Nothing Special   »   [go: up one dir, main page]

WO2024195157A1 - Diagnosis system, diagnosis method, and program - Google Patents

Diagnosis system, diagnosis method, and program Download PDF

Info

Publication number
WO2024195157A1
WO2024195157A1 PCT/JP2023/034196 JP2023034196W WO2024195157A1 WO 2024195157 A1 WO2024195157 A1 WO 2024195157A1 JP 2023034196 W JP2023034196 W JP 2023034196W WO 2024195157 A1 WO2024195157 A1 WO 2024195157A1
Authority
WO
WIPO (PCT)
Prior art keywords
industry
defect
electronic
diagnostic
diagnostic system
Prior art date
Application number
PCT/JP2023/034196
Other languages
French (fr)
Japanese (ja)
Inventor
裕 植松
忠信 鳥羽
修一 西納
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024195157A1 publication Critical patent/WO2024195157A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance

Definitions

  • the present invention relates to a diagnostic system, a diagnostic method, and a program.
  • the present invention claims priority to Japanese Patent Application No. 2023-045145, filed on March 22, 2023, and the contents of that application are incorporated by reference into this application in designated countries where incorporation by reference of literature is permitted.
  • diagnostic technologies aimed at ensuring the reliable and safe operation of electronic and electrified service systems are currently being developed on an industry-by-industry basis. Specifically, each vendor operates diagnostic systems that are designed and developed in accordance with industry-standard safety and reliability standards, customizing them based on industry-standard data and processes.
  • the challenge is therefore to build an efficient diagnostic model that spans multiple industries and shares knowledge from each industry.
  • Patent document 1 discloses a system for diagnosing error conditions in a complex environment. Specifically, patent document 1 states, "A system for generating diagnoses of probable causes of a detected fault, advantageously provided with a user interface and using a Bayesian network, where the probabilities are generated automatically and manual processes are used to construct the probability table. The system provides multiple hypotheses and/or diagnoses to an operator simultaneously.”
  • Patent Document 1 utilizes a Bayesian network to diagnose the causes of failures that occur in complex systems.
  • the system in this document does not take into consideration the generation of an efficient diagnostic model that shares defect knowledge from different industries. Therefore, the technology in Patent Document 1 makes it difficult to solve the problem of building an efficient diagnostic model that spans multiple industries and shares knowledge from each industry.
  • the present invention was made in consideration of the above problems, and aims to realize the construction of efficient diagnostic models by sharing defect knowledge across industries.
  • a diagnostic system for solving the above problems is a diagnostic system having one or more processors and one or more memory resources, the memory resources storing a fault diagnosis program for diagnosing faults in an electronic/electric system, and the processor executing the fault diagnosis program to: identify the industry and fault type of the electronic/electric system to be diagnosed based on acquisition of fault-related information indicating a fault state of the electronic/electric system, calculate a causal coefficient indicating the strength of the relationship between fault factors corresponding to the fault type output by a predetermined mathematical algorithm in which parameter information corresponding to the identified first industry is set, as the occurrence probability of the fault factor, and perform a diagnosis to identify the fault factor based on the occurrence probability.
  • the present invention makes it possible to identify the cause of defects with greater accuracy and to build a diagnostic model that can share defect knowledge with other industries.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a diagnostic system.
  • FIG. 11 is a diagram illustrating an example of defect correlation information.
  • FIG. 13 is a diagram showing an example of a mathematical algorithm (neural network).
  • FIG. 13 illustrates an example of a parameter element.
  • FIG. 13 is a diagram illustrating an example of normalized transform coefficients.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a diagnostic system.
  • FIG. 4 is a flow chart showing an example of each process.
  • FIG. 11 is a flow diagram showing details of a diagnostic model generation process.
  • FIG. 4 is a flow chart showing details of a diagnostic process.
  • FIG. 13 is a diagram showing the relationship between defect causes and occurrence probabilities.
  • FIG. 13 is a diagram showing the relationship between defect causes and occurrence probabilities.
  • FIG. 11 is a diagram showing an example of a diagnosis result.
  • FIG. 11 is a diagram illustrating an example of normalized transformation coefficients according to the second embodiment.
  • FIG. 23 is a diagram showing an example of a determination result of a similarity according to the fifth embodiment.
  • FIG. 13 is a diagram showing an example of a usage environment for each service of similar electronic/electric systems according to the sixth embodiment.
  • FIG. 1 is a schematic diagram of a service form 1.
  • FIG. 13 is a schematic diagram of a service form 2.
  • First Embodiment 1 is a diagram showing an example of a schematic configuration of a diagnostic system 100 according to this embodiment.
  • the diagnostic system 100 (hereinafter, sometimes referred to as "this system") is a device that diagnoses malfunctions that occur in electronic and electric systems.
  • the diagnostic system 100 uses a diagnostic model to diagnose malfunctions that occur in various electronic/electric systems (e.g., recognition systems/wheel drive systems/connected systems in automobiles, recognition systems/arm drive systems/connected systems in robots) installed in moving objects (e.g., automobiles including EVs: Electric Vehicles) and robots (e.g., industrial robots and service robots), and outputs the identified causes of the malfunction as the diagnostic results.
  • various electronic/electric systems e.g., recognition systems/wheel drive systems/connected systems in automobiles, recognition systems/arm drive systems/connected systems in robots
  • moving objects e.g., automobiles including EVs: Electric Vehicles
  • robots e.g., industrial robots and service robots
  • the diagnostic system 100 diagnoses malfunctions occurring in the electronic/electric system using a diagnostic model consisting of the following elements: * "When there is industry parameter information that corresponds to the defect category to be diagnosed" **Failure correlation information: Information showing the correlation of failures in the specialized fields of each electronic and electric system. For example, FTA: Fault Tree Analysis, FMEA: Failure Mode and Effects Analysis, etc. ** Mathematical algorithm: A mathematical algorithm such as a neural network. An information model that outputs a causal coefficient ⁇ that indicates the strength of the relationship between nodes in defect correlation information. ** Parameter information: Parameter values set in the mathematical algorithm.
  • the diagnostic system 100 also updates the parameter information for executing the mathematical algorithm used to calculate the causal coefficient ⁇ depending on the measures taken by the user in response to the diagnostic results and whether or not the defect has been resolved.
  • the diagnostic system 100 normalizes the causal coefficient ⁇ 1 output by the mathematical algorithm using parameter information of another industry based on the ratio between the normalization conversion coefficient ⁇ 1 of the other industry and the normalization conversion coefficient ⁇ 2 of the industry corresponding to the electronic/electric system to be diagnosed, and identifies the cause of the malfunction using the normalized causal coefficient ⁇ 2 .
  • This system makes it possible to identify the cause of defects with greater accuracy, and to build a diagnostic model that can share defect knowledge with other industries.
  • the electronic/electrical systems to be diagnosed are not limited to mobile objects or robots, but various types of electronic/electrical systems are targeted. In this embodiment, however, the diagnosis of a malfunction that occurs in the electronic/electrical system of an automobile, which is a mobile object, will be used as an example.
  • a diagnostic system (processor system) 100 is connected to an external device 10 so as to be able to communicate with each other via, for example, a communication cable or a predetermined communication network N (for example, the Internet, a LAN (Local Area Network) or a WAN (Wide Area Network)).
  • a communication cable or a predetermined communication network N for example, the Internet, a LAN (Local Area Network) or a WAN (Wide Area Network)
  • the external device 10 is a device that transmits various information to the diagnostic system 100.
  • the external device 10 includes a vehicle system that transmits defect-related information to the diagnostic system 100 and a processing unit that performs the processing in the diagnostic system 100. This includes operators' computers that provide a variety of useful information to be used.
  • the external device 10 is a device that displays the diagnostic results output by the diagnostic system 100.
  • the external device 10 includes computers of businesses that receive the diagnostic services provided by this system 100, such as product manufacturing and maintenance businesses such as automobile manufacturers, and infrastructure management businesses.
  • the diagnostic system 100 executes various processes by the processor 20 reading the program 210 and various information stored in the memory resource 30. Specifically, the diagnostic system 100 executes a process of identifying a malfunction category in the electronic/electric system using the malfunction-related information (hereinafter, may be referred to as a "malfunction category identification process").
  • the diagnostic system 100 also executes a process for generating a diagnostic model based on the identified defect categories (hereinafter, sometimes referred to as the "diagnostic model generation process").
  • the diagnostic system 100 also executes a diagnostic process to diagnose the cause of the defect based on the diagnostic model.
  • the diagnostic system 100 also performs machine learning of a mathematical algorithm (hereinafter sometimes referred to as "learning processing") based on the measures taken by the user in response to the diagnostic results and whether or not the defect has been resolved.
  • learning processing a mathematical algorithm
  • the diagnostic system 100 is, for example, a server computer, a cloud server, a personal computer, a tablet terminal, or a smartphone, and is a system that includes at least one of these computers.
  • the diagnostic system 100 has a processor 20, a memory resource 30, an NI (Network Interface Device) 40, and a UI (User Interface Device) 50.
  • NI Network Interface Device
  • UI User Interface Device
  • the processor 20 is an arithmetic device that reads the program 210 stored in the memory resource 30 and executes the processing corresponding to the program 210.
  • Examples of the processor 20 include a microprocessor, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), or other semiconductor devices capable of performing calculations.
  • Memory resource 30 is a storage device that stores various information.
  • memory resource 30 is a non-volatile or volatile storage medium such as RAM (Random Access Memory) or ROM (Read Only Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • memory resource 30 may also be a rewritable storage medium such as a flash memory, a hard disk, or an SSD (Solid State Drive), or a USB (Universal Serial Bus) memory, a memory card, or a hard disk.
  • the NI 40 is a communication device that communicates information with the external device 10.
  • the NI 40 communicates information with the external device 10 via a predetermined communication network N, such as a LAN or the Internet. Unless otherwise specified below, it is assumed that information communication between the diagnostic system 100 and the external device 10 is performed via the NI 40.
  • the UI 50 is an input device that inputs instructions from the user (operator) to the diagnostic system 100, and an output device that outputs information generated by the diagnostic system 100.
  • input devices include pointing devices such as a keyboard, a touch panel, and a mouse, and a voice input device such as a microphone.
  • output devices include, for example, displays, printers, and voice synthesizers.
  • user operations on the diagnostic system 100 are assumed to be performed via the UI 50.
  • each configuration, function, processing means, etc. of the present system 100 may be realized in part or in whole in hardware, for example by designing it as an integrated circuit. Furthermore, the present system 100 may also realize each function in part or in whole in software, or through a combination of software and hardware. Furthermore, the present system 100 may use hardware having fixed circuits, or may use hardware having at least some of the circuits that are changeable.
  • the diagnostic system 100 can also be realized by a user (operator) implementing some or all of the functions and processes realized by each program.
  • the diagnostic system may entrust output processing to the user and some of the input processing from the user to a processor system outside the system (called an external processor system) such as a smartphone or tablet instead of the processor system itself.
  • an external processor system such as a smartphone or tablet instead of the processor system itself.
  • the diagnostic system or its processor 20, program may do the following to execute each process or other parts of the program.
  • data required for outputting to the user is sent to the external processor system via the NI 40.
  • data include the data to be output itself, data for generating output data in another processor system, but it may also be a program or web data that describes the process of performing user output in the external processor system.
  • the diagnostic system 100 receives data indicating a user input or operation from an external processor system via the NI 40.
  • the meaning of outputting data to the user may include the diagnostic system 100 itself outputting the data, as well as having another entity other than the system 100 output the data (asserting it).
  • the meaning of receiving input or operation from the user may include the diagnostic system 100 indirectly receiving the input or operation, as well as directly outputting or receiving the input to the user from the diagnostic system 100.
  • the programs executed by the diagnostic system may be stored in a non-volatile storage medium that can be read by the system 100.
  • the programs stored in the non-volatile storage medium may be read directly by the diagnostic system 100, or a processor system for program distribution may read the programs from the medium and then transmit (distribute) the programs to the diagnostic system 100.
  • An example of the non-volatile storage medium is the non-volatile memory described as the memory resource 30, but other optical disk media may also be used.
  • the malfunction-related information DB110 is a database that stores malfunction-related information.
  • the malfunction-related information is information that indicates the operating state (malfunction state) of an electronic/electric system due to the influence of a malfunction.
  • the malfunction-related information includes internal data of the electronic/electric system in a moving body (hereinafter, sometimes referred to as "system internal data"), probe data, user information, environmental information, infrastructure information, and product/service information.
  • System internal data is, for example, information such as error logs output from the ECU (Electronic Control Unit).
  • Probe data is, for example, location information while driving and video information captured by a drive recorder.
  • User information is, for example, questionnaire information that records the user's complaints (comments) regarding malfunctions.
  • Environmental information is, for example, information indicating the weather and road conditions while driving.
  • Infrastructure information is, for example, information such as server logs when using connected services.
  • Product and service information is, for example, product design documents and service manuals.
  • the diagnostic system 100 acquires defect-related information from businesses (e.g., automobile manufacturers, infrastructure management businesses, businesses that provide environmental information, etc.) that correspond to the type of information or computers owned by users of mobile vehicles (e.g., external devices 10), and stores the information in the defect-related information DB 110.
  • businesses e.g., automobile manufacturers, infrastructure management businesses, businesses that provide environmental information, etc.
  • mobile vehicles e.g., external devices 10
  • the defect correlation information DB 120 is a database that stores defect correlation information.
  • the defect correlation information is a so-called knowledge graph, FTA information, or FMEA information.
  • the defect correlation information is composed of nodes corresponding to knowledge items related to defects and links indicating the relationships between the nodes.
  • FIG. 2 shows an example of malfunction correlation information.
  • the malfunction correlation information shown in the figure shows an example of a knowledge graph related to an emergency brake malfunction (TOP event).
  • TOP event an emergency brake malfunction
  • the example shown includes knowledge items (nodes) related to malfunctions such as camera system failures and control ECU failures, and related nodes are connected by links (paths).
  • the start point of the path corresponds to the cause of the malfunction, and the end point of the path corresponds to the result of the malfunction, and the path represents the relationship between what factors can cause a certain malfunction (result).
  • FIG. 2 shows an example of malfunction correlation information corresponding to a top malfunction event, an emergency brake malfunction, in electronic and electric systems in the automotive industry.
  • the malfunction correlation information DB 120 stores multiple pieces of malfunction-related information corresponding to various top malfunction events in electronic and electric systems in each industry, such as the automotive industry.
  • the top malfunction event corresponds to the type of malfunction (details of the malfunction) indicated by the malfunction category.
  • Such defect correlation information may be acquired in advance from the external device 10 and stored in the defect correlation information DB 120.
  • the mathematical algorithm 130 is an algorithm executed by a predetermined mathematical model, and in this embodiment, a case where a neural network is used will be described as an example. Note that the mathematical algorithm 130 is not limited to a neural network, and may be another regression model such as XGBoost (eXtreme Gradient Boosting/gradient boosting regression tree).
  • XGBoost eXtreme Gradient Boosting/gradient boosting regression tree
  • the mathematical algorithm 130 calculates a causality coefficient ⁇ that indicates the strength of the relationship between nodes in the defect correlation information.
  • Figure 3 shows an example of a neural network.
  • the neural network is composed of an input layer that corresponds to defect-related information (internal system data, etc.), a certain number of intermediate layers (in the example shown, there are three layers, from layer 1 to layer 3), and an output layer that indicates possible defect causes.
  • the model configuration of such a neural network is defined by parameter information, which will be described later.
  • the mathematical algorithm 130 takes the defect-related information and the defect correlation information as input, and outputs a causality coefficient ⁇ that indicates the strength of the relationship between the upper node and the lower node in the defect correlation information.
  • Figure 3 shows the state in which the strengths of relationships ⁇ w, ⁇ x, ⁇ y, and ⁇ z between the upper node, i.e., the camera system failure, and each of the lower nodes, i.e., the sensor failure, the recognition AI HW (Hardware) failure, the communication LSI failure, and the communication cable failure, are output in the failure correlation information illustrated in Figure 2.
  • the upper node i.e., the camera system failure
  • each of the lower nodes i.e., the sensor failure, the recognition AI HW (Hardware) failure
  • the communication LSI failure the communication cable failure
  • the parameter information DB 140 is a database that stores parameters of the mathematical algorithm 130. Specifically, the parameters have predetermined parameter elements such as an industry, a defect category, a model configuration, a weighting coefficient, a bias, and an activation function.
  • Figure 4 shows an example of a parameter element.
  • the industry is the industry to which the electronic/electric system to be diagnosed belongs.
  • the malfunction type is information equivalent to the TOP event in the malfunction correlation information (for example, "emergency brake malfunction" as shown in Figure 2).
  • the model configuration is information that indicates the configuration of the mathematical algorithm 130.
  • the model configuration defines the number of input layers, intermediate layers, and output layers.
  • the weighting coefficient is a coefficient that indicates the weight of the connections between nodes (neurons) in the input layer, intermediate layer, and output layer.
  • the bias is information that indicates the bias (ease of flow) of the connections between each node (neuron).
  • the activation function is information that indicates the type of nonlinear transformation function used in the mathematical algorithm 130. Examples of activation functions include ReLU (Rectified Linear Unit) and Step function.
  • Such parameter information exists for each industry of the electronic/electric system being diagnosed, and is stored in the parameter information DB 140.
  • the normalization conversion coefficient DB 150 is a database that stores a normalization conversion coefficient ⁇ .
  • the normalization conversion coefficient ⁇ is a coefficient obtained by normalizing a standard value determined based on safety and reliability standards defined for each industry as a cross-industry relative value.
  • the normalization conversion coefficient ⁇ is a value (such as 0.001 for ⁇ 1-1 and 0.01 for ⁇ 3-2) normalized as a cross-industry relative value, for example, ASIL-D, which is a standard value for communication IF in the automobile industry, or SIL- 2 , which is a standard value for cameras in the industrial robot industry.
  • ASIL-D which is a standard value for communication IF in the automobile industry
  • SIL- 2 which is a standard value for cameras in the industrial robot industry.
  • the normalization conversion coefficient ⁇ exists for each industry of the electronic/electric system being diagnosed, and is stored in the normalization conversion coefficient DB 150.
  • each of the defect-related information, defect correlation information, mathematical algorithm, parameter information, and normalization conversion coefficients may be obtained directly from the external device 10 when each process described below is executed, and used in each process.
  • the defect history related information DB 160 is a database that stores defect history related information.
  • the defect history related information includes, for example, defect related information acquired from the external device 10, a defect diagnosis result, measures taken by the user in response to the diagnosis result, and information on whether the defect has been resolved.
  • the fault diagnosis program 211 is a program for diagnosing faults in electronic/electric systems. Specifically, the fault diagnosis program 211 identifies the industry and fault category of the electronic/electric system in which the fault has occurred based on fault-related information. The fault diagnosis program 211 also executes diagnosis to identify the cause of the fault using fault correlation information, the mathematical algorithm 130, parameter information, and normalization conversion coefficients corresponding to the identified industry and fault category. Details of these processes (fault category identification process, diagnostic model generation process, and diagnosis process) will be described later.
  • the learning program 212 is a program that performs machine learning of the mathematical algorithm 130 depending on the user's response to the diagnosis result and whether or not the defect has been resolved. The details of the learning process will be described later.
  • ⁇ Functional configuration of diagnostic system 100> 6 is a diagram showing an example of the functional configuration of the diagnostic system 100.
  • the illustrated functional units are classified according to the main processing contents in order to facilitate understanding of the functions realized by the processor 20 reading each program stored in the memory resource 30. Therefore, the present invention is not limited by the way in which the functions are classified or the names of the functional units.
  • the fault diagnosis unit 300 is a functional unit classified to facilitate understanding of the functions realized by the processor 20 reading the fault diagnosis program 211.
  • the fault diagnosis unit 300 is further classified into a fault category identification unit 302 and a diagnosis unit 301 according to the processing content.
  • the learning unit 310 is a functional unit that is classified to facilitate understanding of the functions that are realized by the processor 20 reading the learning program 212.
  • the learning unit 310 is further classified into an information registration unit 311 and a relearning unit 312 according to the processing content.
  • the functional units may be constructed using hardware (such as an integrated circuit such as an ASIC) implemented in a computer. Furthermore, the processing of each functional unit may be executed by a single piece of hardware, or may be executed by multiple pieces of hardware.
  • ⁇ Processing Description> 7 is a flow diagram showing an example of the defect category identification process, the diagnostic model generation process, the diagnostic process, and the learning process. The details of these processes will be described in order below.
  • the defect category identification process is started, for example, when an instruction to execute the process is received from a user (operator).
  • the defect category identification unit 302 acquires defect-related information from the defect-related information DB 110 (step S010).
  • the defect-related information to be acquired may be specified by the user, or may be acquired in the order in which it is stored in the defect-related information DB 110 (e.g., oldest first).
  • the defect category identification unit 302 analyzes the defect-related information to identify a defect category that indicates the target field (industry) of the electronic/electric system and the type of defect (defect content) (step S011).
  • the defect category identification unit 302 identifies the defect category based on, for example, an analysis of information recorded in the system internal data and probe data.
  • the defect category identification unit 302 proceeds to step S020.
  • step S020 the diagnosis unit 301 executes a diagnostic model generation process. Specifically, the diagnosis unit 301 generates a diagnostic model that is a set of defect correlation information corresponding to a defect category, a mathematical algorithm 130, parameter information, and the like.
  • FIG. 8 is a flow diagram showing the details of the diagnostic model generation process.
  • the diagnostic unit 301 determines whether or not there is parameter information for the industry (in this case, the first industry) corresponding to the defect category (step S021). Specifically, the diagnostic unit 301 searches the parameter information DB 140 and determines whether or not there is parameter information corresponding to the first industry.
  • step S021 If it is determined that there is corresponding parameter information (Yes in step S021), the diagnosis unit 301 proceeds to step S022. On the other hand, if it is determined that there is no corresponding parameter information (No in step S021), the diagnosis unit 301 proceeds to step S024.
  • step S022 the diagnosis unit 301 acquires defect correlation information corresponding to the defect category, parameter information for the first industry, and the mathematical algorithm 130 from the corresponding databases.
  • the diagnosis unit 301 generates a diagnosis model that sets the acquired information (step S023). That is, if there is parameter information for an industry (first industry) that corresponds to the defect category to be diagnosed, the diagnosis model is composed of a set of information including the parameter information for that industry, defect correlation information that corresponds to the defect category (particularly, the type (content) of the defect), and the mathematical algorithm 130.
  • step S024 the diagnosis unit 301 acquires defect correlation information corresponding to the defect category, existing parameter information of another industry (a second industry different from the first industry), the mathematical algorithm 130, and normalization conversion coefficients of the first industry and the second industry. Then, the diagnosis unit 301 generates a diagnosis model that sets the acquired information (step S023).
  • the diagnostic model is composed of a set of information including existing parameter information for an industry (second industry) different from the industry, defect correlation information corresponding to the defect category, a mathematical algorithm 130, and normalization conversion coefficients corresponding to the first industry and the second industry.
  • diagnosis unit 301 sets the mathematical algorithm 130 based on the acquired parameter information (step S024). After setting the mathematical algorithm 130, the diagnosis unit 301 transitions to step S030.
  • step S030 the diagnosis unit 301 executes a diagnosis process using the diagnosis model. Specifically, the diagnosis unit 301 uses the diagnosis model to calculate the occurrence probability of each defect cause.
  • FIG. 9 is a flow diagram showing the details of the diagnosis process. As shown in the figure, the diagnosis unit 301 determines whether the mathematical algorithm 130 is set based on parameter information of the industry (first industry) corresponding to the defect category (step S0301).
  • step S0301 If it is determined that the setting is based on the parameter information of the first industry (Yes in step S0301), the diagnosis unit 301 proceeds to step S0302. On the other hand, if it is determined that the setting is not based on the parameter information of the first industry (No in step S0301), the diagnosis unit 301 proceeds to step S0304.
  • step S0302 the diagnosis unit 301 inputs the defect-related information and the defect correlation information to the mathematical algorithm 130 set based on the parameter information of the first industry, and obtains an output of the causal coefficient ⁇ between the defect factors.
  • the diagnosis unit 301 inputs the defect-related information and the defect correlation information corresponding to the defect category to the mathematical algorithm 130 (neural network) shown in FIG. 3, and obtains an output of the causal coefficients ⁇ a to ⁇ z between the defect factors.
  • the diagnosis unit 301 also calculates the occurrence probability of each defect factor based on the causal coefficients ⁇ a to ⁇ z (step S0303).
  • the diagnosis unit 301 calculates the occurrence probability ⁇ a to ⁇ z of each defect factor based on the causal coefficients ⁇ a to ⁇ z .
  • step S0304 the diagnosis unit 301 inputs the defect-related information and defect correlation information to the mathematical algorithm 130 set based on the parameter information of the second industry, and obtains an output of the causal coefficient ⁇ between defect factors.
  • the diagnosis unit 301 normalizes (multiplies) the causal coefficient ⁇ based on the ratio between the normalized conversion coefficient for the first industry and the normalized conversion coefficient for the second industry to calculate the occurrence probability ⁇ of each defect cause.
  • step S0303 When parameter information of an industry (first industry) corresponding to the defect category to be diagnosed exists (step S0303), the causal coefficients ⁇ a to ⁇ z output from the mathematical algorithm 130 set based on the parameter information can be set as the defect occurrence probability ⁇ .
  • the mathematical algorithm 130 is set based on parameter information of a second industry different from the first industry. Therefore, the diagnosis unit 301 multiplies the causal coefficient ⁇ by the ratio between the normalization conversion coefficient corresponding to the first industry and the normalization conversion coefficient corresponding to the second industry, thereby absorbing the difference in the standards for the functional safety levels in each industry and calculating the occurrence probability of the defect cause.
  • step S0303 or step S0305 the diagnosis unit 301 transitions the processing to step S031.
  • step S031 the diagnostic unit 301 outputs the malfunction factors with a high occurrence probability as the diagnosis result. Specifically, the diagnostic unit 301 identifies a predetermined number (e.g., three) of malfunction factors in descending order of occurrence probability. The diagnostic unit 301 also generates display information of the diagnosis result that associates the identified malfunction factors with their occurrence probabilities. The diagnostic unit 301 also transmits the generated display information to the external device 10.
  • a predetermined number e.g., three
  • the diagnostic unit 301 also generates display information of the diagnosis result that associates the identified malfunction factors with their occurrence probabilities.
  • the diagnostic unit 301 also transmits the generated display information to the external device 10.
  • the display information of the diagnosis results may be output, for example, to a display device possessed by the diagnosis system 100.
  • FIG. 12 shows an example of the diagnosis result. As shown in the figure, the diagnosis result corresponds to a specific number of identified defect causes and their respective occurrence probabilities.
  • the user inputs the measures taken in response to the diagnosis results and whether or not the problem has been resolved via the input device of the external device 10, thereby transmitting (feeding back) input information regarding the response status to the diagnosis system 100.
  • the information registration unit 311 of the diagnostic system 100 associates the diagnostic results with the feedback from the user and registers them in the defect history related information DB 160 (step S040).
  • the re-learning unit 312 executes machine learning of the mathematical algorithm 130 based on the input information such as the response status (step S040).
  • the re-learning unit 312 also updates the parameter information of the mathematical algorithm 130 based on the machine learning (step S041). Specifically, the re-learning unit 312 updates parameter values of the parameter information, such as weighting coefficients and biases, based on the machine learning.
  • the re-learning unit 312 stores updated information for that parameter information set in the mathematical algorithm 130 in the parameter information DB 140 (overwriting and saving the existing parameter information).
  • the re-learning unit 312 stores the updated parameter information in the parameter information DB 140 as new parameter information for the industry corresponding to the defect category to be diagnosed.
  • the diagnostic system can identify the cause of defects with greater accuracy, and can also create a diagnostic model that can share defect knowledge with other industries.
  • this system can calculate the causal coefficient between defect factors using a mathematical algorithm set based on parameter information that exists for each industry, making it possible to identify defect factors with greater accuracy.
  • this system can calculate the occurrence probability of defect factors that absorbs the differences in standards for functional safety levels in each industry by using ⁇ normalized based on the ratio of the normalization conversion coefficient ⁇ . Therefore, with this system, even when diagnosing defects in a new industry, it is possible to efficiently build a diagnostic model by utilizing defect knowledge from other industries.
  • the malfunction correlation information included in the configuration of the diagnostic model is not limited to malfunction correlation information of the industry corresponding to the electronic/electric system to be diagnosed. For example, if there is no malfunction correlation information of a TOP event corresponding to the type (content) of the malfunction in the industry corresponding to the electronic/electric system to be diagnosed (e.g., the first industry), the diagnosis unit 301 may include malfunction correlation information of the same or a similar other industry (e.g., the second industry) in the diagnostic model.
  • defect correlation information from different industries is the same or similar can be determined based on, for example, the TOP events and defect causes (nodes) included in the defect correlation information, or the branching between nodes. Whether defect correlation information is the same or similar can be determined by linking and managing the information in advance.
  • the diagnostic system 100 can calculate the occurrence probability of the fault cause using a diagnostic model that includes the same or similar fault correlation information for a different industry. As a result, the diagnostic system 100 can perform fault diagnosis that is compatible with a wide range of industries.
  • the normalization conversion coefficient ⁇ in this embodiment is a value (such as 0.01 for ⁇ 1-1 and 0.0001 for ⁇ 2-2 ) normalized as an industry-wide relative value, for example, a communication IF design method (shielded twisted pair cable) at electronic/electric system manufacturer A and a camera design method (Z company camera) at manufacturer B.
  • a communication IF design method shielded twisted pair cable
  • a camera design method Z company camera
  • the diagnostic system can reflect the defect factor ratio in the diagnostic model based on the manufacturer's reliability design information. As a result, it is possible to reduce error factors due to differences in manufacturers and achieve high-precision defect diagnosis.
  • the diagnostic system 100 uses a value calculated based on a calculation formula for a failure rate prediction model defined in, for example, FIDES or IEC/TR62380 and the operational environment information (user information, environmental information, infrastructure information, and product/service information) of the defect-related information as the normalization conversion coefficient ⁇ .
  • the diagnosis unit 301 calculates a normalization conversion coefficient ⁇ each time a diagnosis is performed based on the failure rate prediction model (formula) and defect-related information, which includes the usage environment and operating time, and uses this coefficient to calculate the occurrence probability of the defect cause.
  • the diagnostic system can reflect the failure probability according to the usage state of each component that makes up the electronic/electric system in the diagnostic model. As a result, it is possible to achieve high accuracy in fault diagnosis.
  • the diagnostic system 100 changes the normalization conversion coefficient ⁇ corresponding to the updated part when the system components of the electronic/electric system are updated (changed) through an OTA (Over The Air)/HW (Hardware) update.
  • OTA Over The Air
  • HW Hardware
  • the diagnosis unit 301 calculates the occurrence probability of the malfunction factor using a normalized conversion coefficient ⁇ that normalizes the failure rate corresponding to the changed components.
  • the diagnostic system uses the normalization conversion coefficient ⁇ that corresponds to the changed parts as appropriate in response to updates to the components of such electronic and electric systems. This allows the diagnostic system to achieve high-precision fault diagnosis even if there are changes to the component configuration of the electronic and electric systems.
  • the diagnostic system 100 of the fifth embodiment uses a diagnostic model of an electronic/electric system that is highly similar in a different industry and that has already accumulated a large number of diagnostic records.
  • FIG. 14 shows an example of the similarity judgment result for electronic/electric systems.
  • the similarity between electronic/electric systems is judged based on certain viewpoints such as system configuration components, connection topology, and system functions.
  • recognition system 1 has a system configuration that is most similar to the system to be diagnosed.
  • the diagnosis unit 301 performs fault diagnosis using the diagnosis model of recognition system 1.
  • the diagnosis unit 301 performs diagnosis using the normalization transformation ⁇ that corresponds to the industry of the electronic/electric system to be diagnosed.
  • the process of determining the degree of similarity is performed, for example, by the diagnosis unit 301, which performs fault diagnosis using a diagnostic model of the electronic/electric system with the most similar system configuration.
  • the diagnostic system can achieve high accuracy even when diagnosing electronic and electric systems for which no diagnostic models have been generated or for which there is a small number of diagnostic records.
  • the diagnostic system 100 of the sixth embodiment calculates the probability of occurrence of a malfunction factor in similar electronic/electric systems using a normalization conversion coefficient ⁇ corresponding to the usage environment associated with the servicing of each electronic/electric system.
  • Figure 15 shows an example of the usage environment for each service of similar electronic and electric systems.
  • a logistics EV (Electric Vehicle) fleet, an autonomous taxi, and an autonomous bus are services that utilize similar electronic and electric systems.
  • the environments, continuous operating times, and maintenance frequencies of the electronic and electric systems in these services are mutually different. Therefore, even if electronic and electric systems have similar system configurations, the parts that are prone to failure differ depending on the usage environment associated with the service.
  • the diagnostic system 100 stores in the normalization conversion coefficient DB a normalization conversion coefficient ⁇ normalized according to the failure rate of each component for each service.
  • the diagnostic unit 301 then identifies the service environment of the electronic/electric system to be diagnosed based on the malfunction-related information, and performs malfunction diagnosis using the normalization conversion coefficient ⁇ according to the environment.
  • Service type 1> 16 is a schematic diagram of service form 1.
  • Service form 1 is an example of launching a fault diagnosis service for a new industry. Specifically, it is an example of building a new fault diagnosis service for service robots.
  • the diagnostic system 100 is based on the premise that a fault diagnosis service for automobiles and industrial robots has already been established, and that the mathematical algorithm 130 based on actual fault history has progressed in learning. It is also based on the premise that industry standard values for service robots exist as safety and reliability criteria.
  • the diagnostic system 100 registers in the normalization conversion coefficient DB 150 the normalization conversion coefficient ⁇ corresponding to the service robot industry, which is calculated by normalizing the standard values determined based on the safety and reliability standards defined in the service robot industry as cross-industry relative values.
  • the diagnosis system 100 utilizes the causality coefficient ⁇ of an electronic/electric system in another industry that is similar to the electronic/electric system of the service robot (in the illustrated example, the arm drive system and connected system).
  • the diagnosis system 100 uses the causality coefficient ⁇ 1 existing in the automobile industry for the recognition system of the service robot, and uses the causality coefficient ⁇ 3 existing in the industrial robot industry for the arm drive system of the service robot.
  • the diagnostic system 100 launches a fault diagnosis service for a new industry, it starts the fault diagnosis service by using the causal coefficient ⁇ of a similar electronic/electric system that has already been learned.
  • the diagnostic system 100 can generate and update parameter information that matches the actual situation of the service robot. As a result, the diagnostic system 100 can build and operate a highly accurate defect diagnosis service even for new industries.
  • Such a service form 1 can be realized, for example, by applying and utilizing the diagnostic system 100 according to the fifth embodiment described above.
  • Service type 2> 17 is a schematic diagram of service form 2.
  • Service form 2 is similar to service form 1 in that it is an example of a case where a new fault diagnosis service for service robots is constructed. However, this service form 2 assumes a case where there are no standard values for safety and reliability standards that are the industry standard in the service robot industry.
  • the diagnostic system 100 uses both the causality coefficient ⁇ of similar electronic/electric systems in the automotive and industrial robot industries, where the learning of the mathematical algorithm 130 is advanced, and the normalization conversion coefficient ⁇ of similar electronic/electric systems in these industries.
  • the diagnosis system 100 uses the causality coefficient ⁇ 1 and normalization conversion coefficient ⁇ 1 existing in the automobile industry for the recognition system of the service robot, and uses the causality coefficient ⁇ 3 and normalization conversion coefficient ⁇ 3 existing in the industrial robot industry for the arm drive system of the service robot.
  • diagnostic system 100 launches a fault diagnosis service for a new industry, it starts the fault diagnosis service by using the causality coefficient ⁇ of a similar electronic/electric system that has already undergone learning, and the normalization conversion coefficient ⁇ corresponding to that industry.
  • diagnostic system 100 generates and updates parameter information tailored to the actual situation of the service robot by advancing machine learning as a service robot through operation.
  • the diagnostic system 100 can build and operate a highly accurate fault diagnosis service even for new industries.
  • the diagnostic system 100 can use an industry-wide normalization conversion coefficient that normalizes the relative value between the standard value and the standard values of other industries as the normalization conversion coefficient corresponding to the service robot industry.
  • the computer related to such a diagnostic system 100 may function as a program distribution server that distributes at least the programs in the memory resource 30 to other computers so that the programs can be executed on the other computers.
  • the present invention is not limited to the above-mentioned embodiments and modifications, but includes various modifications within the scope of the same technical idea.
  • the above-mentioned embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • control lines and information lines are those that are considered necessary for the explanation, and do not necessarily show all the control lines and information lines in the product. In reality, it can be assumed that almost all components are interconnected.
  • 100 diagnostic system
  • 20 processor
  • 30 memory resource
  • 40 network interface device
  • 50 UI (user interface device)
  • 110 defect-related information DB
  • 120 defect correlation information DB
  • 130 mathematical algorithm
  • 140 parameter information DB
  • 150 normalization conversion coefficient DB
  • 160 defect history-related information DB
  • 210 program
  • 211 defect diagnosis program
  • 212 learning program
  • 300 defect diagnosis unit
  • 301 diagnosis unit
  • 302 defect category identification unit
  • 310 learning unit
  • 311 information registration unit
  • 312 relearning unit
  • 10 external device
  • N network

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Computational Linguistics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Hardware Design (AREA)
  • Economics (AREA)
  • Artificial Intelligence (AREA)
  • Tourism & Hospitality (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention can realize the construction of a diagnosis model that enables identifying of a failure factor with higher accuracy and sharing of the failure knowledge of other industries. This diagnosis system has at least one processor and at least one memory resource. The memory resource stores a failure diagnosis program for diagnosing failure of electronic/electromotive systems. The processor executes the failure diagnosis program to perform diagnosis involving: identifying, on the basis of acquisition of failure-related information indicating the failure state of the electronic/electromotive systems, the industry and the failure type of an electronic/electromotive system to be diagnosed; calculating, as the occurrence probability of a failure factor, a causal coefficient which is outputted by using a prescribed mathematical algorithm having set therein parameter information corresponding to a first industry having been identified and which indicates the strength of the relationship between failure factors corresponding to the failure type; and identifying the failure factor on the basis of the occurrence probability.

Description

診断システム、診断方法およびプログラムDiagnostic system, diagnostic method, and program
 本発明は、診断システム、診断方法およびプログラムに関する。本発明は2023年3月22日に出願された日本国特許の出願番号2023-045145の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a diagnostic system, a diagnostic method, and a program. The present invention claims priority to Japanese Patent Application No. 2023-045145, filed on March 22, 2023, and the contents of that application are incorporated by reference into this application in designated countries where incorporation by reference of literature is permitted.
 近年、自動運転に対するニーズの高まりに伴い、情報機器向けの半導体や通信規格が車載機器に採用されるケースが増加している。また、このような傾向がAI(Artificial Intelligence)の産業分野やミッションクリティカル分野に波及することで、様々な産業分野を横断した共通の半導体や通信規格の採用比率が増加すると予測される。 In recent years, with the growing need for autonomous driving, there has been an increase in the use of semiconductors and communication standards for information devices in in-vehicle equipment. Furthermore, as this trend spreads to the AI (Artificial Intelligence) industrial sector and mission-critical fields, it is predicted that the adoption rate of common semiconductors and communication standards across various industrial sectors will increase.
 また、こういったトレンドを踏まえ、電子・電動システムの機能安全規格IEEE P2851では、機能安全設計・検証プロセスにおけるデータ・検証プロセスを、業界横断的に共通プロセス化することが推進されている。 In addition, in light of these trends, the IEEE P2851 functional safety standard for electronic and electric systems is promoting the standardization of data and verification processes in the functional safety design and verification process across industries.
 一方で、電子・電動化されたサービスシステムの高信頼・安全運用を目的とする診断技術は、現状、業界ごとに構築されている。具体的には、各ベンダは、業界標準の安全基準、信頼性基準に則って設計・開発された診断システムを、業界の標準データ・標準プロセスに基づきカスタマイズすることで運用している。 On the other hand, diagnostic technologies aimed at ensuring the reliable and safe operation of electronic and electrified service systems are currently being developed on an industry-by-industry basis. Specifically, each vendor operates diagnostic systems that are designed and developed in accordance with industry-standard safety and reliability standards, customizing them based on industry-standard data and processes.
 なお、類似するシステム構成や同じ部品を活用したシステムであっても、業界が異なる場合、安全基準・信頼性基準には相互に違いがある。そのため、診断モデルの生成にあたり、別業界のナレッジを共有することが難しく、機械学習ベースの診断モデルを一から構築する必要が生じる。 Even if systems have similar system configurations or use the same components, if they are in different industries, there are differences in safety and reliability standards. This makes it difficult to share knowledge from other industries when generating diagnostic models, and makes it necessary to build machine learning-based diagnostic models from scratch.
 そのため、複数の業界に跨って各業界のナレッジを共有した効率的な診断モデルの構築が課題となる。 The challenge is therefore to build an efficient diagnostic model that spans multiple industries and shares knowledge from each industry.
 なお、特許文献1には、複雑な環境内でのエラー状態を診断するシステムが開示されている。具体的には、特許文献1には、「検出された故障の確率の高い原因の診断を生成するためのシステムであり、有利には、ユーザインターフェースが設けられており、Bayesianネットワークが使用され、その際、確率が自動的に生成され、確率表を構成するためにマニュアル過程が使用されている。システムにより、複数の仮説及び/又は診断がオペレータに同時に提供される」と記載されている。 Patent document 1 discloses a system for diagnosing error conditions in a complex environment. Specifically, patent document 1 states, "A system for generating diagnoses of probable causes of a detected fault, advantageously provided with a user interface and using a Bayesian network, where the probabilities are generated automatically and manual processes are used to construct the probability table. The system provides multiple hypotheses and/or diagnoses to an operator simultaneously."
特開2000-356696号公報JP 2000-356696 A
 特許文献1のシステムでは、ベイジアンネットワークを活用して複雑系で生じる故障原因の診断を行っている。しかしながら、同文献のシステムでは、別業界の不具合ナレッジを共有した効率的な診断モデルの生成については考慮されていない。そのため、特許文献1の技術では、複数の業界に跨って各業界のナレッジを共有した効率的な診断モデルの構築という課題を解決することは難しい。 The system in Patent Document 1 utilizes a Bayesian network to diagnose the causes of failures that occur in complex systems. However, the system in this document does not take into consideration the generation of an efficient diagnostic model that shares defect knowledge from different industries. Therefore, the technology in Patent Document 1 makes it difficult to solve the problem of building an efficient diagnostic model that spans multiple industries and shares knowledge from each industry.
 本発明は、上記課題に鑑みてなされたものであり、業界横断的に不具合ナレッジを共有することで効率的な診断モデルの構築を実現することを目的とする。 The present invention was made in consideration of the above problems, and aims to realize the construction of efficient diagnostic models by sharing defect knowledge across industries.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。上記の課題を解決する本発明の一態様に係る診断システムは、1以上のプロセッサと、1以上のメモリリソースと、を有する診断システムであって、前記メモリリソースは、電子・電動システムの不具合を診断する不具合診断プログラムを格納し、前記プロセッサは、前記不具合診断プログラムを実行することで:前記電子・電動システムの不具合状態を示す不具合関連情報の取得に基づき診断対象の電子・電動システムの業界および不具合種類を特定し、特定した第1の業界に対応するパラメータ情報を設定した所定の数理アルゴリズムにより出力された、前記不具合種類に対応する不具合要因間の関係性の強さを示す因果係数を、不具合要因の発生確率として算出し、前記発生確率に基づいて前記不具合要因を特定する診断を行う。 The present application includes multiple means for solving at least part of the above problems, examples of which are as follows: A diagnostic system according to one aspect of the present invention for solving the above problems is a diagnostic system having one or more processors and one or more memory resources, the memory resources storing a fault diagnosis program for diagnosing faults in an electronic/electric system, and the processor executing the fault diagnosis program to: identify the industry and fault type of the electronic/electric system to be diagnosed based on acquisition of fault-related information indicating a fault state of the electronic/electric system, calculate a causal coefficient indicating the strength of the relationship between fault factors corresponding to the fault type output by a predetermined mathematical algorithm in which parameter information corresponding to the identified first industry is set, as the occurrence probability of the fault factor, and perform a diagnosis to identify the fault factor based on the occurrence probability.
 本発明によれば、より高精度に不具合要因を特定可能であり、他業界の不具合ナレッジをも共有可能な診断モデルの構築を実現することができる。 The present invention makes it possible to identify the cause of defects with greater accuracy and to build a diagnostic model that can share defect knowledge with other industries.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。  Problems, configurations and advantages other than those mentioned above will become clear from the description of the embodiments below.
診断システムの概略構成の一例を示した図である。FIG. 1 is a diagram illustrating an example of a schematic configuration of a diagnostic system. 不具合相関情報の一例を示した図である。FIG. 11 is a diagram illustrating an example of defect correlation information. 数理アルゴリズム(ニューラルネットワーク)の一例を示した図である。FIG. 13 is a diagram showing an example of a mathematical algorithm (neural network). パラメータ要素の一例を示した図である。FIG. 13 illustrates an example of a parameter element. 正規化変換係数の一例を示した図である。FIG. 13 is a diagram illustrating an example of normalized transform coefficients. 診断システムの機能構成の一例を示した図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a diagnostic system. 各処理の一例を示したフロー図である。FIG. 4 is a flow chart showing an example of each process. 診断モデル生成処理の詳細を示したフロー図である。FIG. 11 is a flow diagram showing details of a diagnostic model generation process. 診断処理の詳細を示したフロー図である。FIG. 4 is a flow chart showing details of a diagnostic process. 不具合要因と発生確率との関係を示した図である。FIG. 13 is a diagram showing the relationship between defect causes and occurrence probabilities. 不具合要因と発生確率との関係を示した図である。FIG. 13 is a diagram showing the relationship between defect causes and occurrence probabilities. 診断結果の一例を示した図である。FIG. 11 is a diagram showing an example of a diagnosis result. 第二実施形態に係る正規化変換係数の一例を示した図である。FIG. 11 is a diagram illustrating an example of normalized transformation coefficients according to the second embodiment. 第五実施形態に係る類似度の判定結果の一例を示した図である。FIG. 23 is a diagram showing an example of a determination result of a similarity according to the fifth embodiment. 第六実施形態に係る類似する電子・電動システムの各サービスにおける使用環境の一例を示した図である。FIG. 13 is a diagram showing an example of a usage environment for each service of similar electronic/electric systems according to the sixth embodiment. サービス形態1の概要図である。FIG. 1 is a schematic diagram of a service form 1. サービス形態2の概要図である。FIG. 13 is a schematic diagram of a service form 2.
 以下、本発明の各実施形態について図面を用いて説明する。 Each embodiment of the present invention will be explained below with reference to the drawings.
 <第一実施形態>
 図1は、本実施形態に係る診断システム100の概略構成の一例を示した図である。診断システム(以下、「本システム」という場合がある)100は、電子・電動システムで生じた不具合を診断する装置である。
First Embodiment
1 is a diagram showing an example of a schematic configuration of a diagnostic system 100 according to this embodiment. The diagnostic system 100 (hereinafter, sometimes referred to as "this system") is a device that diagnoses malfunctions that occur in electronic and electric systems.
 具体的には、診断システム100は、診断モデルを用いて、移動体(例えば、EV:Electric Vehicleを含む自動車等)やロボット(例えば、産業ロボットやサービスロボット)などに搭載されている各種の電子・電動システム(例えば、自動車における認識システム/車輪駆動システム/コネクテッドシステム等、ロボットにおける認識システム/アーム駆動システム/コネクテッドシステム等)で発生した不具合を診断し、特定した不具合要因を診断結果として出力する。 Specifically, the diagnostic system 100 uses a diagnostic model to diagnose malfunctions that occur in various electronic/electric systems (e.g., recognition systems/wheel drive systems/connected systems in automobiles, recognition systems/arm drive systems/connected systems in robots) installed in moving objects (e.g., automobiles including EVs: Electric Vehicles) and robots (e.g., industrial robots and service robots), and outputs the identified causes of the malfunction as the diagnostic results.
 より具体的には、診断システム100は、以下の要素から構成される診断モデルを用いて電子・電動システムで生じた不具合を診断する。
*「診断対象の不具合カテゴリに対応する業界のパラメータ情報が存在する場合」
**不具合相関情報:各々の電子・電動システムの専門領域における不具合の相関関係を示す情報。例えば、FTA:Fault Tree Analysis、FMEA:Failure Mode and Effects Analysisなど。
**数理アルゴリズム:ニューラルネットワークなどの数理アルゴリズム。不具合相関情報におけるノード間の関係性の強さを示す因果係数αを出力する情報モデル。
**パラメータ情報:数理アルゴリズムに設定されるパラメータ値。
More specifically, the diagnostic system 100 diagnoses malfunctions occurring in the electronic/electric system using a diagnostic model consisting of the following elements:
* "When there is industry parameter information that corresponds to the defect category to be diagnosed"
**Failure correlation information: Information showing the correlation of failures in the specialized fields of each electronic and electric system. For example, FTA: Fault Tree Analysis, FMEA: Failure Mode and Effects Analysis, etc.
** Mathematical algorithm: A mathematical algorithm such as a neural network. An information model that outputs a causal coefficient α that indicates the strength of the relationship between nodes in defect correlation information.
** Parameter information: Parameter values set in the mathematical algorithm.
*「診断対象の不具合カテゴリに対応する業界のパラメータ情報が存在しない場合」
**不具合相関情報
**数理アルゴリズム
**パラメータ情報
**正規化変換係数β:業界ごとの安全・信頼性基準の規格値を業界横断的な相対値として正規化した係数。
* "When there is no industry parameter information corresponding to the defect category to be diagnosed"
**Failure correlation information **Mathematical algorithm **Parameter information **Normalization conversion coefficient β: A coefficient that normalizes the safety and reliability standard values for each industry as cross-industry relative values.
 また、診断システム100は、診断結果に対してユーザがとった措置や不具合解消の有無に応じて、因果係数αの算出に用いる数理アルゴリズムを実行するためのパラメータ情報を更新する。 The diagnostic system 100 also updates the parameter information for executing the mathematical algorithm used to calculate the causal coefficient α depending on the measures taken by the user in response to the diagnostic results and whether or not the defect has been resolved.
 また、診断システム100は、診断対象の電子・電動システムに対応する業界のパラメータ情報が存在しない場合、他の業界のパラメータ情報を用いて数理アルゴリズムが出力した因果係数αを、当該他の業界の正規化変換係数βと、診断対象の電子・電動システムに対応する業界の正規化変換係数βと、の比率に基づき正規化し、正規化後の因果係数αを用いて不具合要因を特定する。 In addition, when there is no parameter information of the industry corresponding to the electronic/electric system to be diagnosed, the diagnostic system 100 normalizes the causal coefficient α1 output by the mathematical algorithm using parameter information of another industry based on the ratio between the normalization conversion coefficient β1 of the other industry and the normalization conversion coefficient β2 of the industry corresponding to the electronic/electric system to be diagnosed, and identifies the cause of the malfunction using the normalized causal coefficient α2 .
 このような本システムによれば、より高精度に不具合要因を特定可能であり、他業界の不具合ナレッジをも共有可能な診断モデルの構築を実現することができる。 This system makes it possible to identify the cause of defects with greater accuracy, and to build a diagnostic model that can share defect knowledge with other industries.
 なお、診断対象となる電子・電動システムは、移動体やロボットに限定されるものではなく、様々な種類の電子・電動システムが対象となるが、本実施形態では、移動体である自動車の電子・電動システムで生じた不具合の診断を例に説明する。 The electronic/electrical systems to be diagnosed are not limited to mobile objects or robots, but various types of electronic/electrical systems are targeted. In this embodiment, however, the diagnosis of a malfunction that occurs in the electronic/electrical system of an automobile, which is a mobile object, will be used as an example.
 <診断システム100の構成>
 図1に示すように、診断システム(プロセッサシステム)100は、例えば通信ケーブルや所定の通信ネットワーク(例えば、インターネット、LAN(Local Area Network)あるいはWAN(Wide Area Network)など)Nにより外部装置10と相互通信可能に接続されている。
<Configuration of diagnostic system 100>
As shown in FIG. 1, a diagnostic system (processor system) 100 is connected to an external device 10 so as to be able to communicate with each other via, for example, a communication cable or a predetermined communication network N (for example, the Internet, a LAN (Local Area Network) or a WAN (Wide Area Network)).
 <<外部装置10>>
 外部装置10は、診断システム100へ各種の情報を送信する装置である。この場合、外部装置10には、不具合関連情報を診断システム100に送信する車両システムや本システム100で実行される処理に用いられる種々の有用情報を提供する事業者の計算機が含まれる。
<<External device 10>>
The external device 10 is a device that transmits various information to the diagnostic system 100. In this case, the external device 10 includes a vehicle system that transmits defect-related information to the diagnostic system 100 and a processing unit that performs the processing in the diagnostic system 100. This includes operators' computers that provide a variety of useful information to be used.
 また、外部装置10は、診断システム100が出力した診断結果を表示する装置である。この場合、外部装置10には、例えば自動車メーカなどの製品製造・保守事業者、インフラ管理事業者など、本システム100が提供する診断サービスを受ける事業者の計算機が含まれる。 The external device 10 is a device that displays the diagnostic results output by the diagnostic system 100. In this case, the external device 10 includes computers of businesses that receive the diagnostic services provided by this system 100, such as product manufacturing and maintenance businesses such as automobile manufacturers, and infrastructure management businesses.
<<診断システム100の詳細>>
 診断システム100は、メモリリソース30に格納されたプログラム210や各種の情報をプロセッサ20が読み込むことにより、様々な処理を実行する。具体的には、診断システム100は、不具合関連情報を用いて電子・電動システムにおける不具合カテゴリを特定する処理(以下、「不具合カテゴリ特定処理」という場合がある)を実行する。
<<Details of diagnostic system 100>>
The diagnostic system 100 executes various processes by the processor 20 reading the program 210 and various information stored in the memory resource 30. Specifically, the diagnostic system 100 executes a process of identifying a malfunction category in the electronic/electric system using the malfunction-related information (hereinafter, may be referred to as a "malfunction category identification process").
 また、診断システム100は、特定した不具合カテゴリに基づき診断モデルを生成する処理(以下、「診断モデル生成処理」という場合がある)を実行する。 The diagnostic system 100 also executes a process for generating a diagnostic model based on the identified defect categories (hereinafter, sometimes referred to as the "diagnostic model generation process").
 また、診断システム100は、診断モデルに基づき不具合要因を診断する診断処理を実行する。 The diagnostic system 100 also executes a diagnostic process to diagnose the cause of the defect based on the diagnostic model.
 また、診断システム100は、診断結果に対してユーザがとった措置や不具合解消の有無に基づき、数理アルゴリズムの機械学習(以下、「学習処理」という場合がある)を行う。 The diagnostic system 100 also performs machine learning of a mathematical algorithm (hereinafter sometimes referred to as "learning processing") based on the measures taken by the user in response to the diagnostic results and whether or not the defect has been resolved.
 なお、これらの各処理の詳細については後述する。 Details of each of these processes will be given later.
 なお、診断システム100は、例えば、サーバ計算機やクラウドサーバあるいはパーソナルコンピュータ、タブレット端末、スマートフォンであり、少なくともこれらの計算機を1つ以上含むシステムである。 The diagnostic system 100 is, for example, a server computer, a cloud server, a personal computer, a tablet terminal, or a smartphone, and is a system that includes at least one of these computers.
 具体的には、診断システム100は、プロセッサ20と、メモリリソース30と、NI(Network Interface Device)40と、UI(User Interface Device)50と、を有している。 Specifically, the diagnostic system 100 has a processor 20, a memory resource 30, an NI (Network Interface Device) 40, and a UI (User Interface Device) 50.
 プロセッサ20は、メモリリソース30に格納されているプログラム210を読み込んで、当該プログラム210に対応する処理を実行する演算装置である。なお、プロセッサ20は、マイクロプロセッサ、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、あるいはその他の演算できる半導体デバイス等が一例として挙げられる。 The processor 20 is an arithmetic device that reads the program 210 stored in the memory resource 30 and executes the processing corresponding to the program 210. Examples of the processor 20 include a microprocessor, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), or other semiconductor devices capable of performing calculations.
 メモリリソース30は、各種情報を記憶する記憶装置である。具体的には、メモリリソース30は、例えばRAM(Random Access Memory)やROM(Read Only Memory)などの不揮発性あるいは揮発性の記憶媒体である。なお、メモリリソース30は、例えばフラッシュメモリ、ハードディスクあるいはSSD(Solid State Drive)などの書き換え可能な記憶媒体や、USB(Universal Serial Bus)メモリ、メモリカードおよびハードディスクであっても良い。 Memory resource 30 is a storage device that stores various information. Specifically, memory resource 30 is a non-volatile or volatile storage medium such as RAM (Random Access Memory) or ROM (Read Only Memory). Note that memory resource 30 may also be a rewritable storage medium such as a flash memory, a hard disk, or an SSD (Solid State Drive), or a USB (Universal Serial Bus) memory, a memory card, or a hard disk.
 NI40は、外部装置10との間で情報通信を行う通信装置である。NI40は、例えばLANやインターネットなど所定の通信ネットワークNを介して外部装置10との間で情報通信を行う。なお、以下で特に言及しない場合、診断システム100と外部装置10との情報通信は、NI40を介して実行されているものとする。 The NI 40 is a communication device that communicates information with the external device 10. The NI 40 communicates information with the external device 10 via a predetermined communication network N, such as a LAN or the Internet. Unless otherwise specified below, it is assumed that information communication between the diagnostic system 100 and the external device 10 is performed via the NI 40.
 UI50は、ユーザ(オペレータ)の指示を診断システム100に入力する入力装置、および、診断システム100で生成した情報等を出力する出力装置である。入力装置には、例えばキーボード、タッチパネル、マウスなどのポインティングデバイスや、マイクロフォンのような音声入力装置などがある。 The UI 50 is an input device that inputs instructions from the user (operator) to the diagnostic system 100, and an output device that outputs information generated by the diagnostic system 100. Examples of input devices include pointing devices such as a keyboard, a touch panel, and a mouse, and a voice input device such as a microphone.
 また、出力装置には、例えばディスプレイ、プリンタ、音声合成装置などがある。なお、以下で特に言及しない場合は、診断システム100に対するユーザの操作(例えば、情報の入力、出力および処理の実行指示など)は、UI50を介して実行されているものとする。 In addition, output devices include, for example, displays, printers, and voice synthesizers. Unless otherwise specified below, user operations on the diagnostic system 100 (for example, inputting and outputting information, and issuing instructions to execute processing, etc.) are assumed to be performed via the UI 50.
 また、本システム100の各構成、機能、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、本システム100は、各機能の一部または全部を、ソフトウェアにより実現することもできるし、ソフトウェアとハードウェアとの協働により実現することもできる。また、本システム100は、固定的な回路を有するハードウェアを用いても良いし、少なくとも一部の回路を変更可能なハードウェアを用いてもよい。 Furthermore, each configuration, function, processing means, etc. of the present system 100 may be realized in part or in whole in hardware, for example by designing it as an integrated circuit. Furthermore, the present system 100 may also realize each function in part or in whole in software, or through a combination of software and hardware. Furthermore, the present system 100 may use hardware having fixed circuits, or may use hardware having at least some of the circuits that are changeable.
 また、診断システム100は、各プログラムにより実現される機能や処理の一部または全部をユーザ(オペレータ)が実施することで、システムを実現することもできる。なお、診断システムは、当該プロセッサシステムの代わりにシステム外部のスマートフォンやタブレット等のプロセッサシステム(外部プロセッサシステムと呼ぶ)に、ユーザへの出力処理や、ユーザからの入力処理の一部を任せる場合がある。このような場合、診断システム(又はそのプロセッサ20、プログラム)は、各処理やプログラムの他の部分を実行するために、以下を行っても良い。 The diagnostic system 100 can also be realized by a user (operator) implementing some or all of the functions and processes realized by each program. Note that the diagnostic system may entrust output processing to the user and some of the input processing from the user to a processor system outside the system (called an external processor system) such as a smartphone or tablet instead of the processor system itself. In such cases, the diagnostic system (or its processor 20, program) may do the following to execute each process or other parts of the program.
 UI50を用いたユーザへの出力の代わりとして、NI40を介して外部プロセッサシステムに、ユーザへの出力に必要なデータの送信をする。当該データの例としては、出力するデータそのもの、出力データを別のプロセッサシステムで生成するためのデータが考えられるが、外部プロセッサシステムでユーザ出力を行う処理が記述されたプログラムやWebデータであっても良い。 Instead of outputting to the user using the UI 50, data required for outputting to the user is sent to the external processor system via the NI 40. Examples of such data include the data to be output itself, data for generating output data in another processor system, but it may also be a program or web data that describes the process of performing user output in the external processor system.
 また、診断システム100は、UI50を用いたユーザからの入力又は操作受信の代わりとして、NI40を介して外部プロセッサシステムから、ユーザ入力又は操作を示すデータを受信する。別な視点では、ユーザへのデータ出力の意味は、診断システム100自身が行うことも含む以外に、当該システム100以外の別の存在に当該データ出力をさせる(使役)ことを含めても良い。また、ユーザからの入力又は操作受信の意味は、診断システム100のユーザへの直接出力や受信をする以外に、診断システム100が間接的に当該受信をすることを含めても良い。 In addition, instead of receiving input or operation from the user using the UI 50, the diagnostic system 100 receives data indicating a user input or operation from an external processor system via the NI 40. From another perspective, the meaning of outputting data to the user may include the diagnostic system 100 itself outputting the data, as well as having another entity other than the system 100 output the data (asserting it). In addition, the meaning of receiving input or operation from the user may include the diagnostic system 100 indirectly receiving the input or operation, as well as directly outputting or receiving the input to the user from the diagnostic system 100.
 また、以下で説明するメモリリソース30内のデータベースや各種の情報は、データを格納できる領域であれば、ファイル等やデータベース以外のデータ構造であっても良い。また、1つのプログラムが複数のプログラムの役割を兼ねても良い。また、その逆であっても良い。すなわち、1以上のプログラムが図示する各プログラムの処理を行っても良い。 Furthermore, the database and various information within the memory resource 30 described below may be a data structure other than a database or a file, etc., as long as it is an area capable of storing data. Furthermore, one program may perform the functions of multiple programs, or vice versa. In other words, one or more programs may perform the processing of each program shown in the figure.
 なお、診断システムで実行されるプログラムは、当該システム100が読み込み可能な不揮発ストレージ媒体に格納されても良い。なお、当該不揮発ストレージ媒体に格納されたプログラムは、直接、診断システム100が読み込んでも良いが、プログラム配信用のプロセッサシステムが当該媒体からプログラムを読み込み、その後、プログラム配信用のプロセッサシステムから診断システム100に当該プログラムを送信(配信)しても良い。なお、当該不揮発ストレージ媒体の例は、メモリリソース30として説明した不揮発メモリが例として考えられるが、それ以外の光ディスク媒体でも良い。 The programs executed by the diagnostic system may be stored in a non-volatile storage medium that can be read by the system 100. The programs stored in the non-volatile storage medium may be read directly by the diagnostic system 100, or a processor system for program distribution may read the programs from the medium and then transmit (distribute) the programs to the diagnostic system 100. An example of the non-volatile storage medium is the non-volatile memory described as the memory resource 30, but other optical disk media may also be used.
 <<不具合関連情報DB110>>
 不具合関連情報DB110は、不具合関連情報を格納するデータベースである。なお、不具合関連情報は、不具合の影響による電子・電動システムの稼働状態(不具合状態)などを示す情報である。具体的には、不具合関連情報には、移動体における電子・電動システムの内部データ(以下、「システム内部データ」という場合がある)、プローブデータ、ユーザ情報、環境情報、インフラ情報および製品・サービス情報が含まれている。
<<Defect-related information DB 110>>
The malfunction-related information DB110 is a database that stores malfunction-related information. The malfunction-related information is information that indicates the operating state (malfunction state) of an electronic/electric system due to the influence of a malfunction. Specifically, the malfunction-related information includes internal data of the electronic/electric system in a moving body (hereinafter, sometimes referred to as "system internal data"), probe data, user information, environmental information, infrastructure information, and product/service information.
 システム内部データは、例えばECU(Electronic Control Unit)から出力されるエラーログなどの情報である。また、プローブデータは、例えば走行時の位置情報やドライブレコーダで撮像された映像情報などである。また、ユーザ情報は、例えば不具合に関するユーザの訴え(コメント)を記録した問診情報などである。また、環境情報は、例えば走行中の天候や路面状況などを示す情報である。また、インフラ情報は、例えばコネクテッドサービス利用時のサーバログなどの情報である。また、製品・サービス情報は、例えば製品の設計文書やサービスマニュアルなどの情報である。 System internal data is, for example, information such as error logs output from the ECU (Electronic Control Unit). Probe data is, for example, location information while driving and video information captured by a drive recorder. User information is, for example, questionnaire information that records the user's complaints (comments) regarding malfunctions. Environmental information is, for example, information indicating the weather and road conditions while driving. Infrastructure information is, for example, information such as server logs when using connected services. Product and service information is, for example, product design documents and service manuals.
 なお、診断システム100は、情報の種類に応じた事業者(例えば、自動車メーカ、インフラ管理事業者、環境情報を提供する事業者など)や移動体のユーザが有する計算機(例えば、外部装置10)から不具合関連情報を取得し、不具合関連情報DB110に格納する。 The diagnostic system 100 acquires defect-related information from businesses (e.g., automobile manufacturers, infrastructure management businesses, businesses that provide environmental information, etc.) that correspond to the type of information or computers owned by users of mobile vehicles (e.g., external devices 10), and stores the information in the defect-related information DB 110.
 <<不具合相関情報DB120>>
 不具合相関情報DB120は、不具合相関情報を格納するデータベースである。なお、不具合相関情報は、いわゆる知識グラフやFTA情報あるいはFMEA情報である。具体的には、不具合相関情報は、不具合に関する知識項目に対応するノードと、その関係性を表すリンクと、から構成されている。
<<Defect correlation information DB 120>>
The defect correlation information DB 120 is a database that stores defect correlation information. The defect correlation information is a so-called knowledge graph, FTA information, or FMEA information. Specifically, the defect correlation information is composed of nodes corresponding to knowledge items related to defects and links indicating the relationships between the nodes.
 図2は、不具合相関情報の一例を示した図である。図示する不具合相関情報は、緊急ブレーキの誤動作(TOP事象)に関する知識グラフを一例として示している。具体的には、図示する例では、カメラシステムの故障や制御ECUの故障といった不具合に関する知識項目(ノード)が含まれており、リンク(パス)により関連するノード同士が接続されている。なお、パスの始点が不具合要因、パスの終点が不具合の結果に対応しており、パスは、ある不具合(結果)がどのような要因で発生し得るか、という関係性を表している。 Figure 2 shows an example of malfunction correlation information. The malfunction correlation information shown in the figure shows an example of a knowledge graph related to an emergency brake malfunction (TOP event). Specifically, the example shown includes knowledge items (nodes) related to malfunctions such as camera system failures and control ECU failures, and related nodes are connected by links (paths). The start point of the path corresponds to the cause of the malfunction, and the end point of the path corresponds to the result of the malfunction, and the path represents the relationship between what factors can cause a certain malfunction (result).
 このような不具合相関情報は、各業界の電子・電動システムにおける不具合のTOP事象ごとに存在する。なお、図2は、自動車業界の電子・電動システムにおいて、緊急ブレーキの誤作動というTOP事象に対応する不具合相関情報を例示している。すなわち、不具合相関情報DB120には、自動車業界などの各業界の電子・電動システムにおける様々なTOP事象に対応した複数の不具合関連情報が格納されている。また、TOP事象は、不具合カテゴリが示す不具合の種類(不具合の内容)に対応している。 Such malfunction correlation information exists for each top malfunction event in electronic and electric systems in each industry. Note that FIG. 2 shows an example of malfunction correlation information corresponding to a top malfunction event, an emergency brake malfunction, in electronic and electric systems in the automotive industry. In other words, the malfunction correlation information DB 120 stores multiple pieces of malfunction-related information corresponding to various top malfunction events in electronic and electric systems in each industry, such as the automotive industry. Furthermore, the top malfunction event corresponds to the type of malfunction (details of the malfunction) indicated by the malfunction category.
 このような不具合相関情報は、事前に外部装置10から取得され、不具合相関情報DB120に格納されていれば良い。 Such defect correlation information may be acquired in advance from the external device 10 and stored in the defect correlation information DB 120.
 <<数理アルゴリズム130>>
 数理アルゴリズム130は、所定の数理モデルに実行させるアルゴリズムであって、本実施形態ではニューラルネットワークを用いた場合を例に説明する。なお、数理アルゴリズム130は、ニューラルネットワークに限定されるものではなく、例えばXGBoost(eXtreme Gradient Boosting/勾配ブースティング回帰木)など、他の回帰モデルであっても良い。
<<Mathematical Algorithm 130>>
The mathematical algorithm 130 is an algorithm executed by a predetermined mathematical model, and in this embodiment, a case where a neural network is used will be described as an example. Note that the mathematical algorithm 130 is not limited to a neural network, and may be another regression model such as XGBoost (eXtreme Gradient Boosting/gradient boosting regression tree).
 数理アルゴリズム130は、不具合相関情報におけるノード間の関係性の強さを示す因果係数αを算出する。 The mathematical algorithm 130 calculates a causality coefficient α that indicates the strength of the relationship between nodes in the defect correlation information.
 図3は、ニューラルネットワークの一例を示した図である。図示するように、ニューラルネットワークは、不具合関連情報(システム内部データ等)に相当する入力層と、所定数の中間層(図示する例では、第1層~第3層までの3層)と、不具合要因の候補を示す出力層と、から構成されている。なお、このようなニューラルネットワークのモデル構成については、後述のパラメータ情報によって定義されている。 Figure 3 shows an example of a neural network. As shown in the figure, the neural network is composed of an input layer that corresponds to defect-related information (internal system data, etc.), a certain number of intermediate layers (in the example shown, there are three layers, from layer 1 to layer 3), and an output layer that indicates possible defect causes. The model configuration of such a neural network is defined by parameter information, which will be described later.
 数理アルゴリズム130は、不具合関連情報および不具合相関情報を入力として、不具合相関情報における上位ノードと下位ノードとの関係性の強さを示す因果係数αを出力する。 The mathematical algorithm 130 takes the defect-related information and the defect correlation information as input, and outputs a causality coefficient α that indicates the strength of the relationship between the upper node and the lower node in the defect correlation information.
 なお、図3は、図2に例示した不具合相関情報において、カメラシステムの故障という上位ノードと、センサの故障、認識AIのHW(Hardware)の故障、通信LSIの故障および通信ケーブルの故障という各下位ノードとの関係性の強さα、α、αおよびαが出力された状態を示している。 Note that Figure 3 shows the state in which the strengths of relationships αw, αx, αy, and αz between the upper node, i.e., the camera system failure, and each of the lower nodes, i.e., the sensor failure, the recognition AI HW (Hardware) failure, the communication LSI failure, and the communication cable failure, are output in the failure correlation information illustrated in Figure 2.
 <<パラメータ情報DB140>>
 パラメータ情報DB140は、数理アルゴリズム130のパラメータを格納するデータベースである。具体的には、パラメータは、業界、不具合カテゴリ、モデル構成、重み係数、バイアスおよび活性化関数といった所定のパラメータ要素を有している。
<<Parameter Information DB 140>>
The parameter information DB 140 is a database that stores parameters of the mathematical algorithm 130. Specifically, the parameters have predetermined parameter elements such as an industry, a defect category, a model configuration, a weighting coefficient, a bias, and an activation function.
 図4は、パラメータ要素の一例を示した図である。ここで、業界は、不具合の診断対象の電子・電動システムが属する業界である。不具合種類は、不具合相関情報におけるTOP事象に相当する情報(例えば、図2で例示した「緊急ブレーキの誤動作」)である。 Figure 4 shows an example of a parameter element. Here, the industry is the industry to which the electronic/electric system to be diagnosed belongs. The malfunction type is information equivalent to the TOP event in the malfunction correlation information (for example, "emergency brake malfunction" as shown in Figure 2).
 モデル構成は、数理アルゴリズム130の構成を示す情報である。なお、ニューラルネットワークの場合、モデル構成としては、入力層、中間層および出力層の数が定義されている。 The model configuration is information that indicates the configuration of the mathematical algorithm 130. In the case of a neural network, the model configuration defines the number of input layers, intermediate layers, and output layers.
 重み係数は、入力層、中間層および出力層の各層間におけるノード(ニューロン)の繋がりの重みを示す係数である。バイアスは、各ノード(ニューロン)の繋がりのバイアス(流れ易さ)を示す情報である。活性化関数は、数理アルゴリズム130で採用されている非線形変換の関数の種類を示す情報である。活性化関数には、例えば、ReLU(Rectified Linear Unit)や、Step関数などがある。 The weighting coefficient is a coefficient that indicates the weight of the connections between nodes (neurons) in the input layer, intermediate layer, and output layer. The bias is information that indicates the bias (ease of flow) of the connections between each node (neuron). The activation function is information that indicates the type of nonlinear transformation function used in the mathematical algorithm 130. Examples of activation functions include ReLU (Rectified Linear Unit) and Step function.
 このようなパラメータ情報は、診断対象の電子・電動システムの業界ごとに存在し、パラメータ情報DB140に格納されている。 Such parameter information exists for each industry of the electronic/electric system being diagnosed, and is stored in the parameter information DB 140.
 <<正規化変換係数DB150>>
 正規化変換係数DB150は、正規化変換係数βを格納するデータベースである。なお、正規化変換係数は、業界ごとに定義されている安全・信頼性の基準に基づき決定される規格値を業界横断的な相対値として正規化した係数である。
<<Normalization Transformation Coefficient DB 150>>
The normalization conversion coefficient DB 150 is a database that stores a normalization conversion coefficient β. The normalization conversion coefficient β is a coefficient obtained by normalizing a standard value determined based on safety and reliability standards defined for each industry as a cross-industry relative value.
 図5は、正規化変換係数βの一例を示した図である。図示するように、正規化変換係数βは、例えば、自動車業界における通信IFの規格値であるASIL-Dや、産業ロボット業界におけるカメラの規格値であるSIL-2などを、業界横断の相対値として正規化した値(図示するβ1-1の0.001、図示するβ3-2の0.01など)である。 5 is a diagram showing an example of the normalization conversion coefficient β. As shown in the figure, the normalization conversion coefficient β is a value (such as 0.001 for β 1-1 and 0.01 for β 3-2) normalized as a cross-industry relative value, for example, ASIL-D, which is a standard value for communication IF in the automobile industry, or SIL- 2 , which is a standard value for cameras in the industrial robot industry.
 このように、正規化変換係数βは、診断対象の電子・電動システムの業界ごとに存在し、正規化変換係数DB150に格納されている。 In this way, the normalization conversion coefficient β exists for each industry of the electronic/electric system being diagnosed, and is stored in the normalization conversion coefficient DB 150.
 なお、不具合関連情報、不具合相関情報、数理アルゴリズム、パラメータ情報および正規化変換係数の各々は、以下で説明する各処理の実行時に外部装置10から直接取得されて各処理に用いられても良い。 In addition, each of the defect-related information, defect correlation information, mathematical algorithm, parameter information, and normalization conversion coefficients may be obtained directly from the external device 10 when each process described below is executed, and used in each process.
 <<不具合履歴関連情報DB160>>
 不具合履歴関連情報DB160は、不具合履歴関連情報を格納するデータベースである。なお、不具合履歴関連情報には、例えば、外部装置10から取得した不具合関連情報、不具合の診断結果、および、診断結果に対してユーザがとった措置や不具合解消の有無に関する情報が含まれる。
<<Defect History Related Information DB160>>
The defect history related information DB 160 is a database that stores defect history related information. The defect history related information includes, for example, defect related information acquired from the external device 10, a defect diagnosis result, measures taken by the user in response to the diagnosis result, and information on whether the defect has been resolved.
 <<不具合診断プログラム211>>
 不具合診断プログラム211は、電子・電動システムの不具合を診断するプログラムである。具体的には、不具合診断プログラム211は、不具合関連情報に基づき不具合が生じた電子・電動システムの業界および不具合カテゴリを特定する。また、不具合診断プログラム211は、特定した業界および不具合カテゴリに対応する不具合相関情報、数理アルゴリズム130、パラメータ情報および正規化変換係数を用いて不具合要因を特定するための診断を実行する。なお、これらの処理(不具合カテゴリ特定処理、診断モデル生成処理および診断処理)の詳細については後述する。
<<Failure diagnosis program 211>>
The fault diagnosis program 211 is a program for diagnosing faults in electronic/electric systems. Specifically, the fault diagnosis program 211 identifies the industry and fault category of the electronic/electric system in which the fault has occurred based on fault-related information. The fault diagnosis program 211 also executes diagnosis to identify the cause of the fault using fault correlation information, the mathematical algorithm 130, parameter information, and normalization conversion coefficients corresponding to the identified industry and fault category. Details of these processes (fault category identification process, diagnostic model generation process, and diagnosis process) will be described later.
 <<学習プログラム212>>
 学習プログラム212は、診断結果に対するユーザの対応や不具合解消の有無に応じて数理アルゴリズム130の機械学習を行うプログラムである。なお、学習処理の詳細については後述する。
<<Learning Program 212>>
The learning program 212 is a program that performs machine learning of the mathematical algorithm 130 depending on the user's response to the diagnosis result and whether or not the defect has been resolved. The details of the learning process will be described later.
 以上、診断システム100の詳細について説明した。 The above describes the details of the diagnostic system 100.
 <診断システム100の機能構成>
 図6は、診断システム100の機能構成の一例を示した図である。図示する機能部は、プロセッサ20がメモリリソース30に格納されている各プログラムを読み込むことで実現される機能を理解容易にするために、主な処理内容に応じて分類したものである。そのため、各機能の分類の仕方や機能部の名称によって、本発明が制限されることはない。
<Functional configuration of diagnostic system 100>
6 is a diagram showing an example of the functional configuration of the diagnostic system 100. The illustrated functional units are classified according to the main processing contents in order to facilitate understanding of the functions realized by the processor 20 reading each program stored in the memory resource 30. Therefore, the present invention is not limited by the way in which the functions are classified or the names of the functional units.
 不具合診断部300は、プロセッサ20が不具合診断プログラム211を読み込むことで実現される機能を理解容易にするために分類した機能部である。また、不具合診断部300は、処理内容に応じて、さらに不具合カテゴリ特定部302および診断部301に分類される。 The fault diagnosis unit 300 is a functional unit classified to facilitate understanding of the functions realized by the processor 20 reading the fault diagnosis program 211. The fault diagnosis unit 300 is further classified into a fault category identification unit 302 and a diagnosis unit 301 according to the processing content.
 また、学習部310は、プロセッサ20が学習プログラム212を読み込むことで実現される機能を理解容易にするために分類した機能部である。また、学習部310は、処理内容に応じて、さらに情報登録部311および再学習部312に分類される。 The learning unit 310 is a functional unit that is classified to facilitate understanding of the functions that are realized by the processor 20 reading the learning program 212. The learning unit 310 is further classified into an information registration unit 311 and a relearning unit 312 according to the processing content.
 なお、各機能部の一部は、計算機に実装されるハードウェア(ASICといった集積回路など)により構築されてもよい。また、各機能部の処理が1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。 Note that some of the functional units may be constructed using hardware (such as an integrated circuit such as an ASIC) implemented in a computer. Furthermore, the processing of each functional unit may be executed by a single piece of hardware, or may be executed by multiple pieces of hardware.
 <処理の説明>
 図7は、不具合カテゴリ特定処理、診断モデル生成処理、診断処理および学習処理の一例を示したフロー図である。以下では、これらの処理の詳細を順に説明する。
<Processing Description>
7 is a flow diagram showing an example of the defect category identification process, the diagnostic model generation process, the diagnostic process, and the learning process. The details of these processes will be described in order below.
 なお、各処理の主体は、メモリリソース30に格納されているプログラムを読み込んだプロセッサ20であるが、各処理の特徴を理解容易にするため、以下では各プログラムにより実現される機能部を処理の主体として説明する。 Note that the subject of each process is the processor 20 that has loaded the program stored in the memory resource 30, but to make it easier to understand the characteristics of each process, the following description will focus on the functional units realized by each program as the subject of the process.
 不具合カテゴリ特定処理は、例えば、ユーザ(オペレータ)による処理の実行指示を受け付けると開始される。 The defect category identification process is started, for example, when an instruction to execute the process is received from a user (operator).
 処理が開始されると、不具合カテゴリ特定部302は、不具合関連情報を不具合関連情報DB110から取得する(ステップS010)。なお、取得対象の不具合関連情報は、ユーザによって指定されても良く、あるいは不具合関連情報DB110への格納順(例えば、古い順)に取得されても良い。 When the process starts, the defect category identification unit 302 acquires defect-related information from the defect-related information DB 110 (step S010). Note that the defect-related information to be acquired may be specified by the user, or may be acquired in the order in which it is stored in the defect-related information DB 110 (e.g., oldest first).
 次に、不具合カテゴリ特定部302は、不具合関連情報を解析することで、電子・電動システムの対象分野(業界)と、不具合の種類(不具合の内容)と、を示す不具合カテゴリを特定する(ステップS011)。不具合カテゴリ特定部302は、例えば、システム内部データやプローブデータに記録されている情報の解析に基づき、不具合カテゴリを特定する。 Next, the defect category identification unit 302 analyzes the defect-related information to identify a defect category that indicates the target field (industry) of the electronic/electric system and the type of defect (defect content) (step S011). The defect category identification unit 302 identifies the defect category based on, for example, an analysis of information recorded in the system internal data and probe data.
 不具合カテゴリを特定すると、不具合カテゴリ特定部302は、ステップS020に処理を移行する。 Once the defect category is identified, the defect category identification unit 302 proceeds to step S020.
 ステップS020では、診断部301は、診断モデル生成処理を実行する。具体的には、診断部301は、不具合カテゴリに対応する不具合相関情報、数理アルゴリズム130、パラメータ情報等をセット(組)にした診断モデルを生成する。 In step S020, the diagnosis unit 301 executes a diagnostic model generation process. Specifically, the diagnosis unit 301 generates a diagnostic model that is a set of defect correlation information corresponding to a defect category, a mathematical algorithm 130, parameter information, and the like.
 図8は、診断モデル生成処理の詳細を示したフロー図である。図示するように、診断部301は、不具合カテゴリに対応する業界(この場合、第1の業界)のパラメータ情報があるか否かを判定する(ステップS021)。具体的には、診断部301は、パラメータ情報DB140を検索し、第1の業界に対応するパラメータ情報の有無を判定する。 FIG. 8 is a flow diagram showing the details of the diagnostic model generation process. As shown in the figure, the diagnostic unit 301 determines whether or not there is parameter information for the industry (in this case, the first industry) corresponding to the defect category (step S021). Specifically, the diagnostic unit 301 searches the parameter information DB 140 and determines whether or not there is parameter information corresponding to the first industry.
 そして、対応するパラメータ情報があると判定した場合(ステップS021でYes)、診断部301は、処理をステップS022に移行する。一方で、対応するパラメータ情報がないと判定した場合(ステップS021でNo)、診断部301は、処理をステップS024に移行する。 If it is determined that there is corresponding parameter information (Yes in step S021), the diagnosis unit 301 proceeds to step S022. On the other hand, if it is determined that there is no corresponding parameter information (No in step S021), the diagnosis unit 301 proceeds to step S024.
 ステップS022では、診断部301は、不具合カテゴリに対応する不具合相関情報と、第1の業界のパラメータ情報と、数理アルゴリズム130と、を各々、対応するデータベースから取得する。 In step S022, the diagnosis unit 301 acquires defect correlation information corresponding to the defect category, parameter information for the first industry, and the mathematical algorithm 130 from the corresponding databases.
 そして、診断部301は、取得した情報をセット(組)にした診断モデルを生成する(ステップS023)。すなわち、診断対象の不具合カテゴリに対応する業界(第1の業界)のパラメータ情報が存在する場合、診断モデルは、当該業界のパラメータ情報と、不具合カテゴリ(特に、不具合の種類(内容))に対応する不具合相関情報と、数理アルゴリズム130と、を1組とした情報により構成される。 Then, the diagnosis unit 301 generates a diagnosis model that sets the acquired information (step S023). That is, if there is parameter information for an industry (first industry) that corresponds to the defect category to be diagnosed, the diagnosis model is composed of a set of information including the parameter information for that industry, defect correlation information that corresponds to the defect category (particularly, the type (content) of the defect), and the mathematical algorithm 130.
 なお、ステップS024では、診断部301は、不具合カテゴリに対応する不具合相関情報と、他の業界(第1の業界とは異なる第2の業界)の既存のパラメータ情報と、数理アルゴリズム130と、第1の業界および第2の業界の正規化変換係数と、を取得する。そして、診断部301は、取得した情報をセット(組)にした診断モデルを生成する(ステップS023)。 In step S024, the diagnosis unit 301 acquires defect correlation information corresponding to the defect category, existing parameter information of another industry (a second industry different from the first industry), the mathematical algorithm 130, and normalization conversion coefficients of the first industry and the second industry. Then, the diagnosis unit 301 generates a diagnosis model that sets the acquired information (step S023).
 すなわち、診断対象の不具合カテゴリに対応する業界(第1の業界)のパラメータ情報が存在しない場合、診断モデルは、当該業界とは異なる業界(第2の業界)の既存のパラメータ情報と、不具合カテゴリに対応する不具合相関情報と、数理アルゴリズム130と、第1の業界および第2の業界に対応する正規化変換係数と、を1組とした情報により構成される。 In other words, if there is no parameter information for an industry (first industry) that corresponds to the defect category to be diagnosed, the diagnostic model is composed of a set of information including existing parameter information for an industry (second industry) different from the industry, defect correlation information corresponding to the defect category, a mathematical algorithm 130, and normalization conversion coefficients corresponding to the first industry and the second industry.
 次に、診断部301は、取得したパラメータ情報に基づき数理アルゴリズム130を設定する(ステップS024)。また、診断部301は、数理アルゴリズム130の設定を行うと、処理をステップS030に移行する。 Next, the diagnosis unit 301 sets the mathematical algorithm 130 based on the acquired parameter information (step S024). After setting the mathematical algorithm 130, the diagnosis unit 301 transitions to step S030.
 ステップS030では、診断部301は、診断モデルを用いた診断処理を実行する。具体的には、診断部301は、診断モデルを用いて、不具合要因ごとの発生確率を算出する。 In step S030, the diagnosis unit 301 executes a diagnosis process using the diagnosis model. Specifically, the diagnosis unit 301 uses the diagnosis model to calculate the occurrence probability of each defect cause.
 図9は、診断処理の詳細を示したフロー図である。図示するように、診断部301は、数理アルゴリズム130が不具合カテゴリに対応する業界(第1の業界)のパラメータ情報により設定されているか否かを判定する(ステップS0301)。 FIG. 9 is a flow diagram showing the details of the diagnosis process. As shown in the figure, the diagnosis unit 301 determines whether the mathematical algorithm 130 is set based on parameter information of the industry (first industry) corresponding to the defect category (step S0301).
 そして、第1の業界のパラメータ情報に基づき設定されていると判定した場合(ステップS0301でYes)、診断部301は、処理をステップS0302に移行する。一方で、第1の業界のパラメータ情報に基づき設定されていないと判定した場合(ステップS0301でNo)、診断部301は、処理をステップS0304に移行する。 If it is determined that the setting is based on the parameter information of the first industry (Yes in step S0301), the diagnosis unit 301 proceeds to step S0302. On the other hand, if it is determined that the setting is not based on the parameter information of the first industry (No in step S0301), the diagnosis unit 301 proceeds to step S0304.
 ステップS0302では、診断部301は、第1の業界のパラメータ情報に基づき設定された数理アルゴリズム130に対し、不具合関連情報および不具合相関情報を入力として、不具合要因間の因果係数αの出力を得る。具体的には、診断部301は、図3に示した数理アルゴリズム130(ニューラルネットワーク)に不具合関連情報と、不具合カテゴリに対応する不具合相関情報を入力し、不具合要因間の因果係数α~αの出力を得る。 In step S0302, the diagnosis unit 301 inputs the defect-related information and the defect correlation information to the mathematical algorithm 130 set based on the parameter information of the first industry, and obtains an output of the causal coefficient α between the defect factors. Specifically, the diagnosis unit 301 inputs the defect-related information and the defect correlation information corresponding to the defect category to the mathematical algorithm 130 (neural network) shown in FIG. 3, and obtains an output of the causal coefficients αa to αz between the defect factors.
 また、診断部301は、因果係数α~αに基づき、各不具合要因の発生確率を算出する(ステップS0303) The diagnosis unit 301 also calculates the occurrence probability of each defect factor based on the causal coefficients α a to α z (step S0303).
 図10は、不具合要因と発生確率との関係を示した図である。なお、診断部301は、各々の不具合要因の発生確率γ~γを因果係数α~αに基づき算出する。本例では、不具合カテゴリに対応するパラメータ情報に基づき数理アルゴリズム130が設定されているため、発生確率γ=αの関係が成立する。したがって、診断部301は、数理アルゴリズム130により出力されたα~αを各々、上位ノードから分岐した不具合要因の発生確率とする。 10 is a diagram showing the relationship between defect factors and occurrence probability. The diagnosis unit 301 calculates the occurrence probability γ a to γ z of each defect factor based on the causal coefficients α a to α z . In this example, the mathematical algorithm 130 is set based on parameter information corresponding to the defect category, so the relationship of occurrence probability γ=α holds. Therefore, the diagnosis unit 301 regards α a to α z output by the mathematical algorithm 130 as the occurrence probability of each defect factor branched off from the upper node.
 なお、ステップS0304では、診断部301は、第2の業界のパラメータ情報に基づき設定された数理アルゴリズム130に対し、不具合関連情報および不具合相関情報を入力として、不具合要因間の因果係数αの出力を得る。 In step S0304, the diagnosis unit 301 inputs the defect-related information and defect correlation information to the mathematical algorithm 130 set based on the parameter information of the second industry, and obtains an output of the causal coefficient α between defect factors.
 この場合、診断部301は、第1の業界の正規化変換係数と、第2の業界の正規化変換係数との比率に基づき、因果係数αを正規化(乗算)して、各不具合要因の発生確率γを算出する。 In this case, the diagnosis unit 301 normalizes (multiplies) the causal coefficient α based on the ratio between the normalized conversion coefficient for the first industry and the normalized conversion coefficient for the second industry to calculate the occurrence probability γ of each defect cause.
 図11は、不具合要因と発生確率との関係を示した図である。診断部301は、第1の業界における正規化変換係数と第2の業界における正規化変換係数との比率を因果係数αに乗算することで、各々の不具合要因の発生確率γ~γを算出する。具体的には、診断部301は、β=第1の業界の正規化変換係数/第2の業界の正規化変換係数を、対応するαに乗算した値を不具合要因の発生確率γとして算出する。 11 is a diagram showing the relationship between defect factors and occurrence probability. The diagnosis unit 301 calculates occurrence probability γ a to γ z of each defect factor by multiplying the causal coefficient α by the ratio between the normalization conversion coefficient in the first industry and the normalization conversion coefficient in the second industry. Specifically, the diagnosis unit 301 calculates a value obtained by multiplying the corresponding α n by β n = normalization conversion coefficient in the first industry/normalization conversion coefficient in the second industry, as the occurrence probability γ n of the defect factor.
 診断対象の不具合カテゴリに対応する業界(第1の業界)のパラメータ情報が存在する場合(ステップS0303)は、当該パラメータ情報に基づき設定された数理アルゴリズム130から出力された因果係数α~αを不具合の発生確率γとすることができる。一方で、ステップS0304の場合、第1の業界とは異なる第2の業界のパラメータ情報に基づき数理アルゴリズム130が設定されている。そのため、診断部301は、第1の業界に対応する正規化変換係数と、第2の業界に対応する正規化変換係数との比率を因果係数αに掛け合わせることで、機能別安全レベルに対する各々の業界における規格基準の違いを吸収させて、不具合要因の発生確率を算出している。 When parameter information of an industry (first industry) corresponding to the defect category to be diagnosed exists (step S0303), the causal coefficients α a to α z output from the mathematical algorithm 130 set based on the parameter information can be set as the defect occurrence probability γ. On the other hand, in the case of step S0304, the mathematical algorithm 130 is set based on parameter information of a second industry different from the first industry. Therefore, the diagnosis unit 301 multiplies the causal coefficient α by the ratio between the normalization conversion coefficient corresponding to the first industry and the normalization conversion coefficient corresponding to the second industry, thereby absorbing the difference in the standards for the functional safety levels in each industry and calculating the occurrence probability of the defect cause.
 なお、診断部301は、ステップS0303またはステップS0305の処理を行うと、処理をステップS031に移行する。 Note that after performing the processing of step S0303 or step S0305, the diagnosis unit 301 transitions the processing to step S031.
 ステップS031では、診断部301は、発生確率の高い不具合要因を診断結果として出力する。具体的には、診断部301は、発生確率の高い順に所定数(例えば、3つ)の不具合要因を特定する。また、診断部301は、特定した不具合要因と、それらの発生確率と、を対応付けた診断結果の表示情報を生成する。また、診断部301は、生成した表示情報を外部装置10に送信する。 In step S031, the diagnostic unit 301 outputs the malfunction factors with a high occurrence probability as the diagnosis result. Specifically, the diagnostic unit 301 identifies a predetermined number (e.g., three) of malfunction factors in descending order of occurrence probability. The diagnostic unit 301 also generates display information of the diagnosis result that associates the identified malfunction factors with their occurrence probabilities. The diagnostic unit 301 also transmits the generated display information to the external device 10.
 なお、診断結果の表示情報は、例えば、診断システム100が有する表示装置に出力されても良い。 In addition, the display information of the diagnosis results may be output, for example, to a display device possessed by the diagnosis system 100.
 図12は、診断結果の一例を示した図である。図示するように、診断結果には、特定された所定数の不具合要因と、各々の発生確率と、が対応付けられている。 FIG. 12 shows an example of the diagnosis result. As shown in the figure, the diagnosis result corresponds to a specific number of identified defect causes and their respective occurrence probabilities.
 なお、ユーザは、診断結果に対して行った措置や不具合解消の有無を外部装置10の入力装置を介して入力することで、対応状況に関する入力情報を診断システム100に送信(フィードバック)する。 The user inputs the measures taken in response to the diagnosis results and whether or not the problem has been resolved via the input device of the external device 10, thereby transmitting (feeding back) input information regarding the response status to the diagnosis system 100.
 次に、診断システム100の情報登録部311は、診断結果とユーザからのフィードバックとを対応付けて、不具合履歴関連情報DB160に登録する(ステップS040)。 Next, the information registration unit 311 of the diagnostic system 100 associates the diagnostic results with the feedback from the user and registers them in the defect history related information DB 160 (step S040).
 次に、再学習部312は、対応状況等の入力情報に基づき、数理アルゴリズム130の機械学習を実行する(ステップS040)。また、再学習部312は、機械学習に基づき、数理アルゴリズム130のパラメータ情報を更新する(ステップS041)。具体的には、再学習部312は、機械学習に基づき、例えば重み係数やバイアスといったパラメータ情報のパラメータ値を更新する。 Next, the re-learning unit 312 executes machine learning of the mathematical algorithm 130 based on the input information such as the response status (step S040). The re-learning unit 312 also updates the parameter information of the mathematical algorithm 130 based on the machine learning (step S041). Specifically, the re-learning unit 312 updates parameter values of the parameter information, such as weighting coefficients and biases, based on the machine learning.
 なお、不具合カテゴリに対応する業界のパラメータ情報が存在し、当該パラメータ情報を用いて診断を行った場合、再学習部312は、数理アルゴリズム130に設定した当該パラメータ情報の更新情報をパラメータ情報DB140に格納する(既存のパラメータ情報の上書き保存)。一方で、不具合カテゴリに対応する業界のパラメータ情報が存在しない場合、すなわち他の業界のパラメータ情報を用いて不具合の診断を行った場合、再学習部312は、更新したパラメータ情報を診断対象の不具合カテゴリに対応する業界のパラメータ情報として新規にパラメータ情報DB140に格納する。 If parameter information for an industry corresponding to a defect category exists and a diagnosis is made using that parameter information, the re-learning unit 312 stores updated information for that parameter information set in the mathematical algorithm 130 in the parameter information DB 140 (overwriting and saving the existing parameter information). On the other hand, if parameter information for an industry corresponding to a defect category does not exist, i.e., if a defect is diagnosed using parameter information from another industry, the re-learning unit 312 stores the updated parameter information in the parameter information DB 140 as new parameter information for the industry corresponding to the defect category to be diagnosed.
 以上、診断システム100で実行される各処理の詳細について説明した。 The above describes in detail each process performed by the diagnostic system 100.
 このように、診断システムによれば、より高精度に不具合要因を特定可能であり、他業界の不具合ナレッジをも共有可能な診断モデルの構築を実現することができる。 In this way, the diagnostic system can identify the cause of defects with greater accuracy, and can also create a diagnostic model that can share defect knowledge with other industries.
 特に、本システムは、業界ごとに存在するパラメータ情報により設定された数理アルゴリズムを用いて不具合要因間の因果係数を算出できるため、より高精度に不具合要因を特定することができる。 In particular, this system can calculate the causal coefficient between defect factors using a mathematical algorithm set based on parameter information that exists for each industry, making it possible to identify defect factors with greater accuracy.
 また、本システムでは、診断対象の不具合カテゴリに対応する業界のパラメータ情報がない場合でも、正規化変換係数βの比率に基づき正規化したαを用いて、機能別安全レベルに対する各々の業界における規格基準の違いを吸収した不具合要因の発生確率を算出することができる。そのため、本システムによれば、新規の業界の不具合診断においても、他の業界の不具合ナレッジを活用して効率的に診断モデルを構築することができる。 In addition, even if there is no industry parameter information corresponding to the defect category to be diagnosed, this system can calculate the occurrence probability of defect factors that absorbs the differences in standards for functional safety levels in each industry by using α normalized based on the ratio of the normalization conversion coefficient β. Therefore, with this system, even when diagnosing defects in a new industry, it is possible to efficiently build a diagnostic model by utilizing defect knowledge from other industries.
 なお、診断モデルの構成に含まれる不具合相関情報は、診断対象の電子・電動システムに対応する業界の不具合相関情報に限られない。例えば、診断対象の電子・電動システムに対応する業界(例えば、第1の業界)であって、不具合の種類(内容)に対応するTOP事象の不具合相関情報が存在しない場合、診断部301は、同一又は類似する他の業界(例えば、第2の業界)の不具合相関情報を診断モデルに含めても良い。 The malfunction correlation information included in the configuration of the diagnostic model is not limited to malfunction correlation information of the industry corresponding to the electronic/electric system to be diagnosed. For example, if there is no malfunction correlation information of a TOP event corresponding to the type (content) of the malfunction in the industry corresponding to the electronic/electric system to be diagnosed (e.g., the first industry), the diagnosis unit 301 may include malfunction correlation information of the same or a similar other industry (e.g., the second industry) in the diagnostic model.
 なお、異なる業界の不具合相関情報が同一または類似であるどうかは、例えば、不具合相関情報に含まれるTOP事象、不具合要因(ノード)の内容あるいはノード間の分岐に基づき特定されれば良い。なお、同一又は類似する不具合相関情報かどうかは、予め紐付けられて管理されていれば良い。 Whether defect correlation information from different industries is the same or similar can be determined based on, for example, the TOP events and defect causes (nodes) included in the defect correlation information, or the branching between nodes. Whether defect correlation information is the same or similar can be determined by linking and managing the information in advance.
 これにより、診断システム100は、診断対象の電子・電動システムに対応する業界の不具合相関情報が登録されていない場合でも、異なる業界の同一又は類似する不具合相関情報を含む診断モデルにより、不具合要因の発生確率を算出することができる。その結果、診断システム100は、幅広い業界に対応する不具合診断を実施することができる。 As a result, even if no fault correlation information is registered for the industry corresponding to the electronic/electric system being diagnosed, the diagnostic system 100 can calculate the occurrence probability of the fault cause using a diagnostic model that includes the same or similar fault correlation information for a different industry. As a result, the diagnostic system 100 can perform fault diagnosis that is compatible with a wide range of industries.
 <第二実施形態>
 次に、本システム100の第二実施形態について説明する。前述の第一実施形態では、電子・電動システムの各業界における機能別安全レベルの規格値を業界横断的な相対値として正規化したβを用いた。これに対し、本実施形態では、電子・電動システムの製造メーカの安全・信頼性設計情報を活用し、設計方式を業界横断的な相対値として正規化したβを用いる。
Second Embodiment
Next, a second embodiment of the system 100 will be described. In the first embodiment described above, β is used, which is a standard value of functional safety levels in each industry of electronic/electric systems normalized as a cross-industry relative value. In contrast, in the present embodiment, β is used, which is a design method normalized as a cross-industry relative value by utilizing safety/reliability design information of manufacturers of electronic/electric systems.
 なお、本実施形態および以下の実施形態における診断システム100の構成および各処理は、第一実施形態と同様のため、詳細な説明を省略する。 Note that the configuration and each process of the diagnostic system 100 in this embodiment and the following embodiments are similar to those in the first embodiment, so detailed explanations will be omitted.
 図13は、正規化変換係数βの一例を示した図である。図示するように、本実施形態における正規化変換係数βは、例えば、電子・電動システムの製造メーカAにおける通信IFの設計方式(シールド付きツイストペアケーブル)や、製造メーカBにおけるカメラの設計方式(Z社カメラ)などを、業界横断の相対値として正規化した値(図示するβ1-1の0.01、図示するβ2-2の0.0001など)である。 13 is a diagram showing an example of the normalization conversion coefficient β. As shown in the figure, the normalization conversion coefficient β in this embodiment is a value (such as 0.01 for β 1-1 and 0.0001 for β 2-2 ) normalized as an industry-wide relative value, for example, a communication IF design method (shielded twisted pair cable) at electronic/electric system manufacturer A and a camera design method (Z company camera) at manufacturer B.
 診断システムは、このような正規化変換係数βを用いることで、製造メーカの信頼性設計情報に基づいて不具合要因比率を診断モデルに反映させることができる。その結果、製造メーカの違いによる誤差要因を低減し、不具合診断の高精度化を実現することができる。 By using this normalization conversion coefficient β, the diagnostic system can reflect the defect factor ratio in the diagnostic model based on the manufacturer's reliability design information. As a result, it is possible to reduce error factors due to differences in manufacturers and achieve high-precision defect diagnosis.
 <第三実施形態>
 第三実施形態に係る診断システム100は、例えばFIDESやIEC/TR62380などで規定される故障率予測モデルの計算式と、不具合関連情報の運用環境情報(ユーザ情報、環境情報、インフラ情報および製品・サービス情報)と、に基づき計算した値を正規化変換係数βとして用いる。
Third Embodiment
The diagnostic system 100 according to the third embodiment uses a value calculated based on a calculation formula for a failure rate prediction model defined in, for example, FIDES or IEC/TR62380 and the operational environment information (user information, environmental information, infrastructure information, and product/service information) of the defect-related information as the normalization conversion coefficient β.
 通常、電子・電動システムで使用されている部品には、使用状況によって変化する故障率を計算する式が定まっている。診断部301は、故障率予測モデル(定式)と、使用環境や稼働時間などが含まれている不具合関連情報と、に基づき、診断の都度、正規化変換係数βを算出し、不具合要因の発生確率の計算に用いる。 Normally, for components used in electronic and electric systems, a formula is established to calculate the failure rate, which changes depending on the usage conditions. The diagnosis unit 301 calculates a normalization conversion coefficient β each time a diagnosis is performed based on the failure rate prediction model (formula) and defect-related information, which includes the usage environment and operating time, and uses this coefficient to calculate the occurrence probability of the defect cause.
 診断システムは、このような正規化変換係数βを用いることで、電子・電動システムを構成する各部品の使用状態に応じた故障確率を診断モデルに反映させることができる。その結果、不具合診断の高精度化を実現することができる。 By using this normalization conversion coefficient β, the diagnostic system can reflect the failure probability according to the usage state of each component that makes up the electronic/electric system in the diagnostic model. As a result, it is possible to achieve high accuracy in fault diagnosis.
 <第四実施形態>
 第四実施形態に係る診断システム100は、OTA(Over The Air)/HW(Hardware)のアップデートにより電子・電動システムのシステム構成要素に更新(変更)があった場合、更新箇所に対応する正規化変換係数βを変更する。
<Fourth embodiment>
The diagnostic system 100 according to the fourth embodiment changes the normalization conversion coefficient β corresponding to the updated part when the system components of the electronic/electric system are updated (changed) through an OTA (Over The Air)/HW (Hardware) update.
 例えば、OTA/HWアップデードにより、電子・電動システムの使用部品である通信LSI1および通信ケーブル1が、通信LSI2および通信ケーブル2に変更になった場合、診断部301は、変更後の部品に対応する故障率を正規化した正規化変換係数βを用いて不具合要因の発生確率を算出する。 For example, if an OTA/HW update changes the components used in the electronic/electric system, communication LSI 1 and communication cable 1, to communication LSI 2 and communication cable 2, the diagnosis unit 301 calculates the occurrence probability of the malfunction factor using a normalized conversion coefficient β that normalizes the failure rate corresponding to the changed components.
 診断システムは、このような電子・電動システムの構成要素の更新に応じて、適宜、変更後の部品に対応する正規化変換係数βを用いるようにする。これにより、診断システムは、電子・電動システムの部品構成などに変更があっても、不具合診断の高精度化を実現することができる。 The diagnostic system uses the normalization conversion coefficient β that corresponds to the changed parts as appropriate in response to updates to the components of such electronic and electric systems. This allows the diagnostic system to achieve high-precision fault diagnosis even if there are changes to the component configuration of the electronic and electric systems.
 <第五実施形態>
 第五実施形態に係る診断システム100は、診断モデルが生成されていない電子・電動システムや、診断実績数(機械学習数)の少ない電子・電動システムの不具合診断を行う場合、異なる業界における類似度の高い電子・電動システムであって、既に診断実績数を重ねている電子・電動システムの診断モデルを用いる。
Fifth Embodiment
When diagnosing faults in an electronic/electric system for which no diagnostic model has been generated or an electronic/electric system with a small number of diagnostic records (machine learning records), the diagnostic system 100 of the fifth embodiment uses a diagnostic model of an electronic/electric system that is highly similar in a different industry and that has already accumulated a large number of diagnostic records.
 図14は、電子・電動システムにおける類似度の判定結果の一例を示した図である。図示するように、電子・電動システム同士の類似度は、システム構成コンポーネント、接続トポロジおよびシステム機能といった所定の観点に基づき判定される。図示する例では、認識システム1が診断対象システムに最も類似するシステム構成を有していると判定されている。この場合、診断部301は、認識システム1の診断モデルを用いて不具合診断を行う。ただし、診断モデルに含まれる正規化変換βについては、診断部301は、診断対象の電子・電動システムの業界に対応する正規化変換βを用いて診断を行う。 FIG. 14 shows an example of the similarity judgment result for electronic/electric systems. As shown in the figure, the similarity between electronic/electric systems is judged based on certain viewpoints such as system configuration components, connection topology, and system functions. In the example shown, it is judged that recognition system 1 has a system configuration that is most similar to the system to be diagnosed. In this case, the diagnosis unit 301 performs fault diagnosis using the diagnosis model of recognition system 1. However, for the normalization transformation β included in the diagnosis model, the diagnosis unit 301 performs diagnosis using the normalization transformation β that corresponds to the industry of the electronic/electric system to be diagnosed.
 なお、類似度の判定処理については、例えば診断部301が行い、最も類似するシステム構成の電子・電動システムの診断モデルを用いて不具合診断を実行する。 The process of determining the degree of similarity is performed, for example, by the diagnosis unit 301, which performs fault diagnosis using a diagnostic model of the electronic/electric system with the most similar system configuration.
 このように、類似する電子・電動システムの診断モデルを用いることで、診断システムは、診断モデルが生成されていない電子・電動システムや診断実績数の少ない電子・電動システムの診断を行う場合でも、高精度化を実現することができる。 In this way, by using diagnostic models of similar electronic and electric systems, the diagnostic system can achieve high accuracy even when diagnosing electronic and electric systems for which no diagnostic models have been generated or for which there is a small number of diagnostic records.
 <第六実施形態>
 第六実施形態に係る診断システム100は、類似する電子・電動システムにおいて、各々の電子・電動システムのサービスに伴う使用環境に応じた正規化変換係数βを用いて、不具合要因の発生確率を算出する。
Sixth Embodiment
The diagnostic system 100 of the sixth embodiment calculates the probability of occurrence of a malfunction factor in similar electronic/electric systems using a normalization conversion coefficient β corresponding to the usage environment associated with the servicing of each electronic/electric system.
 図15は、類似する電子・電動システムの各サービスにおける使用環境の一例を示した図である。図示するように、物流EV(Electric Vehicle)フリート、自動運転TAXIおよび自動運転バスは、類似する電子・電動システムを活用したサービスである。一方で、これらのサービスにおける電子・電動システムの環境、連続稼働時間および保守頻度は相互に異なっている。そのため、電子・電動システムは、類似するシステム構成であっても、故障しやすい部品がサービスに伴う使用環境に応じて異なる。 Figure 15 shows an example of the usage environment for each service of similar electronic and electric systems. As shown in the figure, a logistics EV (Electric Vehicle) fleet, an autonomous taxi, and an autonomous bus are services that utilize similar electronic and electric systems. However, the environments, continuous operating times, and maintenance frequencies of the electronic and electric systems in these services are mutually different. Therefore, even if electronic and electric systems have similar system configurations, the parts that are prone to failure differ depending on the usage environment associated with the service.
 このような特性を考慮して、診断システム100は、各々のサービスごとに各部品の故障率に応じて正規化された正規化変換係数βを正規化変換係数DBに格納しておく。そして、診断部301は、不具合関連情報に基づき診断対象の電子・電動システムにおけるサービス環境を特定し、環境に応じた正規化変換係数βを用いて不具合診断を行う。 Taking these characteristics into consideration, the diagnostic system 100 stores in the normalization conversion coefficient DB a normalization conversion coefficient β normalized according to the failure rate of each component for each service. The diagnostic unit 301 then identifies the service environment of the electronic/electric system to be diagnosed based on the malfunction-related information, and performs malfunction diagnosis using the normalization conversion coefficient β according to the environment.
 これにより、診断システムは、不具合診断の高精度化を実現することができる。 This allows the diagnostic system to achieve high-precision fault diagnosis.
 <サービス形態1>
 図16は、サービス形態1の概要図である。サービス形態1は、新規の業界に関しての不具合診断サービスの立ち上げを例としている。具体的には、新規にサービスロボット向けの不具合診断サービスを構築する場合を例としている。
<Service type 1>
16 is a schematic diagram of service form 1. Service form 1 is an example of launching a fault diagnosis service for a new industry. Specifically, it is an example of building a new fault diagnosis service for service robots.
 なお、診断システム100は、自動車向けや産業ロボット向けの不具合診断サービスを既に構築し、実際の不具合履歴に基づく数理アルゴリズム130の学習も進んでいる状態を前提とする。また、安全・信頼性基準として、サービスロボットの業界標準の規格値があることを前提としている。 The diagnostic system 100 is based on the premise that a fault diagnosis service for automobiles and industrial robots has already been established, and that the mathematical algorithm 130 based on actual fault history has progressed in learning. It is also based on the premise that industry standard values for service robots exist as safety and reliability criteria.
 まず、診断システム100は、サービスロボット業界で定義されている安全・信頼性基準に基づき決定された規格値を業界横断的な相対値として正規化することで算出されたサービスロボット業界に対応する正規化変換係数βを、正規化変換係数DB150に登録する。 First, the diagnostic system 100 registers in the normalization conversion coefficient DB 150 the normalization conversion coefficient β corresponding to the service robot industry, which is calculated by normalizing the standard values determined based on the safety and reliability standards defined in the service robot industry as cross-industry relative values.
 なお、新規業界向けの不具合診断サービスの立ち上げ期には、当該業界(サービスロボット)向けのパラメータ情報は存在しない。そのため、診断システム100は、サービスロボットが有する電子・電動システム(図示する例では、アーム駆動システムやコネクテッドシステム)と類似する別の業界の電子・電動システムの因果係数αを活用する。 Note that during the launch of a fault diagnosis service for a new industry, parameter information for that industry (service robots) does not exist. Therefore, the diagnosis system 100 utilizes the causality coefficient α of an electronic/electric system in another industry that is similar to the electronic/electric system of the service robot (in the illustrated example, the arm drive system and connected system).
 具体的には、診断システム100は、サービスロボットの認識システムには、自動車業界における既存の因果係数αを援用する。また、サービスロボットのアーム駆動システムには、産業ロボット業界における既存の因果係数αを援用する。 Specifically, the diagnosis system 100 uses the causality coefficient α1 existing in the automobile industry for the recognition system of the service robot, and uses the causality coefficient α3 existing in the industrial robot industry for the arm drive system of the service robot.
 このように、診断システム100は、新規業界の不具合診断サービスを立ち上げる際には、類似する電子・電動システムであって、既に学習が進んでいる電子・電動システムの因果係数αを援用して不具合診断サービスを開始する。 In this way, when the diagnostic system 100 launches a fault diagnosis service for a new industry, it starts the fault diagnosis service by using the causal coefficient α of a similar electronic/electric system that has already been learned.
 また、診断システム100は、運用を通じてサービスロボットとしての機械学習を進めることで、サービスロボットにおける実態に合わせたパラメータ情報を生成および更新することができる。その結果、診断システム100は、新規業界向けにも精度の高い不具合診断サービスを構築および運用することができる。 In addition, by advancing machine learning as a service robot through operation, the diagnostic system 100 can generate and update parameter information that matches the actual situation of the service robot. As a result, the diagnostic system 100 can build and operate a highly accurate defect diagnosis service even for new industries.
 なお、このようなサービス形態1は、例えば、前述の第5実施形態に係る診断システム100を適用、活用することで実現することができる。 Furthermore, such a service form 1 can be realized, for example, by applying and utilizing the diagnostic system 100 according to the fifth embodiment described above.
 <サービス形態2>
 図17は、サービス形態2の概要図である。サービス形態2は、新規にサービスロボット向けの不具合診断サービスを構築する場合を例としている点でサービス形態1と共通する。一方で、本サービス形態2では、サービスロボット業界の業界標準となる安全・信頼性基準の規格値がない場合を想定している。
<Service type 2>
17 is a schematic diagram of service form 2. Service form 2 is similar to service form 1 in that it is an example of a case where a new fault diagnosis service for service robots is constructed. However, this service form 2 assumes a case where there are no standard values for safety and reliability standards that are the industry standard in the service robot industry.
 この場合、診断システム100は、数理アルゴリズム130の学習が進んでいる自動車業界や産業ロボット業界の類似する電子・電動システムの因果係数αと、これらの業界の類似する電子・電動システムの正規化変換係数βの両方を援用する。 In this case, the diagnostic system 100 uses both the causality coefficient α of similar electronic/electric systems in the automotive and industrial robot industries, where the learning of the mathematical algorithm 130 is advanced, and the normalization conversion coefficient β of similar electronic/electric systems in these industries.
 具体的には、診断システム100は、サービスロボットの認識システムには、自動車業界における既存の因果係数αおよび正規化変換係数βを援用する。また、サービスロボットのアーム駆動システムには、産業ロボット業界における既存の因果係数αおよび正規化変換係数βを援用する。 Specifically, the diagnosis system 100 uses the causality coefficient α1 and normalization conversion coefficient β1 existing in the automobile industry for the recognition system of the service robot, and uses the causality coefficient α3 and normalization conversion coefficient β3 existing in the industrial robot industry for the arm drive system of the service robot.
 このように、診断システム100は、新規業界の不具合診断サービスを立ち上げる際には、類似する電子・電動システムであって、既に学習が進んでいる電子・電動システムの因果係数αと、その業界に対応する正規化変換係数βを援用して不具合診断サービスを開始する。また、診断システム100は、運用を通じてサービスロボットとしての機械学習を進めることで、サービスロボットにおける実態に合わせたパラメータ情報を生成および更新する。 In this way, when diagnostic system 100 launches a fault diagnosis service for a new industry, it starts the fault diagnosis service by using the causality coefficient α of a similar electronic/electric system that has already undergone learning, and the normalization conversion coefficient β corresponding to that industry. In addition, diagnostic system 100 generates and updates parameter information tailored to the actual situation of the service robot by advancing machine learning as a service robot through operation.
 これにより、診断システム100は、新規業界向けにも精度の高い不具合診断サービスを構築および運用することができる。 As a result, the diagnostic system 100 can build and operate a highly accurate fault diagnosis service even for new industries.
 なお、サービスロボット業界の業界標準となる安全・信頼性基準の規格値が制定された場合には、診断システム100は、当該規格値と、他の業界の規格値との相対値を正規化した業界横断の正規化変換係数をサービスロボット業界に対応する正規化変換係数として用いれば良い。 In addition, when a standard value for safety and reliability standards that will become the industry standard for the service robot industry is established, the diagnostic system 100 can use an industry-wide normalization conversion coefficient that normalizes the relative value between the standard value and the standard values of other industries as the normalization conversion coefficient corresponding to the service robot industry.
 なお、このような診断システム100に係る計算機は、少なくとも、メモリリソース30内のプログラムを、他の計算機でも実行可能なように、当該他の計算機に対して配信するプログラム配信サーバとして機能しても良い。 In addition, the computer related to such a diagnostic system 100 may function as a program distribution server that distributes at least the programs in the memory resource 30 to other computers so that the programs can be executed on the other computers.
 また、本発明は、上記した実施形態および変形例に限定されるものではなく、同一の技術的思想の範囲内において様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることが可能である。 Furthermore, the present invention is not limited to the above-mentioned embodiments and modifications, but includes various modifications within the scope of the same technical idea. For example, the above-mentioned embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. Furthermore, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
 また、上記説明では、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。 In addition, in the above explanation, the control lines and information lines are those that are considered necessary for the explanation, and do not necessarily show all the control lines and information lines in the product. In reality, it can be assumed that almost all components are interconnected.
100・・・診断システム、20・・・プロセッサ、30・・・メモリリソース、40・・・NI(ネットワークインターフェースデバイス)、50・・・UI(ユーザインターフェースデバイス)、110・・・不具合関連情報DB、120・・・不具合相関情報DB、130・・・数理アルゴリズム、140・・・パラメータ情報DB、150・・・正規化変換係数DB、160・・・不具合履歴関連情報DB、210・・・プログラム、211・・・不具合診断プログラム、212・・・学習プログラム、300・・・不具合診断部、301・・・診断部、302・・・不具合カテゴリ特定部、310・・・学習部、311・・・情報登録部、312・・・再学習部、10・・・外部装置、N・・・ネットワーク 100: diagnostic system, 20: processor, 30: memory resource, 40: NI (network interface device), 50: UI (user interface device), 110: defect-related information DB, 120: defect correlation information DB, 130: mathematical algorithm, 140: parameter information DB, 150: normalization conversion coefficient DB, 160: defect history-related information DB, 210: program, 211: defect diagnosis program, 212: learning program, 300: defect diagnosis unit, 301: diagnosis unit, 302: defect category identification unit, 310: learning unit, 311: information registration unit, 312: relearning unit, 10: external device, N: network

Claims (14)

  1.  1以上のプロセッサと、1以上のメモリリソースと、を有する診断システムであって、
     前記メモリリソースは、電子・電動システムの不具合を診断する不具合診断プログラムを格納し、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     前記電子・電動システムの不具合状態を示す不具合関連情報の取得に基づき診断対象の電子・電動システムの業界および不具合種類を特定し、
     特定した第1の業界に対応するパラメータ情報を設定した所定の数理アルゴリズムにより出力された、前記不具合種類に対応する不具合要因間の関係性の強さを示す因果係数を、不具合要因の発生確率として算出し、
     前記発生確率に基づいて前記不具合要因を特定する診断を行う
    ことを特徴とする診断システム。
    1. A diagnostic system having one or more processors and one or more memory resources, comprising:
    The memory resource stores a fault diagnosis program for diagnosing a fault in an electronic/electric system;
    The processor executes the fault diagnosis program to:
    Identifying the industry and type of defect of the electronic/electric system to be diagnosed based on the acquired defect-related information indicating the defect state of the electronic/electric system;
    Calculating a causal coefficient indicating a strength of a relationship between defect factors corresponding to the defect types, which is output by a predetermined mathematical algorithm in which parameter information corresponding to the identified first industry is set, as an occurrence probability of the defect factors;
    A diagnostic system comprising: a diagnostic unit for performing a diagnosis to identify a cause of the defect based on the occurrence probability.
  2.  請求項1に記載の診断システムであって、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     特定した前記第1の業界に対応する前記パラメータ情報がない場合、前記第1の業界とは異なる第2の業界のパラメータ情報を設定した前記数理アルゴリズムにより出力された前記因果係数を、所定の観点による業界ごとの規格値を業界横断の相対値として正規化した正規化変換係数であって、前記第1の業界および前記第2の業界に対応する当該正規化変換係数の比率で正規化することで、前記不具合要因の発生確率を算出する
    ことを特徴とする診断システム。
    2. The diagnostic system of claim 1,
    The processor executes the fault diagnosis program to:
    When there is no parameter information corresponding to the identified first industry, the causal coefficient output by the mathematical algorithm set with parameter information of a second industry different from the first industry is normalized by a normalization conversion coefficient obtained by normalizing an industry-specific standard value from a predetermined perspective as a cross-industry relative value, the normalization conversion coefficient being a ratio between the first industry and the second industry, thereby calculating the occurrence probability of the defect cause.
  3.  請求項1または2に記載の診断システムであって、
     前記メモリリソースは、前記数理アルゴリズムの機械学習を行う学習プログラムをさらに格納し、
     前記プロセッサは、前記学習プログラムを実行することで:
     特定した前記不具合要因に対する措置および不具合解消の有無に関する情報に基づき、前記数理アルゴリズムの機械学習を実行することで前記パラメータ情報を更新し、
     診断を行った前記業界に対応するパラメータ情報として前記メモリリソースに格納する
    ことを特徴とする診断システム。
    3. The diagnostic system according to claim 1 or 2,
    The memory resource further stores a learning program for performing machine learning of the mathematical algorithm;
    The processor executes the learning program to:
    updating the parameter information by executing machine learning of the mathematical algorithm based on information regarding measures taken against the identified cause of the malfunction and whether the malfunction has been resolved;
    and storing the diagnostic information in the memory resource as parameter information corresponding to the industry in which the diagnostic was performed.
  4.  請求項1または2に記載の診断システムであって、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     特定した前記不具合種類に対応する不具合要因間の相関関係と同一又は類似の相関関係を示す不具合相関情報であって、前記第1の業界とは異なる業界に対応する前記不具合相関情報を特定し、当該不具合相関情報を用いて不具合要因を特定する診断を行う
    ことを特徴とする診断システム。
    3. The diagnostic system according to claim 1 or 2,
    The processor executes the fault diagnosis program to:
    A diagnostic system characterized by identifying defect correlation information that indicates a correlation that is identical or similar to the correlation between defect factors corresponding to the identified defect type, the defect correlation information corresponding to an industry different from the first industry, and performing a diagnosis to identify the defect factors using the defect correlation information.
  5.  請求項2に記載の診断システムであって、
     前記正規化変換係数は、前記電子・電動システムの機能安全レベルに関する業界標準の規格値を業界横断の相対値として正規化することで求めた値である
    ことを特徴とする診断システム。
    3. The diagnostic system of claim 2,
    A diagnostic system characterized in that the normalization conversion coefficient is a value obtained by normalizing an industry standard specification value regarding the functional safety level of the electronic/electric system as an industry-wide relative value.
  6.  請求項2に記載の診断システムであって、
     前記正規化変換係数は、前記電子・電動システムの製造メーカにおける安全・信頼性設計に関する設計方式を業界横断の相対値として正規化することで求めた値である
    ことを特徴とする診断システム。
    3. The diagnostic system of claim 2,
    A diagnostic system characterized in that the normalization conversion coefficient is a value obtained by normalizing a design method related to safety and reliability design of a manufacturer of the electronic/electric system as an industry-wide relative value.
  7.  請求項2に記載の診断システムであって、
     前記正規化変換係数は、前記電子・電動システムに使用されている部品の故障率予測モデルの計算式と、運用環境を示す情報と、に基づき算出した値である
    ことを特徴とする診断システム。
    3. The diagnostic system of claim 2,
    A diagnostic system characterized in that the normalization conversion coefficient is a value calculated based on a calculation formula of a failure rate prediction model of components used in the electronic/electric system and information indicating an operating environment.
  8.  請求項2に記載の診断システムであって、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     前記電子・電動システムのシステム構成要素に変更があった場合、変更箇所に対応する正規化変換係数βを用いて前記不具合要因の発生確率を算出する
    ことを特徴とする診断システム。
    3. The diagnostic system of claim 2,
    The processor executes the fault diagnosis program to:
    A diagnostic system characterized in that, when a change is made to a system component of the electronic/electric system, the occurrence probability of the malfunction factor is calculated using a normalization conversion coefficient β corresponding to the changed part.
  9.  請求項2に記載の診断システムであって、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     診断対象である前記第1の業界の前記電子・電動システムのシステム構成と、前記第2の業界の前記電子・電動システムのシステム構成と、の類似度を判定し、
     前記類似度の高い前記第2の業界における前記電子・電動システムに対応する前記パラメータ情報を設定した前記数理アルゴリズムにより出力された前記因果係数と、前記第1の業界に対応する前記正規化変換係数と、を用いて、前記不具合要因の発生確率を算出する
    ことを特徴とする診断システム。
    3. The diagnostic system of claim 2,
    The processor executes the fault diagnosis program to:
    determining a similarity between a system configuration of the electronic/electric system in the first industry that is a diagnosis target and a system configuration of the electronic/electric system in the second industry;
    A diagnostic system characterized by calculating a probability of occurrence of the defect cause using the causal coefficient output by the mathematical algorithm in which the parameter information corresponding to the electronic/electric system in the second industry with the high similarity is set, and the normalization conversion coefficient corresponding to the first industry.
  10.  請求項2に記載の診断システムであって、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     前記電子・電動システムによるサービスに応じて異なる部品の故障率に基づき正規化された正規化変換係数を用いて、前記不具合要因の発生確率を算出する
    ことを特徴とする診断システム。
    3. The diagnostic system of claim 2,
    The processor executes the fault diagnosis program to:
    A diagnostic system comprising: a diagnostic unit for calculating a probability of occurrence of the malfunction factor using a normalization conversion coefficient normalized based on a failure rate of a component that differs depending on a service provided by the electronic/electric system;
  11.  1以上のプロセッサと、1以上のメモリリソースと、を有する診断システムが行う診断方法であって、
     前記メモリリソースは、電子・電動システムの不具合を診断する不具合診断プログラムを格納し、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     前記電子・電動システムの不具合状態を示す不具合関連情報の取得に基づき診断対象の電子・電動システムの業界および不具合種類を特定するステップと、
     特定した第1の業界に対応するパラメータ情報を設定した所定の数理アルゴリズムにより出力された、前記不具合種類に対応する不具合要因間の関係性の強さを示す因果係数を、不具合要因の発生確率として算出するステップと、
     前記発生確率に基づいて前記不具合要因を特定する診断ステップと、を行う
    ことを特徴とする診断方法。
    A diagnostic method performed by a diagnostic system having one or more processors and one or more memory resources, comprising:
    The memory resource stores a fault diagnosis program for diagnosing a fault in an electronic/electric system;
    The processor executes the fault diagnosis program to:
    Identifying an industry and a type of defect of the electronic/electric system to be diagnosed based on acquisition of defect-related information indicating a defect state of the electronic/electric system;
    calculating a causal coefficient indicating a strength of a relationship between defect factors corresponding to the defect types, the causal coefficient being output by a predetermined mathematical algorithm in which parameter information corresponding to the identified first industry is set, as an occurrence probability of the defect factors;
    a diagnosis step of identifying a cause of the defect based on the occurrence probability.
  12.  請求項11に記載の診断方法であって、
     前記プロセッサは、前記不具合診断プログラムを実行することで:
     特定した前記第1の業界に対応する前記パラメータ情報がない場合、前記第1の業界とは異なる第2の業界のパラメータ情報を設定した前記数理アルゴリズムにより出力された前記因果係数を、所定の観点による業界ごとの規格値を業界横断の相対値として正規化した正規化変換係数であって、前記第1の業界および前記第2の業界に対応する当該正規化変換係数の比率で正規化することで、前記不具合要因の発生確率を算出するステップを行う
    ことを特徴とする診断方法。
    The diagnostic method according to claim 11,
    The processor executes the fault diagnosis program to:
    When there is no parameter information corresponding to the identified first industry, the diagnostic method includes a step of calculating a probability of occurrence of the defect cause by normalizing the causal coefficient output by the mathematical algorithm set with parameter information of a second industry different from the first industry by a normalization conversion coefficient obtained by normalizing an industry-specific standard value from a predetermined perspective as a cross-industry relative value, the normalization conversion coefficient corresponding to the first industry and the second industry.
  13.  1以上のプロセッサと、1以上のメモリリソースと、を有する診断システムの前記プロセッサが前記メモリリソースから読み込んで実行するプログラムであって、
     前記メモリリソースは、電子・電動システムの不具合を診断する不具合診断プログラムを格納し、
     前記プロセッサが実行する前記不具合診断プログラムは:
     前記電子・電動システムの不具合状態を示す不具合関連情報の取得に基づき診断対象の電子・電動システムの業界および不具合種類を特定し、
     特定した第1の業界に対応するパラメータ情報を設定した所定の数理アルゴリズムにより出力された、前記不具合種類に対応する不具合要因間の関係性の強さを示す因果係数を、不具合要因の発生確率として算出し、
     前記発生確率に基づいて前記不具合要因を特定する診断を行う
    ことを特徴とするプログラム。
    A program for a diagnostic system having one or more processors and one or more memory resources, the program being read from the memory resource and executed by the processor,
    The memory resource stores a fault diagnosis program for diagnosing a fault in an electronic/electric system;
    The fault diagnosis program executed by the processor includes:
    Identifying the industry and type of defect of the electronic/electric system to be diagnosed based on the acquired defect-related information indicating the defect state of the electronic/electric system;
    Calculating a causal coefficient indicating a strength of a relationship between defect factors corresponding to the defect types, which is output by a predetermined mathematical algorithm in which parameter information corresponding to the identified first industry is set, as an occurrence probability of the defect factors;
    A program for performing a diagnosis to identify a cause of the defect based on the occurrence probability.
  14.  請求項13に記載のプログラムであって、
     前記プロセッサが実行する前記不具合診断プログラムは:
     特定した前記第1の業界に対応する前記パラメータ情報がない場合、前記第1の業界とは異なる第2の業界のパラメータ情報を設定した前記数理アルゴリズムにより出力された前記因果係数を、所定の観点による業界ごとの規格値を業界横断の相対値として正規化した正規化変換係数であって、前記第1の業界および前記第2の業界に対応する当該正規化変換係数の比率で正規化することで、前記不具合要因の発生確率を算出する
    ことを特徴とするプログラム。
    The program according to claim 13,
    The fault diagnosis program executed by the processor includes:
    When there is no parameter information corresponding to the identified first industry, the program calculates the occurrence probability of the defect cause by normalizing the causal coefficient output by the mathematical algorithm in which parameter information of a second industry different from the first industry is set, using a normalization conversion coefficient obtained by normalizing an industry-specific standard value from a predetermined perspective as a cross-industry relative value, the normalization conversion coefficient being a ratio between the first industry and the second industry.
PCT/JP2023/034196 2023-03-22 2023-09-21 Diagnosis system, diagnosis method, and program WO2024195157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-045145 2023-03-22
JP2023045145A JP2024134784A (en) 2023-03-22 2023-03-22 Diagnostic system, diagnostic method, and program

Publications (1)

Publication Number Publication Date
WO2024195157A1 true WO2024195157A1 (en) 2024-09-26

Family

ID=92841552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034196 WO2024195157A1 (en) 2023-03-22 2023-09-21 Diagnosis system, diagnosis method, and program

Country Status (2)

Country Link
JP (1) JP2024134784A (en)
WO (1) WO2024195157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064515A (en) * 2018-10-18 2020-04-23 株式会社日立製作所 Apparatus failure diagnosis support system and apparatus failure diagnosis support method
JP2020173551A (en) * 2019-04-09 2020-10-22 ナブテスコ株式会社 Failure prediction device, failure prediction method, computer program, computation model learning method and computation model generation method
JP2021179740A (en) * 2020-05-12 2021-11-18 株式会社東芝 Monitoring device, monitoring method, program, and model training device
JP2022032230A (en) * 2020-08-11 2022-02-25 株式会社日立製作所 Field data monitoring device, field data monitoring method, and field data display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064515A (en) * 2018-10-18 2020-04-23 株式会社日立製作所 Apparatus failure diagnosis support system and apparatus failure diagnosis support method
JP2020173551A (en) * 2019-04-09 2020-10-22 ナブテスコ株式会社 Failure prediction device, failure prediction method, computer program, computation model learning method and computation model generation method
JP2021179740A (en) * 2020-05-12 2021-11-18 株式会社東芝 Monitoring device, monitoring method, program, and model training device
JP2022032230A (en) * 2020-08-11 2022-02-25 株式会社日立製作所 Field data monitoring device, field data monitoring method, and field data display device

Also Published As

Publication number Publication date
JP2024134784A (en) 2024-10-04

Similar Documents

Publication Publication Date Title
JP7438205B2 (en) Parametric data modeling for model-based reasoners
Schmittner et al. A case study of fmvea and chassis as safety and security co-analysis method for automotive cyber-physical systems
JP2008517386A (en) Anomaly detection method and system
US9710364B2 (en) Method of detecting false test alarms using test step failure analysis
Henriksson et al. Automotive safety and machine learning: Initial results from a study on how to adapt the ISO 26262 safety standard
US8170968B2 (en) Recursive structure for diagnostic model
US20050091642A1 (en) Method and systems for learning model-based lifecycle diagnostics
Lanigan et al. Diagnosis in automotive systems: A survey
WO2007149307A2 (en) Fault detection and root cause identification in complex systems
EP2038715A2 (en) Method and system for anomaly detection
EP3935506A1 (en) A system and method for labeling bits of controller area network (can) messages
CN114582043B (en) Selective health information reporting system including integrated diagnostic model providing least likely and most likely cause information
KR102268053B1 (en) Intelligent safety fault diagnostic system of robotic process automation
Tsybunov et al. Interactive (intelligent) integrated system for the road vehicles’ diagnostics
Chandrasekaran et al. Test & evaluation best practices for machine learning-enabled systems
WO2024195157A1 (en) Diagnosis system, diagnosis method, and program
Altinger State of the Art Software Development in the Automotive Industry and Analysis Upon Applicability of Software Fault Prediction
Hiwase et al. Predictive maintenance of automotive component using digital twin model
Rinaldo et al. Integrated analysis of safety and security hazards in automotive systems
US7809986B2 (en) Fault diagnosis
WO2024004351A1 (en) Processor system and failure diagnosis method
Behravan et al. Generic Fault-Diagnosis Strategy based on Diagnostic Directed Acyclic Graphs using Domain Ontology in Automotive Applications
Weissnegger et al. A novel method to speed-up the evaluation of cyber-physical systems (ISO 26262)
Amor-Segan et al. Towards the self healing vehicle
Aït-Kadi et al. Fault isolation by test scheduling for embedded systems using a probabilistic approach