Nothing Special   »   [go: up one dir, main page]

WO2024189823A1 - Heat exchanger and air conditioner including same - Google Patents

Heat exchanger and air conditioner including same Download PDF

Info

Publication number
WO2024189823A1
WO2024189823A1 PCT/JP2023/010084 JP2023010084W WO2024189823A1 WO 2024189823 A1 WO2024189823 A1 WO 2024189823A1 JP 2023010084 W JP2023010084 W JP 2023010084W WO 2024189823 A1 WO2024189823 A1 WO 2024189823A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchanger
flat tubes
flow path
flat
Prior art date
Application number
PCT/JP2023/010084
Other languages
French (fr)
Japanese (ja)
Inventor
七海 岸田
洋次 尾中
理人 足立
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023548223A priority Critical patent/JP7443630B1/en
Priority to PCT/JP2023/010084 priority patent/WO2024189823A1/en
Priority to JP2024024484A priority patent/JP2024132908A/en
Publication of WO2024189823A1 publication Critical patent/WO2024189823A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • This disclosure relates to a headerless heat exchanger and an air conditioning device equipped with the same.
  • a heat exchanger is a type of heat exchanger that is made by stacking a plurality of heat exchange members and exchanges heat between a first fluid such as a refrigerant and a second fluid such as air.
  • One such heat exchanger is a headerless heat exchanger (see, for example, Patent Document 1).
  • the heat exchanger of Patent Document 1 has a plurality of heat transfer paths for the first fluid that are provided in the stacking direction of the heat exchange members that are substantially rectangular in shape, each of which extends in the longitudinal direction of the heat exchange members, and a header path that extends in the stacking direction of the heat exchange members and connects the plurality of heat transfer paths.
  • the heat exchange members are plates, and the unevenness provided on the plates forms a heat transfer path for the refrigerant between the plate and the adjacent plate on one side of the stacking direction, and also forms an air path between the plate and the adjacent plate on the other side of the stacking direction.
  • the heat transfer paths for the refrigerant are connected to each other by providing a through hole in the portion where the plate and the adjacent plate on the other side of the stacking direction are joined.
  • the heat exchanger of Patent Document 1 is constructed by stacking plates, with the refrigerant heat transfer flow path and the air flow path formed by the unevenness on the plates, and the refrigerant header flow path formed by through holes in the joints of the plates. Therefore, the plate pitch and the total width of the refrigerant heat transfer flow path and the air flow path in the plate stacking direction are determined by the size of the unevenness on the plates (i.e. the depth of the grooves or the height of the protrusions).
  • the width of the air flow path in the plate stacking direction can be changed by the size of the unevenness, there is a limit to how much the unevenness can be changed because the unevenness is processed directly on the plates, and also, if an attempt is made to widen the width of the air flow path, the width of the refrigerant heat transfer flow path will become narrower.
  • the heat exchanger of Patent Document 1 has a low degree of freedom in designing the air flow path.
  • This disclosure has been made to solve the problems described above, and aims to increase the freedom in designing the air flow path in a headerless heat exchanger.
  • the first heat exchanger is a heat exchanger including a plurality of flat tubes arranged in a first direction and each extending in a second direction intersecting the first direction, the flat tubes having a tube wall with a heat transfer flow path through which a fluid flows in the internal space, the tube walls having flat tube side wall portions facing each other in the first direction, the tube side wall portions having through holes formed therein, the adjacent flat tubes having connecting portions that connect the tube walls and communicate the heat transfer flow paths inside the tube walls, the connecting portions being constituted by connecting protrusions that protrude in the first direction from the periphery of the through hole formed in at least one of the opposing tube side wall portions of the adjacent flat tubes.
  • the air conditioner according to the present disclosure also includes a refrigerant circuit in which a compressor, the above-mentioned heat exchanger, an expansion valve, and an indoor heat exchanger are connected via refrigerant piping, and a fluid circulates.
  • a heat transfer flow path for a fluid is provided within the tube wall of the flat tube, and adjacent flat tubes have connecting parts that connect the tube walls and communicate the heat transfer flow paths, and the connecting parts protrude in a first direction from the peripheral part of the through hole in the tube side wall part. Therefore, by changing the length of the connecting parts, the width in the first direction of the air flow path outside the connecting parts can be changed, so that the width in the first direction of the air flow path can be increased without narrowing the width in the first direction of the heat transfer flow path of the fluid. This allows for greater freedom in designing the air flow paths in a headerless heat exchanger.
  • FIG. 1 is a perspective view showing a schematic configuration of a heat exchanger according to a first embodiment
  • FIG. 2 is a refrigerant circuit diagram of an air conditioner equipped with the heat exchanger of FIG. 1.
  • FIG. 2 is a perspective view showing a configuration of a flat tube of the heat exchanger of FIG. 1 .
  • FIG. 2 is a longitudinal sectional view of the heat exchanger of FIG. 1 .
  • 5 is a partial cross-sectional view showing the AA cross section of the part surrounded by an ellipse in FIG. 4.
  • FIG. 11 is a perspective view showing a schematic configuration of a heat exchanger according to a second embodiment.
  • FIG. 7 is a longitudinal sectional view of the heat exchanger of FIG. 6 .
  • FIG. 8 is a diagram showing an example of the configuration of a connecting portion enclosed in a square in FIG. 7 .
  • FIG. 11 is a perspective view showing a configuration of a heat exchanger according to a third embodiment.
  • FIG. 11 is a perspective view showing a schematic configuration of a heat exchanger according to a fourth embodiment.
  • FIG. 11 is a longitudinal sectional view of the heat exchanger of FIG. 10 .
  • FIG. 11 is a cross-sectional view of the heat exchanger of FIG. 10 taken along plane B, as viewed from above.
  • 11 is a cross-sectional view of the heat exchanger of FIG. 10 taken along plane C, as viewed from above.
  • FIG. FIG. 13 is a perspective view showing a schematic configuration of a heat exchanger according to a fifth embodiment.
  • a vertical cross-sectional view showing the configuration of a positional regulation portion for a flat tube of a heat exchanger according to embodiment 6.
  • FIG. 1 is a perspective view showing a schematic configuration of a heat exchanger according to the first embodiment.
  • the heat exchanger 101 has a plurality of flat tubes 10 arranged in a first direction D1 and connected to each other.
  • the flat tubes 10 extend in a direction in which the tube axis Ax extends (hereinafter, also referred to as the tube axis direction), and have a flat shape that is long in one direction in a cross section perpendicular to the tube axis Ax.
  • the first direction D1 in which the plurality of flat tubes 10 are arranged is referred to as a stacking direction
  • the tube axis direction of the flat tubes 10 is referred to as a second direction D2 or the longitudinal direction of the flat tubes 10
  • the longitudinal direction of the cross section of the flat tubes 10 is referred to as a third direction D3 or the short direction of the flat tubes 10.
  • the heat exchanger 101 is defined as being installed so that the stacking direction (first direction D1) of the flat tubes 10 is the left-right direction.
  • Each flat tube 10 is defined as being arranged so that its tube axis Ax is in the up-down direction perpendicular to the stacking direction (first direction D1) and its short side direction (third direction D3) is in the front-to-back direction perpendicular to the tube axis direction and the stacking direction.
  • the arrangement of the heat exchanger 101, or the angle between the stacking direction (first direction D1) of the flat tubes 10 in the heat exchanger 101 and the tube axis direction (second direction D2) of each flat tube 10, is not limited to the above case.
  • the heat exchanger 101 may be arranged at an angle so that the tube axis direction of each flat tube 10 is inclined with respect to the vertical direction.
  • the heat exchanger 101 when the heat exchanger 101 is installed so that the stacking direction (first direction D1) of the flat tubes 10 is the left-right direction, the heat exchanger 101 may be configured so that the tube axis direction of each flat tube 10 is inclined with respect to the vertical direction.
  • Gaps that are air flow paths P2 are formed between the tube walls 11 of adjacent flat tubes 10 in the stacking direction (first direction D1), and air flows through each gap in the heat exchanger 101 along the short side direction of the flat tubes 10 (third direction D3).
  • the flat tube 10 arranged at one end of the stacking direction among the plurality of flat tubes 10 is provided with a first pipe a and a second pipe b which serve as an inlet and outlet for a fluid (e.g., a refrigerant, etc.) in the heat exchanger 101.
  • a fluid e.g., a refrigerant, etc.
  • the fluid flowing through the flat tube 10 may be a refrigerant, or may be water, brine, etc.
  • a fluid flow path is provided between the first pipe a and the second pipe b.
  • the fluid flow path is provided in the plurality of flat tubes 10.
  • the heat exchanger 101 exchanges heat between air and a fluid.
  • the fluid flowing through the plurality of flat tubes 10 is defined as a refrigerant.
  • Adjacent flat tubes 10 have connecting portions 19 for connecting the tube walls 11 of the adjacent flat tubes.
  • Each flat tube 10 has a tube wall 11 and connecting protrusions 19a, 19b (see FIG. 3 described below) that extend outward from the tube wall 11 in a first direction D1 and constitute the connecting portion 19.
  • the flat tubes 10 have a tube structure that maintains an internal space through which the refrigerant flows along their longitudinal direction (second direction D2), i.e., from the upper end to the lower end of the tube wall 11. The detailed structure of the flat tubes 10 will be described later.
  • the heat exchanger 101 is provided with tube sealing portions 20 that close each open end 1e on both sides in the longitudinal direction (second direction D2) of the flat tubes 10.
  • the tube sealing portions 20 are provided for each flat tube 10 at two locations, the upper and lower sides of the flat tube.
  • the tube sealing portions 20 are joined to the open end 1e of the flat tube 10 by a joining means such as brazing or adhesive.
  • FIG. 2 is a refrigerant circuit diagram of an air-conditioning device 100 equipped with the heat exchanger 101 of FIG. 1. As shown in FIG. 2, the heat exchanger 101 constitutes part of a refrigerant circuit 100c through which the refrigerant circulates in the air-conditioning device 100.
  • the air conditioning device 100 has a compressor 102, a heat exchanger 101, an expansion valve 105, an indoor heat exchanger 104, and a four-way valve 103.
  • the compressor 102, the heat exchanger 101, the expansion valve 105, and the four-way valve 103 are provided in the outdoor unit 100A
  • the indoor heat exchanger 104 is provided in the indoor unit 100B.
  • the first pipe a and the second pipe b (see FIG. 1), which serve as the inlet and outlet of the refrigerant of the heat exchanger 101, are connected to the four-way valve 103 and the expansion valve 105 of the refrigerant circuit 100c.
  • the compressor 102, heat exchanger 101, expansion valve 105, indoor heat exchanger 104, and four-way valve 103 are connected to each other via refrigerant piping to form a refrigerant circuit 100c in which the refrigerant can circulate.
  • the operation of the compressor 102 performs a refrigeration cycle in which the refrigerant circulates through the compressor 102, heat exchanger 101, expansion valve 105, and indoor heat exchanger 104 while undergoing a phase change.
  • the outdoor unit 100A is provided with an outdoor fan 107 that forces outdoor air to pass through the heat exchanger 101.
  • the heat exchanger 101 exchanges heat between the refrigerant and the outdoor airflow generated by the operation of the outdoor fan 107.
  • the indoor unit 100B is provided with an indoor fan 106 that forces indoor air to pass through the indoor heat exchanger 104.
  • the indoor heat exchanger 104 exchanges heat between the refrigerant and the indoor airflow generated by the operation of the indoor fan 106.
  • the operation of the air conditioning device 100 can be switched between cooling operation and heating operation.
  • the direction of refrigerant flow during cooling operation is indicated by a dashed arrow
  • the direction of refrigerant flow during heating operation is indicated by a solid arrow.
  • the four-way valve 103 is a solenoid valve that switches the refrigerant flow path in response to switching between cooling operation and heating operation of the air conditioning device 100.
  • the four-way valve 103 guides the refrigerant from the compressor 102 to the heat exchanger 101 and guides the refrigerant from the indoor heat exchanger 104 to the compressor 102, and during heating operation, guides the refrigerant from the compressor 102 to the indoor heat exchanger 104 and guides the refrigerant from the heat exchanger 101 to the compressor 102.
  • the refrigerant compressed by the compressor 102 is sent to the heat exchanger 101.
  • the refrigerant releases heat to the outdoor air and is condensed.
  • the refrigerant is then sent to the expansion valve 105, where it is reduced in pressure and then sent to the indoor heat exchanger 104.
  • the refrigerant then absorbs heat from the indoor air in the indoor heat exchanger 104 and evaporates, before returning to the compressor 102. Therefore, when the air conditioning device 100 is in cooling operation, the heat exchanger 101 functions as a condenser, and the indoor heat exchanger 104 functions as an evaporator.
  • the refrigerant compressed by the compressor 102 is sent to the indoor heat exchanger 104.
  • the refrigerant releases heat to the indoor air and is condensed.
  • the refrigerant is then sent to the expansion valve 105, where it is reduced in pressure and then sent to the heat exchanger 101.
  • the refrigerant then absorbs heat from the outdoor air in the heat exchanger 101 and evaporates, before returning to the compressor 102. Therefore, when the air conditioning device 100 is in heating operation, the heat exchanger 101 functions as an evaporator, and the indoor heat exchanger 104 functions as a condenser.
  • FIG. 3 is a perspective view showing the configuration of the flat tubes 10 of the heat exchanger 101 of FIG. 1.
  • FIG. 4 is a longitudinal cross-sectional view of the heat exchanger 101 of FIG. 1.
  • FIG. 5 is a partial cross-sectional view showing the A-A cross section of the part surrounded by an ellipse in FIG. 4.
  • the refrigerant flow path of the heat exchanger 101 and the structure of the flat tubes 10 are described in detail with reference to FIG. 1 to FIG. 5.
  • the direction of refrigerant flow when the heat exchanger 101 is used as a condenser is indicated by solid white arrows.
  • dashed white arrows the direction of air flow is indicated by dashed white arrows.
  • the tube wall 11 has substantially flat tube side wall portions 10a and 10b facing each other in the first direction D1, and curved connecting wall portions 10c and 10d connecting the tube side wall portions 10a and 10b at the respective ends of the tube side wall portions 10a and 10b on both sides in the third direction D3.
  • the tube side wall portions 10a and 10b each have a rectangular shape with a long side extending in the longitudinal direction (second direction D2) of the flat tube 10 and a short side extending in the lateral direction (third direction D3) of the flat tube 10.
  • the tube side wall portions 10a and 10b are each flat, the "flat shape" in this application does not have to be a surface composed of a completely flat surface, and may have a structure that appears to be flat as a whole.
  • a depression, a protrusion, or a wave shape may be formed in part of the flat area.
  • the wall portion on the left side of the pipe wall 11 is the pipe side wall portion 10a
  • the wall portion on the right side of the pipe wall 11 is the pipe side wall portion 10b.
  • the left pipe side wall portion 10a has a through hole h1a that penetrates in the first direction D1
  • the right pipe side wall portion 10b has a through hole h1b that penetrates in the first direction D1.
  • the connecting portion 19 of the adjacent flat tubes 10 has a cylindrical shape with a hollow portion Sg penetrating in the first direction D1.
  • the connecting portion 19 is composed of a connecting protrusion 19a or 19b extending from the peripheral portion of the through hole h1a or h1b in at least one of the tube side wall portions 10a and 10b facing each other in the adjacent flat tubes 10 to the side of the facing tube side wall portion 10b or 10a.
  • the connecting portion 19 is composed of cylindrical connecting protrusions 19a and 19b formed in both tube side wall portions 10a and 10b facing each other in the adjacent flat tubes 10.
  • Such through holes h1a, h1b and connecting protrusions 19a, 19b can be formed, for example, by a burring process in which a hole is made in the flat portion of the flat tube 10 and the flat portion of the periphery is deformed so as to rise into a cylindrical shape.
  • the connecting portion 19 connects the through holes h1a and h1b provided in the tube side wall portions 10a and 10b with the hollow portion Sg, thereby communicating the internal spaces of adjacent tube walls 11.
  • the connecting portion 19 also has the function of dividing the inner hollow portion Sg from the air flow path P2, which is the space outside the connecting portion 19.
  • the through holes h1a, h1b, and the connecting portion 19 are formed inward from the opening ends 1e on both sides in the longitudinal direction (second direction D2) of the flat tubes 10.
  • the through holes h1a, h1b, the connecting protrusions 19a, and the connecting protrusions 19b of each flat tube 10 are formed below the upper opening end 1e of the flat tube 10 and above the lower opening end 1e of the flat tube 10.
  • Such flat tubes 10 can be manufactured, for example, by forming through holes h1a and h1b and connecting protrusions 19a and 19b in advance in the base material of the flat tube 10, and then shaping the base material by roll forming. Also, the connecting protrusions 19a and 19b may be formed by raising the periphery of the holes when forming the through holes h1a and h1b in the base material of the flat tube 10.
  • a metal material with high thermal conductivity such as aluminum, copper, or brass is used.
  • the refrigerant flow path in the heat exchanger 101 is provided in the tube wall 11 of each flat tube 10 and has a heat transfer flow path P1a extending in the longitudinal direction of the flat tube 10 (second direction D2), and a header flow path P1b extending in the stacking direction of the flat tubes 10 (first direction D1) and connecting the heat transfer flow paths P1a of the flat tubes 10.
  • One end of the header flow path P1b extending in the first direction D1 is connected to the first pipe a (see FIG. 1).
  • the above-mentioned through holes h1a, h1b, and hollow portion Sg of the connecting portion 19 constitute the header flow path P1b, and the refrigerant flows through the hollow portion Sg.
  • the connecting portion 19 is formed of a part of the flat tube 10, and the portion of the header flow path P1b that is arranged between the tube walls 11 of the flat tube 10 is the hollow portion Sg inside the connecting portion 19. Therefore, in the heat exchanger 101, the header flow path P1b is formed in the flat tube 10, which is the heat exchange member, so there is no need to provide a header pipe in addition to the multiple flat tubes 10, resulting in a headerless configuration.
  • a first partition 30 is provided inside each flat tube 10, extending in the longitudinal direction of the flat tube 10 (second direction D2, up-down direction) and dividing the internal space of the tube wall 11 of the flat tube 10 in the lateral direction of the flat tube 10 (third direction D3, front-to-rear direction).
  • the upper end 30e of the first partition 30 is provided below the upper opening end 10e of the flat tube 10.
  • a turn-back flow path P1at is formed in the upper part of the internal space of the tube wall 11, through which the refrigerant can flow in the front-to-rear direction (third direction D3). That is, in the example of FIG. 5, the heat transfer flow path P1a of the refrigerant has an inverted U-shape including the turn-back flow path P1at.
  • the refrigerant flow path of the heat exchanger 101 is composed of a plurality of heat transfer flow paths P1a and a header flow path P1b and a header flow path P1c (see FIG. 3) that are arranged in parallel in the front and rear directions at the bottom of the heat exchanger 101.
  • the header flow path P1b is composed of hollow portions Sg of a plurality of connecting portions 19 arranged at the front side at the bottom of the heat exchanger 101.
  • the header flow path P1c is composed of hollow portions (not shown) of a plurality of connecting portions 18 arranged at the rear side at the bottom of the heat exchanger 101.
  • the right end of the front header flow path P1b is connected to the first pipe a
  • the right end of the rear header flow path P1c is connected to the second pipe b.
  • the heat exchanger 101 shown in Figures 1 and 3 to 5 is one example of the heat exchanger 101 of the present disclosure, and the shape of the heat transfer flow path P1a, the presence or absence, number and arrangement of the first partitions 30 in the flat tubes 10, and the arrangement of the first pipe a and the second pipe b in the heat exchanger 101 can be changed as appropriate.
  • a high-temperature, high-pressure gaseous refrigerant flows into the heat exchanger 101 from the first pipe a.
  • the high-temperature, high-pressure gaseous refrigerant first flows into the header flow path P1b that penetrates the lower front side of the multiple flat tubes 10 in the left-right direction, and flows through the header flow path P1b from right to left.
  • the high-temperature, high-pressure gaseous refrigerant is distributed and flows into the heat transfer flow paths P1a provided in each of the tube walls 11 of the multiple flat tubes 10.
  • the high-temperature, high-pressure gaseous refrigerant that flows into each heat transfer flow path P1a flows upward along the front side of the internal space of the tube wall 11, flows backward along the return flow path P1at (see Figure 5) at the upper part of the internal space of the tube wall 11, and then flows downward along the rear side of the internal space of the tube wall 11.
  • the high-temperature, high-pressure gaseous refrigerant exchanges heat with the air flowing through the gaps between the tube walls 11 of the flat tubes 10 (i.e., the air flow path P2) through the tube walls 11, and condenses to become a high-pressure gas-liquid two-phase refrigerant.
  • the high-pressure gas-liquid two-phase refrigerant from the multiple heat transfer paths P1a flows into the header path P1c (see FIG. 3) that penetrates the lower rear side of the multiple flat tubes 10, and merges in the header path P1c. As shown in FIG. 1 and FIG.
  • the high-pressure gas-liquid two-phase refrigerant that merges in the header path P1c flows out of the heat exchanger 101 (for example, the expansion valve 105 of the refrigerant circuit 100c shown in FIG. 2) from the second pipe b connected to the header path P1c.
  • the connecting portion 19 that connects the tube walls 11 of adjacent flat tubes 10 communicates the heat transfer flow paths P1a with each other, and separates the refrigerant flow path (particularly the header flow path P1b) from the outer air flow path P2 in the gap between the tube walls 11.
  • the connecting portion 19 is composed of connecting protrusions 19a, 19b that are part of the flat tubes 10.
  • the length of the connecting portion 19 can be set according to the desired tube pitch Lp, and the tube pitch Lp and the width of the first direction D1 of the air flow path P2 can be changed without narrowing the width of the first direction D1 of the refrigerant heat transfer flow path P1a. Therefore, a heat exchanger 101 can be provided that has a high degree of freedom in designing the air flow path compared to conventional heat exchangers made by stacking plates.
  • the area of the joint between the heat exchange members becomes larger than in the configuration disclosed herein, resulting in problems such as increased ventilation resistance, poor drainage of condensation water, or blockage of air flow path P2 due to frost. Furthermore, increased ventilation resistance, poor drainage of condensation water, or blockage of air flow path P2 due to frost reduces heat exchange performance.
  • the area of the joint between the heat exchange members i.e., between the flat tubes 10) can be minimized, and even when the width of the first direction D1 of the air flow path P2 is increased, it is only necessary to change the length of the connecting portion 19, so fewer changes to parts are required.
  • the connecting protrusions 19a and 19b that make up the connecting portion 19 are configured to, for example, fit together. This configuration will be described with a specific example.
  • the right tube side wall 10b of the left flat tube 10 has a cylindrical connecting protrusion 19b that protrudes to the right
  • the left tube side wall 10a of the right flat tube 10 has a cylindrical connecting protrusion 19a that protrudes to the left.
  • the inner diameter Dia of the connecting protrusion 19a is approximately the same as the outer diameter Dob of the connecting protrusion 19b, and when the flat tubes 10 are stacked, the right tip of the connecting protrusion 19b fits into the connecting protrusion 19a, thereby connecting the flat tubes 10 to each other.
  • each connecting protrusion 19a, 19b should be appropriately determined so that the tip of each connecting protrusion 19a, 19b does not protrude into the heat transfer flow path P1a of the opposing flat tube 10 when the tube pitch L is set to the desired length.
  • the connecting protrusions 19a and 19b do not have to be configured to fit together.
  • the outer diameter Dob of the connecting protrusions 19b may be made slightly smaller than the inner diameter Dia of the connecting protrusions 19a, and the right end of the connecting protrusions 19b may be inserted into the connecting protrusions 19a so that the pipe pitch Lp is the desired length, and then the connecting protrusions 19a and 19b may be joined by a joining means such as brazing or adhesive.
  • the shapes of the connecting protrusions 19a and 19b that constitute the connecting portion 19 are not limited to the above shapes, and it is sufficient if the connecting protrusions 19a and 19b can partition the refrigerant header flow path P1b and the air flow path P2.
  • the connecting protrusions 19a and 19b may be formed to overlap partially in the first direction D1 (see FIG. 4), or the tips may be joined together without overlapping in the first direction D1. In a configuration in which the connecting protrusions 19a and 19b overlap partially in the first direction D1, a portion of the first direction D1 of the connecting portion 19 becomes a double-wall structure, and the strength of the connecting portion 19 can be increased compared to a configuration in which the tips are joined together.
  • the heat exchanger 101 is a heat exchanger 101 including a plurality of flat tubes 10 arranged in a first direction D1 and each extending in a second direction D2 intersecting the first direction D1.
  • the flat tubes 10 have a tube wall 11 in which a heat transfer flow path P1a through which a fluid flows in the internal space is provided.
  • the tube wall 11 has flat tube side wall portions 10a, 10b facing each other in the first direction D1, and through holes h1a, h1b are formed in the tube side wall portions 10a, 10b.
  • adjacent flat tubes 10 have a connecting portion 19 that connects the tube walls 11 to each other and communicates the heat transfer flow paths P1a inside the tube walls 11 to each other.
  • the connecting portion 19 is formed by connecting protrusions 19a, 19b that protrude in the first direction D1 from the periphery of the through holes h1a, h1b formed in at least one of the opposing tube side walls 10a, 10b of the adjacent flat tubes 10.
  • a heat transfer flow path P1a is provided in the tube wall 11 of the flat tube 10
  • adjacent flat tubes 10 have connecting portions 19 that connect the tube walls 11 and communicate the heat transfer flow paths P1a
  • the connecting portions 19 are composed of connecting protrusions 19a, 19b that protrude in the first direction D1 from the peripheral portions of the through holes h1a, h1b of the tube side wall portions 10a, 10b.
  • the heat transfer flow path of the refrigerant and the air flow path are formed by directly machining the plates to have unevenness, and the heat transfer flow paths are communicated by through holes provided at the joints between the plates, so that when attempting to widen the width of the air flow path, the width of the heat transfer flow path of the refrigerant becomes narrower.
  • a heat transfer flow path P1a of the fluid is provided in the flat tube 10, and the connecting portion 19 that connects the heat transfer flow paths P1a to each other is configured to protrude in the first direction D1 from the tube side wall portions 10a, 10b.
  • the width of the first direction D1 of the air flow path P2 i.e., the gap between the tube walls 11
  • the width of the first direction D1 of the air flow path P2 can be increased without narrowing the width of the first direction D1 of the heat transfer flow path P1a of the fluid. Therefore, the freedom of design of the air flow path can be increased in the headerless heat exchanger 101.
  • the connecting portion 19 is also formed by connecting protrusions 19a and 19b formed on both of the opposing tube side walls 10a, 10b of adjacent flat tubes 10. This makes it more difficult for the connecting protrusions 19a or 19b to penetrate into the tube wall 11, compared to when the connecting portion 19 is formed by only one of the connecting protrusions 19a or 19b.
  • connecting protrusions 19a and 19b formed on both of the opposing tube side walls 10a and 10b of adjacent flat tubes 10 overlap at least partially in the first direction D1. This allows a part of the connecting portion 19 to have a double-wall structure, thereby increasing the strength of the connecting portion 19.
  • the flat tube 10 has a first partition 30 that is disposed in the internal space of the tube wall 11, extends in the second direction D2, and divides the internal space into a third direction D3 that is perpendicular to the first direction D1 and the second direction D2. At least one end of the first partition 30 in the second direction D2 (e.g., the upper end 30e) is located inside both ends (both open ends 10e) of the flat tube 10 in the second direction D2.
  • FIG. 6 is a perspective view showing a schematic configuration of a heat exchanger 101b according to a second embodiment.
  • FIG. 7 is a vertical cross-sectional view of the heat exchanger 101b in FIG. 6.
  • FIG. 8 is a diagram showing an example of a configuration of the connecting portion 19 enclosed in a square in FIG. 7.
  • the direction of the refrigerant flow when the heat exchanger 101b is used as a condenser is indicated by a solid white arrow.
  • the heat exchanger 101b according to the second embodiment will be described with reference to FIG. 6 to FIG. 8.
  • the heat exchanger 101b according to the second embodiment is a modified version of the heat exchanger 101 according to the first embodiment, in which the configuration of the tube sealing portion 20 is changed. Note that components having the same functions and actions as those in the first embodiment are denoted by the same reference numerals, and their description will be omitted.
  • the pipe sealing portion 20 is provided for each flat tube 10 at two locations, above and below the flat tube 10, but in the heat exchanger 101b of embodiment 2, a common pipe sealing portion 120 is provided for multiple flat tubes 10 at two locations, above and below the multiple flat tubes 10.
  • the tube sealing portion 120 is composed of a substantially rectangular plate-shaped member that covers the open ends 1e of the flat tubes 10.
  • the open ends 1e of the flat tubes 10 are fixed to the tube sealing portion 120 at a constant pitch.
  • the tube sealing portion 120 has a plurality of grooves 120r and flat portions 120p between the grooves 120r.
  • the grooves 120r are formed at a constant pitch Lr in the stacking direction (first direction D1) of the flat tubes 10 and extend in the short direction (third direction D3) of the flat tubes 10 so as to follow the open ends 1e of the flat tubes 10.
  • the pitch Lr of the grooves 120r in the tube sealing portion 120 is the same as the tube pitch Lp of the flat tubes 10.
  • An end portion including the open end 10e of the flat tube 10 is arranged in each groove 120r of the tube sealing portion 120.
  • the width of the groove 120r in the first direction D1 is approximately the same as the thickness of the flat tube 10 in the first direction D1, and is the same or slightly wider.
  • the flat portion 120p other than the portion that blocks the lower open end 10e of the flat tube 10 i.e., the groove portion 120r
  • the groove portion 120r has a drainage hole 120h formed therein to drain water such as condensation water or melted frost water that occurs in the flat tube 10, etc.
  • each flat tube 10 When the flat tubes 10 are stacked during the manufacture of the heat exchanger 101b, the longitudinal ends of each flat tube 10 are inserted into the grooves 120r of the tube sealing portion 120 while the opposing connecting protrusions 19a and 19b of adjacent flat tubes 10 are engaged with each other. As a result, the flat tubes 10 are arranged at a constant tube pitch Lp in the first direction D1. Then, the grooves 120r of the tube sealing portion 120 and the longitudinal ends of each flat tube 10, and the connecting protrusions 19a and 19b of adjacent flat tubes 10 are joined by a joining means such as brazing or adhesive. Then, the opening ends 1e of the flat tubes 10 are fixed to the tube sealing portion 20 by the joining means, thereby increasing the strength of the closure of the opening ends 1e of the longitudinal ends of the flat tubes 10.
  • a joining means such as brazing or adhesive
  • first direction D1 the positions of multiple flat tubes 10 in the stacking direction (first direction D1) are determined by the tube sealing portion 120 as shown in FIG. 7, it is preferable to have a configuration in which the tube sealing portion 120 lightly engages with the connecting protrusion 19b rather than fitting the connecting protrusion 19a into the connecting protrusion 19b, so that the distance between the tube walls 11 of adjacent flat tubes 10 can be easily adjusted when stacking the flat tubes 10.
  • the connecting protrusions 19b and 19a that constitute the connecting portion 19 in adjacent flat tubes 10 are each curved and tubular so that the opening diameter is larger at the tip than at the base.
  • the connecting protrusions 19b are formed on the periphery of the through hole h1b in the tube side wall portion 10b, and the connecting protrusions 19a are formed on the periphery of the through hole h1a in the tube side wall portion 10a.
  • the through hole h1b is smaller than the through hole h1a.
  • the light engagement configuration reduces the contact area between the connecting protrusions 19b and the connecting protrusions 19b, thereby reducing frictional force. Therefore, when multiple flat tubes 10 are installed in the tube sealing portion 120, it becomes easier to adjust the distance between the tube walls 11 of adjacent flat tubes 10.
  • the connecting protrusions 19a and 19b in FIG. 8, like the connecting protrusions 19a and 19b shown in FIG. 4, can be formed, for example, by raising the periphery of the holes when forming the through holes h1a and h1b in the base material of the flat tube 10.
  • the heat exchanger 101b of the second embodiment includes, in addition to the configuration of the heat exchanger 101 of the first embodiment, a plate-shaped tube sealing portion 120 that is arranged at at least one end (open end 10e) of the flat tubes 10 in the second direction D2 and covers one end of the heat transfer flow path Pa1 of the flat tubes 10.
  • One end (open end 1e) of the flat tube 10 is fixed to a groove portion 120r formed in the tube sealing portion 120 at a constant pitch Lr.
  • the end of the flat tube 10 is inserted into the groove portion 120r, so that it is superior in terms of strength.
  • a convex portion (not shown) may be formed instead of the groove portion 120r as an uneven structure on the tube sealing portion 120 side that is connected to the end of the flat tube 10.
  • each convex portion may be inserted inside the end of the flat tube 10.
  • FIG. 9 is a perspective view showing the configuration of a heat exchanger 101c according to a third embodiment.
  • the direction of refrigerant flow when the heat exchanger 101c is used as a condenser is indicated by a solid white arrow or a dashed white arrow.
  • the heat exchanger 101c according to the third embodiment will be described with reference to Fig. 9.
  • the heat exchanger 101c of the third embodiment is obtained by adding a heat transfer fin 50 to the heat exchanger 101b of the second embodiment. Note that components having the same functions and actions as those of the second embodiment are denoted by the same reference numerals and will not be described.
  • the heat exchanger 101c of the third embodiment is provided with, as heat transfer fins 50, for example, corrugated fins that connect the opposing tube side walls 10a, 10b of adjacent flat tubes 10 in each gap between the flat tubes 10, i.e., in the air flow path P2.
  • heat transfer fins 50 for example, corrugated fins that connect the opposing tube side walls 10a, 10b of adjacent flat tubes 10 in each gap between the flat tubes 10, i.e., in the air flow path P2.
  • the opposing tube side walls 10a, 10b of adjacent flat tubes 10 and the heat transfer fins 50 are brazed together. This promotes heat exchange between the refrigerant and the air, improving the heat exchange performance of the heat exchanger 101c.
  • the heat exchanger 101c of the third embodiment has a high degree of freedom in the design of the air flow path P2, so that it is easy to add the heat transfer fins 50.
  • the pitch Lr of the groove portion 120r of the pipe sealing portion 120 may be set according to the desired pipe pitch Lp.
  • the heat transfer area of the heat exchanger 101c of embodiment 3 can be increased by adding the heat transfer fins 50, thereby improving heat exchange performance.
  • FIG. 10 is a perspective view showing a schematic configuration of a heat exchanger 101d according to the fourth embodiment.
  • FIG. 11 is a vertical cross-sectional view of the heat exchanger 101d of FIG. 10.
  • FIG. 12 is a horizontal cross-sectional view of the heat exchanger 101d of FIG. 10 in plane B, viewed from above.
  • FIG. 13 is a horizontal cross-sectional view of the heat exchanger 101d of FIG. 10 in plane C, viewed from above.
  • the direction of the refrigerant flow when the heat exchanger 101d is used as a condenser is indicated by a solid white arrow.
  • the direction of the air flow is indicated by a dashed white arrow.
  • the heat exchanger 101d of the fourth embodiment is the heat exchanger 101b of the second embodiment in which the positions of the first pipe a and the second pipe b are changed, and the flow path of the refrigerant is also changed accordingly.
  • components having the same functions and actions as those in the first embodiment are given the same reference numerals and their description will be omitted.
  • the second pipe b is provided on the flat tube 110 arranged at one end of the stacking direction among the plurality of flat tubes 110, and the first pipe a is provided on the flat tube 110 arranged at the other end of the stacking direction.
  • the first pipe a is provided at the bottom of the leftmost flat tube 110 and in the center in the front-to-rear direction
  • the second pipe b is provided at the bottom of the rightmost flat tube 110 and in the center in the front-to-rear direction.
  • the first partition 30 (see FIG. 6 in the second embodiment) is not provided in the tube wall 111 of the flat tube 110.
  • the heat exchanger 101d has a second partition 40 that divides the header flow path P1b in the stacking direction (first direction D1) of the flat tube 110.
  • the second partition 40 blocks the progress of the refrigerant in the first direction D1 between adjacent heat transfer flow paths P1a.
  • the second partition 40 is provided in the connecting portion 119, the through hole h1a in the tube side wall portion 110a, or the through hole h1b in the tube side wall portion 110b.
  • one second partition 40 is provided in the header flow path P1b connected to the first pipe a, and the header flow path P1b is divided into a left header flow path section P1b1 connected to the first pipe a and a right header flow path section P1b2.
  • the second partition 40 is provided between the connecting protrusion 119b of the left flat tube 110 and the connecting protrusion 119a of the right flat tube 110 so as to be visible from the outside. That is, at the position where the second partition 40 is provided, the respective tips of the connecting protrusions 119a and 119b are joined to the second partition 40.
  • the refrigerant flow path of the heat exchanger 101d is composed of multiple heat transfer flow paths P1a and header flow paths P1b and P1d, which are arranged in parallel at the lower and upper parts of the center of the heat exchanger 101d in the front-to-rear direction.
  • the header flow path P1b is composed of hollow parts Sg of multiple connecting parts 119 provided at the lower part of the heat exchanger 101d
  • the header flow path P1d is composed of hollow parts (not shown) of multiple connecting parts 117 provided at the upper part of the heat exchanger 101d.
  • the left end of the lower header flow path P1b is connected to the first pipe a
  • the right end of the lower header flow path P1b is connected to the second pipe b.
  • the upper connecting portion 117 is composed of a connecting protrusion portion 117a or 117b extending from the peripheral portion of the through hole h2a or h2b in at least one of the opposing tube side wall portions 110a and 110b of adjacent flat tubes 110, toward the opposing tube side wall portion 110b or 110a.
  • the first partition 30 (see FIG. 6 in the second embodiment) is not provided within the tube wall 111 of the flat tube 110, so the internal space of the tube wall 111 forms a single I-shaped heat transfer flow path P1a.
  • the second partition 40 is provided in the lower header flow path P1b between the pipe walls 111 of at least one pair of adjacent flat tubes 110 among the plurality of flat tubes 110. That is, a plurality of second partitions 40 may be provided in the lower header flow path P1b. In this case, by providing one or more second partitions 40 in the upper header flow path P1d as well, a serpentine refrigerant flow path can be formed.
  • FIG. 10 a high-temperature, high-pressure gaseous refrigerant flows into the heat exchanger 101d from the first pipe a.
  • FIG. 11 in the heat exchanger 101d, the high-temperature, high-pressure gaseous refrigerant first flows into the left header flow path portion P1b1 in the header flow path P1b that penetrates the lower part of the flat tubes 110, and flows from left to right through this header flow path portion P1b1.
  • the high-temperature, high-pressure gaseous refrigerant is distributed and flows into the heat transfer flow paths P1a provided in the respective tube walls 111 of the left flat tubes 110 among the flat tubes 110.
  • the high-temperature, high-pressure gaseous refrigerant that flows into each heat transfer flow path P1a of the flat tubes 110 on the left flows upward through the internal space of the tube wall 111, then merges with the header flow path P1d (see FIG. 12) that penetrates the upper part of the flat tubes 110, and then flows downward through the header flow path P1d to the right.
  • FIG. 12 the header flow path
  • the high-pressure gas-liquid two-phase refrigerant from each heat transfer flow path P1a of the flat tubes 110 on the right side then flows into the header flow path section P1b2 on the right side of the header flow path P1b, merges in this header flow path section P1b2, and flows out of the heat exchanger 101d from the second pipe b (for example, the expansion valve 105 of the refrigerant circuit 100c shown in FIG. 2).
  • the heat exchanger 101d includes a second partition 40 that is provided between the tube walls 111 of at least one pair of adjacent flat tubes 110 among the plurality of flat tubes 110 and blocks the flow of the fluid between the heat transfer flow paths via the connecting portion 119.
  • FIG. 14 is a perspective view showing a schematic configuration of a heat exchanger 101e according to embodiment 5.
  • the direction of refrigerant flow when the heat exchanger 101e is used as a condenser is indicated by a solid white arrow or a dashed white arrow.
  • the heat exchanger 101e according to embodiment 5 will be described with reference to Fig. 14.
  • the embodiment 5 is an embodiment in which the first partition 30 of embodiment 1 is added to the heat exchanger 101d of embodiment 4 provided with the second partition 40. Note that components having the same functions and actions as those of embodiment 4 are denoted by the same reference numerals and their description will be omitted.
  • the second pipe b is provided on the flat tube 210 arranged at one end of the stacking direction among the plurality of flat tubes 210, and the first pipe a is provided on the flat tube 210 arranged at the other end of the stacking direction.
  • the first pipe a is provided on the lower part and front side of the leftmost flat tube 210
  • the second pipe b is provided on the lower part and front side of the rightmost flat tube 210.
  • the refrigerant flow path of the heat exchanger 101e is composed of multiple heat transfer flow paths P1a and header flow paths P1b and P1c arranged in parallel in the front and rear at the bottom of the heat exchanger 101e.
  • the header flow path P1b is composed of hollow portions Sg (see FIG. 4) of multiple connecting portions 219 arranged on the front side at the bottom of the heat exchanger 101e.
  • the header flow path P1c is composed of hollow portions (not shown) of multiple connecting portions 18 (see FIG. 3) arranged on the rear side at the bottom of the heat exchanger 101e.
  • the left end of the front header flow path P1b is connected to the first pipe a, and the right end is connected to the second pipe b.
  • a first partition 30 is provided in the tube wall 211 of each flat tube 210, as in the first embodiment, and a return flow path P1at through which the refrigerant flows in the front-rear direction is formed in the upper part of the internal space of the tube wall 211.
  • the heat transfer flow path P1a of the refrigerant has an inverted U-shape that includes the return flow path P1at.
  • the front header flow path P1b is divided by a second partition 40 into a left header flow path section P1b1 connected to the first pipe a and a right header flow path section P1b2 connected to the second pipe b.
  • High-temperature, high-pressure gaseous refrigerant flows into the heat exchanger 101e from the first pipe a.
  • the high-temperature, high-pressure gaseous refrigerant first flows into the left-side header flow passage section P1b1 in the front header flow passage P1b, and as it flows from left to right through this header flow passage section P1b1, it is distributed and flows into each heat transfer flow passage P1a of the left-side flat tubes 210 out of the multiple flat tubes 210.
  • the high-temperature, high-pressure gaseous refrigerant that flows into each heat transfer flow path P1a of the flat tubes 210 on the left flows in the internal space of the tube wall 211 in the order of upward, backward, and downward, and then merges with the rear header flow path P1d, and in the process of flowing to the right through this header flow path P1d, it is distributed and flows into each heat transfer flow path P1a of the flat tubes 210 on the right side among the flat tubes 210, and flows in the order of upward, forward, and downward.
  • the high-temperature, high-pressure gaseous refrigerant exchanges heat with the air flowing through the gaps between the tube walls 211 of the flat tubes 210 (i.e., the air flow path P2) through the tube wall 211, and condenses to become a high-pressure gas-liquid two-phase refrigerant.
  • the high-pressure gas-liquid two-phase refrigerant from each heat transfer flow path P1a of the right-side flat tubes 210 flows into the right-side header flow path section P1b2 in the front header flow path P1b, joins in this header flow path section P1b2, and flows out of the heat exchanger 101e from the second pipe b (for example, the expansion valve 105 of the refrigerant circuit 100c shown in FIG. 2).
  • FIG. 15 is a vertical cross-sectional view showing the configuration of the position regulating portion 315 of the flat tube 310 of the heat exchanger 101f according to the sixth embodiment.
  • the heat exchanger 101f according to the sixth embodiment will be described with reference to FIG. 15.
  • the heat exchanger 101f is a heat exchanger in which the shape of the flat tube 10 of the heat exchanger 101 according to the first embodiment is changed.
  • the heat exchanger 101f according to the sixth embodiment is different from the first embodiment in that it has a position regulating portion 315 that regulates the distance between the tube walls 311 of the adjacent flat tubes 310. Note that components having the same functions and actions as those in the first embodiment are denoted by the same reference numerals and their description is omitted.
  • Adjacent flat tubes 310 have position regulating portions 315 for keeping the distance between the tube walls 311 constant.
  • each flat tube 310 has a tube wall 311 and connecting protrusions 319a, 319b that extend from the tube wall 311 in the first direction D1 outward and form a connecting portion 319.
  • each flat tube 310 has position regulating protrusions 315a, 315b that extend from the tube wall 311 in the first direction D1 outward and form the position regulating portion 315.
  • a position regulating protrusion 315a is provided on the tube side wall portion 310a
  • a position regulating protrusion 315b is provided on the tube side wall portion 310b.
  • the position regulating protrusions 315a, 315b provided on adjacent flat tubes 310 come into contact with each other, thereby regulating the distance between the tube walls 311.
  • the position regulating portion 315 is a spacer provided on the tube wall 311 of the flat tube 310.
  • each of the position regulating protrusions 315a, 315b has, for example, a rectangular frame shape.
  • the shape of each of the position regulating protrusions 315a, 315b is not limited to the above shape and may be, for example, a trapezoidal or triangular frame shape.
  • the position regulating protrusions 315a and 315b are made frame-shaped in order to reduce ventilation resistance.
  • the position regulating portion 315 is configured by position regulating protrusions 315a, 315b provided on each of the adjacent flat tubes 310, but is not limited to this configuration.
  • the position regulating portion 315 may be configured by a single position regulating protrusion provided on one (tube side wall portion 310a or 310b) of the opposing tube side wall portions 310a and 310b of the adjacent flat tubes 310. In this case, the position regulating protrusion provided on the flat tube 310 comes into contact with the tube wall 311 of the adjacent flat tube 310.
  • the position-regulating protrusions 315a, 315b can be provided integrally with the flat tube 310. Specifically, they are formed from part of the material that constitutes the flat tube 310.
  • the flat tube 310 is made from a plate-shaped material
  • the flat tube 310 can be molded from a material that includes a margin in addition to the part that will become the tube wall 311 at the same time as forming the through hole h1a, etc., and the position-regulating protrusions 315a, 315b can be formed by cutting part of the margin and bending it, etc.
  • the position control protrusions 315a and 315b may be formed from a material separate from the flat tube 310.
  • At least one of the opposing tube side walls 310a, 310b of adjacent flat tubes 310 is provided with position regulation protrusions 315a, 315b that regulate the distance between the tube walls 311. This allows the heat transfer area to be increased and the distance between the tube walls 311 of adjacent flat tubes 310 to be regulated.
  • the present disclosure is not limited to the above-mentioned embodiments.
  • the present disclosure may be configured by combining each of the embodiments.
  • the heat transfer fins 50 are applied to the heat exchanger 101b of the second embodiment, but the heat transfer fins 50 of the third embodiment may be applied to the heat exchanger 101 of the first, fourth, fifth, or sixth embodiment.
  • the heat transfer fins 50 are provided in the heat exchanger 101f of the sixth embodiment, the heat transfer fins 50 are disposed in the air flow path P2 in a portion other than where the connecting portion 319 and the position regulating portion 315 are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

This heat exchanger comprises a plurality of flat tubes arranged in a first direction and each extending in a second direction intersecting with the first direction. The flat tube has a tube wall provided with a heat transfer flow path through which a fluid flows in the internal space thereof, wherein the tube wall has flat-plate-shaped tube sidewall parts facing each other in a first direction, and a through hole is formed in the tube sidewall parts. Adjacent flat tubes have a connection means for connecting the tube walls to each other and providing communication between the heat transfer flow paths inside the tube walls to each other, wherein the connection means is formed from a connection protrusion formed on at least one of the facing tube sidewall parts of the adjacent flat tubes and protruding in the first direction from a peripheral edge part of the through hole.

Description

熱交換器およびそれを備えた空気調和装置Heat exchanger and air conditioner equipped with same
 本開示は、ヘッダレスの熱交換器およびそれを備えた空気調和装置に関する。 This disclosure relates to a headerless heat exchanger and an air conditioning device equipped with the same.
 熱交換器において、複数の熱交換部材を積層して成り、冷媒等の第1流体と空気等の第2流体との熱交換を行う熱交換器がある。このような熱交換器において、ヘッダレスの熱交換器を開示したものがある(例えば、特許文献1参照)。特許文献1の熱交換器は、第1流体の流路として、略長方形状の熱交換部材の積層方向に複数設けられ、それぞれが熱交換部材の長手方向に延伸する伝熱流路と、熱交換部材の積層方向に延伸し、複数の伝熱流路を連通させるヘッダ流路と、を有する。特許文献1の熱交換器では、熱交換部材がプレートであり、プレートに設けた凹凸によって、プレートと、積層方向一方側の隣のプレートとの間には冷媒の伝熱流路が形成され、また、プレートと、積層方向他方側の隣のプレートとの間には空気の流路が形成される。また、プレートと、積層方向他方側の隣のプレートとが接合された部分に貫通穴を設けることで冷媒の伝熱流路同士が連通する構成となっている。 A heat exchanger is a type of heat exchanger that is made by stacking a plurality of heat exchange members and exchanges heat between a first fluid such as a refrigerant and a second fluid such as air. One such heat exchanger is a headerless heat exchanger (see, for example, Patent Document 1). The heat exchanger of Patent Document 1 has a plurality of heat transfer paths for the first fluid that are provided in the stacking direction of the heat exchange members that are substantially rectangular in shape, each of which extends in the longitudinal direction of the heat exchange members, and a header path that extends in the stacking direction of the heat exchange members and connects the plurality of heat transfer paths. In the heat exchanger of Patent Document 1, the heat exchange members are plates, and the unevenness provided on the plates forms a heat transfer path for the refrigerant between the plate and the adjacent plate on one side of the stacking direction, and also forms an air path between the plate and the adjacent plate on the other side of the stacking direction. In addition, the heat transfer paths for the refrigerant are connected to each other by providing a through hole in the portion where the plate and the adjacent plate on the other side of the stacking direction are joined.
特開2020-176791号公報JP 2020-176791 A
 しかしながら、特許文献1の熱交換器は、プレートを積層することで構成され、プレートに設けた凹凸によって冷媒の伝熱流路と空気の流路とが形成され、プレートの接合部分に設けた貫通穴によって冷媒のヘッダ流路が形成されているので、プレートの凹凸の大きさ(すなわち溝の深さ又は突起の高さ)によって、プレートのピッチ、及び、プレート積層方向における冷媒の伝熱流路と空気の流路との合計の幅が決まってしまう。なお、凹凸の大きさによってプレート積層方向における空気の流路の幅を変えることができるが、プレートに直接凹凸加工しているから凹凸の大きさの変更には制限があり、また、空気の流路の幅を広げようとすると冷媒の伝熱流路の幅が狭くなってしまう。このように、特許文献1の熱交換器は、空気の流路の設計の自由度が低いものとなっていた。 However, the heat exchanger of Patent Document 1 is constructed by stacking plates, with the refrigerant heat transfer flow path and the air flow path formed by the unevenness on the plates, and the refrigerant header flow path formed by through holes in the joints of the plates. Therefore, the plate pitch and the total width of the refrigerant heat transfer flow path and the air flow path in the plate stacking direction are determined by the size of the unevenness on the plates (i.e. the depth of the grooves or the height of the protrusions). Note that although the width of the air flow path in the plate stacking direction can be changed by the size of the unevenness, there is a limit to how much the unevenness can be changed because the unevenness is processed directly on the plates, and also, if an attempt is made to widen the width of the air flow path, the width of the refrigerant heat transfer flow path will become narrower. Thus, the heat exchanger of Patent Document 1 has a low degree of freedom in designing the air flow path.
 本開示は、上記のような課題を解決するためになされたもので、ヘッダレスの熱交換器において空気の流路の設計の自由度を高めることを目的とする。 This disclosure has been made to solve the problems described above, and aims to increase the freedom in designing the air flow path in a headerless heat exchanger.
 本開示に係る第1の熱交換器は、第1方向に配列され、それぞれが前記第1方向と交差する第2方向に延伸した複数の扁平管を備えた熱交換器であって、前記扁平管は、内部空間に流体が流通する伝熱流路が設けられた管壁を有し、前記管壁は、前記第1方向で向かい合う平板状の管側壁部を有し、前記管側壁部には貫通穴が形成されており、隣り合う前記扁平管は、前記管壁同士を接続し、且つ前記管壁の内部の前記伝熱流路同士を連通させる連結部を有し、前記連結部は、隣り合う前記扁平管の対向する前記管側壁部の少なくとも一方に形成された、前記貫通穴の周縁部から前記第1方向へ突出する連結突起部により構成されたものである。 The first heat exchanger according to the present disclosure is a heat exchanger including a plurality of flat tubes arranged in a first direction and each extending in a second direction intersecting the first direction, the flat tubes having a tube wall with a heat transfer flow path through which a fluid flows in the internal space, the tube walls having flat tube side wall portions facing each other in the first direction, the tube side wall portions having through holes formed therein, the adjacent flat tubes having connecting portions that connect the tube walls and communicate the heat transfer flow paths inside the tube walls, the connecting portions being constituted by connecting protrusions that protrude in the first direction from the periphery of the through hole formed in at least one of the opposing tube side wall portions of the adjacent flat tubes.
 また、本開示に係る空気調和装置は、圧縮機と、上記の熱交換器と、膨張弁と、室内熱交換器と、が冷媒配管を介して接続され、流体が循環する冷媒回路を備えたものである。 The air conditioner according to the present disclosure also includes a refrigerant circuit in which a compressor, the above-mentioned heat exchanger, an expansion valve, and an indoor heat exchanger are connected via refrigerant piping, and a fluid circulates.
 本開示に係る熱交換器およびそれを備えた空気調和装置では、扁平管の管壁内に流体の伝熱流路が設けられ、隣り合う扁平管は、管壁同士を接続し且つ伝熱流路同士を連通させる連結部を有し、連結部は、管側壁部の貫通穴の周縁部から第1方向へ突出するものである。したがって、連結部の長さの変更により、連結部の外側の空気の流路の第1方向の幅を変更できるので、流体の伝熱流路の第1方向の幅を狭めることなく空気の流路の第1方向の幅を広げることができる。よって、ヘッダレスの熱交換器において空気の流路の設計の自由度を高めることができる。 In the heat exchanger and air conditioning device including the same according to the present disclosure, a heat transfer flow path for a fluid is provided within the tube wall of the flat tube, and adjacent flat tubes have connecting parts that connect the tube walls and communicate the heat transfer flow paths, and the connecting parts protrude in a first direction from the peripheral part of the through hole in the tube side wall part. Therefore, by changing the length of the connecting parts, the width in the first direction of the air flow path outside the connecting parts can be changed, so that the width in the first direction of the air flow path can be increased without narrowing the width in the first direction of the heat transfer flow path of the fluid. This allows for greater freedom in designing the air flow paths in a headerless heat exchanger.
実施の形態1に係る熱交換器の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of a heat exchanger according to a first embodiment; 図1の熱交換器を搭載した空気調和装置の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of an air conditioner equipped with the heat exchanger of FIG. 1. 図1の熱交換器の扁平管の構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of a flat tube of the heat exchanger of FIG. 1 . 図1の熱交換器の縦断面図である。FIG. 2 is a longitudinal sectional view of the heat exchanger of FIG. 1 . 図4の楕円で囲った部分のA-A断面を示す部分断面図である。5 is a partial cross-sectional view showing the AA cross section of the part surrounded by an ellipse in FIG. 4. 実施の形態2に係る熱交換器の概略構成を示す斜視図である。FIG. 11 is a perspective view showing a schematic configuration of a heat exchanger according to a second embodiment. 図6の熱交換器の縦断面図である。FIG. 7 is a longitudinal sectional view of the heat exchanger of FIG. 6 . 図7の四角で囲った連結部の一構成例を示す図である。FIG. 8 is a diagram showing an example of the configuration of a connecting portion enclosed in a square in FIG. 7 . 実施の形態3に係る熱交換器の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of a heat exchanger according to a third embodiment. 実施の形態4に係る熱交換器の概略構成を示す斜視図である。FIG. 11 is a perspective view showing a schematic configuration of a heat exchanger according to a fourth embodiment. 図10の熱交換器の縦断面図である。FIG. 11 is a longitudinal sectional view of the heat exchanger of FIG. 10 . 図10の熱交換器の平面Bにおける断面を上側から視た横断面図である。FIG. 11 is a cross-sectional view of the heat exchanger of FIG. 10 taken along plane B, as viewed from above. 図10の熱交換器の平面Cにおける断面を上側から視た横断面図である。11 is a cross-sectional view of the heat exchanger of FIG. 10 taken along plane C, as viewed from above. FIG. 実施の形態5に係る熱交換器の概略構成を示す斜視図である。FIG. 13 is a perspective view showing a schematic configuration of a heat exchanger according to a fifth embodiment. 実施の形態6に係る熱交換器の扁平管の位置規制部の構成を示す縦断面図である。A vertical cross-sectional view showing the configuration of a positional regulation portion for a flat tube of a heat exchanger according to embodiment 6.
 以下、実施の形態1に係る熱交換器について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。明細書中において、各構成部材同士の位置関係、各構成部材の延伸方向、及び各構成部材の配列方向は、原則として、熱交換器が使用可能な状態に設置されたときのものである。 The heat exchanger according to the first embodiment will be described below with reference to the drawings. Note that in the following drawings, including FIG. 1, the relative dimensional relationships and shapes of the components may differ from the actual ones. In the following drawings, the same reference numerals are used to denote the same or equivalent parts, and this applies throughout the entire specification. In addition, to facilitate understanding, directional terms (e.g., "upper," "lower," "right," "left," "front," "rear," etc.) are used as appropriate, but these notations are merely used for the sake of convenience and do not limit the arrangement or orientation of the device or parts. In the specification, the positional relationships between the components, the extension direction of each component, and the arrangement direction of each component are, in principle, those when the heat exchanger is installed in a usable state.
 実施の形態1.
 図1は、実施の形態1に係る熱交換器の概略構成を示す斜視図である。図1に示されるように、熱交換器101は、第1方向D1に配列され互いに連結された複数の扁平管10を有する。扁平管10は、管軸Axが延びる方向(以下、管軸方向ともいう)に延伸し、管軸Axと垂直な断面において一方向に長い扁平形状を呈する。以下では、複数の扁平管10が配列する第1方向D1を積層方向といい、扁平管10の管軸方向を第2方向D2あるいは扁平管10の長手方向といい、扁平管10の断面の長手方向を第3方向D3あるいは扁平管10の短手方向という場合がある。また、以下では、図1に示されるように、熱交換器101は、扁平管10の積層方向(第1方向D1)が左右方向となるように設置されているものと定義する。そして、各扁平管10は、その管軸Axが、積層方向(第1方向D1)と直交する上下方向となり、その短手方向(第3方向D3)が、管軸方向及び積層方向と直交する前後方向となるように配置されているものと定義する。
Embodiment 1.
FIG. 1 is a perspective view showing a schematic configuration of a heat exchanger according to the first embodiment. As shown in FIG. 1, the heat exchanger 101 has a plurality of flat tubes 10 arranged in a first direction D1 and connected to each other. The flat tubes 10 extend in a direction in which the tube axis Ax extends (hereinafter, also referred to as the tube axis direction), and have a flat shape that is long in one direction in a cross section perpendicular to the tube axis Ax. Hereinafter, the first direction D1 in which the plurality of flat tubes 10 are arranged is referred to as a stacking direction, the tube axis direction of the flat tubes 10 is referred to as a second direction D2 or the longitudinal direction of the flat tubes 10, and the longitudinal direction of the cross section of the flat tubes 10 is referred to as a third direction D3 or the short direction of the flat tubes 10. In addition, hereinafter, as shown in FIG. 1, the heat exchanger 101 is defined as being installed so that the stacking direction (first direction D1) of the flat tubes 10 is the left-right direction. Each flat tube 10 is defined as being arranged so that its tube axis Ax is in the up-down direction perpendicular to the stacking direction (first direction D1) and its short side direction (third direction D3) is in the front-to-back direction perpendicular to the tube axis direction and the stacking direction.
 なお、熱交換器101の配置、あるいは、熱交換器101における扁平管10の積層方向(第1方向D1)と各扁平管10の管軸方向(第2方向D2)との角度は、上記の場合に限定されない。例えば、各扁平管10の管軸方向が上下方向に対して傾斜した方向となるように、熱交換器101が傾いて配置されてもよい。あるいは、扁平管10の積層方向(第1方向D1)が左右方向となるように熱交換器101が設置された場合において各扁平管10の管軸方向が上下方向に対して傾斜した方向となるように、熱交換器101を構成してもよい。 The arrangement of the heat exchanger 101, or the angle between the stacking direction (first direction D1) of the flat tubes 10 in the heat exchanger 101 and the tube axis direction (second direction D2) of each flat tube 10, is not limited to the above case. For example, the heat exchanger 101 may be arranged at an angle so that the tube axis direction of each flat tube 10 is inclined with respect to the vertical direction. Alternatively, when the heat exchanger 101 is installed so that the stacking direction (first direction D1) of the flat tubes 10 is the left-right direction, the heat exchanger 101 may be configured so that the tube axis direction of each flat tube 10 is inclined with respect to the vertical direction.
 積層方向(第1方向D1)において隣り合う扁平管10の管壁11間には、空気の流路P2である隙間が形成されており、熱交換器101において各隙間には、扁平管10の短手方向(第3方向D3)に沿って空気が流通する。 Gaps that are air flow paths P2 are formed between the tube walls 11 of adjacent flat tubes 10 in the stacking direction (first direction D1), and air flows through each gap in the heat exchanger 101 along the short side direction of the flat tubes 10 (third direction D3).
 複数の扁平管10のうち積層方向の一端に配置された扁平管10には、熱交換器101における流体(例えば冷媒等)の出入口となる第1配管a及び第2配管bが設けられている。ここで、扁平管10内に流通する流体は、冷媒でもよいし、水又はブライン等でもよい。熱交換器101において第1配管aと第2配管bとの間には、流体の流路が設けられている。流体の流路は、複数の扁平管10内に設けられている。熱交換器101は、空気と流体との熱交換を行うものである。以下では、複数の扁平管10内を流通する流体が冷媒であるものと定義して説明する。 The flat tube 10 arranged at one end of the stacking direction among the plurality of flat tubes 10 is provided with a first pipe a and a second pipe b which serve as an inlet and outlet for a fluid (e.g., a refrigerant, etc.) in the heat exchanger 101. Here, the fluid flowing through the flat tube 10 may be a refrigerant, or may be water, brine, etc. In the heat exchanger 101, a fluid flow path is provided between the first pipe a and the second pipe b. The fluid flow path is provided in the plurality of flat tubes 10. The heat exchanger 101 exchanges heat between air and a fluid. In the following description, the fluid flowing through the plurality of flat tubes 10 is defined as a refrigerant.
 隣り合う扁平管10は、互いの管壁11を連結するための連結部19を有する。各扁平管10は、管壁11と、管壁11から外側の第1方向D1に延びた、連結部19を構成する連結突起部19a、19b(後述の図3参照)とを有する。扁平管10は、その長手方向(第2方向D2)にわたり、すなわち管壁11の上端から下端まで、冷媒が流通する内部空間が保たれた管構造を有する。扁平管10の詳しい構造については後述する。 Adjacent flat tubes 10 have connecting portions 19 for connecting the tube walls 11 of the adjacent flat tubes. Each flat tube 10 has a tube wall 11 and connecting protrusions 19a, 19b (see FIG. 3 described below) that extend outward from the tube wall 11 in a first direction D1 and constitute the connecting portion 19. The flat tubes 10 have a tube structure that maintains an internal space through which the refrigerant flows along their longitudinal direction (second direction D2), i.e., from the upper end to the lower end of the tube wall 11. The detailed structure of the flat tubes 10 will be described later.
 扁平管10の長手方向(第2方向D2)両側の端部は封止されている。具体的には、熱交換器101は、扁平管10の長手方向(第2方向D2)両側の各開口端1eを閉塞する管封止部20を備える。図1の例では、管封止部20は、扁平管の上側及び下側の2箇所に、扁平管10毎に設けられる。管封止部20は、扁平管10の開口端1eにロウ付け又は接着剤等の接合手段により接合されている。 The ends of the flat tubes 10 on both sides in the longitudinal direction (second direction D2) are sealed. Specifically, the heat exchanger 101 is provided with tube sealing portions 20 that close each open end 1e on both sides in the longitudinal direction (second direction D2) of the flat tubes 10. In the example of FIG. 1, the tube sealing portions 20 are provided for each flat tube 10 at two locations, the upper and lower sides of the flat tube. The tube sealing portions 20 are joined to the open end 1e of the flat tube 10 by a joining means such as brazing or adhesive.
 図2は、図1の熱交換器101を搭載した空気調和装置100の冷媒回路図である。図2に示されるように、熱交換器101は、空気調和装置100において冷媒が循環する冷媒回路100cの一部を構成する。 FIG. 2 is a refrigerant circuit diagram of an air-conditioning device 100 equipped with the heat exchanger 101 of FIG. 1. As shown in FIG. 2, the heat exchanger 101 constitutes part of a refrigerant circuit 100c through which the refrigerant circulates in the air-conditioning device 100.
 空気調和装置100は、圧縮機102、熱交換器101、膨張弁105、室内熱交換器104及び四方弁103を有している。図2では、圧縮機102、熱交換器101、膨張弁105及び四方弁103が室外機ユニット100Aに設けられ、室内熱交換器104が室内機ユニット100Bに設けられている。熱交換器101の冷媒の出入口となる第1配管a及び第2配管b(図1参照)は、冷媒回路100cの四方弁103及び膨張弁105に接続される。 The air conditioning device 100 has a compressor 102, a heat exchanger 101, an expansion valve 105, an indoor heat exchanger 104, and a four-way valve 103. In FIG. 2, the compressor 102, the heat exchanger 101, the expansion valve 105, and the four-way valve 103 are provided in the outdoor unit 100A, and the indoor heat exchanger 104 is provided in the indoor unit 100B. The first pipe a and the second pipe b (see FIG. 1), which serve as the inlet and outlet of the refrigerant of the heat exchanger 101, are connected to the four-way valve 103 and the expansion valve 105 of the refrigerant circuit 100c.
 圧縮機102、熱交換器101、膨張弁105、室内熱交換器104及び四方弁103は、冷媒配管を介して互いに接続されることにより、冷媒が循環可能な冷媒回路100cを構成している。空気調和装置100では、圧縮機102が動作することにより、圧縮機102、熱交換器101、膨張弁105及び室内熱交換器104を冷媒が相変化しながら循環する冷凍サイクルが行われる。 The compressor 102, heat exchanger 101, expansion valve 105, indoor heat exchanger 104, and four-way valve 103 are connected to each other via refrigerant piping to form a refrigerant circuit 100c in which the refrigerant can circulate. In the air conditioning device 100, the operation of the compressor 102 performs a refrigeration cycle in which the refrigerant circulates through the compressor 102, heat exchanger 101, expansion valve 105, and indoor heat exchanger 104 while undergoing a phase change.
 室外機ユニット100Aには、熱交換器101に室外の空気を強制的に通過させる室外ファン107が設けられている。熱交換器101は、室外ファン107の動作によって生じた室外の空気の気流と冷媒との間で熱交換を行う。室内機ユニット100Bには、室内熱交換器104に室内の空気を強制的に通過させる室内ファン106が設けられている。室内熱交換器104は、室内ファン106の動作によって生じた室内の空気の気流と冷媒との間で熱交換を行う。 The outdoor unit 100A is provided with an outdoor fan 107 that forces outdoor air to pass through the heat exchanger 101. The heat exchanger 101 exchanges heat between the refrigerant and the outdoor airflow generated by the operation of the outdoor fan 107. The indoor unit 100B is provided with an indoor fan 106 that forces indoor air to pass through the indoor heat exchanger 104. The indoor heat exchanger 104 exchanges heat between the refrigerant and the indoor airflow generated by the operation of the indoor fan 106.
 空気調和装置100の運転は、冷房運転と暖房運転との間で切り替えることができる。図2では、冷房運転時の冷媒の流れの方向を破線矢印で示し、暖房運転時の冷媒の流れの方向を実線矢印で示している。四方弁103は、空気調和装置100の冷房運転及び暖房運転の切り替えに応じて冷媒流路を切り替える電磁弁である。四方弁103は、冷房運転時に、圧縮機102からの冷媒を熱交換器101へ導くとともに室内熱交換器104からの冷媒を圧縮機102へ導き、暖房運転時に、圧縮機102からの冷媒を室内熱交換器104へ導くとともに熱交換器101からの冷媒を圧縮機102へ導く。 The operation of the air conditioning device 100 can be switched between cooling operation and heating operation. In FIG. 2, the direction of refrigerant flow during cooling operation is indicated by a dashed arrow, and the direction of refrigerant flow during heating operation is indicated by a solid arrow. The four-way valve 103 is a solenoid valve that switches the refrigerant flow path in response to switching between cooling operation and heating operation of the air conditioning device 100. During cooling operation, the four-way valve 103 guides the refrigerant from the compressor 102 to the heat exchanger 101 and guides the refrigerant from the indoor heat exchanger 104 to the compressor 102, and during heating operation, guides the refrigerant from the compressor 102 to the indoor heat exchanger 104 and guides the refrigerant from the heat exchanger 101 to the compressor 102.
 空気調和装置100の冷房運転時には、圧縮機102で圧縮された冷媒が熱交換器101へ送られる。熱交換器101では、冷媒が室外の空気へ熱を放出して凝縮される。この後、冷媒は、膨張弁105へ送られ、膨張弁105で減圧された後、室内熱交換器104へ送られる。この後、冷媒は、室内熱交換器104で室内の空気から熱を取り込んで蒸発した後、圧縮機102へ戻る。したがって、空気調和装置100の冷房運転時には、熱交換器101が凝縮器として機能し、室内熱交換器104が蒸発器として機能する。 When the air conditioning device 100 is in cooling operation, the refrigerant compressed by the compressor 102 is sent to the heat exchanger 101. In the heat exchanger 101, the refrigerant releases heat to the outdoor air and is condensed. The refrigerant is then sent to the expansion valve 105, where it is reduced in pressure and then sent to the indoor heat exchanger 104. The refrigerant then absorbs heat from the indoor air in the indoor heat exchanger 104 and evaporates, before returning to the compressor 102. Therefore, when the air conditioning device 100 is in cooling operation, the heat exchanger 101 functions as a condenser, and the indoor heat exchanger 104 functions as an evaporator.
 空気調和装置100の暖房運転時には、圧縮機102で圧縮された冷媒が室内熱交換器104へ送られる。室内熱交換器104では、冷媒が室内の空気へ熱を放出して凝縮される。この後、冷媒は、膨張弁105へ送られ、膨張弁105で減圧された後、熱交換器101へ送られる。この後、冷媒は、熱交換器101で室外の空気から熱を取り込んで蒸発した後、圧縮機102へ戻る。したがって、空気調和装置100の暖房運転時には、熱交換器101が蒸発器として機能し、室内熱交換器104が凝縮器として機能する。 When the air conditioning device 100 is in heating operation, the refrigerant compressed by the compressor 102 is sent to the indoor heat exchanger 104. In the indoor heat exchanger 104, the refrigerant releases heat to the indoor air and is condensed. The refrigerant is then sent to the expansion valve 105, where it is reduced in pressure and then sent to the heat exchanger 101. The refrigerant then absorbs heat from the outdoor air in the heat exchanger 101 and evaporates, before returning to the compressor 102. Therefore, when the air conditioning device 100 is in heating operation, the heat exchanger 101 functions as an evaporator, and the indoor heat exchanger 104 functions as a condenser.
 図3は、図1の熱交換器101の扁平管10の構成を示す斜視図である。図4は、図1の熱交換器101の縦断面図である。図5は、図4の楕円で囲った部分のA-A断面を示す部分断面図である。以下、図1~図5を用いて、熱交換器101の冷媒の流路及び扁平管10の構造について詳しく説明する。図1、図4及び図5では、熱交換器101が凝縮器として用いられる場合における、冷媒の流れの方向を実線の白抜き矢印で示している。また、図5では、空気の流れの方向を破線の白抜き矢印で示している。 FIG. 3 is a perspective view showing the configuration of the flat tubes 10 of the heat exchanger 101 of FIG. 1. FIG. 4 is a longitudinal cross-sectional view of the heat exchanger 101 of FIG. 1. FIG. 5 is a partial cross-sectional view showing the A-A cross section of the part surrounded by an ellipse in FIG. 4. Below, the refrigerant flow path of the heat exchanger 101 and the structure of the flat tubes 10 are described in detail with reference to FIG. 1 to FIG. 5. In FIG. 1, FIG. 4, and FIG. 5, the direction of refrigerant flow when the heat exchanger 101 is used as a condenser is indicated by solid white arrows. Also, in FIG. 5, the direction of air flow is indicated by dashed white arrows.
 図3~図5に示されるように、管壁11は、第1方向D1で向かい合う略平板状の管側壁部10a及び10bと、管側壁部10a及び10bの第3方向D3両側の各端部において管側壁部10aと管側壁部10bとを接続する曲面状の接続壁部10c及び10dと、を有する。管側壁部10a及び管側壁部10bはそれぞれ、扁平管10の長手方向(第2方向D2)に長辺が延び、扁平管10の短手方向(第3方向D3)に短辺が延びた長方形状を有する。管側壁部10a及び10bはそれぞれ平板状であるが、本願でいう「平板状」は完全に平面で構成された面でなくてもよく、全体として平面的に広がって見える構造であれば良い。例えば、平面的に広がる領域の一部に窪み、突起、波形が形成されていてもよい。図4では、管壁11の左側の壁部が管側壁部10aであり、管壁11の右側の壁部が管側壁部10bである。図4に示されるように、左側の管側壁部10aには、第1方向D1に貫通する貫通穴h1aが形成され、右側の管側壁部10bには、第1方向D1に貫通する貫通穴h1bが形成されている。 3 to 5, the tube wall 11 has substantially flat tube side wall portions 10a and 10b facing each other in the first direction D1, and curved connecting wall portions 10c and 10d connecting the tube side wall portions 10a and 10b at the respective ends of the tube side wall portions 10a and 10b on both sides in the third direction D3. The tube side wall portions 10a and 10b each have a rectangular shape with a long side extending in the longitudinal direction (second direction D2) of the flat tube 10 and a short side extending in the lateral direction (third direction D3) of the flat tube 10. Although the tube side wall portions 10a and 10b are each flat, the "flat shape" in this application does not have to be a surface composed of a completely flat surface, and may have a structure that appears to be flat as a whole. For example, a depression, a protrusion, or a wave shape may be formed in part of the flat area. In FIG. 4, the wall portion on the left side of the pipe wall 11 is the pipe side wall portion 10a, and the wall portion on the right side of the pipe wall 11 is the pipe side wall portion 10b. As shown in FIG. 4, the left pipe side wall portion 10a has a through hole h1a that penetrates in the first direction D1, and the right pipe side wall portion 10b has a through hole h1b that penetrates in the first direction D1.
 隣り合う扁平管10の連結部19は、第1方向D1に貫通する中空部Sgが形成された筒形状を有する。連結部19は、隣り合う扁平管10において対向する管側壁部10a及び10bのうち少なくとも一方の管側壁部10a又は10bにおける貫通穴h1a又はh1bの周縁部から、対向する管側壁部10b又は10aの側へ延びた連結突起部19a又は19bで構成される。図4では、連結部19は、隣り合う扁平管10において対向する管側壁部10a及び10bの双方の管側壁部に形成された円筒形状の連結突起部19a及び19bで構成されている。このような貫通穴h1a、h1bと連結突起部19a、19bとは、たとえば扁平管10の平板部分に穴をあけ、その周縁の平板部分を筒状に立ち上げるように変形するバーリング加工によって形成することができる。 The connecting portion 19 of the adjacent flat tubes 10 has a cylindrical shape with a hollow portion Sg penetrating in the first direction D1. The connecting portion 19 is composed of a connecting protrusion 19a or 19b extending from the peripheral portion of the through hole h1a or h1b in at least one of the tube side wall portions 10a and 10b facing each other in the adjacent flat tubes 10 to the side of the facing tube side wall portion 10b or 10a. In FIG. 4, the connecting portion 19 is composed of cylindrical connecting protrusions 19a and 19b formed in both tube side wall portions 10a and 10b facing each other in the adjacent flat tubes 10. Such through holes h1a, h1b and connecting protrusions 19a, 19b can be formed, for example, by a burring process in which a hole is made in the flat portion of the flat tube 10 and the flat portion of the periphery is deformed so as to rise into a cylindrical shape.
 図4に示されるように、連結部19は、管側壁部10a及び10bに設けられた貫通穴h1aと貫通穴h1bとを中空部Sgによって接続することで隣り合う管壁11の内部空間同士を連通させる。また、連結部19は、その内側の中空部Sgと、連結部19の外側の空間である空気の流路P2とを区画する機能を有する。 As shown in FIG. 4, the connecting portion 19 connects the through holes h1a and h1b provided in the tube side wall portions 10a and 10b with the hollow portion Sg, thereby communicating the internal spaces of adjacent tube walls 11. The connecting portion 19 also has the function of dividing the inner hollow portion Sg from the air flow path P2, which is the space outside the connecting portion 19.
 図4に示されるように、貫通穴h1a、貫通穴h1b及び連結部19は、扁平管10の長手方向(第2方向D2)において両側の開口端1eよりも内側に形成される。具体的には、図1のように配置された熱交換器101では、各扁平管10の貫通穴h1a、貫通穴h1b、連結突起部19a及び連結突起部19bは、扁平管10の上側の開口端1eよりも下側且つ扁平管10の下側の開口端1eよりも上側に形成されている。 As shown in Fig. 4, the through holes h1a, h1b, and the connecting portion 19 are formed inward from the opening ends 1e on both sides in the longitudinal direction (second direction D2) of the flat tubes 10. Specifically, in the heat exchanger 101 arranged as shown in Fig. 1, the through holes h1a, h1b, the connecting protrusions 19a, and the connecting protrusions 19b of each flat tube 10 are formed below the upper opening end 1e of the flat tube 10 and above the lower opening end 1e of the flat tube 10.
 このような扁平管10は、例えば、扁平管10の元になる部材に予め貫通穴h1a及びh1bと連結突起部19a及び19bとを形成しておき、その部材をロールフォーミングにより成形することで製造することができる。また、連結突起部19a及び19bは、扁平管10の元になる部材において貫通穴h1a及びh1bを形成する際に穴周縁部を起こすことで形成するようにしてもよい。扁平管10には、例えば、アルミニウム、銅又は真鍮等の高い熱伝導性を有する金属材料が用いられる。 Such flat tubes 10 can be manufactured, for example, by forming through holes h1a and h1b and connecting protrusions 19a and 19b in advance in the base material of the flat tube 10, and then shaping the base material by roll forming. Also, the connecting protrusions 19a and 19b may be formed by raising the periphery of the holes when forming the through holes h1a and h1b in the base material of the flat tube 10. For the flat tube 10, a metal material with high thermal conductivity such as aluminum, copper, or brass is used.
 熱交換器101における冷媒の流路は、各扁平管10の管壁11内に設けられ、扁平管10の長手方向(第2方向D2)に延伸する伝熱流路P1aと、複数の扁平管10の積層方向(第1方向D1)に延伸し、複数の扁平管10の伝熱流路P1aを連通させるヘッダ流路P1bと、を有する。第1方向D1に延伸するヘッダ流路P1bの一端は、第1配管a(図1参照)に接続されている。 The refrigerant flow path in the heat exchanger 101 is provided in the tube wall 11 of each flat tube 10 and has a heat transfer flow path P1a extending in the longitudinal direction of the flat tube 10 (second direction D2), and a header flow path P1b extending in the stacking direction of the flat tubes 10 (first direction D1) and connecting the heat transfer flow paths P1a of the flat tubes 10. One end of the header flow path P1b extending in the first direction D1 is connected to the first pipe a (see FIG. 1).
 上述した貫通穴h1a、貫通穴h1b及び連結部19の中空部Sg等は、ヘッダ流路P1bを構成するものであり、中空部Sgには冷媒が流通する。熱交換器101において、連結部19は扁平管10の一部で構成され、そして、ヘッダ流路P1bのうち扁平管10の管壁11間に配置される部分は、連結部19の内側の中空部Sgである。したがって、熱交換器101では、熱交換部材である扁平管10にヘッダ流路P1bが形成されるので、複数の扁平管10の他にヘッダ管を備える必要が無く、ヘッダレスの構成となっている。 The above-mentioned through holes h1a, h1b, and hollow portion Sg of the connecting portion 19 constitute the header flow path P1b, and the refrigerant flows through the hollow portion Sg. In the heat exchanger 101, the connecting portion 19 is formed of a part of the flat tube 10, and the portion of the header flow path P1b that is arranged between the tube walls 11 of the flat tube 10 is the hollow portion Sg inside the connecting portion 19. Therefore, in the heat exchanger 101, the header flow path P1b is formed in the flat tube 10, which is the heat exchange member, so there is no need to provide a header pipe in addition to the multiple flat tubes 10, resulting in a headerless configuration.
 図5の例では、各扁平管10の内部に、扁平管10の長手方向(第2方向D2、上下方向)に延伸し、扁平管10の管壁11の内部空間を扁平管10の短手方向(第3方向D3、前後方向)に分割する第1仕切り30が設けられている。そして、第1仕切り30の上端30eは、扁平管10の上側の開口端10eよりも下側に設けられている。これにより、管壁11の内部空間の上部には、冷媒が前後方向(第3方向D3)に流通できる折り返し流路P1atが形成されている。すなわち、図5の例では、冷媒の伝熱流路P1aは、折り返し流路P1atを含む逆U字形状を有している。 In the example of FIG. 5, a first partition 30 is provided inside each flat tube 10, extending in the longitudinal direction of the flat tube 10 (second direction D2, up-down direction) and dividing the internal space of the tube wall 11 of the flat tube 10 in the lateral direction of the flat tube 10 (third direction D3, front-to-rear direction). The upper end 30e of the first partition 30 is provided below the upper opening end 10e of the flat tube 10. As a result, a turn-back flow path P1at is formed in the upper part of the internal space of the tube wall 11, through which the refrigerant can flow in the front-to-rear direction (third direction D3). That is, in the example of FIG. 5, the heat transfer flow path P1a of the refrigerant has an inverted U-shape including the turn-back flow path P1at.
 図1、図3~図5の例では、図4に示されるように、熱交換器101の冷媒の流路は、複数の伝熱流路P1aと、熱交換器101の下部に前後に並列して設けられたヘッダ流路P1b及びヘッダ流路P1c(図3参照)と、により構成されている。ヘッダ流路P1bは、熱交換器101の下部において前側に設けられた複数の連結部19の中空部Sg等で構成される。また、図3に示されるように、ヘッダ流路P1cは、熱交換器101の下部において後側に設けられた複数の連結部18の中空部(不図示)等で構成されている。図1及び図4に示されるように、前側のヘッダ流路P1bの右端が第1配管aと接続されており、後側のヘッダ流路P1cの右端が第2配管bと接続されている。 1, 3 to 5, as shown in FIG. 4, the refrigerant flow path of the heat exchanger 101 is composed of a plurality of heat transfer flow paths P1a and a header flow path P1b and a header flow path P1c (see FIG. 3) that are arranged in parallel in the front and rear directions at the bottom of the heat exchanger 101. The header flow path P1b is composed of hollow portions Sg of a plurality of connecting portions 19 arranged at the front side at the bottom of the heat exchanger 101. Also, as shown in FIG. 3, the header flow path P1c is composed of hollow portions (not shown) of a plurality of connecting portions 18 arranged at the rear side at the bottom of the heat exchanger 101. As shown in FIG. 1 and FIG. 4, the right end of the front header flow path P1b is connected to the first pipe a, and the right end of the rear header flow path P1c is connected to the second pipe b.
 なお、図1、図3~図5に示した熱交換器101は、本開示の熱交換器101の一例であり、伝熱流路P1aの形状、扁平管10における第1仕切り30の有無、数及び配置、並びに、熱交換器101における第1配管a及び第2配管bの配置等は、適宜変更できる。 The heat exchanger 101 shown in Figures 1 and 3 to 5 is one example of the heat exchanger 101 of the present disclosure, and the shape of the heat transfer flow path P1a, the presence or absence, number and arrangement of the first partitions 30 in the flat tubes 10, and the arrangement of the first pipe a and the second pipe b in the heat exchanger 101 can be changed as appropriate.
 次に、図1~図2及び図4~図5を用いて、熱交換器101が凝縮器として用いられる場合における、熱交換器101の動作の一例について説明する。図1に白抜き矢印で示されるように、高温高圧のガス状態の冷媒が、第1配管aから熱交換器101内に流入する。図4に示されるように、熱交換器101において高温高圧のガス状態の冷媒は、まず、複数の扁平管10の下部前側を左右方向に貫通するヘッダ流路P1bに流入し、ヘッダ流路P1bを、右から左へ流れる。その過程で、高温高圧のガス状態の冷媒は、複数の扁平管10のそれぞれの管壁11内に設けられた伝熱流路P1aに分配され流入する。各伝熱流路P1aに流入した高温高圧のガス状態の冷媒は、管壁11の内部空間の前側を上方へ流れ、管壁11の内部空間の上部において折り返し流路P1at(図5参照)を後方へ流れた後、管壁11の内部空間の後側を下方へ流れる。このとき、高温高圧のガス状態の冷媒は、扁平管10の管壁11同士の隙間(すなわち空気の流路P2)を流通する空気と、管壁11を介して熱交換することによって空気に放熱して凝縮し、高圧の気液二相状態の冷媒となる。複数の伝熱流路P1aからの高圧の気液二相状態の冷媒は、複数の扁平管10の下部後側を貫通するヘッダ流路P1c(図3参照)に流入し、ヘッダ流路P1cにおいて合流する。図1及び図3に示されるように、ヘッダ流路P1cにおいて合流した高圧の気液二相状態の冷媒は、ヘッダ流路P1cに接続された第2配管bから熱交換器101の外部(例えば、図2に示した冷媒回路100cの膨張弁105)へ流出する。 Next, an example of the operation of the heat exchanger 101 when the heat exchanger 101 is used as a condenser will be described with reference to Figures 1 to 2 and Figures 4 to 5. As shown by the white arrow in Figure 1, a high-temperature, high-pressure gaseous refrigerant flows into the heat exchanger 101 from the first pipe a. As shown in Figure 4, in the heat exchanger 101, the high-temperature, high-pressure gaseous refrigerant first flows into the header flow path P1b that penetrates the lower front side of the multiple flat tubes 10 in the left-right direction, and flows through the header flow path P1b from right to left. In the process, the high-temperature, high-pressure gaseous refrigerant is distributed and flows into the heat transfer flow paths P1a provided in each of the tube walls 11 of the multiple flat tubes 10. The high-temperature, high-pressure gaseous refrigerant that flows into each heat transfer flow path P1a flows upward along the front side of the internal space of the tube wall 11, flows backward along the return flow path P1at (see Figure 5) at the upper part of the internal space of the tube wall 11, and then flows downward along the rear side of the internal space of the tube wall 11. At this time, the high-temperature, high-pressure gaseous refrigerant exchanges heat with the air flowing through the gaps between the tube walls 11 of the flat tubes 10 (i.e., the air flow path P2) through the tube walls 11, and condenses to become a high-pressure gas-liquid two-phase refrigerant. The high-pressure gas-liquid two-phase refrigerant from the multiple heat transfer paths P1a flows into the header path P1c (see FIG. 3) that penetrates the lower rear side of the multiple flat tubes 10, and merges in the header path P1c. As shown in FIG. 1 and FIG. 3, the high-pressure gas-liquid two-phase refrigerant that merges in the header path P1c flows out of the heat exchanger 101 (for example, the expansion valve 105 of the refrigerant circuit 100c shown in FIG. 2) from the second pipe b connected to the header path P1c.
 図4に示されるように、隣り合う扁平管10の管壁11同士を連結する連結部19は、伝熱流路P1a同士を連通させるものであり、管壁11間の隙間において冷媒の流路(特に、ヘッダ流路P1b)と外側の空気の流路P2とを区画するものである。そして、連結部19は、扁平管10の一部である連結突起部19a、19bで構成されている。 As shown in FIG. 4, the connecting portion 19 that connects the tube walls 11 of adjacent flat tubes 10 communicates the heat transfer flow paths P1a with each other, and separates the refrigerant flow path (particularly the header flow path P1b) from the outer air flow path P2 in the gap between the tube walls 11. The connecting portion 19 is composed of connecting protrusions 19a, 19b that are part of the flat tubes 10.
 したがって、本開示の熱交換器101では、所望の管ピッチLpに応じて連結部19の長さを設定すればよく、冷媒の伝熱流路P1aの第1方向D1の幅を狭めることなく、管ピッチLp及び空気の流路P2の第1方向D1の幅を変更することができる。よって、従来のプレートを積層して成る熱交換器と比べ、空気の流路の設計の自由度が高い熱交換器101が提供できる。 Therefore, in the heat exchanger 101 disclosed herein, the length of the connecting portion 19 can be set according to the desired tube pitch Lp, and the tube pitch Lp and the width of the first direction D1 of the air flow path P2 can be changed without narrowing the width of the first direction D1 of the refrigerant heat transfer flow path P1a. Therefore, a heat exchanger 101 can be provided that has a high degree of freedom in designing the air flow path compared to conventional heat exchangers made by stacking plates.
 また、従来のように積層したプレート間に冷媒の伝熱流路と空気の流路とを設ける構成では、本開示の構成と比べて、熱交換部材同士(従来の構成ではプレート同士)の接合部分の面積が大きくなってしまい、通風抵抗の増大、結露水の排水性の悪化、あるいは霜による空気の流路P2の閉塞といった課題が生じる。また、通風抵抗の増大、結露水の排水性の悪化、あるいは霜による空気の流路P2の閉塞によって、熱交換性能が低下する。 Furthermore, in a conventional configuration in which a heat transfer flow path for the refrigerant and an air flow path are provided between stacked plates, the area of the joint between the heat exchange members (between plates in the conventional configuration) becomes larger than in the configuration disclosed herein, resulting in problems such as increased ventilation resistance, poor drainage of condensation water, or blockage of air flow path P2 due to frost. Furthermore, increased ventilation resistance, poor drainage of condensation water, or blockage of air flow path P2 due to frost reduces heat exchange performance.
 一方、本開示の熱交換器101では熱交換部材同士(すなわち扁平管10同士)の接合部分の面積を最小限にでき、また、空気の流路P2の第1方向D1の幅を広げる場合でも連結部19の長さを変更するだけでよいので部品の変更が少なくて済む。 On the other hand, in the heat exchanger 101 disclosed herein, the area of the joint between the heat exchange members (i.e., between the flat tubes 10) can be minimized, and even when the width of the first direction D1 of the air flow path P2 is increased, it is only necessary to change the length of the connecting portion 19, so fewer changes to parts are required.
 連結部19を構成する連結突起部19aと連結突起部19bとは、例えば嵌まり合う構成となっている。このような構成について、具体的な例を挙げて説明する。第1方向D1に隣り合う扁平管10のうち左側の扁平管10における右側の管側壁部10bには、右側へ突出した円筒状の連結突起部19bが形成され、右側の扁平管10における左側の管側壁部10aには、左側へ突出した円筒状の連結突起部19aが形成される。連結突起部19aの内径Diaは、連結突起部19bの外径Dobと略同じ大きさとされ、扁平管10を積層した際に、連結突起部19aに連結突起部19bの右側の先端部が嵌入されることで扁平管10同士が連結する。この場合において、嵌入の深さ、及び各連結突起部19a、19bの第1方向D1の長さは、管ピッチLを所望の長さとした場合において各連結突起部19a、19bの先端が、対向する扁平管10の伝熱流路P1a内にはみ出ないように、適宜決定するとよい。 The connecting protrusions 19a and 19b that make up the connecting portion 19 are configured to, for example, fit together. This configuration will be described with a specific example. Of the flat tubes 10 adjacent in the first direction D1, the right tube side wall 10b of the left flat tube 10 has a cylindrical connecting protrusion 19b that protrudes to the right, and the left tube side wall 10a of the right flat tube 10 has a cylindrical connecting protrusion 19a that protrudes to the left. The inner diameter Dia of the connecting protrusion 19a is approximately the same as the outer diameter Dob of the connecting protrusion 19b, and when the flat tubes 10 are stacked, the right tip of the connecting protrusion 19b fits into the connecting protrusion 19a, thereby connecting the flat tubes 10 to each other. In this case, the depth of insertion and the length in the first direction D1 of each connecting protrusion 19a, 19b should be appropriately determined so that the tip of each connecting protrusion 19a, 19b does not protrude into the heat transfer flow path P1a of the opposing flat tube 10 when the tube pitch L is set to the desired length.
 なお、連結突起部19aと連結突起部19bとが嵌まり合う構成でなくともよい。例えば、連結突起部19bの外径Dobを連結突起部19aの内径Diaよりも若干小さくし、管ピッチLpが所望の長さとなるように連結突起部19aに連結突起部19bの右側の先端部を挿入した後、ロウ付け又は接着剤等の接合手段により連結突起部19aと連結突起部19bとを接合する構成でもよい。 Note that the connecting protrusions 19a and 19b do not have to be configured to fit together. For example, the outer diameter Dob of the connecting protrusions 19b may be made slightly smaller than the inner diameter Dia of the connecting protrusions 19a, and the right end of the connecting protrusions 19b may be inserted into the connecting protrusions 19a so that the pipe pitch Lp is the desired length, and then the connecting protrusions 19a and 19b may be joined by a joining means such as brazing or adhesive.
 なお、連結部19を構成する連結突起部19a及び連結突起部19bの形状は、上記の形状に限定されず、連結突起部19aと連結突起部19bとにより、冷媒のヘッダ流路P1bと空気の流路P2とを区画できればよい。また、連結突起部19aと連結突起部19bとは、第1方向D1において一部が重なるように形成されてもよいし(図4参照)、あるいは、第1方向D1において重なることなく先端同士が接合されてもよい。連結突起部19aと連結突起部19bとが第1方向D1において一部重なる構成では、連結部19の第1方向D1の一部が二重壁構造となるので、先端同士が接合される構成と比べ、連結部19の強度を高めることができる。 The shapes of the connecting protrusions 19a and 19b that constitute the connecting portion 19 are not limited to the above shapes, and it is sufficient if the connecting protrusions 19a and 19b can partition the refrigerant header flow path P1b and the air flow path P2. The connecting protrusions 19a and 19b may be formed to overlap partially in the first direction D1 (see FIG. 4), or the tips may be joined together without overlapping in the first direction D1. In a configuration in which the connecting protrusions 19a and 19b overlap partially in the first direction D1, a portion of the first direction D1 of the connecting portion 19 becomes a double-wall structure, and the strength of the connecting portion 19 can be increased compared to a configuration in which the tips are joined together.
 以上のように、本開示の実施の形態1に係る熱交換器101は、第1方向D1に配列され、それぞれが第1方向D1と交差する第2方向D2に延伸した複数の扁平管10を備えた熱交換器101である。扁平管10は、内部空間に流体が流通する伝熱流路P1aが設けられた管壁11を有する。管壁11は、第1方向D1で向かい合う平板状の管側壁部10a、10bを有し、管側壁部10a、10bには貫通穴h1a、h1bが形成されている。また、隣り合う扁平管10は、管壁11同士を接続し、且つ管壁11の内部の伝熱流路P1a同士を連通させる連結部19を有する。そして、連結部19は、隣り合う扁平管10の対向する管側壁部10a、10bの少なくとも一方に形成された、貫通穴h1a、h1bの周縁部から第1方向D1へ突出する連結突起部19a、19bにより構成されたものである。 As described above, the heat exchanger 101 according to the first embodiment of the present disclosure is a heat exchanger 101 including a plurality of flat tubes 10 arranged in a first direction D1 and each extending in a second direction D2 intersecting the first direction D1. The flat tubes 10 have a tube wall 11 in which a heat transfer flow path P1a through which a fluid flows in the internal space is provided. The tube wall 11 has flat tube side wall portions 10a, 10b facing each other in the first direction D1, and through holes h1a, h1b are formed in the tube side wall portions 10a, 10b. In addition, adjacent flat tubes 10 have a connecting portion 19 that connects the tube walls 11 to each other and communicates the heat transfer flow paths P1a inside the tube walls 11 to each other. The connecting portion 19 is formed by connecting protrusions 19a, 19b that protrude in the first direction D1 from the periphery of the through holes h1a, h1b formed in at least one of the opposing tube side walls 10a, 10b of the adjacent flat tubes 10.
 熱交換器101において、扁平管10の管壁11内に伝熱流路P1aが設けられ、隣り合う扁平管10は、管壁11同士を接続し且つ伝熱流路P1a同士を連通させる連結部19を有し、連結部19は、管側壁部10a、10bの貫通穴h1a、h1bの周縁部から第1方向D1へ突出する連結突起部19a、19bにより構成されたものである。従来の熱交換器では、プレートに直接凹凸加工して冷媒の伝熱流路と空気の流路とが形成され、且つプレート同士の接合部分に設けた貫通穴により伝熱流路同士が連通されるので、空気の流路の幅を広げようとすると冷媒の伝熱流路の幅が狭くなってしまう。一方、本開示の熱交換器101では、扁平管10内に流体の伝熱流路P1aが設けられ、伝熱流路P1a同士を連通させる連結部19は管側壁部10a、10bから第1方向D1へ突出する構成となっている。したがって、連結部19の長さの変更により空気の流路P2(すなわち管壁11間の隙間)の第1方向D1の幅を変更できるので、流体の伝熱流路P1aの第1方向D1の幅を狭めることなく空気の流路P2の第1方向D1の幅を広げることができる。よって、ヘッダレスの熱交換器101において空気の流路の設計の自由度を高めることができる。 In the heat exchanger 101, a heat transfer flow path P1a is provided in the tube wall 11 of the flat tube 10, adjacent flat tubes 10 have connecting portions 19 that connect the tube walls 11 and communicate the heat transfer flow paths P1a, and the connecting portions 19 are composed of connecting protrusions 19a, 19b that protrude in the first direction D1 from the peripheral portions of the through holes h1a, h1b of the tube side wall portions 10a, 10b. In conventional heat exchangers, the heat transfer flow path of the refrigerant and the air flow path are formed by directly machining the plates to have unevenness, and the heat transfer flow paths are communicated by through holes provided at the joints between the plates, so that when attempting to widen the width of the air flow path, the width of the heat transfer flow path of the refrigerant becomes narrower. On the other hand, in the heat exchanger 101 of the present disclosure, a heat transfer flow path P1a of the fluid is provided in the flat tube 10, and the connecting portion 19 that connects the heat transfer flow paths P1a to each other is configured to protrude in the first direction D1 from the tube side wall portions 10a, 10b. Therefore, since the width of the first direction D1 of the air flow path P2 (i.e., the gap between the tube walls 11) can be changed by changing the length of the connecting portion 19, the width of the first direction D1 of the air flow path P2 can be increased without narrowing the width of the first direction D1 of the heat transfer flow path P1a of the fluid. Therefore, the freedom of design of the air flow path can be increased in the headerless heat exchanger 101.
 また、連結部19は、隣り合う扁平管10の対向する管側壁部10a、10bの双方に形成された連結突起部19a及び19bにより構成されたものである。これにより、連結部19が一方の連結突起部19a又は19bで構成される場合と比べて、管壁11内へ連結突起部19a又は19bが侵入し難い。 The connecting portion 19 is also formed by connecting protrusions 19a and 19b formed on both of the opposing tube side walls 10a, 10b of adjacent flat tubes 10. This makes it more difficult for the connecting protrusions 19a or 19b to penetrate into the tube wall 11, compared to when the connecting portion 19 is formed by only one of the connecting protrusions 19a or 19b.
 また、隣り合う扁平管10の対向する管側壁部10a、10bの双方に形成された連結突起部19a及び19bは、第1方向D1において少なくとも一部が重なる。これにより、連結部19の一部を二重壁構造にでき、連結部19の強度を高めることができる。 Furthermore, the connecting protrusions 19a and 19b formed on both of the opposing tube side walls 10a and 10b of adjacent flat tubes 10 overlap at least partially in the first direction D1. This allows a part of the connecting portion 19 to have a double-wall structure, thereby increasing the strength of the connecting portion 19.
 また、扁平管10は、管壁11の内部空間に配置され、第2方向D2に延伸し、内部空間を第1方向D1及び第2方向D2とそれぞれ直交する第3方向D3に分割する第1仕切り30を有する。そして、第1仕切り30の第2方向D2の少なくとも一端(例えば、上端30e)は、扁平管10の第2方向D2の両側の端(両側の開口端10e)よりも内側に位置する。 Furthermore, the flat tube 10 has a first partition 30 that is disposed in the internal space of the tube wall 11, extends in the second direction D2, and divides the internal space into a third direction D3 that is perpendicular to the first direction D1 and the second direction D2. At least one end of the first partition 30 in the second direction D2 (e.g., the upper end 30e) is located inside both ends (both open ends 10e) of the flat tube 10 in the second direction D2.
 これにより、流体の流路の自由な変更ができるので、例えば、流体の出入口の位置に合わせて伝熱流路Pa1を上下に折り返す形状とする場合に、扁平管10を2列配置して列渡しヘッダを設ける、といったことが不要になる。 This allows the fluid flow path to be freely changed, so for example, if the heat transfer flow path Pa1 is shaped to be folded up and down to match the position of the fluid inlet and outlet, it becomes unnecessary to arrange the flat tubes 10 in two rows and provide a row-to-row header.
 実施の形態2.
 図6は、実施の形態2に係る熱交換器101bの概略構成を示す斜視図である。図7は、図6の熱交換器101bの縦断面図である。図8は、図7の四角で囲った連結部19の一構成例を示す図である。図6及び図8では、熱交換器101bが凝縮器として用いられる場合における、冷媒の流れの方向を実線の白抜き矢印で示している。図6~図8に基づき、実施の形態2に係る熱交換器101bについて説明する。実施の形態2の熱交換器101bは、実施の形態1の熱交換器101における管封止部20の構成を変更したものである。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 2.
FIG. 6 is a perspective view showing a schematic configuration of a heat exchanger 101b according to a second embodiment. FIG. 7 is a vertical cross-sectional view of the heat exchanger 101b in FIG. 6. FIG. 8 is a diagram showing an example of a configuration of the connecting portion 19 enclosed in a square in FIG. 7. In FIG. 6 and FIG. 8, the direction of the refrigerant flow when the heat exchanger 101b is used as a condenser is indicated by a solid white arrow. The heat exchanger 101b according to the second embodiment will be described with reference to FIG. 6 to FIG. 8. The heat exchanger 101b according to the second embodiment is a modified version of the heat exchanger 101 according to the first embodiment, in which the configuration of the tube sealing portion 20 is changed. Note that components having the same functions and actions as those in the first embodiment are denoted by the same reference numerals, and their description will be omitted.
 実施の形態1の熱交換器101では、管封止部20が、扁平管10の上側及び下側の2箇所に、扁平管10毎に設けられていたが、実施の形態2の熱交換器101bでは、複数の扁平管10の上側及び下側の2箇所に、複数の扁平管10に対して共通の管封止部120が設けられる。 In the heat exchanger 101 of embodiment 1, the pipe sealing portion 20 is provided for each flat tube 10 at two locations, above and below the flat tube 10, but in the heat exchanger 101b of embodiment 2, a common pipe sealing portion 120 is provided for multiple flat tubes 10 at two locations, above and below the multiple flat tubes 10.
 図6に示されるように、管封止部120は、複数の扁平管10の開口端1eを覆う略矩形の板状部材で構成される。複数の扁平管10の開口端1eは一定のピッチで管封止部120に固定されている。詳しくは、図7に示されるように、管封止部120は、複数の溝部120rと、溝部120r間の平面部120pと、を有する。管封止部120において、溝部120rは、扁平管10の積層方向(第1方向D1)に一定のピッチLrで形成され、扁平管10の開口端1eに沿うように扁平管10の短手方向(第3方向D3)に延伸している。管封止部120における溝部120rのピッチLrと、扁平管10の管ピッチLpは同じである。管封止部120の各溝部120rには、扁平管10の開口端10eを含む端部が配置される。溝部120rの第1方向D1の幅は、扁平管10の第1方向D1の厚みと略同じ大きさであり、同じ又は若干広くなっている。 As shown in FIG. 6, the tube sealing portion 120 is composed of a substantially rectangular plate-shaped member that covers the open ends 1e of the flat tubes 10. The open ends 1e of the flat tubes 10 are fixed to the tube sealing portion 120 at a constant pitch. In detail, as shown in FIG. 7, the tube sealing portion 120 has a plurality of grooves 120r and flat portions 120p between the grooves 120r. In the tube sealing portion 120, the grooves 120r are formed at a constant pitch Lr in the stacking direction (first direction D1) of the flat tubes 10 and extend in the short direction (third direction D3) of the flat tubes 10 so as to follow the open ends 1e of the flat tubes 10. The pitch Lr of the grooves 120r in the tube sealing portion 120 is the same as the tube pitch Lp of the flat tubes 10. An end portion including the open end 10e of the flat tube 10 is arranged in each groove 120r of the tube sealing portion 120. The width of the groove 120r in the first direction D1 is approximately the same as the thickness of the flat tube 10 in the first direction D1, and is the same or slightly wider.
 下側の管封止部120において、扁平管10の下側の開口端10eを閉塞する部分(すなわち溝部120r)以外の平面部120pには、扁平管10等で生じた、結露水又は霜の融解水といった水を排水するための排水穴120hが形成されている。 In the lower pipe sealing portion 120, the flat portion 120p other than the portion that blocks the lower open end 10e of the flat tube 10 (i.e., the groove portion 120r) has a drainage hole 120h formed therein to drain water such as condensation water or melted frost water that occurs in the flat tube 10, etc.
 熱交換器101bの製造時において扁平管10が積層される際、隣り合う扁平管10の対向する連結突起部19a及び19b同士を係り合わせた状態で、各扁平管10の長手方向の端部が管封止部120の各溝部120rに挿入される。これにより、複数の扁平管10が、第1方向D1に一定の管ピッチLpで配置される。その後、管封止部120の各溝部120rと各扁平管10の長手方向の端部とが、また、隣り合う扁平管10の連結突起部19aと連結突起部19bとが、ロウ付け又は接着剤等の接合手段により接合される。そして、接合手段によって複数の扁平管10の開口端1eが管封止部20に固定されることにより、扁平管10の長手方向の端の開口端1eの閉塞の強度を高めることができる。 When the flat tubes 10 are stacked during the manufacture of the heat exchanger 101b, the longitudinal ends of each flat tube 10 are inserted into the grooves 120r of the tube sealing portion 120 while the opposing connecting protrusions 19a and 19b of adjacent flat tubes 10 are engaged with each other. As a result, the flat tubes 10 are arranged at a constant tube pitch Lp in the first direction D1. Then, the grooves 120r of the tube sealing portion 120 and the longitudinal ends of each flat tube 10, and the connecting protrusions 19a and 19b of adjacent flat tubes 10 are joined by a joining means such as brazing or adhesive. Then, the opening ends 1e of the flat tubes 10 are fixed to the tube sealing portion 20 by the joining means, thereby increasing the strength of the closure of the opening ends 1e of the longitudinal ends of the flat tubes 10.
 図7に示すように管封止部120によって積層方向(第1方向D1)における複数の扁平管10の位置が決まる構成では、扁平管10の積層時に、隣り合う扁平管10の管壁11同士の距離の調整が容易にできるように、連結突起部19aに連結突起部19bを嵌入させる構成よりも、軽く係り合う構成とすることが好ましい。 In a configuration in which the positions of multiple flat tubes 10 in the stacking direction (first direction D1) are determined by the tube sealing portion 120 as shown in FIG. 7, it is preferable to have a configuration in which the tube sealing portion 120 lightly engages with the connecting protrusion 19b rather than fitting the connecting protrusion 19a into the connecting protrusion 19b, so that the distance between the tube walls 11 of adjacent flat tubes 10 can be easily adjusted when stacking the flat tubes 10.
 このような構成の一例について、図8を用いて説明する。図8では、隣り合う扁平管10において連結部19を構成する連結突起部19b及び19aは、それぞれ、基端よりも先端において開口径が大きくなるように湾曲した筒形状とされている。連結突起部19bは、管側壁部10bの貫通穴h1bの周縁部に形成され、連結突起部19aは、管側壁部10aの貫通穴h1aの周縁部に形成されている。貫通穴h1bは、貫通穴h1aよりも小さい。扁平管10の積層時において、連結突起部19a内に連結突起部19bが挿入されると、連結突起部19bの先端が連結突起部19aの内面に引っ掛かる構成となっている。 An example of such a configuration will be described with reference to FIG. 8. In FIG. 8, the connecting protrusions 19b and 19a that constitute the connecting portion 19 in adjacent flat tubes 10 are each curved and tubular so that the opening diameter is larger at the tip than at the base. The connecting protrusions 19b are formed on the periphery of the through hole h1b in the tube side wall portion 10b, and the connecting protrusions 19a are formed on the periphery of the through hole h1a in the tube side wall portion 10a. The through hole h1b is smaller than the through hole h1a. When the flat tubes 10 are stacked, when the connecting protrusions 19b are inserted into the connecting protrusions 19a, the tip of the connecting protrusions 19b hooks onto the inner surface of the connecting protrusions 19a.
 これにより、連結部19を構成する連結突起部19bと連結突起部19bとが嵌まり合う構成と比べ、軽く係り合う構成では、連結突起部19bと連結突起部19bとの接触面積を小さくして摩擦力を小さくすることができる。よって、複数の扁平管10を管封止部120に設置する際、隣り合う扁平管10の管壁11同士の距離の調整が容易となる。 As a result, compared to a configuration in which the connecting protrusions 19b constituting the connecting portion 19 fit together, the light engagement configuration reduces the contact area between the connecting protrusions 19b and the connecting protrusions 19b, thereby reducing frictional force. Therefore, when multiple flat tubes 10 are installed in the tube sealing portion 120, it becomes easier to adjust the distance between the tube walls 11 of adjacent flat tubes 10.
 図8の連結突起部19a及び19bも、図4に示した連結突起部19a及び19bと同様、例えば、扁平管10の元になる部材において貫通穴h1a及びh1bを形成する際に穴周縁部を起こすことで形成することができる。 The connecting protrusions 19a and 19b in FIG. 8, like the connecting protrusions 19a and 19b shown in FIG. 4, can be formed, for example, by raising the periphery of the holes when forming the through holes h1a and h1b in the base material of the flat tube 10.
 以上のように、実施の形態2の熱交換器101bは、実施の形態1の熱交換器101の構成に加え、複数の扁平管10の第2方向D2の少なくとも一端(開口端10e)に配置され、複数の扁平管10の伝熱流路Pa1の一端を覆う板状の管封止部120を備える。そして、扁平管10の一端(開口端1e)が、一定のピッチLrで管封止部120に形成された溝部120rに固定されている。なお、上記では扁平管10の端部が溝部120rに挿入されるので、強度の点で優れる。なお、扁平管10の端部と結合する管封止部120側の凹凸構造として溝部120rのかわりに凸部(図示しない)が形成されてもよい。一定のピッチLrで凸部が形成されている管封止部120を用いて、各凸部が扁平管10の端部の内部に挿入されるようにしてもよい。 As described above, the heat exchanger 101b of the second embodiment includes, in addition to the configuration of the heat exchanger 101 of the first embodiment, a plate-shaped tube sealing portion 120 that is arranged at at least one end (open end 10e) of the flat tubes 10 in the second direction D2 and covers one end of the heat transfer flow path Pa1 of the flat tubes 10. One end (open end 1e) of the flat tube 10 is fixed to a groove portion 120r formed in the tube sealing portion 120 at a constant pitch Lr. In the above, the end of the flat tube 10 is inserted into the groove portion 120r, so that it is superior in terms of strength. In addition, a convex portion (not shown) may be formed instead of the groove portion 120r as an uneven structure on the tube sealing portion 120 side that is connected to the end of the flat tube 10. Using the tube sealing portion 120 in which convex portions are formed at a constant pitch Lr, each convex portion may be inserted inside the end of the flat tube 10.
 これにより、熱交換面積を確保しつつ、管封止部120により扁平管10を一定の管ピッチLpで配置できる。 This allows the flat tubes 10 to be arranged at a constant tube pitch Lp using the tube sealing portion 120 while ensuring a sufficient heat exchange area.
 実施の形態3.
 図9は、実施の形態3に係る熱交換器101cの構成を示す斜視図である。図9では、熱交換器101cが凝縮器として用いられる場合における、冷媒の流れの方向を実線の白抜き矢印又は破線の白抜き矢印で示している。図9に基づき、実施の形態3に係る熱交換器101cについて説明する。実施の形態3の熱交換器101cは、実施の形態2の熱交換器101bに、伝熱フィン50を追加したものである。なお、実施の形態2と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 3.
Fig. 9 is a perspective view showing the configuration of a heat exchanger 101c according to a third embodiment. In Fig. 9, the direction of refrigerant flow when the heat exchanger 101c is used as a condenser is indicated by a solid white arrow or a dashed white arrow. The heat exchanger 101c according to the third embodiment will be described with reference to Fig. 9. The heat exchanger 101c of the third embodiment is obtained by adding a heat transfer fin 50 to the heat exchanger 101b of the second embodiment. Note that components having the same functions and actions as those of the second embodiment are denoted by the same reference numerals and will not be described.
 実施の形態3の熱交換器101cは、伝熱フィン50として、例えば、複数の扁平管10の各隙間すなわち空気の流路P2に、隣り合う扁平管10の対向する管側壁部10a、10b同士を接続するコルゲートフィンを備える。この場合において、隣り合う扁平管10の対向する各管側壁部10a、10bと伝熱フィン50とは、互いにろう付け接合される。これにより、冷媒と空気との熱交換が促進され、熱交換器101cの熱交換性能が向上する。 The heat exchanger 101c of the third embodiment is provided with, as heat transfer fins 50, for example, corrugated fins that connect the opposing tube side walls 10a, 10b of adjacent flat tubes 10 in each gap between the flat tubes 10, i.e., in the air flow path P2. In this case, the opposing tube side walls 10a, 10b of adjacent flat tubes 10 and the heat transfer fins 50 are brazed together. This promotes heat exchange between the refrigerant and the air, improving the heat exchange performance of the heat exchanger 101c.
 また、実施の形態3の熱交換器101cは、実施の形態1の熱交換器101と同様、空気の流路P2の設計の自由度が高いので、伝熱フィン50の追加が容易である。ここで、管封止部120の溝部120rのピッチLrは、所望の管ピッチLpに応じて設定すればよい。 Furthermore, like the heat exchanger 101 of the first embodiment, the heat exchanger 101c of the third embodiment has a high degree of freedom in the design of the air flow path P2, so that it is easy to add the heat transfer fins 50. Here, the pitch Lr of the groove portion 120r of the pipe sealing portion 120 may be set according to the desired pipe pitch Lp.
 以上のように、実施の形態3の熱交換器101cは、伝熱フィン50を追加することで伝熱面積が増加し、熱交換性能の図ることができる。 As described above, the heat transfer area of the heat exchanger 101c of embodiment 3 can be increased by adding the heat transfer fins 50, thereby improving heat exchange performance.
 実施の形態4.
 図10は、実施の形態4に係る熱交換器101dの概略構成を示す斜視図である。図11は、図10の熱交換器101dの縦断面図である。図12は、図10の熱交換器101dの平面Bにおける断面を上側から視た横断面図である。図13は、図10の熱交換器101dの平面Cにおける断面を上側から視た横断面図である。図10~図12では、熱交換器101dが凝縮器として用いられる場合における、冷媒の流れの方向を実線の白抜き矢印で示している。また、図12~図13では、空気の流れの方向を破線の白抜き矢印で示している。図10~図13に基づき、実施の形態4に係る熱交換器101dについて説明する。実施の形態4の熱交換器101dは、実施の形態2の熱交換器101bにおいて第1配管a及び第2配管bの位置を変更したものであり、その変更に伴い冷媒の流路も変更される。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 4.
FIG. 10 is a perspective view showing a schematic configuration of a heat exchanger 101d according to the fourth embodiment. FIG. 11 is a vertical cross-sectional view of the heat exchanger 101d of FIG. 10. FIG. 12 is a horizontal cross-sectional view of the heat exchanger 101d of FIG. 10 in plane B, viewed from above. FIG. 13 is a horizontal cross-sectional view of the heat exchanger 101d of FIG. 10 in plane C, viewed from above. In FIGS. 10 to 12, the direction of the refrigerant flow when the heat exchanger 101d is used as a condenser is indicated by a solid white arrow. In addition, in FIGS. 12 to 13, the direction of the air flow is indicated by a dashed white arrow. Based on FIGS. 10 to 13, the heat exchanger 101d according to the fourth embodiment will be described. The heat exchanger 101d of the fourth embodiment is the heat exchanger 101b of the second embodiment in which the positions of the first pipe a and the second pipe b are changed, and the flow path of the refrigerant is also changed accordingly. In addition, components having the same functions and actions as those in the first embodiment are given the same reference numerals and their description will be omitted.
 図10に示されるように、実施の形態4の熱交換器101dでは、複数の扁平管110のうち積層方向の一端に配置された扁平管110に第2配管bが設けられ、積層方向の他端に配置された扁平管110に第1配管aが設けられている。具体的には、第1配管aは、最も左側の扁平管110の下部且つ前後方向の中央に設けられ、第2配管bは、最も右側の扁平管110の下部且つ前後方向の中央に設けられている。 As shown in FIG. 10, in the heat exchanger 101d of the fourth embodiment, the second pipe b is provided on the flat tube 110 arranged at one end of the stacking direction among the plurality of flat tubes 110, and the first pipe a is provided on the flat tube 110 arranged at the other end of the stacking direction. Specifically, the first pipe a is provided at the bottom of the leftmost flat tube 110 and in the center in the front-to-rear direction, and the second pipe b is provided at the bottom of the rightmost flat tube 110 and in the center in the front-to-rear direction.
 熱交換器101dにおいて、扁平管110の管壁111内に第1仕切り30(実施の形態2の図6参照)は設けられていない。一方、熱交換器101dは、図11に示されるように、扁平管110の積層方向(第1方向D1)においてヘッダ流路P1bを分割する第2仕切り40を備える。第2仕切り40は、隣り合う伝熱流路P1a間において冷媒の第1方向D1の進行を遮断するものである。具体的には、連結部119、管側壁部110aの貫通穴h1a、あるいは管側壁部110bの貫通穴h1b等に設けられる。 In the heat exchanger 101d, the first partition 30 (see FIG. 6 in the second embodiment) is not provided in the tube wall 111 of the flat tube 110. On the other hand, as shown in FIG. 11, the heat exchanger 101d has a second partition 40 that divides the header flow path P1b in the stacking direction (first direction D1) of the flat tube 110. The second partition 40 blocks the progress of the refrigerant in the first direction D1 between adjacent heat transfer flow paths P1a. Specifically, the second partition 40 is provided in the connecting portion 119, the through hole h1a in the tube side wall portion 110a, or the through hole h1b in the tube side wall portion 110b.
 図11の例では、第1配管aと接続されたヘッダ流路P1bに1つの第2仕切り40が設けられ、ヘッダ流路P1bは、第1配管aと接続された左側のヘッダ流路部P1b1と、右側のヘッダ流路部P1b2とに分割されている。第2仕切り40は、左側の扁平管110の連結突起部119bと右側の扁平管110の連結突起部119aとの間に、外部から見えるように設けられている。すなわち、第2仕切り40を設ける位置では、連結突起部119a及び連結突起部119bの各先端が第2仕切り40に接合されている。 In the example of FIG. 11, one second partition 40 is provided in the header flow path P1b connected to the first pipe a, and the header flow path P1b is divided into a left header flow path section P1b1 connected to the first pipe a and a right header flow path section P1b2. The second partition 40 is provided between the connecting protrusion 119b of the left flat tube 110 and the connecting protrusion 119a of the right flat tube 110 so as to be visible from the outside. That is, at the position where the second partition 40 is provided, the respective tips of the connecting protrusions 119a and 119b are joined to the second partition 40.
 図10及び図11に示されるように、熱交換器101dの冷媒の流路は、複数の伝熱流路P1aと、熱交換器101dの前後方向の中央において下部と上部とに並列して設けられたヘッダ流路P1b及びヘッダ流路P1dと、により構成されている。ヘッダ流路P1bは、熱交換器101dの下部に設けられた複数の連結部119の中空部Sg等で構成され、ヘッダ流路P1dは、熱交換器101dの上部に設けられた複数の連結部117の中空部(不図示)等で構成されている。下側のヘッダ流路P1bの左端が第1配管aと接続されており、下側のヘッダ流路P1bの右端が第2配管bと接続されている。 As shown in Figures 10 and 11, the refrigerant flow path of the heat exchanger 101d is composed of multiple heat transfer flow paths P1a and header flow paths P1b and P1d, which are arranged in parallel at the lower and upper parts of the center of the heat exchanger 101d in the front-to-rear direction. The header flow path P1b is composed of hollow parts Sg of multiple connecting parts 119 provided at the lower part of the heat exchanger 101d, and the header flow path P1d is composed of hollow parts (not shown) of multiple connecting parts 117 provided at the upper part of the heat exchanger 101d. The left end of the lower header flow path P1b is connected to the first pipe a, and the right end of the lower header flow path P1b is connected to the second pipe b.
 上側の連結部117も、下側の連結部119同様、隣り合う扁平管110において対向する管側壁部110a及び110bのうち少なくとも一方の管側壁部110a又は110bにおける貫通穴h2a又はh2bの周縁部から、対向する管側壁部110b又は110aの側へ延びた連結突起部117a又は117bで構成される。 Like the lower connecting portion 119, the upper connecting portion 117 is composed of a connecting protrusion portion 117a or 117b extending from the peripheral portion of the through hole h2a or h2b in at least one of the opposing tube side wall portions 110a and 110b of adjacent flat tubes 110, toward the opposing tube side wall portion 110b or 110a.
 熱交換器101dにおいて、扁平管110の管壁111内には第1仕切り30(実施の形態2の図6参照)が設けられていないので、管壁111の内部空間は1つのI字状の伝熱流路P1aとなっている。 In the heat exchanger 101d, the first partition 30 (see FIG. 6 in the second embodiment) is not provided within the tube wall 111 of the flat tube 110, so the internal space of the tube wall 111 forms a single I-shaped heat transfer flow path P1a.
 なお、第2仕切り40は、下側のヘッダ流路P1b内において、複数の扁平管110のうち少なくとも1組の隣り合う扁平管110の管壁111間に設けられる。すなわち、下側のヘッダ流路P1bには、複数の第2仕切り40が設けられてもよい。この場合、上側のヘッダ流路P1dにも1つ以上の第2仕切り40を設けることで、蛇行状の冷媒の流路を形成することができる。 The second partition 40 is provided in the lower header flow path P1b between the pipe walls 111 of at least one pair of adjacent flat tubes 110 among the plurality of flat tubes 110. That is, a plurality of second partitions 40 may be provided in the lower header flow path P1b. In this case, by providing one or more second partitions 40 in the upper header flow path P1d as well, a serpentine refrigerant flow path can be formed.
 次に、図2、図10~図13を用いて、熱交換器101dが凝縮器として用いられる場合における、熱交換器101dの動作の一例について説明する。図10に示されるように、高温高圧のガス状態の冷媒が、第1配管aから熱交換器101d内に流入する。図11に示されるように、熱交換器101dにおいて高温高圧のガス状態の冷媒は、まず、複数の扁平管110の下部を貫通するヘッダ流路P1bにおける左側のヘッダ流路部P1b1に流入し、このヘッダ流路部P1b1を、左から右へ流れる。その過程で、高温高圧のガス状態の冷媒は、複数の扁平管110のうち左側のいくつかの扁平管110のそれぞれの管壁111内に設けられた伝熱流路P1aに分配され流入する。左側のいくつかの扁平管110の各伝熱流路P1aに流入した高温高圧のガス状態の冷媒は、管壁111の内部空間を上方へ流れ、その後、複数の扁平管110の上部を貫通するヘッダ流路P1d(図12参照)で合流した後、ヘッダ流路P1dを右側へ流れる過程で、複数の扁平管110のうち右側のいくつかの扁平管110の各伝熱流路P1aに分配され流入し、下方へ流れる。図13に示されるように、左側のいくつかの扁平管110の各伝熱流路P1aを上方へ流れるとき、及び、右側のいくつかの扁平管110の各伝熱流路P1aを下方へ流れるとき、高温高圧のガス状態の冷媒は、扁平管110の管壁111同士の隙間(すなわち空気の流路P2)を流通する空気と、管壁111を介して熱交換することによって空気に放熱して凝縮し、高圧の気液二相状態の冷媒となる。図11に示されるように、その後、右側のいくつかの扁平管110の各伝熱流路P1aからの高圧の気液二相状態の冷媒は、ヘッダ流路P1bにおける右側のヘッダ流路部P1b2に流入し、このヘッダ流路部P1b2において合流し、第2配管bから熱交換器101dの外部(例えば、図2に示した冷媒回路100cの膨張弁105)へ流出する。 2 and 10 to 13, an example of the operation of the heat exchanger 101d when the heat exchanger 101d is used as a condenser will be described. As shown in FIG. 10, a high-temperature, high-pressure gaseous refrigerant flows into the heat exchanger 101d from the first pipe a. As shown in FIG. 11, in the heat exchanger 101d, the high-temperature, high-pressure gaseous refrigerant first flows into the left header flow path portion P1b1 in the header flow path P1b that penetrates the lower part of the flat tubes 110, and flows from left to right through this header flow path portion P1b1. In the process, the high-temperature, high-pressure gaseous refrigerant is distributed and flows into the heat transfer flow paths P1a provided in the respective tube walls 111 of the left flat tubes 110 among the flat tubes 110. The high-temperature, high-pressure gaseous refrigerant that flows into each heat transfer flow path P1a of the flat tubes 110 on the left flows upward through the internal space of the tube wall 111, then merges with the header flow path P1d (see FIG. 12) that penetrates the upper part of the flat tubes 110, and then flows downward through the header flow path P1d to the right. As shown in FIG. 13, when flowing upward through each heat transfer flow path P1a of the flat tubes 110 on the left and when flowing downward through each heat transfer flow path P1a of the flat tubes 110 on the right, the high-temperature, high-pressure gaseous refrigerant exchanges heat with the air flowing through the gaps between the tube walls 111 of the flat tubes 110 (i.e., the air flow path P2) through the tube wall 111, and condenses to become a high-pressure gas-liquid two-phase refrigerant. As shown in FIG. 11, the high-pressure gas-liquid two-phase refrigerant from each heat transfer flow path P1a of the flat tubes 110 on the right side then flows into the header flow path section P1b2 on the right side of the header flow path P1b, merges in this header flow path section P1b2, and flows out of the heat exchanger 101d from the second pipe b (for example, the expansion valve 105 of the refrigerant circuit 100c shown in FIG. 2).
 以上のように、実施の形態4に係る熱交換器101dは、複数の扁平管110のうち少なくとも1組の隣り合う扁平管110の管壁111間に設けられ、連結部119を介した伝熱流路間の前記流体の流れを遮断する第2仕切り40を備える。 As described above, the heat exchanger 101d according to embodiment 4 includes a second partition 40 that is provided between the tube walls 111 of at least one pair of adjacent flat tubes 110 among the plurality of flat tubes 110 and blocks the flow of the fluid between the heat transfer flow paths via the connecting portion 119.
 これにより、簡易的な方法でヘッダ流路P1bを仕切ることができ、また、第2仕切り40を連結部119に設けることで、第2仕切り40の密閉性等を外部から確認できる構成とすることができる。 This allows the header flow path P1b to be partitioned in a simple manner, and by providing the second partition 40 at the connecting portion 119, the airtightness of the second partition 40 can be confirmed from the outside.
 実施の形態5.
 図14は、実施の形態5に係る熱交換器101eの概略構成を示す斜視図である。図14では、熱交換器101eが凝縮器として用いられる場合における、冷媒の流れの方向を実線の白抜き矢印又は破線の白抜き矢印で示している。図14に基づき、実施の形態5に係る熱交換器101eについて説明する。実施の形態5は、第2仕切り40を設けた実施の形態4の熱交換器101dにおいて、実施の形態1の第1仕切り30を追加した実施の形態である。なお、実施の形態4と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 5.
Fig. 14 is a perspective view showing a schematic configuration of a heat exchanger 101e according to embodiment 5. In Fig. 14, the direction of refrigerant flow when the heat exchanger 101e is used as a condenser is indicated by a solid white arrow or a dashed white arrow. The heat exchanger 101e according to embodiment 5 will be described with reference to Fig. 14. The embodiment 5 is an embodiment in which the first partition 30 of embodiment 1 is added to the heat exchanger 101d of embodiment 4 provided with the second partition 40. Note that components having the same functions and actions as those of embodiment 4 are denoted by the same reference numerals and their description will be omitted.
 図14に示されるように、実施の形態5の熱交換器101eでは、複数の扁平管210のうち積層方向の一端に配置された扁平管210に第2配管bが設けられ、積層方向の他端に配置された扁平管210に第1配管aが設けられている。詳しくは、第1配管aは、最も左側の扁平管210の下部且つ前側に設けられ、第2配管bは、最も右側の扁平管210の下部且つ前側に設けられている。 As shown in FIG. 14, in the heat exchanger 101e of the fifth embodiment, the second pipe b is provided on the flat tube 210 arranged at one end of the stacking direction among the plurality of flat tubes 210, and the first pipe a is provided on the flat tube 210 arranged at the other end of the stacking direction. In particular, the first pipe a is provided on the lower part and front side of the leftmost flat tube 210, and the second pipe b is provided on the lower part and front side of the rightmost flat tube 210.
 図14の例では、熱交換器101eの冷媒の流路は、複数の伝熱流路P1aと、熱交換器101eの下部に前後に並列して設けられたヘッダ流路P1b及びヘッダ流路P1cと、により構成されている。ヘッダ流路P1bは、熱交換器101eの下部において前側に設けられた複数の連結部219の中空部Sg(図4参照)等で構成される。また、ヘッダ流路P1cは、熱交換器101eの下部において後側に設けられた複数の連結部18(図3参照)の中空部(不図示)等で構成されている。前側のヘッダ流路P1bの左端が第1配管aと接続され、右端が第2配管bと接続されている。 In the example of FIG. 14, the refrigerant flow path of the heat exchanger 101e is composed of multiple heat transfer flow paths P1a and header flow paths P1b and P1c arranged in parallel in the front and rear at the bottom of the heat exchanger 101e. The header flow path P1b is composed of hollow portions Sg (see FIG. 4) of multiple connecting portions 219 arranged on the front side at the bottom of the heat exchanger 101e. The header flow path P1c is composed of hollow portions (not shown) of multiple connecting portions 18 (see FIG. 3) arranged on the rear side at the bottom of the heat exchanger 101e. The left end of the front header flow path P1b is connected to the first pipe a, and the right end is connected to the second pipe b.
 熱交換器101eにおいて、各扁平管210の管壁211内には、実施の形態1の場合と同様、第1仕切り30が設けられ、管壁211の内部空間の上部には冷媒が前後方向に流通する折り返し流路P1atが形成されている。すなわち、冷媒の伝熱流路P1aは、折り返し流路P1atを含む逆U字形状を有している。 In the heat exchanger 101e, a first partition 30 is provided in the tube wall 211 of each flat tube 210, as in the first embodiment, and a return flow path P1at through which the refrigerant flows in the front-rear direction is formed in the upper part of the internal space of the tube wall 211. In other words, the heat transfer flow path P1a of the refrigerant has an inverted U-shape that includes the return flow path P1at.
 また、前側のヘッダ流路P1bは、第2仕切り40によって、第1配管aに接続された左側のヘッダ流路部P1b1と、第2配管bに接続された右側のヘッダ流路部P1b2とに分割されている。 The front header flow path P1b is divided by a second partition 40 into a left header flow path section P1b1 connected to the first pipe a and a right header flow path section P1b2 connected to the second pipe b.
 次に、図14用いて、熱交換器101eが凝縮器として用いられる場合における、熱交換器101eの動作の一例について説明する。高温高圧のガス状態の冷媒が、第1配管aから熱交換器101e内に流入する。熱交換器101eにおいて高温高圧のガス状態の冷媒は、まず、前側のヘッダ流路P1bにおける左側のヘッダ流路部P1b1に流入し、このヘッダ流路部P1b1を左から右へ流れる過程で、複数の扁平管210のうち左側のいくつかの扁平管210の各伝熱流路P1aに分配され流入する。左側のいくつかの扁平管210の各伝熱流路P1aに流入した高温高圧のガス状態の冷媒は、管壁211の内部空間を上方、後方、下方の順に流れ、その後、後側のヘッダ流路P1dで合流した後、このヘッダ流路P1dを右側へ流れる過程で、複数の扁平管210のうち右側のいくつかの扁平管210の各伝熱流路P1aに分配され流入し、上方、前方、下方の順に流れる。左側のいくつかの扁平管210の各伝熱流路P1aを流れるとき、及び、右側のいくつかの扁平管210の各伝熱流路P1aを流れるとき、高温高圧のガス状態の冷媒は、扁平管210の管壁211同士の隙間(すなわち空気の流路P2)を流通する空気と、管壁211を介して熱交換することによって空気に放熱して凝縮し、高圧の気液二相状態の冷媒となる。その後、右側のいくつかの扁平管210の各伝熱流路P1aからの高圧の気液二相状態の冷媒は、前側のヘッダ流路P1bにおける右側のヘッダ流路部P1b2に流入し、このヘッダ流路部P1b2において合流し、第2配管bから熱交換器101eの外部(例えば、図2に示した冷媒回路100cの膨張弁105)へ流出する。 Next, an example of the operation of the heat exchanger 101e when the heat exchanger 101e is used as a condenser will be described with reference to Figure 14. High-temperature, high-pressure gaseous refrigerant flows into the heat exchanger 101e from the first pipe a. In the heat exchanger 101e, the high-temperature, high-pressure gaseous refrigerant first flows into the left-side header flow passage section P1b1 in the front header flow passage P1b, and as it flows from left to right through this header flow passage section P1b1, it is distributed and flows into each heat transfer flow passage P1a of the left-side flat tubes 210 out of the multiple flat tubes 210. The high-temperature, high-pressure gaseous refrigerant that flows into each heat transfer flow path P1a of the flat tubes 210 on the left flows in the internal space of the tube wall 211 in the order of upward, backward, and downward, and then merges with the rear header flow path P1d, and in the process of flowing to the right through this header flow path P1d, it is distributed and flows into each heat transfer flow path P1a of the flat tubes 210 on the right side among the flat tubes 210, and flows in the order of upward, forward, and downward. When flowing through each heat transfer flow path P1a of the flat tubes 210 on the left side and each heat transfer flow path P1a of the flat tubes 210 on the right side, the high-temperature, high-pressure gaseous refrigerant exchanges heat with the air flowing through the gaps between the tube walls 211 of the flat tubes 210 (i.e., the air flow path P2) through the tube wall 211, and condenses to become a high-pressure gas-liquid two-phase refrigerant. Then, the high-pressure gas-liquid two-phase refrigerant from each heat transfer flow path P1a of the right-side flat tubes 210 flows into the right-side header flow path section P1b2 in the front header flow path P1b, joins in this header flow path section P1b2, and flows out of the heat exchanger 101e from the second pipe b (for example, the expansion valve 105 of the refrigerant circuit 100c shown in FIG. 2).
 実施の形態6.
 図15は、実施の形態6に係る熱交換器101fの扁平管310の位置規制部315の構成を示す縦断面図である。図15に基づき、実施の形態6に係る熱交換器101fについて説明する。熱交換器101fは、実施の形態1に係る熱交換器101の扁平管10の形状を変更したものである。実施の形態6の熱交換器101fは、隣り合う扁平管310の管壁311間の距離を規制する位置規制部315を有する点で、実施の形態1の場合と異なる。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 6.
FIG. 15 is a vertical cross-sectional view showing the configuration of the position regulating portion 315 of the flat tube 310 of the heat exchanger 101f according to the sixth embodiment. The heat exchanger 101f according to the sixth embodiment will be described with reference to FIG. 15. The heat exchanger 101f is a heat exchanger in which the shape of the flat tube 10 of the heat exchanger 101 according to the first embodiment is changed. The heat exchanger 101f according to the sixth embodiment is different from the first embodiment in that it has a position regulating portion 315 that regulates the distance between the tube walls 311 of the adjacent flat tubes 310. Note that components having the same functions and actions as those in the first embodiment are denoted by the same reference numerals and their description is omitted.
 隣り合う扁平管310は、互いの管壁311間の距離を一定にするための位置規制部315を有する。各扁平管310は、実施の形態1の場合と同様、管壁311と、管壁311から外側の第1方向D1に延びた、連結部319を構成する連結突起部319a、319bと、を有する。また、実施の形態6では、各扁平管310は、位置規制部315を構成するものとして、管壁311から外側の第1方向D1に延びた位置規制突起部315a、315bを有する。 Adjacent flat tubes 310 have position regulating portions 315 for keeping the distance between the tube walls 311 constant. As in the first embodiment, each flat tube 310 has a tube wall 311 and connecting protrusions 319a, 319b that extend from the tube wall 311 in the first direction D1 outward and form a connecting portion 319. In the sixth embodiment, each flat tube 310 has position regulating protrusions 315a, 315b that extend from the tube wall 311 in the first direction D1 outward and form the position regulating portion 315.
 具体的には、管壁311において第1方向D1で向かい合う略平板状の管側壁部310a及び310bのうち、管側壁部310aに位置規制突起部315aが設けられ、管側壁部310bに位置規制突起部315bが設けられる。そして、隣り合う扁平管310のそれぞれに設けた位置規制突起部315a、315b同士が接触することで、互いの管壁311間の距離が規制される。すなわち、位置規制部315は、扁平管310の管壁311に設けられたスペーサーである。 Specifically, of the approximately flat tube side wall portions 310a and 310b that face each other in the first direction D1 in the tube wall 311, a position regulating protrusion 315a is provided on the tube side wall portion 310a, and a position regulating protrusion 315b is provided on the tube side wall portion 310b. The position regulating protrusions 315a, 315b provided on adjacent flat tubes 310 come into contact with each other, thereby regulating the distance between the tube walls 311. In other words, the position regulating portion 315 is a spacer provided on the tube wall 311 of the flat tube 310.
 各位置規制突起部315a、315bは、熱交換器101fを正面から見た場合に、例えば、四角形の枠形状を有する。なお、各位置規制突起部315a、315bの形状は、上記の形状に限定されず、例えば、台形又は三角形の枠形状でもよい。位置規制突起部315a及び315bを設けることにより、熱交換器101fにおける伝熱面積が拡大し、熱交換性能が向上する。ここで、各位置規制突起部315a、315bを枠形状としたのは、通風抵抗を小さくするためである。 When the heat exchanger 101f is viewed from the front, each of the position regulating protrusions 315a, 315b has, for example, a rectangular frame shape. Note that the shape of each of the position regulating protrusions 315a, 315b is not limited to the above shape and may be, for example, a trapezoidal or triangular frame shape. By providing the position regulating protrusions 315a and 315b, the heat transfer area in the heat exchanger 101f is expanded, improving the heat exchange performance. Here, the position regulating protrusions 315a, 315b are made frame-shaped in order to reduce ventilation resistance.
 図15の例では、位置規制部315は、隣り合う扁平管310のそれぞれに設けた位置規制突起部315a、315bにより構成されるが、特にこの構成に限定されない。位置規制部315は、隣り合う扁平管310において対向する管側壁部310a及び310bのうち一方(管側壁部310a又は310b)に設けられた1つ位置規制突起部で構成されたものでもよい。この場合、扁平管310に設けられた位置規制突起部は、隣の扁平管310の管壁311と接触する。 In the example of FIG. 15, the position regulating portion 315 is configured by position regulating protrusions 315a, 315b provided on each of the adjacent flat tubes 310, but is not limited to this configuration. The position regulating portion 315 may be configured by a single position regulating protrusion provided on one (tube side wall portion 310a or 310b) of the opposing tube side wall portions 310a and 310b of the adjacent flat tubes 310. In this case, the position regulating protrusion provided on the flat tube 310 comes into contact with the tube wall 311 of the adjacent flat tube 310.
 図15に示されるように、位置規制突起部315a、315bは、扁平管310と一体的に設けることができる。具体的には、扁平管310を構成している部材の一部で形成される。例えば、扁平管310が板状の部材から作られる場合、貫通穴h1a等を形成するのと同時に管壁311になる部分に加えて余白部を含む部材で扁平管310を成形し、余白部の一部に切り込みを入れ、折り曲げる等して位置規制突起部315a、315bを形成すればよい。 As shown in FIG. 15, the position-regulating protrusions 315a, 315b can be provided integrally with the flat tube 310. Specifically, they are formed from part of the material that constitutes the flat tube 310. For example, if the flat tube 310 is made from a plate-shaped material, the flat tube 310 can be molded from a material that includes a margin in addition to the part that will become the tube wall 311 at the same time as forming the through hole h1a, etc., and the position-regulating protrusions 315a, 315b can be formed by cutting part of the margin and bending it, etc.
 なお、位置規制突起部315a、315bは、扁平管310とは別の部材で形成されたものでもよい。 The position control protrusions 315a and 315b may be formed from a material separate from the flat tube 310.
 以上のように、実施の形態6の熱交換器101fにおいて、隣り合う扁平管310の対向する管側壁部310a、310bの少なくとも一方には、管壁311同士の距離を規制する位置規制突起部315a、315bが設けられている。これにより、伝熱面積の拡大を図るとともに、隣り合う扁平管310の管壁311同士の距離を規定できる。 As described above, in the heat exchanger 101f of embodiment 6, at least one of the opposing tube side walls 310a, 310b of adjacent flat tubes 310 is provided with position regulation protrusions 315a, 315b that regulate the distance between the tube walls 311. This allows the heat transfer area to be increased and the distance between the tube walls 311 of adjacent flat tubes 310 to be regulated.
 実施の形態について説明したが、本開示は上述した実施の形態のみに限定されるものではない。例えば、各実施の形態を組み合わせて構成されていてもよい。実施の形態3では、伝熱フィン50を、実施の形態2の熱交換器101bに適用した場合について説明したが、実施の形態3の伝熱フィン50は、実施の形態1、4、5又は6の熱交換器101に適用してもよい。なお、実施の形態6の熱交換器101fに伝熱フィン50を設ける場合、空気の流路P2において連結部319及び位置規制部315が設けられる以外の部分に、伝熱フィン50が配置される。 Although the embodiments have been described, the present disclosure is not limited to the above-mentioned embodiments. For example, the present disclosure may be configured by combining each of the embodiments. In the third embodiment, the heat transfer fins 50 are applied to the heat exchanger 101b of the second embodiment, but the heat transfer fins 50 of the third embodiment may be applied to the heat exchanger 101 of the first, fourth, fifth, or sixth embodiment. When the heat transfer fins 50 are provided in the heat exchanger 101f of the sixth embodiment, the heat transfer fins 50 are disposed in the air flow path P2 in a portion other than where the connecting portion 319 and the position regulating portion 315 are provided.
 1e 開口端、10 扁平管、10a 管側壁部、10b 管側壁部、10c 接続壁部、10d 接続壁部、10e 開口端、11 管壁、18 連結部、19 連結部、19a 連結突起部、19b 連結突起部、20 管封止部、30 第1仕切り、30e 上端、40 第2仕切り、50 伝熱フィン、100 空気調和装置、100A 室外機ユニット、100B 室内機ユニット、100c 冷媒回路、101 熱交換器、101b 熱交換器、101c 熱交換器、101d 熱交換器、101e 熱交換器、101f 熱交換器、102 圧縮機、103 四方弁、104 室内熱交換器、105 膨張弁、106 室内ファン、107 室外ファン、110 扁平管、110a 管側壁部、110b 管側壁部、111 管壁、117 連結部、117a 連結突起部、117b 連結突起部、119 連結部、119a 連結突起部、119b 連結突起部、120 管封止部、120h 排水穴、120p 平面部、120r 溝部、210 扁平管、211 管壁、219 連結部、310 扁平管、310a 管側壁部、310b 管側壁部、311 管壁、315 位置規制部、315a 位置規制突起部、315b 位置規制突起部、319 連結部、319a 連結突起部、319b 連結突起部、Ax 管軸、B 平面、C 平面、D1 第1方向、D2 第2方向、D3 第3方向、Dia 内径、Dob 外径、L 管ピッチ、Lp 管ピッチ、Lr ピッチ、P1a 伝熱流路、P1at 折り返し流路、P1b ヘッダ流路、P1b1 ヘッダ流路部、P1b2 ヘッダ流路部、P1c ヘッダ流路、P1d ヘッダ流路、P2 流路、Pa1 伝熱流路、Sg 中空部、a 第1配管、b 第2配管、h1a 貫通穴、h1b 貫通穴、h2a 貫通穴。 1e opening end, 10 flat tube, 10a tube side wall, 10b tube side wall, 10c connecting wall, 10d connecting wall, 10e opening end, 11 tube wall, 18 connecting portion, 19 connecting portion, 19a connecting protrusion, 19b connecting protrusion, 20 tube sealing portion, 30 first partition, 30e upper end, 40 second partition, 50 heat transfer fin, 100 air conditioning device, 100A outdoor unit, 100B indoor unit, 100c refrigerant circuit, 101 Heat exchanger, 101b Heat exchanger, 101c Heat exchanger, 101d Heat exchanger, 101e Heat exchanger, 101f Heat exchanger, 102 Compressor, 103 Four-way valve, 104 Indoor heat exchanger, 105 Expansion valve, 106 Indoor fan, 107 Outdoor fan, 110 Flat tube, 110a Pipe side wall, 110b Pipe side wall, 111 Pipe wall, 117 Connecting part, 117a Connecting protrusion, 117b Connecting protrusion, 119 Connecting part, 119a Connecting protrusion Origin, 119b connecting protrusion, 120 pipe sealing part, 120h drainage hole, 120p flat part, 120r groove, 210 flat pipe, 211 pipe wall, 219 connecting part, 310 flat pipe, 310a pipe side wall part, 310b pipe side wall part, 311 Pipe wall, 315 Position regulating part, 315a Position regulating protrusion, 315b Position regulating protrusion, 319 Connecting part, 319a Connecting protrusion, 319b Connecting protrusion, Ax Pipe axis, B plane, C plane, D1 First direction, D2 second direction, D3 third direction, Dia inner diameter, Dob outer diameter, L pipe pitch, Lp pipe pitch, Lr pitch, P1a heat transfer flow path, P1at return flow path, P1b header flow path, P1b1 header flow path section, P1b2 header flow path section, P1c header flow path, P1d header flow path, P2 flow path, Pa1 heat transfer flow path, Sg hollow section, a first pipe, b second pipe, h1a through hole, h1b through hole, h2a through hole.

Claims (8)

  1.  第1方向に配列され、それぞれが前記第1方向と交差する第2方向に延伸した複数の扁平管を備えた熱交換器であって、
     前記扁平管は、内部空間に流体が流通する伝熱流路が設けられた管壁を有し、
     前記管壁は、前記第1方向で向かい合う平板状の管側壁部を有し、前記管側壁部には貫通穴が形成されており、
     隣り合う前記扁平管は、前記管壁同士を接続し、且つ前記管壁の内部の前記伝熱流路同士を連通させる連結部を有し、
     前記連結部は、隣り合う前記扁平管の対向する前記管側壁部の少なくとも一方に形成された、前記貫通穴の周縁部から前記第1方向へ突出する連結突起部により構成されたものである
     熱交換器。
    A heat exchanger including a plurality of flat tubes arranged in a first direction and each of the flat tubes extending in a second direction intersecting the first direction,
    The flat tube has a tube wall having a heat transfer flow path through an internal space through which a fluid flows,
    The tube wall has flat tube side wall portions facing each other in the first direction, and a through hole is formed in the tube side wall portions,
    Adjacent flat tubes have connecting portions that connect the tube walls and communicate the heat transfer flow paths inside the tube walls,
    The connecting portion is constituted by a connecting protrusion portion formed on at least one of the opposing tube side wall portions of adjacent flat tubes and protruding from a peripheral portion of the through hole in the first direction.
  2.  複数の前記扁平管の前記第2方向の少なくとも一端に配置され、複数の前記扁平管の前記伝熱流路の一端を覆う板状の管封止部を備え、
     前記管封止部には、一定のピッチで前記扁平管の前記一端が固定されている
     請求項1に記載の熱交換器。
    A plate-shaped tube sealing portion is provided, the plate-shaped tube sealing portion being arranged at least at one end of the flat tubes in the second direction and covering one end of the heat transfer flow path of the flat tubes,
    The heat exchanger according to claim 1 , wherein the one ends of the flat tubes are fixed to the tube sealing portions at a constant pitch.
  3.  前記連結部は、隣り合う前記扁平管の対向する前記管側壁部の双方に形成された前記連結突起部により構成されたものである
     請求項1又は2に記載の熱交換器。
    The heat exchanger according to claim 1 or 2, wherein the connecting portion is configured by the connecting protrusions formed on both of the opposing tube side wall portions of the adjacent flat tubes.
  4.  隣り合う前記扁平管の対向する前記管側壁部の双方に形成された前記連結突起部は、前記第1方向において少なくとも一部が重なる
     請求項3に記載の熱交換器。
    The heat exchanger according to claim 3 , wherein the connecting protrusions formed on both of the opposing tube side wall portions of the adjacent flat tubes at least partially overlap in the first direction.
  5.  前記扁平管は、前記管壁の前記内部空間に配置され、前記第2方向に延伸し、前記内部空間を前記第1方向及び前記第2方向とそれぞれ直交する第3方向に分割する第1仕切りを有し、
     前記第1仕切りの前記第2方向の少なくとも一端は、前記扁平管の前記第2方向の両側の端よりも内側に位置する
     請求項1~4のいずれか一項に記載の熱交換器。
    The flat tube has a first partition disposed in the internal space of the tube wall, extending in the second direction, and dividing the internal space in a third direction perpendicular to the first direction and the second direction,
    The heat exchanger according to any one of claims 1 to 4, wherein at least one end of the first partition in the second direction is located more inward than both ends of the flat tubes in the second direction.
  6.  複数の前記扁平管のうち少なくとも1組の隣り合う前記扁平管の前記管壁間に設けられ、前記連結部を介した前記伝熱流路間の前記流体の流れを遮断する第2仕切りを備える
     請求項1~5のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 5, further comprising a second partition provided between the tube walls of at least one pair of adjacent flat tubes among the plurality of flat tubes, and blocking the flow of the fluid between the heat transfer flow paths via the connecting portion.
  7.  隣り合う前記扁平管の対向する前記管側壁部の少なくとも一方には、前記管壁同士の距離を規制する位置規制突起部が設けられている
     請求項1~6のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 6, wherein at least one of the opposing tube side wall portions of adjacent flat tubes is provided with a position regulating protrusion portion that regulates the distance between the tube walls.
  8.  圧縮機と、請求項1~7のいずれか一項に記載の熱交換器と、膨張弁と、室内熱交換器と、が冷媒配管を介して接続され、前記流体が循環する冷媒回路を備えた
     空気調和装置。
    An air-conditioning apparatus comprising a compressor, the heat exchanger according to any one of claims 1 to 7, an expansion valve, and an indoor heat exchanger, which are connected via refrigerant piping to a refrigerant circuit through which the fluid circulates.
PCT/JP2023/010084 2023-03-15 2023-03-15 Heat exchanger and air conditioner including same WO2024189823A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023548223A JP7443630B1 (en) 2023-03-15 2023-03-15 Heat exchanger and air conditioner equipped with it
PCT/JP2023/010084 WO2024189823A1 (en) 2023-03-15 2023-03-15 Heat exchanger and air conditioner including same
JP2024024484A JP2024132908A (en) 2023-03-15 2024-02-21 Heat exchanger and air conditioner equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010084 WO2024189823A1 (en) 2023-03-15 2023-03-15 Heat exchanger and air conditioner including same

Publications (1)

Publication Number Publication Date
WO2024189823A1 true WO2024189823A1 (en) 2024-09-19

Family

ID=90096880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010084 WO2024189823A1 (en) 2023-03-15 2023-03-15 Heat exchanger and air conditioner including same

Country Status (2)

Country Link
JP (2) JP7443630B1 (en)
WO (1) WO2024189823A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108056U (en) * 1986-12-27 1988-07-12
JP2007053307A (en) * 2005-08-19 2007-03-01 Denso Corp Stacked heat exchanger and its manufacturing method
JP2012107804A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd Laminated heat exchanger, and heat medium heating apparatus and in-vehicle air-conditioning apparatus using the laminated heat exchanger
JP3199792U (en) * 2015-06-29 2015-09-10 有限会社和氣製作所 Heat exchanger and manifold member used therefor
JP2016118335A (en) * 2014-12-22 2016-06-30 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2018017430A (en) * 2016-07-26 2018-02-01 日立化成株式会社 Manufacturing method of heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153585A (en) 1999-11-29 2001-06-08 Showa Alum Corp Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108056U (en) * 1986-12-27 1988-07-12
JP2007053307A (en) * 2005-08-19 2007-03-01 Denso Corp Stacked heat exchanger and its manufacturing method
JP2012107804A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd Laminated heat exchanger, and heat medium heating apparatus and in-vehicle air-conditioning apparatus using the laminated heat exchanger
JP2016118335A (en) * 2014-12-22 2016-06-30 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP3199792U (en) * 2015-06-29 2015-09-10 有限会社和氣製作所 Heat exchanger and manifold member used therefor
JP2018017430A (en) * 2016-07-26 2018-02-01 日立化成株式会社 Manufacturing method of heat exchanger

Also Published As

Publication number Publication date
JP7443630B1 (en) 2024-03-05
JP2024132908A (en) 2024-10-01

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
US6308527B1 (en) Refrigerant evaporator with condensed water drain structure
JP6005267B2 (en) Laminated header, heat exchanger, and air conditioner
JP6573722B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP6005268B2 (en) Laminated header, heat exchanger, and air conditioner
WO2019009158A1 (en) Heat exchanger
JP2002130977A (en) Heat exchanger
JP2008116084A (en) Heat exchanger
JPH11223421A (en) Refrigerant evaporator
WO2024189823A1 (en) Heat exchanger and air conditioner including same
JP4147731B2 (en) Heat exchanger for cooling
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
WO2019207838A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP7188564B2 (en) Heat exchanger
WO2024089927A1 (en) Heat exchanger and refrigeration cycle device with said heat exchanger
JP7001943B1 (en) Heat exchanger and air conditioner
JP7330294B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2024224513A1 (en) Heat exchanger and air conditioning device
WO2022259288A1 (en) Heat exchanger and outdoor unit
JP7001944B1 (en) Heat exchanger and air conditioner
US11988463B2 (en) Microchannel heat exchanger for appliance condenser
JP7462832B2 (en) Heat exchanger
JP6958695B1 (en) Heat exchanger and air conditioner
WO2023195085A1 (en) Heat exchanger and air heating and cooling device
WO2022054406A1 (en) Heat exchanger and air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23927443

Country of ref document: EP

Kind code of ref document: A1