Nothing Special   »   [go: up one dir, main page]

WO2024190241A1 - 圧電素子のクラック検出方法及びその装置 - Google Patents

圧電素子のクラック検出方法及びその装置 Download PDF

Info

Publication number
WO2024190241A1
WO2024190241A1 PCT/JP2024/004961 JP2024004961W WO2024190241A1 WO 2024190241 A1 WO2024190241 A1 WO 2024190241A1 JP 2024004961 W JP2024004961 W JP 2024004961W WO 2024190241 A1 WO2024190241 A1 WO 2024190241A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
voltage
resistance component
crack
impedance resistance
Prior art date
Application number
PCT/JP2024/004961
Other languages
English (en)
French (fr)
Inventor
賢史 中川
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Publication of WO2024190241A1 publication Critical patent/WO2024190241A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/24Investigating the presence of flaws
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators

Definitions

  • the present invention relates to a method and device for detecting cracks in piezoelectric elements.
  • Patent Document 1 In order to solve these problems, the technology described in Patent Document 1 has been proposed.
  • the invention described in Patent Document 1 applies a voltage of a resonant frequency to a piezoelectric element, measures the dielectric tangent between a pair of electrodes due to the application of this voltage, and detects cracks in the piezoelectric element based on the magnitude of the peak of the dielectric tangent at the measured resonant frequency.
  • the above detection method has the problem that it may result in erroneous detection because it measures the dielectric tangent. That is, as shown in FIG. 5, the dielectric tangent has the characteristic of changing abruptly near the resonant frequency. In FIG. 5, when the dielectric tangent is TanD, the dielectric tangent (TanD) changes abruptly near the resonant frequency of 6.9 MHz.
  • the present invention aims to provide a method and device for detecting cracks in piezoelectric elements that can reduce the possibility of false detection.
  • the method comprises the steps of: applying a voltage of one or more resonant frequencies to the piezoelectric element (22); measuring an impedance resistance component between a pair of electrodes (22a, 22b) of the piezoelectric element (22) alone by applying the voltage;
  • the method is characterized by including a step of determining whether or not a crack has occurred in the piezoelectric element (22) based on a preset threshold value, taking into account the peak value of the measured impedance resistance component.
  • the method includes the steps of applying a voltage of one or more resonant frequencies to the piezoelectric element (22) and applying an arbitrary DC voltage; measuring an impedance resistance component between a pair of electrodes (22a, 22b) of the piezoelectric element (22) alone by applying the voltage;
  • the method is characterized by including a step of determining whether or not a crack has occurred in the piezoelectric element (22) based on a preset threshold value, taking into account the peak value of the measured impedance resistance component.
  • the peak value of the measured impedance resistance component is determined at multiple locations, and all of these determination results are taken into consideration to determine whether or not a crack has occurred in the piezoelectric element (22).
  • a voltage application means for applying a voltage of one or more resonant frequencies to the piezoelectric element (22); a measuring means (impedance analyzer 3) for measuring an impedance resistance component between a pair of electrodes (22a, 22b) of the piezoelectric element (22) alone by application of the voltage;
  • the present invention is characterized by having a judgment means (judgment unit 43 a) that judges whether or not a crack has occurred in the piezoelectric element (22) based on a preset threshold value, taking into account the peak value of the impedance resistance component at the measured resonant frequency.
  • a voltage application means (impedance analyzer 3) that applies a voltage of one or more resonant frequencies to the piezoelectric element (22) and also applies an arbitrary DC voltage
  • a measuring means (impedance analyzer 3) for measuring an impedance resistance component between a pair of electrodes (22a, 22b) of the piezoelectric element (22) alone by application of the voltage
  • the present invention is characterized by having a judgment means (judgment unit 43a) that judges whether or not a crack has occurred in the piezoelectric element (22) based on a preset threshold value, taking into account the peak value of the measured impedance resistance component.
  • the impedance resistance component between a pair of electrodes (22a, 22b) of a single piezoelectric element (22) is measured by applying a voltage, and the peak value of the measured impedance resistance component is taken into consideration, and a determination is made as to whether or not a crack has occurred in the piezoelectric element (22) based on a preset threshold value. This reduces the possibility of erroneous detection.
  • the invention according to claim 3 can further reduce the possibility of false detection.
  • FIG. 1 is a schematic diagram showing a configuration of a crack detection device for a piezoelectric element according to an embodiment of the present invention.
  • 13 is a waveform diagram showing a case where an impedance resistance component between a pair of electrodes is measured at a resonance frequency of the piezoelectric element according to the embodiment.
  • FIG. 3 is a waveform diagram different from that shown in FIG. 2.
  • 4A is an enlarged waveform diagram of a portion enclosed by a square frame A shown in FIG. 3
  • FIG. 1 is a schematic diagram showing a configuration of a crack detection device for a piezoelectric element according to an embodiment of the present invention.
  • 13 is a waveform diagram showing a case where an
  • the crack detection device 1 for a piezoelectric element shown in Fig. 1 is capable of detecting cracks in a piezoelectric element by measuring the impedance resistance component between a pair of electrodes of a single piezoelectric element.
  • the crack detection device 1 for a piezoelectric element shown in Fig. 1 is mainly composed of an HDD suspension 2, which is an object to be measured, an impedance analyzer 3, and a determination device 4. Each component will be explained in detail below.
  • the HDD suspension 2 has a similar structure to that of a conventional one, and as shown in Fig. 1, mainly comprises a load beam 20 as a driven member, a base plate 21 as a base, and a piezoelectric element 22.
  • the load beam 20 applies a load to a head portion 23 at the tip side (left side in the figure) shown in Fig. 1, and is formed of a thin metal plate such as stainless steel having spring properties.
  • a flexure 24 as a wiring member is attached to the load beam 20 as shown in Fig. 1.
  • the flexure 24 is a conductive thin plate 24a, such as a thin rolled stainless steel plate having spring properties, on which a wiring pattern 25 is formed via an electrical insulating layer.
  • This wiring pattern 25 is made up of a wiring section for signal transmission and a wiring section for power supply, and terminal sections 26a and 26b are provided on both ends of the wiring pattern 25, as shown in FIG. 1.
  • a head portion 23 is provided on the tip side (left side in the figure) of the flexure 24, and a piezoelectric element 22 is supported on this head portion 23.
  • This piezoelectric element 22 is conductively connected to a terminal portion 26a on one end side (left side in the figure) of the wiring pattern 25.
  • the base end side (the right side in the figure) of the load beam 20 is supported by a base plate 21.
  • this base plate 21 is provided with a substantially circular boss portion 21a, and the base plate 21 is attached to the carriage side (not shown) via this boss portion 21a, and is rotated by a voice coil motor.
  • the piezoelectric element 22 is made of piezoelectric ceramics such as PZT (lead zirconate titanate) and has a pair of electrodes 22a, 22b as shown in FIG. 1.
  • PZT lead zirconate titanate
  • the impedance resistance component between the pair of electrodes 22a, 22b of the piezoelectric element 22 alone is measured to detect the presence or absence of cracks in the piezoelectric element 22.
  • the HDD suspension 2 which is the object to be measured and configured as described above, is placed on a measurement table 5, which has a horizontally long rectangular shape in cross section, as shown in Figure 1.
  • a measurement table 5 which has a horizontally long rectangular shape in cross section
  • the impedance analyzer 3 can measure the impedance resistance component between the pair of electrodes 22a, 22b of the piezoelectric element 22 alone described above. Specifically, as shown in FIG. 1, two first measurement cables 30 are connected to the measurement signal output side of the impedance analyzer 3, and two second measurement cables 31 are connected to the measurement signal receiving side. The first measurement cable 30 and the second measurement cable 31 are connected to the terminal portion 26b at the other end side (right side in the figure) of the wiring pattern 25 described above. This allows the impedance analyzer 3 to apply a measurement voltage of a frequency according to the setting to the HDD suspension 2, which is the object to be measured, through the first measurement cable 30. Thus, by doing this, the impedance analyzer 3 can apply a voltage of a single or multiple resonant frequencies to the piezoelectric element 22 described above.
  • the impedance analyzer 3 is capable of receiving and measuring the impedance resistance component between the pair of electrodes 22a, 22b at the resonant frequency of the piezoelectric element 22 via the second measurement cable 31. The measured value of this impedance resistance component is then output to the determination device 4 shown in FIG. 1.
  • a ground cable 32 is connected to the impedance analyzer 3 as shown in FIG. 1, and this ground cable 32 is connected to the base 7.
  • the judgment device 4 is configured with a PC (Personal Computer) or the like, and as shown in FIG. 1, is configured with a CPU 40, an input unit 41 capable of inputting predetermined data into the judgment device 4, an output unit 42 capable of outputting predetermined data to the outside of the judgment device 4, a ROM 43 consisting of a writable flash ROM or the like storing predetermined application programs or the like, a RAM 44 functioning as a working area, buffer memory, or the like, a storage unit 45 consisting of a hard disk or the like, and a display unit 46 consisting of an LCD (Liquid Crystal Display) or the like.
  • a PC Personal Computer
  • the determination device 4 configured in this manner has a determination unit 43a as a functional block, since a specific application program is stored in the ROM 43.
  • This determination unit 43a determines whether or not a crack has occurred in the piezoelectric element 22 based on whether or not the measured value of the impedance resistance component measured by the impedance analyzer 3 is equal to or greater than a threshold value previously stored in the memory unit 45. This point will be explained in more detail by explaining an example of the use of the piezoelectric element crack detection device 1.
  • the piezoelectric element crack detection device 1 configured as above first sets a threshold value. Specifically, as described above, for a plurality of HDD suspensions 2, a voltage of one or more resonant frequencies is applied to the piezoelectric element 22 using the impedance analyzer 3, and the impedance resistance component between the pair of electrodes 22a, 22b at the resonant frequency of the piezoelectric element 22 is received and measured. As a result, a waveform as shown in FIG. 2 can be obtained.
  • the threshold value of the impedance resistance component near the resonant frequency of 7.6 MHz can be set to, for example, 160 ⁇ .
  • the judgment unit 43a judges whether the measured value of the impedance resistance component measured by the impedance analyzer 3 is equal to or greater than the threshold value (160 ⁇ in this embodiment) pre-stored in the memory unit 45. If it is equal to or greater than the threshold value, it is judged that no cracks have occurred in the piezoelectric element 22, and if it is not equal to or greater than the threshold value, it is judged that a crack has occurred in the piezoelectric element 22. This makes it possible to detect cracks in the piezoelectric element without optical observation, as in the prior art.
  • the presence or absence of a crack in the piezoelectric element 22 is detected by measuring the impedance resistance component between the pair of electrodes 22a, 22b.
  • the peak values of the impedance resistance component at the resonant frequency are clearly different, making it easy to set the threshold value. Therefore, the possibility of erroneous detection during actual operation can be reduced.
  • this embodiment can reduce the possibility of false detection.
  • threshold values are set at multiple locations, and if all of the set threshold values are equal to or greater than the threshold values, it is determined that no cracks have occurred in the piezoelectric element 22.
  • FIG. 4(a) the enlarged area surrounded by a square frame A in FIG. 3 is shown in FIG. 4(a).
  • a clear difference occurs between the waveform R1 group, in which the impedance resistance component reaches a peak value (in the figure, around 75 ⁇ ) near the resonant frequency of 2.0 MHz, and the waveform R2 group, in which this is not the case.
  • the threshold value of the impedance resistance component near the resonant frequency of 2.0 MHz can be set to, for example, 65 ⁇ . Note that when this threshold value is input using the input unit 41 of the determination device 4 shown in FIG. 1, it is stored in the memory unit 45 by the CPU 40.
  • the enlarged portion enclosed by the rectangular frame B in FIG. 3 is shown in FIG. 4(b).
  • the threshold value of the impedance resistance component near the resonant frequency of 7.6 MHz can be set to, for example, 200 ⁇ . Note that when this threshold value is input using the input unit 41 of the determination device 4 shown in FIG. 1, it is stored in the memory unit 45 by the CPU 40.
  • the judgment unit 43a judges that no cracks have occurred in the piezoelectric element 22 if the measured value of the impedance resistance component measured by the impedance analyzer 3 is equal to or greater than the threshold value (65 ⁇ ) at a resonant frequency of about 2.0 MHz and equal to or greater than the threshold value (200 ⁇ ) at a resonant frequency of about 7.6 MHz, while it judges that a crack has occurred in the piezoelectric element 22 if neither of these conditions is met. This makes it possible to further reduce the possibility of erroneous detection even if differences arise in the waveform caused by the way in which the cracks occur in the piezoelectric element 22.
  • the impedance analyzer 3 applies a voltage of a single or multiple resonant frequencies to the piezoelectric element 22, but this is not limiting, and the impedance analyzer 3 may apply a voltage of a single or multiple resonant frequencies and an arbitrary DC voltage to the piezoelectric element 22.
  • the applied voltage becomes higher than when only a voltage of a single or multiple resonant frequencies is applied, and the peak value of the impedance resistance component becomes sharper. This makes it easier to set the threshold value. This further reduces the possibility of erroneous detection.
  • the HDD suspension 2 has been described as an example, but the present invention is not limited to this and can be applied to any piezoelectric element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 誤検出してしまう可能性を低減させることができる圧電素子のクラック検出装置を提供する。  インピーダンスアナライザ3を用いて、圧電素子22に単数又は複数の共振周波数の電圧を印加する。そして、電圧の印加による圧電素子22単体の一対の電極22a,22b間のインピーダンス抵抗成分をインピーダンスアナライザ3にて測定する。そしてさらに、測定した共振周波数でのインピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、圧電素子22にクラックが発生しているか否かを判定部43aにて判定するようにしている。

Description

圧電素子のクラック検出方法及びその装置
 本発明は、圧電素子のクラック検出方法及びその装置に関する。
 圧電素子をアクチュエータとして使用する電子部品一般において、特にHDDサスペンションにおいては、近年の薄型化要求に伴い圧電素子にクラックが生じるリスクが高まってきている。しかしながら、このHDDサスペンションに搭載される圧電素子は小型であり、光学的な観察での検出が困難であるという問題があった。
 そこで、このような問題を解決すべく、特許文献1に記載の技術が提案されている。この特許文献1に記載の発明は、圧電素子に共振周波数の電圧を印加し、該電圧の印加による一対の電極間の誘電正接を測定し、該測定された共振周波数での誘電正接のピークの大小により圧電素子のクラックを検出するというものである。
特許第5489968号公報
 しかしながら、上記の検出方法は、誘電正接を測定していることから、誤検出してしまう可能性があるという問題があった。すなわち、図5に例示するように、誘電正接は、共振周波数付近で急峻に変化するという特徴がある。なお、図5では、誘電正接をTanDとした際、共振周波数、6.9MHz付近で、誘電正接(TanD)は急峻に変化している。
 この点、詳しく説明すると、誘電正接(TanD)は、インピーダンスZ=R+jXとした際、TanD=R/-Xで表される。そのため、分母Xがゼロに近い周波数では、わずかなX値の差異が、誘電正接(TanD)に大きく影響することとなる。それゆえ、図5に示すように、誘電正接(TanD)は、共振周波数(図5では、6.9MHzを例示)付近で急峻に変化することとなる。
 したがって、測定周波数のわずかなズレによって取得するピーク値が劇的に変わるため、閾値の設定が非常に困難であり、これによって、実施の運用時、誤検出してしまう可能性があるという問題があった。
 そこで、本発明は、上記問題に鑑み、誤検出してしまう可能性を低減させることができる圧電素子のクラック検出方法及びその装置を提供することを目的としている。
 上記本発明の目的は、以下の手段によって達成される。なお、括弧内は、後述する実施形態の参照符号を付したものであるが、本発明はこれに限定されるものではない。
 請求項1の発明によれば、圧電素子(22)に単数又は複数の共振周波数の電圧を印加するステップと、
 前記電圧の印加による前記圧電素子(22)単体の一対の電極(22a,22b)間のインピーダンス抵抗成分を測定するステップと、
 前記測定した前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、前記圧電素子(22)にクラックが発生しているか否かを判定するステップと、を含んでなることを特徴としている。
 請求項2の発明によれば、圧電素子(22)に単数又は複数の共振周波数の電圧を印加すると共に、任意の直流電圧を印加するステップと、
 前記電圧の印加による前記圧電素子(22)単体の一対の電極(22a,22b)間のインピーダンス抵抗成分を測定するステップと、
 前記測定した前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、前記圧電素子(22)にクラックが発生しているか否かを判定するステップと、を含んでなることを特徴としている。
 請求項3の発明によれば、上記請求項1又は2に記載の圧電素子のクラック検出方法において、前記予め設定されている閾値に基づいて前記圧電素子(22)にクラックが発生しているか否かを判定するにあたって、前記測定した前記インピーダンス抵抗成分のピーク値を複数箇所用いて判定し、これら全ての判定結果を勘案して、前記圧電素子(22)にクラックが発生しているか否かを判定してなることを特徴としている。
 請求項4の発明によれば、圧電素子(22)に単数又は複数の共振周波数の電圧を印加する電圧印加手段(インピーダンスアナライザ3)と、
 前記電圧の印加による前記圧電素子(22)単体の一対の電極(22a,22b)間のインピーダンス抵抗成分を測定する測定手段(インピーダンスアナライザ3)と、
 前記測定した前記共振周波数での前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、圧電素子(22)にクラックが発生しているか否かを判定する判定手段(判定部43a)と、を有してなることを特徴としている。
 請求項5の発明によれば、圧電素子(22)に単数又は複数の共振周波数の電圧を印加すると共に、任意の直流電圧を印加する電圧印加手段(インピーダンスアナライザ3)と、
 前記電圧の印加による前記圧電素子(22)単体の一対の電極(22a,22b)間のインピーダンス抵抗成分を測定する測定手段(インピーダンスアナライザ3)と、
 前記測定した前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、前記圧電素子(22)にクラックが発生しているか否かを判定する判定手段(判定部43a)と、を有してなることを特徴としている。
 次に、本発明の効果について、図面の参照符号を付して説明する。なお、括弧内は、後述する実施形態の参照符号を付したものであるが、本発明はこれに限定されるものではない。
 請求項1及び4に係る発明によれば、電圧の印加による圧電素子(22)単体の一対の電極(22a,22b)間のインピーダンス抵抗成分を測定し、その測定したインピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、圧電素子(22)にクラックが発生しているか否かを判定するようにしている。これにより、誤検出してしまう可能性を低減させることができる。
 請求項2及び5に係る発明によれば、上記請求項1及び4の作用効果に加え、任意の直流電圧をさらに印加しているから、閾値の設定がより容易となり、誤検出してしまう可能性をより低減させることができる。
 請求項3に係る発明によれば、誤検出してしまう可能性をさらに低減させることができる。
本発明の一実施形態に係る圧電素子のクラック検出装置を示す概略構成図である。 同実施形態に係る圧電素子の共振周波数での一対の電極間のインピーダンス抵抗成分を測定した際の波形図である。 図2とは異なる波形図である。 (a)は、図3に示す四角枠Aで囲まれた部分を拡大した波形図、(b)は、図3に示す四角枠Bで囲まれた部分を拡大した波形図である。 同実施形態に係る圧電素子の共振周波数での一対の電極間の誘電正接を測定した際の波形図である。
 以下、本発明の一実施形態に係る圧電素子のクラック検出装置を、図面を参照して具体的に説明する。なお、以下の説明において、上下左右の方向を示す場合は、図示正面から見た場合の上下左右をいうものとする。
<圧電素子のクラック検出装置の概略説明>
 図1に示す圧電素子のクラック検出装置1は、圧電素子単体の一対の電極間のインピーダンス抵抗成分を測定することによって、圧電素子のクラックを検出することができるものである。この点、具体的に説明すると、図1に示す圧電素子のクラック検出装置1は、被測定対象物であるHDDサスペンション2と、インピーダンスアナライザ3と、判定装置4と、で主に構成されている。以下、各構成について詳しく説明することとする。
<HDDサスペンションの説明>
 HDDサスペンション2は、従来と同様の構成からなるもので、図1に示すように、被駆動部材としてのロードビーム20と、基部としてのベースプレート21と、圧電素子22と、を主に備えている。このロードビーム20は、図1に示す先端側(図示左側)のヘッド部23に負荷荷重を与えるもので、例えば、ばね性を有するステンレス鋼等の金属製薄板にて形成されている。そして、このようなロードビーム20には、図1に示すように、配線部材としてのフレキシャ24が取り付けられている。
 フレキシャ24は、図1に示すように、ばね性を有する薄いステンレス鋼圧延板等の導電性薄板24aに、電気絶縁層を介して配線パターン25が形成されているものである。この配線パターン25は、信号伝送用の配線部及び給電用の配線部からなっており、この配線パターン25の両端には、図1に示すように、端子部26a,26bが設けられている。
 一方、図1に示すように、フレキシャ24の先端側(図示左側)には、ヘッド部23が設けられており、このヘッド部23には、圧電素子22が支持されている。そして、この圧電素子22は、配線パターン25の一端側(図示左側)の端子部26aに導通接続されている。
 他方、図1に示すように、ロードビーム20の基端側(図示右側)は、ベースプレート21に支持されている。このベースプレート21は、図1に示すように、略円形状のボス部21aが設けられており、このボス部21aを介して、ベースプレート21は、図示しないキャリッジ側に取り付けられ、ボイスコイルモータによって旋回駆動されるようになっている。
 圧電素子22は、PZT(チタン酸ジルコン酸鉛)等の圧電セラミックスからなり、図1に示すように、一対の電極22a,22bを備えている。そして、本実施形態においては、この圧電素子22単体の一対の電極22a,22b間のインピーダンス抵抗成分を測定することにより、圧電素子22のクラックの有無を検出しようとするものである。
 かくして、上記のように構成される被測定対象物であるHDDサスペンション2は、測定にあたり、図1に示すように、断面視横長矩形状の測定テーブル5に設置されている。そして、図1に示すように、この測定テーブル5の下面には、断面視横長矩形状の絶縁材6が設けられており、この絶縁材6の下面には、断面視横長矩形状の設備装置の土台7が設けられている。
<インピーダンスアナライザの説明>
 インピーダンスアナライザ3は、上記説明した圧電素子22単体の一対の電極22a,22b間のインピーダンス抵抗成分を測定することができるものである。具体的には、図1に示すように、インピーダンスアナライザ3には、測定信号出力側に2本の第1測定ケーブル30が接続され、測定信号受信側に2本の第2測定ケーブル31が接続されている。そして、この第1測定ケーブル30及び第2測定ケーブル31は、上記説明した配線パターン25の他端側(図示右側)の端子部26bに接続されている。これにより、第1測定ケーブル30を介して、インピーダンスアナライザ3から設定に応じた周波数の測定電圧を被測定対象物であるHDDサスペンション2に印加できることとなる。かくして、このようにすれば、インピーダンスアナライザ3によって、上記説明した圧電素子22に単数又は複数の共振周波数の電圧を印加できることとなる。
 ところで、上記のように圧電素子22に単数又は複数の共振周波数の電圧が印加された際、インピーダンスアナライザ3は、第2測定ケーブル31を介して、圧電素子22の共振周波数での一対の電極22a,22b間のインピーダンス抵抗成分を受信し測定できるようになっている。そして、このインピーダンス抵抗成分の測定値は、図1に示す判定装置4に出力されるようになっている。なお、インピーダンスアナライザ3には、図1に示すようにグランドケーブル32が接続されており、このグランドケーブル32は、土台7に接続されている。
<判定装置の説明>
 判定装置4は、PC(Personal  Computer)等で構成されてなるもので、図1に示すように、CPU40と、所定データを判定装置4に入力することができる入力部41と、判定装置4外に所定データを出力することができる出力部42と、所定のアプリケーションプログラム等を格納した書込み可能なフラッシュROM等からなるROM43と、作業領域やバッファメモリ等として機能するRAM44と、ハードディスク等からなる記憶部45と、LCD(Liquid Crystal Display)等からなる表示部46と、で構成されている。
 かくして、このように構成される判定装置4は、ROM43内に所定のアプリケーションプログラムが格納されていることから、機能ブロックとしての判定部43aが備えられている。この判定部43aは、インピーダンスアナライザ3によって測定されたインピーダンス抵抗成分の測定値が、記憶部45内に予め記憶されている閾値以上か否かによって圧電素子22にクラックが発生しているか否かを判定するものである。なお、この点、圧電素子のクラック検出装置1の使用例を説明することで、詳しく説明することとする。
<圧電素子のクラック検出装置の使用例の説明>
 かくして、このように構成される圧電素子のクラック検出装置1は、まず閾値を設定する。具体的には、複数のHDDサスペンション2に対して、上記説明したように、インピーダンスアナライザ3を用いて、圧電素子22に単数又は複数の共振周波数の電圧を印加し、圧電素子22の共振周波数での一対の電極22a,22b間のインピーダンス抵抗成分を受信し測定する。これにより、図2に示すような波形を得ることができる。具体的には、共振周波数、7.6MHz付近で、インピーダンス抵抗成分がピーク値(図示では、250Ω付近)となっている波形R1グループと、そうなっていない波形R2グループとで、明確な差異が生じている。この共振周波数、7.6MHz付近で、インピーダンス抵抗成分がピーク値(図示では、250Ω付近)となっている波形R1グループは、圧電素子22が良品である(クラックが発生していない)ことを示している。そのため、明確な差異が生じていることから、共振周波数、7.6MHz付近でのインピーダンス抵抗成分の閾値を、例えば、160Ωと設定しておくことができる。なお、この閾値は、図1に示す判定装置4の入力部41を用いて入力すると、CPU40にて、記憶部45に記憶されることとなる。
 かくして、このように閾値を設定しておけば、判定部43aは、インピーダンスアナライザ3によって測定されたインピーダンス抵抗成分の測定値が、記憶部45内に予め記憶されている閾値(本実施形態においては、160Ω)以上か否かを判定する。そして、閾値以上であれば、圧電素子22にクラックが発生していないと判定し、閾値以上でなければ、圧電素子22にクラックが発生していると判定する。これにより、従来技術と同様、光学的な観察をせずとも、圧電素子のクラックを検出することができる。
 さらには、上記説明してきたように、本実施形態においては、一対の電極22a,22b間のインピーダンス抵抗成分を測定することにより、圧電素子22のクラックの有無を検出するようにしている。これにより、図2に示すように、共振周波数でのインピーダンス抵抗成分のピーク値が明らかに異なるため、閾値の設定が容易となる。それゆえ、実施の運用時、誤検出してしまう可能性を低減させることができる。
 したがって、本実施形態によれば、誤検出してしまう可能性を低減させることができる。
 ところで、圧電素子22に発生するクラックは割れ方によって、図2とは異なる図3のような波形となる可能性がある。すなわち、図3に示すように、共振周波数、7.6MHz付近でのインピーダンス抵抗成分のピーク値が、上記設定した閾値の160Ω付近となっている波形R2グループが存在している。そのため、このままでは、圧電素子22にクラックが発生しているにもかかわらず、クラックが発生していないと判定され、誤検出してしまう可能性がある。
 そこで、本実施形態においては、さらに誤検出してしまう可能性を低減させるため、複数箇所に閾値を設定し、その設定されたすべての閾値以上であれば、圧電素子22にクラックが発生していないと判定するようにしている。この点、具体的に説明すると、図3に示す四角枠Aで囲んだ拡大部分が図4(a)に示すものである。この際、共振周波数、2.0MHz付近で、インピーダンス抵抗成分がピーク値(図示では、75Ω付近)となっている波形R1グループと、そうなっていない波形R2グループとで、明確な差異が生じている。そのため、共振周波数、2.0MHz付近でのインピーダンス抵抗成分の閾値を、例えば、65Ωと設定しておくことができる。なお、この閾値は、図1に示す判定装置4の入力部41用いて入力すると、CPU40にて、記憶部45に記憶されることとなる。
 一方、図3に示す四角枠Bで囲んだ拡大部分が図4(b)に示すものである。この際、共振周波数、7.6MHz付近で、インピーダンス抵抗成分がピーク値(図示では、250Ω付近)となっている波形R1グループと、そうなっていない波形R2グループとで、明確な差異が生じている。そのため、共振周波数、7.6MHz付近でのインピーダンス抵抗成分の閾値を、例えば、200Ωと設定しておくことができる。なお、この閾値は、図1に示す判定装置4の入力部41用いて入力すると、CPU40にて、記憶部45に記憶されることとなる。
 かくして、判定部43aは、インピーダンスアナライザ3によって測定されたインピーダンス抵抗成分の測定値が、共振周波数、2.0MHz付近での閾値(65Ω)以上であり、且つ、共振周波数、7.6MHz付近での閾値(200Ω)以上であるかで、圧電素子22にクラックが発生していないと判定する一方で、何れも満たさなければ、圧電素子22にクラックが発生していると判定する。これにより、圧電素子22に発生するクラックの割れ方によって生じる波形に差異が生じたとしても、誤検出してしまう可能性をさらに低減させることができる。
<変形例の説明>
 なお、本実施形態において示した形状等はあくまで一例であり、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、本実施形態においては、インピーダンスアナライザ3によって、圧電素子22に単数又は複数の共振周波数の電圧を印加する例を示したが、それに限らず、インピーダンスアナライザ3によって、単数又は複数の共振周波数の電圧を印加すると共に、任意の直流電圧を圧電素子22に印加しても良い。このようにすれば、任意の直流電圧を圧電素子22に印加したことにより、単数又は複数の共振周波数の電圧を印加するだけに比べ印加する電圧が高くなるから、インピーダンス抵抗成分のピーク値がより鋭くなる。そのため、閾値の設定がより容易となる。それゆえ、誤検出してしまう可能性をより低減させることができる。
 また、本実施形態においては、HDDサスペンション2を例示して説明したが、それに限らず、どのような圧電素子にも適用可能である。
 また、本実施形態においては、図3及び図4を用いて2箇所の閾値以上であれば、圧電素子22にクラックが発生してないと判定する例を示したが、それに限らず、勿論、3箇所以上の閾値以上か否かで判定しても良い。
 また、本実施形態においては、インピーダンスアナライザ3によって測定されたインピーダンス抵抗成分の測定値が、記憶部45内に予め記憶されている閾値以上か否かによって圧電素子22にクラックが発生しているか否かを判定する例を示したが、それに限らず、インピーダンスアナライザ3によって測定されたインピーダンス抵抗成分の測定値が、記憶部45内に予め記憶されている閾値以下か否かによって圧電素子22にクラックが発生しているか否かを判定するようにしても良い。
1       圧電素子のクラック検出装置
2       HDDサスペンション
22      圧電素子
22a,22b 電極
3       インピーダンスアナライザ(電圧印加手段、測定手段)
4       判定装置
43a     判定部(判定手段)
 

Claims (5)

  1.  圧電素子に単数又は複数の共振周波数の電圧を印加するステップと、
     前記電圧の印加による前記圧電素子単体の一対の電極間のインピーダンス抵抗成分を測定するステップと、
     前記測定した前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、前記圧電素子にクラックが発生しているか否かを判定するステップと、を含んでなる圧電素子のクラック検出方法。
  2.  圧電素子に単数又は複数の共振周波数の電圧を印加すると共に、任意の直流電圧を印加するステップと、
     前記電圧の印加による前記圧電素子単体の一対の電極間のインピーダンス抵抗成分を測定するステップと、
     前記測定した前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、前記圧電素子にクラックが発生しているか否かを判定するステップと、を含んでなる圧電素子のクラック検出方法。
  3.  前記予め設定されている閾値に基づいて前記圧電素子にクラックが発生しているか否かを判定するにあたって、前記測定した前記インピーダンス抵抗成分のピーク値を複数箇所用いて判定し、これら全ての判定結果を勘案して、前記圧電素子にクラックが発生しているか否かを判定してなる請求項1又は2に記載の圧電素子のクラック検出方法。
  4.  圧電素子に単数又は複数の共振周波数の電圧を印加する電圧印加手段と、
     前記電圧の印加による前記圧電素子単体の一対の電極間のインピーダンス抵抗成分を測定する測定手段と、
     前記測定した前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、前記圧電素子にクラックが発生しているか否かを判定する判定手段と、を有してなる圧電素子のクラック検出装置。
  5.  圧電素子に単数又は複数の共振周波数の電圧を印加すると共に、任意の直流電圧を印加する電圧印加手段と、
     前記電圧の印加による前記圧電素子単体の一対の電極間のインピーダンス抵抗成分を測定する測定手段と、
     前記測定した前記インピーダンス抵抗成分のピーク値を勘案し、予め設定されている閾値に基づいて、前記圧電素子にクラックが発生しているか否かを判定する判定手段と、を有してなる圧電素子のクラック検出装置。
     
PCT/JP2024/004961 2023-03-14 2024-02-14 圧電素子のクラック検出方法及びその装置 WO2024190241A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-039381 2023-03-14
JP2023039381A JP2024129954A (ja) 2023-03-14 2023-03-14 圧電素子のクラック検出方法及びその装置

Publications (1)

Publication Number Publication Date
WO2024190241A1 true WO2024190241A1 (ja) 2024-09-19

Family

ID=92755203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/004961 WO2024190241A1 (ja) 2023-03-14 2024-02-14 圧電素子のクラック検出方法及びその装置

Country Status (2)

Country Link
JP (1) JP2024129954A (ja)
WO (1) WO2024190241A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063305A (ja) * 1992-06-23 1994-01-11 Mitsubishi Kasei Corp 圧電素子のマイクロクラックの非破壊的検査法
JP2001242110A (ja) * 1999-12-24 2001-09-07 Murata Mfg Co Ltd 圧電セラミック素子の検査方法
JP2005057555A (ja) * 2003-08-06 2005-03-03 Murata Mfg Co Ltd 圧電振動板の検査方法
JP2017003408A (ja) * 2015-06-10 2017-01-05 三菱電機株式会社 太陽電池モジュールのはんだ接合評価装置及び評価方法
WO2019054337A1 (ja) * 2017-09-12 2019-03-21 日本碍子株式会社 圧電素子の検査方法
US20190302160A1 (en) * 2018-03-29 2019-10-03 Xerox Corporation Impedance measurement of individual actuators of a piezoelectric print head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063305A (ja) * 1992-06-23 1994-01-11 Mitsubishi Kasei Corp 圧電素子のマイクロクラックの非破壊的検査法
JP2001242110A (ja) * 1999-12-24 2001-09-07 Murata Mfg Co Ltd 圧電セラミック素子の検査方法
JP2005057555A (ja) * 2003-08-06 2005-03-03 Murata Mfg Co Ltd 圧電振動板の検査方法
JP2017003408A (ja) * 2015-06-10 2017-01-05 三菱電機株式会社 太陽電池モジュールのはんだ接合評価装置及び評価方法
WO2019054337A1 (ja) * 2017-09-12 2019-03-21 日本碍子株式会社 圧電素子の検査方法
US20190302160A1 (en) * 2018-03-29 2019-10-03 Xerox Corporation Impedance measurement of individual actuators of a piezoelectric print head

Also Published As

Publication number Publication date
JP2024129954A (ja) 2024-09-30

Similar Documents

Publication Publication Date Title
JP5489968B2 (ja) 圧電素子のクラック検出方法及びその装置
US7629796B2 (en) Contact type single side probe device and apparatus and method for testing open or short circuits of conductive lines using the same
CN107505540B (zh) 用于电力设备的诊断系统
JP5403640B2 (ja) Lc共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査装置および検査方法
KR101091694B1 (ko) 터치패널의 검사장치
US8248083B2 (en) Processing device for piezoelectric actuator and processing method for piezoelectric actuator
US6686746B2 (en) Method and apparatus for monitoring integrity of wires or electrical cables
WO2024190241A1 (ja) 圧電素子のクラック検出方法及びその装置
WO2020107797A1 (zh) 显示面板以及显示面板的裂纹检测方法
Levikari et al. Acoustic phenomena in damaged ceramic capacitors
US9753075B2 (en) Inspection apparatus and inspection method
CN102955097A (zh) 一种阵列基板检测方法、检测装置及检测系统
KR101417191B1 (ko) 전력기기의 위험도 분석 시스템 및 그 방법
CN109697437A (zh) 一种基于电激励的绕组模态分析方法及其应用和验证方法
WO2024190242A1 (ja) 圧電素子のクラック検出方法及びその装置
KR20060105603A (ko) 보정 기판, 컴퓨터 프로그램 및 컴퓨터 판독 가능 기록매체
JP6226679B2 (ja) 分極方向検査方法、分極方向検査装置及び圧電素子の製造方法
JP2008233053A (ja) 圧電振動素子の周波数特性測定方法
CN206311700U (zh) 一种电缆震荡波局放测试装置
JPH10197593A (ja) 電力ケーブルの劣化判定方法
CN111141830B (zh) 基于微纳耦合光纤传感器的线性定位系统及方法
JP2005057555A (ja) 圧電振動板の検査方法
JP2005315578A (ja) アンテナの検査方法及びアンテナ検査システム
CN110969972B (zh) 显示面板的检测方法、装置、控制器和存储介质
JP4466258B2 (ja) 回路配線基板の伝送線路の特性インピーダンスの算出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24770356

Country of ref document: EP

Kind code of ref document: A1