheels 21R, 21L.
- the tire radius and mass are the same for the first Mecanum wheel 21R and the second Mecanum wheel 21L.
- the controller 4 estimates the translational acceleration of the first and second Mecanum wheels 21R, 21L based on the detection signals of the first and second current sensors SW1, SW2.
- the controller 4 estimates a vertical acceleration indicating the translational acceleration of the first and second mecanum wheels 21R, 21L in the front-rear direction and a lateral acceleration indicating the translational acceleration of the first and second mecanum wheels 21R, 21L in the lateral direction, respectively, using the first and second accelerations a r , a l estimated based on the detection signals of the first and second current sensors SW1, SW2.
- the controller 4 estimates the vertical acceleration by adding the first acceleration a r and the second acceleration a 1 , and estimates the lateral acceleration by calculating the difference between the first acceleration a r and the second acceleration a 1. The details of these calculations are shown in the following equations (3) and (4).
- a x [m/s 2 ] is the vertical acceleration
- a y [m/s 2 ] is the lateral acceleration.
- the sign in the front and back may be reversed.
- the sign in the formula (4) is positive on the left and negative on the right. The sign may be reversed between the left and right sides.
- r r [rpm] is the rotation speed of the first motor 22R in the front-rear direction (hereinafter also referred to as the "first rotation speed”)
- r l [rpm] is the rotation speed of the second motor 22L in the front-rear direction (hereinafter also referred to as the "second rotation speed”).
- first rotation speed r r is the rotation speed detected by the first rotation sensor SW3
- second rotation speed r l is the rotation speed detected by the second rotation sensor SW4.
- r x [rpm] be the total rotation speed of the first and second motors 22R, 22L in the front-rear direction (hereinafter also referred to as the "vertical rotation speed")
- r y [rpm] be the total rotation speed of the first and second motors 22R, 22L in the left-right direction (hereinafter also referred to as the "horizontal rotation speed").
- v r [m/s] is the speed of the first Mecanum wheel 21R in the front-rear direction
- v l [m/s] is the speed of the second Mecanum wheel 21L in the front-rear direction.
- x [m/s] is the overall speed of the first and second Mecanum wheels 21R and 21L in the front-rear direction (hereinafter, also referred to as the "vertical speed")
- v y [m/s] is the overall speed of the first and second Mecanum wheels 21R and 21L in the left-right direction.
- the speed of the first and second Mecanum wheels 21R, 21L as a whole hereinafter, this will also be referred to as the "lateral speed”).
- the following expressions (9) and (10) hold.
- velocity refers to the translational speed (tangential velocity) of an object undergoing angular motion.
- the controller 4 allows the first and second Mecanum wheels 21R, 21L to be driven on the condition that the rotation speed of the first and second Mecanum wheels 21R, 21L is equal to or greater than a predetermined value (first threshold value).
- step S4 which follows step S3, the controller 4 determines whether or not either one of the following relational expressions (13) and (14) is satisfied. Through this determination, it is possible to confirm whether or not the bed 10 is actually being transported (whether or not the bed 10 is actually moving).
- T1 [1/s] is the first threshold value.
- the magnitude of the first threshold value is stored in advance in the memory of the controller 4, and is expressed by the above formula (13).
- "r x /r y " in step S4 of FIG. 9 is the "value of r x divided by r y ". rather, it means "either r x or r y .”
- step S4 determines that the bed 10 is not being transported, and does not allow the first and second motors 22R and 22L to be driven (step S4: NO). In this case, the control process proceeds to step S5. In this step S5, the controller 4 sets the command rotation speeds of the first and second motors 22R and 22L to zero.
- step S5 the command rotation speeds (more specifically, the assist speeds described below) of the first and second motors 22R, 22L are maintained at zero in the subsequent steps S7 to S9 (steps S7 to S9 are described in detail below).
- the controller 4 ends the flow shown in FIG. 9 without driving the first and second motors 22R, 22L.
- step S4 determines that the bed 10 is actually being transported by an external force, and allows the first and second motors 22R and 22L to be driven (step S4: YES). In this case, the control process proceeds to step S6.
- step S6 the controller 4 sets the command rotation speed (assist rotation speed) of each of the first and second motors 22R and 22L to assist the manual movement caused by the external force.
- This assist rotation speed corresponds to the command value of the vertical rotation speed rx and the horizontal rotation speed ry described above.
- Steps S11 to S16 in FIG. 10 each illustrate the processing executed in step S6 in FIG. 9. In other words, when the control process proceeds to step S6, the controller 4 starts step S11 in FIG. 10.
- step S11 the controller 4 determines the moving direction of the bed 10 based on the vertical acceleration ax and the lateral acceleration ay estimated in step S3 of Fig. 9.
- the controller 4 determines whether the moving direction of the bed 10 is the front-rear direction (whether the bed 10 is moving forward or backward) or the left-right direction based on the vertical acceleration ax and the lateral acceleration ay .
- step S11 the controller 4 determines whether the following relational expression (15) is satisfied.
- T2 [m/s 2 ] is the second threshold value.
- the magnitude of the second threshold value is stored in advance in the memory of the controller 4 and is read out appropriately as necessary. It has become.
- step S11 NO
- step S13 step S11: YES
- the controller 4 determines whether the conveying surface F is a slope based on the detection signal of the 6-axis sensor SW5, which serves as an inclination sensor.
- step S13 the controller 4 calculates the inclination angle (road surface gradient) ⁇ s of the conveying surface F based on the detection signal of the six-axis sensor SW5. This calculation can be performed based on, for example, the angular acceleration around the y-axis shown in FIG.
- step S14 the controller 4 determines whether the following relational expression (16) is satisfied.
- T3 is a third threshold value.
- the magnitude of the third threshold value is stored in advance in the memory of the controller 4 and is read out appropriately as necessary.
- the controller 4 determines that the conveying surface F is a flat, non-sloping road, and advances the control process to step S15.
- step S15 corresponds to the case where it is determined that the bed 10 is moving forward or backward and not ascending or descending a slope.
- the controller 4 performs the following steps to assist the manual movement of the bed 10 in the forward and backward directions, thereby executing both the compliance control as the first control and the speed increase control as the second control based on the vertical acceleration ax and the lateral acceleration ay obtained by the first and second current sensors SW1, SW2.
- the controller 4 determines that the conveying surface F is a slope, and advances the control process to step S16.
- step S16 corresponds to the case where it is determined that the bed 10 is moving forward or backward and ascending or descending a slope.
- the controller 4 executes control to assist the manual movement of the bed 10 in the forward and backward directions, and in particular executes control optimized for ascending or descending a slope.
- step S12 and S15, and step S16 will be described below in order.
- the controller 4 will drive the first and second Mecanum wheels 21R, 21L via the first and second motors 22R, 22L so as to assist the movement of the bed 10 along the movement direction determined in step S11 above.
- the controller 4 according to this embodiment executes compliance control as the first control, and executes speed increase control as the second control.
- the compliance control is executed by the controller 4 based on the acceleration estimated in step S3 (i.e., at least one of the vertical acceleration ax and the lateral acceleration ay ).
- the controller 4 sets a velocity command in the front-rear or left-right direction, i.e., a command value of the vertical velocity vx and the lateral velocity vy, so as to follow the movement of the bed 10 as an object.
- the command values of the longitudinal velocity vx and the lateral velocity vy will be referred to as the longitudinal velocity command Vx and the lateral velocity command Vy, respectively.
- the command values of the first rotational speed rr and the second rotational speed rl of each motor 22R, 22L will be referred to as the first command rotational speed Rr and the second command rotational speed Rl, respectively.
- Setting the vertical velocity command Vx and the horizontal velocity command Vy by compliance control as in this embodiment is equivalent to setting the first command rotational speed Rr and the second command rotational speed Rl so as to follow the movement of the bed 10, respectively.
- the speed increase control is executed by the controller 4 based on the acceleration estimated in step S3 and the command rotation speed set in the compliance control.
- the controller 4 increases the longitudinal speed command Vx and the lateral speed command Vy (particularly, the absolute values of the speed commands Vx and Vy ) set in the compliance control.
- Increasing the longitudinal speed command Vx and the lateral speed command Vy by speed increase control as in this embodiment is equivalent to increasing the first command rotational speed Rr and the second command rotational speed Rl (particularly, the absolute values of each command rotational speed Rr , Rl ), respectively.
- steps S31 to S37 in FIG. 15 exemplify the processing executed in step S12 or S15 in FIG. 10, respectively.
- the controller 4 executes each step in order starting from step S31 in FIG. 15.
- step S31 relates to compliance control
- steps S32 to S34 relate to speed increase control.
- step S31 the controller 4 inputs the vertical acceleration ax to the control block illustrated in Fig. 11 to calculate a command value for the vertical velocity vx .
- the input vertical acceleration ax is estimated based on the detection signals of the first and second current sensors SW1 and SW2, and corresponds to the estimated value (actual measurement value) of the vertical acceleration ax .
- s is the Laplace operator
- M represents the inertia of the bed 10 and the transport assistance device 1.
- D is the damping coefficient between the support position of the bed 10 by the transporter 100 (e.g., the headboard 11h) and the first and second Mecanum wheels 21R, 21L
- K is the spring multiplier between the support position and the first and second Mecanum wheels 21R, 21L.
- the transport auxiliary device 1, the bed 10, and the transporter 100 are considered as rigid bodies, the vertical speed vx generated when the first and second Mecanum wheels 21R, 21L rotate due to the application of an external force changes in synchronization with the forward and backward moving speeds of the bed 10 and the transporter 100, and the magnitudes of the speeds also match each other.
- a vertical speed command Vx that follows the manual pushing movement of the bed 10 can be obtained.
- the frame 12 of the bed 10, the mounting fixture 7 of the transport auxiliary device 1, etc. are interposed between the support position of the bed 10 and the first and second Mecanum wheels 21R, 21L. Due to bending of the frame 12, etc., the actual vertical speed vx changes with a delay from the moving speed of the bed 10 and the transporter 100, or a deviation occurs in value between the moving speed and the actual vertical speed.
- This control block represents compliance control in which physical quantities corresponding to forces (longitudinal acceleration ax , lateral acceleration ay ) are input and velocity commands (longitudinal velocity command Vx , lateral velocity command Vy ) are output.
- the actual measured value of the vertical acceleration ax passes through a subtractor P2 and is then input to a first block B1.
- the actual measured value of the vertical acceleration ax is integrated over time.
- the output of the first block B1 indicates a correction amount ⁇ V of the vertical speed command Vx (a correction amount of the speed command value) corresponding to the magnitude of the vertical acceleration ax .
- the controller 4 sets the vertical speed command Vx by adding the correction amount ⁇ V to the current vertical speed command Vx or integrating the correction amount ⁇ V.
- the output from the block B1 is multiplied by D/M in the second block B2, and then input to the subtractor P2 via the adder P1.
- the multiplied value input to the subtractor P2 is subtracted from the actual measured value of the vertical acceleration ax .
- This feedback is for incorporating damping proportional to the vertical speed command Vx (particularly, damping occurring between the support position of the bed 10 and the first and second Mecanum wheels 21R, 21L).
- the output from block B1 is also input to the third block B3.
- the correction amount ⁇ V is further integrated over time.
- the output from the third block B3 is multiplied by K/M in the fourth block B4, and then input to the subtractor P2 via the adder P1.
- the multiplied value input to the subtractor P2 is subtracted from the actual measured value of the vertical acceleration ax , similar to the multiplied value via the second block B2.
- This feedback is intended to incorporate a restoring force proportional to the amount of displacement (particularly, a restoring force caused by the deflection between the support position of the bed 10 and the first and second Mecanum wheels 21R, 21L).
- the acceleration of the bed 10 (particularly the acceleration at the support position of the transported person 100) is estimated, taking into account bending, damping, etc.
- the acceleration is integrated over time in the first block B1 to obtain a speed that follows the movement of the bed 10.
- signal processing e.g., processing using a delay operator
- the transport auxiliary device 1 when the transport auxiliary device 1, the bed 10, and the transporter 100 are moving at a constant speed, the acceleration estimated by the first and second current sensors SW1 and SW2 is zero.
- the vertical acceleration ax input to the control block in Fig. 10 is zero, and the correction amount ⁇ V output from the control block is also zero.
- the transport auxiliary device 1 does not accelerate or decelerate.
- the acceleration estimated by the first and second current sensors SW1 and SW2 is positive.
- an external force is applied to the bed 10 to push it (see arrow F1).
- the vertical acceleration ax input to the control block in Fig. 10 is positive, and the correction amount ⁇ V output from the control block is also positive.
- the restoring force related to the fourth block B4 acts in a direction to increase the correction amount ⁇ V (see arrow F3).
- the transport auxiliary device 1 accelerates with a delay from the application of the external force so as to be equal in speed to the bed 10 and the person 100.
- the controller 4 executes the above-mentioned speed increase control.
- the controller 4 increases the speed command value by a larger amount as the rotation speed detected by the first and second rotation sensors SW3 and SW4 increases (see FIG. 13).
- the horizontal axis in FIG. 13 does not mean the value obtained by dividing the longitudinal speed by the lateral speed.
- the graph shown in FIG. 13 means that when setting the speed command value in the front-rear direction (longitudinal direction), the speed command value is set to be larger as the longitudinal speed vx increases, and when setting the speed command value in the left-right direction (lateral direction), the speed command value is set to be larger as the lateral speed vy increases.
- step S32 the controller 4 sets the speed increase amount voff so that it increases as the longitudinal speed vx increases.
- the speed increase amount voff may be set so that it increases as the longitudinal rotation speed rx increases.
- the controller 4 sets the velocity increase amount voff so that the velocity increase amount voff increases as the lateral velocity vy increases. In other words, the controller 4 sets the velocity increase amount voff based on the moving direction determined in step S11 of FIG.
- Step S33 the controller 4 determines whether or not the following relational expression (17) is satisfied.
- Step S33 is for determining whether or not the absolute value of the vertical acceleration ax is equal to or greater than a predetermined value. Through this determination, it is possible to detect whether or not the bed 10 is being pushed in the moving direction (detecting the pushing force).
- T4 [m/s 2 ] is a fourth threshold value (predetermined value).
- the magnitude of the fourth threshold value T4 as a predetermined value is stored in advance in the memory of the controller 4, etc. , which are read out as necessary.
- the controller 4 determines whether the acceleration in the moving direction determined in step S11 in FIG 10 is equal to or greater than a fourth threshold value T4.
- step S34 determines that the bed 10 is being pushed, and proceeds to step S34 (step S33: YES).
- step S34 the controller 4 adds the speed increase amount voff to the speed command (longitudinal speed command Vx ) calculated in step S31.
- the controller 4 sets the added value thus obtained as the final speed command (assist speed) (step S36).
- the assist speed in the forward/rearward direction is the aforementioned longitudinal speed command Vx .
- the assist speed in the left/right direction is the aforementioned lateral speed command Vy .
- step S33 NO. If the above formula (17) is not satisfied (i.e., if the absolute value of the vertical acceleration ax is below a predetermined value), the controller 4 determines that the bed 10 is not being pushed, and proceeds to step S35 (step S33: NO).
- step S35 the controller 4 executes a third control to reduce the speed command after the second control.
- step S35 the controller 4 subtracts ⁇ v2 from the speed increase voff at that time, and then advances the control process to step S34.
- the subtraction amount ⁇ v2 of the speed increase voff may be constant. If the subtraction amount ⁇ v2 is set constant, the speed increase voff will gradually decrease if the state in which the bed 10 is not being pushed is repeated. In addition, the speed increase voff is configured not to become less than zero during this subtraction. This ensures an assist speed that can follow the movement of the bed 10.
- step S33 when the process proceeds from step S33 to step S34 in the n-th loop, the longitudinal speed command Vx is increased by the speed increase amount voff corresponding to the longitudinal speed vx .
- step S35 in the (n+1)-th loop, the speed increase amount voff is subtracted from the value in the n-th loop.
- step S35 When the process proceeds from step S33 to step S35 repeatedly, the longitudinal speed command Vx decreases toward the value calculated in step S31.
- FIG. 14 is a diagram comparing the assist rotation speed (dashed line) when compliance control is executed but speed increase control is not executed, and the assist rotation speed (solid line) when both compliance control and speed increase control are executed.
- the circles in FIG. 14 indicate the timing when it is determined that the bed 10 has been pressed (the timing when the determination in step S33 is YES).
- the assist rotation speed rises with a delay from the movement of the bed 10, and then changes to a value that follows that movement.
- the assist rotation speed after standing up will gradually decrease over time (see, for example, t1 ⁇ t ⁇ t2, t2 ⁇ t ⁇ t3).
- the period from when the assist rotation speed (assist speed) determined by compliance control starts to increase until it starts to decrease corresponds to the so-called "bed pushing" time, as shown in Fig. 12B.
- the determination in step S33 becomes YES as appropriate, and the speed increase amount voff is set to a non-zero and positive value each time.
- the assist rotation speed rises sharply as described above, while when the bed 10 is pushed relatively weakly (when it is pushed so strongly that the determination in step S33 does not become YES), the assist rotation speed (assist speed) gradually decreases toward a value that follows the bed 10.
- the period from when the assist rotation speed (assist speed) determined by compliance control starts to decrease corresponds to the so-called "bed retraction time" as shown in Fig. 12C.
- the speed increase amount voff remains at its lower limit value (zero).
- the assist rotation speed (assist speed) decreases toward zero while being maintained at the value determined by compliance control.
- step S36 When the processing of step S36 is completed, the control process ends the flows of Figures 10 and 15 and proceeds to step S7 of Figure 9.
- FIG. 15 also applies to the case where the flow of FIG. 15 is proceeded to from step S12.
- the word “vertical” should be replaced with the word “horizontal”
- the word “front-rear” should be replaced with the word “left-right”.
- the predetermined values such as the fourth threshold value T4 may be the same or different in the front-rear and left-right directions.
- steps S41 to S44 in FIG. 16 are carried out in order.
- step S41 the controller 4 determines whether or not the bed 10 is moving up a slope, i.e., whether or not the bed 10 is climbing, based on the detection signals of the first and second rotation sensors SW3, SW4 and the six-axis sensor SW5.
- step S41 is YES when the road surface gradient ⁇ s is increasing forward and the moving direction is forward (longitudinal rotation speed rx or longitudinal speed vx > 0), or when the road surface gradient ⁇ s is decreasing forward and the moving direction is backward (longitudinal rotation speed rx or longitudinal speed vx ⁇ 0 ) .
- step S41 the determination in step S41 is NO when the road surface gradient ⁇ s is increasing forward and the moving direction is backward, or when the road surface gradient ⁇ s is decreasing forward and the moving direction is forward.
- the road surface gradient ⁇ s referred to in the determination in step S41 may be the value calculated in step S13.
- step S41: YES When the controller 4 determines that the bed 10 is ascending along a slope (step S41: YES), it increases the vertical acceleration ax obtained by the first and second current sensors SW1, SW2, and then executes compliance control based on the increased vertical acceleration ax ', without executing the speed increase control.
- step S42 which follows when the determination in step S41 is YES, the controller 4 increases the vertical acceleration ax obtained by the first and second current sensors SW1, SW2.
- the increase amount ⁇ ax may be set to be larger as the road surface gradient ⁇ s increases, for example.
- step S43 following step S42, the controller 4 executes compliance control in the longitudinal direction based on the increased longitudinal acceleration a x '.
- the details of step S43 are the same as those of step S31 relating to the longitudinal direction, except for whether or not the increased longitudinal acceleration a x ' is used.
- step S41: NO when the controller 4 determines that the bed 10 is descending along a slope (step S41: NO), the controller 4 executes compliance control based on the vertical acceleration ax obtained by the first and second current sensors SW1 and SW2 without increasing the vertical acceleration ax , and does not execute the speed increase control.
- step S45 following the determination in step S41 being NO, the controller 4 sets the increase amount for the vertical acceleration ax obtained by the first and second current sensors SW1, SW2 to zero, and maintains the value of the vertical acceleration ax .
- the details of step S43 are the same as those of step S31 described above.
- step S44 which follows step S43, the controller 4 determines the final assist speed in the forward/rearward direction, similar to step S36 described above.
- the vertical acceleration ax continues to increase as long as the climbing state continues, as shown in steps S41 and S42 in Fig. 16.
- the rise of the assist rotation speed in the speed increase control is approximately synchronized with the timing when the vertical acceleration ax becomes equal to or exceeds a predetermined value, that is, the timing when an external force acts on the bed 10.
- the controller 4 judges whether the vehicle is traveling on flat ground or on an uphill slope, and based on the result of this judgment, when traveling on flat ground, it intermittently increases the commanded rotation speed of the motors (first and second motors 22R, 22L) so as to be synchronized with the timing at which an external force acts, and when climbing a slope, it maintains the increase in the commanded rotation speed as long as the uphill slope continues.
- step S7 the controller 4 converts the longitudinal speed command Vx or the lateral speed command Vy set as the assist rotational speed into a first command rotational speed Rr and a second command rotational speed Rl through the following equations (18) and (19) defined similarly to the above equations (5) and (6), respectively.
- R r 60*(V x +V y )/(2 ⁇ R)...(18)
- R l 60*(V x ⁇ V y )/(2 ⁇ R)...(19)
- "R" is the tire radius.
- V x ⁇ 0 and V y 0 during assistance in the forward/rearward direction
- V y 0 during assistance in the left/right direction.
- V x 0 and V y ⁇ 0.
- step S8 which follows step S7, the controller 4 executes safety control processing. Details of this processing are shown in steps S51 and S52 of FIG. 17.
- step S51 the controller 4 determines whether or not the absolute values of the command rotational speeds Rr , Rl set through the flow of Fig. 9 are equal to or greater than a predetermined fifth threshold value T5.
- the magnitude of the fifth threshold value T5 is stored in advance in the memory of the controller 4, and is read out as necessary.
- step S51 If the determination in step S51 is YES, the controller 4 advances the control process to step S52.
- step S52 the controller 4 changes each of the command rotational speeds Rr and Rl to a fifth threshold value T5.
- step S51 determines whether the command rotational speeds Rr and Rl are maintained below the fifth threshold value T5.
- the controller 4 is configured to maintain the values of the first and second command rotational speeds Rr , Rl when the first and second command rotational speeds Rr , Rl are less than a predetermined threshold value (fifth threshold value T5) (step S51: NO) after the speed increase control as the second control, and to change the first and second command rotational speeds Rr , Rl to the fifth threshold value T5 when the first and second command rotational speeds Rr , Rl are equal to or greater than the fifth threshold value T5 (step S51: YES).
- the controller 4 drives the first and second Mecanum wheels 21R, 21L via the first and second motors 22R, 22L, respectively, so as to assist the movement of the bed 10 along the movement direction.
- the first and second motors 22R, 22L are driven, respectively, so as to realize the command rotational speeds Rr , Rl determined through the above-mentioned steps S5, S6, and S7. This realizes the assistance along the movement direction.
- the torque (torque that tries to rotate the wheel) that caused the induced current can be estimated by detecting the induced current with the first and second current sensors SW1 and SW2.
- Each of the accelerations a x and a y increases according to the external force applied by the carrier 100. Therefore, as shown in step S33 of Fig. 15, it is possible to determine whether the bed 10 has been pushed by determining whether each of the accelerations a x and a y is equal to or greater than a predetermined value.
- the speed increase control is executed, thereby synchronizing the timing when the transporter 100 pushes the bed 10 with the timing when the bed 10 becomes easy to push. This allows the transporter 100 to be provided with a feeling of assistance that is neither too much nor too little. Also, by configuring the speed increase control to be executed on the condition that the bed 10 is pushed, it is possible to avoid a situation in which the transport assistance device 1 unintentionally moves on its own as a result of the speed increase control being executed when the bed 10 is not being pushed.
- step S35 when the transporter 100 lightly pushes the bed 10 or takes his/her hands off the bed 10, the movement of the bed 10 is assisted with a weaker thrust.
- steps S4 and S5 of FIG. 9 when the rotation speed is less than the first threshold value T1, the driving of the first and second Mecanum wheels 21R, 21L as wheels is limited. This makes it possible to execute compliance control and speed increase control only when the bed 10 is actually being transported. This contributes to improving the usability of the transport assistance device 1.
- the speed increase control is performed when climbing a slope, the sense of assistance is improved at the moment when the bed 1 starts to be pushed, but the sense of assistance is not improved thereafter (while the bed 1 is climbing). Therefore, as shown in steps S41 to S44 in FIG. 16, when it is determined that the bed 1 is climbing a slope, the vertical acceleration a x referred to in the compliance control is increased, and compliance control is performed based on the increased vertical acceleration a x '.
- Increasing the vertical acceleration a x is equivalent to overestimating the external force acting on the bed 10 compared to the actual external force. Overestimating the external force realizes an assistance that exerts a thrust force greater than that which follows the movement of the bed 10. This process is performed as long as the bed 10 continues to climb a slope, so that a good sense of assistance can be continuously exerted while the bed 10 is climbing a slope.
- step S41 to S45 of Fig. 16 only compliance control is performed without increasing the vertical acceleration ax , and speed increase control is not performed. This allows a sense of assistance appropriate for going downhill.
- the command rotation speed value can be maintained below the fifth threshold value T5. This makes it possible to further improve the safety of the transport assistance device 1 compared to conventional methods.
- the transport assistance device 1 can also provide a lighter pressure on the transporter 100 when assisting in the movement of a heavy object such as the bed with casters 10 shown in Figures 1 and 2.
- a configuration using the first and second Mecanum wheels 21R, 21L as the wheels is disclosed, but such a configuration is not essential.
- the present disclosure can also be applied to wheels other than Mecanum wheels, for example, omni wheels.
- the number of wheels is also not limited to two.
- the number may be four, and when omni wheels are used, the number may be three or four.
- the number of motors may be changed depending on the number of wheels.
- the speed command (translational speed command value) is increased by the speed increase control, but such a configuration is not essential.
- a process for increasing the commanded rotation speed may be executed instead of the process related to the speed command.
- a process for converting the speed command into a commanded rotation speed is provided between steps S31 and S32.
Landscapes
- Health & Medical Sciences (AREA)
- Nursing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Invalid Beds And Related Equipment (AREA)
Abstract
A conveyance assistance device (1) is provided with: first and second mecanum wheels (21R, 21L) that are attached to a bed (10); first and second motors (22R, 22L) that are drivingly connected to the first and second mecanum wheels; first and second current sensors (SW1, SW2) for detecting induction currents flowing through the motors (22R, 22L) during rotation of the wheels (21R, 21L); and a controller (4). The controller (4) estimates an acceleration of the bed (10) using the induction currents, sets a command rotational speed for each motor (22R, 22L) so as to follow the movement of the bed (10) on the basis of the acceleration, and increases the command rotational speed when the acceleration is equal to or greater than a predetermined value.
Description
本開示は、搬送補助装置に関する。
This disclosure relates to a transport assistance device.
例えば特許文献1には、駆動部にメカナムホイールを用いた補助推進システムが開示されている。この補助推進システムは、シャーシに連結される一対のメカナムホイール(Mecanum車輪)と、各メカナムホイールを駆動するモータと、各モータの回転速度の変化を感知する制御システムと、を備えている。
For example, Patent Document 1 discloses an auxiliary propulsion system that uses Mecanum wheels in the drive section. This auxiliary propulsion system includes a pair of Mecanum wheels connected to a chassis, a motor that drives each Mecanum wheel, and a control system that detects changes in the rotational speed of each motor.
前記特許文献1によると、シャーシが所定方向に移動する場合、それと同じ方向への力が操作者によって印加される。印加された力によって各メカナムホイールが回転すると、それに伴う回転速度の変化が制御システムに報告される。その報告に基づいて、制御システムがモータの電動回転を始動させる。この電動回転によって、シャーシの移動がアシストされる。
According to Patent Document 1, when the chassis moves in a certain direction, a force in the same direction is applied by the operator. When each Mecanum wheel rotates due to the applied force, the associated change in rotation speed is reported to the control system. Based on this report, the control system starts the electric rotation of the motor. This electric rotation assists the movement of the chassis.
前記特許文献1に記載されているような構成を用いた場合、シャーシ等の対象物の移動をアシストする際に、その移動に追従させるようにモータの指令回転数を設定することが考えられる。
When using a configuration such as that described in Patent Document 1, it is conceivable that when assisting the movement of an object such as a chassis, the command speed of the motor can be set to follow that movement.
しかしながら、単に対象物の移動に追従させるだけでは、いわゆる“アシスト感”に欠けたものとなり、搬送者によるベッドの押し心地も重いものとなる。押し心地を軽くするためには、さらなる工夫が必要となる。
However, simply having the bed follow the movement of the object will lack the "feeling of assistance" and the bed will feel heavy when pushed by the transporter. Further ingenuity is required to make the bed feel lighter.
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、対象物の移動のアシストに際し、対象物の押し心地を軽くすることにある。
The technology disclosed here was developed in consideration of these points, and its purpose is to make the object easier to press when assisting in its movement.
本開示の第1の態様は、外力による対象物の移動をアシストするための搬送補助装置に係る。この搬送補助装置は、前記対象物に取り付けられるホイールと、前記ホイールに駆動連結されたモータと、前記ホイールの回転に際して前記モータに流れる誘導電流を検出する電流センサと、前記モータを制御するコントローラと、を備え、前記コントローラは、前記電流センサの検出信号に基づいて、前記対象物の加速度を推定し、前記加速度に基づいて、前記対象物の移動に追従させるように前記モータの指令回転数を設定する第1制御を実行し、前記加速度の絶対値が所定値以上の場合には、前記第1制御で設定された前記指令回転数を増加させる第2制御を実行する。
The first aspect of the present disclosure relates to a transport assist device for assisting the movement of an object caused by an external force. This transport assist device includes a wheel attached to the object, a motor drivingly connected to the wheel, a current sensor that detects an induced current flowing through the motor when the wheel rotates, and a controller that controls the motor, and the controller estimates the acceleration of the object based on the detection signal of the current sensor, executes a first control that sets a command rotation speed of the motor based on the acceleration so as to follow the movement of the object, and executes a second control that increases the command rotation speed set in the first control when the absolute value of the acceleration is equal to or greater than a predetermined value.
前記第1の態様によると、誘導電流を検出することで、その誘導電流が生じる起因となったトルク(ホイールを回転させようとするトルク)を推定することができる。このトルクを推定することで、対象物の加速度を推定することができる。この加速度は、操作者が付与した外力に応じて増加するから、加速度の絶対値が所定値以上であるか否かを判定することで、対象物が押されたか否かを判定することができる。
According to the first aspect, by detecting the induced current, it is possible to estimate the torque that caused the induced current (the torque that tries to rotate the wheel). By estimating this torque, it is possible to estimate the acceleration of the object. This acceleration increases according to the external force applied by the operator, so by determining whether the absolute value of the acceleration is equal to or greater than a predetermined value, it is possible to determine whether the object has been pushed.
そして、第1制御に加えて第2制御を行うことで、単に対象物に追従させるばかりでなく、第2制御を通じて指令回転数を増加させた分だけ、搬送者の負荷を軽減することができる。これにより、対象物の押し心地を軽くし、適度な“アシスト感”を搬送者に与えることができる。
By carrying out the second control in addition to the first control, it is possible not only to have the robot follow the object, but also to reduce the load on the transporter by the amount of the commanded rotation speed increased through the second control. This makes the object feel lighter when pressed, providing the transporter with an appropriate "feeling of assistance."
さらに、加速度の絶対値が所定以上の場合、つまり対象物が押された場合に第2制御を実行することで、搬送者が対象物を押したタイミングと、対象物の押し心地が軽くなるタイミングとを同期させることができる。これにより、過不足のないアシスト感を搬送者に与えることができる。また、対象物が押されたことを条件に第2制御を実行するように構成することで、押されていないタイミングで第2制御が実行された結果、搬送補助装置が意図せずして自走するような事態に陥るのを避けることができる。
Furthermore, by executing the second control when the absolute value of the acceleration is equal to or greater than a predetermined value, in other words, when the object is pressed, it is possible to synchronize the timing when the transporter presses the object with the timing when the object becomes easier to press. This makes it possible to provide the transporter with a feeling of assistance that is neither too much nor too little. Also, by configuring the second control to be executed on the condition that the object is pressed, it is possible to avoid a situation in which the transport assistance device unintentionally starts to move on its own as a result of executing the second control when the object is not being pressed.
また、本開示の第2の態様によれば、前記搬送補助装置は、前記モータの回転数を検出する回転センサを備え、前記コントローラは、前記指令回転数を増加させる場合、前記回転センサによって検出された回転数が大きくなる程、前記指令回転数を大きく増加させる、としてもよい。
Furthermore, according to a second aspect of the present disclosure, the transport assist device may include a rotation sensor that detects the rotation speed of the motor, and when the controller increases the command rotation speed, the greater the rotation speed detected by the rotation sensor, the greater the increase in the command rotation speed.
搬送者が対象物を強く押す程、回転数の検出値はより高くなると考えられる。前記第2の態様によると、搬送者が対象物を強く押す程、より強い推力で対象物の移動がアシストされることになる。これにより、外力の大きさに応じたアシストを実現することができ、対象物の押し心地を軽くする上で有利になる。
It is believed that the harder the transporter pushes the object, the higher the detected rotation speed will be. According to the second aspect, the harder the transporter pushes the object, the stronger the thrust is used to assist the movement of the object. This makes it possible to provide assistance according to the magnitude of the external force, which is advantageous in making the object easier to press.
また、本開示の第3の態様によれば、前記コントローラは、前記加速度の絶対値が前記所定値を下まわった場合には、前記第2制御後の指令回転数を低下させる、としてもよい。
Furthermore, according to a third aspect of the present disclosure, the controller may be configured to reduce the command rotation speed after the second control when the absolute value of the acceleration falls below the predetermined value.
前記第3の態様によると、搬送者が対象物を弱く押したり、対象物から手を離したりした場合には、より弱い推力で対象物の移動がアシストされることになる。これにより、外力の大きさに応じたアシストを実現することができ、過不足のないアシスト感を搬送者に与えるとともに、搬送補助装置の意図せぬ自走を抑制することができる。
According to the third aspect, when the transporter pushes the object lightly or releases the object, the movement of the object is assisted with a weaker thrust. This makes it possible to realize assistance according to the magnitude of the external force, giving the transporter a feeling of assistance that is just right and preventing unintended self-propulsion of the transport assistance device.
また、本開示の第4の態様によれば、前記搬送補助装置は、前記モータの回転数を検出する回転センサを備え、前記コントローラは、前記回転センサの検出信号に基づいて、前記回転数が所定以上になったことを条件に、前記ホイールの駆動を許容する、としてもよい。
Furthermore, according to a fourth aspect of the present disclosure, the transport assistance device may include a rotation sensor that detects the number of rotations of the motor, and the controller may allow the wheel to be driven on the condition that the number of rotations reaches or exceeds a predetermined value based on the detection signal of the rotation sensor.
前記第4の態様によると、回転数が所定未満のときには、ホイールの駆動が制限される。これにより、対象物が実際に搬送されているような状況に限り、第1制御及び第2制御を実行させることができるようになる。このことは、搬送補助装置の使い勝手の向上に資する。
According to the fourth aspect, when the rotation speed is less than a predetermined value, the drive of the wheel is limited. This makes it possible to execute the first control and the second control only when the object is actually being transported. This contributes to improving the usability of the transport assistance device.
また、本開示の第5の態様によれば、前記搬送補助装置は、前記ホイールの回転数を検出する回転センサと、前記対象物が移動する搬送面の傾斜角を検出する傾斜センサと、を備え、前記コントローラは、前記傾斜センサの検出信号に基づいて、前記搬送面が坂道であるか否かを判定し、前記コントローラは、前記搬送面が坂道ではないと判定した場合には、前記電流センサによって得られた前記加速度に基づいて前記第1制御及び前記第2制御を双方とも実行する一方、前記搬送面が坂道であると判定した場合には、前記回転センサ及び前記傾斜センサの検出信号に基づいて、前記坂道に沿って前記対象物が上っているか否かを判定し、該対象物が上っていると判定したときには、前記電流センサによって得られた前記加速度を増加させた上で、該増加後の加速度に基づいて前記第1制御を実行し、前記第2制御を未実行とする、としてもよい。
Furthermore, according to a fifth aspect of the present disclosure, the transport assistance device includes a rotation sensor that detects the number of rotations of the wheel and an inclination sensor that detects the inclination angle of the transport surface along which the object moves, and the controller determines whether the transport surface is a slope based on the detection signal of the inclination sensor, and if the controller determines that the transport surface is not a slope, executes both the first control and the second control based on the acceleration obtained by the current sensor, while if the controller determines that the transport surface is a slope, it determines whether the object is ascending along the slope based on the detection signals of the rotation sensor and the inclination sensor, and if it determines that the object is ascending, it increases the acceleration obtained by the current sensor, executes the first control based on the increased acceleration, and does not execute the second control.
坂道の登坂時に第2制御を行うと、対象物を押し始めた瞬間こそアシスト感が向上するものの、それ以降の期間(登坂している最中)におけるアシスト感は向上しない。そこで、前記第5の態様によると、坂道を登坂していると判断される場合には、第1制御に際して参照される加速度を増加させた上で、その増加後の加速度に基づいた第1制御を実行する。加速度を増加させることは、対象物に作用する外力を、実際の外力よりも大きく見積もることに等しい。外力を大きく見積もることで、ベッドの移動に追従させる以上の推力を発揮するようなアシストが実現される。この処理は、登坂が継続する限り行われることになるから、坂道の登坂中に、良好なアシスト感を継続的に発揮させることができる。
If the second control is performed when climbing a slope, the sense of assistance improves at the moment when the object begins to be pushed, but the sense of assistance does not improve thereafter (while the object is climbing). Therefore, according to the fifth aspect, when it is determined that the object is climbing a slope, the acceleration referenced in the first control is increased, and the first control is executed based on the increased acceleration. Increasing the acceleration is equivalent to overestimating the external force acting on the object than the actual external force. Overestimating the external force achieves assistance that exerts a thrust force greater than that required to follow the movement of the bed. This process is performed as long as the slope continues, so that a good sense of assistance can be continuously exerted while climbing a slope.
また、本開示の第6の態様によれば、前記搬送補助装置は、前記ホイールの回転数を検出する回転センサと、前記対象物が搬送される搬送面の傾斜角を検出する傾斜センサと、を備え、前記コントローラは、前記傾斜センサの検出信号に基づいて、前記搬送面が坂道であるか否かを判定し、前記コントローラは、前記搬送面が坂道ではないと判定した場合には、前記電流センサによって得られた前記加速度に基づいて前記第1制御及び前記第2制御を双方とも実行する一方、前記搬送面が坂道であると判定した場合には、前記回転センサ及び前記傾斜センサの検出信号に基づいて、前記坂道に沿って前記対象物が下っているか否かを判定し、該対象物が下っていると判定したときには、前記電流センサによって得られた前記加速度に基づいて前記第1制御を実行し、前記第2制御を未実行とする、としてもよい。
Furthermore, according to a sixth aspect of the present disclosure, the transport assistance device may include a rotation sensor that detects the number of rotations of the wheel, and an inclination sensor that detects the inclination angle of the transport surface along which the object is transported, and the controller may determine whether the transport surface is a slope based on the detection signal of the inclination sensor, and if the controller determines that the transport surface is not a slope, execute both the first control and the second control based on the acceleration obtained by the current sensor, while if the controller determines that the transport surface is a slope, determine whether the object is descending along the slope based on the detection signals of the rotation sensor and the inclination sensor, and if the controller determines that the object is descending, execute the first control based on the acceleration obtained by the current sensor and do not execute the second control.
坂道の降坂時に第2制御を行うと、対象物が必要以上に加速されてしまい、搬送者の手から対象物が離れてしまう可能性がある。そこで、前記第6の態様によると、坂道を降坂していると判断される場合には、加速度を増加させることなく第1制御のみを実行し第2制御は未実行とする。これにより、坂道の降坂時に適したアシスト感を発揮させることができる。
If the second control is performed when going downhill, the object may be accelerated more than necessary, causing it to fall out of the carrier's hands. Therefore, according to the sixth aspect, when it is determined that the object is going downhill, only the first control is performed without increasing the acceleration, and the second control is not performed. This makes it possible to provide a sense of assistance that is appropriate when going downhill.
また、本開示の第7の態様によれば、前記コントローラは、前記第1制御に際し、前記指令回転数が所定の閾値未満の場合には、該指令回転数の値を維持し、前記指令回転数が前記閾値以上の場合には、該指令回転数を前記閾値に変更する、としてもよい。
Furthermore, according to a seventh aspect of the present disclosure, during the first control, the controller may maintain the value of the command speed when the command speed is less than a predetermined threshold, and change the command speed to the threshold when the command speed is equal to or greater than the threshold.
前記第7の態様によると、指令回転数の値を閾値以下に維持することができる。これにより、搬送補助装置の安全性を、従来よりもさらに高めることができる。
According to the seventh aspect, the command rotation speed value can be maintained below the threshold value. This makes it possible to further improve the safety of the transport assistance device compared to conventional methods.
また、本開示の第8の態様によれば、前記対象物は、キャスタ付きベッドであり、前記ホイールは、前記キャスタ付きベッドの下部に取り付けられる、としてもよい。
Furthermore, according to an eighth aspect of the present disclosure, the object may be a bed with casters, and the wheels may be attached to the bottom of the bed with casters.
前記第8の態様によると、対象物はキャスタ付きベッドとなる。キャスタ付きベッドのような重量物の移動のアシストに際しても、搬送者による押し心地を軽くすることができる。
In the eighth aspect, the object is a bed with casters. Even when assisting in the movement of a heavy object such as a bed with casters, the comfort of pushing the object by the carrier can be reduced.
以上説明したように、本開示によれば、対象物の移動のアシストに際し、搬送者による押し心地を軽くすることができる。
As described above, the present disclosure makes it possible to reduce the pressure felt by the transporter when assisting in the movement of an object.
以下、本開示の実施形態を図面に基づいて説明する。
The following describes an embodiment of the present disclosure with reference to the drawings.
図1は搬送補助装置1及びキャスタ付きベッド10の全体構成を例示する側面図であり、図2は搬送補助装置1及びキャスタ付きベッド10の全体構成を例示する底面図である。
FIG. 1 is a side view illustrating the overall configuration of the transport assistance device 1 and the bed with casters 10, and FIG. 2 is a bottom view illustrating the overall configuration of the transport assistance device 1 and the bed with casters 10.
また、図3は搬送補助装置1の構成を例示する斜視図であり、図4は搬送補助装置1の構成を例示する平面図であり、図5は搬送補助装置1の構成を例示する側面図である。
FIG. 3 is a perspective view illustrating the configuration of the transport assistance device 1, FIG. 4 is a plan view illustrating the configuration of the transport assistance device 1, and FIG. 5 is a side view illustrating the configuration of the transport assistance device 1.
また、図6は、搬送補助装置1の制御系の構成を例示するブロック図であり、図7は第1及び第2メカナムホイール21R,21Lの動作について説明するための図である。そして、図8は、6軸センサSW5の検出対象について説明するための図である。
FIG. 6 is a block diagram illustrating the configuration of the control system of the transport auxiliary device 1, and FIG. 7 is a diagram for explaining the operation of the first and second Mecanum wheels 21R, 21L. And FIG. 8 is a diagram for explaining the detection target of the 6-axis sensor SW5.
搬送補助装置1は、所定の対象物に取り付けられている。この搬送補助装置1は、外力(例えば、搬送者100が付与する外力)による対象物の移動をアシストするための装置である。
The transport assistance device 1 is attached to a specific object. This transport assistance device 1 is a device for assisting the movement of an object by an external force (e.g., an external force applied by the transporter 100).
図1及び図2に示すように、本実施形態に係る対象物は、キャスタ付きベッド(以下、単に「ベッド」という)10である。このベッド10は、前輪14F及び後輪14Bを含んだ複数のキャスタ14を備えており、例えば医療用ベッドとして用いられるようになっている。
As shown in Figures 1 and 2, the object of this embodiment is a bed with casters (hereinafter simply referred to as "bed") 10. This bed 10 is equipped with multiple casters 14 including front wheels 14F and rear wheels 14B, and is intended to be used, for example, as a medical bed.
以下、ベッド10の長手方向、つまりベッド10上で人が横たわる方向を「前後方向」又は「縦方向」とし、その前後方向に沿って足先に向かう方向を「前」とし、枕元に向かう方向を「後」とする。
Hereinafter, the longitudinal direction of the bed 10, i.e., the direction in which a person lies on the bed 10, will be referred to as the "front-to-back direction" or "longitudinal direction", the direction toward the feet along the front-to-back direction will be referred to as the "front", and the direction toward the pillow will be referred to as the "rear".
同様に、ベッド10の短手方向、つまり水平面上で前後方向に直交する方向を「左右方向」又は「横方向」とし、その左右方向に沿って図1の紙面奥行側に向かう方向を「右」とし、図1の紙面手前側に向かう方向を「左」とする(詳細は、図2を参照)。なお、ここでいう「左右方向」とは、後側から前側に向かって見たときの左右方向をいう。以下の記載における「横移動」とは、この左右方向に沿った移動をいう。また、左右方向(横方向)とは、前後方向に直交しかつ搬送面(ベッド10が走行する床面)Fに沿って延びる方向であると定義することもできる。
Similarly, the short side of the bed 10, that is, the direction perpendicular to the front-to-rear direction on a horizontal plane, is defined as the "left-to-right direction" or "lateral direction", the direction toward the depth of the paper in FIG. 1 along that left-to-right direction is defined as the "right", and the direction toward the front of the paper in FIG. 1 is defined as the "left" (see FIG. 2 for details). Note that the "left-to-right direction" here refers to the left-to-right direction when viewed from the rear to the front. In the following description, "lateral movement" refers to movement along this left-to-right direction. The left-to-right direction (lateral direction) can also be defined as the direction perpendicular to the front-to-rear direction and extending along the transport surface F (the floor surface along which the bed 10 travels).
ベッド10は、搬送者100によって支持される。図例では、ベッド10は、その前後方向の一端側(例えば後端側)が支持されるようになっている。搬送補助装置1は、搬送者100によって支持されたベッド10の手押移動をアシストするように動作する。
The bed 10 is supported by the carrier 100. In the illustrated example, the bed 10 is supported at one end (e.g., the rear end) in the front-to-rear direction. The transport assistance device 1 operates to assist the manual movement of the bed 10 supported by the carrier 100.
図1に示すように、ベッド10は、不図示のマットレスが載置されるベッド本体11と、ベッド本体11を下方から支持するフレーム12と、フレーム12に対してベッド本体11を昇降させる昇降部13と、ベッド10の下面に配置された複数(図例では4つ)のキャスタ14と、を備えている。医療用ベッドとして用いられる場合、ベッド10は、例えば60kg以上300kg以下となる。
As shown in FIG. 1, the bed 10 comprises a bed body 11 on which a mattress (not shown) is placed, a frame 12 that supports the bed body 11 from below, a lifting section 13 that raises and lowers the bed body 11 relative to the frame 12, and a number of casters 14 (four in the illustrated example) arranged on the underside of the bed 10. When used as a medical bed, the bed 10 weighs, for example, between 60 kg and 300 kg.
ここで、ベッド本体11は、ベッド10の後端側に配置されるヘッドボード11hと、前後方向において前記後端側の反対に位置する前端側に配置されるフットボード11fと、ベッド10の左右両側に配置されるサイドレール11sと、を有している。
Here, the bed body 11 has a headboard 11h arranged at the rear end side of the bed 10, a footboard 11f arranged at the front end side located opposite the rear end side in the front-to-rear direction, and side rails 11s arranged on both the left and right sides of the bed 10.
このうち、ヘッドボード11hは、ベッド10を手押し移動させるべく、搬送者100によって後側から支持される。ヘッドボード11hは、その搬送者100によって力が加えられる支持部として機能する。ハンドル、グリップ等の部材をヘッドボード11hに取り付けたり、ヘッドボード11hと一体化させたりすることで、それらの部材を支持部としてもよい。フットボード11f、サイドレール11s等が支持されてもよい。
Of these, the headboard 11h is supported from the rear by the carrier 100 in order to manually move the bed 10. The headboard 11h functions as a support part to which force is applied by the carrier 100. By attaching members such as a handle or grip to the headboard 11h or integrating them with the headboard 11h, these members may serve as the support part. The footboard 11f, side rails 11s, etc. may also be supported.
また、フレーム12は、図2に示すように矩形枠状に構成されており、前フレーム12F、右フレーム12R、左フレーム12L及び後フレーム12Bによって四辺が構成されている。
As shown in FIG. 2, the frame 12 is configured in a rectangular frame shape, with the four sides being made up of a front frame 12F, a right frame 12R, a left frame 12L, and a rear frame 12B.
ここで、前フレーム12Fは、ベッド10の前側に配置されており、左右方向に沿って延びている。右フレーム12Rは、ベッド10の右側に配置されており、前後方向に沿って延びている。左フレーム12Lは、ベッド10の左側に配置されており、前後方向に沿って延びている。後フレーム12Bは、ベッド10の後側に配置されており、左右方向に沿って延びている。
Here, the front frame 12F is located at the front of the bed 10 and extends in the left-right direction. The right frame 12R is located on the right side of the bed 10 and extends in the front-to-rear direction. The left frame 12L is located on the left side of the bed 10 and extends in the front-to-rear direction. The rear frame 12B is located at the rear of the bed 10 and extends in the left-to-right direction.
また、図1及び図2に示すように、複数のキャスタ14を構成する前輪14F及び後輪14Bは、ベッド10の下面の4隅に配置されている。前輪14F及び後輪14Bは、左右方向に沿って2つずつ設けられている。複数のキャスタ14は、搬送面Fに対してフレーム12、昇降部13及びベッド本体11を支持している。
As shown in Figures 1 and 2, the front wheels 14F and rear wheels 14B that make up the multiple casters 14 are arranged at the four corners of the underside of the bed 10. Two front wheels 14F and two rear wheels 14B are provided along the left-right direction. The multiple casters 14 support the frame 12, the lifting section 13, and the bed body 11 on the transport surface F.
各キャスタ14は、いわゆるフリーキャスタであって、ベッド10の下面に固定される取付部14aと、この取付部14aに対して旋回軸Ocまわりに旋回可能なフォーク部14bと、フォーク部14bによって回転可能に支持された車輪14cと、を有している。各フォーク部14bの旋回軸Ocは、上下方向(ベッド10の高さ方向)に沿って延びている。各車輪14cの回転軸は、水平面に沿って延びている。この回転軸は、取付部14aに対してフォーク部14bが旋回することで、左右方向に対して傾斜するようになっている。
Each caster 14 is a so-called free caster, and has an attachment part 14a fixed to the underside of the bed 10, a fork part 14b that can rotate around a rotation axis Oc relative to the attachment part 14a, and a wheel 14c that is rotatably supported by the fork part 14b. The rotation axis Oc of each fork part 14b extends in the vertical direction (the height direction of the bed 10). The rotation axis of each wheel 14c extends along the horizontal plane. This rotation axis is tilted in the left-right direction by rotating the fork part 14b relative to the attachment part 14a.
そして、搬送補助装置1は、前述の右フレーム12Rにおける前後方向の中途の部位と、左フレームLにおける前後方向の中途の部位と、を架け渡すように配置されている。搬送補助装置1は、前後方向においては前輪14Fと後輪14Bとの間に配置され、左右方向においてはベッド10の中央に配置されている。
The transport assistance device 1 is positioned to bridge the midpoint of the right frame 12R in the fore-and-aft direction and the midpoint of the left frame L in the fore-and-aft direction. The transport assistance device 1 is positioned between the front wheels 14F and rear wheels 14B in the fore-and-aft direction, and is positioned in the center of the bed 10 in the left-and-right direction.
図1~図6に示すように、搬送補助装置1は、収容ボックス6と、取付具7と、ホイールとしての第1及び第2メカナムホイール21R,21Lと、第1及び第2モータ22R,22Lと、コントローラ4と、電流センサとしての第1及び第2電流センサSW1,SW2と、回転センサとしての第1及び第2回転センサSW3,SW4と、傾斜センサとしての6軸センサSW5と、を備えている(第1及び第2モータ22R,22L、並びに各センサSW1~SW5は、図6にのみ図示)。以下、第1及び第2メカナムホイール21R,21Lのうち、第1メカナムホイール21Rが右側に位置するものとし、第2メカナムホイール21Lが左側に位置するものとする。
As shown in Figures 1 to 6, the transport auxiliary device 1 includes a storage box 6, a mounting fixture 7, first and second Mecanum wheels 21R, 21L as wheels, first and second motors 22R, 22L, a controller 4, first and second current sensors SW1, SW2 as current sensors, first and second rotation sensors SW3, SW4 as rotation sensors, and a six-axis sensor SW5 as a tilt sensor (the first and second motors 22R, 22L and the sensors SW1 to SW5 are only shown in Figure 6). In the following, of the first and second Mecanum wheels 21R, 21L, the first Mecanum wheel 21R is assumed to be located on the right side, and the second Mecanum wheel 21L is assumed to be located on the left side.
これらの要素のうち、コントローラ4及び6軸センサSW5は収容ボックス6に収容されており、取付具7、第1及び第2メカナムホイール21R,21L、第1及び第2モータ22R,22L、第1及び第2電流センサSW1,SW2、並びに第1及び第2回転センサSW3,SW4は、収容ボックス6外に配置されている。
Of these elements, the controller 4 and the 6-axis sensor SW5 are housed in the housing box 6, while the mounting fixture 7, the first and second Mecanum wheels 21R, 21L, the first and second motors 22R, 22L, the first and second current sensors SW1, SW2, and the first and second rotation sensors SW3, SW4 are located outside the housing box 6.
収容ボックス6は、前述のようにコントローラ4を収容している。収容ボックス6は、左右方向において、第1メカナムホイール21Rと第2メカナムホイール21Lの間に配置されている。
The storage box 6 houses the controller 4 as described above. The storage box 6 is disposed between the first Mecanum wheel 21R and the second Mecanum wheel 21L in the left-right direction.
収容ボックス6は、第1及び第2メカナムホイール21R,21Lと共に取付具7に組み付けられており、この取付具7を介してベッド10の下部に取り付けられている。取付具7は、ベッド10の下部に対して着脱可能である。すなわち、本実施形態に係る搬送補助装置1は、ベッド10に対して後付可能であって、必要に応じて取り外し可能とされている。
The storage box 6 is attached to the mounting fixture 7 together with the first and second Mecanum wheels 21R, 21L, and is attached to the bottom of the bed 10 via this mounting fixture 7. The mounting fixture 7 is detachable from the bottom of the bed 10. In other words, the transport assistance device 1 according to this embodiment can be retrofitted to the bed 10 and can be removed as necessary.
詳しくは、本実施形態に係る取付具7は、図2~図5に示すように、前側レール部材71f及び後側レール部材71bと、第1及び第2メカナムホイール21R,21Lをそれぞれ回転可能に支持する第1及び第2アーム部材72R,72Lと、を有している。
In more detail, as shown in Figures 2 to 5, the mounting fixture 7 according to this embodiment has a front rail member 71f, a rear rail member 71b, and first and second arm members 72R and 72L that rotatably support the first and second Mecanum wheels 21R and 21L, respectively.
ここで、前側レール部材71fと後側レール部材71bは、前後方向に間隔を空けて配置されており、それぞれ、右フレーム12Rの前後方向中央部と、左フレーム12Lの前後方向中央部と、を架け渡している。前側レール部材71fと後側レール部材71bは、右フレーム12R及び左フレーム12Lに対して着脱可能である。第1及び第2メカナムホイール21R,21Lと収容ボックス6は、前後方向において、前側レール部材71fと後側レール部材71bの間に配置されるようになっている。
Here, the front rail member 71f and the rear rail member 71b are spaced apart in the front-to-rear direction, and each spans the front-to-rear center of the right frame 12R and the front-to-rear center of the left frame 12L. The front rail member 71f and the rear rail member 71b are detachable from the right frame 12R and the left frame 12L. The first and second Mecanum wheels 21R, 21L and the storage box 6 are arranged between the front rail member 71f and the rear rail member 71b in the front-to-rear direction.
一方、図3及び図4において右側に位置する第1アーム部材72Rは、後側レール部材71bによって揺動可能に支持されている。第1アーム部材72Rの前端部は、第1メカナムホイール21Rを回転可能に支持している。また、第1アーム部材72Rは、左右方向において、第1メカナムホイール21Rと収容ボックス6との間に配置されるようになっている。
On the other hand, the first arm member 72R located on the right side in Figs. 3 and 4 is supported by the rear rail member 71b so that it can swing. The front end of the first arm member 72R rotatably supports the first Mecanum wheel 21R. In addition, the first arm member 72R is arranged to be positioned between the first Mecanum wheel 21R and the storage box 6 in the left-right direction.
また、第1アーム部材72Rの上端部には、第1引張バネ75Rの一端部が係止されている。この第1引張バネ75Rの他端部は、前側レール部材71fに固定された第1ブラケット76Rに係止されている。
Also, one end of a first tension spring 75R is attached to the upper end of the first arm member 72R. The other end of this first tension spring 75R is attached to a first bracket 76R fixed to the front rail member 71f.
そして、図3及び図4において左側に位置する第2アーム部材72Lは、第1アーム部材72Rと同様に、後側レール部材71bによって揺動可能に支持されている。第2アーム部材72Lの前端部は、第2メカナムホイール21Lを回転可能に支持している。また、第2アーム部材72Lは、左右方向において、第2メカナムホイール21Lと収容ボックス6との間に配置されるようになっている。
The second arm member 72L, located on the left side in Figures 3 and 4, is supported by the rear rail member 71b so as to be able to swing, just like the first arm member 72R. The front end of the second arm member 72L rotatably supports the second Mecanum wheel 21L. The second arm member 72L is also arranged to be positioned between the second Mecanum wheel 21L and the storage box 6 in the left-right direction.
また、第2アーム部材72Lの上端部には、第2引張バネ75Lの一端部が係止されている。この第2引張バネ75Lの他端部は、前側レール部材71fに固定された第2ブラケット76Lに係止されている(図5も参照)。
Also, one end of a second tension spring 75L is attached to the upper end of the second arm member 72L. The other end of this second tension spring 75L is attached to a second bracket 76L fixed to the front rail member 71f (see also Figure 5).
第1及び第2メカナムホイール21R,21Lは、図1~図2に示すように、ベッド10の下部(底部)に取り付けられている。第1及び第2メカナムホイール21R,21Lは、ベッド10の搬送面Fに接している。搬送面Fは、図1にのみ示す。また、第1及び第2メカナムホイール21R,21Lは、前輪14Fの後側かつ後輪14Bの前側に配置されている。本実施形態の場合、第1及び第2メカナムホイール21R,21Lは、図2に示すように、短手方向としての左右方向に並ぶように配置されている。
The first and second Mecanum wheels 21R, 21L are attached to the lower part (bottom) of the bed 10, as shown in Figures 1 and 2. The first and second Mecanum wheels 21R, 21L are in contact with the transport surface F of the bed 10. The transport surface F is only shown in Figure 1. The first and second Mecanum wheels 21R, 21L are also disposed rearward of the front wheels 14F and in front of the rear wheels 14B. In this embodiment, the first and second Mecanum wheels 21R, 21L are disposed so as to be aligned in the left-right direction, which is the short side direction, as shown in Figure 2.
詳しくは、図3~図5に示すように、第1メカナムホイール21Rは、第1回転軸Oy1まわりに回転する第1ホイール本体211Rと、第1ホイール本体211Rの外周に沿って配置され、それぞれ第1回転軸Oy1に対して傾斜した第1傾斜軸Orまわりに回転する複数の第1樽型ローラ212Rと、を有している。
In more detail, as shown in Figures 3 to 5, the first Mecanum wheel 21R has a first wheel body 211R that rotates around a first rotation axis Oy1, and a number of first barrel-shaped rollers 212R that are arranged along the outer periphery of the first wheel body 211R and each rotate around a first inclined axis Or that is inclined with respect to the first rotation axis Oy1.
一方、第2メカナムホイール21Lは、第2回転軸Oy2まわりに回転する第2ホイール本体211Lと、第2ホイール本体211Lの外周に沿って配置され、それぞれ第2回転軸Oy2に対して第1傾斜軸Orとは異なる方向に傾斜した第2傾斜軸Olまわりに回転する複数の第2樽型ローラ212Lと、を有している。
On the other hand, the second Mecanum wheel 21L has a second wheel body 211L that rotates around a second rotation axis Oy2, and a number of second barrel-shaped rollers 212L that are arranged along the outer periphery of the second wheel body 211L and each rotate around a second inclined axis Ol that is inclined in a direction different from the first inclined axis Or with respect to the second rotation axis Oy2.
ここで、第1及び第2回転軸Oy1,Oy2は、双方とも、左右方向に延びている。そして、第1傾斜軸Orは、第2傾斜軸Olに対し、前後方向を基準(図4の対称軸Osを参照)とした線対称となるように傾斜している。言い換えると、第1傾斜軸Orと第2傾斜軸Olは、上下方向及び前後方向に延びる平面を鏡映面とすると、その鏡映面に関して鏡映対称となるように延びている。
Here, the first and second rotation axes Oy1, Oy2 both extend in the left-right direction. The first tilt axis Or is tilted relative to the second tilt axis Ol so as to be linearly symmetrical with respect to the front-to-rear direction (see the axis of symmetry Os in FIG. 4). In other words, if a plane extending in the up-down and front-to-rear directions is taken as the mirror plane, the first tilt axis Or and the second tilt axis Ol extend so as to be mirror-symmetrical with respect to the mirror plane.
さらに、図4のように上方から見た場合(平面視した場合)、第1及び第2傾斜軸Or,Olは、それぞれ、前後方向に沿って後側から前側に向かうに従って、左右方向の内側から外側(左右方向の中央部から右側又は左側)に向かって延びている。
Furthermore, when viewed from above (when viewed in a plan view) as in Figure 4, the first and second tilt axes Or, Ol each extend from the rear to the front along the fore-and-aft direction, and from the inside to the outside in the left-right direction (from the center in the left-right direction to the right or left).
さらに詳しくは、第1回転軸Oy1に対する第1傾斜軸Orの傾斜角θrは、平面視で45°に設定されている。同様に、第2回転軸Oy2に対する第2傾斜軸Olの傾斜角θlは、同じく平面視で45°に設定されている。なお、各樽型ローラ212R,212Lの傾斜方向及び傾斜角度は、これらの例には限定されない。例えば、搬送補助装置1全体を、図2に例示した状態から、上下方向に延びるz軸回りに所定角度回転させた状態に配置変更してもよい。
More specifically, the inclination angle θr of the first inclined axis Or relative to the first rotation axis Oy1 is set to 45° in plan view. Similarly, the inclination angle θl of the second inclined axis Ol relative to the second rotation axis Oy2 is also set to 45° in plan view. Note that the inclination direction and inclination angle of each barrel-shaped roller 212R, 212L are not limited to these examples. For example, the entire transport auxiliary device 1 may be rearranged from the state illustrated in FIG. 2 to a state rotated a predetermined angle around the z-axis extending in the vertical direction.
また、前述のように、第1及び第2メカナムホイール21R,21Lは、図3等に示した前側レール部材71f及び後側レール部材71bを介して相互に連結されている。したがって、第1及び第2メカナムホイール21R,21Lは、前後方向及び左右方向に一体的に移動したり、水平面に垂直な旋回軸まわりに一体的に旋回したりする。
As mentioned above, the first and second Mecanum wheels 21R, 21L are connected to each other via the front rail member 71f and the rear rail member 71b shown in FIG. 3, etc. Therefore, the first and second Mecanum wheels 21R, 21L move together in the front-rear and left-right directions, and rotate together around a rotation axis perpendicular to the horizontal plane.
第1及び第2モータ22R,22Lは、第1及び第2メカナムホイール21R,21Lのそれぞれに駆動連結されている。具体的に、第1及び第2モータ22R,22Lは、それぞれ、いわゆる3相のDCブラシレスモータとして構成されている。第1及び第2モータ22R,22Lは、双方ともコントローラ4と電気的に接続されており、このコントローラ4によって制御されるようになっている。
The first and second motors 22R, 22L are drivingly connected to the first and second Mecanum wheels 21R, 21L, respectively. Specifically, the first and second motors 22R, 22L are each configured as a so-called three-phase DC brushless motor. Both the first and second motors 22R, 22L are electrically connected to the controller 4 and are controlled by the controller 4.
第1及び第2モータ22R,22Lには、それぞれの回転に際し、トルク負荷に対応したモータ電流が供給される。モータ電流を通じて、第1及び第2モータ22R,22Lの回転数と、正転及び逆転とを切り替えることができる。
The first and second motors 22R, 22L are supplied with a motor current corresponding to the torque load when they rotate. The motor current can be used to switch the rotation speed of the first and second motors 22R, 22L and between forward and reverse rotation.
そして、第1モータ22Rは、第1メカナムホイール21Rに対し、駆動力(トルク)を伝達できるように連結されている。第2モータ22Lは、第2メカナムホイール21Lに対し、駆動力(トルク)を伝達できるように連結されている。
The first motor 22R is connected to the first Mecanum wheel 21R so as to transmit a driving force (torque). The second motor 22L is connected to the second Mecanum wheel 21L so as to transmit a driving force (torque).
第1モータ22Rが回転することで、その駆動力が伝達されて第1メカナムホイール21Rが回転する。同様に、第2モータ22Lが回転することで、その駆動力が伝達されて第2メカナムホイール21Lが回転する。
When the first motor 22R rotates, the driving force is transmitted to rotate the first Mecanum wheel 21R. Similarly, when the second motor 22L rotates, the driving force is transmitted to rotate the second Mecanum wheel 21L.
本実施形態では、第1モータ22Rを正転させることで第1メカナムホイール21Rが前転し、第1モータ22Rを逆転させることで第1メカナムホイール21Rが後転するように構成されている。同様に、本実施形態では、第2モータ22Lを正転させることで第2メカナムホイール21Lが前転し、第2モータ22Lを逆転させることで第2メカナムホイール21Lが後転するように構成されている。
In this embodiment, the first Mecanum wheel 21R rotates forward when the first motor 22R rotates in the forward direction, and the first Mecanum wheel 21R rotates backward when the first motor 22R rotates in the reverse direction. Similarly, in this embodiment, the second Mecanum wheel 21L rotates forward when the second motor 22L rotates in the forward direction, and the second Mecanum wheel 21L rotates backward when the second motor 22L rotates in the reverse direction.
なお、第1モータ22Rは第1メカナムホイール21Rに内蔵されており、第2モータ22Lは第2メカナムホイール21Lに内蔵されている。このように第1及び第2モータ22R,22Lを内蔵させることで、搬送補助装置1全体の簡素化及びコンパクト化を図ることができる。
The first motor 22R is built into the first Mecanum wheel 21R, and the second motor 22L is built into the second Mecanum wheel 21L. By building in the first and second motors 22R and 22L in this way, the entire transport assistance device 1 can be simplified and made compact.
また、第1電流センサSW1は、第1メカナムホイール21Rの回転に際して第1モータ22Rに流れる誘導電流を検出する。つまり、外力を受けて第1メカナムホイール21Rが回転すると、第1モータ22Rにおいてロータとステータとが相対的に回転し、誘導電流が発生する。第1電流センサSW1によって検出される誘導電流は、q軸電流に相当する。
The first current sensor SW1 also detects the induced current that flows through the first motor 22R when the first mecanum wheel 21R rotates. In other words, when the first mecanum wheel 21R rotates due to an external force, the rotor and stator in the first motor 22R rotate relative to each other, generating an induced current. The induced current detected by the first current sensor SW1 corresponds to the q-axis current.
ここで、誘導電流の大きさは、外力を受けて第1メカナムホイール21Rが回転したときに、その第1メカナムホイール21Rに作用したトルクに比例する。このトルクの大きさは、ベッド10が受けた外力の大きさ、ひいては、外力に起因したベッド10の速度変化量と関連している。また、誘導電流の符号は、外力を受けて第1メカナムホイール21Rが回転したときの、第1メカナムホイール21Rの回転方向と関連している。誘導電流の符号は、第1モータ22Rの駆動時に流れることになるモータ電流に対し、逆符号となる。
Here, the magnitude of the induced current is proportional to the torque acting on the first Mecanum wheel 21R when it rotates in response to an external force. The magnitude of this torque is related to the magnitude of the external force received by the bed 10, and thus to the amount of speed change of the bed 10 caused by the external force. Furthermore, the sign of the induced current is related to the direction of rotation of the first Mecanum wheel 21R when it rotates in response to an external force. The sign of the induced current is the opposite sign to the motor current that flows when the first motor 22R is driven.
第2電流センサSW2は、第2メカナムホイール21Lの回転に際して第2モータ22Lに流れる誘導電流を検出する。つまり、外力を受けて第2メカナムホイール21Lが回転すると、第2モータ22Lにおいてロータとステータとが相対的に回転し、誘導電流が発生する。第2電流センサSW2によって検出される誘導電流は、q軸電流に相当する。
The second current sensor SW2 detects the induced current flowing through the second motor 22L when the second mecanum wheel 21L rotates. In other words, when the second mecanum wheel 21L rotates due to an external force, the rotor and stator in the second motor 22L rotate relative to each other, generating an induced current. The induced current detected by the second current sensor SW2 corresponds to the q-axis current.
ここで、誘導電流の大きさは、外力を受けて第2メカナムホイール21Lが回転したときに、その第2メカナムホイール21Lに作用したトルクに比例する。このトルクの大きさは、ベッド10が受けた外力の大きさ、ひいては、外力に起因したベッド10の速度変化量と関連している。また、誘導電流の符号は、外力を受けて第2メカナムホイール21Lが回転したときの、第2メカナムホイール21Lの回転方向と関連している。誘導電流の符号は、第2モータ22Lの駆動時に流れることになるモータ電流に対し、逆符号となる。
Here, the magnitude of the induced current is proportional to the torque acting on the second mecanum wheel 21L when the second mecanum wheel 21L rotates in response to an external force. The magnitude of this torque is related to the magnitude of the external force received by the bed 10, and thus to the amount of speed change of the bed 10 caused by the external force. Furthermore, the sign of the induced current is related to the direction of rotation of the second mecanum wheel 21L when the second mecanum wheel 21L rotates in response to an external force. The sign of the induced current is the opposite sign to the motor current that flows when the second motor 22L is driven.
例えば、外力を受けて第1メカナムホイール21Rが前転すると同時に、第2メカナムホイール21Lが後転した場合、第1電流センサSW1は、第1モータ22Rを逆転させるときと同符号の誘導電流を検出することになる。第2電流センサSW2は、第2モータ22Lを正転させるときと同符号の誘導電流を検出することになる。
For example, if an external force causes the first Mecanum wheel 21R to rotate forward and the second Mecanum wheel 21L to rotate backward at the same time, the first current sensor SW1 will detect an induced current with the same sign as when the first motor 22R is rotated in the reverse direction. The second current sensor SW2 will detect an induced current with the same sign as when the second motor 22L is rotated in the forward direction.
以下に詳述するように、本実施形態に係るコントローラ4は、誘導電流に係るトルクをフィードバックする(より詳細には、トルクに対応した指令回転数で第1及び第2モータ22R,22Lを回転させる)ことで、順方向つまり外力の作用方向へのアシストを実行するように構成されている。
As described in detail below, the controller 4 according to this embodiment is configured to perform assistance in the forward direction, i.e., in the direction of action of the external force, by feeding back the torque related to the induced current (more specifically, by rotating the first and second motors 22R, 22L at a command rotation speed corresponding to the torque).
また、第1及び第2回転センサSW3,SW4は、それぞれ、第1及び第2モータ22R、22Lの回転数を検出する。具体的に、本実施形態に係る第1及び第2回転センサSW3,SW4は、それぞれエンコーダによって構成されている。エンコーダとしての第1回転センサSW3は、第1モータ22Rの回転数及び回転角度を検出し、同じくエンコーダとしての第2回転センサSW4は、第2モータ22Lの回転数及び回転角度を検出する。
Furthermore, the first and second rotation sensors SW3 and SW4 detect the rotation speeds of the first and second motors 22R and 22L, respectively. Specifically, in this embodiment, the first and second rotation sensors SW3 and SW4 are each configured with an encoder. The first rotation sensor SW3, which functions as an encoder, detects the rotation speed and rotation angle of the first motor 22R, and the second rotation sensor SW4, which also functions as an encoder, detects the rotation speed and rotation angle of the second motor 22L.
また、図8に示すように、傾斜センサとしての6軸センサSW5は、ベッド10が移動する搬送面Fの傾斜角を検出する。詳しくは、この6軸センサSW5は、少なくとも、左右方向に延びるy軸回りの回転角(いわゆるピッチ角θ)の角速度を検出可能に構成されている。
Also, as shown in FIG. 8, the six-axis sensor SW5, which serves as an inclination sensor, detects the inclination angle of the transport surface F along which the bed 10 moves. In more detail, the six-axis sensor SW5 is configured to be capable of detecting at least the angular velocity of the rotation angle (the so-called pitch angle θ) around the y-axis extending in the left-right direction.
さらに詳しくは、本実施形態に係る6軸センサSW5は、ピッチ角θの角速度に加え、前後方向に延びるx軸、左右方向に延びるy軸、及び上下方向に延びるz軸それぞれに沿った3方向の加速度と、x軸まわりの回転角(いわゆるロール角φ)の角速度と、z軸まわりの回転角(いわゆるヨー角ψ)の角速度と、を検出することができる。6軸センサSW5の検出信号は、コントローラ4に入力される。
More specifically, the six-axis sensor SW5 according to this embodiment can detect not only the angular velocity of the pitch angle θ, but also the acceleration in three directions along the x-axis extending in the forward/backward direction, the y-axis extending in the left/right direction, and the z-axis extending in the up/down direction, the angular velocity of the rotation angle around the x-axis (the so-called roll angle φ), and the angular velocity of the rotation angle around the z-axis (the so-called yaw angle ψ). The detection signal of the six-axis sensor SW5 is input to the controller 4.
コントローラ4は、各種センサSW1~SW5から入力された電気信号に基づいて、第1及び第2モータ22R,22Lを制御する。このコントローラ4は、CPU、メモリ及び入出力バスを有しており、例えば制御基板によって構成されている。
The controller 4 controls the first and second motors 22R, 22L based on electrical signals input from the various sensors SW1 to SW5. This controller 4 has a CPU, memory, and an input/output bus, and is configured, for example, by a control board.
具体的に、本実施形態に係るコントローラ4は、各種センサSW1~SW5から入力された検出信号に基づいて、第1及び第2モータ22R,22Lそれぞれの指令回転数を設定する。コントローラ4は、設定された指令回転数に対応したモータ電流を、第1及び第2モータ22R,22Lに入力する。これにより、第1及び第2モータ22R,22Lは、それぞれ、コントローラ4が設定した指令回転数で回転することになる。
Specifically, the controller 4 according to this embodiment sets the command rotation speeds of the first and second motors 22R, 22L based on the detection signals input from the various sensors SW1 to SW5. The controller 4 inputs motor currents corresponding to the set command rotation speeds to the first and second motors 22R, 22L. As a result, the first and second motors 22R, 22L each rotate at the command rotation speeds set by the controller 4.
その際、第1メカナムホイール21Rは、第1モータ22Rと同じ回転数で回転し、第2メカナムホイール21Lは、第2モータ22Lと同じ回転数で回転する。すなわち、第1及び第2モータ22R,22Lそれぞれの指令回転数を設定することは、第1及び第2メカナムホイール21R,21Lそれぞれの指令回転数を設定することに等しい。
At that time, the first Mecanum wheel 21R rotates at the same rotation speed as the first motor 22R, and the second Mecanum wheel 21L rotates at the same rotation speed as the second motor 22L. In other words, setting the command rotation speeds of the first and second motors 22R and 22L is equivalent to setting the command rotation speeds of the first and second Mecanum wheels 21R and 21L.
また、各指令回転数の符号を変更することで、第1モータ22R及び第2モータ22Lの回転方向を個別に変更することができる。各モータ22R,22Lの回転方向を変更することで、対応するメカナムホイール21R,21Lを前転と後転とに切り替えることができる。
In addition, by changing the sign of each command rotation speed, the rotation direction of the first motor 22R and the second motor 22L can be changed individually. By changing the rotation direction of each motor 22R, 22L, the corresponding Mecanum wheels 21R, 21L can be switched between forward and backward rotation.
本実施形態では、右側に位置する第1メカナムホイール21Rを前転させると、搬送補助装置1及びベッド10に対し、左斜め前方へと推力を付与することができる(図7の矢印A11を参照)。一方、左側に位置する第2メカナムホイール21Lを前転させると、搬送補助装置1は、ベッド10に対して右斜め前方へと推力を付与することができる(図7の矢印A12を参照)。
In this embodiment, when the first Mecanum wheel 21R located on the right side is rotated forward, a thrust force can be applied to the transport assistance device 1 and the bed 10 in a diagonal forward left direction (see arrow A11 in FIG. 7). On the other hand, when the second Mecanum wheel 21L located on the left side is rotated forward, the transport assistance device 1 can apply a thrust force to the bed 10 in a diagonal forward right direction (see arrow A12 in FIG. 7).
したがって、例えば図7の左上に示すように、第1及び第2メカナムホイール21R,21Lを双方とも前転させると、第1メカナムホイール21Rを前転させることで付与される左方への推力と、第2メカナムホイール21Lを前転させることで付与される右方への推力とを相殺し、搬送補助装置1全体では前方へと推力を付与することができる。この推力によって、ベッド10の前方への移動をアシストすることができる。
Therefore, for example, as shown in the upper left of Figure 7, when both the first and second Mecanum wheels 21R, 21L are rotated forward, the leftward thrust applied by rotating the first Mecanum wheel 21R forward and the rightward thrust applied by rotating the second Mecanum wheel 21L forward cancel each other out, and the transport assistance device 1 as a whole can apply a forward thrust. This thrust can assist in the forward movement of the bed 10.
同様に、右側に位置する第1メカナムホイール21Rを後転させると、搬送補助装置1及びベッド10に対し、右斜め後方へと推力を付与することができる(図7の矢印A21を参照)。一方、左側に位置する第2メカナムホイール21Lを後転させると、搬送補助装置1は、ベッド10に対して左斜め後方へと推力を付与することができる(図7の矢印A22を参照)。
Similarly, when the first Mecanum wheel 21R located on the right side is rotated backward, a thrust force can be applied to the transport assistance device 1 and the bed 10 in a diagonally rearward right direction (see arrow A21 in FIG. 7). On the other hand, when the second Mecanum wheel 21L located on the left side is rotated backward, the transport assistance device 1 can apply a thrust force to the bed 10 in a diagonally rearward left direction (see arrow A22 in FIG. 7).
したがって、例えば図7の右上に示すように、第1及び第2メカナムホイール21R,21Lを双方とも後転させると、第1メカナムホイール21Rを後転させることで付与される右方への推力と、第2メカナムホイール21Lを後転させることで付与される左方への推力とを相殺し、搬送補助装置1全体では後方へと推力を付与することができる。この推力によって、ベッド10の後方への移動をアシストすることができる。
Therefore, for example, as shown in the upper right of FIG. 7, when both the first and second Mecanum wheels 21R, 21L are rotated backwards, the thrust to the right applied by rotating the first Mecanum wheel 21R backward and the thrust to the left applied by rotating the second Mecanum wheel 21L backward cancel each other out, and the transport assistance device 1 as a whole can apply a thrust to the rear. This thrust can assist in the movement of the bed 10 backwards.
一方、第1及び第2メカナムホイール21R,21Lのうちの一方を前転させ、他方を後転させると、搬送補助装置1は、ベッド10に対して左右方向への推力を付与する。
On the other hand, when one of the first and second Mecanum wheels 21R, 21L is rotated forward and the other is rotated backward, the transport assistance device 1 applies a thrust force in the left-right direction to the bed 10.
図7の左下に示す例では、第1メカナムホイール21Rを後転させるとともに第2メカナムホイール21Lを前転させることで、ベッド10には、右方向への推力が付与される。
In the example shown in the lower left of Figure 7, the first Mecanum wheel 21R is rotated backward and the second Mecanum wheel 21L is rotated forward, thereby applying a thrust to the right to the bed 10.
また、第1及び第2メカナムホイール21R,21Lのうちの一方のみを前転又は後転させると、搬送補助装置1は、ベッド10に対して斜め方向への推力を付与する。
In addition, when only one of the first and second Mecanum wheels 21R, 21L is rotated forward or backward, the transport assistance device 1 applies a diagonal thrust to the bed 10.
図7の右下に示す例では、第2メカナムホイール21Lのみを前転させたことで、右斜め前方へとベッド10を推進させることができる。一方、第1メカナムホイール21Rのみを前転させると、左斜め前方へとベッド10の移動をアシストすることができる(図示省略)。
In the example shown in the lower right of Figure 7, by rotating only the second Mecanum wheel 21L forward, the bed 10 can be propelled diagonally forward to the right. On the other hand, by rotating only the first Mecanum wheel 21R forward, the movement of the bed 10 can be assisted diagonally forward to the left (not shown).
そして、搬送補助装置1は、各種センサSW1~SW5の検出信号に基づいて第1及び第2モータ22R,22Lを作動させることで、前述のように付与される推力を通じて、搬送者100によるベッド10の搬送をアシストするように構成されている。
The transport assistance device 1 is configured to operate the first and second motors 22R, 22L based on the detection signals of the various sensors SW1 to SW5, thereby assisting the transporter 100 in transporting the bed 10 through the thrust applied as described above.
そうしたアシストを実現すべく、本実施形態に係るコントローラ4は、各種センサSW1~SW5の検出信号に基づいて、外力が作用する方向(以下、単に「作用方向」ともいう)を判定し、その作用方向に沿って推力を発揮するように第1及び第2モータ22R,22Lを作動させる。
To achieve this type of assistance, the controller 4 according to this embodiment determines the direction in which the external force acts (hereinafter simply referred to as the "direction of action") based on the detection signals of the various sensors SW1 to SW5, and operates the first and second motors 22R, 22L to exert a thrust along that direction of action.
例えば、ヘッドボード11hが後方から前方に押された結果、後側から前方に向かって外力が作用していると判定された場合、コントローラ4は、第1及び第2モータ22R,22Lを双方とも正転させることで、第1及び第2メカナムホイール21R,21Lを双方とも前転させる。これにより、図7の左上に例示したようにベッド10の前進をアシストすることが可能になる。
For example, if it is determined that an external force is acting from the rear to the front as a result of the headboard 11h being pushed forward from the rear, the controller 4 rotates both the first and second motors 22R, 22L in the forward direction, thereby rotating both the first and second Mecanum wheels 21R, 21L forward. This makes it possible to assist the forward movement of the bed 10, as shown in the upper left of FIG. 7.
また、第1及び第2メカナムホイール21R,21Lは、対応するモータ22R,22Lを駆動していない場合も前転および後転が許容される。これにより、ベッド10を手押移動する際のふらつきを抑制し、ベッド10の搬送を安定させることができる。
In addition, the first and second Mecanum wheels 21R, 21L are allowed to rotate forward and backward even when the corresponding motors 22R, 22L are not driven. This reduces wobbling when the bed 10 is pushed by hand, and allows for stable transportation of the bed 10.
以下、コントローラ4によるアシストに関し、図9等を用いて詳細に説明する。
The assistance provided by the controller 4 will be explained in detail below with reference to FIG. 9 etc.
ここで、図9は、コントローラ4が行う主要な処理を例示するフローチャートである。図10は、移動方向の判定に関する処理を例示するフローチャートである。図11は、コンプライアンス制御の構成を模式化した制御ブロック図である。図12は、コンプライアンス制御の基本概念について説明するための概念図である。図13は、回転数に対する速度増加量の変化を例示する図である。図14は、速度増加制御によって得られる指令回転数を例示する図である。図15は、コンプライアンス制御及び速度増加制御を例示するフローチャートである。
Here, FIG. 9 is a flowchart illustrating the main processing performed by the controller 4. FIG. 10 is a flowchart illustrating processing related to determining the direction of movement. FIG. 11 is a control block diagram that illustrates the configuration of compliance control. FIG. 12 is a conceptual diagram for explaining the basic concept of compliance control. FIG. 13 is a diagram illustrating the change in the speed increase amount relative to the rotation speed. FIG. 14 is a diagram illustrating the command rotation speed obtained by speed increase control. FIG. 15 is a flowchart illustrating compliance control and speed increase control.
また、図16は、坂道の登坂/降坂に関する処理を例示するフローチャートである。図17は、安全制限制御を例示するフローチャートである。
FIG. 16 is a flowchart illustrating processing related to going uphill and downhill. FIG. 17 is a flowchart illustrating safety limit control.
まず、図9のステップS1において、コントローラ4は、前述した5つのセンサSW1~SW5の検出信号を読み込む。
First, in step S1 of FIG. 9, the controller 4 reads the detection signals of the five sensors SW1 to SW5 mentioned above.
続くステップS2において、コントローラ4は、第1及び第2電流センサSW1,SW2の検出信号に基づいて、第1及び第2メカナムホイール21R,21Lそれぞれの加速度を個別に推定する。
In the following step S2, the controller 4 estimates the acceleration of each of the first and second Mecanum wheels 21R, 21L individually based on the detection signals of the first and second current sensors SW1, SW2.
以下、第1メカナムホイール21Rの加速度を「第1加速度」と呼称し、第2メカナムホイール21Lの加速度を「第2加速度」と呼称する。第1及び第2加速度は、双方とも、並進速度の時間微分、つまり、いわゆる接線加速度である。
Hereinafter, the acceleration of the first Mecanum wheel 21R will be referred to as the "first acceleration," and the acceleration of the second Mecanum wheel 21L will be referred to as the "second acceleration." Both the first and second accelerations are the time derivatives of the translational velocity, that is, so-called tangential accelerations.
第1及び第2電流センサSW1,SW2それぞれによって検出された誘導電流の大きさは、第1及び第2メカナムホイール21R,21Lの回転時に、それらのホイールに作用したトルク(特に、反力に起因したトルク)に比例する。コントローラ4は、そうした比例関係に基づいて、第1メカナムホイール21Rに作用した第1トルクと、第2メカナムホイール21Lに作用した第2トルクと、を個別に推定する。その際、誘導電流からトルクに変換するための比例係数は、コントローラ4に事前に記憶させたものを用いることができる。
The magnitude of the induced current detected by the first and second current sensors SW1, SW2, respectively, is proportional to the torque (particularly the torque caused by the reaction force) acting on the first and second Mecanum wheels 21R, 21L when they rotate. Based on this proportional relationship, the controller 4 estimates the first torque acting on the first Mecanum wheel 21R and the second torque acting on the second Mecanum wheel 21L separately. In this case, the proportionality coefficient for converting the induced current to torque can be one that is pre-stored in the controller 4.
本実施形態に係るコントローラ4は、第1及び第2トルクに対応した反力に逆らうように第1及び第2モータ22R、22Lを駆動することで、ベッド10の移動をアシストする。
The controller 4 according to this embodiment assists the movement of the bed 10 by driving the first and second motors 22R and 22L against the reaction forces corresponding to the first and second torques.
そうしたアシストを実現するために、コントローラ4は、下式(1)及び(2)に基づいて、第1トルクに対応した第1加速度と、第2トルクに対応した第2加速度とを推定する。
To achieve such assistance, the controller 4 estimates a first acceleration corresponding to the first torque and a second acceleration corresponding to the second torque based on the following equations (1) and (2).
ar=(-1)・Tr/(R・m) …(1)
al=(-1)・Tl/(R・m) …(2)
上式(1)及び(2)において、Tr[Nm]は第1トルクであり、Tl[Nm]は第2トルクである。また、ar[m/s2]は、第1トルクに対応した第1加速度であり、al[m/s2]は、第2トルクに対応した第2加速度である。 a r = (-1)・T r /(R・m) …(1)
a l =(-1)・T l /(R・m)…(2)
In the above formulas (1) and (2), T r [Nm] is the first torque, T l [Nm] is the second torque, and a r [m/s 2 ] is the first torque. a l [m/s 2 ] is a first acceleration corresponding to the second torque, and a l [m/s 2 ] is a second acceleration corresponding to the second torque.
al=(-1)・Tl/(R・m) …(2)
上式(1)及び(2)において、Tr[Nm]は第1トルクであり、Tl[Nm]は第2トルクである。また、ar[m/s2]は、第1トルクに対応した第1加速度であり、al[m/s2]は、第2トルクに対応した第2加速度である。 a r = (-1)・T r /(R・m) …(1)
a l =(-1)・T l /(R・m)…(2)
In the above formulas (1) and (2), T r [Nm] is the first torque, T l [Nm] is the second torque, and a r [m/s 2 ] is the first torque. a l [m/s 2 ] is a first acceleration corresponding to the second torque, and a l [m/s 2 ] is a second acceleration corresponding to the second torque.
その他、R[m]は第1及び第2メカナムホイール21R,21Lそれぞれのタイヤ半径であり、m[kg]は第1及び第2メカナムホイール21R,21Lそれぞれの質量である。本実施形態におけるタイヤ半径及び質量の大きさは、第1メカナムホイール21Rと第2メカナムホイール21Lとで同一である。
Otherwise, R [m] is the tire radius of each of the first and second Mecanum wheels 21R, 21L, and m [kg] is the mass of each of the first and second Mecanum wheels 21R, 21L. In this embodiment, the tire radius and mass are the same for the first Mecanum wheel 21R and the second Mecanum wheel 21L.
続くステップS3において、コントローラ4は、第1及び第2電流センサSW1,SW2の検出信号に基づいて、第1及び第2メカナムホイール21R,21Lの並進加速度を推定する。
In the following step S3, the controller 4 estimates the translational acceleration of the first and second Mecanum wheels 21R, 21L based on the detection signals of the first and second current sensors SW1, SW2.
詳細には、コントローラ4は、第1及び第2電流センサSW1,SW2の検出信号に基づいて推定した第1及び第2加速度ar,alを用いて、前後方向における第1及び第2メカナムホイール21R,21Lの並進加速度を示す縦加速度と、横方向における第1及び第2メカナムホイール21R,21Lの並進加速度を示す横加速度と、をそれぞれ推定する。
In detail, the controller 4 estimates a vertical acceleration indicating the translational acceleration of the first and second mecanum wheels 21R, 21L in the front-rear direction and a lateral acceleration indicating the translational acceleration of the first and second mecanum wheels 21R, 21L in the lateral direction, respectively, using the first and second accelerations a r , a l estimated based on the detection signals of the first and second current sensors SW1, SW2.
さらに詳しくは、図3~図5のように第1及び第2メカナムホイール21R,21Lを構成した場合、コントローラ4は、第1加速度arと第2加速度alとを加算することで縦加速度を推定し、第1加速度arと第2加速度alとの差分を演算することで横加速度を推定する。これらの演算の詳細は、下式(3)及び(4)に示す通りである。
More specifically, when the first and second Mecanum wheels 21R, 21L are configured as shown in Figures 3 to 5, the controller 4 estimates the vertical acceleration by adding the first acceleration a r and the second acceleration a 1 , and estimates the lateral acceleration by calculating the difference between the first acceleration a r and the second acceleration a 1. The details of these calculations are shown in the following equations (3) and (4).
ax=(ar+al)/2 …(3)
ay=(ar-al)/2 …(4)
上式(3)及び(4)において、ax[m/s2]が縦加速度であり、ay[m/s2]が横加速度である。式(3)の符号は、前方を正とし、後方を負とするように規定されている。前方と後方とで符号の正負を反転してもよい。同様に、式(4)の符号は、左方を正とし、右方を負とするように規定されている。左方と右方とで符号の正負を反転してもよい。 a x = (a r + a l )/2...(3)
a y = (a r - a l )/2...(4)
In the above equations (3) and (4), a x [m/s 2 ] is the vertical acceleration, and a y [m/s 2 ] is the lateral acceleration. The sign in the front and back may be reversed. Similarly, the sign in the formula (4) is positive on the left and negative on the right. The sign may be reversed between the left and right sides.
ay=(ar-al)/2 …(4)
上式(3)及び(4)において、ax[m/s2]が縦加速度であり、ay[m/s2]が横加速度である。式(3)の符号は、前方を正とし、後方を負とするように規定されている。前方と後方とで符号の正負を反転してもよい。同様に、式(4)の符号は、左方を正とし、右方を負とするように規定されている。左方と右方とで符号の正負を反転してもよい。 a x = (a r + a l )/2...(3)
a y = (a r - a l )/2...(4)
In the above equations (3) and (4), a x [m/s 2 ] is the vertical acceleration, and a y [m/s 2 ] is the lateral acceleration. The sign in the front and back may be reversed. Similarly, the sign in the formula (4) is positive on the left and negative on the right. The sign may be reversed between the left and right sides.
なお、式(3)及び(4)の如き関係式は、第1及び第2モータ22R,22Lそれぞれの回転数(つまり、第1及び第2メカナムホイール21R,21Lそれぞれの回転数)についても成立する。
Note that the relationship between equations (3) and (4) also holds true for the rotation speeds of the first and second motors 22R and 22L (i.e., the rotation speeds of the first and second Mecanum wheels 21R and 21L).
ここで、rr[rpm]を前後方向における第1モータ22Rの回転数(以下、「第1回転数」ともいう)とし、rl[rpm]を前後方向における第2モータ22Lの回転数(以下、「第2回転数」ともいう)とする。これらの回転数のうち、第1回転数rrは第1回転センサSW3によって検出される回転数であり、第2回転数rlは第2回転センサSW4によって検出される回転数である。
Here, r r [rpm] is the rotation speed of the first motor 22R in the front-rear direction (hereinafter also referred to as the "first rotation speed"), and r l [rpm] is the rotation speed of the second motor 22L in the front-rear direction (hereinafter also referred to as the "second rotation speed"). Of these rotation speeds, the first rotation speed r r is the rotation speed detected by the first rotation sensor SW3, and the second rotation speed r l is the rotation speed detected by the second rotation sensor SW4.
そして、rx[rpm]を前後方向における第1及び第2モータ22R,22L全体の回転数(以下、これを「縦回転数」ともいう)とし、ry[rpm]を左右方向における第1及び第2モータ22R,22L全体の回転数(以下、これを「横回転数」ともいう)とする。本実施形態のように第1及び第2メカナムホイール21R,21Lを構成及び配置した場合、下式(5)及び(6)が成立する。
Let r x [rpm] be the total rotation speed of the first and second motors 22R, 22L in the front-rear direction (hereinafter also referred to as the "vertical rotation speed"), and r y [rpm] be the total rotation speed of the first and second motors 22R, 22L in the left-right direction (hereinafter also referred to as the "horizontal rotation speed"). When the first and second Mecanum wheels 21R, 21L are configured and arranged as in this embodiment, the following equations (5) and (6) hold.
rx=(rr+rl)/2 …(5)
ry=(rr-rl)/2 …(6)
上式(5)及び(6)は、下式(7)及び(8)のように変形可能である。下式(7)及び(8)に示すように、rxとryを設定することで、rrとrlを一意に決定することができる。 r x = (r r + r l )/2...(5)
r y = (r r - r l )/2...(6)
The above equations (5) and (6) can be transformed into the following equations (7) and (8). Set r x and ry as shown in the following equations (7) and (8). In this way, r r and r 1 can be uniquely determined.
ry=(rr-rl)/2 …(6)
上式(5)及び(6)は、下式(7)及び(8)のように変形可能である。下式(7)及び(8)に示すように、rxとryを設定することで、rrとrlを一意に決定することができる。 r x = (r r + r l )/2...(5)
r y = (r r - r l )/2...(6)
The above equations (5) and (6) can be transformed into the following equations (7) and (8). Set r x and ry as shown in the following equations (7) and (8). In this way, r r and r 1 can be uniquely determined.
rr=rx+ry …(7)
rl=rx-ry …(8)
また、上式(7)及び(8)それぞれの両辺に、タイヤ半径R及び円周率等に依存した定数(=πR/30)を乗算することで、速度について同様の関係式を得ることもできる。つまり、vr[m/s]を前後方向における第1メカナムホイール21Rの速度とし、vl[m/s]を前後方向における第2メカナムホイール21Lの速度とする。そして、vx[m/s]を前後方向における第1及び第2メカナムホイール21R,21L全体の速度(以下、これを「縦速度」ともいう)とし、vy[m/s]を左右方向における第1及び第2メカナムホイール21R,21L全体の速度(以下、これを「横速度」ともいう)とする。そして、本実施形態のように第1及び第2メカナムホイール21R,21Lを構成及び配置した場合、下式(9)及び(10)が成立する。 r r = r x + r y …(7)
r l = r x - r y (8)
In addition, a similar relational expression for the speed can be obtained by multiplying both sides of the above equations (7) and (8) by a constant (=πR/30) that depends on the tire radius R and the value of pi. That is, v r [m/s] is the speed of thefirst Mecanum wheel 21R in the front-rear direction, and v l [m/s] is the speed of the second Mecanum wheel 21L in the front-rear direction. x [m/s] is the overall speed of the first and second Mecanum wheels 21R and 21L in the front-rear direction (hereinafter, also referred to as the "vertical speed"), and v y [m/s] is the overall speed of the first and second Mecanum wheels 21R and 21L in the left-right direction. The speed of the first and second Mecanum wheels 21R, 21L as a whole (hereinafter, this will also be referred to as the "lateral speed"). In this arrangement, the following expressions (9) and (10) hold.
rl=rx-ry …(8)
また、上式(7)及び(8)それぞれの両辺に、タイヤ半径R及び円周率等に依存した定数(=πR/30)を乗算することで、速度について同様の関係式を得ることもできる。つまり、vr[m/s]を前後方向における第1メカナムホイール21Rの速度とし、vl[m/s]を前後方向における第2メカナムホイール21Lの速度とする。そして、vx[m/s]を前後方向における第1及び第2メカナムホイール21R,21L全体の速度(以下、これを「縦速度」ともいう)とし、vy[m/s]を左右方向における第1及び第2メカナムホイール21R,21L全体の速度(以下、これを「横速度」ともいう)とする。そして、本実施形態のように第1及び第2メカナムホイール21R,21Lを構成及び配置した場合、下式(9)及び(10)が成立する。 r r = r x + r y …(7)
r l = r x - r y (8)
In addition, a similar relational expression for the speed can be obtained by multiplying both sides of the above equations (7) and (8) by a constant (=πR/30) that depends on the tire radius R and the value of pi. That is, v r [m/s] is the speed of the
なお、この場合の「速度」とは、角運動する物体の並進速度(接線速度)を示す。
In this case, "velocity" refers to the translational speed (tangential velocity) of an object undergoing angular motion.
vx=(vr+vl)/2 …(9)
vy=(vr-vl)/2 …(10)
上式(9)及び(10)は、下式(11)及び(12)のように変形可能である。下式(11)及び(12)に示すように、vxとvyを設定することで、vrとvlを一意に設定することができる。 v x = (v r + v l )/2...(9)
v y = (v r - v l )/2 (10)
The above equations (9) and (10) can be transformed into the following equations (11) and (12). As shown in the following equations (11) and (12), v x and v y are set. In this way, vr and vl can be uniquely set.
vy=(vr-vl)/2 …(10)
上式(9)及び(10)は、下式(11)及び(12)のように変形可能である。下式(11)及び(12)に示すように、vxとvyを設定することで、vrとvlを一意に設定することができる。 v x = (v r + v l )/2...(9)
v y = (v r - v l )/2 (10)
The above equations (9) and (10) can be transformed into the following equations (11) and (12). As shown in the following equations (11) and (12), v x and v y are set. In this way, vr and vl can be uniquely set.
vr=vx+vy …(11)
vl=vx-vy …(12)
また、式同士の関係を利用することで、例えば、縦速度vx及び/又は横速度vyの指令値を決定したときに、それら指令値の実現に要する縦回転数rrと横回転数rlを一意に決定したり、縦回転数rr及び/又は横回転数rlに対応した第1回転数rrと第2回転数rlを決定したりすることができる。 v r = v x + v y (11)
v l = v x - v y (12)
In addition, by utilizing the relationship between the equations, for example, when the command values of the vertical speed v x and/or the horizontal speed v y are determined, the vertical rotation speed r r and the horizontal rotation speed v y required to realize these command values can be calculated. It is possible to uniquely determine the number ofrotations r 1 r and the second number of rotations r 1 r corresponding to the number of vertical rotations r 1 r and/or the number of horizontal rotations r 1 r.
vl=vx-vy …(12)
また、式同士の関係を利用することで、例えば、縦速度vx及び/又は横速度vyの指令値を決定したときに、それら指令値の実現に要する縦回転数rrと横回転数rlを一意に決定したり、縦回転数rr及び/又は横回転数rlに対応した第1回転数rrと第2回転数rlを決定したりすることができる。 v r = v x + v y (11)
v l = v x - v y (12)
In addition, by utilizing the relationship between the equations, for example, when the command values of the vertical speed v x and/or the horizontal speed v y are determined, the vertical rotation speed r r and the horizontal rotation speed v y required to realize these command values can be calculated. It is possible to uniquely determine the number of
続いて、コントローラ4は、第1及び第2回転センサSW3,SW4の検出信号に基づいて、第1及び第2メカナムホイール21R,21Lの回転数が所定(第1閾値)以上になったことを条件に、第1及び第2メカナムホイール21R,21Lの駆動を許容する。
Then, based on the detection signals of the first and second rotation sensors SW3, SW4, the controller 4 allows the first and second Mecanum wheels 21R, 21L to be driven on the condition that the rotation speed of the first and second Mecanum wheels 21R, 21L is equal to or greater than a predetermined value (first threshold value).
具体的に、ステップS3から続くステップS4において、コントローラ4は、以下の関係式(13)及び(14)のいずれか一方が満足されているか否かを判定する。この判定を通じて、実際にベッド10が搬送されているか否か(実際にベッド10が移動しているか否か)を確認することができる。
Specifically, in step S4, which follows step S3, the controller 4 determines whether or not either one of the following relational expressions (13) and (14) is satisfied. Through this determination, it is possible to confirm whether or not the bed 10 is actually being transported (whether or not the bed 10 is actually moving).
rx≧T1 …(13)
ry≧T1 …(14)
上式(13)及び(14)において、T1[1/s]は第1閾値である。第1閾値の大きさは、コントローラ4のメモリ等に事前に記憶されており、上式(13)と(14)とで等しくなるように設定されている。なお、上記説明に示すように、図9のステップS4における「rx/ry」とは、「ryによるrxの除算値」ではなく、「rxとryのいずれか一方」を意味している。 r x ≧T1 (13)
r y ≧T1 (14)
In the above formulas (13) and (14), T1 [1/s] is the first threshold value. The magnitude of the first threshold value is stored in advance in the memory of thecontroller 4, and is expressed by the above formula (13). As described above, "r x /r y " in step S4 of FIG. 9 is the "value of r x divided by r y ". rather, it means "either r x or r y ."
ry≧T1 …(14)
上式(13)及び(14)において、T1[1/s]は第1閾値である。第1閾値の大きさは、コントローラ4のメモリ等に事前に記憶されており、上式(13)と(14)とで等しくなるように設定されている。なお、上記説明に示すように、図9のステップS4における「rx/ry」とは、「ryによるrxの除算値」ではなく、「rxとryのいずれか一方」を意味している。 r x ≧T1 (13)
r y ≧T1 (14)
In the above formulas (13) and (14), T1 [1/s] is the first threshold value. The magnitude of the first threshold value is stored in advance in the memory of the
ここで、上式(13)及び(14)が双方とも満足されていない場合、コントローラ4は、ベッド10が搬送されていないと判定し、第1及び第2モータ22R,22Lそれぞれの駆動を許容しない(ステップS4:NO)。この場合、制御プロセスはステップS5に進む。このステップS5において、コントローラ4は、第1及び第2モータ22R,22Lそれぞれの指令回転数をゼロにする。
Here, if neither of the above formulas (13) nor (14) is satisfied, the controller 4 determines that the bed 10 is not being transported, and does not allow the first and second motors 22R and 22L to be driven (step S4: NO). In this case, the control process proceeds to step S5. In this step S5, the controller 4 sets the command rotation speeds of the first and second motors 22R and 22L to zero.
ステップS5に進んだ場合、それ以降のステップS7~S9において、第1及び第2モータ22R,22Lの指令回転数(より詳細には、後述のアシスト速度)はゼロのまま維持される(ステップS7~S9の詳細は後述)。この場合、コントローラ4は、第1及び第2モータ22R,22Lを駆動することなく、図9に示すフローを終了する。
If the process proceeds to step S5, the command rotation speeds (more specifically, the assist speeds described below) of the first and second motors 22R, 22L are maintained at zero in the subsequent steps S7 to S9 (steps S7 to S9 are described in detail below). In this case, the controller 4 ends the flow shown in FIG. 9 without driving the first and second motors 22R, 22L.
一方、上式(13)及び(14)のうちの少なくとも一方が満足されている場合、コントローラ4は、外力によって実際にベッド10が搬送されていると判定し、第1及び第2モータ22R,22Lそれぞれの駆動を許容する(ステップS4:YES)。この場合、制御プロセスはステップS6に進む。このステップS6において、コントローラ4は、外力による手押移動をアシストすべく、第1及び第2モータ22R,22Lそれぞれの指令回転数(アシスト回転数)を設定する。このアシスト回転数は、前述の縦回転数rx及び横回転数ryの指令値に相当する。
On the other hand, if at least one of the above formulas (13) and (14) is satisfied, the controller 4 determines that the bed 10 is actually being transported by an external force, and allows the first and second motors 22R and 22L to be driven (step S4: YES). In this case, the control process proceeds to step S6. In this step S6, the controller 4 sets the command rotation speed (assist rotation speed) of each of the first and second motors 22R and 22L to assist the manual movement caused by the external force. This assist rotation speed corresponds to the command value of the vertical rotation speed rx and the horizontal rotation speed ry described above.
図10のステップS11~S16は、それぞれ、図9のステップS6で実行される処理を例示している。つまり、制御プロセスがステップS6に進むと、コントローラ4は、図10のステップS11を開始する。
Steps S11 to S16 in FIG. 10 each illustrate the processing executed in step S6 in FIG. 9. In other words, when the control process proceeds to step S6, the controller 4 starts step S11 in FIG. 10.
このステップS11において、コントローラ4は、図9のステップS3で推定した縦加速度ax及び横加速度ayに基づいて、ベッド10の移動方向を判定する。詳しくは、本実施形態に係るコントローラ4は、縦加速度ax及び横加速度ayに基づいて、ベッド10の移動方向が前後方向であるか(ベッド10が前進又は後退しているか)、或いは、左右方向であるかを判定する。
In step S11, the controller 4 determines the moving direction of the bed 10 based on the vertical acceleration ax and the lateral acceleration ay estimated in step S3 of Fig. 9. In detail, the controller 4 according to the present embodiment determines whether the moving direction of the bed 10 is the front-rear direction (whether the bed 10 is moving forward or backward) or the left-right direction based on the vertical acceleration ax and the lateral acceleration ay .
さらに詳しくは、ステップS11において、コントローラ4は、以下の関係式(15)が満足されているか否かを判定する。
More specifically, in step S11, the controller 4 determines whether the following relational expression (15) is satisfied.
|ay|<T2 …(15)
上式(15)において、T2[m/s2]は第2閾値である。第2閾値の大きさは、コントローラ4のメモリ等に事前に記憶されており、必要に応じて適宜読み出されるようになっている。 |a y |<T2...(15)
In the above formula (15), T2 [m/s 2 ] is the second threshold value. The magnitude of the second threshold value is stored in advance in the memory of thecontroller 4 and is read out appropriately as necessary. It has become.
上式(15)において、T2[m/s2]は第2閾値である。第2閾値の大きさは、コントローラ4のメモリ等に事前に記憶されており、必要に応じて適宜読み出されるようになっている。 |a y |<T2...(15)
In the above formula (15), T2 [m/s 2 ] is the second threshold value. The magnitude of the second threshold value is stored in advance in the memory of the
ここで、上式(15)が満足されていない場合、コントローラ4は、ベッド10の移動方向が左右方向であると判定し、制御プロセスをステップS12に進める(ステップS11:NO)。ステップS12に進んだ場合の処理の詳細は、後述する。
Here, if the above formula (15) is not satisfied, the controller 4 determines that the movement direction of the bed 10 is the left-right direction, and advances the control process to step S12 (step S11: NO). Details of the process when proceeding to step S12 will be described later.
一方、上式(15)が満足されている場合、コントローラ4は、ベッド10の移動方向が前後方向であると判定し、制御プロセスをステップS13に進める(ステップS11:YES)。
On the other hand, if the above formula (15) is satisfied, the controller 4 determines that the movement direction of the bed 10 is the forward/rearward direction, and advances the control process to step S13 (step S11: YES).
続くステップS13及びステップS14において、コントローラ4は、傾斜センサとしての6軸センサSW5の検出信号に基づいて、搬送面Fが坂道であるか否かを判定する。
In the following steps S13 and S14, the controller 4 determines whether the conveying surface F is a slope based on the detection signal of the 6-axis sensor SW5, which serves as an inclination sensor.
具体的に、ステップS13において、コントローラ4は、6軸センサSW5の検出信号に基づいて、搬送面Fの傾斜角(路面勾配)θsを演算する。この演算は、例えば図8に示したy軸まわりの角加速度に基づいて行うことができる。
Specifically, in step S13, the controller 4 calculates the inclination angle (road surface gradient) θs of the conveying surface F based on the detection signal of the six-axis sensor SW5. This calculation can be performed based on, for example, the angular acceleration around the y-axis shown in FIG.
続いて、ステップS14において、コントローラ4は、以下の関係式(16)が満足されているか否かを判定する。
Next, in step S14, the controller 4 determines whether the following relational expression (16) is satisfied.
|θs|≧T3 …(16)
式(16)において、T3は第3閾値である。第3閾値の大きさは、コントローラ4のメモリ等に事前に記憶されており、必要に応じて適宜読み出されるようになっている。 |θ s |≧T3…(16)
In formula (16), T3 is a third threshold value. The magnitude of the third threshold value is stored in advance in the memory of thecontroller 4 and is read out appropriately as necessary.
式(16)において、T3は第3閾値である。第3閾値の大きさは、コントローラ4のメモリ等に事前に記憶されており、必要に応じて適宜読み出されるようになっている。 |θ s |≧T3…(16)
In formula (16), T3 is a third threshold value. The magnitude of the third threshold value is stored in advance in the memory of the
ここで、上式(16)が満足されていない場合、コントローラ4は、搬送面Fが平坦な非坂道であると判定し、制御プロセスをステップS15に進める。
If the above formula (16) is not satisfied, the controller 4 determines that the conveying surface F is a flat, non-sloping road, and advances the control process to step S15.
ステップS15に進んだ場合とは、ベッド10が前進又は後退中であってかつ非登坂又は非降坂中であると判定された場合に相当する。この場合、コントローラ4は、ベッド10の手押移動を前後方向にアシストすべく、これ以降の各ステップを行うことで、第1及び第2電流センサSW1,SW2によって得られた縦加速度ax及び横加速度ayに基づいて、第1制御としてのコンプライアンス制御と、第2制御としての速度増加制御とを双方とも実行する。
The case where the process proceeds to step S15 corresponds to the case where it is determined that the bed 10 is moving forward or backward and not ascending or descending a slope. In this case, the controller 4 performs the following steps to assist the manual movement of the bed 10 in the forward and backward directions, thereby executing both the compliance control as the first control and the speed increase control as the second control based on the vertical acceleration ax and the lateral acceleration ay obtained by the first and second current sensors SW1, SW2.
一方、上式(16)が満足されている場合、コントローラ4は、搬送面Fが坂道であると判定し、制御プロセスをステップS16に進める。
On the other hand, if the above formula (16) is satisfied, the controller 4 determines that the conveying surface F is a slope, and advances the control process to step S16.
ステップS16に進んだ場合とは、ベッド10が前進又は後退中であってかつ登坂又は降坂中であると判定された場合に相当する。この場合、コントローラ4は、ベッド10の手押移動を前後方向にアシストするための制御であって、特に、坂道の登坂又は降坂に最適化された制御を実行する。
The case where the process proceeds to step S16 corresponds to the case where it is determined that the bed 10 is moving forward or backward and ascending or descending a slope. In this case, the controller 4 executes control to assist the manual movement of the bed 10 in the forward and backward directions, and in particular executes control optimized for ascending or descending a slope.
以下、ステップS12及びステップS15で行われる処理と、ステップS16で行われる処理とについて順番に説明する。これらのステップに進んだ場合、コントローラ4は、前述のステップS11で判定された移動方向に基づいて、その移動方向に沿ったベッド10の移動をアシストするように、第1及び第2モータ22R,22Lを介して第1及び第2メカナムホイール21R,21Lを駆動することになる。その途中、本実施形態に係るコントローラ4は、第1制御としてのコンプライアンス制御を実行したり、第2制御としての速度増加制御を実行したりする。
The processes performed in steps S12 and S15, and step S16 will be described below in order. When proceeding to these steps, the controller 4 will drive the first and second Mecanum wheels 21R, 21L via the first and second motors 22R, 22L so as to assist the movement of the bed 10 along the movement direction determined in step S11 above. During this process, the controller 4 according to this embodiment executes compliance control as the first control, and executes speed increase control as the second control.
コンプライアンス制御とは、コントローラ4が、前記ステップS3で推定した加速度(つまり、縦加速度ax及び横加速度ayの少なくとも一方)に基づいて実行するものである。このコンプライアンス制御において、コントローラ4は、対象物としてのベッド10の移動に追従させるように、前後方向又は左右方向における速度指令、つまり、縦速度vx及び横速度vyの指令値を設定する。
The compliance control is executed by the controller 4 based on the acceleration estimated in step S3 (i.e., at least one of the vertical acceleration ax and the lateral acceleration ay ). In this compliance control, the controller 4 sets a velocity command in the front-rear or left-right direction, i.e., a command value of the vertical velocity vx and the lateral velocity vy, so as to follow the movement of the bed 10 as an object.
式(9)-(12)に関して説明したように、縦速度vx及び横速度vyの指令値を設定することで、前記第1回転数rr及び第2回転数rlの指令値が一意に定まる。
As described with respect to equations (9) to (12), by setting the command values of the longitudinal velocity vx and the lateral velocity vy , the command values of the first rotation speed rr and the second rotation speed rl are uniquely determined.
以下、縦速度vx及び横速度vyの指令値をそれぞれ縦速度指令Vx及び横速度指令Vyと呼称する。また、各モータ22R,22Lにおける第1回転数rr及び第2回転数rlの指令値を、それぞれ第1指令回転数Rr及び第2指令回転数Rlと呼称する。
Hereinafter, the command values of the longitudinal velocity vx and the lateral velocity vy will be referred to as the longitudinal velocity command Vx and the lateral velocity command Vy, respectively. Also, the command values of the first rotational speed rr and the second rotational speed rl of each motor 22R, 22L will be referred to as the first command rotational speed Rr and the second command rotational speed Rl, respectively.
本実施形態のようにコンプライアンス制御によって縦速度指令Vx及び横速度指令Vyを設定することは、それぞれ、ベッド10の移動に追従させるように第1指令回転数Rr及び第2指令回転数Rlを設定することに等しい。
Setting the vertical velocity command Vx and the horizontal velocity command Vy by compliance control as in this embodiment is equivalent to setting the first command rotational speed Rr and the second command rotational speed Rl so as to follow the movement of the bed 10, respectively.
一方、速度増加制御とは、コントローラ4が、前記ステップS3で推定した加速度と、コンプライアンス制御で設定された指令回転数と、に基づいて実行するものである。この速度増加制御において、コントローラ4は、コンプライアンス制御で参照された加速度の絶対値が所定値(後述の第4閾値T4)以上の場合に、そのコンプライアンス制御で設定した縦速度指令Vx及び横速度指令Vy(特に、各速度指令Vx,Vyの絶対値)を増加させる。
On the other hand, the speed increase control is executed by the controller 4 based on the acceleration estimated in step S3 and the command rotation speed set in the compliance control. In this speed increase control, when the absolute value of the acceleration referred to in the compliance control is equal to or greater than a predetermined value (a fourth threshold T4 described later), the controller 4 increases the longitudinal speed command Vx and the lateral speed command Vy (particularly, the absolute values of the speed commands Vx and Vy ) set in the compliance control.
本実施形態のように速度増加制御によって縦速度指令Vx及び横速度指令Vyを増加させることは、それぞれ、第1指令回転数Rr及び第2指令回転数Rl(特に、各指令回転数Rr,Rlの絶対値)を増加させることに等しい。
Increasing the longitudinal speed command Vx and the lateral speed command Vy by speed increase control as in this embodiment is equivalent to increasing the first command rotational speed Rr and the second command rotational speed Rl (particularly, the absolute values of each command rotational speed Rr , Rl ), respectively.
まず、制御プロセスがステップS12又はステップS15へ進んだ場合について説明する。ここで、図15のステップS31~S37は、それぞれ、図10のステップS12又はS15で実行される処理を例示している。つまり、制御プロセスがステップS12又はS15に進むと、コントローラ4は、図15のステップS31から順番に各ステップを実行する。
First, a case where the control process proceeds to step S12 or step S15 will be described. Here, steps S31 to S37 in FIG. 15 exemplify the processing executed in step S12 or S15 in FIG. 10, respectively. In other words, when the control process proceeds to step S12 or S15, the controller 4 executes each step in order starting from step S31 in FIG. 15.
例えば、ステップS12から図15のフローに進んだ場合、つまり、「移動方向=左右方向」と判定された場合、コントローラ4は、横加速度ayに基づいてコンプライアンス制御を実行するとともに、そのコンプライアンス制御を通じて得られた横速度指令Vyに基づいた速度増加制御を実行する。
For example, when the flow proceeds from step S12 to the flow of FIG. 15, that is, when it is determined that the "movement direction=left/right direction", the controller 4 executes compliance control based on the lateral acceleration ay , and also executes speed increase control based on the lateral velocity command Vy obtained through the compliance control.
一方、ステップS15から図15のフローに進んだ場合、つまり、「移動方向=前後方向」と判定された場合、コントローラ4は、縦加速度axに基づいてコンプライアンス制御を実行するとともに、そのコンプライアンス制御を通じて得られた縦速度指令Vxに基づいた速度増加制御を実行する。すなわち、図15のステップS31における「ax/ay」とは、「ayによるaxの除算値」ではなく、「axとayのいずれか一方」を意味している。
On the other hand, when the flow proceeds from step S15 to the flow of Fig. 15, that is, when it is determined that the "moving direction = longitudinal direction", the controller 4 executes compliance control based on the longitudinal acceleration ax , and executes speed increase control based on the longitudinal speed command Vx obtained through the compliance control. That is, " ax / ay " in step S31 of Fig. 15 does not mean " ax divided by ay ", but means "either ax or ay ".
以下、ステップS15から図15のフローに進んだ場合について詳細に説明する。図15のフローにおいて、ステップS31がコンプライアンス制御に関係し、ステップS32~ステップS34が速度増加制御に関係している。
Below, we will explain in detail what happens when you proceed from step S15 to the flow in Figure 15. In the flow in Figure 15, step S31 relates to compliance control, and steps S32 to S34 relate to speed increase control.
まず、ステップS31において、コントローラ4は、図11に例示した制御ブロックに縦加速度axを入力して縦速度vxの指令値を演算する。入力となる縦加速度axは、第1及び第2電流センサSW1,SW2の検出信号に基づいて推定されたものであり、縦加速度axの推定値(実測値)に相当する。
First, in step S31, the controller 4 inputs the vertical acceleration ax to the control block illustrated in Fig. 11 to calculate a command value for the vertical velocity vx . The input vertical acceleration ax is estimated based on the detection signals of the first and second current sensors SW1 and SW2, and corresponds to the estimated value (actual measurement value) of the vertical acceleration ax .
この制御ブロックにおいて、sはラプラス演算子であり、Mはベッド10及び搬送補助装置1の慣性を示している。また、Dは、搬送者100によるベッド10の支持位置(例えばヘッドボード11h)と、第1及び第2メカナムホイール21R,21Lとの間の減衰係数であり、Kは、前記支持位置と、第1及び第2メカナムホイール21R,21Lとの間のバネ乗数である。M、D及びKの値は、事前に設定されており、コントローラ4に記憶されている。
In this control block, s is the Laplace operator, and M represents the inertia of the bed 10 and the transport assistance device 1. Furthermore, D is the damping coefficient between the support position of the bed 10 by the transporter 100 (e.g., the headboard 11h) and the first and second Mecanum wheels 21R, 21L, and K is the spring multiplier between the support position and the first and second Mecanum wheels 21R, 21L. The values of M, D, and K are set in advance and stored in the controller 4.
ところで、仮に、搬送補助装置1、ベッド10及び搬送者100を剛体とみなした場合、外力の付与によって第1及び第2メカナムホイール21R,21Lが回転したときに生じる縦速度vxは、前後方向におけるベッド10及び搬送者100の移動速度と同期して変化するとともに、その大きさも互いに一致することになる。この場合、縦加速度axの実測値を時間積分することで、ベッド10の手押移動に追従するような縦速度指令Vxが得られることになる。
If the transport auxiliary device 1, the bed 10, and the transporter 100 are considered as rigid bodies, the vertical speed vx generated when the first and second Mecanum wheels 21R, 21L rotate due to the application of an external force changes in synchronization with the forward and backward moving speeds of the bed 10 and the transporter 100, and the magnitudes of the speeds also match each other. In this case, by integrating the measured value of the vertical acceleration ax over time, a vertical speed command Vx that follows the manual pushing movement of the bed 10 can be obtained.
しかし、実際のところ、ベッド10の支持位置と第1及び第2メカナムホイール21R,21Lとの間には、ベッド10のフレーム12、搬送補助装置1の取付具7等が介在している。フレーム12の撓み等に起因して、実際の縦速度vxは、ベッド10及び搬送者100の移動速度から遅れて変化したり、その移動速度との間に値のずれが生じたりすることになる。
However, in reality, the frame 12 of the bed 10, the mounting fixture 7 of the transport auxiliary device 1, etc. are interposed between the support position of the bed 10 and the first and second Mecanum wheels 21R, 21L. Due to bending of the frame 12, etc., the actual vertical speed vx changes with a delay from the moving speed of the bed 10 and the transporter 100, or a deviation occurs in value between the moving speed and the actual vertical speed.
こうした遅れ、ずれ等の影響をモデル化したものが、図11に例示した制御ブロックである。この制御ブロックは、力に対応した物理量(縦加速度ax,横加速度ay)を入力とし、速度指令(縦速度指令Vx,横速度指令Vy)を出力とするコンプライアンス制御を意味している。
The influence of such delays and deviations is modeled in the control block shown in Fig. 11. This control block represents compliance control in which physical quantities corresponding to forces (longitudinal acceleration ax , lateral acceleration ay ) are input and velocity commands (longitudinal velocity command Vx , lateral velocity command Vy ) are output.
図11においては、まず、縦加速度axの実測値が、減算器P2を通過した後に第1ブロックB1に入力される。この第1ブロックにおいて、縦加速度axの実測値が時間積分される。第1ブロックB1の出力は、縦加速度axの大きさに対応した、縦速度指令Vxの修正分(速度指令値の修正量)ΔVを示している。コントローラ4は、現在の縦速度指令Vxにその修正分ΔVを加算したり、その修正分ΔVを積算したりすることで、縦速度指令Vxを設定する。
In Fig. 11, first, the actual measured value of the vertical acceleration ax passes through a subtractor P2 and is then input to a first block B1. In this first block, the actual measured value of the vertical acceleration ax is integrated over time. The output of the first block B1 indicates a correction amount ΔV of the vertical speed command Vx (a correction amount of the speed command value) corresponding to the magnitude of the vertical acceleration ax . The controller 4 sets the vertical speed command Vx by adding the correction amount ΔV to the current vertical speed command Vx or integrating the correction amount ΔV.
また、ブロックB1からの出力は、第2ブロックB2においてD/Mが乗算された後、加算器P1を介して減算器P2に入力される。減算器P2に入力された乗算値は、縦加速度axの実測値から減算される。このフィードバックは、縦速度指令Vxに比例した減衰(特に、ベッド10の支持位置と第1及び第2メカナムホイール21R,21Lとの間に生じる減衰)を取り入れるためのものである。
The output from the block B1 is multiplied by D/M in the second block B2, and then input to the subtractor P2 via the adder P1. The multiplied value input to the subtractor P2 is subtracted from the actual measured value of the vertical acceleration ax . This feedback is for incorporating damping proportional to the vertical speed command Vx (particularly, damping occurring between the support position of the bed 10 and the first and second Mecanum wheels 21R, 21L).
また、ブロックB1からの出力は、第3ブロックB3にも入力される。この第3ブロックB3において、前記修正分ΔVがさらに時間積分される。第3ブロックB3の出力は、第4ブロックB4においてK/Mが乗算された後、前記加算器P1を介して減算器P2に入力される。減算器P2に入力された乗算値は、第2ブロックB2を介した乗算値と同様に、縦加速度axの実測値から減算される。このフィードバックは、変位量に比例した復元力(特に、ベッド10の支持位置と第1及び第2メカナムホイール21R,21Lとの間の撓みに起因した復元力)を取り入れるためのものである。
The output from block B1 is also input to the third block B3. In this third block B3, the correction amount ΔV is further integrated over time. The output from the third block B3 is multiplied by K/M in the fourth block B4, and then input to the subtractor P2 via the adder P1. The multiplied value input to the subtractor P2 is subtracted from the actual measured value of the vertical acceleration ax , similar to the multiplied value via the second block B2. This feedback is intended to incorporate a restoring force proportional to the amount of displacement (particularly, a restoring force caused by the deflection between the support position of the bed 10 and the first and second Mecanum wheels 21R, 21L).
縦加速度axに2つのフィードバックを反映させることで、撓み、減衰等が考慮されたベッド10の加速度(特に、搬送者100の支持位置での加速度)が推定されることになる。その加速度を第1ブロックB1で時間積分したものが、ベッド10の移動に追従するような速度となる。
By reflecting the two feedbacks in the vertical acceleration ax , the acceleration of the bed 10 (particularly the acceleration at the support position of the transported person 100) is estimated, taking into account bending, damping, etc. The acceleration is integrated over time in the first block B1 to obtain a speed that follows the movement of the bed 10.
また、加算器P1から減算器P2に至る途中で、フィードバックに伴う時間のずれを埋め合わせるような信号処理(例えば、遅延演算子を用いた処理)を行ってもよい。
Furthermore, signal processing (e.g., processing using a delay operator) may be performed on the way from adder P1 to subtractor P2 to compensate for the time lag associated with feedback.
例えば、図12の上図に示すように、搬送補助装置1とベッド10及び搬送者100とが等速で移動している場合、第1及び第2電流センサSW1,SW2で推定される加速度はゼロとなる。この場合、図10の制御ブロックに入力される縦加速度axはゼロとなり、その制御ブロックから出力される修正分ΔVもゼロとなる。この場合、搬送補助装置1は加減速しない。
For example, as shown in the upper diagram of Fig. 12, when the transport auxiliary device 1, the bed 10, and the transporter 100 are moving at a constant speed, the acceleration estimated by the first and second current sensors SW1 and SW2 is zero. In this case, the vertical acceleration ax input to the control block in Fig. 10 is zero, and the correction amount ΔV output from the control block is also zero. In this case, the transport auxiliary device 1 does not accelerate or decelerate.
一方、図12の中央図に示すように、搬送補助装置1よりも搬送者100が速く移動している場合、第1及び第2電流センサSW1,SW2で推定される加速度は正となる。この場合、ベッド10には、これを押し込むような外力が付与されていることになる(矢印F1を参照)。この場合、図10の制御ブロックに入力される縦加速度axは正となり、その制御ブロックから出力される修正分ΔVも正となる。その際、前記第4ブロックB4に係る復元力は、修正分ΔVを増加させる方向に作用する(矢印F3を参照)。これにより、搬送補助装置1は、ベッド10及び搬送者100と等速になるように、外力の付与から遅れて加速することになる。
On the other hand, as shown in the center diagram of Fig. 12, when the person 100 is moving faster than the transport auxiliary device 1, the acceleration estimated by the first and second current sensors SW1 and SW2 is positive. In this case, an external force is applied to the bed 10 to push it (see arrow F1). In this case, the vertical acceleration ax input to the control block in Fig. 10 is positive, and the correction amount ΔV output from the control block is also positive. At that time, the restoring force related to the fourth block B4 acts in a direction to increase the correction amount ΔV (see arrow F3). As a result, the transport auxiliary device 1 accelerates with a delay from the application of the external force so as to be equal in speed to the bed 10 and the person 100.
一方、図12の下図に示すように、搬送補助装置1よりも搬送者100が遅れて移動している場合、第1及び第2電流センサSW1,SW2で推定される加速度は負となる。この場合、ベッド10には、これを引き込むような外力が付与されていることになる(矢印F2を参照)。この場合、図10の制御ブロックに入力される縦加速度axは負となり、その制御ブロックから出力される修正分ΔVも負となる。その際、前記第4ブロックB4に係る復元力は、修正分ΔVを減少させる方向に作用する(矢印F4を参照)。これにより、搬送補助装置1は、ベッド10及び搬送者100と等速になるように、外力の付与から遅れて減速することになる。
On the other hand, as shown in the lower diagram of Fig. 12, when the transporter 100 moves behind the transport assistance device 1, the acceleration estimated by the first and second current sensors SW1 and SW2 becomes negative. In this case, an external force that pulls the bed 10 is applied (see arrow F2). In this case, the vertical acceleration ax input to the control block in Fig. 10 becomes negative, and the correction amount ΔV output from the control block also becomes negative. At that time, the restoring force related to the fourth block B4 acts in a direction that reduces the correction amount ΔV (see arrow F4). As a result, the transport assistance device 1 decelerates with a delay from the application of the external force so as to be equal in speed to the bed 10 and the transporter 100.
続くステップS32~ステップS34において、コントローラ4は、前述の速度増加制御を実行する。コントローラ4は、この速度増加制御を実行する場合、第1及び第2回転センサSW3,SW4によって検出された回転数が大きくなる程、速度指令値を大きく増加させる(図13を参照)。なお、図13の横軸は、横速度による縦速度の除算値を意味するのではない。図13に示すグラフは、前後方向(縦方向)の速度指令値の設定に際しては、縦速度vxが大きくなるほど速度指令値を大きく設定し、左右方向(横方向)の速度指令値の設定に際しては、横速度vyが大きくなるほど速度指令値を大きく設定することを意味している。
In the following steps S32 to S34, the controller 4 executes the above-mentioned speed increase control. When executing this speed increase control, the controller 4 increases the speed command value by a larger amount as the rotation speed detected by the first and second rotation sensors SW3 and SW4 increases (see FIG. 13). Note that the horizontal axis in FIG. 13 does not mean the value obtained by dividing the longitudinal speed by the lateral speed. The graph shown in FIG. 13 means that when setting the speed command value in the front-rear direction (longitudinal direction), the speed command value is set to be larger as the longitudinal speed vx increases, and when setting the speed command value in the left-right direction (lateral direction), the speed command value is set to be larger as the lateral speed vy increases.
具体的に、ステップS32において、コントローラ4は、縦速度vxが大きくなるほど大きくなるように、速度増加量voffを設定する。縦速度vxの代わりに、縦回転数rxが大きくなる程大きくなるように、速度増加量voffを設定してもよい。
Specifically, in step S32, the controller 4 sets the speed increase amount voff so that it increases as the longitudinal speed vx increases. Instead of the longitudinal speed vx , the speed increase amount voff may be set so that it increases as the longitudinal rotation speed rx increases.
また、ステップS12から図15のフローに進んだ場合は、縦速度vxの代わりに横速度vyが判定対象となる。前述のように、コントローラ4は、横速度vyが大きくなるほど大きくなるように、速度増加量voffを設定する。つまり、コントローラ4は、図10のステップS11で判定された移動方向に基づいて、速度増加量voffの設定を行うようになっている。
15 from step S12, the lateral velocity vy is determined instead of the longitudinal velocity vx . As described above, the controller 4 sets the velocity increase amount voff so that the velocity increase amount voff increases as the lateral velocity vy increases. In other words, the controller 4 sets the velocity increase amount voff based on the moving direction determined in step S11 of FIG.
続くステップS33において、コントローラ4は、以下の関係式(17)が満足されているか否かを判定する。ステップS33は、縦加速度axの絶対値が所定値以上であるか否かを判定するものである。この判定を通じて、移動方向に沿ってベッド10が押されているか否かを検出することができる(押し力を検出)。
In the next step S33, the controller 4 determines whether or not the following relational expression (17) is satisfied. Step S33 is for determining whether or not the absolute value of the vertical acceleration ax is equal to or greater than a predetermined value. Through this determination, it is possible to detect whether or not the bed 10 is being pushed in the moving direction (detecting the pushing force).
|ax|≧T4 …(17)
上式(17)において、T4[m/s2]は第4閾値(所定値)である。所定値としての第4閾値T4の大きさは、コントローラ4のメモリ等に事前に記憶されており、必要に応じて適宜読み出されるようになっている。 |a x |≧T4…(17)
In the above formula (17), T4 [m/s 2 ] is a fourth threshold value (predetermined value). The magnitude of the fourth threshold value T4 as a predetermined value is stored in advance in the memory of thecontroller 4, etc. , which are read out as necessary.
上式(17)において、T4[m/s2]は第4閾値(所定値)である。所定値としての第4閾値T4の大きさは、コントローラ4のメモリ等に事前に記憶されており、必要に応じて適宜読み出されるようになっている。 |a x |≧T4…(17)
In the above formula (17), T4 [m/s 2 ] is a fourth threshold value (predetermined value). The magnitude of the fourth threshold value T4 as a predetermined value is stored in advance in the memory of the
なお、ステップS12から図15のフローに進んだ場合は、縦加速度axの代わりに横加速度ayが比較対象となる。つまり、コントローラ4は、図10のステップS11で判定された移動方向における加速度について、第4閾値T4以上であるか否かの判定を行うようになっている。
15 from step S12, the lateral acceleration ay is compared instead of the vertical acceleration ax . In other words, the controller 4 determines whether the acceleration in the moving direction determined in step S11 in FIG 10 is equal to or greater than a fourth threshold value T4.
ここで、上式(17)が満足されている場合(つまり、縦加速度axの絶対値が所定値以上の場合)、コントローラ4は、ベッド10が押されていると判定し、制御プロセスをステップS34に進める(ステップS33:YES)。
Here, if the above formula (17) is satisfied (i.e., if the absolute value of the vertical acceleration ax is equal to or greater than a predetermined value), the controller 4 determines that the bed 10 is being pushed, and proceeds to step S34 (step S33: YES).
ステップS34において、コントローラ4は、ステップS31で算出した速度指令(縦速度指令Vx)に速度増加量voffを加算する。コントローラ4は、そうして得られた加算値を、最終的な速度指令(アシスト速度)とする(ステップS36)。前後方向におけるアシスト速度は、前述の縦速度指令Vxである。左右方向におけるアシスト速度は、前述の横速度指令Vyである。
In step S34, the controller 4 adds the speed increase amount voff to the speed command (longitudinal speed command Vx ) calculated in step S31. The controller 4 sets the added value thus obtained as the final speed command (assist speed) (step S36). The assist speed in the forward/rearward direction is the aforementioned longitudinal speed command Vx . The assist speed in the left/right direction is the aforementioned lateral speed command Vy .
なお、速度増加量voffを算出して速度指令に加算する代わりに、第1及び第2回転センサSW3,SW4によって検出された回転数が大きくなるほど大きくなるような増加倍率(>1)を算出し、その増加倍率を速度指令に乗算することで速度増加制御を行ってもよい。
Note that, instead of calculating the speed increase amount voff and adding it to the speed command, it is also possible to calculate an increase factor (>1) that increases as the rotation speeds detected by the first and second rotation sensors SW3, SW4 increase, and multiply the speed command by the increase factor to perform speed increase control.
一方、上式(17)が満足されていない場合(つまり、縦加速度axの絶対値が所定値を下回った場合)、コントローラ4は、ベッド10が押されていないと判定し、制御プロセスをステップS35に進める(ステップS33:NO)。
On the other hand, if the above formula (17) is not satisfied (i.e., if the absolute value of the vertical acceleration ax is below a predetermined value), the controller 4 determines that the bed 10 is not being pushed, and proceeds to step S35 (step S33: NO).
ステップS35において、コントローラ4は、第2制御後の速度指令を低下させる第3制御を実行する。
In step S35, the controller 4 executes a third control to reduce the speed command after the second control.
具体的に、ステップS35において、コントローラ4は、速度増加量voffを、その時点の値からΔv2だけ減算した上で、制御プロセスをステップS34に進める。なお、速度増加量voffの減算量Δv2は、一定にしてもよい。減算量Δv2を一定に設定した場合、ベッド10が押されていない状態が繰り返されると、速度増加量voffは徐々に減少していくことになる。また、この減算に際し、速度増加量voffはゼロ未満にならないように構成されている。これにより、ベッド10の移動に追従させる程度のアシスト速度は確保される。
Specifically, in step S35, the controller 4 subtracts Δv2 from the speed increase voff at that time, and then advances the control process to step S34. The subtraction amount Δv2 of the speed increase voff may be constant. If the subtraction amount Δv2 is set constant, the speed increase voff will gradually decrease if the state in which the bed 10 is not being pushed is repeated. In addition, the speed increase voff is configured not to become less than zero during this subtraction. This ensures an assist speed that can follow the movement of the bed 10.
例えば、n回目のループでステップS33からステップS34に進んだ場合、縦速度指令Vxは、縦速度vxに応じた速度増加量voffの分だけ増加することになる。その後、n+1回目のループでステップS33からステップS35に進んだ場合、速度増加量voffは、n回目のループ時の値から減算されることになる。その後、ステップS33からステップS35に進むような状況が繰り返されると、縦速度指令Vxは、ステップS31で算出された値に向かって低下することになる。
For example, when the process proceeds from step S33 to step S34 in the n-th loop, the longitudinal speed command Vx is increased by the speed increase amount voff corresponding to the longitudinal speed vx . When the process proceeds from step S33 to step S35 in the (n+1)-th loop, the speed increase amount voff is subtracted from the value in the n-th loop. When the process proceeds from step S33 to step S35 repeatedly, the longitudinal speed command Vx decreases toward the value calculated in step S31.
図14は、コンプライアンス制御を実行し、速度増加制御を未実行とした場合におけるアシスト回転数(破線)と、コンプライアンス制御及び速度増加制御を双方とも実行とした場合におけるアシスト回転数(実線)とを比較した図である。図14における丸印は、それぞれ、ベッド10が押されたと判定されたタイミング(ステップS33の判定がYESとなったタイミング)を示している。
FIG. 14 is a diagram comparing the assist rotation speed (dashed line) when compliance control is executed but speed increase control is not executed, and the assist rotation speed (solid line) when both compliance control and speed increase control are executed. The circles in FIG. 14 indicate the timing when it is determined that the bed 10 has been pressed (the timing when the determination in step S33 is YES).
コンプライアンス制御のみを実行した場合、アシスト回転数は、ベッド10の移動から遅れて立ち上がった後、その移動に追従するような値で推移する。
When only compliance control is performed, the assist rotation speed rises with a delay from the movement of the bed 10, and then changes to a value that follows that movement.
一方、コンプライアンス制御と速度増加制御を両方とも実行とした場合、ベッド10が押されたと判定される度に、アシスト回転数が急峻に立ち上がる(例えば、t=t1,t2,t3を参照)。一方、ベッド10が押されていないと判定された期間が続くと、立ち上がった後のアシスト回転数が、時間経過に伴って徐々に減少していくことになる(例えば、t1<t<t2,t2<t<t3を参照)。
On the other hand, when both compliance control and speed increase control are executed, the assist rotation speed rises sharply each time it is determined that the bed 10 has been pushed (see, for example, t = t1, t2, t3). On the other hand, if a period continues during which it is determined that the bed 10 has not been pushed, the assist rotation speed after standing up will gradually decrease over time (see, for example, t1 < t < t2, t2 < t < t3).
さらに詳細には、図14において、コンプライアンス制御で定まるアシスト回転数(アシスト速度)が上昇を開始してから、それが低下に転じるまでの期間(破線が上昇してから、低下に転じるまでの期間)は、図12のBに示すように、いわゆる「ベッド押し込み時」に相当する。この場合、ステップS33の判定は適宜YESになり、その都度、速度増加量voffが非ゼロかつ正の値に設定されることになる。例えば、ベッド10が相対的に強く押されたとき(ステップS33の判定がYESになるほど強く押されたとき)には、前述のようにアシスト回転数が急峻に立ち上がる一方、ベッド10が相対的に弱く押されたとき(ステップS33の判定がYESにならないほどの強さで押されたとき)には、アシスト回転数(アシスト速度)は、ベッド10に追従する程度の値に向かって徐々に減少していくことになる。
More specifically, in Fig. 14, the period from when the assist rotation speed (assist speed) determined by compliance control starts to increase until it starts to decrease (the period from when the broken line increases until it starts to decrease) corresponds to the so-called "bed pushing" time, as shown in Fig. 12B. In this case, the determination in step S33 becomes YES as appropriate, and the speed increase amount voff is set to a non-zero and positive value each time. For example, when the bed 10 is pushed relatively strongly (when it is pushed so strongly that the determination in step S33 becomes YES), the assist rotation speed rises sharply as described above, while when the bed 10 is pushed relatively weakly (when it is pushed so strongly that the determination in step S33 does not become YES), the assist rotation speed (assist speed) gradually decreases toward a value that follows the bed 10.
一方、図14において、コンプライアンス制御で定まるアシスト回転数(アシスト速度)が低下を開始してからの期間(破線が低下に転じてから、ゼロに至るまでの期間)は、図12のCに示すように、いわゆる「ベッド引き込み時」に相当する。この場合、ステップS33の判定はYESにならないため、速度増加量voffは、その下限値(ゼロ)のまま推移することになる。その結果、アシスト回転数(アシスト速度)は、コンプライアンス制御で定まる値に維持されつつ、ゼロに向かって減少していくことになる。
On the other hand, in Fig. 14, the period from when the assist rotation speed (assist speed) determined by compliance control starts to decrease (the period from when the dashed line starts to decrease until it reaches zero) corresponds to the so-called "bed retraction time" as shown in Fig. 12C. In this case, since the determination in step S33 is not YES, the speed increase amount voff remains at its lower limit value (zero). As a result, the assist rotation speed (assist speed) decreases toward zero while being maintained at the value determined by compliance control.
そして、ステップS36に係る処理が完了すると、制御プロセスは、図10及び図15のフローを終了し、図9のステップS7に進む。
When the processing of step S36 is completed, the control process ends the flows of Figures 10 and 15 and proceeds to step S7 of Figure 9.
なお、図15に関する説明は、ステップS12から図15のフローに進んだ場合についても同様である。その場合、前述の説明において、「縦」なる語を「横」なる語に置き換えるとともに、「前後」なる語を「左右」なる語に置き換えればよい。各種数式においても同様である。その際、第4閾値T4等の所定値は、前後方向と左右方向で同一としてもよいし、異ならせてもよい。
The explanation regarding FIG. 15 also applies to the case where the flow of FIG. 15 is proceeded to from step S12. In that case, in the above explanation, the word "vertical" should be replaced with the word "horizontal", and the word "front-rear" should be replaced with the word "left-right". The same applies to various mathematical expressions. In this case, the predetermined values such as the fourth threshold value T4 may be the same or different in the front-rear and left-right directions.
続いて、図10においてステップS16に進んだ場合について説明する。この場合、図16のステップS41~ステップS44が順番に行われるようになっている。
Next, we will explain what happens when the process proceeds to step S16 in FIG. 10. In this case, steps S41 to S44 in FIG. 16 are carried out in order.
まずステップS41において、コントローラ4は、第1及び第2回転センサSW3,SW4並びに6軸センサSW5の検出信号に基づいて、坂道に沿ってベッド10が上っているか否か、つまりベッド10が登坂中か否かを判定する。
First, in step S41, the controller 4 determines whether or not the bed 10 is moving up a slope, i.e., whether or not the bed 10 is climbing, based on the detection signals of the first and second rotation sensors SW3, SW4 and the six-axis sensor SW5.
ステップS41の判定は、前方に向かって路面勾配θsが増加していてかつ移動方向が前方(縦回転数rx若しくは縦速度vx>0)であるとき、又は、前方に向かって路面勾配θsが減少していてかつ移動方向が後方(縦回転数rx若しくは縦速度vx<0)であるときにYESとなる。
The determination in step S41 is YES when the road surface gradient θs is increasing forward and the moving direction is forward (longitudinal rotation speed rx or longitudinal speed vx > 0), or when the road surface gradient θs is decreasing forward and the moving direction is backward (longitudinal rotation speed rx or longitudinal speed vx < 0 ) .
一方、ステップS41の判定は、前方に向かって路面勾配θsが増加していてかつ移動方向が後方であるとき、又は、前方に向かって路面勾配θsが減少していてかつ移動方向が前方であるときにNOとなる。
On the other hand, the determination in step S41 is NO when the road surface gradient θ s is increasing forward and the moving direction is backward, or when the road surface gradient θ s is decreasing forward and the moving direction is forward.
なお、ステップS41の判定において参照される路面勾配θsは、前記ステップS13で演算した値を用いることができる。
The road surface gradient θs referred to in the determination in step S41 may be the value calculated in step S13.
そして、コントローラ4は、坂道に沿ってベッド10が上っていると判定したとき(ステップS41:YES)、第1及び第2電流センサSW1,SW2によって得られた縦加速度axを増加させた上で、該増加後の縦加速度ax’に基づいてコンプライアンス制御を実行し、速度増加制御を未実行とする。
When the controller 4 determines that the bed 10 is ascending along a slope (step S41: YES), it increases the vertical acceleration ax obtained by the first and second current sensors SW1, SW2, and then executes compliance control based on the increased vertical acceleration ax ', without executing the speed increase control.
具体的に、ステップS41の判定がYESのときに続くステップS42において、コントローラ4は、第1及び第2電流センサSW1,SW2によって得られた縦加速度axを増加させる。その際の増加量Δaxは、例えば、路面勾配θsが大きくなる程、大きくなるように設定してもよい。
Specifically, in step S42, which follows when the determination in step S41 is YES, the controller 4 increases the vertical acceleration ax obtained by the first and second current sensors SW1, SW2. The increase amount Δax may be set to be larger as the road surface gradient θs increases, for example.
そして、ステップS42から続くステップS43において、コントローラ4は、増加後の縦加速度ax’に基づいて、前後方向におけるコンプライアンス制御を実行する。ステップS43の詳細は、増加後の縦加速度ax’を用いるか否かという点を除き、前後方向に関するステップS31の内容と同じである。
Then, in step S43 following step S42, the controller 4 executes compliance control in the longitudinal direction based on the increased longitudinal acceleration a x '. The details of step S43 are the same as those of step S31 relating to the longitudinal direction, except for whether or not the increased longitudinal acceleration a x ' is used.
一方、コントローラ4は、坂道に沿ってベッド10が下っていると判定したとき(ステップS41:NO)、第1及び第2電流センサSW1,SW2によって得られた縦加速度axを増加させることなく、その縦加速度axに基づいてコンプライアンス制御を実行し、速度増加制御を未実行とする。
On the other hand, when the controller 4 determines that the bed 10 is descending along a slope (step S41: NO), the controller 4 executes compliance control based on the vertical acceleration ax obtained by the first and second current sensors SW1 and SW2 without increasing the vertical acceleration ax , and does not execute the speed increase control.
具体的に、ステップS41の判定がNOのときに続くステップS45において、コントローラ4は、第1及び第2電流センサSW1,SW2によって得られた縦加速度axに対する増加量をゼロに設定し、縦加速度axの値を維持する。
Specifically, in step S45 following the determination in step S41 being NO, the controller 4 sets the increase amount for the vertical acceleration ax obtained by the first and second current sensors SW1, SW2 to zero, and maintains the value of the vertical acceleration ax .
そして、ステップS45から続くステップS43において、コントローラ4は、非増加後の縦加速度ax’(=ax)に基づいて、前後方向におけるコンプライアンス制御を実行する。ステップS43の詳細は、前述のステップS31の内容と同じである。
Then, in step S43 following step S45, the controller 4 executes compliance control in the longitudinal direction based on the non-increased longitudinal acceleration a x ' (= a x ). The details of step S43 are the same as those of step S31 described above.
その後、ステップS43から続くステップS44において、コントローラ4は、前述のステップS36と同様に、前後方向における最終的なアシスト速度を決定する。
Then, in step S44, which follows step S43, the controller 4 determines the final assist speed in the forward/rearward direction, similar to step S36 described above.
なお、坂道の登坂時には、図16のステップS41及びステップS42に示すように、登坂状態が続く限り、縦加速度axが増加し続けることになる。一方、図14を用いて説明したように、速度増加制御におけるアシスト回転数の立ち上がりは、縦加速度axが所定値以上となったタイミング、つまり、ベッド10に外力が作用したタイミングと略同期する。
When climbing a slope, the vertical acceleration ax continues to increase as long as the climbing state continues, as shown in steps S41 and S42 in Fig. 16. On the other hand, as described with reference to Fig. 14, the rise of the assist rotation speed in the speed increase control is approximately synchronized with the timing when the vertical acceleration ax becomes equal to or exceeds a predetermined value, that is, the timing when an external force acts on the bed 10.
ゆえに、登坂に係る処理を言い換えると、本実施形態に係るコントローラ4は、平地走行状態か登坂状態かを判定し、その判定結果に基づいて、平地走行時には外力が作用したタイミングと同期するように断続的にモータ(第1及び第2モータ22R,22L)の指令回転数を上昇させ、登坂時には、登坂状態が続く限り、指令回転数の上昇を維持するようになっている。
Therefore, to rephrase the process related to hill climbing, the controller 4 according to this embodiment judges whether the vehicle is traveling on flat ground or on an uphill slope, and based on the result of this judgment, when traveling on flat ground, it intermittently increases the commanded rotation speed of the motors (first and second motors 22R, 22L) so as to be synchronized with the timing at which an external force acts, and when climbing a slope, it maintains the increase in the commanded rotation speed as long as the uphill slope continues.
図10のステップS12、ステップS15及びステップS16に係るフローが完了すると、制御プロセスは、図9のステップS7に進む。このステップS7において、コントローラ4は、アシスト回転数として設定された縦速度指令Vx又は横速度指令Vyを、それぞれ、上式(5)及び(6)と同様に定めた下式(18)及び(19)を通じて第1指令回転数Rrと第2指令回転数Rlとに変換する。
When the flows of steps S12, S15, and S16 in Fig. 10 are completed, the control process proceeds to step S7 in Fig. 9. In this step S7, the controller 4 converts the longitudinal speed command Vx or the lateral speed command Vy set as the assist rotational speed into a first command rotational speed Rr and a second command rotational speed Rl through the following equations (18) and (19) defined similarly to the above equations (5) and (6), respectively.
Rr=60*(Vx+Vy)/(2π・R) …(18)
Rl=60*(Vx-Vy)/(2π・R) …(19)
上式(18)及び(19)における“R”は、前述のタイヤ半径である。本実施形態の場合、前後方向へのアシストに際してはVx≠0かつVy=0となり、左右方向へのアシストに際してはVx=0かつVy≠0となる。 R r =60*(V x +V y )/(2π・R)…(18)
R l =60*(V x −V y )/(2π・R)…(19)
In the above formulas (18) and (19), "R" is the tire radius. In the present embodiment, V x ≠ 0 and V y = 0 during assistance in the forward/rearward direction, and V y = 0 during assistance in the left/right direction. During assistance, V x =0 and V y ≠0.
Rl=60*(Vx-Vy)/(2π・R) …(19)
上式(18)及び(19)における“R”は、前述のタイヤ半径である。本実施形態の場合、前後方向へのアシストに際してはVx≠0かつVy=0となり、左右方向へのアシストに際してはVx=0かつVy≠0となる。 R r =60*(V x +V y )/(2π・R)…(18)
R l =60*(V x −V y )/(2π・R)…(19)
In the above formulas (18) and (19), "R" is the tire radius. In the present embodiment, V x ≠ 0 and V y = 0 during assistance in the forward/rearward direction, and V y = 0 during assistance in the left/right direction. During assistance, V x =0 and V y ≠0.
例えば、コントローラ4は、ベッド10の移動方向が前後方向であると判定した場合(ステップS15を経由した場合)、図7の左上及び右上に例示したように、第1及び第2メカナムホイール21R,21Lを双方とも前転又は後転させるように、第1及び第2指令回転数Rr,Rlを設定するとともに、当該設定に際し、第1メカナムホイール21Rと第2メカナムホイール21Lとで指令回転数の絶対値を等しくする(Rr=Rl)。
For example, when the controller 4 determines that the movement direction of the bed 10 is the forward/backward direction (when the process has gone through step S15), it sets the first and second command rotation speeds Rr, Rl so that both the first and second mecanum wheels 21R, 21L rotate forward or backward, as illustrated in the upper left and upper right of FIG . 7, and when setting these, makes the absolute values of the command rotation speeds of the first mecanum wheel 21R and the second mecanum wheel 21L equal (Rr = Rl ).
第1及び第2指令回転数Rr,Rlの絶対値を等しくすることで、各キャスタ14の向きに関わらず、前後方向に沿った移動を安定させることができる。
By making the absolute values of the first and second command rotational speeds R r , R l equal, movement along the front-rear direction can be stabilized regardless of the orientation of each caster 14 .
また、コントローラ4は、ベッド10の移動方向が左右方向であると判定した場合(ステップS12を経由した場合)には、図7の左下に例示したように、第1及び第2メカナムホイール21R,21Lのうちの一方を前転させるとともに、他方を後転させるように第1及び第2指令回転数Rr,Rlを設定するとともに、当該設定に際しても、第1メカナムホイール21Rと第2メカナムホイール21Lとで指令回転数の絶対値を等しくする(Rr=-Rl)。
Furthermore, when the controller 4 determines that the movement direction of the bed 10 is the left-right direction (when the process has gone through step S12), it sets the first and second command rotation speeds Rr, Rl so that one of the first and second mecanum wheels 21R, 21L rotates forward and the other rotates backward, as illustrated in the lower left part of FIG . 7, and also when setting these command rotation speeds, the absolute values of the command rotation speeds of the first mecanum wheel 21R and the second mecanum wheel 21L are made equal (Rr = -Rl ) .
第1及び第2指令回転数Rr,Rlの絶対値を等しくすることで、各キャスタ14の向きに関わらず、左右方向に沿った移動を安定させることができる。
By making the absolute values of the first and second command rotational speeds R r , R l equal, movement along the left-right direction can be stabilized regardless of the orientation of each caster 14 .
その後、ステップS7から続くステップS8において、コントローラ4は安全制御処理を実行する。この処理の詳細は、図17のステップS51及びステップS52に示す通りである。
Then, in step S8, which follows step S7, the controller 4 executes safety control processing. Details of this processing are shown in steps S51 and S52 of FIG. 17.
まず、ステップS51において、コントローラ4は、図9のフローを通じて設定された各指令回転数Rr,Rlの絶対値が、所定の第5閾値T5以上か否かを判定する。ここで、第5閾値T5の大きさは、コントローラ4のメモリ等に事前に記憶されており、必要に応じて適宜読み出されるようになっている。
First, in step S51, the controller 4 determines whether or not the absolute values of the command rotational speeds Rr , Rl set through the flow of Fig. 9 are equal to or greater than a predetermined fifth threshold value T5. Here, the magnitude of the fifth threshold value T5 is stored in advance in the memory of the controller 4, and is read out as necessary.
ステップS51の判定がYESの場合、コントローラ4は、制御プロセスをステップS52に進める。このステップS52において、コントローラ4は、各指令回転数Rr,Rlを第5閾値T5に変更する。
If the determination in step S51 is YES, the controller 4 advances the control process to step S52. In step S52, the controller 4 changes each of the command rotational speeds Rr and Rl to a fifth threshold value T5.
一方、ステップS51の判定がNOの場合、コントローラ4は、ステップS52をスキップしてリターンする。この場合、各指令回転数Rr,Rlの大きさは、第5閾値T5未満のまま維持される。
On the other hand, if the determination in step S51 is NO, the controller 4 skips step S52 and returns to the main routine. In this case, the magnitudes of the command rotational speeds Rr and Rl are maintained below the fifth threshold value T5.
このように、本実施形態に係るコントローラ4は、第2制御としての速度増加制御後に、第1及び第2指令回転数Rr,Rlが所定の閾値(第5閾値T5)未満の場合(ステップS51:NO)には、該第1及び第2指令回転数Rr,Rlの値を維持し、第1及び第2指令回転数Rr,Rlが第5閾値T5以上の場合(ステップS51:YES)には、第1及び第2指令回転数Rr,Rlを第5閾値T5に変更するように構成されている。
In this manner, the controller 4 according to the present embodiment is configured to maintain the values of the first and second command rotational speeds Rr , Rl when the first and second command rotational speeds Rr , Rl are less than a predetermined threshold value (fifth threshold value T5) (step S51: NO) after the speed increase control as the second control, and to change the first and second command rotational speeds Rr , Rl to the fifth threshold value T5 when the first and second command rotational speeds Rr , Rl are equal to or greater than the fifth threshold value T5 (step S51: YES).
そして、図9のステップS8から続くステップS9において、コントローラ4は、移動方向に沿ったベッド10の移動をアシストするように、第1及び第2モータ22R,22Lを介して第1及び第2メカナムホイール21R,21Lをそれぞれ駆動する。その際、前述のステップS5、ステップS6及びステップS7を通じて決定された指令回転数Rr,Rlを実現するように、第1及び第2モータ22R,22Lがそれぞれ駆動される。これにより移動方向に沿ったアシストが実現される。
9, the controller 4 drives the first and second Mecanum wheels 21R, 21L via the first and second motors 22R, 22L, respectively, so as to assist the movement of the bed 10 along the movement direction. At that time, the first and second motors 22R, 22L are driven, respectively, so as to realize the command rotational speeds Rr , Rl determined through the above-mentioned steps S5, S6, and S7. This realizes the assistance along the movement direction.
以上説明したように、本実施形態によれば、第1及び第2電流センサSW1,SW2によって誘導電流を検出することで、その誘導電流が生じる起因となったトルク(ホイールを回転させようとするトルク)を推定することができる。これにより、図9のステップS3に例示したように、ベッド10の加速度ax,ayを推定することができる。各加速度ax,ayは、搬送者100が付与した外力に応じて増加する。したがって、図15のステップS33に示したように、各加速度ax,ayが所定値以上であるか否かを判定することで、ベッド10が押されたか否かを判定することができる。
As described above, according to this embodiment, the torque (torque that tries to rotate the wheel) that caused the induced current can be estimated by detecting the induced current with the first and second current sensors SW1 and SW2. This makes it possible to estimate the accelerations a x and a y of the bed 10, as exemplified in step S3 of Fig. 9. Each of the accelerations a x and a y increases according to the external force applied by the carrier 100. Therefore, as shown in step S33 of Fig. 15, it is possible to determine whether the bed 10 has been pushed by determining whether each of the accelerations a x and a y is equal to or greater than a predetermined value.
また、図15に示したように、第1制御としてのコンプライアンス制御に加えて、第2制御としての速度増加制御を行うことで、単にベッド10に追従させるばかりでなく、速度増加制御を通じて指令回転数を増加させた分だけ、搬送者100の負荷を軽減することができる。これにより、ベッド10の押し心地を軽くし、適度な“アシスト感”を搬送者100に与えることができる。
Also, as shown in FIG. 15, by performing speed increase control as the second control in addition to compliance control as the first control, it is possible to not only make the bed 10 follow the bed, but also to reduce the load on the transporter 100 by the amount of the commanded rotation speed increased through the speed increase control. This makes it easier to push the bed 10, and provides the transporter 100 with an appropriate "feeling of assistance."
さらに、図15のステップS33に示したように、加速度ax,ayが第4閾値以上の場合、つまりベッド10が押された場合に速度増加制御を実行することで、搬送者100がベッド10を押したタイミングと、ベッド10の押し心地が軽くなるタイミングとを同期させることができる。これにより、過不足のないアシスト感を搬送者100に与えることができる。また、ベッド10が押されたことを条件に速度増加制御を実行するように構成することで、押されていないタイミングで速度増加制御が実行された結果、搬送補助装置1が意図せずして自走するような事態に陥るのを避けることができる。
15, when the accelerations a x and a y are equal to or greater than the fourth threshold value, that is, when the bed 10 is pushed, the speed increase control is executed, thereby synchronizing the timing when the transporter 100 pushes the bed 10 with the timing when the bed 10 becomes easy to push. This allows the transporter 100 to be provided with a feeling of assistance that is neither too much nor too little. Also, by configuring the speed increase control to be executed on the condition that the bed 10 is pushed, it is possible to avoid a situation in which the transport assistance device 1 unintentionally moves on its own as a result of the speed increase control being executed when the bed 10 is not being pushed.
また、搬送者100がベッド10を強く押す程、第1及び第2回転センサSW3,SW4の検出値はより高くなると考えられる。本実施形態では、図13及び図15のステップS32~ステップS34に示したように、回転数の検出値が高くなる程、より強い推力でベッド10の移動がアシストされるようになっている。これにより、外力の大きさに応じたアシストを実現することができ、ベッド10の押し心地を軽くする上で有利になる。
It is also believed that the harder the carrier 100 pushes the bed 10, the higher the detection values of the first and second rotation sensors SW3, SW4 will be. In this embodiment, as shown in steps S32 to S34 in Figures 13 and 15, the higher the detection value of the number of rotations, the stronger the thrust that assisted the movement of the bed 10. This makes it possible to realize assistance according to the magnitude of the external force, which is advantageous in making the bed 10 easier to push.
また、図15のステップS35の処理を実装したことで、搬送者100がベッド10を弱く押したり、ベッド10から手を離したりした場合には、より弱い推力でベッド10の移動がアシストされることになる。これにより、外力の大きさに応じたアシストを実現することができ、過不足のないアシスト感を搬送者に与えるとともに、搬送補助装置1の意図せぬ自走を抑制することができる。
In addition, by implementing the process of step S35 in FIG. 15, when the transporter 100 lightly pushes the bed 10 or takes his/her hands off the bed 10, the movement of the bed 10 is assisted with a weaker thrust. This makes it possible to realize assistance according to the magnitude of the external force, giving the transporter a feeling of assistance that is just right, and also making it possible to prevent unintended self-propulsion of the transport assistance device 1.
また、図9のステップS4及びステップS5に示したように、回転数が第1閾値T1未満のときには、ホイールとしての第1及び第2メカナムホイール21R,21Lの駆動が制限される。これにより、ベッド10が実際に搬送されているような状況に限り、コンプライアンス制御及び速度増加制御を実行させることができるようになる。このことは、搬送補助装置1の使い勝手の向上に資する。
Furthermore, as shown in steps S4 and S5 of FIG. 9, when the rotation speed is less than the first threshold value T1, the driving of the first and second Mecanum wheels 21R, 21L as wheels is limited. This makes it possible to execute compliance control and speed increase control only when the bed 10 is actually being transported. This contributes to improving the usability of the transport assistance device 1.
また、坂道の登坂時に速度増加制御を行うと、ベッド1を押し始めた瞬間こそアシスト感が向上するものの、それ以降の期間(登坂している最中)におけるアシスト感は向上しない。そこで、図16のステップS41~ステップS44に示したように、坂道を登坂していると判断される場合には、コンプライアンス制御に際して参照される縦加速度axを増加させた上で、増加後の縦加速度ax’に基づいたコンプライアンス制御が実行される。縦加速度axを増加させることは、ベッド10に作用する外力を、実際の外力よりも大きく見積もることに等しい。外力を大きく見積もることで、ベッド10の移動に追従させる以上の推力を発揮するようなアシストが実現される。この処理は登坂が継続する限り行われることになるから、坂道の登坂中に、良好なアシスト感を継続的に発揮させることができる。
Furthermore, if the speed increase control is performed when climbing a slope, the sense of assistance is improved at the moment when the bed 1 starts to be pushed, but the sense of assistance is not improved thereafter (while the bed 1 is climbing). Therefore, as shown in steps S41 to S44 in FIG. 16, when it is determined that the bed 1 is climbing a slope, the vertical acceleration a x referred to in the compliance control is increased, and compliance control is performed based on the increased vertical acceleration a x '. Increasing the vertical acceleration a x is equivalent to overestimating the external force acting on the bed 10 compared to the actual external force. Overestimating the external force realizes an assistance that exerts a thrust force greater than that which follows the movement of the bed 10. This process is performed as long as the bed 10 continues to climb a slope, so that a good sense of assistance can be continuously exerted while the bed 10 is climbing a slope.
また、坂道の降坂時に速度増加制御を行うと、ベッド10が必要以上に加速されてしまい、搬送者100の手からベッド10が離れてしまう可能性がある。そこで、図16のステップS41~ステップS45に示したように、縦加速度axを増加させることなくコンプライアンス制御のみを実行し、速度増加制御は未実行とする。これにより、坂道の降坂時に適したアシスト感を発揮させることができる。
Furthermore, if speed increase control is performed when going downhill, the bed 10 may be accelerated more than necessary, causing the bed 10 to slip out of the hands of the transported person 100. Therefore, as shown in steps S41 to S45 of Fig. 16, only compliance control is performed without increasing the vertical acceleration ax , and speed increase control is not performed. This allows a sense of assistance appropriate for going downhill.
また、図17に示した安全制限制御を実装したことで、指令回転数の値を第5閾値T5以下に維持することができる。これにより、搬送補助装置1の安全性を、従来よりもさらに高めることができる。
In addition, by implementing the safety limit control shown in FIG. 17, the command rotation speed value can be maintained below the fifth threshold value T5. This makes it possible to further improve the safety of the transport assistance device 1 compared to conventional methods.
また、本実施形態に係る搬送補助装置1は、図1及び図2に例示したキャスタ付きベッド10のような重量物の移動のアシストに際しても、搬送者100による押し心地を軽くすることができる。
The transport assistance device 1 according to this embodiment can also provide a lighter pressure on the transporter 100 when assisting in the movement of a heavy object such as the bed with casters 10 shown in Figures 1 and 2.
<他の実施形態>
前記実施形態では、ホイールに第1及び第2メカナムホイール21R,21Lを用いた構成が開示されていたが、そうした構成は必須ではない。本開示は、メカナムホイール以外のホイール、例えばオムニホイールに適用することもできる。ホイールの個数についても、2つには限定されない。例えば、本実施形態と同様にメカナムホイールを用いた場合は、その個数を4つにしてもよいし、オムニホイールを用いた場合は、その個数を3つ又は4つにしてもよい。また、ホイールの個数に応じて、モータの個数を変更してもよい。 <Other embodiments>
In the above embodiment, a configuration using the first and second Mecanum wheels 21R, 21L as the wheels is disclosed, but such a configuration is not essential. The present disclosure can also be applied to wheels other than Mecanum wheels, for example, omni wheels. The number of wheels is also not limited to two. For example, when Mecanum wheels are used as in the present embodiment, the number may be four, and when omni wheels are used, the number may be three or four. In addition, the number of motors may be changed depending on the number of wheels.
前記実施形態では、ホイールに第1及び第2メカナムホイール21R,21Lを用いた構成が開示されていたが、そうした構成は必須ではない。本開示は、メカナムホイール以外のホイール、例えばオムニホイールに適用することもできる。ホイールの個数についても、2つには限定されない。例えば、本実施形態と同様にメカナムホイールを用いた場合は、その個数を4つにしてもよいし、オムニホイールを用いた場合は、その個数を3つ又は4つにしてもよい。また、ホイールの個数に応じて、モータの個数を変更してもよい。 <Other embodiments>
In the above embodiment, a configuration using the first and
また、前記実施形態では、速度増加制御によって速度指令(並進速度の指令値)が増加されるように構成されていたが、そうした構成は必須ではない。
In addition, in the above embodiment, the speed command (translational speed command value) is increased by the speed increase control, but such a configuration is not essential.
例えば、ステップS32~S34において、速度指令に係る処理の代わりに指令回転数を増加させるような処理を実行してもよい。その場合、ステップS31とステップS32との間に、速度指令を指令回転数に変換するような処理が設けられることになる。
For example, in steps S32 to S34, a process for increasing the commanded rotation speed may be executed instead of the process related to the speed command. In that case, a process for converting the speed command into a commanded rotation speed is provided between steps S31 and S32.
1 搬送補助装置
4 コントローラ
10 ベッド(対象物,キャスタ付きベッド)
14 キャスタ
14F 前輪
14B 後輪
21R 第1メカナムホイール(ホイール)
211R 第1ホイール本体
212R 第1樽型ローラ
21L 第2メカナムホイール(ホイール)
211L 第2ホイール本体
212L 第2樽型ローラ
22R 第1モータ(モータ)
22L 第2モータ(モータ)
SW1 第1電流センサ(電流センサ)
SW2 第2電流センサ(電流センサ)
SW3 第1回転センサ(回転センサ)
SW4 第2回転センサ(回転センサ)
SW5 6軸センサ(傾斜センサ) 1 Transportauxiliary device 4 Controller 10 Bed (object, bed with casters)
14 Caster 14F Front wheel14B Rear wheel 21R First Mecanum wheel (wheel)
211R: First wheel body 212R: First barrel-shapedroller 21L: Second Mecanum wheel (wheel)
211L Second wheel body 212L Second barrel-shapedroller 22R First motor (motor)
22L Second motor (motor)
SW1 First current sensor (current sensor)
SW2 Second current sensor (current sensor)
SW3 1st rotation sensor (rotation sensor)
SW4 Second rotation sensor (rotation sensor)
SW5 6-axis sensor (tilt sensor)
4 コントローラ
10 ベッド(対象物,キャスタ付きベッド)
14 キャスタ
14F 前輪
14B 後輪
21R 第1メカナムホイール(ホイール)
211R 第1ホイール本体
212R 第1樽型ローラ
21L 第2メカナムホイール(ホイール)
211L 第2ホイール本体
212L 第2樽型ローラ
22R 第1モータ(モータ)
22L 第2モータ(モータ)
SW1 第1電流センサ(電流センサ)
SW2 第2電流センサ(電流センサ)
SW3 第1回転センサ(回転センサ)
SW4 第2回転センサ(回転センサ)
SW5 6軸センサ(傾斜センサ) 1 Transport
14 Caster 14F Front wheel
211R: First wheel body 212R: First barrel-shaped
211L Second wheel body 212L Second barrel-shaped
22L Second motor (motor)
SW1 First current sensor (current sensor)
SW2 Second current sensor (current sensor)
SW3 1st rotation sensor (rotation sensor)
SW4 Second rotation sensor (rotation sensor)
SW5 6-axis sensor (tilt sensor)
Claims (8)
- 外力による対象物の移動をアシストするための搬送補助装置において、
前記対象物に取り付けられるホイールと、
前記ホイールに駆動連結されたモータと、
前記ホイールの回転に際して前記モータに流れる誘導電流を検出する電流センサと、
前記モータを制御するコントローラと、を備え、
前記コントローラは、
前記電流センサの検出信号に基づいて、前記対象物の加速度を推定し、
前記加速度に基づいて、前記対象物の移動に追従させるように前記モータの指令回転数を設定する第1制御を実行し、
前記加速度の絶対値が所定値以上の場合には、前記第1制御で設定された前記指令回転数を増加させる第2制御を実行する
ことを特徴とする搬送補助装置。 A transport assist device for assisting the movement of an object by an external force, comprising:
a wheel attached to the object;
a motor drivingly connected to the wheel;
a current sensor for detecting an induced current flowing through the motor when the wheel rotates;
A controller for controlling the motor,
The controller:
Estimating an acceleration of the object based on a detection signal of the current sensor;
execute a first control for setting a command rotation speed of the motor so as to follow the movement of the object based on the acceleration;
When the absolute value of the acceleration is equal to or greater than a predetermined value, a second control is executed to increase the command rotation speed set in the first control. - 請求項1に記載された搬送補助装置において、
前記ホイールの回転数を検出する回転センサを備え、
前記コントローラは、前記指令回転数を増加させる場合、前記回転センサによって検出された回転数が大きくなる程、前記指令回転数を大きく増加させる
ことを特徴とする搬送補助装置。 2. The transport assist device according to claim 1,
A rotation sensor is provided to detect the number of rotations of the wheel.
The transport auxiliary device according to claim 1, wherein, when increasing the command rotation speed, the controller increases the command rotation speed to a greater extent as the rotation speed detected by the rotation sensor increases. - 請求項1に記載された搬送補助装置において、
前記コントローラは、前記加速度の絶対値が前記所定値を下まわった場合には、前記第2制御後の指令回転数を低下させる
ことを特徴とする搬送補助装置。 2. The transport assist device according to claim 1,
The transport auxiliary device according to claim 1, wherein the controller reduces the command rotation speed after the second control when an absolute value of the acceleration falls below the predetermined value. - 請求項1に記載された搬送補助装置において、
前記モータの回転数を検出する回転センサを備え、
前記コントローラは、前記回転センサの検出信号に基づいて、前記回転数が所定以上になったことを条件に、前記ホイールの駆動を許容する
ことを特徴とする搬送補助装置。 2. The transport assist device according to claim 1,
A rotation sensor is provided to detect the number of rotations of the motor,
The transport auxiliary device, wherein the controller allows the wheel to be driven when the number of rotations reaches or exceeds a predetermined number based on a detection signal from the rotation sensor. - 請求項1に記載された搬送補助装置において、
前記モータの回転数を検出する回転センサと、
前記対象物が移動する搬送面の傾斜角を検出する傾斜センサと、を備え、
前記コントローラは、前記傾斜センサの検出信号に基づいて、前記搬送面が坂道であるか否かを判定し、
前記コントローラは、
前記搬送面が坂道ではないと判定した場合には、前記電流センサによって得られた前記加速度に基づいて前記第1制御及び前記第2制御を双方とも実行する一方、
前記搬送面が坂道であると判定した場合には、前記回転センサ及び前記傾斜センサの検出信号に基づいて、前記坂道に沿って前記対象物が上っているか否かを判定し、該対象物が上っていると判定したときには、前記電流センサによって得られた前記加速度を増加させた上で、該増加後の加速度に基づいて前記第1制御を実行し、前記第2制御を未実行とする
ことを特徴とする搬送補助装置。 2. The transport assist device according to claim 1,
A rotation sensor for detecting the number of rotations of the motor;
a tilt sensor for detecting a tilt angle of a conveyance surface on which the object moves,
The controller determines whether the conveying surface is a slope based on a detection signal from the tilt sensor,
The controller:
When it is determined that the conveying surface is not a slope, both of the first control and the second control are executed based on the acceleration obtained by the current sensor,
When it is determined that the conveying surface is a slope, it is determined whether the object is ascending along the slope based on the detection signals of the rotation sensor and the inclination sensor, and when it is determined that the object is ascending, the acceleration obtained by the current sensor is increased, and the first control is executed based on the increased acceleration, and the second control is not executed. - 請求項1に記載された搬送補助装置において、
前記ホイールの回転数を検出する回転センサと、
前記対象物が搬送される搬送面の傾斜角を検出する傾斜センサと、を備え、
前記コントローラは、前記傾斜センサの検出信号に基づいて、前記搬送面が坂道であるか否かを判定し、
前記コントローラは、
前記搬送面が坂道ではないと判定した場合には、前記電流センサによって得られた前記加速度に基づいて前記第1制御及び前記第2制御を双方とも実行する一方、
前記搬送面が坂道であると判定した場合には、前記回転センサ及び前記傾斜センサの検出信号に基づいて、前記坂道に沿って前記対象物が下っているか否かを判定し、該対象物が下っていると判定したときには、前記電流センサによって得られた前記加速度に基づいて前記第1制御を実行し、前記第2制御を未実行とする
ことを特徴とする搬送補助装置。 2. The transport assist device according to claim 1,
A rotation sensor for detecting the number of rotations of the wheel;
an inclination sensor that detects an inclination angle of a conveying surface along which the object is conveyed;
The controller determines whether the conveying surface is a slope based on a detection signal from the tilt sensor,
The controller:
When it is determined that the conveying surface is not a slope, both of the first control and the second control are executed based on the acceleration obtained by the current sensor,
When it is determined that the conveying surface is a slope, the conveying assistance device determines whether the object is descending along the slope based on the detection signals of the rotation sensor and the inclination sensor, and when it is determined that the object is descending, executes the first control based on the acceleration obtained by the current sensor and does not execute the second control. - 請求項1に記載された搬送補助装置において、
前記コントローラは、前記第2制御後に、
前記指令回転数が所定の閾値未満の場合には、該指令回転数の値を維持し、
前記指令回転数が前記閾値以上の場合には、該指令回転数を前記閾値に変更する
ことを特徴とする搬送補助装置。 2. The transport assist device according to claim 1,
After the second control, the controller
If the command speed is less than a predetermined threshold, the command speed is maintained at its value;
When the command rotational speed is equal to or greater than the threshold value, the command rotational speed is changed to the threshold value. - 請求項1から7のいずれか1項に記載された搬送補助装置において、
前記対象物は、キャスタ付きベッドであり、
前記ホイールは、前記キャスタ付きベッドの下部に取り付けられる
ことを特徴とする搬送補助装置。
The transport auxiliary device according to any one of claims 1 to 7,
the object is a bed with casters,
A transport assistance device characterized in that the wheels are attached to the bottom of the castor-equipped bed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-045916 | 2023-03-22 | ||
JP2023045916A JP2024135296A (en) | 2023-03-22 | 2023-03-22 | Transport Auxiliary Equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024195548A1 true WO2024195548A1 (en) | 2024-09-26 |
Family
ID=92842056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/008581 WO2024195548A1 (en) | 2023-03-22 | 2024-03-06 | Conveyance assistance device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024135296A (en) |
WO (1) | WO2024195548A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150216746A1 (en) * | 2014-02-05 | 2015-08-06 | Franz Dirauf | Mobile Medical Device and Method for Controlling a Movement of the Mobile Medical Device |
JP2022186415A (en) * | 2021-06-04 | 2022-12-15 | 株式会社ジェイテクトマシンシステム | Conveyance assistant device and medical bed |
-
2023
- 2023-03-22 JP JP2023045916A patent/JP2024135296A/en active Pending
-
2024
- 2024-03-06 WO PCT/JP2024/008581 patent/WO2024195548A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150216746A1 (en) * | 2014-02-05 | 2015-08-06 | Franz Dirauf | Mobile Medical Device and Method for Controlling a Movement of the Mobile Medical Device |
JP2022186415A (en) * | 2021-06-04 | 2022-12-15 | 株式会社ジェイテクトマシンシステム | Conveyance assistant device and medical bed |
Also Published As
Publication number | Publication date |
---|---|
JP2024135296A (en) | 2024-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7017686B2 (en) | Hybrid human/electric powered vehicle | |
EP2331384B1 (en) | Methods and apparatus for moving a vehicle up or down a sloped surface | |
JP3032698B2 (en) | Transport vehicle with power assist | |
JP4577442B2 (en) | Traveling apparatus and control method thereof | |
JP7570286B2 (en) | Transport aids and medical beds | |
JP2004500271A (en) | Personal balance vehicle | |
JP2004510637A (en) | Control of personal transport vehicles | |
WO2004106139A1 (en) | Transportation motor vehicle and method of controlling the same | |
JP2007336785A (en) | Traveling device and control method therefor | |
JP5652578B2 (en) | Wheelbarrow | |
JP6548735B2 (en) | Electric assist wheelchair and control method of electric assist wheelchair | |
JP2022094589A (en) | Electrically-driven walking assisting vehicle | |
WO2024195548A1 (en) | Conveyance assistance device | |
US10252638B2 (en) | Wheelchair propulsion method, kit, and wheelchair implementing such a method | |
WO2024195508A1 (en) | Transportation aid device | |
JPH11171038A (en) | Conveying device | |
KR20210062874A (en) | Control system of electric assist module and control method for wheelchair driving on stairs and stepped terrain | |
WO2024195547A1 (en) | Conveyance auxiliary device | |
JP2024137781A (en) | Transport Auxiliary Equipment | |
JP2015047985A (en) | Stairway elevator | |
JP6830708B1 (en) | Bogie and its wheel system | |
JP2005335677A (en) | Vehicle, vehicle control device and vehicle control method | |
JP2005335678A (en) | Vehicle, vehicle control device and vehicle control method | |
JPH1169515A (en) | Transporting device | |
JP2017035985A (en) | Hand cart |